xref: /openbmc/linux/fs/ubifs/debug.c (revision 8db70d3d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39 
40 DEFINE_SPINLOCK(dbg_lock);
41 
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44 
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48 
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52 
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56 
57 static const char *get_key_fmt(int fmt)
58 {
59 	switch (fmt) {
60 	case UBIFS_SIMPLE_KEY_FMT:
61 		return "simple";
62 	default:
63 		return "unknown/invalid format";
64 	}
65 }
66 
67 static const char *get_key_hash(int hash)
68 {
69 	switch (hash) {
70 	case UBIFS_KEY_HASH_R5:
71 		return "R5";
72 	case UBIFS_KEY_HASH_TEST:
73 		return "test";
74 	default:
75 		return "unknown/invalid name hash";
76 	}
77 }
78 
79 static const char *get_key_type(int type)
80 {
81 	switch (type) {
82 	case UBIFS_INO_KEY:
83 		return "inode";
84 	case UBIFS_DENT_KEY:
85 		return "direntry";
86 	case UBIFS_XENT_KEY:
87 		return "xentry";
88 	case UBIFS_DATA_KEY:
89 		return "data";
90 	case UBIFS_TRUN_KEY:
91 		return "truncate";
92 	default:
93 		return "unknown/invalid key";
94 	}
95 }
96 
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 			char *buffer)
99 {
100 	char *p = buffer;
101 	int type = key_type(c, key);
102 
103 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 		switch (type) {
105 		case UBIFS_INO_KEY:
106 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 			       get_key_type(type));
108 			break;
109 		case UBIFS_DENT_KEY:
110 		case UBIFS_XENT_KEY:
111 			sprintf(p, "(%lu, %s, %#08x)",
112 				(unsigned long)key_inum(c, key),
113 				get_key_type(type), key_hash(c, key));
114 			break;
115 		case UBIFS_DATA_KEY:
116 			sprintf(p, "(%lu, %s, %u)",
117 				(unsigned long)key_inum(c, key),
118 				get_key_type(type), key_block(c, key));
119 			break;
120 		case UBIFS_TRUN_KEY:
121 			sprintf(p, "(%lu, %s)",
122 				(unsigned long)key_inum(c, key),
123 				get_key_type(type));
124 			break;
125 		default:
126 			sprintf(p, "(bad key type: %#08x, %#08x)",
127 				key->u32[0], key->u32[1]);
128 		}
129 	} else
130 		sprintf(p, "bad key format %d", c->key_fmt);
131 }
132 
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135 	/* dbg_lock must be held */
136 	sprintf_key(c, key, dbg_key_buf0);
137 	return dbg_key_buf0;
138 }
139 
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142 	/* dbg_lock must be held */
143 	sprintf_key(c, key, dbg_key_buf1);
144 	return dbg_key_buf1;
145 }
146 
147 const char *dbg_ntype(int type)
148 {
149 	switch (type) {
150 	case UBIFS_PAD_NODE:
151 		return "padding node";
152 	case UBIFS_SB_NODE:
153 		return "superblock node";
154 	case UBIFS_MST_NODE:
155 		return "master node";
156 	case UBIFS_REF_NODE:
157 		return "reference node";
158 	case UBIFS_INO_NODE:
159 		return "inode node";
160 	case UBIFS_DENT_NODE:
161 		return "direntry node";
162 	case UBIFS_XENT_NODE:
163 		return "xentry node";
164 	case UBIFS_DATA_NODE:
165 		return "data node";
166 	case UBIFS_TRUN_NODE:
167 		return "truncate node";
168 	case UBIFS_IDX_NODE:
169 		return "indexing node";
170 	case UBIFS_CS_NODE:
171 		return "commit start node";
172 	case UBIFS_ORPH_NODE:
173 		return "orphan node";
174 	default:
175 		return "unknown node";
176 	}
177 }
178 
179 static const char *dbg_gtype(int type)
180 {
181 	switch (type) {
182 	case UBIFS_NO_NODE_GROUP:
183 		return "no node group";
184 	case UBIFS_IN_NODE_GROUP:
185 		return "in node group";
186 	case UBIFS_LAST_OF_NODE_GROUP:
187 		return "last of node group";
188 	default:
189 		return "unknown";
190 	}
191 }
192 
193 const char *dbg_cstate(int cmt_state)
194 {
195 	switch (cmt_state) {
196 	case COMMIT_RESTING:
197 		return "commit resting";
198 	case COMMIT_BACKGROUND:
199 		return "background commit requested";
200 	case COMMIT_REQUIRED:
201 		return "commit required";
202 	case COMMIT_RUNNING_BACKGROUND:
203 		return "BACKGROUND commit running";
204 	case COMMIT_RUNNING_REQUIRED:
205 		return "commit running and required";
206 	case COMMIT_BROKEN:
207 		return "broken commit";
208 	default:
209 		return "unknown commit state";
210 	}
211 }
212 
213 static void dump_ch(const struct ubifs_ch *ch)
214 {
215 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
216 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
217 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
218 	       dbg_ntype(ch->node_type));
219 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
220 	       dbg_gtype(ch->group_type));
221 	printk(KERN_DEBUG "\tsqnum          %llu\n",
222 	       (unsigned long long)le64_to_cpu(ch->sqnum));
223 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
224 }
225 
226 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
227 {
228 	const struct ubifs_inode *ui = ubifs_inode(inode);
229 
230 	printk(KERN_DEBUG "Dump in-memory inode:");
231 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
232 	printk(KERN_DEBUG "\tsize           %llu\n",
233 	       (unsigned long long)i_size_read(inode));
234 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
235 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
236 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
237 	printk(KERN_DEBUG "\tatime          %u.%u\n",
238 	       (unsigned int)inode->i_atime.tv_sec,
239 	       (unsigned int)inode->i_atime.tv_nsec);
240 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
241 	       (unsigned int)inode->i_mtime.tv_sec,
242 	       (unsigned int)inode->i_mtime.tv_nsec);
243 	printk(KERN_DEBUG "\tctime          %u.%u\n",
244 	       (unsigned int)inode->i_ctime.tv_sec,
245 	       (unsigned int)inode->i_ctime.tv_nsec);
246 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
247 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
248 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
249 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
250 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
251 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
252 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
253 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
254 	       (unsigned long long)ui->synced_i_size);
255 	printk(KERN_DEBUG "\tui_size        %llu\n",
256 	       (unsigned long long)ui->ui_size);
257 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
258 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
259 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
260 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
261 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
262 }
263 
264 void dbg_dump_node(const struct ubifs_info *c, const void *node)
265 {
266 	int i, n;
267 	union ubifs_key key;
268 	const struct ubifs_ch *ch = node;
269 
270 	if (dbg_failure_mode)
271 		return;
272 
273 	/* If the magic is incorrect, just hexdump the first bytes */
274 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
275 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
276 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
277 			       (void *)node, UBIFS_CH_SZ, 1);
278 		return;
279 	}
280 
281 	spin_lock(&dbg_lock);
282 	dump_ch(node);
283 
284 	switch (ch->node_type) {
285 	case UBIFS_PAD_NODE:
286 	{
287 		const struct ubifs_pad_node *pad = node;
288 
289 		printk(KERN_DEBUG "\tpad_len        %u\n",
290 		       le32_to_cpu(pad->pad_len));
291 		break;
292 	}
293 	case UBIFS_SB_NODE:
294 	{
295 		const struct ubifs_sb_node *sup = node;
296 		unsigned int sup_flags = le32_to_cpu(sup->flags);
297 
298 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
299 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
300 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
301 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
302 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
303 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
304 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
305 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
306 		       le32_to_cpu(sup->min_io_size));
307 		printk(KERN_DEBUG "\tleb_size       %u\n",
308 		       le32_to_cpu(sup->leb_size));
309 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
310 		       le32_to_cpu(sup->leb_cnt));
311 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
312 		       le32_to_cpu(sup->max_leb_cnt));
313 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
314 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
315 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
316 		       le32_to_cpu(sup->log_lebs));
317 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
318 		       le32_to_cpu(sup->lpt_lebs));
319 		printk(KERN_DEBUG "\torph_lebs      %u\n",
320 		       le32_to_cpu(sup->orph_lebs));
321 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
322 		       le32_to_cpu(sup->jhead_cnt));
323 		printk(KERN_DEBUG "\tfanout         %u\n",
324 		       le32_to_cpu(sup->fanout));
325 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
326 		       le32_to_cpu(sup->lsave_cnt));
327 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
328 		       (int)le16_to_cpu(sup->default_compr));
329 		printk(KERN_DEBUG "\trp_size        %llu\n",
330 		       (unsigned long long)le64_to_cpu(sup->rp_size));
331 		printk(KERN_DEBUG "\trp_uid         %u\n",
332 		       le32_to_cpu(sup->rp_uid));
333 		printk(KERN_DEBUG "\trp_gid         %u\n",
334 		       le32_to_cpu(sup->rp_gid));
335 		printk(KERN_DEBUG "\tfmt_version    %u\n",
336 		       le32_to_cpu(sup->fmt_version));
337 		printk(KERN_DEBUG "\ttime_gran      %u\n",
338 		       le32_to_cpu(sup->time_gran));
339 		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
340 		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
341 		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
342 		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
343 		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
344 		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
345 		       sup->uuid[15]);
346 		break;
347 	}
348 	case UBIFS_MST_NODE:
349 	{
350 		const struct ubifs_mst_node *mst = node;
351 
352 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
353 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
354 		printk(KERN_DEBUG "\tcommit number  %llu\n",
355 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
356 		printk(KERN_DEBUG "\tflags          %#x\n",
357 		       le32_to_cpu(mst->flags));
358 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
359 		       le32_to_cpu(mst->log_lnum));
360 		printk(KERN_DEBUG "\troot_lnum      %u\n",
361 		       le32_to_cpu(mst->root_lnum));
362 		printk(KERN_DEBUG "\troot_offs      %u\n",
363 		       le32_to_cpu(mst->root_offs));
364 		printk(KERN_DEBUG "\troot_len       %u\n",
365 		       le32_to_cpu(mst->root_len));
366 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
367 		       le32_to_cpu(mst->gc_lnum));
368 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
369 		       le32_to_cpu(mst->ihead_lnum));
370 		printk(KERN_DEBUG "\tihead_offs     %u\n",
371 		       le32_to_cpu(mst->ihead_offs));
372 		printk(KERN_DEBUG "\tindex_size     %llu\n",
373 		       (unsigned long long)le64_to_cpu(mst->index_size));
374 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
375 		       le32_to_cpu(mst->lpt_lnum));
376 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
377 		       le32_to_cpu(mst->lpt_offs));
378 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
379 		       le32_to_cpu(mst->nhead_lnum));
380 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
381 		       le32_to_cpu(mst->nhead_offs));
382 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
383 		       le32_to_cpu(mst->ltab_lnum));
384 		printk(KERN_DEBUG "\tltab_offs      %u\n",
385 		       le32_to_cpu(mst->ltab_offs));
386 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
387 		       le32_to_cpu(mst->lsave_lnum));
388 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
389 		       le32_to_cpu(mst->lsave_offs));
390 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
391 		       le32_to_cpu(mst->lscan_lnum));
392 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
393 		       le32_to_cpu(mst->leb_cnt));
394 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
395 		       le32_to_cpu(mst->empty_lebs));
396 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
397 		       le32_to_cpu(mst->idx_lebs));
398 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
399 		       (unsigned long long)le64_to_cpu(mst->total_free));
400 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
401 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
402 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
403 		       (unsigned long long)le64_to_cpu(mst->total_used));
404 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
405 		       (unsigned long long)le64_to_cpu(mst->total_dead));
406 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
407 		       (unsigned long long)le64_to_cpu(mst->total_dark));
408 		break;
409 	}
410 	case UBIFS_REF_NODE:
411 	{
412 		const struct ubifs_ref_node *ref = node;
413 
414 		printk(KERN_DEBUG "\tlnum           %u\n",
415 		       le32_to_cpu(ref->lnum));
416 		printk(KERN_DEBUG "\toffs           %u\n",
417 		       le32_to_cpu(ref->offs));
418 		printk(KERN_DEBUG "\tjhead          %u\n",
419 		       le32_to_cpu(ref->jhead));
420 		break;
421 	}
422 	case UBIFS_INO_NODE:
423 	{
424 		const struct ubifs_ino_node *ino = node;
425 
426 		key_read(c, &ino->key, &key);
427 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
428 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
429 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
430 		printk(KERN_DEBUG "\tsize           %llu\n",
431 		       (unsigned long long)le64_to_cpu(ino->size));
432 		printk(KERN_DEBUG "\tnlink          %u\n",
433 		       le32_to_cpu(ino->nlink));
434 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
435 		       (long long)le64_to_cpu(ino->atime_sec),
436 		       le32_to_cpu(ino->atime_nsec));
437 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
438 		       (long long)le64_to_cpu(ino->mtime_sec),
439 		       le32_to_cpu(ino->mtime_nsec));
440 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
441 		       (long long)le64_to_cpu(ino->ctime_sec),
442 		       le32_to_cpu(ino->ctime_nsec));
443 		printk(KERN_DEBUG "\tuid            %u\n",
444 		       le32_to_cpu(ino->uid));
445 		printk(KERN_DEBUG "\tgid            %u\n",
446 		       le32_to_cpu(ino->gid));
447 		printk(KERN_DEBUG "\tmode           %u\n",
448 		       le32_to_cpu(ino->mode));
449 		printk(KERN_DEBUG "\tflags          %#x\n",
450 		       le32_to_cpu(ino->flags));
451 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
452 		       le32_to_cpu(ino->xattr_cnt));
453 		printk(KERN_DEBUG "\txattr_size     %u\n",
454 		       le32_to_cpu(ino->xattr_size));
455 		printk(KERN_DEBUG "\txattr_names    %u\n",
456 		       le32_to_cpu(ino->xattr_names));
457 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
458 		       (int)le16_to_cpu(ino->compr_type));
459 		printk(KERN_DEBUG "\tdata len       %u\n",
460 		       le32_to_cpu(ino->data_len));
461 		break;
462 	}
463 	case UBIFS_DENT_NODE:
464 	case UBIFS_XENT_NODE:
465 	{
466 		const struct ubifs_dent_node *dent = node;
467 		int nlen = le16_to_cpu(dent->nlen);
468 
469 		key_read(c, &dent->key, &key);
470 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
471 		printk(KERN_DEBUG "\tinum           %llu\n",
472 		       (unsigned long long)le64_to_cpu(dent->inum));
473 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
474 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
475 		printk(KERN_DEBUG "\tname           ");
476 
477 		if (nlen > UBIFS_MAX_NLEN)
478 			printk(KERN_DEBUG "(bad name length, not printing, "
479 					  "bad or corrupted node)");
480 		else {
481 			for (i = 0; i < nlen && dent->name[i]; i++)
482 				printk(KERN_CONT "%c", dent->name[i]);
483 		}
484 		printk(KERN_CONT "\n");
485 
486 		break;
487 	}
488 	case UBIFS_DATA_NODE:
489 	{
490 		const struct ubifs_data_node *dn = node;
491 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
492 
493 		key_read(c, &dn->key, &key);
494 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
495 		printk(KERN_DEBUG "\tsize           %u\n",
496 		       le32_to_cpu(dn->size));
497 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
498 		       (int)le16_to_cpu(dn->compr_type));
499 		printk(KERN_DEBUG "\tdata size      %d\n",
500 		       dlen);
501 		printk(KERN_DEBUG "\tdata:\n");
502 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
503 			       (void *)&dn->data, dlen, 0);
504 		break;
505 	}
506 	case UBIFS_TRUN_NODE:
507 	{
508 		const struct ubifs_trun_node *trun = node;
509 
510 		printk(KERN_DEBUG "\tinum           %u\n",
511 		       le32_to_cpu(trun->inum));
512 		printk(KERN_DEBUG "\told_size       %llu\n",
513 		       (unsigned long long)le64_to_cpu(trun->old_size));
514 		printk(KERN_DEBUG "\tnew_size       %llu\n",
515 		       (unsigned long long)le64_to_cpu(trun->new_size));
516 		break;
517 	}
518 	case UBIFS_IDX_NODE:
519 	{
520 		const struct ubifs_idx_node *idx = node;
521 
522 		n = le16_to_cpu(idx->child_cnt);
523 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
524 		printk(KERN_DEBUG "\tlevel          %d\n",
525 		       (int)le16_to_cpu(idx->level));
526 		printk(KERN_DEBUG "\tBranches:\n");
527 
528 		for (i = 0; i < n && i < c->fanout - 1; i++) {
529 			const struct ubifs_branch *br;
530 
531 			br = ubifs_idx_branch(c, idx, i);
532 			key_read(c, &br->key, &key);
533 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
534 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
535 			       le32_to_cpu(br->len), DBGKEY(&key));
536 		}
537 		break;
538 	}
539 	case UBIFS_CS_NODE:
540 		break;
541 	case UBIFS_ORPH_NODE:
542 	{
543 		const struct ubifs_orph_node *orph = node;
544 
545 		printk(KERN_DEBUG "\tcommit number  %llu\n",
546 		       (unsigned long long)
547 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
548 		printk(KERN_DEBUG "\tlast node flag %llu\n",
549 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
550 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
551 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
552 		for (i = 0; i < n; i++)
553 			printk(KERN_DEBUG "\t  ino %llu\n",
554 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
555 		break;
556 	}
557 	default:
558 		printk(KERN_DEBUG "node type %d was not recognized\n",
559 		       (int)ch->node_type);
560 	}
561 	spin_unlock(&dbg_lock);
562 }
563 
564 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
565 {
566 	spin_lock(&dbg_lock);
567 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
568 	       req->new_ino, req->dirtied_ino);
569 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
570 	       req->new_ino_d, req->dirtied_ino_d);
571 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
572 	       req->new_page, req->dirtied_page);
573 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
574 	       req->new_dent, req->mod_dent);
575 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
576 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
577 	       req->data_growth, req->dd_growth);
578 	spin_unlock(&dbg_lock);
579 }
580 
581 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
582 {
583 	spin_lock(&dbg_lock);
584 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
585 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
586 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
587 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
588 	       lst->total_dirty);
589 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
590 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
591 	       lst->total_dead);
592 	spin_unlock(&dbg_lock);
593 }
594 
595 void dbg_dump_budg(struct ubifs_info *c)
596 {
597 	int i;
598 	struct rb_node *rb;
599 	struct ubifs_bud *bud;
600 	struct ubifs_gced_idx_leb *idx_gc;
601 	long long available, outstanding, free;
602 
603 	ubifs_assert(spin_is_locked(&c->space_lock));
604 	spin_lock(&dbg_lock);
605 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
606 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
607 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
608 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
609 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
610 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
611 	       c->freeable_cnt);
612 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
613 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
614 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
615 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
616 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
617 	       atomic_long_read(&c->dirty_zn_cnt),
618 	       atomic_long_read(&c->clean_zn_cnt));
619 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
620 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
621 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
622 	       c->gc_lnum, c->ihead_lnum);
623 	/* If we are in R/O mode, journal heads do not exist */
624 	if (c->jheads)
625 		for (i = 0; i < c->jhead_cnt; i++)
626 			printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
627 			       c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
628 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
629 		bud = rb_entry(rb, struct ubifs_bud, rb);
630 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
631 	}
632 	list_for_each_entry(bud, &c->old_buds, list)
633 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
634 	list_for_each_entry(idx_gc, &c->idx_gc, list)
635 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
636 		       idx_gc->lnum, idx_gc->unmap);
637 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
638 
639 	/* Print budgeting predictions */
640 	available = ubifs_calc_available(c, c->min_idx_lebs);
641 	outstanding = c->budg_data_growth + c->budg_dd_growth;
642 	free = ubifs_get_free_space_nolock(c);
643 	printk(KERN_DEBUG "Budgeting predictions:\n");
644 	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
645 	       available, outstanding, free);
646 	spin_unlock(&dbg_lock);
647 }
648 
649 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
650 {
651 	printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
652 	       "flags %#x\n", lp->lnum, lp->free, lp->dirty,
653 	       c->leb_size - lp->free - lp->dirty, lp->flags);
654 }
655 
656 void dbg_dump_lprops(struct ubifs_info *c)
657 {
658 	int lnum, err;
659 	struct ubifs_lprops lp;
660 	struct ubifs_lp_stats lst;
661 
662 	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
663 	       current->pid);
664 	ubifs_get_lp_stats(c, &lst);
665 	dbg_dump_lstats(&lst);
666 
667 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
668 		err = ubifs_read_one_lp(c, lnum, &lp);
669 		if (err)
670 			ubifs_err("cannot read lprops for LEB %d", lnum);
671 
672 		dbg_dump_lprop(c, &lp);
673 	}
674 	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
675 	       current->pid);
676 }
677 
678 void dbg_dump_lpt_info(struct ubifs_info *c)
679 {
680 	int i;
681 
682 	spin_lock(&dbg_lock);
683 	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
684 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
685 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
686 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
687 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
688 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
689 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
690 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
691 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
692 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
693 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
694 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
695 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
696 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
697 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
698 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
699 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
700 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
701 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
702 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
703 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
704 	       c->nhead_lnum, c->nhead_offs);
705 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
706 	       c->ltab_lnum, c->ltab_offs);
707 	if (c->big_lpt)
708 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
709 		       c->lsave_lnum, c->lsave_offs);
710 	for (i = 0; i < c->lpt_lebs; i++)
711 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
712 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
713 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
714 	spin_unlock(&dbg_lock);
715 }
716 
717 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
718 {
719 	struct ubifs_scan_leb *sleb;
720 	struct ubifs_scan_node *snod;
721 
722 	if (dbg_failure_mode)
723 		return;
724 
725 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
726 	       current->pid, lnum);
727 	sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
728 	if (IS_ERR(sleb)) {
729 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
730 		return;
731 	}
732 
733 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
734 	       sleb->nodes_cnt, sleb->endpt);
735 
736 	list_for_each_entry(snod, &sleb->nodes, list) {
737 		cond_resched();
738 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
739 		       snod->offs, snod->len);
740 		dbg_dump_node(c, snod->node);
741 	}
742 
743 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
744 	       current->pid, lnum);
745 	ubifs_scan_destroy(sleb);
746 	return;
747 }
748 
749 void dbg_dump_znode(const struct ubifs_info *c,
750 		    const struct ubifs_znode *znode)
751 {
752 	int n;
753 	const struct ubifs_zbranch *zbr;
754 
755 	spin_lock(&dbg_lock);
756 	if (znode->parent)
757 		zbr = &znode->parent->zbranch[znode->iip];
758 	else
759 		zbr = &c->zroot;
760 
761 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
762 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
763 	       zbr->len, znode->parent, znode->iip, znode->level,
764 	       znode->child_cnt, znode->flags);
765 
766 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
767 		spin_unlock(&dbg_lock);
768 		return;
769 	}
770 
771 	printk(KERN_DEBUG "zbranches:\n");
772 	for (n = 0; n < znode->child_cnt; n++) {
773 		zbr = &znode->zbranch[n];
774 		if (znode->level > 0)
775 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
776 					  "%s\n", n, zbr->znode, zbr->lnum,
777 					  zbr->offs, zbr->len,
778 					  DBGKEY(&zbr->key));
779 		else
780 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
781 					  "%s\n", n, zbr->znode, zbr->lnum,
782 					  zbr->offs, zbr->len,
783 					  DBGKEY(&zbr->key));
784 	}
785 	spin_unlock(&dbg_lock);
786 }
787 
788 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
789 {
790 	int i;
791 
792 	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
793 	       current->pid, cat, heap->cnt);
794 	for (i = 0; i < heap->cnt; i++) {
795 		struct ubifs_lprops *lprops = heap->arr[i];
796 
797 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
798 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
799 		       lprops->free, lprops->dirty, lprops->flags);
800 	}
801 	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
802 }
803 
804 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
805 		    struct ubifs_nnode *parent, int iip)
806 {
807 	int i;
808 
809 	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
810 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
811 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
812 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
813 	       pnode->flags, iip, pnode->level, pnode->num);
814 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
815 		struct ubifs_lprops *lp = &pnode->lprops[i];
816 
817 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
818 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
819 	}
820 }
821 
822 void dbg_dump_tnc(struct ubifs_info *c)
823 {
824 	struct ubifs_znode *znode;
825 	int level;
826 
827 	printk(KERN_DEBUG "\n");
828 	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
829 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
830 	level = znode->level;
831 	printk(KERN_DEBUG "== Level %d ==\n", level);
832 	while (znode) {
833 		if (level != znode->level) {
834 			level = znode->level;
835 			printk(KERN_DEBUG "== Level %d ==\n", level);
836 		}
837 		dbg_dump_znode(c, znode);
838 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
839 	}
840 	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
841 }
842 
843 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
844 		      void *priv)
845 {
846 	dbg_dump_znode(c, znode);
847 	return 0;
848 }
849 
850 /**
851  * dbg_dump_index - dump the on-flash index.
852  * @c: UBIFS file-system description object
853  *
854  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
855  * which dumps only in-memory znodes and does not read znodes which from flash.
856  */
857 void dbg_dump_index(struct ubifs_info *c)
858 {
859 	dbg_walk_index(c, NULL, dump_znode, NULL);
860 }
861 
862 /**
863  * dbg_save_space_info - save information about flash space.
864  * @c: UBIFS file-system description object
865  *
866  * This function saves information about UBIFS free space, dirty space, etc, in
867  * order to check it later.
868  */
869 void dbg_save_space_info(struct ubifs_info *c)
870 {
871 	struct ubifs_debug_info *d = c->dbg;
872 
873 	ubifs_get_lp_stats(c, &d->saved_lst);
874 
875 	spin_lock(&c->space_lock);
876 	d->saved_free = ubifs_get_free_space_nolock(c);
877 	spin_unlock(&c->space_lock);
878 }
879 
880 /**
881  * dbg_check_space_info - check flash space information.
882  * @c: UBIFS file-system description object
883  *
884  * This function compares current flash space information with the information
885  * which was saved when the 'dbg_save_space_info()' function was called.
886  * Returns zero if the information has not changed, and %-EINVAL it it has
887  * changed.
888  */
889 int dbg_check_space_info(struct ubifs_info *c)
890 {
891 	struct ubifs_debug_info *d = c->dbg;
892 	struct ubifs_lp_stats lst;
893 	long long avail, free;
894 
895 	spin_lock(&c->space_lock);
896 	avail = ubifs_calc_available(c, c->min_idx_lebs);
897 	spin_unlock(&c->space_lock);
898 	free = ubifs_get_free_space(c);
899 
900 	if (free != d->saved_free) {
901 		ubifs_err("free space changed from %lld to %lld",
902 			  d->saved_free, free);
903 		goto out;
904 	}
905 
906 	return 0;
907 
908 out:
909 	ubifs_msg("saved lprops statistics dump");
910 	dbg_dump_lstats(&d->saved_lst);
911 	ubifs_get_lp_stats(c, &lst);
912 	ubifs_msg("current lprops statistics dump");
913 	dbg_dump_lstats(&d->saved_lst);
914 	spin_lock(&c->space_lock);
915 	dbg_dump_budg(c);
916 	spin_unlock(&c->space_lock);
917 	dump_stack();
918 	return -EINVAL;
919 }
920 
921 /**
922  * dbg_check_synced_i_size - check synchronized inode size.
923  * @inode: inode to check
924  *
925  * If inode is clean, synchronized inode size has to be equivalent to current
926  * inode size. This function has to be called only for locked inodes (@i_mutex
927  * has to be locked). Returns %0 if synchronized inode size if correct, and
928  * %-EINVAL if not.
929  */
930 int dbg_check_synced_i_size(struct inode *inode)
931 {
932 	int err = 0;
933 	struct ubifs_inode *ui = ubifs_inode(inode);
934 
935 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
936 		return 0;
937 	if (!S_ISREG(inode->i_mode))
938 		return 0;
939 
940 	mutex_lock(&ui->ui_mutex);
941 	spin_lock(&ui->ui_lock);
942 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
943 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
944 			  "is clean", ui->ui_size, ui->synced_i_size);
945 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
946 			  inode->i_mode, i_size_read(inode));
947 		dbg_dump_stack();
948 		err = -EINVAL;
949 	}
950 	spin_unlock(&ui->ui_lock);
951 	mutex_unlock(&ui->ui_mutex);
952 	return err;
953 }
954 
955 /*
956  * dbg_check_dir - check directory inode size and link count.
957  * @c: UBIFS file-system description object
958  * @dir: the directory to calculate size for
959  * @size: the result is returned here
960  *
961  * This function makes sure that directory size and link count are correct.
962  * Returns zero in case of success and a negative error code in case of
963  * failure.
964  *
965  * Note, it is good idea to make sure the @dir->i_mutex is locked before
966  * calling this function.
967  */
968 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
969 {
970 	unsigned int nlink = 2;
971 	union ubifs_key key;
972 	struct ubifs_dent_node *dent, *pdent = NULL;
973 	struct qstr nm = { .name = NULL };
974 	loff_t size = UBIFS_INO_NODE_SZ;
975 
976 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
977 		return 0;
978 
979 	if (!S_ISDIR(dir->i_mode))
980 		return 0;
981 
982 	lowest_dent_key(c, &key, dir->i_ino);
983 	while (1) {
984 		int err;
985 
986 		dent = ubifs_tnc_next_ent(c, &key, &nm);
987 		if (IS_ERR(dent)) {
988 			err = PTR_ERR(dent);
989 			if (err == -ENOENT)
990 				break;
991 			return err;
992 		}
993 
994 		nm.name = dent->name;
995 		nm.len = le16_to_cpu(dent->nlen);
996 		size += CALC_DENT_SIZE(nm.len);
997 		if (dent->type == UBIFS_ITYPE_DIR)
998 			nlink += 1;
999 		kfree(pdent);
1000 		pdent = dent;
1001 		key_read(c, &dent->key, &key);
1002 	}
1003 	kfree(pdent);
1004 
1005 	if (i_size_read(dir) != size) {
1006 		ubifs_err("directory inode %lu has size %llu, "
1007 			  "but calculated size is %llu", dir->i_ino,
1008 			  (unsigned long long)i_size_read(dir),
1009 			  (unsigned long long)size);
1010 		dump_stack();
1011 		return -EINVAL;
1012 	}
1013 	if (dir->i_nlink != nlink) {
1014 		ubifs_err("directory inode %lu has nlink %u, but calculated "
1015 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1016 		dump_stack();
1017 		return -EINVAL;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /**
1024  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1025  * @c: UBIFS file-system description object
1026  * @zbr1: first zbranch
1027  * @zbr2: following zbranch
1028  *
1029  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1030  * names of the direntries/xentries which are referred by the keys. This
1031  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1032  * sure the name of direntry/xentry referred by @zbr1 is less than
1033  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1034  * and a negative error code in case of failure.
1035  */
1036 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1037 			       struct ubifs_zbranch *zbr2)
1038 {
1039 	int err, nlen1, nlen2, cmp;
1040 	struct ubifs_dent_node *dent1, *dent2;
1041 	union ubifs_key key;
1042 
1043 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1044 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1045 	if (!dent1)
1046 		return -ENOMEM;
1047 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1048 	if (!dent2) {
1049 		err = -ENOMEM;
1050 		goto out_free;
1051 	}
1052 
1053 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1054 	if (err)
1055 		goto out_free;
1056 	err = ubifs_validate_entry(c, dent1);
1057 	if (err)
1058 		goto out_free;
1059 
1060 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1061 	if (err)
1062 		goto out_free;
1063 	err = ubifs_validate_entry(c, dent2);
1064 	if (err)
1065 		goto out_free;
1066 
1067 	/* Make sure node keys are the same as in zbranch */
1068 	err = 1;
1069 	key_read(c, &dent1->key, &key);
1070 	if (keys_cmp(c, &zbr1->key, &key)) {
1071 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1072 			zbr1->offs, DBGKEY(&key));
1073 		dbg_err("but it should have key %s according to tnc",
1074 			DBGKEY(&zbr1->key));
1075 		dbg_dump_node(c, dent1);
1076 		goto out_free;
1077 	}
1078 
1079 	key_read(c, &dent2->key, &key);
1080 	if (keys_cmp(c, &zbr2->key, &key)) {
1081 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1082 			zbr1->offs, DBGKEY(&key));
1083 		dbg_err("but it should have key %s according to tnc",
1084 			DBGKEY(&zbr2->key));
1085 		dbg_dump_node(c, dent2);
1086 		goto out_free;
1087 	}
1088 
1089 	nlen1 = le16_to_cpu(dent1->nlen);
1090 	nlen2 = le16_to_cpu(dent2->nlen);
1091 
1092 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1093 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1094 		err = 0;
1095 		goto out_free;
1096 	}
1097 	if (cmp == 0 && nlen1 == nlen2)
1098 		dbg_err("2 xent/dent nodes with the same name");
1099 	else
1100 		dbg_err("bad order of colliding key %s",
1101 			DBGKEY(&key));
1102 
1103 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1104 	dbg_dump_node(c, dent1);
1105 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1106 	dbg_dump_node(c, dent2);
1107 
1108 out_free:
1109 	kfree(dent2);
1110 	kfree(dent1);
1111 	return err;
1112 }
1113 
1114 /**
1115  * dbg_check_znode - check if znode is all right.
1116  * @c: UBIFS file-system description object
1117  * @zbr: zbranch which points to this znode
1118  *
1119  * This function makes sure that znode referred to by @zbr is all right.
1120  * Returns zero if it is, and %-EINVAL if it is not.
1121  */
1122 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1123 {
1124 	struct ubifs_znode *znode = zbr->znode;
1125 	struct ubifs_znode *zp = znode->parent;
1126 	int n, err, cmp;
1127 
1128 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1129 		err = 1;
1130 		goto out;
1131 	}
1132 	if (znode->level < 0) {
1133 		err = 2;
1134 		goto out;
1135 	}
1136 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1137 		err = 3;
1138 		goto out;
1139 	}
1140 
1141 	if (zbr->len == 0)
1142 		/* Only dirty zbranch may have no on-flash nodes */
1143 		if (!ubifs_zn_dirty(znode)) {
1144 			err = 4;
1145 			goto out;
1146 		}
1147 
1148 	if (ubifs_zn_dirty(znode)) {
1149 		/*
1150 		 * If znode is dirty, its parent has to be dirty as well. The
1151 		 * order of the operation is important, so we have to have
1152 		 * memory barriers.
1153 		 */
1154 		smp_mb();
1155 		if (zp && !ubifs_zn_dirty(zp)) {
1156 			/*
1157 			 * The dirty flag is atomic and is cleared outside the
1158 			 * TNC mutex, so znode's dirty flag may now have
1159 			 * been cleared. The child is always cleared before the
1160 			 * parent, so we just need to check again.
1161 			 */
1162 			smp_mb();
1163 			if (ubifs_zn_dirty(znode)) {
1164 				err = 5;
1165 				goto out;
1166 			}
1167 		}
1168 	}
1169 
1170 	if (zp) {
1171 		const union ubifs_key *min, *max;
1172 
1173 		if (znode->level != zp->level - 1) {
1174 			err = 6;
1175 			goto out;
1176 		}
1177 
1178 		/* Make sure the 'parent' pointer in our znode is correct */
1179 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1180 		if (!err) {
1181 			/* This zbranch does not exist in the parent */
1182 			err = 7;
1183 			goto out;
1184 		}
1185 
1186 		if (znode->iip >= zp->child_cnt) {
1187 			err = 8;
1188 			goto out;
1189 		}
1190 
1191 		if (znode->iip != n) {
1192 			/* This may happen only in case of collisions */
1193 			if (keys_cmp(c, &zp->zbranch[n].key,
1194 				     &zp->zbranch[znode->iip].key)) {
1195 				err = 9;
1196 				goto out;
1197 			}
1198 			n = znode->iip;
1199 		}
1200 
1201 		/*
1202 		 * Make sure that the first key in our znode is greater than or
1203 		 * equal to the key in the pointing zbranch.
1204 		 */
1205 		min = &zbr->key;
1206 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1207 		if (cmp == 1) {
1208 			err = 10;
1209 			goto out;
1210 		}
1211 
1212 		if (n + 1 < zp->child_cnt) {
1213 			max = &zp->zbranch[n + 1].key;
1214 
1215 			/*
1216 			 * Make sure the last key in our znode is less or
1217 			 * equivalent than the key in the zbranch which goes
1218 			 * after our pointing zbranch.
1219 			 */
1220 			cmp = keys_cmp(c, max,
1221 				&znode->zbranch[znode->child_cnt - 1].key);
1222 			if (cmp == -1) {
1223 				err = 11;
1224 				goto out;
1225 			}
1226 		}
1227 	} else {
1228 		/* This may only be root znode */
1229 		if (zbr != &c->zroot) {
1230 			err = 12;
1231 			goto out;
1232 		}
1233 	}
1234 
1235 	/*
1236 	 * Make sure that next key is greater or equivalent then the previous
1237 	 * one.
1238 	 */
1239 	for (n = 1; n < znode->child_cnt; n++) {
1240 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1241 			       &znode->zbranch[n].key);
1242 		if (cmp > 0) {
1243 			err = 13;
1244 			goto out;
1245 		}
1246 		if (cmp == 0) {
1247 			/* This can only be keys with colliding hash */
1248 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1249 				err = 14;
1250 				goto out;
1251 			}
1252 
1253 			if (znode->level != 0 || c->replaying)
1254 				continue;
1255 
1256 			/*
1257 			 * Colliding keys should follow binary order of
1258 			 * corresponding xentry/dentry names.
1259 			 */
1260 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1261 						  &znode->zbranch[n]);
1262 			if (err < 0)
1263 				return err;
1264 			if (err) {
1265 				err = 15;
1266 				goto out;
1267 			}
1268 		}
1269 	}
1270 
1271 	for (n = 0; n < znode->child_cnt; n++) {
1272 		if (!znode->zbranch[n].znode &&
1273 		    (znode->zbranch[n].lnum == 0 ||
1274 		     znode->zbranch[n].len == 0)) {
1275 			err = 16;
1276 			goto out;
1277 		}
1278 
1279 		if (znode->zbranch[n].lnum != 0 &&
1280 		    znode->zbranch[n].len == 0) {
1281 			err = 17;
1282 			goto out;
1283 		}
1284 
1285 		if (znode->zbranch[n].lnum == 0 &&
1286 		    znode->zbranch[n].len != 0) {
1287 			err = 18;
1288 			goto out;
1289 		}
1290 
1291 		if (znode->zbranch[n].lnum == 0 &&
1292 		    znode->zbranch[n].offs != 0) {
1293 			err = 19;
1294 			goto out;
1295 		}
1296 
1297 		if (znode->level != 0 && znode->zbranch[n].znode)
1298 			if (znode->zbranch[n].znode->parent != znode) {
1299 				err = 20;
1300 				goto out;
1301 			}
1302 	}
1303 
1304 	return 0;
1305 
1306 out:
1307 	ubifs_err("failed, error %d", err);
1308 	ubifs_msg("dump of the znode");
1309 	dbg_dump_znode(c, znode);
1310 	if (zp) {
1311 		ubifs_msg("dump of the parent znode");
1312 		dbg_dump_znode(c, zp);
1313 	}
1314 	dump_stack();
1315 	return -EINVAL;
1316 }
1317 
1318 /**
1319  * dbg_check_tnc - check TNC tree.
1320  * @c: UBIFS file-system description object
1321  * @extra: do extra checks that are possible at start commit
1322  *
1323  * This function traverses whole TNC tree and checks every znode. Returns zero
1324  * if everything is all right and %-EINVAL if something is wrong with TNC.
1325  */
1326 int dbg_check_tnc(struct ubifs_info *c, int extra)
1327 {
1328 	struct ubifs_znode *znode;
1329 	long clean_cnt = 0, dirty_cnt = 0;
1330 	int err, last;
1331 
1332 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1333 		return 0;
1334 
1335 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1336 	if (!c->zroot.znode)
1337 		return 0;
1338 
1339 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1340 	while (1) {
1341 		struct ubifs_znode *prev;
1342 		struct ubifs_zbranch *zbr;
1343 
1344 		if (!znode->parent)
1345 			zbr = &c->zroot;
1346 		else
1347 			zbr = &znode->parent->zbranch[znode->iip];
1348 
1349 		err = dbg_check_znode(c, zbr);
1350 		if (err)
1351 			return err;
1352 
1353 		if (extra) {
1354 			if (ubifs_zn_dirty(znode))
1355 				dirty_cnt += 1;
1356 			else
1357 				clean_cnt += 1;
1358 		}
1359 
1360 		prev = znode;
1361 		znode = ubifs_tnc_postorder_next(znode);
1362 		if (!znode)
1363 			break;
1364 
1365 		/*
1366 		 * If the last key of this znode is equivalent to the first key
1367 		 * of the next znode (collision), then check order of the keys.
1368 		 */
1369 		last = prev->child_cnt - 1;
1370 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1371 		    !keys_cmp(c, &prev->zbranch[last].key,
1372 			      &znode->zbranch[0].key)) {
1373 			err = dbg_check_key_order(c, &prev->zbranch[last],
1374 						  &znode->zbranch[0]);
1375 			if (err < 0)
1376 				return err;
1377 			if (err) {
1378 				ubifs_msg("first znode");
1379 				dbg_dump_znode(c, prev);
1380 				ubifs_msg("second znode");
1381 				dbg_dump_znode(c, znode);
1382 				return -EINVAL;
1383 			}
1384 		}
1385 	}
1386 
1387 	if (extra) {
1388 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1389 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1390 				  atomic_long_read(&c->clean_zn_cnt),
1391 				  clean_cnt);
1392 			return -EINVAL;
1393 		}
1394 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1395 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1396 				  atomic_long_read(&c->dirty_zn_cnt),
1397 				  dirty_cnt);
1398 			return -EINVAL;
1399 		}
1400 	}
1401 
1402 	return 0;
1403 }
1404 
1405 /**
1406  * dbg_walk_index - walk the on-flash index.
1407  * @c: UBIFS file-system description object
1408  * @leaf_cb: called for each leaf node
1409  * @znode_cb: called for each indexing node
1410  * @priv: private data which is passed to callbacks
1411  *
1412  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1413  * node and @znode_cb for each indexing node. Returns zero in case of success
1414  * and a negative error code in case of failure.
1415  *
1416  * It would be better if this function removed every znode it pulled to into
1417  * the TNC, so that the behavior more closely matched the non-debugging
1418  * behavior.
1419  */
1420 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1421 		   dbg_znode_callback znode_cb, void *priv)
1422 {
1423 	int err;
1424 	struct ubifs_zbranch *zbr;
1425 	struct ubifs_znode *znode, *child;
1426 
1427 	mutex_lock(&c->tnc_mutex);
1428 	/* If the root indexing node is not in TNC - pull it */
1429 	if (!c->zroot.znode) {
1430 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1431 		if (IS_ERR(c->zroot.znode)) {
1432 			err = PTR_ERR(c->zroot.znode);
1433 			c->zroot.znode = NULL;
1434 			goto out_unlock;
1435 		}
1436 	}
1437 
1438 	/*
1439 	 * We are going to traverse the indexing tree in the postorder manner.
1440 	 * Go down and find the leftmost indexing node where we are going to
1441 	 * start from.
1442 	 */
1443 	znode = c->zroot.znode;
1444 	while (znode->level > 0) {
1445 		zbr = &znode->zbranch[0];
1446 		child = zbr->znode;
1447 		if (!child) {
1448 			child = ubifs_load_znode(c, zbr, znode, 0);
1449 			if (IS_ERR(child)) {
1450 				err = PTR_ERR(child);
1451 				goto out_unlock;
1452 			}
1453 			zbr->znode = child;
1454 		}
1455 
1456 		znode = child;
1457 	}
1458 
1459 	/* Iterate over all indexing nodes */
1460 	while (1) {
1461 		int idx;
1462 
1463 		cond_resched();
1464 
1465 		if (znode_cb) {
1466 			err = znode_cb(c, znode, priv);
1467 			if (err) {
1468 				ubifs_err("znode checking function returned "
1469 					  "error %d", err);
1470 				dbg_dump_znode(c, znode);
1471 				goto out_dump;
1472 			}
1473 		}
1474 		if (leaf_cb && znode->level == 0) {
1475 			for (idx = 0; idx < znode->child_cnt; idx++) {
1476 				zbr = &znode->zbranch[idx];
1477 				err = leaf_cb(c, zbr, priv);
1478 				if (err) {
1479 					ubifs_err("leaf checking function "
1480 						  "returned error %d, for leaf "
1481 						  "at LEB %d:%d",
1482 						  err, zbr->lnum, zbr->offs);
1483 					goto out_dump;
1484 				}
1485 			}
1486 		}
1487 
1488 		if (!znode->parent)
1489 			break;
1490 
1491 		idx = znode->iip + 1;
1492 		znode = znode->parent;
1493 		if (idx < znode->child_cnt) {
1494 			/* Switch to the next index in the parent */
1495 			zbr = &znode->zbranch[idx];
1496 			child = zbr->znode;
1497 			if (!child) {
1498 				child = ubifs_load_znode(c, zbr, znode, idx);
1499 				if (IS_ERR(child)) {
1500 					err = PTR_ERR(child);
1501 					goto out_unlock;
1502 				}
1503 				zbr->znode = child;
1504 			}
1505 			znode = child;
1506 		} else
1507 			/*
1508 			 * This is the last child, switch to the parent and
1509 			 * continue.
1510 			 */
1511 			continue;
1512 
1513 		/* Go to the lowest leftmost znode in the new sub-tree */
1514 		while (znode->level > 0) {
1515 			zbr = &znode->zbranch[0];
1516 			child = zbr->znode;
1517 			if (!child) {
1518 				child = ubifs_load_znode(c, zbr, znode, 0);
1519 				if (IS_ERR(child)) {
1520 					err = PTR_ERR(child);
1521 					goto out_unlock;
1522 				}
1523 				zbr->znode = child;
1524 			}
1525 			znode = child;
1526 		}
1527 	}
1528 
1529 	mutex_unlock(&c->tnc_mutex);
1530 	return 0;
1531 
1532 out_dump:
1533 	if (znode->parent)
1534 		zbr = &znode->parent->zbranch[znode->iip];
1535 	else
1536 		zbr = &c->zroot;
1537 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1538 	dbg_dump_znode(c, znode);
1539 out_unlock:
1540 	mutex_unlock(&c->tnc_mutex);
1541 	return err;
1542 }
1543 
1544 /**
1545  * add_size - add znode size to partially calculated index size.
1546  * @c: UBIFS file-system description object
1547  * @znode: znode to add size for
1548  * @priv: partially calculated index size
1549  *
1550  * This is a helper function for 'dbg_check_idx_size()' which is called for
1551  * every indexing node and adds its size to the 'long long' variable pointed to
1552  * by @priv.
1553  */
1554 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1555 {
1556 	long long *idx_size = priv;
1557 	int add;
1558 
1559 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1560 	add = ALIGN(add, 8);
1561 	*idx_size += add;
1562 	return 0;
1563 }
1564 
1565 /**
1566  * dbg_check_idx_size - check index size.
1567  * @c: UBIFS file-system description object
1568  * @idx_size: size to check
1569  *
1570  * This function walks the UBIFS index, calculates its size and checks that the
1571  * size is equivalent to @idx_size. Returns zero in case of success and a
1572  * negative error code in case of failure.
1573  */
1574 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1575 {
1576 	int err;
1577 	long long calc = 0;
1578 
1579 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1580 		return 0;
1581 
1582 	err = dbg_walk_index(c, NULL, add_size, &calc);
1583 	if (err) {
1584 		ubifs_err("error %d while walking the index", err);
1585 		return err;
1586 	}
1587 
1588 	if (calc != idx_size) {
1589 		ubifs_err("index size check failed: calculated size is %lld, "
1590 			  "should be %lld", calc, idx_size);
1591 		dump_stack();
1592 		return -EINVAL;
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 /**
1599  * struct fsck_inode - information about an inode used when checking the file-system.
1600  * @rb: link in the RB-tree of inodes
1601  * @inum: inode number
1602  * @mode: inode type, permissions, etc
1603  * @nlink: inode link count
1604  * @xattr_cnt: count of extended attributes
1605  * @references: how many directory/xattr entries refer this inode (calculated
1606  *              while walking the index)
1607  * @calc_cnt: for directory inode count of child directories
1608  * @size: inode size (read from on-flash inode)
1609  * @xattr_sz: summary size of all extended attributes (read from on-flash
1610  *            inode)
1611  * @calc_sz: for directories calculated directory size
1612  * @calc_xcnt: count of extended attributes
1613  * @calc_xsz: calculated summary size of all extended attributes
1614  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1615  *             inode (read from on-flash inode)
1616  * @calc_xnms: calculated sum of lengths of all extended attribute names
1617  */
1618 struct fsck_inode {
1619 	struct rb_node rb;
1620 	ino_t inum;
1621 	umode_t mode;
1622 	unsigned int nlink;
1623 	unsigned int xattr_cnt;
1624 	int references;
1625 	int calc_cnt;
1626 	long long size;
1627 	unsigned int xattr_sz;
1628 	long long calc_sz;
1629 	long long calc_xcnt;
1630 	long long calc_xsz;
1631 	unsigned int xattr_nms;
1632 	long long calc_xnms;
1633 };
1634 
1635 /**
1636  * struct fsck_data - private FS checking information.
1637  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1638  */
1639 struct fsck_data {
1640 	struct rb_root inodes;
1641 };
1642 
1643 /**
1644  * add_inode - add inode information to RB-tree of inodes.
1645  * @c: UBIFS file-system description object
1646  * @fsckd: FS checking information
1647  * @ino: raw UBIFS inode to add
1648  *
1649  * This is a helper function for 'check_leaf()' which adds information about
1650  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1651  * case of success and a negative error code in case of failure.
1652  */
1653 static struct fsck_inode *add_inode(struct ubifs_info *c,
1654 				    struct fsck_data *fsckd,
1655 				    struct ubifs_ino_node *ino)
1656 {
1657 	struct rb_node **p, *parent = NULL;
1658 	struct fsck_inode *fscki;
1659 	ino_t inum = key_inum_flash(c, &ino->key);
1660 
1661 	p = &fsckd->inodes.rb_node;
1662 	while (*p) {
1663 		parent = *p;
1664 		fscki = rb_entry(parent, struct fsck_inode, rb);
1665 		if (inum < fscki->inum)
1666 			p = &(*p)->rb_left;
1667 		else if (inum > fscki->inum)
1668 			p = &(*p)->rb_right;
1669 		else
1670 			return fscki;
1671 	}
1672 
1673 	if (inum > c->highest_inum) {
1674 		ubifs_err("too high inode number, max. is %lu",
1675 			  (unsigned long)c->highest_inum);
1676 		return ERR_PTR(-EINVAL);
1677 	}
1678 
1679 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1680 	if (!fscki)
1681 		return ERR_PTR(-ENOMEM);
1682 
1683 	fscki->inum = inum;
1684 	fscki->nlink = le32_to_cpu(ino->nlink);
1685 	fscki->size = le64_to_cpu(ino->size);
1686 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1687 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1688 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1689 	fscki->mode = le32_to_cpu(ino->mode);
1690 	if (S_ISDIR(fscki->mode)) {
1691 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1692 		fscki->calc_cnt = 2;
1693 	}
1694 	rb_link_node(&fscki->rb, parent, p);
1695 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1696 	return fscki;
1697 }
1698 
1699 /**
1700  * search_inode - search inode in the RB-tree of inodes.
1701  * @fsckd: FS checking information
1702  * @inum: inode number to search
1703  *
1704  * This is a helper function for 'check_leaf()' which searches inode @inum in
1705  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1706  * the inode was not found.
1707  */
1708 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1709 {
1710 	struct rb_node *p;
1711 	struct fsck_inode *fscki;
1712 
1713 	p = fsckd->inodes.rb_node;
1714 	while (p) {
1715 		fscki = rb_entry(p, struct fsck_inode, rb);
1716 		if (inum < fscki->inum)
1717 			p = p->rb_left;
1718 		else if (inum > fscki->inum)
1719 			p = p->rb_right;
1720 		else
1721 			return fscki;
1722 	}
1723 	return NULL;
1724 }
1725 
1726 /**
1727  * read_add_inode - read inode node and add it to RB-tree of inodes.
1728  * @c: UBIFS file-system description object
1729  * @fsckd: FS checking information
1730  * @inum: inode number to read
1731  *
1732  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1733  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1734  * information pointer in case of success and a negative error code in case of
1735  * failure.
1736  */
1737 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1738 					 struct fsck_data *fsckd, ino_t inum)
1739 {
1740 	int n, err;
1741 	union ubifs_key key;
1742 	struct ubifs_znode *znode;
1743 	struct ubifs_zbranch *zbr;
1744 	struct ubifs_ino_node *ino;
1745 	struct fsck_inode *fscki;
1746 
1747 	fscki = search_inode(fsckd, inum);
1748 	if (fscki)
1749 		return fscki;
1750 
1751 	ino_key_init(c, &key, inum);
1752 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1753 	if (!err) {
1754 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1755 		return ERR_PTR(-ENOENT);
1756 	} else if (err < 0) {
1757 		ubifs_err("error %d while looking up inode %lu",
1758 			  err, (unsigned long)inum);
1759 		return ERR_PTR(err);
1760 	}
1761 
1762 	zbr = &znode->zbranch[n];
1763 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1764 		ubifs_err("bad node %lu node length %d",
1765 			  (unsigned long)inum, zbr->len);
1766 		return ERR_PTR(-EINVAL);
1767 	}
1768 
1769 	ino = kmalloc(zbr->len, GFP_NOFS);
1770 	if (!ino)
1771 		return ERR_PTR(-ENOMEM);
1772 
1773 	err = ubifs_tnc_read_node(c, zbr, ino);
1774 	if (err) {
1775 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1776 			  zbr->lnum, zbr->offs, err);
1777 		kfree(ino);
1778 		return ERR_PTR(err);
1779 	}
1780 
1781 	fscki = add_inode(c, fsckd, ino);
1782 	kfree(ino);
1783 	if (IS_ERR(fscki)) {
1784 		ubifs_err("error %ld while adding inode %lu node",
1785 			  PTR_ERR(fscki), (unsigned long)inum);
1786 		return fscki;
1787 	}
1788 
1789 	return fscki;
1790 }
1791 
1792 /**
1793  * check_leaf - check leaf node.
1794  * @c: UBIFS file-system description object
1795  * @zbr: zbranch of the leaf node to check
1796  * @priv: FS checking information
1797  *
1798  * This is a helper function for 'dbg_check_filesystem()' which is called for
1799  * every single leaf node while walking the indexing tree. It checks that the
1800  * leaf node referred from the indexing tree exists, has correct CRC, and does
1801  * some other basic validation. This function is also responsible for building
1802  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1803  * calculates reference count, size, etc for each inode in order to later
1804  * compare them to the information stored inside the inodes and detect possible
1805  * inconsistencies. Returns zero in case of success and a negative error code
1806  * in case of failure.
1807  */
1808 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1809 		      void *priv)
1810 {
1811 	ino_t inum;
1812 	void *node;
1813 	struct ubifs_ch *ch;
1814 	int err, type = key_type(c, &zbr->key);
1815 	struct fsck_inode *fscki;
1816 
1817 	if (zbr->len < UBIFS_CH_SZ) {
1818 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1819 			  zbr->len, zbr->lnum, zbr->offs);
1820 		return -EINVAL;
1821 	}
1822 
1823 	node = kmalloc(zbr->len, GFP_NOFS);
1824 	if (!node)
1825 		return -ENOMEM;
1826 
1827 	err = ubifs_tnc_read_node(c, zbr, node);
1828 	if (err) {
1829 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1830 			  zbr->lnum, zbr->offs, err);
1831 		goto out_free;
1832 	}
1833 
1834 	/* If this is an inode node, add it to RB-tree of inodes */
1835 	if (type == UBIFS_INO_KEY) {
1836 		fscki = add_inode(c, priv, node);
1837 		if (IS_ERR(fscki)) {
1838 			err = PTR_ERR(fscki);
1839 			ubifs_err("error %d while adding inode node", err);
1840 			goto out_dump;
1841 		}
1842 		goto out;
1843 	}
1844 
1845 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1846 	    type != UBIFS_DATA_KEY) {
1847 		ubifs_err("unexpected node type %d at LEB %d:%d",
1848 			  type, zbr->lnum, zbr->offs);
1849 		err = -EINVAL;
1850 		goto out_free;
1851 	}
1852 
1853 	ch = node;
1854 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1855 		ubifs_err("too high sequence number, max. is %llu",
1856 			  c->max_sqnum);
1857 		err = -EINVAL;
1858 		goto out_dump;
1859 	}
1860 
1861 	if (type == UBIFS_DATA_KEY) {
1862 		long long blk_offs;
1863 		struct ubifs_data_node *dn = node;
1864 
1865 		/*
1866 		 * Search the inode node this data node belongs to and insert
1867 		 * it to the RB-tree of inodes.
1868 		 */
1869 		inum = key_inum_flash(c, &dn->key);
1870 		fscki = read_add_inode(c, priv, inum);
1871 		if (IS_ERR(fscki)) {
1872 			err = PTR_ERR(fscki);
1873 			ubifs_err("error %d while processing data node and "
1874 				  "trying to find inode node %lu",
1875 				  err, (unsigned long)inum);
1876 			goto out_dump;
1877 		}
1878 
1879 		/* Make sure the data node is within inode size */
1880 		blk_offs = key_block_flash(c, &dn->key);
1881 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1882 		blk_offs += le32_to_cpu(dn->size);
1883 		if (blk_offs > fscki->size) {
1884 			ubifs_err("data node at LEB %d:%d is not within inode "
1885 				  "size %lld", zbr->lnum, zbr->offs,
1886 				  fscki->size);
1887 			err = -EINVAL;
1888 			goto out_dump;
1889 		}
1890 	} else {
1891 		int nlen;
1892 		struct ubifs_dent_node *dent = node;
1893 		struct fsck_inode *fscki1;
1894 
1895 		err = ubifs_validate_entry(c, dent);
1896 		if (err)
1897 			goto out_dump;
1898 
1899 		/*
1900 		 * Search the inode node this entry refers to and the parent
1901 		 * inode node and insert them to the RB-tree of inodes.
1902 		 */
1903 		inum = le64_to_cpu(dent->inum);
1904 		fscki = read_add_inode(c, priv, inum);
1905 		if (IS_ERR(fscki)) {
1906 			err = PTR_ERR(fscki);
1907 			ubifs_err("error %d while processing entry node and "
1908 				  "trying to find inode node %lu",
1909 				  err, (unsigned long)inum);
1910 			goto out_dump;
1911 		}
1912 
1913 		/* Count how many direntries or xentries refers this inode */
1914 		fscki->references += 1;
1915 
1916 		inum = key_inum_flash(c, &dent->key);
1917 		fscki1 = read_add_inode(c, priv, inum);
1918 		if (IS_ERR(fscki1)) {
1919 			err = PTR_ERR(fscki);
1920 			ubifs_err("error %d while processing entry node and "
1921 				  "trying to find parent inode node %lu",
1922 				  err, (unsigned long)inum);
1923 			goto out_dump;
1924 		}
1925 
1926 		nlen = le16_to_cpu(dent->nlen);
1927 		if (type == UBIFS_XENT_KEY) {
1928 			fscki1->calc_xcnt += 1;
1929 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1930 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1931 			fscki1->calc_xnms += nlen;
1932 		} else {
1933 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1934 			if (dent->type == UBIFS_ITYPE_DIR)
1935 				fscki1->calc_cnt += 1;
1936 		}
1937 	}
1938 
1939 out:
1940 	kfree(node);
1941 	return 0;
1942 
1943 out_dump:
1944 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1945 	dbg_dump_node(c, node);
1946 out_free:
1947 	kfree(node);
1948 	return err;
1949 }
1950 
1951 /**
1952  * free_inodes - free RB-tree of inodes.
1953  * @fsckd: FS checking information
1954  */
1955 static void free_inodes(struct fsck_data *fsckd)
1956 {
1957 	struct rb_node *this = fsckd->inodes.rb_node;
1958 	struct fsck_inode *fscki;
1959 
1960 	while (this) {
1961 		if (this->rb_left)
1962 			this = this->rb_left;
1963 		else if (this->rb_right)
1964 			this = this->rb_right;
1965 		else {
1966 			fscki = rb_entry(this, struct fsck_inode, rb);
1967 			this = rb_parent(this);
1968 			if (this) {
1969 				if (this->rb_left == &fscki->rb)
1970 					this->rb_left = NULL;
1971 				else
1972 					this->rb_right = NULL;
1973 			}
1974 			kfree(fscki);
1975 		}
1976 	}
1977 }
1978 
1979 /**
1980  * check_inodes - checks all inodes.
1981  * @c: UBIFS file-system description object
1982  * @fsckd: FS checking information
1983  *
1984  * This is a helper function for 'dbg_check_filesystem()' which walks the
1985  * RB-tree of inodes after the index scan has been finished, and checks that
1986  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1987  * %-EINVAL if not, and a negative error code in case of failure.
1988  */
1989 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1990 {
1991 	int n, err;
1992 	union ubifs_key key;
1993 	struct ubifs_znode *znode;
1994 	struct ubifs_zbranch *zbr;
1995 	struct ubifs_ino_node *ino;
1996 	struct fsck_inode *fscki;
1997 	struct rb_node *this = rb_first(&fsckd->inodes);
1998 
1999 	while (this) {
2000 		fscki = rb_entry(this, struct fsck_inode, rb);
2001 		this = rb_next(this);
2002 
2003 		if (S_ISDIR(fscki->mode)) {
2004 			/*
2005 			 * Directories have to have exactly one reference (they
2006 			 * cannot have hardlinks), although root inode is an
2007 			 * exception.
2008 			 */
2009 			if (fscki->inum != UBIFS_ROOT_INO &&
2010 			    fscki->references != 1) {
2011 				ubifs_err("directory inode %lu has %d "
2012 					  "direntries which refer it, but "
2013 					  "should be 1",
2014 					  (unsigned long)fscki->inum,
2015 					  fscki->references);
2016 				goto out_dump;
2017 			}
2018 			if (fscki->inum == UBIFS_ROOT_INO &&
2019 			    fscki->references != 0) {
2020 				ubifs_err("root inode %lu has non-zero (%d) "
2021 					  "direntries which refer it",
2022 					  (unsigned long)fscki->inum,
2023 					  fscki->references);
2024 				goto out_dump;
2025 			}
2026 			if (fscki->calc_sz != fscki->size) {
2027 				ubifs_err("directory inode %lu size is %lld, "
2028 					  "but calculated size is %lld",
2029 					  (unsigned long)fscki->inum,
2030 					  fscki->size, fscki->calc_sz);
2031 				goto out_dump;
2032 			}
2033 			if (fscki->calc_cnt != fscki->nlink) {
2034 				ubifs_err("directory inode %lu nlink is %d, "
2035 					  "but calculated nlink is %d",
2036 					  (unsigned long)fscki->inum,
2037 					  fscki->nlink, fscki->calc_cnt);
2038 				goto out_dump;
2039 			}
2040 		} else {
2041 			if (fscki->references != fscki->nlink) {
2042 				ubifs_err("inode %lu nlink is %d, but "
2043 					  "calculated nlink is %d",
2044 					  (unsigned long)fscki->inum,
2045 					  fscki->nlink, fscki->references);
2046 				goto out_dump;
2047 			}
2048 		}
2049 		if (fscki->xattr_sz != fscki->calc_xsz) {
2050 			ubifs_err("inode %lu has xattr size %u, but "
2051 				  "calculated size is %lld",
2052 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2053 				  fscki->calc_xsz);
2054 			goto out_dump;
2055 		}
2056 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2057 			ubifs_err("inode %lu has %u xattrs, but "
2058 				  "calculated count is %lld",
2059 				  (unsigned long)fscki->inum,
2060 				  fscki->xattr_cnt, fscki->calc_xcnt);
2061 			goto out_dump;
2062 		}
2063 		if (fscki->xattr_nms != fscki->calc_xnms) {
2064 			ubifs_err("inode %lu has xattr names' size %u, but "
2065 				  "calculated names' size is %lld",
2066 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2067 				  fscki->calc_xnms);
2068 			goto out_dump;
2069 		}
2070 	}
2071 
2072 	return 0;
2073 
2074 out_dump:
2075 	/* Read the bad inode and dump it */
2076 	ino_key_init(c, &key, fscki->inum);
2077 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2078 	if (!err) {
2079 		ubifs_err("inode %lu not found in index",
2080 			  (unsigned long)fscki->inum);
2081 		return -ENOENT;
2082 	} else if (err < 0) {
2083 		ubifs_err("error %d while looking up inode %lu",
2084 			  err, (unsigned long)fscki->inum);
2085 		return err;
2086 	}
2087 
2088 	zbr = &znode->zbranch[n];
2089 	ino = kmalloc(zbr->len, GFP_NOFS);
2090 	if (!ino)
2091 		return -ENOMEM;
2092 
2093 	err = ubifs_tnc_read_node(c, zbr, ino);
2094 	if (err) {
2095 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2096 			  zbr->lnum, zbr->offs, err);
2097 		kfree(ino);
2098 		return err;
2099 	}
2100 
2101 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2102 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2103 	dbg_dump_node(c, ino);
2104 	kfree(ino);
2105 	return -EINVAL;
2106 }
2107 
2108 /**
2109  * dbg_check_filesystem - check the file-system.
2110  * @c: UBIFS file-system description object
2111  *
2112  * This function checks the file system, namely:
2113  * o makes sure that all leaf nodes exist and their CRCs are correct;
2114  * o makes sure inode nlink, size, xattr size/count are correct (for all
2115  *   inodes).
2116  *
2117  * The function reads whole indexing tree and all nodes, so it is pretty
2118  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2119  * not, and a negative error code in case of failure.
2120  */
2121 int dbg_check_filesystem(struct ubifs_info *c)
2122 {
2123 	int err;
2124 	struct fsck_data fsckd;
2125 
2126 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2127 		return 0;
2128 
2129 	fsckd.inodes = RB_ROOT;
2130 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2131 	if (err)
2132 		goto out_free;
2133 
2134 	err = check_inodes(c, &fsckd);
2135 	if (err)
2136 		goto out_free;
2137 
2138 	free_inodes(&fsckd);
2139 	return 0;
2140 
2141 out_free:
2142 	ubifs_err("file-system check failed with error %d", err);
2143 	dump_stack();
2144 	free_inodes(&fsckd);
2145 	return err;
2146 }
2147 
2148 static int invocation_cnt;
2149 
2150 int dbg_force_in_the_gaps(void)
2151 {
2152 	if (!dbg_force_in_the_gaps_enabled)
2153 		return 0;
2154 	/* Force in-the-gaps every 8th commit */
2155 	return !((invocation_cnt++) & 0x7);
2156 }
2157 
2158 /* Failure mode for recovery testing */
2159 
2160 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2161 
2162 struct failure_mode_info {
2163 	struct list_head list;
2164 	struct ubifs_info *c;
2165 };
2166 
2167 static LIST_HEAD(fmi_list);
2168 static DEFINE_SPINLOCK(fmi_lock);
2169 
2170 static unsigned int next;
2171 
2172 static int simple_rand(void)
2173 {
2174 	if (next == 0)
2175 		next = current->pid;
2176 	next = next * 1103515245 + 12345;
2177 	return (next >> 16) & 32767;
2178 }
2179 
2180 static void failure_mode_init(struct ubifs_info *c)
2181 {
2182 	struct failure_mode_info *fmi;
2183 
2184 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2185 	if (!fmi) {
2186 		ubifs_err("Failed to register failure mode - no memory");
2187 		return;
2188 	}
2189 	fmi->c = c;
2190 	spin_lock(&fmi_lock);
2191 	list_add_tail(&fmi->list, &fmi_list);
2192 	spin_unlock(&fmi_lock);
2193 }
2194 
2195 static void failure_mode_exit(struct ubifs_info *c)
2196 {
2197 	struct failure_mode_info *fmi, *tmp;
2198 
2199 	spin_lock(&fmi_lock);
2200 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2201 		if (fmi->c == c) {
2202 			list_del(&fmi->list);
2203 			kfree(fmi);
2204 		}
2205 	spin_unlock(&fmi_lock);
2206 }
2207 
2208 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2209 {
2210 	struct failure_mode_info *fmi;
2211 
2212 	spin_lock(&fmi_lock);
2213 	list_for_each_entry(fmi, &fmi_list, list)
2214 		if (fmi->c->ubi == desc) {
2215 			struct ubifs_info *c = fmi->c;
2216 
2217 			spin_unlock(&fmi_lock);
2218 			return c;
2219 		}
2220 	spin_unlock(&fmi_lock);
2221 	return NULL;
2222 }
2223 
2224 static int in_failure_mode(struct ubi_volume_desc *desc)
2225 {
2226 	struct ubifs_info *c = dbg_find_info(desc);
2227 
2228 	if (c && dbg_failure_mode)
2229 		return c->dbg->failure_mode;
2230 	return 0;
2231 }
2232 
2233 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2234 {
2235 	struct ubifs_info *c = dbg_find_info(desc);
2236 	struct ubifs_debug_info *d;
2237 
2238 	if (!c || !dbg_failure_mode)
2239 		return 0;
2240 	d = c->dbg;
2241 	if (d->failure_mode)
2242 		return 1;
2243 	if (!d->fail_cnt) {
2244 		/* First call - decide delay to failure */
2245 		if (chance(1, 2)) {
2246 			unsigned int delay = 1 << (simple_rand() >> 11);
2247 
2248 			if (chance(1, 2)) {
2249 				d->fail_delay = 1;
2250 				d->fail_timeout = jiffies +
2251 						  msecs_to_jiffies(delay);
2252 				dbg_rcvry("failing after %ums", delay);
2253 			} else {
2254 				d->fail_delay = 2;
2255 				d->fail_cnt_max = delay;
2256 				dbg_rcvry("failing after %u calls", delay);
2257 			}
2258 		}
2259 		d->fail_cnt += 1;
2260 	}
2261 	/* Determine if failure delay has expired */
2262 	if (d->fail_delay == 1) {
2263 		if (time_before(jiffies, d->fail_timeout))
2264 			return 0;
2265 	} else if (d->fail_delay == 2)
2266 		if (d->fail_cnt++ < d->fail_cnt_max)
2267 			return 0;
2268 	if (lnum == UBIFS_SB_LNUM) {
2269 		if (write) {
2270 			if (chance(1, 2))
2271 				return 0;
2272 		} else if (chance(19, 20))
2273 			return 0;
2274 		dbg_rcvry("failing in super block LEB %d", lnum);
2275 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2276 		if (chance(19, 20))
2277 			return 0;
2278 		dbg_rcvry("failing in master LEB %d", lnum);
2279 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2280 		if (write) {
2281 			if (chance(99, 100))
2282 				return 0;
2283 		} else if (chance(399, 400))
2284 			return 0;
2285 		dbg_rcvry("failing in log LEB %d", lnum);
2286 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2287 		if (write) {
2288 			if (chance(7, 8))
2289 				return 0;
2290 		} else if (chance(19, 20))
2291 			return 0;
2292 		dbg_rcvry("failing in LPT LEB %d", lnum);
2293 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2294 		if (write) {
2295 			if (chance(1, 2))
2296 				return 0;
2297 		} else if (chance(9, 10))
2298 			return 0;
2299 		dbg_rcvry("failing in orphan LEB %d", lnum);
2300 	} else if (lnum == c->ihead_lnum) {
2301 		if (chance(99, 100))
2302 			return 0;
2303 		dbg_rcvry("failing in index head LEB %d", lnum);
2304 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2305 		if (chance(9, 10))
2306 			return 0;
2307 		dbg_rcvry("failing in GC head LEB %d", lnum);
2308 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2309 		   !ubifs_search_bud(c, lnum)) {
2310 		if (chance(19, 20))
2311 			return 0;
2312 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2313 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2314 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2315 		if (chance(999, 1000))
2316 			return 0;
2317 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2318 	} else {
2319 		if (chance(9999, 10000))
2320 			return 0;
2321 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2322 	}
2323 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2324 	d->failure_mode = 1;
2325 	dump_stack();
2326 	return 1;
2327 }
2328 
2329 static void cut_data(const void *buf, int len)
2330 {
2331 	int flen, i;
2332 	unsigned char *p = (void *)buf;
2333 
2334 	flen = (len * (long long)simple_rand()) >> 15;
2335 	for (i = flen; i < len; i++)
2336 		p[i] = 0xff;
2337 }
2338 
2339 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2340 		 int len, int check)
2341 {
2342 	if (in_failure_mode(desc))
2343 		return -EIO;
2344 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2345 }
2346 
2347 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2348 		  int offset, int len, int dtype)
2349 {
2350 	int err, failing;
2351 
2352 	if (in_failure_mode(desc))
2353 		return -EIO;
2354 	failing = do_fail(desc, lnum, 1);
2355 	if (failing)
2356 		cut_data(buf, len);
2357 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2358 	if (err)
2359 		return err;
2360 	if (failing)
2361 		return -EIO;
2362 	return 0;
2363 }
2364 
2365 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2366 		   int len, int dtype)
2367 {
2368 	int err;
2369 
2370 	if (do_fail(desc, lnum, 1))
2371 		return -EIO;
2372 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2373 	if (err)
2374 		return err;
2375 	if (do_fail(desc, lnum, 1))
2376 		return -EIO;
2377 	return 0;
2378 }
2379 
2380 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2381 {
2382 	int err;
2383 
2384 	if (do_fail(desc, lnum, 0))
2385 		return -EIO;
2386 	err = ubi_leb_erase(desc, lnum);
2387 	if (err)
2388 		return err;
2389 	if (do_fail(desc, lnum, 0))
2390 		return -EIO;
2391 	return 0;
2392 }
2393 
2394 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2395 {
2396 	int err;
2397 
2398 	if (do_fail(desc, lnum, 0))
2399 		return -EIO;
2400 	err = ubi_leb_unmap(desc, lnum);
2401 	if (err)
2402 		return err;
2403 	if (do_fail(desc, lnum, 0))
2404 		return -EIO;
2405 	return 0;
2406 }
2407 
2408 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2409 {
2410 	if (in_failure_mode(desc))
2411 		return -EIO;
2412 	return ubi_is_mapped(desc, lnum);
2413 }
2414 
2415 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2416 {
2417 	int err;
2418 
2419 	if (do_fail(desc, lnum, 0))
2420 		return -EIO;
2421 	err = ubi_leb_map(desc, lnum, dtype);
2422 	if (err)
2423 		return err;
2424 	if (do_fail(desc, lnum, 0))
2425 		return -EIO;
2426 	return 0;
2427 }
2428 
2429 /**
2430  * ubifs_debugging_init - initialize UBIFS debugging.
2431  * @c: UBIFS file-system description object
2432  *
2433  * This function initializes debugging-related data for the file system.
2434  * Returns zero in case of success and a negative error code in case of
2435  * failure.
2436  */
2437 int ubifs_debugging_init(struct ubifs_info *c)
2438 {
2439 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2440 	if (!c->dbg)
2441 		return -ENOMEM;
2442 
2443 	c->dbg->buf = vmalloc(c->leb_size);
2444 	if (!c->dbg->buf)
2445 		goto out;
2446 
2447 	failure_mode_init(c);
2448 	return 0;
2449 
2450 out:
2451 	kfree(c->dbg);
2452 	return -ENOMEM;
2453 }
2454 
2455 /**
2456  * ubifs_debugging_exit - free debugging data.
2457  * @c: UBIFS file-system description object
2458  */
2459 void ubifs_debugging_exit(struct ubifs_info *c)
2460 {
2461 	failure_mode_exit(c);
2462 	vfree(c->dbg->buf);
2463 	kfree(c->dbg);
2464 }
2465 
2466 /*
2467  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2468  * contain the stuff specific to particular file-system mounts.
2469  */
2470 static struct dentry *dfs_rootdir;
2471 
2472 /**
2473  * dbg_debugfs_init - initialize debugfs file-system.
2474  *
2475  * UBIFS uses debugfs file-system to expose various debugging knobs to
2476  * user-space. This function creates "ubifs" directory in the debugfs
2477  * file-system. Returns zero in case of success and a negative error code in
2478  * case of failure.
2479  */
2480 int dbg_debugfs_init(void)
2481 {
2482 	dfs_rootdir = debugfs_create_dir("ubifs", NULL);
2483 	if (IS_ERR(dfs_rootdir)) {
2484 		int err = PTR_ERR(dfs_rootdir);
2485 		ubifs_err("cannot create \"ubifs\" debugfs directory, "
2486 			  "error %d\n", err);
2487 		return err;
2488 	}
2489 
2490 	return 0;
2491 }
2492 
2493 /**
2494  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2495  */
2496 void dbg_debugfs_exit(void)
2497 {
2498 	debugfs_remove(dfs_rootdir);
2499 }
2500 
2501 static int open_debugfs_file(struct inode *inode, struct file *file)
2502 {
2503 	file->private_data = inode->i_private;
2504 	return 0;
2505 }
2506 
2507 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2508 				  size_t count, loff_t *ppos)
2509 {
2510 	struct ubifs_info *c = file->private_data;
2511 	struct ubifs_debug_info *d = c->dbg;
2512 
2513 	if (file->f_path.dentry == d->dfs_dump_lprops)
2514 		dbg_dump_lprops(c);
2515 	else if (file->f_path.dentry == d->dfs_dump_budg) {
2516 		spin_lock(&c->space_lock);
2517 		dbg_dump_budg(c);
2518 		spin_unlock(&c->space_lock);
2519 	} else if (file->f_path.dentry == d->dfs_dump_tnc) {
2520 		mutex_lock(&c->tnc_mutex);
2521 		dbg_dump_tnc(c);
2522 		mutex_unlock(&c->tnc_mutex);
2523 	} else
2524 		return -EINVAL;
2525 
2526 	*ppos += count;
2527 	return count;
2528 }
2529 
2530 static const struct file_operations dfs_fops = {
2531 	.open = open_debugfs_file,
2532 	.write = write_debugfs_file,
2533 	.owner = THIS_MODULE,
2534 };
2535 
2536 /**
2537  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2538  * @c: UBIFS file-system description object
2539  *
2540  * This function creates all debugfs files for this instance of UBIFS. Returns
2541  * zero in case of success and a negative error code in case of failure.
2542  *
2543  * Note, the only reason we have not merged this function with the
2544  * 'ubifs_debugging_init()' function is because it is better to initialize
2545  * debugfs interfaces at the very end of the mount process, and remove them at
2546  * the very beginning of the mount process.
2547  */
2548 int dbg_debugfs_init_fs(struct ubifs_info *c)
2549 {
2550 	int err;
2551 	const char *fname;
2552 	struct dentry *dent;
2553 	struct ubifs_debug_info *d = c->dbg;
2554 
2555 	sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2556 	d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir);
2557 	if (IS_ERR(d->dfs_dir)) {
2558 		err = PTR_ERR(d->dfs_dir);
2559 		ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2560 			  d->dfs_dir_name, err);
2561 		goto out;
2562 	}
2563 
2564 	fname = "dump_lprops";
2565 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2566 	if (IS_ERR(dent))
2567 		goto out_remove;
2568 	d->dfs_dump_lprops = dent;
2569 
2570 	fname = "dump_budg";
2571 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2572 	if (IS_ERR(dent))
2573 		goto out_remove;
2574 	d->dfs_dump_budg = dent;
2575 
2576 	fname = "dump_tnc";
2577 	dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops);
2578 	if (IS_ERR(dent))
2579 		goto out_remove;
2580 	d->dfs_dump_tnc = dent;
2581 
2582 	return 0;
2583 
2584 out_remove:
2585 	err = PTR_ERR(dent);
2586 	ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2587 		  fname, err);
2588 	debugfs_remove_recursive(d->dfs_dir);
2589 out:
2590 	return err;
2591 }
2592 
2593 /**
2594  * dbg_debugfs_exit_fs - remove all debugfs files.
2595  * @c: UBIFS file-system description object
2596  */
2597 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2598 {
2599 	debugfs_remove_recursive(c->dbg->dfs_dir);
2600 }
2601 
2602 #endif /* CONFIG_UBIFS_FS_DEBUG */
2603