1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 36 #ifdef CONFIG_UBIFS_FS_DEBUG 37 38 DEFINE_SPINLOCK(dbg_lock); 39 40 static char dbg_key_buf0[128]; 41 static char dbg_key_buf1[128]; 42 43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 45 unsigned int ubifs_tst_flags; 46 47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 50 51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 52 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 54 55 static const char *get_key_fmt(int fmt) 56 { 57 switch (fmt) { 58 case UBIFS_SIMPLE_KEY_FMT: 59 return "simple"; 60 default: 61 return "unknown/invalid format"; 62 } 63 } 64 65 static const char *get_key_hash(int hash) 66 { 67 switch (hash) { 68 case UBIFS_KEY_HASH_R5: 69 return "R5"; 70 case UBIFS_KEY_HASH_TEST: 71 return "test"; 72 default: 73 return "unknown/invalid name hash"; 74 } 75 } 76 77 static const char *get_key_type(int type) 78 { 79 switch (type) { 80 case UBIFS_INO_KEY: 81 return "inode"; 82 case UBIFS_DENT_KEY: 83 return "direntry"; 84 case UBIFS_XENT_KEY: 85 return "xentry"; 86 case UBIFS_DATA_KEY: 87 return "data"; 88 case UBIFS_TRUN_KEY: 89 return "truncate"; 90 default: 91 return "unknown/invalid key"; 92 } 93 } 94 95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 96 char *buffer) 97 { 98 char *p = buffer; 99 int type = key_type(c, key); 100 101 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 102 switch (type) { 103 case UBIFS_INO_KEY: 104 sprintf(p, "(%lu, %s)", key_inum(c, key), 105 get_key_type(type)); 106 break; 107 case UBIFS_DENT_KEY: 108 case UBIFS_XENT_KEY: 109 sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key), 110 get_key_type(type), key_hash(c, key)); 111 break; 112 case UBIFS_DATA_KEY: 113 sprintf(p, "(%lu, %s, %u)", key_inum(c, key), 114 get_key_type(type), key_block(c, key)); 115 break; 116 case UBIFS_TRUN_KEY: 117 sprintf(p, "(%lu, %s)", 118 key_inum(c, key), get_key_type(type)); 119 break; 120 default: 121 sprintf(p, "(bad key type: %#08x, %#08x)", 122 key->u32[0], key->u32[1]); 123 } 124 } else 125 sprintf(p, "bad key format %d", c->key_fmt); 126 } 127 128 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 129 { 130 /* dbg_lock must be held */ 131 sprintf_key(c, key, dbg_key_buf0); 132 return dbg_key_buf0; 133 } 134 135 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 136 { 137 /* dbg_lock must be held */ 138 sprintf_key(c, key, dbg_key_buf1); 139 return dbg_key_buf1; 140 } 141 142 const char *dbg_ntype(int type) 143 { 144 switch (type) { 145 case UBIFS_PAD_NODE: 146 return "padding node"; 147 case UBIFS_SB_NODE: 148 return "superblock node"; 149 case UBIFS_MST_NODE: 150 return "master node"; 151 case UBIFS_REF_NODE: 152 return "reference node"; 153 case UBIFS_INO_NODE: 154 return "inode node"; 155 case UBIFS_DENT_NODE: 156 return "direntry node"; 157 case UBIFS_XENT_NODE: 158 return "xentry node"; 159 case UBIFS_DATA_NODE: 160 return "data node"; 161 case UBIFS_TRUN_NODE: 162 return "truncate node"; 163 case UBIFS_IDX_NODE: 164 return "indexing node"; 165 case UBIFS_CS_NODE: 166 return "commit start node"; 167 case UBIFS_ORPH_NODE: 168 return "orphan node"; 169 default: 170 return "unknown node"; 171 } 172 } 173 174 static const char *dbg_gtype(int type) 175 { 176 switch (type) { 177 case UBIFS_NO_NODE_GROUP: 178 return "no node group"; 179 case UBIFS_IN_NODE_GROUP: 180 return "in node group"; 181 case UBIFS_LAST_OF_NODE_GROUP: 182 return "last of node group"; 183 default: 184 return "unknown"; 185 } 186 } 187 188 const char *dbg_cstate(int cmt_state) 189 { 190 switch (cmt_state) { 191 case COMMIT_RESTING: 192 return "commit resting"; 193 case COMMIT_BACKGROUND: 194 return "background commit requested"; 195 case COMMIT_REQUIRED: 196 return "commit required"; 197 case COMMIT_RUNNING_BACKGROUND: 198 return "BACKGROUND commit running"; 199 case COMMIT_RUNNING_REQUIRED: 200 return "commit running and required"; 201 case COMMIT_BROKEN: 202 return "broken commit"; 203 default: 204 return "unknown commit state"; 205 } 206 } 207 208 static void dump_ch(const struct ubifs_ch *ch) 209 { 210 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 211 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 212 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 213 dbg_ntype(ch->node_type)); 214 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 215 dbg_gtype(ch->group_type)); 216 printk(KERN_DEBUG "\tsqnum %llu\n", 217 (unsigned long long)le64_to_cpu(ch->sqnum)); 218 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 219 } 220 221 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 222 { 223 const struct ubifs_inode *ui = ubifs_inode(inode); 224 225 printk(KERN_DEBUG "inode %lu\n", inode->i_ino); 226 printk(KERN_DEBUG "size %llu\n", 227 (unsigned long long)i_size_read(inode)); 228 printk(KERN_DEBUG "nlink %u\n", inode->i_nlink); 229 printk(KERN_DEBUG "uid %u\n", (unsigned int)inode->i_uid); 230 printk(KERN_DEBUG "gid %u\n", (unsigned int)inode->i_gid); 231 printk(KERN_DEBUG "atime %u.%u\n", 232 (unsigned int)inode->i_atime.tv_sec, 233 (unsigned int)inode->i_atime.tv_nsec); 234 printk(KERN_DEBUG "mtime %u.%u\n", 235 (unsigned int)inode->i_mtime.tv_sec, 236 (unsigned int)inode->i_mtime.tv_nsec); 237 printk(KERN_DEBUG "ctime %u.%u\n", 238 (unsigned int)inode->i_ctime.tv_sec, 239 (unsigned int)inode->i_ctime.tv_nsec); 240 printk(KERN_DEBUG "creat_sqnum %llu\n", ui->creat_sqnum); 241 printk(KERN_DEBUG "xattr_size %u\n", ui->xattr_size); 242 printk(KERN_DEBUG "xattr_cnt %u\n", ui->xattr_cnt); 243 printk(KERN_DEBUG "xattr_names %u\n", ui->xattr_names); 244 printk(KERN_DEBUG "dirty %u\n", ui->dirty); 245 printk(KERN_DEBUG "xattr %u\n", ui->xattr); 246 printk(KERN_DEBUG "flags %d\n", ui->flags); 247 printk(KERN_DEBUG "compr_type %d\n", ui->compr_type); 248 printk(KERN_DEBUG "data_len %d\n", ui->data_len); 249 } 250 251 void dbg_dump_node(const struct ubifs_info *c, const void *node) 252 { 253 int i, n; 254 union ubifs_key key; 255 const struct ubifs_ch *ch = node; 256 257 if (dbg_failure_mode) 258 return; 259 260 /* If the magic is incorrect, just hexdump the first bytes */ 261 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 262 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 263 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 264 (void *)node, UBIFS_CH_SZ, 1); 265 return; 266 } 267 268 spin_lock(&dbg_lock); 269 dump_ch(node); 270 271 switch (ch->node_type) { 272 case UBIFS_PAD_NODE: 273 { 274 const struct ubifs_pad_node *pad = node; 275 276 printk(KERN_DEBUG "\tpad_len %u\n", 277 le32_to_cpu(pad->pad_len)); 278 break; 279 } 280 case UBIFS_SB_NODE: 281 { 282 const struct ubifs_sb_node *sup = node; 283 unsigned int sup_flags = le32_to_cpu(sup->flags); 284 285 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 286 (int)sup->key_hash, get_key_hash(sup->key_hash)); 287 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 288 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 289 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 290 printk(KERN_DEBUG "\t big_lpt %u\n", 291 !!(sup_flags & UBIFS_FLG_BIGLPT)); 292 printk(KERN_DEBUG "\tmin_io_size %u\n", 293 le32_to_cpu(sup->min_io_size)); 294 printk(KERN_DEBUG "\tleb_size %u\n", 295 le32_to_cpu(sup->leb_size)); 296 printk(KERN_DEBUG "\tleb_cnt %u\n", 297 le32_to_cpu(sup->leb_cnt)); 298 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 299 le32_to_cpu(sup->max_leb_cnt)); 300 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 301 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 302 printk(KERN_DEBUG "\tlog_lebs %u\n", 303 le32_to_cpu(sup->log_lebs)); 304 printk(KERN_DEBUG "\tlpt_lebs %u\n", 305 le32_to_cpu(sup->lpt_lebs)); 306 printk(KERN_DEBUG "\torph_lebs %u\n", 307 le32_to_cpu(sup->orph_lebs)); 308 printk(KERN_DEBUG "\tjhead_cnt %u\n", 309 le32_to_cpu(sup->jhead_cnt)); 310 printk(KERN_DEBUG "\tfanout %u\n", 311 le32_to_cpu(sup->fanout)); 312 printk(KERN_DEBUG "\tlsave_cnt %u\n", 313 le32_to_cpu(sup->lsave_cnt)); 314 printk(KERN_DEBUG "\tdefault_compr %u\n", 315 (int)le16_to_cpu(sup->default_compr)); 316 printk(KERN_DEBUG "\trp_size %llu\n", 317 (unsigned long long)le64_to_cpu(sup->rp_size)); 318 printk(KERN_DEBUG "\trp_uid %u\n", 319 le32_to_cpu(sup->rp_uid)); 320 printk(KERN_DEBUG "\trp_gid %u\n", 321 le32_to_cpu(sup->rp_gid)); 322 printk(KERN_DEBUG "\tfmt_version %u\n", 323 le32_to_cpu(sup->fmt_version)); 324 printk(KERN_DEBUG "\ttime_gran %u\n", 325 le32_to_cpu(sup->time_gran)); 326 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" 327 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", 328 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], 329 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], 330 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], 331 sup->uuid[12], sup->uuid[13], sup->uuid[14], 332 sup->uuid[15]); 333 break; 334 } 335 case UBIFS_MST_NODE: 336 { 337 const struct ubifs_mst_node *mst = node; 338 339 printk(KERN_DEBUG "\thighest_inum %llu\n", 340 (unsigned long long)le64_to_cpu(mst->highest_inum)); 341 printk(KERN_DEBUG "\tcommit number %llu\n", 342 (unsigned long long)le64_to_cpu(mst->cmt_no)); 343 printk(KERN_DEBUG "\tflags %#x\n", 344 le32_to_cpu(mst->flags)); 345 printk(KERN_DEBUG "\tlog_lnum %u\n", 346 le32_to_cpu(mst->log_lnum)); 347 printk(KERN_DEBUG "\troot_lnum %u\n", 348 le32_to_cpu(mst->root_lnum)); 349 printk(KERN_DEBUG "\troot_offs %u\n", 350 le32_to_cpu(mst->root_offs)); 351 printk(KERN_DEBUG "\troot_len %u\n", 352 le32_to_cpu(mst->root_len)); 353 printk(KERN_DEBUG "\tgc_lnum %u\n", 354 le32_to_cpu(mst->gc_lnum)); 355 printk(KERN_DEBUG "\tihead_lnum %u\n", 356 le32_to_cpu(mst->ihead_lnum)); 357 printk(KERN_DEBUG "\tihead_offs %u\n", 358 le32_to_cpu(mst->ihead_offs)); 359 printk(KERN_DEBUG "\tindex_size %u\n", 360 le32_to_cpu(mst->index_size)); 361 printk(KERN_DEBUG "\tlpt_lnum %u\n", 362 le32_to_cpu(mst->lpt_lnum)); 363 printk(KERN_DEBUG "\tlpt_offs %u\n", 364 le32_to_cpu(mst->lpt_offs)); 365 printk(KERN_DEBUG "\tnhead_lnum %u\n", 366 le32_to_cpu(mst->nhead_lnum)); 367 printk(KERN_DEBUG "\tnhead_offs %u\n", 368 le32_to_cpu(mst->nhead_offs)); 369 printk(KERN_DEBUG "\tltab_lnum %u\n", 370 le32_to_cpu(mst->ltab_lnum)); 371 printk(KERN_DEBUG "\tltab_offs %u\n", 372 le32_to_cpu(mst->ltab_offs)); 373 printk(KERN_DEBUG "\tlsave_lnum %u\n", 374 le32_to_cpu(mst->lsave_lnum)); 375 printk(KERN_DEBUG "\tlsave_offs %u\n", 376 le32_to_cpu(mst->lsave_offs)); 377 printk(KERN_DEBUG "\tlscan_lnum %u\n", 378 le32_to_cpu(mst->lscan_lnum)); 379 printk(KERN_DEBUG "\tleb_cnt %u\n", 380 le32_to_cpu(mst->leb_cnt)); 381 printk(KERN_DEBUG "\tempty_lebs %u\n", 382 le32_to_cpu(mst->empty_lebs)); 383 printk(KERN_DEBUG "\tidx_lebs %u\n", 384 le32_to_cpu(mst->idx_lebs)); 385 printk(KERN_DEBUG "\ttotal_free %llu\n", 386 (unsigned long long)le64_to_cpu(mst->total_free)); 387 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 388 (unsigned long long)le64_to_cpu(mst->total_dirty)); 389 printk(KERN_DEBUG "\ttotal_used %llu\n", 390 (unsigned long long)le64_to_cpu(mst->total_used)); 391 printk(KERN_DEBUG "\ttotal_dead %llu\n", 392 (unsigned long long)le64_to_cpu(mst->total_dead)); 393 printk(KERN_DEBUG "\ttotal_dark %llu\n", 394 (unsigned long long)le64_to_cpu(mst->total_dark)); 395 break; 396 } 397 case UBIFS_REF_NODE: 398 { 399 const struct ubifs_ref_node *ref = node; 400 401 printk(KERN_DEBUG "\tlnum %u\n", 402 le32_to_cpu(ref->lnum)); 403 printk(KERN_DEBUG "\toffs %u\n", 404 le32_to_cpu(ref->offs)); 405 printk(KERN_DEBUG "\tjhead %u\n", 406 le32_to_cpu(ref->jhead)); 407 break; 408 } 409 case UBIFS_INO_NODE: 410 { 411 const struct ubifs_ino_node *ino = node; 412 413 key_read(c, &ino->key, &key); 414 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 415 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 416 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 417 printk(KERN_DEBUG "\tsize %llu\n", 418 (unsigned long long)le64_to_cpu(ino->size)); 419 printk(KERN_DEBUG "\tnlink %u\n", 420 le32_to_cpu(ino->nlink)); 421 printk(KERN_DEBUG "\tatime %lld.%u\n", 422 (long long)le64_to_cpu(ino->atime_sec), 423 le32_to_cpu(ino->atime_nsec)); 424 printk(KERN_DEBUG "\tmtime %lld.%u\n", 425 (long long)le64_to_cpu(ino->mtime_sec), 426 le32_to_cpu(ino->mtime_nsec)); 427 printk(KERN_DEBUG "\tctime %lld.%u\n", 428 (long long)le64_to_cpu(ino->ctime_sec), 429 le32_to_cpu(ino->ctime_nsec)); 430 printk(KERN_DEBUG "\tuid %u\n", 431 le32_to_cpu(ino->uid)); 432 printk(KERN_DEBUG "\tgid %u\n", 433 le32_to_cpu(ino->gid)); 434 printk(KERN_DEBUG "\tmode %u\n", 435 le32_to_cpu(ino->mode)); 436 printk(KERN_DEBUG "\tflags %#x\n", 437 le32_to_cpu(ino->flags)); 438 printk(KERN_DEBUG "\txattr_cnt %u\n", 439 le32_to_cpu(ino->xattr_cnt)); 440 printk(KERN_DEBUG "\txattr_size %u\n", 441 le32_to_cpu(ino->xattr_size)); 442 printk(KERN_DEBUG "\txattr_names %u\n", 443 le32_to_cpu(ino->xattr_names)); 444 printk(KERN_DEBUG "\tcompr_type %#x\n", 445 (int)le16_to_cpu(ino->compr_type)); 446 printk(KERN_DEBUG "\tdata len %u\n", 447 le32_to_cpu(ino->data_len)); 448 break; 449 } 450 case UBIFS_DENT_NODE: 451 case UBIFS_XENT_NODE: 452 { 453 const struct ubifs_dent_node *dent = node; 454 int nlen = le16_to_cpu(dent->nlen); 455 456 key_read(c, &dent->key, &key); 457 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 458 printk(KERN_DEBUG "\tinum %llu\n", 459 (unsigned long long)le64_to_cpu(dent->inum)); 460 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 461 printk(KERN_DEBUG "\tnlen %d\n", nlen); 462 printk(KERN_DEBUG "\tname "); 463 464 if (nlen > UBIFS_MAX_NLEN) 465 printk(KERN_DEBUG "(bad name length, not printing, " 466 "bad or corrupted node)"); 467 else { 468 for (i = 0; i < nlen && dent->name[i]; i++) 469 printk("%c", dent->name[i]); 470 } 471 printk("\n"); 472 473 break; 474 } 475 case UBIFS_DATA_NODE: 476 { 477 const struct ubifs_data_node *dn = node; 478 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 479 480 key_read(c, &dn->key, &key); 481 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 482 printk(KERN_DEBUG "\tsize %u\n", 483 le32_to_cpu(dn->size)); 484 printk(KERN_DEBUG "\tcompr_typ %d\n", 485 (int)le16_to_cpu(dn->compr_type)); 486 printk(KERN_DEBUG "\tdata size %d\n", 487 dlen); 488 printk(KERN_DEBUG "\tdata:\n"); 489 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 490 (void *)&dn->data, dlen, 0); 491 break; 492 } 493 case UBIFS_TRUN_NODE: 494 { 495 const struct ubifs_trun_node *trun = node; 496 497 printk(KERN_DEBUG "\tinum %u\n", 498 le32_to_cpu(trun->inum)); 499 printk(KERN_DEBUG "\told_size %llu\n", 500 (unsigned long long)le64_to_cpu(trun->old_size)); 501 printk(KERN_DEBUG "\tnew_size %llu\n", 502 (unsigned long long)le64_to_cpu(trun->new_size)); 503 break; 504 } 505 case UBIFS_IDX_NODE: 506 { 507 const struct ubifs_idx_node *idx = node; 508 509 n = le16_to_cpu(idx->child_cnt); 510 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 511 printk(KERN_DEBUG "\tlevel %d\n", 512 (int)le16_to_cpu(idx->level)); 513 printk(KERN_DEBUG "\tBranches:\n"); 514 515 for (i = 0; i < n && i < c->fanout - 1; i++) { 516 const struct ubifs_branch *br; 517 518 br = ubifs_idx_branch(c, idx, i); 519 key_read(c, &br->key, &key); 520 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 521 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 522 le32_to_cpu(br->len), DBGKEY(&key)); 523 } 524 break; 525 } 526 case UBIFS_CS_NODE: 527 break; 528 case UBIFS_ORPH_NODE: 529 { 530 const struct ubifs_orph_node *orph = node; 531 532 printk(KERN_DEBUG "\tcommit number %llu\n", 533 (unsigned long long) 534 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 535 printk(KERN_DEBUG "\tlast node flag %llu\n", 536 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 537 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 538 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 539 for (i = 0; i < n; i++) 540 printk(KERN_DEBUG "\t ino %llu\n", 541 le64_to_cpu(orph->inos[i])); 542 break; 543 } 544 default: 545 printk(KERN_DEBUG "node type %d was not recognized\n", 546 (int)ch->node_type); 547 } 548 spin_unlock(&dbg_lock); 549 } 550 551 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 552 { 553 spin_lock(&dbg_lock); 554 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 555 req->new_ino, req->dirtied_ino); 556 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 557 req->new_ino_d, req->dirtied_ino_d); 558 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 559 req->new_page, req->dirtied_page); 560 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 561 req->new_dent, req->mod_dent); 562 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 563 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 564 req->data_growth, req->dd_growth); 565 spin_unlock(&dbg_lock); 566 } 567 568 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 569 { 570 spin_lock(&dbg_lock); 571 printk(KERN_DEBUG "Lprops statistics: empty_lebs %d, idx_lebs %d\n", 572 lst->empty_lebs, lst->idx_lebs); 573 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 574 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 575 lst->total_dirty); 576 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 577 "total_dead %lld\n", lst->total_used, lst->total_dark, 578 lst->total_dead); 579 spin_unlock(&dbg_lock); 580 } 581 582 void dbg_dump_budg(struct ubifs_info *c) 583 { 584 int i; 585 struct rb_node *rb; 586 struct ubifs_bud *bud; 587 struct ubifs_gced_idx_leb *idx_gc; 588 589 spin_lock(&dbg_lock); 590 printk(KERN_DEBUG "Budgeting info: budg_data_growth %lld, " 591 "budg_dd_growth %lld, budg_idx_growth %lld\n", 592 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 593 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 594 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 595 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 596 c->freeable_cnt); 597 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 598 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 599 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 600 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 601 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 602 atomic_long_read(&c->dirty_zn_cnt), 603 atomic_long_read(&c->clean_zn_cnt)); 604 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 605 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 606 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 607 c->gc_lnum, c->ihead_lnum); 608 for (i = 0; i < c->jhead_cnt; i++) 609 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", 610 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); 611 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 612 bud = rb_entry(rb, struct ubifs_bud, rb); 613 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 614 } 615 list_for_each_entry(bud, &c->old_buds, list) 616 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 617 list_for_each_entry(idx_gc, &c->idx_gc, list) 618 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 619 idx_gc->lnum, idx_gc->unmap); 620 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 621 spin_unlock(&dbg_lock); 622 } 623 624 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 625 { 626 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " 627 "flags %#x\n", lp->lnum, lp->free, lp->dirty, 628 c->leb_size - lp->free - lp->dirty, lp->flags); 629 } 630 631 void dbg_dump_lprops(struct ubifs_info *c) 632 { 633 int lnum, err; 634 struct ubifs_lprops lp; 635 struct ubifs_lp_stats lst; 636 637 printk(KERN_DEBUG "Dumping LEB properties\n"); 638 ubifs_get_lp_stats(c, &lst); 639 dbg_dump_lstats(&lst); 640 641 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 642 err = ubifs_read_one_lp(c, lnum, &lp); 643 if (err) 644 ubifs_err("cannot read lprops for LEB %d", lnum); 645 646 dbg_dump_lprop(c, &lp); 647 } 648 } 649 650 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 651 { 652 struct ubifs_scan_leb *sleb; 653 struct ubifs_scan_node *snod; 654 655 if (dbg_failure_mode) 656 return; 657 658 printk(KERN_DEBUG "Dumping LEB %d\n", lnum); 659 660 sleb = ubifs_scan(c, lnum, 0, c->dbg_buf); 661 if (IS_ERR(sleb)) { 662 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 663 return; 664 } 665 666 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 667 sleb->nodes_cnt, sleb->endpt); 668 669 list_for_each_entry(snod, &sleb->nodes, list) { 670 cond_resched(); 671 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 672 snod->offs, snod->len); 673 dbg_dump_node(c, snod->node); 674 } 675 676 ubifs_scan_destroy(sleb); 677 return; 678 } 679 680 void dbg_dump_znode(const struct ubifs_info *c, 681 const struct ubifs_znode *znode) 682 { 683 int n; 684 const struct ubifs_zbranch *zbr; 685 686 spin_lock(&dbg_lock); 687 if (znode->parent) 688 zbr = &znode->parent->zbranch[znode->iip]; 689 else 690 zbr = &c->zroot; 691 692 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 693 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 694 zbr->len, znode->parent, znode->iip, znode->level, 695 znode->child_cnt, znode->flags); 696 697 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 698 spin_unlock(&dbg_lock); 699 return; 700 } 701 702 printk(KERN_DEBUG "zbranches:\n"); 703 for (n = 0; n < znode->child_cnt; n++) { 704 zbr = &znode->zbranch[n]; 705 if (znode->level > 0) 706 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 707 "%s\n", n, zbr->znode, zbr->lnum, 708 zbr->offs, zbr->len, 709 DBGKEY(&zbr->key)); 710 else 711 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 712 "%s\n", n, zbr->znode, zbr->lnum, 713 zbr->offs, zbr->len, 714 DBGKEY(&zbr->key)); 715 } 716 spin_unlock(&dbg_lock); 717 } 718 719 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 720 { 721 int i; 722 723 printk(KERN_DEBUG "Dumping heap cat %d (%d elements)\n", 724 cat, heap->cnt); 725 for (i = 0; i < heap->cnt; i++) { 726 struct ubifs_lprops *lprops = heap->arr[i]; 727 728 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 729 "flags %d\n", i, lprops->lnum, lprops->hpos, 730 lprops->free, lprops->dirty, lprops->flags); 731 } 732 } 733 734 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 735 struct ubifs_nnode *parent, int iip) 736 { 737 int i; 738 739 printk(KERN_DEBUG "Dumping pnode:\n"); 740 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 741 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 742 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 743 pnode->flags, iip, pnode->level, pnode->num); 744 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 745 struct ubifs_lprops *lp = &pnode->lprops[i]; 746 747 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 748 i, lp->free, lp->dirty, lp->flags, lp->lnum); 749 } 750 } 751 752 void dbg_dump_tnc(struct ubifs_info *c) 753 { 754 struct ubifs_znode *znode; 755 int level; 756 757 printk(KERN_DEBUG "\n"); 758 printk(KERN_DEBUG "Dumping the TNC tree\n"); 759 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 760 level = znode->level; 761 printk(KERN_DEBUG "== Level %d ==\n", level); 762 while (znode) { 763 if (level != znode->level) { 764 level = znode->level; 765 printk(KERN_DEBUG "== Level %d ==\n", level); 766 } 767 dbg_dump_znode(c, znode); 768 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 769 } 770 771 printk(KERN_DEBUG "\n"); 772 } 773 774 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 775 void *priv) 776 { 777 dbg_dump_znode(c, znode); 778 return 0; 779 } 780 781 /** 782 * dbg_dump_index - dump the on-flash index. 783 * @c: UBIFS file-system description object 784 * 785 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 786 * which dumps only in-memory znodes and does not read znodes which from flash. 787 */ 788 void dbg_dump_index(struct ubifs_info *c) 789 { 790 dbg_walk_index(c, NULL, dump_znode, NULL); 791 } 792 793 /** 794 * dbg_check_synced_i_size - check synchronized inode size. 795 * @inode: inode to check 796 * 797 * If inode is clean, synchronized inode size has to be equivalent to current 798 * inode size. This function has to be called only for locked inodes (@i_mutex 799 * has to be locked). Returns %0 if synchronized inode size if correct, and 800 * %-EINVAL if not. 801 */ 802 int dbg_check_synced_i_size(struct inode *inode) 803 { 804 int err = 0; 805 struct ubifs_inode *ui = ubifs_inode(inode); 806 807 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 808 return 0; 809 if (!S_ISREG(inode->i_mode)) 810 return 0; 811 812 mutex_lock(&ui->ui_mutex); 813 spin_lock(&ui->ui_lock); 814 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 815 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 816 "is clean", ui->ui_size, ui->synced_i_size); 817 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 818 inode->i_mode, i_size_read(inode)); 819 dbg_dump_stack(); 820 err = -EINVAL; 821 } 822 spin_unlock(&ui->ui_lock); 823 mutex_unlock(&ui->ui_mutex); 824 return err; 825 } 826 827 /* 828 * dbg_check_dir - check directory inode size and link count. 829 * @c: UBIFS file-system description object 830 * @dir: the directory to calculate size for 831 * @size: the result is returned here 832 * 833 * This function makes sure that directory size and link count are correct. 834 * Returns zero in case of success and a negative error code in case of 835 * failure. 836 * 837 * Note, it is good idea to make sure the @dir->i_mutex is locked before 838 * calling this function. 839 */ 840 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 841 { 842 unsigned int nlink = 2; 843 union ubifs_key key; 844 struct ubifs_dent_node *dent, *pdent = NULL; 845 struct qstr nm = { .name = NULL }; 846 loff_t size = UBIFS_INO_NODE_SZ; 847 848 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 849 return 0; 850 851 if (!S_ISDIR(dir->i_mode)) 852 return 0; 853 854 lowest_dent_key(c, &key, dir->i_ino); 855 while (1) { 856 int err; 857 858 dent = ubifs_tnc_next_ent(c, &key, &nm); 859 if (IS_ERR(dent)) { 860 err = PTR_ERR(dent); 861 if (err == -ENOENT) 862 break; 863 return err; 864 } 865 866 nm.name = dent->name; 867 nm.len = le16_to_cpu(dent->nlen); 868 size += CALC_DENT_SIZE(nm.len); 869 if (dent->type == UBIFS_ITYPE_DIR) 870 nlink += 1; 871 kfree(pdent); 872 pdent = dent; 873 key_read(c, &dent->key, &key); 874 } 875 kfree(pdent); 876 877 if (i_size_read(dir) != size) { 878 ubifs_err("directory inode %lu has size %llu, " 879 "but calculated size is %llu", dir->i_ino, 880 (unsigned long long)i_size_read(dir), 881 (unsigned long long)size); 882 dump_stack(); 883 return -EINVAL; 884 } 885 if (dir->i_nlink != nlink) { 886 ubifs_err("directory inode %lu has nlink %u, but calculated " 887 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 888 dump_stack(); 889 return -EINVAL; 890 } 891 892 return 0; 893 } 894 895 /** 896 * dbg_check_key_order - make sure that colliding keys are properly ordered. 897 * @c: UBIFS file-system description object 898 * @zbr1: first zbranch 899 * @zbr2: following zbranch 900 * 901 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 902 * names of the direntries/xentries which are referred by the keys. This 903 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 904 * sure the name of direntry/xentry referred by @zbr1 is less than 905 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 906 * and a negative error code in case of failure. 907 */ 908 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 909 struct ubifs_zbranch *zbr2) 910 { 911 int err, nlen1, nlen2, cmp; 912 struct ubifs_dent_node *dent1, *dent2; 913 union ubifs_key key; 914 915 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 916 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 917 if (!dent1) 918 return -ENOMEM; 919 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 920 if (!dent2) { 921 err = -ENOMEM; 922 goto out_free; 923 } 924 925 err = ubifs_tnc_read_node(c, zbr1, dent1); 926 if (err) 927 goto out_free; 928 err = ubifs_validate_entry(c, dent1); 929 if (err) 930 goto out_free; 931 932 err = ubifs_tnc_read_node(c, zbr2, dent2); 933 if (err) 934 goto out_free; 935 err = ubifs_validate_entry(c, dent2); 936 if (err) 937 goto out_free; 938 939 /* Make sure node keys are the same as in zbranch */ 940 err = 1; 941 key_read(c, &dent1->key, &key); 942 if (keys_cmp(c, &zbr1->key, &key)) { 943 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 944 zbr1->offs, DBGKEY(&key)); 945 dbg_err("but it should have key %s according to tnc", 946 DBGKEY(&zbr1->key)); 947 dbg_dump_node(c, dent1); 948 goto out_free; 949 } 950 951 key_read(c, &dent2->key, &key); 952 if (keys_cmp(c, &zbr2->key, &key)) { 953 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 954 zbr1->offs, DBGKEY(&key)); 955 dbg_err("but it should have key %s according to tnc", 956 DBGKEY(&zbr2->key)); 957 dbg_dump_node(c, dent2); 958 goto out_free; 959 } 960 961 nlen1 = le16_to_cpu(dent1->nlen); 962 nlen2 = le16_to_cpu(dent2->nlen); 963 964 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 965 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 966 err = 0; 967 goto out_free; 968 } 969 if (cmp == 0 && nlen1 == nlen2) 970 dbg_err("2 xent/dent nodes with the same name"); 971 else 972 dbg_err("bad order of colliding key %s", 973 DBGKEY(&key)); 974 975 dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 976 dbg_dump_node(c, dent1); 977 dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 978 dbg_dump_node(c, dent2); 979 980 out_free: 981 kfree(dent2); 982 kfree(dent1); 983 return err; 984 } 985 986 /** 987 * dbg_check_znode - check if znode is all right. 988 * @c: UBIFS file-system description object 989 * @zbr: zbranch which points to this znode 990 * 991 * This function makes sure that znode referred to by @zbr is all right. 992 * Returns zero if it is, and %-EINVAL if it is not. 993 */ 994 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 995 { 996 struct ubifs_znode *znode = zbr->znode; 997 struct ubifs_znode *zp = znode->parent; 998 int n, err, cmp; 999 1000 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1001 err = 1; 1002 goto out; 1003 } 1004 if (znode->level < 0) { 1005 err = 2; 1006 goto out; 1007 } 1008 if (znode->iip < 0 || znode->iip >= c->fanout) { 1009 err = 3; 1010 goto out; 1011 } 1012 1013 if (zbr->len == 0) 1014 /* Only dirty zbranch may have no on-flash nodes */ 1015 if (!ubifs_zn_dirty(znode)) { 1016 err = 4; 1017 goto out; 1018 } 1019 1020 if (ubifs_zn_dirty(znode)) { 1021 /* 1022 * If znode is dirty, its parent has to be dirty as well. The 1023 * order of the operation is important, so we have to have 1024 * memory barriers. 1025 */ 1026 smp_mb(); 1027 if (zp && !ubifs_zn_dirty(zp)) { 1028 /* 1029 * The dirty flag is atomic and is cleared outside the 1030 * TNC mutex, so znode's dirty flag may now have 1031 * been cleared. The child is always cleared before the 1032 * parent, so we just need to check again. 1033 */ 1034 smp_mb(); 1035 if (ubifs_zn_dirty(znode)) { 1036 err = 5; 1037 goto out; 1038 } 1039 } 1040 } 1041 1042 if (zp) { 1043 const union ubifs_key *min, *max; 1044 1045 if (znode->level != zp->level - 1) { 1046 err = 6; 1047 goto out; 1048 } 1049 1050 /* Make sure the 'parent' pointer in our znode is correct */ 1051 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1052 if (!err) { 1053 /* This zbranch does not exist in the parent */ 1054 err = 7; 1055 goto out; 1056 } 1057 1058 if (znode->iip >= zp->child_cnt) { 1059 err = 8; 1060 goto out; 1061 } 1062 1063 if (znode->iip != n) { 1064 /* This may happen only in case of collisions */ 1065 if (keys_cmp(c, &zp->zbranch[n].key, 1066 &zp->zbranch[znode->iip].key)) { 1067 err = 9; 1068 goto out; 1069 } 1070 n = znode->iip; 1071 } 1072 1073 /* 1074 * Make sure that the first key in our znode is greater than or 1075 * equal to the key in the pointing zbranch. 1076 */ 1077 min = &zbr->key; 1078 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1079 if (cmp == 1) { 1080 err = 10; 1081 goto out; 1082 } 1083 1084 if (n + 1 < zp->child_cnt) { 1085 max = &zp->zbranch[n + 1].key; 1086 1087 /* 1088 * Make sure the last key in our znode is less or 1089 * equivalent than the the key in zbranch which goes 1090 * after our pointing zbranch. 1091 */ 1092 cmp = keys_cmp(c, max, 1093 &znode->zbranch[znode->child_cnt - 1].key); 1094 if (cmp == -1) { 1095 err = 11; 1096 goto out; 1097 } 1098 } 1099 } else { 1100 /* This may only be root znode */ 1101 if (zbr != &c->zroot) { 1102 err = 12; 1103 goto out; 1104 } 1105 } 1106 1107 /* 1108 * Make sure that next key is greater or equivalent then the previous 1109 * one. 1110 */ 1111 for (n = 1; n < znode->child_cnt; n++) { 1112 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1113 &znode->zbranch[n].key); 1114 if (cmp > 0) { 1115 err = 13; 1116 goto out; 1117 } 1118 if (cmp == 0) { 1119 /* This can only be keys with colliding hash */ 1120 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1121 err = 14; 1122 goto out; 1123 } 1124 1125 if (znode->level != 0 || c->replaying) 1126 continue; 1127 1128 /* 1129 * Colliding keys should follow binary order of 1130 * corresponding xentry/dentry names. 1131 */ 1132 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1133 &znode->zbranch[n]); 1134 if (err < 0) 1135 return err; 1136 if (err) { 1137 err = 15; 1138 goto out; 1139 } 1140 } 1141 } 1142 1143 for (n = 0; n < znode->child_cnt; n++) { 1144 if (!znode->zbranch[n].znode && 1145 (znode->zbranch[n].lnum == 0 || 1146 znode->zbranch[n].len == 0)) { 1147 err = 16; 1148 goto out; 1149 } 1150 1151 if (znode->zbranch[n].lnum != 0 && 1152 znode->zbranch[n].len == 0) { 1153 err = 17; 1154 goto out; 1155 } 1156 1157 if (znode->zbranch[n].lnum == 0 && 1158 znode->zbranch[n].len != 0) { 1159 err = 18; 1160 goto out; 1161 } 1162 1163 if (znode->zbranch[n].lnum == 0 && 1164 znode->zbranch[n].offs != 0) { 1165 err = 19; 1166 goto out; 1167 } 1168 1169 if (znode->level != 0 && znode->zbranch[n].znode) 1170 if (znode->zbranch[n].znode->parent != znode) { 1171 err = 20; 1172 goto out; 1173 } 1174 } 1175 1176 return 0; 1177 1178 out: 1179 ubifs_err("failed, error %d", err); 1180 ubifs_msg("dump of the znode"); 1181 dbg_dump_znode(c, znode); 1182 if (zp) { 1183 ubifs_msg("dump of the parent znode"); 1184 dbg_dump_znode(c, zp); 1185 } 1186 dump_stack(); 1187 return -EINVAL; 1188 } 1189 1190 /** 1191 * dbg_check_tnc - check TNC tree. 1192 * @c: UBIFS file-system description object 1193 * @extra: do extra checks that are possible at start commit 1194 * 1195 * This function traverses whole TNC tree and checks every znode. Returns zero 1196 * if everything is all right and %-EINVAL if something is wrong with TNC. 1197 */ 1198 int dbg_check_tnc(struct ubifs_info *c, int extra) 1199 { 1200 struct ubifs_znode *znode; 1201 long clean_cnt = 0, dirty_cnt = 0; 1202 int err, last; 1203 1204 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1205 return 0; 1206 1207 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1208 if (!c->zroot.znode) 1209 return 0; 1210 1211 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1212 while (1) { 1213 struct ubifs_znode *prev; 1214 struct ubifs_zbranch *zbr; 1215 1216 if (!znode->parent) 1217 zbr = &c->zroot; 1218 else 1219 zbr = &znode->parent->zbranch[znode->iip]; 1220 1221 err = dbg_check_znode(c, zbr); 1222 if (err) 1223 return err; 1224 1225 if (extra) { 1226 if (ubifs_zn_dirty(znode)) 1227 dirty_cnt += 1; 1228 else 1229 clean_cnt += 1; 1230 } 1231 1232 prev = znode; 1233 znode = ubifs_tnc_postorder_next(znode); 1234 if (!znode) 1235 break; 1236 1237 /* 1238 * If the last key of this znode is equivalent to the first key 1239 * of the next znode (collision), then check order of the keys. 1240 */ 1241 last = prev->child_cnt - 1; 1242 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1243 !keys_cmp(c, &prev->zbranch[last].key, 1244 &znode->zbranch[0].key)) { 1245 err = dbg_check_key_order(c, &prev->zbranch[last], 1246 &znode->zbranch[0]); 1247 if (err < 0) 1248 return err; 1249 if (err) { 1250 ubifs_msg("first znode"); 1251 dbg_dump_znode(c, prev); 1252 ubifs_msg("second znode"); 1253 dbg_dump_znode(c, znode); 1254 return -EINVAL; 1255 } 1256 } 1257 } 1258 1259 if (extra) { 1260 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1261 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1262 atomic_long_read(&c->clean_zn_cnt), 1263 clean_cnt); 1264 return -EINVAL; 1265 } 1266 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1267 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1268 atomic_long_read(&c->dirty_zn_cnt), 1269 dirty_cnt); 1270 return -EINVAL; 1271 } 1272 } 1273 1274 return 0; 1275 } 1276 1277 /** 1278 * dbg_walk_index - walk the on-flash index. 1279 * @c: UBIFS file-system description object 1280 * @leaf_cb: called for each leaf node 1281 * @znode_cb: called for each indexing node 1282 * @priv: private date which is passed to callbacks 1283 * 1284 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1285 * node and @znode_cb for each indexing node. Returns zero in case of success 1286 * and a negative error code in case of failure. 1287 * 1288 * It would be better if this function removed every znode it pulled to into 1289 * the TNC, so that the behavior more closely matched the non-debugging 1290 * behavior. 1291 */ 1292 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1293 dbg_znode_callback znode_cb, void *priv) 1294 { 1295 int err; 1296 struct ubifs_zbranch *zbr; 1297 struct ubifs_znode *znode, *child; 1298 1299 mutex_lock(&c->tnc_mutex); 1300 /* If the root indexing node is not in TNC - pull it */ 1301 if (!c->zroot.znode) { 1302 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1303 if (IS_ERR(c->zroot.znode)) { 1304 err = PTR_ERR(c->zroot.znode); 1305 c->zroot.znode = NULL; 1306 goto out_unlock; 1307 } 1308 } 1309 1310 /* 1311 * We are going to traverse the indexing tree in the postorder manner. 1312 * Go down and find the leftmost indexing node where we are going to 1313 * start from. 1314 */ 1315 znode = c->zroot.znode; 1316 while (znode->level > 0) { 1317 zbr = &znode->zbranch[0]; 1318 child = zbr->znode; 1319 if (!child) { 1320 child = ubifs_load_znode(c, zbr, znode, 0); 1321 if (IS_ERR(child)) { 1322 err = PTR_ERR(child); 1323 goto out_unlock; 1324 } 1325 zbr->znode = child; 1326 } 1327 1328 znode = child; 1329 } 1330 1331 /* Iterate over all indexing nodes */ 1332 while (1) { 1333 int idx; 1334 1335 cond_resched(); 1336 1337 if (znode_cb) { 1338 err = znode_cb(c, znode, priv); 1339 if (err) { 1340 ubifs_err("znode checking function returned " 1341 "error %d", err); 1342 dbg_dump_znode(c, znode); 1343 goto out_dump; 1344 } 1345 } 1346 if (leaf_cb && znode->level == 0) { 1347 for (idx = 0; idx < znode->child_cnt; idx++) { 1348 zbr = &znode->zbranch[idx]; 1349 err = leaf_cb(c, zbr, priv); 1350 if (err) { 1351 ubifs_err("leaf checking function " 1352 "returned error %d, for leaf " 1353 "at LEB %d:%d", 1354 err, zbr->lnum, zbr->offs); 1355 goto out_dump; 1356 } 1357 } 1358 } 1359 1360 if (!znode->parent) 1361 break; 1362 1363 idx = znode->iip + 1; 1364 znode = znode->parent; 1365 if (idx < znode->child_cnt) { 1366 /* Switch to the next index in the parent */ 1367 zbr = &znode->zbranch[idx]; 1368 child = zbr->znode; 1369 if (!child) { 1370 child = ubifs_load_znode(c, zbr, znode, idx); 1371 if (IS_ERR(child)) { 1372 err = PTR_ERR(child); 1373 goto out_unlock; 1374 } 1375 zbr->znode = child; 1376 } 1377 znode = child; 1378 } else 1379 /* 1380 * This is the last child, switch to the parent and 1381 * continue. 1382 */ 1383 continue; 1384 1385 /* Go to the lowest leftmost znode in the new sub-tree */ 1386 while (znode->level > 0) { 1387 zbr = &znode->zbranch[0]; 1388 child = zbr->znode; 1389 if (!child) { 1390 child = ubifs_load_znode(c, zbr, znode, 0); 1391 if (IS_ERR(child)) { 1392 err = PTR_ERR(child); 1393 goto out_unlock; 1394 } 1395 zbr->znode = child; 1396 } 1397 znode = child; 1398 } 1399 } 1400 1401 mutex_unlock(&c->tnc_mutex); 1402 return 0; 1403 1404 out_dump: 1405 if (znode->parent) 1406 zbr = &znode->parent->zbranch[znode->iip]; 1407 else 1408 zbr = &c->zroot; 1409 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1410 dbg_dump_znode(c, znode); 1411 out_unlock: 1412 mutex_unlock(&c->tnc_mutex); 1413 return err; 1414 } 1415 1416 /** 1417 * add_size - add znode size to partially calculated index size. 1418 * @c: UBIFS file-system description object 1419 * @znode: znode to add size for 1420 * @priv: partially calculated index size 1421 * 1422 * This is a helper function for 'dbg_check_idx_size()' which is called for 1423 * every indexing node and adds its size to the 'long long' variable pointed to 1424 * by @priv. 1425 */ 1426 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1427 { 1428 long long *idx_size = priv; 1429 int add; 1430 1431 add = ubifs_idx_node_sz(c, znode->child_cnt); 1432 add = ALIGN(add, 8); 1433 *idx_size += add; 1434 return 0; 1435 } 1436 1437 /** 1438 * dbg_check_idx_size - check index size. 1439 * @c: UBIFS file-system description object 1440 * @idx_size: size to check 1441 * 1442 * This function walks the UBIFS index, calculates its size and checks that the 1443 * size is equivalent to @idx_size. Returns zero in case of success and a 1444 * negative error code in case of failure. 1445 */ 1446 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1447 { 1448 int err; 1449 long long calc = 0; 1450 1451 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1452 return 0; 1453 1454 err = dbg_walk_index(c, NULL, add_size, &calc); 1455 if (err) { 1456 ubifs_err("error %d while walking the index", err); 1457 return err; 1458 } 1459 1460 if (calc != idx_size) { 1461 ubifs_err("index size check failed: calculated size is %lld, " 1462 "should be %lld", calc, idx_size); 1463 dump_stack(); 1464 return -EINVAL; 1465 } 1466 1467 return 0; 1468 } 1469 1470 /** 1471 * struct fsck_inode - information about an inode used when checking the file-system. 1472 * @rb: link in the RB-tree of inodes 1473 * @inum: inode number 1474 * @mode: inode type, permissions, etc 1475 * @nlink: inode link count 1476 * @xattr_cnt: count of extended attributes 1477 * @references: how many directory/xattr entries refer this inode (calculated 1478 * while walking the index) 1479 * @calc_cnt: for directory inode count of child directories 1480 * @size: inode size (read from on-flash inode) 1481 * @xattr_sz: summary size of all extended attributes (read from on-flash 1482 * inode) 1483 * @calc_sz: for directories calculated directory size 1484 * @calc_xcnt: count of extended attributes 1485 * @calc_xsz: calculated summary size of all extended attributes 1486 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1487 * inode (read from on-flash inode) 1488 * @calc_xnms: calculated sum of lengths of all extended attribute names 1489 */ 1490 struct fsck_inode { 1491 struct rb_node rb; 1492 ino_t inum; 1493 umode_t mode; 1494 unsigned int nlink; 1495 unsigned int xattr_cnt; 1496 int references; 1497 int calc_cnt; 1498 long long size; 1499 unsigned int xattr_sz; 1500 long long calc_sz; 1501 long long calc_xcnt; 1502 long long calc_xsz; 1503 unsigned int xattr_nms; 1504 long long calc_xnms; 1505 }; 1506 1507 /** 1508 * struct fsck_data - private FS checking information. 1509 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1510 */ 1511 struct fsck_data { 1512 struct rb_root inodes; 1513 }; 1514 1515 /** 1516 * add_inode - add inode information to RB-tree of inodes. 1517 * @c: UBIFS file-system description object 1518 * @fsckd: FS checking information 1519 * @ino: raw UBIFS inode to add 1520 * 1521 * This is a helper function for 'check_leaf()' which adds information about 1522 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1523 * case of success and a negative error code in case of failure. 1524 */ 1525 static struct fsck_inode *add_inode(struct ubifs_info *c, 1526 struct fsck_data *fsckd, 1527 struct ubifs_ino_node *ino) 1528 { 1529 struct rb_node **p, *parent = NULL; 1530 struct fsck_inode *fscki; 1531 ino_t inum = key_inum_flash(c, &ino->key); 1532 1533 p = &fsckd->inodes.rb_node; 1534 while (*p) { 1535 parent = *p; 1536 fscki = rb_entry(parent, struct fsck_inode, rb); 1537 if (inum < fscki->inum) 1538 p = &(*p)->rb_left; 1539 else if (inum > fscki->inum) 1540 p = &(*p)->rb_right; 1541 else 1542 return fscki; 1543 } 1544 1545 if (inum > c->highest_inum) { 1546 ubifs_err("too high inode number, max. is %lu", 1547 c->highest_inum); 1548 return ERR_PTR(-EINVAL); 1549 } 1550 1551 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1552 if (!fscki) 1553 return ERR_PTR(-ENOMEM); 1554 1555 fscki->inum = inum; 1556 fscki->nlink = le32_to_cpu(ino->nlink); 1557 fscki->size = le64_to_cpu(ino->size); 1558 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1559 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1560 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1561 fscki->mode = le32_to_cpu(ino->mode); 1562 if (S_ISDIR(fscki->mode)) { 1563 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1564 fscki->calc_cnt = 2; 1565 } 1566 rb_link_node(&fscki->rb, parent, p); 1567 rb_insert_color(&fscki->rb, &fsckd->inodes); 1568 return fscki; 1569 } 1570 1571 /** 1572 * search_inode - search inode in the RB-tree of inodes. 1573 * @fsckd: FS checking information 1574 * @inum: inode number to search 1575 * 1576 * This is a helper function for 'check_leaf()' which searches inode @inum in 1577 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1578 * the inode was not found. 1579 */ 1580 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1581 { 1582 struct rb_node *p; 1583 struct fsck_inode *fscki; 1584 1585 p = fsckd->inodes.rb_node; 1586 while (p) { 1587 fscki = rb_entry(p, struct fsck_inode, rb); 1588 if (inum < fscki->inum) 1589 p = p->rb_left; 1590 else if (inum > fscki->inum) 1591 p = p->rb_right; 1592 else 1593 return fscki; 1594 } 1595 return NULL; 1596 } 1597 1598 /** 1599 * read_add_inode - read inode node and add it to RB-tree of inodes. 1600 * @c: UBIFS file-system description object 1601 * @fsckd: FS checking information 1602 * @inum: inode number to read 1603 * 1604 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1605 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1606 * information pointer in case of success and a negative error code in case of 1607 * failure. 1608 */ 1609 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1610 struct fsck_data *fsckd, ino_t inum) 1611 { 1612 int n, err; 1613 union ubifs_key key; 1614 struct ubifs_znode *znode; 1615 struct ubifs_zbranch *zbr; 1616 struct ubifs_ino_node *ino; 1617 struct fsck_inode *fscki; 1618 1619 fscki = search_inode(fsckd, inum); 1620 if (fscki) 1621 return fscki; 1622 1623 ino_key_init(c, &key, inum); 1624 err = ubifs_lookup_level0(c, &key, &znode, &n); 1625 if (!err) { 1626 ubifs_err("inode %lu not found in index", inum); 1627 return ERR_PTR(-ENOENT); 1628 } else if (err < 0) { 1629 ubifs_err("error %d while looking up inode %lu", err, inum); 1630 return ERR_PTR(err); 1631 } 1632 1633 zbr = &znode->zbranch[n]; 1634 if (zbr->len < UBIFS_INO_NODE_SZ) { 1635 ubifs_err("bad node %lu node length %d", inum, zbr->len); 1636 return ERR_PTR(-EINVAL); 1637 } 1638 1639 ino = kmalloc(zbr->len, GFP_NOFS); 1640 if (!ino) 1641 return ERR_PTR(-ENOMEM); 1642 1643 err = ubifs_tnc_read_node(c, zbr, ino); 1644 if (err) { 1645 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1646 zbr->lnum, zbr->offs, err); 1647 kfree(ino); 1648 return ERR_PTR(err); 1649 } 1650 1651 fscki = add_inode(c, fsckd, ino); 1652 kfree(ino); 1653 if (IS_ERR(fscki)) { 1654 ubifs_err("error %ld while adding inode %lu node", 1655 PTR_ERR(fscki), inum); 1656 return fscki; 1657 } 1658 1659 return fscki; 1660 } 1661 1662 /** 1663 * check_leaf - check leaf node. 1664 * @c: UBIFS file-system description object 1665 * @zbr: zbranch of the leaf node to check 1666 * @priv: FS checking information 1667 * 1668 * This is a helper function for 'dbg_check_filesystem()' which is called for 1669 * every single leaf node while walking the indexing tree. It checks that the 1670 * leaf node referred from the indexing tree exists, has correct CRC, and does 1671 * some other basic validation. This function is also responsible for building 1672 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1673 * calculates reference count, size, etc for each inode in order to later 1674 * compare them to the information stored inside the inodes and detect possible 1675 * inconsistencies. Returns zero in case of success and a negative error code 1676 * in case of failure. 1677 */ 1678 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1679 void *priv) 1680 { 1681 ino_t inum; 1682 void *node; 1683 struct ubifs_ch *ch; 1684 int err, type = key_type(c, &zbr->key); 1685 struct fsck_inode *fscki; 1686 1687 if (zbr->len < UBIFS_CH_SZ) { 1688 ubifs_err("bad leaf length %d (LEB %d:%d)", 1689 zbr->len, zbr->lnum, zbr->offs); 1690 return -EINVAL; 1691 } 1692 1693 node = kmalloc(zbr->len, GFP_NOFS); 1694 if (!node) 1695 return -ENOMEM; 1696 1697 err = ubifs_tnc_read_node(c, zbr, node); 1698 if (err) { 1699 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1700 zbr->lnum, zbr->offs, err); 1701 goto out_free; 1702 } 1703 1704 /* If this is an inode node, add it to RB-tree of inodes */ 1705 if (type == UBIFS_INO_KEY) { 1706 fscki = add_inode(c, priv, node); 1707 if (IS_ERR(fscki)) { 1708 err = PTR_ERR(fscki); 1709 ubifs_err("error %d while adding inode node", err); 1710 goto out_dump; 1711 } 1712 goto out; 1713 } 1714 1715 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1716 type != UBIFS_DATA_KEY) { 1717 ubifs_err("unexpected node type %d at LEB %d:%d", 1718 type, zbr->lnum, zbr->offs); 1719 err = -EINVAL; 1720 goto out_free; 1721 } 1722 1723 ch = node; 1724 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1725 ubifs_err("too high sequence number, max. is %llu", 1726 c->max_sqnum); 1727 err = -EINVAL; 1728 goto out_dump; 1729 } 1730 1731 if (type == UBIFS_DATA_KEY) { 1732 long long blk_offs; 1733 struct ubifs_data_node *dn = node; 1734 1735 /* 1736 * Search the inode node this data node belongs to and insert 1737 * it to the RB-tree of inodes. 1738 */ 1739 inum = key_inum_flash(c, &dn->key); 1740 fscki = read_add_inode(c, priv, inum); 1741 if (IS_ERR(fscki)) { 1742 err = PTR_ERR(fscki); 1743 ubifs_err("error %d while processing data node and " 1744 "trying to find inode node %lu", err, inum); 1745 goto out_dump; 1746 } 1747 1748 /* Make sure the data node is within inode size */ 1749 blk_offs = key_block_flash(c, &dn->key); 1750 blk_offs <<= UBIFS_BLOCK_SHIFT; 1751 blk_offs += le32_to_cpu(dn->size); 1752 if (blk_offs > fscki->size) { 1753 ubifs_err("data node at LEB %d:%d is not within inode " 1754 "size %lld", zbr->lnum, zbr->offs, 1755 fscki->size); 1756 err = -EINVAL; 1757 goto out_dump; 1758 } 1759 } else { 1760 int nlen; 1761 struct ubifs_dent_node *dent = node; 1762 struct fsck_inode *fscki1; 1763 1764 err = ubifs_validate_entry(c, dent); 1765 if (err) 1766 goto out_dump; 1767 1768 /* 1769 * Search the inode node this entry refers to and the parent 1770 * inode node and insert them to the RB-tree of inodes. 1771 */ 1772 inum = le64_to_cpu(dent->inum); 1773 fscki = read_add_inode(c, priv, inum); 1774 if (IS_ERR(fscki)) { 1775 err = PTR_ERR(fscki); 1776 ubifs_err("error %d while processing entry node and " 1777 "trying to find inode node %lu", err, inum); 1778 goto out_dump; 1779 } 1780 1781 /* Count how many direntries or xentries refers this inode */ 1782 fscki->references += 1; 1783 1784 inum = key_inum_flash(c, &dent->key); 1785 fscki1 = read_add_inode(c, priv, inum); 1786 if (IS_ERR(fscki1)) { 1787 err = PTR_ERR(fscki); 1788 ubifs_err("error %d while processing entry node and " 1789 "trying to find parent inode node %lu", 1790 err, inum); 1791 goto out_dump; 1792 } 1793 1794 nlen = le16_to_cpu(dent->nlen); 1795 if (type == UBIFS_XENT_KEY) { 1796 fscki1->calc_xcnt += 1; 1797 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 1798 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 1799 fscki1->calc_xnms += nlen; 1800 } else { 1801 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 1802 if (dent->type == UBIFS_ITYPE_DIR) 1803 fscki1->calc_cnt += 1; 1804 } 1805 } 1806 1807 out: 1808 kfree(node); 1809 return 0; 1810 1811 out_dump: 1812 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 1813 dbg_dump_node(c, node); 1814 out_free: 1815 kfree(node); 1816 return err; 1817 } 1818 1819 /** 1820 * free_inodes - free RB-tree of inodes. 1821 * @fsckd: FS checking information 1822 */ 1823 static void free_inodes(struct fsck_data *fsckd) 1824 { 1825 struct rb_node *this = fsckd->inodes.rb_node; 1826 struct fsck_inode *fscki; 1827 1828 while (this) { 1829 if (this->rb_left) 1830 this = this->rb_left; 1831 else if (this->rb_right) 1832 this = this->rb_right; 1833 else { 1834 fscki = rb_entry(this, struct fsck_inode, rb); 1835 this = rb_parent(this); 1836 if (this) { 1837 if (this->rb_left == &fscki->rb) 1838 this->rb_left = NULL; 1839 else 1840 this->rb_right = NULL; 1841 } 1842 kfree(fscki); 1843 } 1844 } 1845 } 1846 1847 /** 1848 * check_inodes - checks all inodes. 1849 * @c: UBIFS file-system description object 1850 * @fsckd: FS checking information 1851 * 1852 * This is a helper function for 'dbg_check_filesystem()' which walks the 1853 * RB-tree of inodes after the index scan has been finished, and checks that 1854 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 1855 * %-EINVAL if not, and a negative error code in case of failure. 1856 */ 1857 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 1858 { 1859 int n, err; 1860 union ubifs_key key; 1861 struct ubifs_znode *znode; 1862 struct ubifs_zbranch *zbr; 1863 struct ubifs_ino_node *ino; 1864 struct fsck_inode *fscki; 1865 struct rb_node *this = rb_first(&fsckd->inodes); 1866 1867 while (this) { 1868 fscki = rb_entry(this, struct fsck_inode, rb); 1869 this = rb_next(this); 1870 1871 if (S_ISDIR(fscki->mode)) { 1872 /* 1873 * Directories have to have exactly one reference (they 1874 * cannot have hardlinks), although root inode is an 1875 * exception. 1876 */ 1877 if (fscki->inum != UBIFS_ROOT_INO && 1878 fscki->references != 1) { 1879 ubifs_err("directory inode %lu has %d " 1880 "direntries which refer it, but " 1881 "should be 1", fscki->inum, 1882 fscki->references); 1883 goto out_dump; 1884 } 1885 if (fscki->inum == UBIFS_ROOT_INO && 1886 fscki->references != 0) { 1887 ubifs_err("root inode %lu has non-zero (%d) " 1888 "direntries which refer it", 1889 fscki->inum, fscki->references); 1890 goto out_dump; 1891 } 1892 if (fscki->calc_sz != fscki->size) { 1893 ubifs_err("directory inode %lu size is %lld, " 1894 "but calculated size is %lld", 1895 fscki->inum, fscki->size, 1896 fscki->calc_sz); 1897 goto out_dump; 1898 } 1899 if (fscki->calc_cnt != fscki->nlink) { 1900 ubifs_err("directory inode %lu nlink is %d, " 1901 "but calculated nlink is %d", 1902 fscki->inum, fscki->nlink, 1903 fscki->calc_cnt); 1904 goto out_dump; 1905 } 1906 } else { 1907 if (fscki->references != fscki->nlink) { 1908 ubifs_err("inode %lu nlink is %d, but " 1909 "calculated nlink is %d", fscki->inum, 1910 fscki->nlink, fscki->references); 1911 goto out_dump; 1912 } 1913 } 1914 if (fscki->xattr_sz != fscki->calc_xsz) { 1915 ubifs_err("inode %lu has xattr size %u, but " 1916 "calculated size is %lld", 1917 fscki->inum, fscki->xattr_sz, 1918 fscki->calc_xsz); 1919 goto out_dump; 1920 } 1921 if (fscki->xattr_cnt != fscki->calc_xcnt) { 1922 ubifs_err("inode %lu has %u xattrs, but " 1923 "calculated count is %lld", fscki->inum, 1924 fscki->xattr_cnt, fscki->calc_xcnt); 1925 goto out_dump; 1926 } 1927 if (fscki->xattr_nms != fscki->calc_xnms) { 1928 ubifs_err("inode %lu has xattr names' size %u, but " 1929 "calculated names' size is %lld", 1930 fscki->inum, fscki->xattr_nms, 1931 fscki->calc_xnms); 1932 goto out_dump; 1933 } 1934 } 1935 1936 return 0; 1937 1938 out_dump: 1939 /* Read the bad inode and dump it */ 1940 ino_key_init(c, &key, fscki->inum); 1941 err = ubifs_lookup_level0(c, &key, &znode, &n); 1942 if (!err) { 1943 ubifs_err("inode %lu not found in index", fscki->inum); 1944 return -ENOENT; 1945 } else if (err < 0) { 1946 ubifs_err("error %d while looking up inode %lu", 1947 err, fscki->inum); 1948 return err; 1949 } 1950 1951 zbr = &znode->zbranch[n]; 1952 ino = kmalloc(zbr->len, GFP_NOFS); 1953 if (!ino) 1954 return -ENOMEM; 1955 1956 err = ubifs_tnc_read_node(c, zbr, ino); 1957 if (err) { 1958 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1959 zbr->lnum, zbr->offs, err); 1960 kfree(ino); 1961 return err; 1962 } 1963 1964 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 1965 fscki->inum, zbr->lnum, zbr->offs); 1966 dbg_dump_node(c, ino); 1967 kfree(ino); 1968 return -EINVAL; 1969 } 1970 1971 /** 1972 * dbg_check_filesystem - check the file-system. 1973 * @c: UBIFS file-system description object 1974 * 1975 * This function checks the file system, namely: 1976 * o makes sure that all leaf nodes exist and their CRCs are correct; 1977 * o makes sure inode nlink, size, xattr size/count are correct (for all 1978 * inodes). 1979 * 1980 * The function reads whole indexing tree and all nodes, so it is pretty 1981 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 1982 * not, and a negative error code in case of failure. 1983 */ 1984 int dbg_check_filesystem(struct ubifs_info *c) 1985 { 1986 int err; 1987 struct fsck_data fsckd; 1988 1989 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 1990 return 0; 1991 1992 fsckd.inodes = RB_ROOT; 1993 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 1994 if (err) 1995 goto out_free; 1996 1997 err = check_inodes(c, &fsckd); 1998 if (err) 1999 goto out_free; 2000 2001 free_inodes(&fsckd); 2002 return 0; 2003 2004 out_free: 2005 ubifs_err("file-system check failed with error %d", err); 2006 dump_stack(); 2007 free_inodes(&fsckd); 2008 return err; 2009 } 2010 2011 static int invocation_cnt; 2012 2013 int dbg_force_in_the_gaps(void) 2014 { 2015 if (!dbg_force_in_the_gaps_enabled) 2016 return 0; 2017 /* Force in-the-gaps every 8th commit */ 2018 return !((invocation_cnt++) & 0x7); 2019 } 2020 2021 /* Failure mode for recovery testing */ 2022 2023 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2024 2025 struct failure_mode_info { 2026 struct list_head list; 2027 struct ubifs_info *c; 2028 }; 2029 2030 static LIST_HEAD(fmi_list); 2031 static DEFINE_SPINLOCK(fmi_lock); 2032 2033 static unsigned int next; 2034 2035 static int simple_rand(void) 2036 { 2037 if (next == 0) 2038 next = current->pid; 2039 next = next * 1103515245 + 12345; 2040 return (next >> 16) & 32767; 2041 } 2042 2043 void dbg_failure_mode_registration(struct ubifs_info *c) 2044 { 2045 struct failure_mode_info *fmi; 2046 2047 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2048 if (!fmi) { 2049 dbg_err("Failed to register failure mode - no memory"); 2050 return; 2051 } 2052 fmi->c = c; 2053 spin_lock(&fmi_lock); 2054 list_add_tail(&fmi->list, &fmi_list); 2055 spin_unlock(&fmi_lock); 2056 } 2057 2058 void dbg_failure_mode_deregistration(struct ubifs_info *c) 2059 { 2060 struct failure_mode_info *fmi, *tmp; 2061 2062 spin_lock(&fmi_lock); 2063 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2064 if (fmi->c == c) { 2065 list_del(&fmi->list); 2066 kfree(fmi); 2067 } 2068 spin_unlock(&fmi_lock); 2069 } 2070 2071 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2072 { 2073 struct failure_mode_info *fmi; 2074 2075 spin_lock(&fmi_lock); 2076 list_for_each_entry(fmi, &fmi_list, list) 2077 if (fmi->c->ubi == desc) { 2078 struct ubifs_info *c = fmi->c; 2079 2080 spin_unlock(&fmi_lock); 2081 return c; 2082 } 2083 spin_unlock(&fmi_lock); 2084 return NULL; 2085 } 2086 2087 static int in_failure_mode(struct ubi_volume_desc *desc) 2088 { 2089 struct ubifs_info *c = dbg_find_info(desc); 2090 2091 if (c && dbg_failure_mode) 2092 return c->failure_mode; 2093 return 0; 2094 } 2095 2096 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2097 { 2098 struct ubifs_info *c = dbg_find_info(desc); 2099 2100 if (!c || !dbg_failure_mode) 2101 return 0; 2102 if (c->failure_mode) 2103 return 1; 2104 if (!c->fail_cnt) { 2105 /* First call - decide delay to failure */ 2106 if (chance(1, 2)) { 2107 unsigned int delay = 1 << (simple_rand() >> 11); 2108 2109 if (chance(1, 2)) { 2110 c->fail_delay = 1; 2111 c->fail_timeout = jiffies + 2112 msecs_to_jiffies(delay); 2113 dbg_rcvry("failing after %ums", delay); 2114 } else { 2115 c->fail_delay = 2; 2116 c->fail_cnt_max = delay; 2117 dbg_rcvry("failing after %u calls", delay); 2118 } 2119 } 2120 c->fail_cnt += 1; 2121 } 2122 /* Determine if failure delay has expired */ 2123 if (c->fail_delay == 1) { 2124 if (time_before(jiffies, c->fail_timeout)) 2125 return 0; 2126 } else if (c->fail_delay == 2) 2127 if (c->fail_cnt++ < c->fail_cnt_max) 2128 return 0; 2129 if (lnum == UBIFS_SB_LNUM) { 2130 if (write) { 2131 if (chance(1, 2)) 2132 return 0; 2133 } else if (chance(19, 20)) 2134 return 0; 2135 dbg_rcvry("failing in super block LEB %d", lnum); 2136 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2137 if (chance(19, 20)) 2138 return 0; 2139 dbg_rcvry("failing in master LEB %d", lnum); 2140 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2141 if (write) { 2142 if (chance(99, 100)) 2143 return 0; 2144 } else if (chance(399, 400)) 2145 return 0; 2146 dbg_rcvry("failing in log LEB %d", lnum); 2147 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2148 if (write) { 2149 if (chance(7, 8)) 2150 return 0; 2151 } else if (chance(19, 20)) 2152 return 0; 2153 dbg_rcvry("failing in LPT LEB %d", lnum); 2154 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2155 if (write) { 2156 if (chance(1, 2)) 2157 return 0; 2158 } else if (chance(9, 10)) 2159 return 0; 2160 dbg_rcvry("failing in orphan LEB %d", lnum); 2161 } else if (lnum == c->ihead_lnum) { 2162 if (chance(99, 100)) 2163 return 0; 2164 dbg_rcvry("failing in index head LEB %d", lnum); 2165 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2166 if (chance(9, 10)) 2167 return 0; 2168 dbg_rcvry("failing in GC head LEB %d", lnum); 2169 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2170 !ubifs_search_bud(c, lnum)) { 2171 if (chance(19, 20)) 2172 return 0; 2173 dbg_rcvry("failing in non-bud LEB %d", lnum); 2174 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2175 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2176 if (chance(999, 1000)) 2177 return 0; 2178 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2179 } else { 2180 if (chance(9999, 10000)) 2181 return 0; 2182 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2183 } 2184 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2185 c->failure_mode = 1; 2186 dump_stack(); 2187 return 1; 2188 } 2189 2190 static void cut_data(const void *buf, int len) 2191 { 2192 int flen, i; 2193 unsigned char *p = (void *)buf; 2194 2195 flen = (len * (long long)simple_rand()) >> 15; 2196 for (i = flen; i < len; i++) 2197 p[i] = 0xff; 2198 } 2199 2200 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2201 int len, int check) 2202 { 2203 if (in_failure_mode(desc)) 2204 return -EIO; 2205 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2206 } 2207 2208 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2209 int offset, int len, int dtype) 2210 { 2211 int err; 2212 2213 if (in_failure_mode(desc)) 2214 return -EIO; 2215 if (do_fail(desc, lnum, 1)) 2216 cut_data(buf, len); 2217 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2218 if (err) 2219 return err; 2220 if (in_failure_mode(desc)) 2221 return -EIO; 2222 return 0; 2223 } 2224 2225 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2226 int len, int dtype) 2227 { 2228 int err; 2229 2230 if (do_fail(desc, lnum, 1)) 2231 return -EIO; 2232 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2233 if (err) 2234 return err; 2235 if (do_fail(desc, lnum, 1)) 2236 return -EIO; 2237 return 0; 2238 } 2239 2240 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2241 { 2242 int err; 2243 2244 if (do_fail(desc, lnum, 0)) 2245 return -EIO; 2246 err = ubi_leb_erase(desc, lnum); 2247 if (err) 2248 return err; 2249 if (do_fail(desc, lnum, 0)) 2250 return -EIO; 2251 return 0; 2252 } 2253 2254 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2255 { 2256 int err; 2257 2258 if (do_fail(desc, lnum, 0)) 2259 return -EIO; 2260 err = ubi_leb_unmap(desc, lnum); 2261 if (err) 2262 return err; 2263 if (do_fail(desc, lnum, 0)) 2264 return -EIO; 2265 return 0; 2266 } 2267 2268 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2269 { 2270 if (in_failure_mode(desc)) 2271 return -EIO; 2272 return ubi_is_mapped(desc, lnum); 2273 } 2274 2275 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2276 { 2277 int err; 2278 2279 if (do_fail(desc, lnum, 0)) 2280 return -EIO; 2281 err = ubi_leb_map(desc, lnum, dtype); 2282 if (err) 2283 return err; 2284 if (do_fail(desc, lnum, 0)) 2285 return -EIO; 2286 return 0; 2287 } 2288 2289 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2290