xref: /openbmc/linux/fs/ubifs/debug.c (revision 93dc544c)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 
36 #ifdef CONFIG_UBIFS_FS_DEBUG
37 
38 DEFINE_SPINLOCK(dbg_lock);
39 
40 static char dbg_key_buf0[128];
41 static char dbg_key_buf1[128];
42 
43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
45 unsigned int ubifs_tst_flags;
46 
47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50 
51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
52 MODULE_PARM_DESC(debug_chks, "Debug check flags");
53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
54 
55 static const char *get_key_fmt(int fmt)
56 {
57 	switch (fmt) {
58 	case UBIFS_SIMPLE_KEY_FMT:
59 		return "simple";
60 	default:
61 		return "unknown/invalid format";
62 	}
63 }
64 
65 static const char *get_key_hash(int hash)
66 {
67 	switch (hash) {
68 	case UBIFS_KEY_HASH_R5:
69 		return "R5";
70 	case UBIFS_KEY_HASH_TEST:
71 		return "test";
72 	default:
73 		return "unknown/invalid name hash";
74 	}
75 }
76 
77 static const char *get_key_type(int type)
78 {
79 	switch (type) {
80 	case UBIFS_INO_KEY:
81 		return "inode";
82 	case UBIFS_DENT_KEY:
83 		return "direntry";
84 	case UBIFS_XENT_KEY:
85 		return "xentry";
86 	case UBIFS_DATA_KEY:
87 		return "data";
88 	case UBIFS_TRUN_KEY:
89 		return "truncate";
90 	default:
91 		return "unknown/invalid key";
92 	}
93 }
94 
95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
96 			char *buffer)
97 {
98 	char *p = buffer;
99 	int type = key_type(c, key);
100 
101 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
102 		switch (type) {
103 		case UBIFS_INO_KEY:
104 			sprintf(p, "(%lu, %s)", key_inum(c, key),
105 			       get_key_type(type));
106 			break;
107 		case UBIFS_DENT_KEY:
108 		case UBIFS_XENT_KEY:
109 			sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key),
110 				get_key_type(type), key_hash(c, key));
111 			break;
112 		case UBIFS_DATA_KEY:
113 			sprintf(p, "(%lu, %s, %u)", key_inum(c, key),
114 				get_key_type(type), key_block(c, key));
115 			break;
116 		case UBIFS_TRUN_KEY:
117 			sprintf(p, "(%lu, %s)",
118 				key_inum(c, key), get_key_type(type));
119 			break;
120 		default:
121 			sprintf(p, "(bad key type: %#08x, %#08x)",
122 				key->u32[0], key->u32[1]);
123 		}
124 	} else
125 		sprintf(p, "bad key format %d", c->key_fmt);
126 }
127 
128 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
129 {
130 	/* dbg_lock must be held */
131 	sprintf_key(c, key, dbg_key_buf0);
132 	return dbg_key_buf0;
133 }
134 
135 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
136 {
137 	/* dbg_lock must be held */
138 	sprintf_key(c, key, dbg_key_buf1);
139 	return dbg_key_buf1;
140 }
141 
142 const char *dbg_ntype(int type)
143 {
144 	switch (type) {
145 	case UBIFS_PAD_NODE:
146 		return "padding node";
147 	case UBIFS_SB_NODE:
148 		return "superblock node";
149 	case UBIFS_MST_NODE:
150 		return "master node";
151 	case UBIFS_REF_NODE:
152 		return "reference node";
153 	case UBIFS_INO_NODE:
154 		return "inode node";
155 	case UBIFS_DENT_NODE:
156 		return "direntry node";
157 	case UBIFS_XENT_NODE:
158 		return "xentry node";
159 	case UBIFS_DATA_NODE:
160 		return "data node";
161 	case UBIFS_TRUN_NODE:
162 		return "truncate node";
163 	case UBIFS_IDX_NODE:
164 		return "indexing node";
165 	case UBIFS_CS_NODE:
166 		return "commit start node";
167 	case UBIFS_ORPH_NODE:
168 		return "orphan node";
169 	default:
170 		return "unknown node";
171 	}
172 }
173 
174 static const char *dbg_gtype(int type)
175 {
176 	switch (type) {
177 	case UBIFS_NO_NODE_GROUP:
178 		return "no node group";
179 	case UBIFS_IN_NODE_GROUP:
180 		return "in node group";
181 	case UBIFS_LAST_OF_NODE_GROUP:
182 		return "last of node group";
183 	default:
184 		return "unknown";
185 	}
186 }
187 
188 const char *dbg_cstate(int cmt_state)
189 {
190 	switch (cmt_state) {
191 	case COMMIT_RESTING:
192 		return "commit resting";
193 	case COMMIT_BACKGROUND:
194 		return "background commit requested";
195 	case COMMIT_REQUIRED:
196 		return "commit required";
197 	case COMMIT_RUNNING_BACKGROUND:
198 		return "BACKGROUND commit running";
199 	case COMMIT_RUNNING_REQUIRED:
200 		return "commit running and required";
201 	case COMMIT_BROKEN:
202 		return "broken commit";
203 	default:
204 		return "unknown commit state";
205 	}
206 }
207 
208 static void dump_ch(const struct ubifs_ch *ch)
209 {
210 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
211 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
212 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
213 	       dbg_ntype(ch->node_type));
214 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
215 	       dbg_gtype(ch->group_type));
216 	printk(KERN_DEBUG "\tsqnum          %llu\n",
217 	       (unsigned long long)le64_to_cpu(ch->sqnum));
218 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
219 }
220 
221 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
222 {
223 	const struct ubifs_inode *ui = ubifs_inode(inode);
224 
225 	printk(KERN_DEBUG "inode      %lu\n", inode->i_ino);
226 	printk(KERN_DEBUG "size       %llu\n",
227 	       (unsigned long long)i_size_read(inode));
228 	printk(KERN_DEBUG "nlink      %u\n", inode->i_nlink);
229 	printk(KERN_DEBUG "uid        %u\n", (unsigned int)inode->i_uid);
230 	printk(KERN_DEBUG "gid        %u\n", (unsigned int)inode->i_gid);
231 	printk(KERN_DEBUG "atime      %u.%u\n",
232 	       (unsigned int)inode->i_atime.tv_sec,
233 	       (unsigned int)inode->i_atime.tv_nsec);
234 	printk(KERN_DEBUG "mtime      %u.%u\n",
235 	       (unsigned int)inode->i_mtime.tv_sec,
236 	       (unsigned int)inode->i_mtime.tv_nsec);
237 	printk(KERN_DEBUG "ctime       %u.%u\n",
238 	       (unsigned int)inode->i_ctime.tv_sec,
239 	       (unsigned int)inode->i_ctime.tv_nsec);
240 	printk(KERN_DEBUG "creat_sqnum %llu\n", ui->creat_sqnum);
241 	printk(KERN_DEBUG "xattr_size  %u\n", ui->xattr_size);
242 	printk(KERN_DEBUG "xattr_cnt   %u\n", ui->xattr_cnt);
243 	printk(KERN_DEBUG "xattr_names %u\n", ui->xattr_names);
244 	printk(KERN_DEBUG "dirty       %u\n", ui->dirty);
245 	printk(KERN_DEBUG "xattr       %u\n", ui->xattr);
246 	printk(KERN_DEBUG "flags       %d\n", ui->flags);
247 	printk(KERN_DEBUG "compr_type  %d\n", ui->compr_type);
248 	printk(KERN_DEBUG "data_len    %d\n", ui->data_len);
249 }
250 
251 void dbg_dump_node(const struct ubifs_info *c, const void *node)
252 {
253 	int i, n;
254 	union ubifs_key key;
255 	const struct ubifs_ch *ch = node;
256 
257 	if (dbg_failure_mode)
258 		return;
259 
260 	/* If the magic is incorrect, just hexdump the first bytes */
261 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
262 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
263 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
264 			       (void *)node, UBIFS_CH_SZ, 1);
265 		return;
266 	}
267 
268 	spin_lock(&dbg_lock);
269 	dump_ch(node);
270 
271 	switch (ch->node_type) {
272 	case UBIFS_PAD_NODE:
273 	{
274 		const struct ubifs_pad_node *pad = node;
275 
276 		printk(KERN_DEBUG "\tpad_len        %u\n",
277 		       le32_to_cpu(pad->pad_len));
278 		break;
279 	}
280 	case UBIFS_SB_NODE:
281 	{
282 		const struct ubifs_sb_node *sup = node;
283 		unsigned int sup_flags = le32_to_cpu(sup->flags);
284 
285 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
286 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
287 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
288 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
289 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
290 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
291 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
292 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
293 		       le32_to_cpu(sup->min_io_size));
294 		printk(KERN_DEBUG "\tleb_size       %u\n",
295 		       le32_to_cpu(sup->leb_size));
296 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
297 		       le32_to_cpu(sup->leb_cnt));
298 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
299 		       le32_to_cpu(sup->max_leb_cnt));
300 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
301 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
302 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
303 		       le32_to_cpu(sup->log_lebs));
304 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
305 		       le32_to_cpu(sup->lpt_lebs));
306 		printk(KERN_DEBUG "\torph_lebs      %u\n",
307 		       le32_to_cpu(sup->orph_lebs));
308 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
309 		       le32_to_cpu(sup->jhead_cnt));
310 		printk(KERN_DEBUG "\tfanout         %u\n",
311 		       le32_to_cpu(sup->fanout));
312 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
313 		       le32_to_cpu(sup->lsave_cnt));
314 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
315 		       (int)le16_to_cpu(sup->default_compr));
316 		printk(KERN_DEBUG "\trp_size        %llu\n",
317 		       (unsigned long long)le64_to_cpu(sup->rp_size));
318 		printk(KERN_DEBUG "\trp_uid         %u\n",
319 		       le32_to_cpu(sup->rp_uid));
320 		printk(KERN_DEBUG "\trp_gid         %u\n",
321 		       le32_to_cpu(sup->rp_gid));
322 		printk(KERN_DEBUG "\tfmt_version    %u\n",
323 		       le32_to_cpu(sup->fmt_version));
324 		printk(KERN_DEBUG "\ttime_gran      %u\n",
325 		       le32_to_cpu(sup->time_gran));
326 		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
327 		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
328 		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
329 		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
330 		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
331 		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
332 		       sup->uuid[15]);
333 		break;
334 	}
335 	case UBIFS_MST_NODE:
336 	{
337 		const struct ubifs_mst_node *mst = node;
338 
339 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
340 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
341 		printk(KERN_DEBUG "\tcommit number  %llu\n",
342 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
343 		printk(KERN_DEBUG "\tflags          %#x\n",
344 		       le32_to_cpu(mst->flags));
345 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
346 		       le32_to_cpu(mst->log_lnum));
347 		printk(KERN_DEBUG "\troot_lnum      %u\n",
348 		       le32_to_cpu(mst->root_lnum));
349 		printk(KERN_DEBUG "\troot_offs      %u\n",
350 		       le32_to_cpu(mst->root_offs));
351 		printk(KERN_DEBUG "\troot_len       %u\n",
352 		       le32_to_cpu(mst->root_len));
353 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
354 		       le32_to_cpu(mst->gc_lnum));
355 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
356 		       le32_to_cpu(mst->ihead_lnum));
357 		printk(KERN_DEBUG "\tihead_offs     %u\n",
358 		       le32_to_cpu(mst->ihead_offs));
359 		printk(KERN_DEBUG "\tindex_size     %u\n",
360 		       le32_to_cpu(mst->index_size));
361 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
362 		       le32_to_cpu(mst->lpt_lnum));
363 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
364 		       le32_to_cpu(mst->lpt_offs));
365 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
366 		       le32_to_cpu(mst->nhead_lnum));
367 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
368 		       le32_to_cpu(mst->nhead_offs));
369 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
370 		       le32_to_cpu(mst->ltab_lnum));
371 		printk(KERN_DEBUG "\tltab_offs      %u\n",
372 		       le32_to_cpu(mst->ltab_offs));
373 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
374 		       le32_to_cpu(mst->lsave_lnum));
375 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
376 		       le32_to_cpu(mst->lsave_offs));
377 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
378 		       le32_to_cpu(mst->lscan_lnum));
379 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
380 		       le32_to_cpu(mst->leb_cnt));
381 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
382 		       le32_to_cpu(mst->empty_lebs));
383 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
384 		       le32_to_cpu(mst->idx_lebs));
385 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
386 		       (unsigned long long)le64_to_cpu(mst->total_free));
387 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
388 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
389 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
390 		       (unsigned long long)le64_to_cpu(mst->total_used));
391 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->total_dead));
393 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->total_dark));
395 		break;
396 	}
397 	case UBIFS_REF_NODE:
398 	{
399 		const struct ubifs_ref_node *ref = node;
400 
401 		printk(KERN_DEBUG "\tlnum           %u\n",
402 		       le32_to_cpu(ref->lnum));
403 		printk(KERN_DEBUG "\toffs           %u\n",
404 		       le32_to_cpu(ref->offs));
405 		printk(KERN_DEBUG "\tjhead          %u\n",
406 		       le32_to_cpu(ref->jhead));
407 		break;
408 	}
409 	case UBIFS_INO_NODE:
410 	{
411 		const struct ubifs_ino_node *ino = node;
412 
413 		key_read(c, &ino->key, &key);
414 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
415 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
416 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417 		printk(KERN_DEBUG "\tsize           %llu\n",
418 		       (unsigned long long)le64_to_cpu(ino->size));
419 		printk(KERN_DEBUG "\tnlink          %u\n",
420 		       le32_to_cpu(ino->nlink));
421 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
422 		       (long long)le64_to_cpu(ino->atime_sec),
423 		       le32_to_cpu(ino->atime_nsec));
424 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
425 		       (long long)le64_to_cpu(ino->mtime_sec),
426 		       le32_to_cpu(ino->mtime_nsec));
427 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
428 		       (long long)le64_to_cpu(ino->ctime_sec),
429 		       le32_to_cpu(ino->ctime_nsec));
430 		printk(KERN_DEBUG "\tuid            %u\n",
431 		       le32_to_cpu(ino->uid));
432 		printk(KERN_DEBUG "\tgid            %u\n",
433 		       le32_to_cpu(ino->gid));
434 		printk(KERN_DEBUG "\tmode           %u\n",
435 		       le32_to_cpu(ino->mode));
436 		printk(KERN_DEBUG "\tflags          %#x\n",
437 		       le32_to_cpu(ino->flags));
438 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
439 		       le32_to_cpu(ino->xattr_cnt));
440 		printk(KERN_DEBUG "\txattr_size     %u\n",
441 		       le32_to_cpu(ino->xattr_size));
442 		printk(KERN_DEBUG "\txattr_names    %u\n",
443 		       le32_to_cpu(ino->xattr_names));
444 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
445 		       (int)le16_to_cpu(ino->compr_type));
446 		printk(KERN_DEBUG "\tdata len       %u\n",
447 		       le32_to_cpu(ino->data_len));
448 		break;
449 	}
450 	case UBIFS_DENT_NODE:
451 	case UBIFS_XENT_NODE:
452 	{
453 		const struct ubifs_dent_node *dent = node;
454 		int nlen = le16_to_cpu(dent->nlen);
455 
456 		key_read(c, &dent->key, &key);
457 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
458 		printk(KERN_DEBUG "\tinum           %llu\n",
459 		       (unsigned long long)le64_to_cpu(dent->inum));
460 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
461 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
462 		printk(KERN_DEBUG "\tname           ");
463 
464 		if (nlen > UBIFS_MAX_NLEN)
465 			printk(KERN_DEBUG "(bad name length, not printing, "
466 					  "bad or corrupted node)");
467 		else {
468 			for (i = 0; i < nlen && dent->name[i]; i++)
469 				printk("%c", dent->name[i]);
470 		}
471 		printk("\n");
472 
473 		break;
474 	}
475 	case UBIFS_DATA_NODE:
476 	{
477 		const struct ubifs_data_node *dn = node;
478 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
479 
480 		key_read(c, &dn->key, &key);
481 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
482 		printk(KERN_DEBUG "\tsize           %u\n",
483 		       le32_to_cpu(dn->size));
484 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
485 		       (int)le16_to_cpu(dn->compr_type));
486 		printk(KERN_DEBUG "\tdata size      %d\n",
487 		       dlen);
488 		printk(KERN_DEBUG "\tdata:\n");
489 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
490 			       (void *)&dn->data, dlen, 0);
491 		break;
492 	}
493 	case UBIFS_TRUN_NODE:
494 	{
495 		const struct ubifs_trun_node *trun = node;
496 
497 		printk(KERN_DEBUG "\tinum           %u\n",
498 		       le32_to_cpu(trun->inum));
499 		printk(KERN_DEBUG "\told_size       %llu\n",
500 		       (unsigned long long)le64_to_cpu(trun->old_size));
501 		printk(KERN_DEBUG "\tnew_size       %llu\n",
502 		       (unsigned long long)le64_to_cpu(trun->new_size));
503 		break;
504 	}
505 	case UBIFS_IDX_NODE:
506 	{
507 		const struct ubifs_idx_node *idx = node;
508 
509 		n = le16_to_cpu(idx->child_cnt);
510 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
511 		printk(KERN_DEBUG "\tlevel          %d\n",
512 		       (int)le16_to_cpu(idx->level));
513 		printk(KERN_DEBUG "\tBranches:\n");
514 
515 		for (i = 0; i < n && i < c->fanout - 1; i++) {
516 			const struct ubifs_branch *br;
517 
518 			br = ubifs_idx_branch(c, idx, i);
519 			key_read(c, &br->key, &key);
520 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
521 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
522 			       le32_to_cpu(br->len), DBGKEY(&key));
523 		}
524 		break;
525 	}
526 	case UBIFS_CS_NODE:
527 		break;
528 	case UBIFS_ORPH_NODE:
529 	{
530 		const struct ubifs_orph_node *orph = node;
531 
532 		printk(KERN_DEBUG "\tcommit number  %llu\n",
533 		       (unsigned long long)
534 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
535 		printk(KERN_DEBUG "\tlast node flag %llu\n",
536 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
537 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
538 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
539 		for (i = 0; i < n; i++)
540 			printk(KERN_DEBUG "\t  ino %llu\n",
541 			       le64_to_cpu(orph->inos[i]));
542 		break;
543 	}
544 	default:
545 		printk(KERN_DEBUG "node type %d was not recognized\n",
546 		       (int)ch->node_type);
547 	}
548 	spin_unlock(&dbg_lock);
549 }
550 
551 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
552 {
553 	spin_lock(&dbg_lock);
554 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
555 	       req->new_ino, req->dirtied_ino);
556 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
557 	       req->new_ino_d, req->dirtied_ino_d);
558 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
559 	       req->new_page, req->dirtied_page);
560 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
561 	       req->new_dent, req->mod_dent);
562 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
563 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
564 	       req->data_growth, req->dd_growth);
565 	spin_unlock(&dbg_lock);
566 }
567 
568 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
569 {
570 	spin_lock(&dbg_lock);
571 	printk(KERN_DEBUG "Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
572 	       lst->empty_lebs, lst->idx_lebs);
573 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
574 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
575 	       lst->total_dirty);
576 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
577 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
578 	       lst->total_dead);
579 	spin_unlock(&dbg_lock);
580 }
581 
582 void dbg_dump_budg(struct ubifs_info *c)
583 {
584 	int i;
585 	struct rb_node *rb;
586 	struct ubifs_bud *bud;
587 	struct ubifs_gced_idx_leb *idx_gc;
588 
589 	spin_lock(&dbg_lock);
590 	printk(KERN_DEBUG "Budgeting info: budg_data_growth %lld, "
591 	       "budg_dd_growth %lld, budg_idx_growth %lld\n",
592 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
593 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
594 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
595 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
596 	       c->freeable_cnt);
597 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
598 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
599 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
600 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
601 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
602 	       atomic_long_read(&c->dirty_zn_cnt),
603 	       atomic_long_read(&c->clean_zn_cnt));
604 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
605 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
606 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
607 	       c->gc_lnum, c->ihead_lnum);
608 	for (i = 0; i < c->jhead_cnt; i++)
609 		printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
610 		       c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
611 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
612 		bud = rb_entry(rb, struct ubifs_bud, rb);
613 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
614 	}
615 	list_for_each_entry(bud, &c->old_buds, list)
616 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
617 	list_for_each_entry(idx_gc, &c->idx_gc, list)
618 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
619 		       idx_gc->lnum, idx_gc->unmap);
620 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
621 	spin_unlock(&dbg_lock);
622 }
623 
624 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
625 {
626 	printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
627 	       "flags %#x\n", lp->lnum, lp->free, lp->dirty,
628 	       c->leb_size - lp->free - lp->dirty, lp->flags);
629 }
630 
631 void dbg_dump_lprops(struct ubifs_info *c)
632 {
633 	int lnum, err;
634 	struct ubifs_lprops lp;
635 	struct ubifs_lp_stats lst;
636 
637 	printk(KERN_DEBUG "Dumping LEB properties\n");
638 	ubifs_get_lp_stats(c, &lst);
639 	dbg_dump_lstats(&lst);
640 
641 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
642 		err = ubifs_read_one_lp(c, lnum, &lp);
643 		if (err)
644 			ubifs_err("cannot read lprops for LEB %d", lnum);
645 
646 		dbg_dump_lprop(c, &lp);
647 	}
648 }
649 
650 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
651 {
652 	struct ubifs_scan_leb *sleb;
653 	struct ubifs_scan_node *snod;
654 
655 	if (dbg_failure_mode)
656 		return;
657 
658 	printk(KERN_DEBUG "Dumping LEB %d\n", lnum);
659 
660 	sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
661 	if (IS_ERR(sleb)) {
662 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
663 		return;
664 	}
665 
666 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
667 	       sleb->nodes_cnt, sleb->endpt);
668 
669 	list_for_each_entry(snod, &sleb->nodes, list) {
670 		cond_resched();
671 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
672 		       snod->offs, snod->len);
673 		dbg_dump_node(c, snod->node);
674 	}
675 
676 	ubifs_scan_destroy(sleb);
677 	return;
678 }
679 
680 void dbg_dump_znode(const struct ubifs_info *c,
681 		    const struct ubifs_znode *znode)
682 {
683 	int n;
684 	const struct ubifs_zbranch *zbr;
685 
686 	spin_lock(&dbg_lock);
687 	if (znode->parent)
688 		zbr = &znode->parent->zbranch[znode->iip];
689 	else
690 		zbr = &c->zroot;
691 
692 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
693 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
694 	       zbr->len, znode->parent, znode->iip, znode->level,
695 	       znode->child_cnt, znode->flags);
696 
697 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
698 		spin_unlock(&dbg_lock);
699 		return;
700 	}
701 
702 	printk(KERN_DEBUG "zbranches:\n");
703 	for (n = 0; n < znode->child_cnt; n++) {
704 		zbr = &znode->zbranch[n];
705 		if (znode->level > 0)
706 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
707 					  "%s\n", n, zbr->znode, zbr->lnum,
708 					  zbr->offs, zbr->len,
709 					  DBGKEY(&zbr->key));
710 		else
711 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
712 					  "%s\n", n, zbr->znode, zbr->lnum,
713 					  zbr->offs, zbr->len,
714 					  DBGKEY(&zbr->key));
715 	}
716 	spin_unlock(&dbg_lock);
717 }
718 
719 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
720 {
721 	int i;
722 
723 	printk(KERN_DEBUG "Dumping heap cat %d (%d elements)\n",
724 	       cat, heap->cnt);
725 	for (i = 0; i < heap->cnt; i++) {
726 		struct ubifs_lprops *lprops = heap->arr[i];
727 
728 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
729 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
730 		       lprops->free, lprops->dirty, lprops->flags);
731 	}
732 }
733 
734 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
735 		    struct ubifs_nnode *parent, int iip)
736 {
737 	int i;
738 
739 	printk(KERN_DEBUG "Dumping pnode:\n");
740 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
741 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
742 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
743 	       pnode->flags, iip, pnode->level, pnode->num);
744 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
745 		struct ubifs_lprops *lp = &pnode->lprops[i];
746 
747 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
748 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
749 	}
750 }
751 
752 void dbg_dump_tnc(struct ubifs_info *c)
753 {
754 	struct ubifs_znode *znode;
755 	int level;
756 
757 	printk(KERN_DEBUG "\n");
758 	printk(KERN_DEBUG "Dumping the TNC tree\n");
759 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
760 	level = znode->level;
761 	printk(KERN_DEBUG "== Level %d ==\n", level);
762 	while (znode) {
763 		if (level != znode->level) {
764 			level = znode->level;
765 			printk(KERN_DEBUG "== Level %d ==\n", level);
766 		}
767 		dbg_dump_znode(c, znode);
768 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
769 	}
770 
771 	printk(KERN_DEBUG "\n");
772 }
773 
774 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
775 		      void *priv)
776 {
777 	dbg_dump_znode(c, znode);
778 	return 0;
779 }
780 
781 /**
782  * dbg_dump_index - dump the on-flash index.
783  * @c: UBIFS file-system description object
784  *
785  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
786  * which dumps only in-memory znodes and does not read znodes which from flash.
787  */
788 void dbg_dump_index(struct ubifs_info *c)
789 {
790 	dbg_walk_index(c, NULL, dump_znode, NULL);
791 }
792 
793 /**
794  * dbg_check_synced_i_size - check synchronized inode size.
795  * @inode: inode to check
796  *
797  * If inode is clean, synchronized inode size has to be equivalent to current
798  * inode size. This function has to be called only for locked inodes (@i_mutex
799  * has to be locked). Returns %0 if synchronized inode size if correct, and
800  * %-EINVAL if not.
801  */
802 int dbg_check_synced_i_size(struct inode *inode)
803 {
804 	int err = 0;
805 	struct ubifs_inode *ui = ubifs_inode(inode);
806 
807 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
808 		return 0;
809 	if (!S_ISREG(inode->i_mode))
810 		return 0;
811 
812 	mutex_lock(&ui->ui_mutex);
813 	spin_lock(&ui->ui_lock);
814 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
815 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
816 			  "is clean", ui->ui_size, ui->synced_i_size);
817 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
818 			  inode->i_mode, i_size_read(inode));
819 		dbg_dump_stack();
820 		err = -EINVAL;
821 	}
822 	spin_unlock(&ui->ui_lock);
823 	mutex_unlock(&ui->ui_mutex);
824 	return err;
825 }
826 
827 /*
828  * dbg_check_dir - check directory inode size and link count.
829  * @c: UBIFS file-system description object
830  * @dir: the directory to calculate size for
831  * @size: the result is returned here
832  *
833  * This function makes sure that directory size and link count are correct.
834  * Returns zero in case of success and a negative error code in case of
835  * failure.
836  *
837  * Note, it is good idea to make sure the @dir->i_mutex is locked before
838  * calling this function.
839  */
840 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
841 {
842 	unsigned int nlink = 2;
843 	union ubifs_key key;
844 	struct ubifs_dent_node *dent, *pdent = NULL;
845 	struct qstr nm = { .name = NULL };
846 	loff_t size = UBIFS_INO_NODE_SZ;
847 
848 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
849 		return 0;
850 
851 	if (!S_ISDIR(dir->i_mode))
852 		return 0;
853 
854 	lowest_dent_key(c, &key, dir->i_ino);
855 	while (1) {
856 		int err;
857 
858 		dent = ubifs_tnc_next_ent(c, &key, &nm);
859 		if (IS_ERR(dent)) {
860 			err = PTR_ERR(dent);
861 			if (err == -ENOENT)
862 				break;
863 			return err;
864 		}
865 
866 		nm.name = dent->name;
867 		nm.len = le16_to_cpu(dent->nlen);
868 		size += CALC_DENT_SIZE(nm.len);
869 		if (dent->type == UBIFS_ITYPE_DIR)
870 			nlink += 1;
871 		kfree(pdent);
872 		pdent = dent;
873 		key_read(c, &dent->key, &key);
874 	}
875 	kfree(pdent);
876 
877 	if (i_size_read(dir) != size) {
878 		ubifs_err("directory inode %lu has size %llu, "
879 			  "but calculated size is %llu", dir->i_ino,
880 			  (unsigned long long)i_size_read(dir),
881 			  (unsigned long long)size);
882 		dump_stack();
883 		return -EINVAL;
884 	}
885 	if (dir->i_nlink != nlink) {
886 		ubifs_err("directory inode %lu has nlink %u, but calculated "
887 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
888 		dump_stack();
889 		return -EINVAL;
890 	}
891 
892 	return 0;
893 }
894 
895 /**
896  * dbg_check_key_order - make sure that colliding keys are properly ordered.
897  * @c: UBIFS file-system description object
898  * @zbr1: first zbranch
899  * @zbr2: following zbranch
900  *
901  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
902  * names of the direntries/xentries which are referred by the keys. This
903  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
904  * sure the name of direntry/xentry referred by @zbr1 is less than
905  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
906  * and a negative error code in case of failure.
907  */
908 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
909 			       struct ubifs_zbranch *zbr2)
910 {
911 	int err, nlen1, nlen2, cmp;
912 	struct ubifs_dent_node *dent1, *dent2;
913 	union ubifs_key key;
914 
915 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
916 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
917 	if (!dent1)
918 		return -ENOMEM;
919 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
920 	if (!dent2) {
921 		err = -ENOMEM;
922 		goto out_free;
923 	}
924 
925 	err = ubifs_tnc_read_node(c, zbr1, dent1);
926 	if (err)
927 		goto out_free;
928 	err = ubifs_validate_entry(c, dent1);
929 	if (err)
930 		goto out_free;
931 
932 	err = ubifs_tnc_read_node(c, zbr2, dent2);
933 	if (err)
934 		goto out_free;
935 	err = ubifs_validate_entry(c, dent2);
936 	if (err)
937 		goto out_free;
938 
939 	/* Make sure node keys are the same as in zbranch */
940 	err = 1;
941 	key_read(c, &dent1->key, &key);
942 	if (keys_cmp(c, &zbr1->key, &key)) {
943 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
944 			zbr1->offs, DBGKEY(&key));
945 		dbg_err("but it should have key %s according to tnc",
946 			DBGKEY(&zbr1->key));
947 			dbg_dump_node(c, dent1);
948 			goto out_free;
949 	}
950 
951 	key_read(c, &dent2->key, &key);
952 	if (keys_cmp(c, &zbr2->key, &key)) {
953 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
954 			zbr1->offs, DBGKEY(&key));
955 		dbg_err("but it should have key %s according to tnc",
956 			DBGKEY(&zbr2->key));
957 			dbg_dump_node(c, dent2);
958 			goto out_free;
959 	}
960 
961 	nlen1 = le16_to_cpu(dent1->nlen);
962 	nlen2 = le16_to_cpu(dent2->nlen);
963 
964 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
965 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
966 		err = 0;
967 		goto out_free;
968 	}
969 	if (cmp == 0 && nlen1 == nlen2)
970 		dbg_err("2 xent/dent nodes with the same name");
971 	else
972 		dbg_err("bad order of colliding key %s",
973 			DBGKEY(&key));
974 
975 	dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
976 	dbg_dump_node(c, dent1);
977 	dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
978 	dbg_dump_node(c, dent2);
979 
980 out_free:
981 	kfree(dent2);
982 	kfree(dent1);
983 	return err;
984 }
985 
986 /**
987  * dbg_check_znode - check if znode is all right.
988  * @c: UBIFS file-system description object
989  * @zbr: zbranch which points to this znode
990  *
991  * This function makes sure that znode referred to by @zbr is all right.
992  * Returns zero if it is, and %-EINVAL if it is not.
993  */
994 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
995 {
996 	struct ubifs_znode *znode = zbr->znode;
997 	struct ubifs_znode *zp = znode->parent;
998 	int n, err, cmp;
999 
1000 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1001 		err = 1;
1002 		goto out;
1003 	}
1004 	if (znode->level < 0) {
1005 		err = 2;
1006 		goto out;
1007 	}
1008 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1009 		err = 3;
1010 		goto out;
1011 	}
1012 
1013 	if (zbr->len == 0)
1014 		/* Only dirty zbranch may have no on-flash nodes */
1015 		if (!ubifs_zn_dirty(znode)) {
1016 			err = 4;
1017 			goto out;
1018 		}
1019 
1020 	if (ubifs_zn_dirty(znode)) {
1021 		/*
1022 		 * If znode is dirty, its parent has to be dirty as well. The
1023 		 * order of the operation is important, so we have to have
1024 		 * memory barriers.
1025 		 */
1026 		smp_mb();
1027 		if (zp && !ubifs_zn_dirty(zp)) {
1028 			/*
1029 			 * The dirty flag is atomic and is cleared outside the
1030 			 * TNC mutex, so znode's dirty flag may now have
1031 			 * been cleared. The child is always cleared before the
1032 			 * parent, so we just need to check again.
1033 			 */
1034 			smp_mb();
1035 			if (ubifs_zn_dirty(znode)) {
1036 				err = 5;
1037 				goto out;
1038 			}
1039 		}
1040 	}
1041 
1042 	if (zp) {
1043 		const union ubifs_key *min, *max;
1044 
1045 		if (znode->level != zp->level - 1) {
1046 			err = 6;
1047 			goto out;
1048 		}
1049 
1050 		/* Make sure the 'parent' pointer in our znode is correct */
1051 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1052 		if (!err) {
1053 			/* This zbranch does not exist in the parent */
1054 			err = 7;
1055 			goto out;
1056 		}
1057 
1058 		if (znode->iip >= zp->child_cnt) {
1059 			err = 8;
1060 			goto out;
1061 		}
1062 
1063 		if (znode->iip != n) {
1064 			/* This may happen only in case of collisions */
1065 			if (keys_cmp(c, &zp->zbranch[n].key,
1066 				     &zp->zbranch[znode->iip].key)) {
1067 				err = 9;
1068 				goto out;
1069 			}
1070 			n = znode->iip;
1071 		}
1072 
1073 		/*
1074 		 * Make sure that the first key in our znode is greater than or
1075 		 * equal to the key in the pointing zbranch.
1076 		 */
1077 		min = &zbr->key;
1078 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1079 		if (cmp == 1) {
1080 			err = 10;
1081 			goto out;
1082 		}
1083 
1084 		if (n + 1 < zp->child_cnt) {
1085 			max = &zp->zbranch[n + 1].key;
1086 
1087 			/*
1088 			 * Make sure the last key in our znode is less or
1089 			 * equivalent than the the key in zbranch which goes
1090 			 * after our pointing zbranch.
1091 			 */
1092 			cmp = keys_cmp(c, max,
1093 				&znode->zbranch[znode->child_cnt - 1].key);
1094 			if (cmp == -1) {
1095 				err = 11;
1096 				goto out;
1097 			}
1098 		}
1099 	} else {
1100 		/* This may only be root znode */
1101 		if (zbr != &c->zroot) {
1102 			err = 12;
1103 			goto out;
1104 		}
1105 	}
1106 
1107 	/*
1108 	 * Make sure that next key is greater or equivalent then the previous
1109 	 * one.
1110 	 */
1111 	for (n = 1; n < znode->child_cnt; n++) {
1112 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1113 			       &znode->zbranch[n].key);
1114 		if (cmp > 0) {
1115 			err = 13;
1116 			goto out;
1117 		}
1118 		if (cmp == 0) {
1119 			/* This can only be keys with colliding hash */
1120 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1121 				err = 14;
1122 				goto out;
1123 			}
1124 
1125 			if (znode->level != 0 || c->replaying)
1126 				continue;
1127 
1128 			/*
1129 			 * Colliding keys should follow binary order of
1130 			 * corresponding xentry/dentry names.
1131 			 */
1132 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1133 						  &znode->zbranch[n]);
1134 			if (err < 0)
1135 				return err;
1136 			if (err) {
1137 				err = 15;
1138 				goto out;
1139 			}
1140 		}
1141 	}
1142 
1143 	for (n = 0; n < znode->child_cnt; n++) {
1144 		if (!znode->zbranch[n].znode &&
1145 		    (znode->zbranch[n].lnum == 0 ||
1146 		     znode->zbranch[n].len == 0)) {
1147 			err = 16;
1148 			goto out;
1149 		}
1150 
1151 		if (znode->zbranch[n].lnum != 0 &&
1152 		    znode->zbranch[n].len == 0) {
1153 			err = 17;
1154 			goto out;
1155 		}
1156 
1157 		if (znode->zbranch[n].lnum == 0 &&
1158 		    znode->zbranch[n].len != 0) {
1159 			err = 18;
1160 			goto out;
1161 		}
1162 
1163 		if (znode->zbranch[n].lnum == 0 &&
1164 		    znode->zbranch[n].offs != 0) {
1165 			err = 19;
1166 			goto out;
1167 		}
1168 
1169 		if (znode->level != 0 && znode->zbranch[n].znode)
1170 			if (znode->zbranch[n].znode->parent != znode) {
1171 				err = 20;
1172 				goto out;
1173 			}
1174 	}
1175 
1176 	return 0;
1177 
1178 out:
1179 	ubifs_err("failed, error %d", err);
1180 	ubifs_msg("dump of the znode");
1181 	dbg_dump_znode(c, znode);
1182 	if (zp) {
1183 		ubifs_msg("dump of the parent znode");
1184 		dbg_dump_znode(c, zp);
1185 	}
1186 	dump_stack();
1187 	return -EINVAL;
1188 }
1189 
1190 /**
1191  * dbg_check_tnc - check TNC tree.
1192  * @c: UBIFS file-system description object
1193  * @extra: do extra checks that are possible at start commit
1194  *
1195  * This function traverses whole TNC tree and checks every znode. Returns zero
1196  * if everything is all right and %-EINVAL if something is wrong with TNC.
1197  */
1198 int dbg_check_tnc(struct ubifs_info *c, int extra)
1199 {
1200 	struct ubifs_znode *znode;
1201 	long clean_cnt = 0, dirty_cnt = 0;
1202 	int err, last;
1203 
1204 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1205 		return 0;
1206 
1207 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1208 	if (!c->zroot.znode)
1209 		return 0;
1210 
1211 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1212 	while (1) {
1213 		struct ubifs_znode *prev;
1214 		struct ubifs_zbranch *zbr;
1215 
1216 		if (!znode->parent)
1217 			zbr = &c->zroot;
1218 		else
1219 			zbr = &znode->parent->zbranch[znode->iip];
1220 
1221 		err = dbg_check_znode(c, zbr);
1222 		if (err)
1223 			return err;
1224 
1225 		if (extra) {
1226 			if (ubifs_zn_dirty(znode))
1227 				dirty_cnt += 1;
1228 			else
1229 				clean_cnt += 1;
1230 		}
1231 
1232 		prev = znode;
1233 		znode = ubifs_tnc_postorder_next(znode);
1234 		if (!znode)
1235 			break;
1236 
1237 		/*
1238 		 * If the last key of this znode is equivalent to the first key
1239 		 * of the next znode (collision), then check order of the keys.
1240 		 */
1241 		last = prev->child_cnt - 1;
1242 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1243 		    !keys_cmp(c, &prev->zbranch[last].key,
1244 			      &znode->zbranch[0].key)) {
1245 			err = dbg_check_key_order(c, &prev->zbranch[last],
1246 						  &znode->zbranch[0]);
1247 			if (err < 0)
1248 				return err;
1249 			if (err) {
1250 				ubifs_msg("first znode");
1251 				dbg_dump_znode(c, prev);
1252 				ubifs_msg("second znode");
1253 				dbg_dump_znode(c, znode);
1254 				return -EINVAL;
1255 			}
1256 		}
1257 	}
1258 
1259 	if (extra) {
1260 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1261 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1262 				  atomic_long_read(&c->clean_zn_cnt),
1263 				  clean_cnt);
1264 			return -EINVAL;
1265 		}
1266 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1267 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1268 				  atomic_long_read(&c->dirty_zn_cnt),
1269 				  dirty_cnt);
1270 			return -EINVAL;
1271 		}
1272 	}
1273 
1274 	return 0;
1275 }
1276 
1277 /**
1278  * dbg_walk_index - walk the on-flash index.
1279  * @c: UBIFS file-system description object
1280  * @leaf_cb: called for each leaf node
1281  * @znode_cb: called for each indexing node
1282  * @priv: private date which is passed to callbacks
1283  *
1284  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1285  * node and @znode_cb for each indexing node. Returns zero in case of success
1286  * and a negative error code in case of failure.
1287  *
1288  * It would be better if this function removed every znode it pulled to into
1289  * the TNC, so that the behavior more closely matched the non-debugging
1290  * behavior.
1291  */
1292 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1293 		   dbg_znode_callback znode_cb, void *priv)
1294 {
1295 	int err;
1296 	struct ubifs_zbranch *zbr;
1297 	struct ubifs_znode *znode, *child;
1298 
1299 	mutex_lock(&c->tnc_mutex);
1300 	/* If the root indexing node is not in TNC - pull it */
1301 	if (!c->zroot.znode) {
1302 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1303 		if (IS_ERR(c->zroot.znode)) {
1304 			err = PTR_ERR(c->zroot.znode);
1305 			c->zroot.znode = NULL;
1306 			goto out_unlock;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * We are going to traverse the indexing tree in the postorder manner.
1312 	 * Go down and find the leftmost indexing node where we are going to
1313 	 * start from.
1314 	 */
1315 	znode = c->zroot.znode;
1316 	while (znode->level > 0) {
1317 		zbr = &znode->zbranch[0];
1318 		child = zbr->znode;
1319 		if (!child) {
1320 			child = ubifs_load_znode(c, zbr, znode, 0);
1321 			if (IS_ERR(child)) {
1322 				err = PTR_ERR(child);
1323 				goto out_unlock;
1324 			}
1325 			zbr->znode = child;
1326 		}
1327 
1328 		znode = child;
1329 	}
1330 
1331 	/* Iterate over all indexing nodes */
1332 	while (1) {
1333 		int idx;
1334 
1335 		cond_resched();
1336 
1337 		if (znode_cb) {
1338 			err = znode_cb(c, znode, priv);
1339 			if (err) {
1340 				ubifs_err("znode checking function returned "
1341 					  "error %d", err);
1342 				dbg_dump_znode(c, znode);
1343 				goto out_dump;
1344 			}
1345 		}
1346 		if (leaf_cb && znode->level == 0) {
1347 			for (idx = 0; idx < znode->child_cnt; idx++) {
1348 				zbr = &znode->zbranch[idx];
1349 				err = leaf_cb(c, zbr, priv);
1350 				if (err) {
1351 					ubifs_err("leaf checking function "
1352 						  "returned error %d, for leaf "
1353 						  "at LEB %d:%d",
1354 						  err, zbr->lnum, zbr->offs);
1355 					goto out_dump;
1356 				}
1357 			}
1358 		}
1359 
1360 		if (!znode->parent)
1361 			break;
1362 
1363 		idx = znode->iip + 1;
1364 		znode = znode->parent;
1365 		if (idx < znode->child_cnt) {
1366 			/* Switch to the next index in the parent */
1367 			zbr = &znode->zbranch[idx];
1368 			child = zbr->znode;
1369 			if (!child) {
1370 				child = ubifs_load_znode(c, zbr, znode, idx);
1371 				if (IS_ERR(child)) {
1372 					err = PTR_ERR(child);
1373 					goto out_unlock;
1374 				}
1375 				zbr->znode = child;
1376 			}
1377 			znode = child;
1378 		} else
1379 			/*
1380 			 * This is the last child, switch to the parent and
1381 			 * continue.
1382 			 */
1383 			continue;
1384 
1385 		/* Go to the lowest leftmost znode in the new sub-tree */
1386 		while (znode->level > 0) {
1387 			zbr = &znode->zbranch[0];
1388 			child = zbr->znode;
1389 			if (!child) {
1390 				child = ubifs_load_znode(c, zbr, znode, 0);
1391 				if (IS_ERR(child)) {
1392 					err = PTR_ERR(child);
1393 					goto out_unlock;
1394 				}
1395 				zbr->znode = child;
1396 			}
1397 			znode = child;
1398 		}
1399 	}
1400 
1401 	mutex_unlock(&c->tnc_mutex);
1402 	return 0;
1403 
1404 out_dump:
1405 	if (znode->parent)
1406 		zbr = &znode->parent->zbranch[znode->iip];
1407 	else
1408 		zbr = &c->zroot;
1409 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1410 	dbg_dump_znode(c, znode);
1411 out_unlock:
1412 	mutex_unlock(&c->tnc_mutex);
1413 	return err;
1414 }
1415 
1416 /**
1417  * add_size - add znode size to partially calculated index size.
1418  * @c: UBIFS file-system description object
1419  * @znode: znode to add size for
1420  * @priv: partially calculated index size
1421  *
1422  * This is a helper function for 'dbg_check_idx_size()' which is called for
1423  * every indexing node and adds its size to the 'long long' variable pointed to
1424  * by @priv.
1425  */
1426 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1427 {
1428 	long long *idx_size = priv;
1429 	int add;
1430 
1431 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1432 	add = ALIGN(add, 8);
1433 	*idx_size += add;
1434 	return 0;
1435 }
1436 
1437 /**
1438  * dbg_check_idx_size - check index size.
1439  * @c: UBIFS file-system description object
1440  * @idx_size: size to check
1441  *
1442  * This function walks the UBIFS index, calculates its size and checks that the
1443  * size is equivalent to @idx_size. Returns zero in case of success and a
1444  * negative error code in case of failure.
1445  */
1446 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1447 {
1448 	int err;
1449 	long long calc = 0;
1450 
1451 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1452 		return 0;
1453 
1454 	err = dbg_walk_index(c, NULL, add_size, &calc);
1455 	if (err) {
1456 		ubifs_err("error %d while walking the index", err);
1457 		return err;
1458 	}
1459 
1460 	if (calc != idx_size) {
1461 		ubifs_err("index size check failed: calculated size is %lld, "
1462 			  "should be %lld", calc, idx_size);
1463 		dump_stack();
1464 		return -EINVAL;
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 /**
1471  * struct fsck_inode - information about an inode used when checking the file-system.
1472  * @rb: link in the RB-tree of inodes
1473  * @inum: inode number
1474  * @mode: inode type, permissions, etc
1475  * @nlink: inode link count
1476  * @xattr_cnt: count of extended attributes
1477  * @references: how many directory/xattr entries refer this inode (calculated
1478  *              while walking the index)
1479  * @calc_cnt: for directory inode count of child directories
1480  * @size: inode size (read from on-flash inode)
1481  * @xattr_sz: summary size of all extended attributes (read from on-flash
1482  *            inode)
1483  * @calc_sz: for directories calculated directory size
1484  * @calc_xcnt: count of extended attributes
1485  * @calc_xsz: calculated summary size of all extended attributes
1486  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1487  *             inode (read from on-flash inode)
1488  * @calc_xnms: calculated sum of lengths of all extended attribute names
1489  */
1490 struct fsck_inode {
1491 	struct rb_node rb;
1492 	ino_t inum;
1493 	umode_t mode;
1494 	unsigned int nlink;
1495 	unsigned int xattr_cnt;
1496 	int references;
1497 	int calc_cnt;
1498 	long long size;
1499 	unsigned int xattr_sz;
1500 	long long calc_sz;
1501 	long long calc_xcnt;
1502 	long long calc_xsz;
1503 	unsigned int xattr_nms;
1504 	long long calc_xnms;
1505 };
1506 
1507 /**
1508  * struct fsck_data - private FS checking information.
1509  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1510  */
1511 struct fsck_data {
1512 	struct rb_root inodes;
1513 };
1514 
1515 /**
1516  * add_inode - add inode information to RB-tree of inodes.
1517  * @c: UBIFS file-system description object
1518  * @fsckd: FS checking information
1519  * @ino: raw UBIFS inode to add
1520  *
1521  * This is a helper function for 'check_leaf()' which adds information about
1522  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1523  * case of success and a negative error code in case of failure.
1524  */
1525 static struct fsck_inode *add_inode(struct ubifs_info *c,
1526 				    struct fsck_data *fsckd,
1527 				    struct ubifs_ino_node *ino)
1528 {
1529 	struct rb_node **p, *parent = NULL;
1530 	struct fsck_inode *fscki;
1531 	ino_t inum = key_inum_flash(c, &ino->key);
1532 
1533 	p = &fsckd->inodes.rb_node;
1534 	while (*p) {
1535 		parent = *p;
1536 		fscki = rb_entry(parent, struct fsck_inode, rb);
1537 		if (inum < fscki->inum)
1538 			p = &(*p)->rb_left;
1539 		else if (inum > fscki->inum)
1540 			p = &(*p)->rb_right;
1541 		else
1542 			return fscki;
1543 	}
1544 
1545 	if (inum > c->highest_inum) {
1546 		ubifs_err("too high inode number, max. is %lu",
1547 			  c->highest_inum);
1548 		return ERR_PTR(-EINVAL);
1549 	}
1550 
1551 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1552 	if (!fscki)
1553 		return ERR_PTR(-ENOMEM);
1554 
1555 	fscki->inum = inum;
1556 	fscki->nlink = le32_to_cpu(ino->nlink);
1557 	fscki->size = le64_to_cpu(ino->size);
1558 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1559 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1560 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1561 	fscki->mode = le32_to_cpu(ino->mode);
1562 	if (S_ISDIR(fscki->mode)) {
1563 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1564 		fscki->calc_cnt = 2;
1565 	}
1566 	rb_link_node(&fscki->rb, parent, p);
1567 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1568 	return fscki;
1569 }
1570 
1571 /**
1572  * search_inode - search inode in the RB-tree of inodes.
1573  * @fsckd: FS checking information
1574  * @inum: inode number to search
1575  *
1576  * This is a helper function for 'check_leaf()' which searches inode @inum in
1577  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1578  * the inode was not found.
1579  */
1580 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1581 {
1582 	struct rb_node *p;
1583 	struct fsck_inode *fscki;
1584 
1585 	p = fsckd->inodes.rb_node;
1586 	while (p) {
1587 		fscki = rb_entry(p, struct fsck_inode, rb);
1588 		if (inum < fscki->inum)
1589 			p = p->rb_left;
1590 		else if (inum > fscki->inum)
1591 			p = p->rb_right;
1592 		else
1593 			return fscki;
1594 	}
1595 	return NULL;
1596 }
1597 
1598 /**
1599  * read_add_inode - read inode node and add it to RB-tree of inodes.
1600  * @c: UBIFS file-system description object
1601  * @fsckd: FS checking information
1602  * @inum: inode number to read
1603  *
1604  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1605  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1606  * information pointer in case of success and a negative error code in case of
1607  * failure.
1608  */
1609 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1610 					 struct fsck_data *fsckd, ino_t inum)
1611 {
1612 	int n, err;
1613 	union ubifs_key key;
1614 	struct ubifs_znode *znode;
1615 	struct ubifs_zbranch *zbr;
1616 	struct ubifs_ino_node *ino;
1617 	struct fsck_inode *fscki;
1618 
1619 	fscki = search_inode(fsckd, inum);
1620 	if (fscki)
1621 		return fscki;
1622 
1623 	ino_key_init(c, &key, inum);
1624 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1625 	if (!err) {
1626 		ubifs_err("inode %lu not found in index", inum);
1627 		return ERR_PTR(-ENOENT);
1628 	} else if (err < 0) {
1629 		ubifs_err("error %d while looking up inode %lu", err, inum);
1630 		return ERR_PTR(err);
1631 	}
1632 
1633 	zbr = &znode->zbranch[n];
1634 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1635 		ubifs_err("bad node %lu node length %d", inum, zbr->len);
1636 		return ERR_PTR(-EINVAL);
1637 	}
1638 
1639 	ino = kmalloc(zbr->len, GFP_NOFS);
1640 	if (!ino)
1641 		return ERR_PTR(-ENOMEM);
1642 
1643 	err = ubifs_tnc_read_node(c, zbr, ino);
1644 	if (err) {
1645 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1646 			  zbr->lnum, zbr->offs, err);
1647 		kfree(ino);
1648 		return ERR_PTR(err);
1649 	}
1650 
1651 	fscki = add_inode(c, fsckd, ino);
1652 	kfree(ino);
1653 	if (IS_ERR(fscki)) {
1654 		ubifs_err("error %ld while adding inode %lu node",
1655 			  PTR_ERR(fscki), inum);
1656 		return fscki;
1657 	}
1658 
1659 	return fscki;
1660 }
1661 
1662 /**
1663  * check_leaf - check leaf node.
1664  * @c: UBIFS file-system description object
1665  * @zbr: zbranch of the leaf node to check
1666  * @priv: FS checking information
1667  *
1668  * This is a helper function for 'dbg_check_filesystem()' which is called for
1669  * every single leaf node while walking the indexing tree. It checks that the
1670  * leaf node referred from the indexing tree exists, has correct CRC, and does
1671  * some other basic validation. This function is also responsible for building
1672  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1673  * calculates reference count, size, etc for each inode in order to later
1674  * compare them to the information stored inside the inodes and detect possible
1675  * inconsistencies. Returns zero in case of success and a negative error code
1676  * in case of failure.
1677  */
1678 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1679 		      void *priv)
1680 {
1681 	ino_t inum;
1682 	void *node;
1683 	struct ubifs_ch *ch;
1684 	int err, type = key_type(c, &zbr->key);
1685 	struct fsck_inode *fscki;
1686 
1687 	if (zbr->len < UBIFS_CH_SZ) {
1688 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1689 			  zbr->len, zbr->lnum, zbr->offs);
1690 		return -EINVAL;
1691 	}
1692 
1693 	node = kmalloc(zbr->len, GFP_NOFS);
1694 	if (!node)
1695 		return -ENOMEM;
1696 
1697 	err = ubifs_tnc_read_node(c, zbr, node);
1698 	if (err) {
1699 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1700 			  zbr->lnum, zbr->offs, err);
1701 		goto out_free;
1702 	}
1703 
1704 	/* If this is an inode node, add it to RB-tree of inodes */
1705 	if (type == UBIFS_INO_KEY) {
1706 		fscki = add_inode(c, priv, node);
1707 		if (IS_ERR(fscki)) {
1708 			err = PTR_ERR(fscki);
1709 			ubifs_err("error %d while adding inode node", err);
1710 			goto out_dump;
1711 		}
1712 		goto out;
1713 	}
1714 
1715 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1716 	    type != UBIFS_DATA_KEY) {
1717 		ubifs_err("unexpected node type %d at LEB %d:%d",
1718 			  type, zbr->lnum, zbr->offs);
1719 		err = -EINVAL;
1720 		goto out_free;
1721 	}
1722 
1723 	ch = node;
1724 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1725 		ubifs_err("too high sequence number, max. is %llu",
1726 			  c->max_sqnum);
1727 		err = -EINVAL;
1728 		goto out_dump;
1729 	}
1730 
1731 	if (type == UBIFS_DATA_KEY) {
1732 		long long blk_offs;
1733 		struct ubifs_data_node *dn = node;
1734 
1735 		/*
1736 		 * Search the inode node this data node belongs to and insert
1737 		 * it to the RB-tree of inodes.
1738 		 */
1739 		inum = key_inum_flash(c, &dn->key);
1740 		fscki = read_add_inode(c, priv, inum);
1741 		if (IS_ERR(fscki)) {
1742 			err = PTR_ERR(fscki);
1743 			ubifs_err("error %d while processing data node and "
1744 				  "trying to find inode node %lu", err, inum);
1745 			goto out_dump;
1746 		}
1747 
1748 		/* Make sure the data node is within inode size */
1749 		blk_offs = key_block_flash(c, &dn->key);
1750 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1751 		blk_offs += le32_to_cpu(dn->size);
1752 		if (blk_offs > fscki->size) {
1753 			ubifs_err("data node at LEB %d:%d is not within inode "
1754 				  "size %lld", zbr->lnum, zbr->offs,
1755 				  fscki->size);
1756 			err = -EINVAL;
1757 			goto out_dump;
1758 		}
1759 	} else {
1760 		int nlen;
1761 		struct ubifs_dent_node *dent = node;
1762 		struct fsck_inode *fscki1;
1763 
1764 		err = ubifs_validate_entry(c, dent);
1765 		if (err)
1766 			goto out_dump;
1767 
1768 		/*
1769 		 * Search the inode node this entry refers to and the parent
1770 		 * inode node and insert them to the RB-tree of inodes.
1771 		 */
1772 		inum = le64_to_cpu(dent->inum);
1773 		fscki = read_add_inode(c, priv, inum);
1774 		if (IS_ERR(fscki)) {
1775 			err = PTR_ERR(fscki);
1776 			ubifs_err("error %d while processing entry node and "
1777 				  "trying to find inode node %lu", err, inum);
1778 			goto out_dump;
1779 		}
1780 
1781 		/* Count how many direntries or xentries refers this inode */
1782 		fscki->references += 1;
1783 
1784 		inum = key_inum_flash(c, &dent->key);
1785 		fscki1 = read_add_inode(c, priv, inum);
1786 		if (IS_ERR(fscki1)) {
1787 			err = PTR_ERR(fscki);
1788 			ubifs_err("error %d while processing entry node and "
1789 				  "trying to find parent inode node %lu",
1790 				  err, inum);
1791 			goto out_dump;
1792 		}
1793 
1794 		nlen = le16_to_cpu(dent->nlen);
1795 		if (type == UBIFS_XENT_KEY) {
1796 			fscki1->calc_xcnt += 1;
1797 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1798 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1799 			fscki1->calc_xnms += nlen;
1800 		} else {
1801 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1802 			if (dent->type == UBIFS_ITYPE_DIR)
1803 				fscki1->calc_cnt += 1;
1804 		}
1805 	}
1806 
1807 out:
1808 	kfree(node);
1809 	return 0;
1810 
1811 out_dump:
1812 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1813 	dbg_dump_node(c, node);
1814 out_free:
1815 	kfree(node);
1816 	return err;
1817 }
1818 
1819 /**
1820  * free_inodes - free RB-tree of inodes.
1821  * @fsckd: FS checking information
1822  */
1823 static void free_inodes(struct fsck_data *fsckd)
1824 {
1825 	struct rb_node *this = fsckd->inodes.rb_node;
1826 	struct fsck_inode *fscki;
1827 
1828 	while (this) {
1829 		if (this->rb_left)
1830 			this = this->rb_left;
1831 		else if (this->rb_right)
1832 			this = this->rb_right;
1833 		else {
1834 			fscki = rb_entry(this, struct fsck_inode, rb);
1835 			this = rb_parent(this);
1836 			if (this) {
1837 				if (this->rb_left == &fscki->rb)
1838 					this->rb_left = NULL;
1839 				else
1840 					this->rb_right = NULL;
1841 			}
1842 			kfree(fscki);
1843 		}
1844 	}
1845 }
1846 
1847 /**
1848  * check_inodes - checks all inodes.
1849  * @c: UBIFS file-system description object
1850  * @fsckd: FS checking information
1851  *
1852  * This is a helper function for 'dbg_check_filesystem()' which walks the
1853  * RB-tree of inodes after the index scan has been finished, and checks that
1854  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1855  * %-EINVAL if not, and a negative error code in case of failure.
1856  */
1857 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1858 {
1859 	int n, err;
1860 	union ubifs_key key;
1861 	struct ubifs_znode *znode;
1862 	struct ubifs_zbranch *zbr;
1863 	struct ubifs_ino_node *ino;
1864 	struct fsck_inode *fscki;
1865 	struct rb_node *this = rb_first(&fsckd->inodes);
1866 
1867 	while (this) {
1868 		fscki = rb_entry(this, struct fsck_inode, rb);
1869 		this = rb_next(this);
1870 
1871 		if (S_ISDIR(fscki->mode)) {
1872 			/*
1873 			 * Directories have to have exactly one reference (they
1874 			 * cannot have hardlinks), although root inode is an
1875 			 * exception.
1876 			 */
1877 			if (fscki->inum != UBIFS_ROOT_INO &&
1878 			    fscki->references != 1) {
1879 				ubifs_err("directory inode %lu has %d "
1880 					  "direntries which refer it, but "
1881 					  "should be 1", fscki->inum,
1882 					  fscki->references);
1883 				goto out_dump;
1884 			}
1885 			if (fscki->inum == UBIFS_ROOT_INO &&
1886 			    fscki->references != 0) {
1887 				ubifs_err("root inode %lu has non-zero (%d) "
1888 					  "direntries which refer it",
1889 					  fscki->inum, fscki->references);
1890 				goto out_dump;
1891 			}
1892 			if (fscki->calc_sz != fscki->size) {
1893 				ubifs_err("directory inode %lu size is %lld, "
1894 					  "but calculated size is %lld",
1895 					  fscki->inum, fscki->size,
1896 					  fscki->calc_sz);
1897 				goto out_dump;
1898 			}
1899 			if (fscki->calc_cnt != fscki->nlink) {
1900 				ubifs_err("directory inode %lu nlink is %d, "
1901 					  "but calculated nlink is %d",
1902 					  fscki->inum, fscki->nlink,
1903 					  fscki->calc_cnt);
1904 				goto out_dump;
1905 			}
1906 		} else {
1907 			if (fscki->references != fscki->nlink) {
1908 				ubifs_err("inode %lu nlink is %d, but "
1909 					  "calculated nlink is %d", fscki->inum,
1910 					  fscki->nlink, fscki->references);
1911 				goto out_dump;
1912 			}
1913 		}
1914 		if (fscki->xattr_sz != fscki->calc_xsz) {
1915 			ubifs_err("inode %lu has xattr size %u, but "
1916 				  "calculated size is %lld",
1917 				  fscki->inum, fscki->xattr_sz,
1918 				  fscki->calc_xsz);
1919 			goto out_dump;
1920 		}
1921 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
1922 			ubifs_err("inode %lu has %u xattrs, but "
1923 				  "calculated count is %lld", fscki->inum,
1924 				  fscki->xattr_cnt, fscki->calc_xcnt);
1925 			goto out_dump;
1926 		}
1927 		if (fscki->xattr_nms != fscki->calc_xnms) {
1928 			ubifs_err("inode %lu has xattr names' size %u, but "
1929 				  "calculated names' size is %lld",
1930 				  fscki->inum, fscki->xattr_nms,
1931 				  fscki->calc_xnms);
1932 			goto out_dump;
1933 		}
1934 	}
1935 
1936 	return 0;
1937 
1938 out_dump:
1939 	/* Read the bad inode and dump it */
1940 	ino_key_init(c, &key, fscki->inum);
1941 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1942 	if (!err) {
1943 		ubifs_err("inode %lu not found in index", fscki->inum);
1944 		return -ENOENT;
1945 	} else if (err < 0) {
1946 		ubifs_err("error %d while looking up inode %lu",
1947 			  err, fscki->inum);
1948 		return err;
1949 	}
1950 
1951 	zbr = &znode->zbranch[n];
1952 	ino = kmalloc(zbr->len, GFP_NOFS);
1953 	if (!ino)
1954 		return -ENOMEM;
1955 
1956 	err = ubifs_tnc_read_node(c, zbr, ino);
1957 	if (err) {
1958 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1959 			  zbr->lnum, zbr->offs, err);
1960 		kfree(ino);
1961 		return err;
1962 	}
1963 
1964 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
1965 		  fscki->inum, zbr->lnum, zbr->offs);
1966 	dbg_dump_node(c, ino);
1967 	kfree(ino);
1968 	return -EINVAL;
1969 }
1970 
1971 /**
1972  * dbg_check_filesystem - check the file-system.
1973  * @c: UBIFS file-system description object
1974  *
1975  * This function checks the file system, namely:
1976  * o makes sure that all leaf nodes exist and their CRCs are correct;
1977  * o makes sure inode nlink, size, xattr size/count are correct (for all
1978  *   inodes).
1979  *
1980  * The function reads whole indexing tree and all nodes, so it is pretty
1981  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
1982  * not, and a negative error code in case of failure.
1983  */
1984 int dbg_check_filesystem(struct ubifs_info *c)
1985 {
1986 	int err;
1987 	struct fsck_data fsckd;
1988 
1989 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
1990 		return 0;
1991 
1992 	fsckd.inodes = RB_ROOT;
1993 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
1994 	if (err)
1995 		goto out_free;
1996 
1997 	err = check_inodes(c, &fsckd);
1998 	if (err)
1999 		goto out_free;
2000 
2001 	free_inodes(&fsckd);
2002 	return 0;
2003 
2004 out_free:
2005 	ubifs_err("file-system check failed with error %d", err);
2006 	dump_stack();
2007 	free_inodes(&fsckd);
2008 	return err;
2009 }
2010 
2011 static int invocation_cnt;
2012 
2013 int dbg_force_in_the_gaps(void)
2014 {
2015 	if (!dbg_force_in_the_gaps_enabled)
2016 		return 0;
2017 	/* Force in-the-gaps every 8th commit */
2018 	return !((invocation_cnt++) & 0x7);
2019 }
2020 
2021 /* Failure mode for recovery testing */
2022 
2023 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2024 
2025 struct failure_mode_info {
2026 	struct list_head list;
2027 	struct ubifs_info *c;
2028 };
2029 
2030 static LIST_HEAD(fmi_list);
2031 static DEFINE_SPINLOCK(fmi_lock);
2032 
2033 static unsigned int next;
2034 
2035 static int simple_rand(void)
2036 {
2037 	if (next == 0)
2038 		next = current->pid;
2039 	next = next * 1103515245 + 12345;
2040 	return (next >> 16) & 32767;
2041 }
2042 
2043 void dbg_failure_mode_registration(struct ubifs_info *c)
2044 {
2045 	struct failure_mode_info *fmi;
2046 
2047 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2048 	if (!fmi) {
2049 		dbg_err("Failed to register failure mode - no memory");
2050 		return;
2051 	}
2052 	fmi->c = c;
2053 	spin_lock(&fmi_lock);
2054 	list_add_tail(&fmi->list, &fmi_list);
2055 	spin_unlock(&fmi_lock);
2056 }
2057 
2058 void dbg_failure_mode_deregistration(struct ubifs_info *c)
2059 {
2060 	struct failure_mode_info *fmi, *tmp;
2061 
2062 	spin_lock(&fmi_lock);
2063 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2064 		if (fmi->c == c) {
2065 			list_del(&fmi->list);
2066 			kfree(fmi);
2067 		}
2068 	spin_unlock(&fmi_lock);
2069 }
2070 
2071 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2072 {
2073 	struct failure_mode_info *fmi;
2074 
2075 	spin_lock(&fmi_lock);
2076 	list_for_each_entry(fmi, &fmi_list, list)
2077 		if (fmi->c->ubi == desc) {
2078 			struct ubifs_info *c = fmi->c;
2079 
2080 			spin_unlock(&fmi_lock);
2081 			return c;
2082 		}
2083 	spin_unlock(&fmi_lock);
2084 	return NULL;
2085 }
2086 
2087 static int in_failure_mode(struct ubi_volume_desc *desc)
2088 {
2089 	struct ubifs_info *c = dbg_find_info(desc);
2090 
2091 	if (c && dbg_failure_mode)
2092 		return c->failure_mode;
2093 	return 0;
2094 }
2095 
2096 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2097 {
2098 	struct ubifs_info *c = dbg_find_info(desc);
2099 
2100 	if (!c || !dbg_failure_mode)
2101 		return 0;
2102 	if (c->failure_mode)
2103 		return 1;
2104 	if (!c->fail_cnt) {
2105 		/* First call - decide delay to failure */
2106 		if (chance(1, 2)) {
2107 			unsigned int delay = 1 << (simple_rand() >> 11);
2108 
2109 			if (chance(1, 2)) {
2110 				c->fail_delay = 1;
2111 				c->fail_timeout = jiffies +
2112 						  msecs_to_jiffies(delay);
2113 				dbg_rcvry("failing after %ums", delay);
2114 			} else {
2115 				c->fail_delay = 2;
2116 				c->fail_cnt_max = delay;
2117 				dbg_rcvry("failing after %u calls", delay);
2118 			}
2119 		}
2120 		c->fail_cnt += 1;
2121 	}
2122 	/* Determine if failure delay has expired */
2123 	if (c->fail_delay == 1) {
2124 		if (time_before(jiffies, c->fail_timeout))
2125 			return 0;
2126 	} else if (c->fail_delay == 2)
2127 		if (c->fail_cnt++ < c->fail_cnt_max)
2128 			return 0;
2129 	if (lnum == UBIFS_SB_LNUM) {
2130 		if (write) {
2131 			if (chance(1, 2))
2132 				return 0;
2133 		} else if (chance(19, 20))
2134 			return 0;
2135 		dbg_rcvry("failing in super block LEB %d", lnum);
2136 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2137 		if (chance(19, 20))
2138 			return 0;
2139 		dbg_rcvry("failing in master LEB %d", lnum);
2140 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2141 		if (write) {
2142 			if (chance(99, 100))
2143 				return 0;
2144 		} else if (chance(399, 400))
2145 			return 0;
2146 		dbg_rcvry("failing in log LEB %d", lnum);
2147 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2148 		if (write) {
2149 			if (chance(7, 8))
2150 				return 0;
2151 		} else if (chance(19, 20))
2152 			return 0;
2153 		dbg_rcvry("failing in LPT LEB %d", lnum);
2154 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2155 		if (write) {
2156 			if (chance(1, 2))
2157 				return 0;
2158 		} else if (chance(9, 10))
2159 			return 0;
2160 		dbg_rcvry("failing in orphan LEB %d", lnum);
2161 	} else if (lnum == c->ihead_lnum) {
2162 		if (chance(99, 100))
2163 			return 0;
2164 		dbg_rcvry("failing in index head LEB %d", lnum);
2165 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2166 		if (chance(9, 10))
2167 			return 0;
2168 		dbg_rcvry("failing in GC head LEB %d", lnum);
2169 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2170 		   !ubifs_search_bud(c, lnum)) {
2171 		if (chance(19, 20))
2172 			return 0;
2173 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2174 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2175 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2176 		if (chance(999, 1000))
2177 			return 0;
2178 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2179 	} else {
2180 		if (chance(9999, 10000))
2181 			return 0;
2182 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2183 	}
2184 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2185 	c->failure_mode = 1;
2186 	dump_stack();
2187 	return 1;
2188 }
2189 
2190 static void cut_data(const void *buf, int len)
2191 {
2192 	int flen, i;
2193 	unsigned char *p = (void *)buf;
2194 
2195 	flen = (len * (long long)simple_rand()) >> 15;
2196 	for (i = flen; i < len; i++)
2197 		p[i] = 0xff;
2198 }
2199 
2200 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2201 		 int len, int check)
2202 {
2203 	if (in_failure_mode(desc))
2204 		return -EIO;
2205 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2206 }
2207 
2208 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2209 		  int offset, int len, int dtype)
2210 {
2211 	int err;
2212 
2213 	if (in_failure_mode(desc))
2214 		return -EIO;
2215 	if (do_fail(desc, lnum, 1))
2216 		cut_data(buf, len);
2217 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2218 	if (err)
2219 		return err;
2220 	if (in_failure_mode(desc))
2221 		return -EIO;
2222 	return 0;
2223 }
2224 
2225 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2226 		   int len, int dtype)
2227 {
2228 	int err;
2229 
2230 	if (do_fail(desc, lnum, 1))
2231 		return -EIO;
2232 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2233 	if (err)
2234 		return err;
2235 	if (do_fail(desc, lnum, 1))
2236 		return -EIO;
2237 	return 0;
2238 }
2239 
2240 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2241 {
2242 	int err;
2243 
2244 	if (do_fail(desc, lnum, 0))
2245 		return -EIO;
2246 	err = ubi_leb_erase(desc, lnum);
2247 	if (err)
2248 		return err;
2249 	if (do_fail(desc, lnum, 0))
2250 		return -EIO;
2251 	return 0;
2252 }
2253 
2254 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2255 {
2256 	int err;
2257 
2258 	if (do_fail(desc, lnum, 0))
2259 		return -EIO;
2260 	err = ubi_leb_unmap(desc, lnum);
2261 	if (err)
2262 		return err;
2263 	if (do_fail(desc, lnum, 0))
2264 		return -EIO;
2265 	return 0;
2266 }
2267 
2268 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2269 {
2270 	if (in_failure_mode(desc))
2271 		return -EIO;
2272 	return ubi_is_mapped(desc, lnum);
2273 }
2274 
2275 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2276 {
2277 	int err;
2278 
2279 	if (do_fail(desc, lnum, 0))
2280 		return -EIO;
2281 	err = ubi_leb_map(desc, lnum, dtype);
2282 	if (err)
2283 		return err;
2284 	if (do_fail(desc, lnum, 0))
2285 		return -EIO;
2286 	return 0;
2287 }
2288 
2289 #endif /* CONFIG_UBIFS_FS_DEBUG */
2290