1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #include <linux/module.h> 31 #include <linux/debugfs.h> 32 #include <linux/math64.h> 33 #include <linux/uaccess.h> 34 #include <linux/random.h> 35 #include "ubifs.h" 36 37 #ifdef CONFIG_UBIFS_FS_DEBUG 38 39 static DEFINE_SPINLOCK(dbg_lock); 40 41 static const char *get_key_fmt(int fmt) 42 { 43 switch (fmt) { 44 case UBIFS_SIMPLE_KEY_FMT: 45 return "simple"; 46 default: 47 return "unknown/invalid format"; 48 } 49 } 50 51 static const char *get_key_hash(int hash) 52 { 53 switch (hash) { 54 case UBIFS_KEY_HASH_R5: 55 return "R5"; 56 case UBIFS_KEY_HASH_TEST: 57 return "test"; 58 default: 59 return "unknown/invalid name hash"; 60 } 61 } 62 63 static const char *get_key_type(int type) 64 { 65 switch (type) { 66 case UBIFS_INO_KEY: 67 return "inode"; 68 case UBIFS_DENT_KEY: 69 return "direntry"; 70 case UBIFS_XENT_KEY: 71 return "xentry"; 72 case UBIFS_DATA_KEY: 73 return "data"; 74 case UBIFS_TRUN_KEY: 75 return "truncate"; 76 default: 77 return "unknown/invalid key"; 78 } 79 } 80 81 static const char *get_dent_type(int type) 82 { 83 switch (type) { 84 case UBIFS_ITYPE_REG: 85 return "file"; 86 case UBIFS_ITYPE_DIR: 87 return "dir"; 88 case UBIFS_ITYPE_LNK: 89 return "symlink"; 90 case UBIFS_ITYPE_BLK: 91 return "blkdev"; 92 case UBIFS_ITYPE_CHR: 93 return "char dev"; 94 case UBIFS_ITYPE_FIFO: 95 return "fifo"; 96 case UBIFS_ITYPE_SOCK: 97 return "socket"; 98 default: 99 return "unknown/invalid type"; 100 } 101 } 102 103 const char *dbg_snprintf_key(const struct ubifs_info *c, 104 const union ubifs_key *key, char *buffer, int len) 105 { 106 char *p = buffer; 107 int type = key_type(c, key); 108 109 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 110 switch (type) { 111 case UBIFS_INO_KEY: 112 len -= snprintf(p, len, "(%lu, %s)", 113 (unsigned long)key_inum(c, key), 114 get_key_type(type)); 115 break; 116 case UBIFS_DENT_KEY: 117 case UBIFS_XENT_KEY: 118 len -= snprintf(p, len, "(%lu, %s, %#08x)", 119 (unsigned long)key_inum(c, key), 120 get_key_type(type), key_hash(c, key)); 121 break; 122 case UBIFS_DATA_KEY: 123 len -= snprintf(p, len, "(%lu, %s, %u)", 124 (unsigned long)key_inum(c, key), 125 get_key_type(type), key_block(c, key)); 126 break; 127 case UBIFS_TRUN_KEY: 128 len -= snprintf(p, len, "(%lu, %s)", 129 (unsigned long)key_inum(c, key), 130 get_key_type(type)); 131 break; 132 default: 133 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 134 key->u32[0], key->u32[1]); 135 } 136 } else 137 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 138 ubifs_assert(len > 0); 139 return p; 140 } 141 142 const char *dbg_ntype(int type) 143 { 144 switch (type) { 145 case UBIFS_PAD_NODE: 146 return "padding node"; 147 case UBIFS_SB_NODE: 148 return "superblock node"; 149 case UBIFS_MST_NODE: 150 return "master node"; 151 case UBIFS_REF_NODE: 152 return "reference node"; 153 case UBIFS_INO_NODE: 154 return "inode node"; 155 case UBIFS_DENT_NODE: 156 return "direntry node"; 157 case UBIFS_XENT_NODE: 158 return "xentry node"; 159 case UBIFS_DATA_NODE: 160 return "data node"; 161 case UBIFS_TRUN_NODE: 162 return "truncate node"; 163 case UBIFS_IDX_NODE: 164 return "indexing node"; 165 case UBIFS_CS_NODE: 166 return "commit start node"; 167 case UBIFS_ORPH_NODE: 168 return "orphan node"; 169 default: 170 return "unknown node"; 171 } 172 } 173 174 static const char *dbg_gtype(int type) 175 { 176 switch (type) { 177 case UBIFS_NO_NODE_GROUP: 178 return "no node group"; 179 case UBIFS_IN_NODE_GROUP: 180 return "in node group"; 181 case UBIFS_LAST_OF_NODE_GROUP: 182 return "last of node group"; 183 default: 184 return "unknown"; 185 } 186 } 187 188 const char *dbg_cstate(int cmt_state) 189 { 190 switch (cmt_state) { 191 case COMMIT_RESTING: 192 return "commit resting"; 193 case COMMIT_BACKGROUND: 194 return "background commit requested"; 195 case COMMIT_REQUIRED: 196 return "commit required"; 197 case COMMIT_RUNNING_BACKGROUND: 198 return "BACKGROUND commit running"; 199 case COMMIT_RUNNING_REQUIRED: 200 return "commit running and required"; 201 case COMMIT_BROKEN: 202 return "broken commit"; 203 default: 204 return "unknown commit state"; 205 } 206 } 207 208 const char *dbg_jhead(int jhead) 209 { 210 switch (jhead) { 211 case GCHD: 212 return "0 (GC)"; 213 case BASEHD: 214 return "1 (base)"; 215 case DATAHD: 216 return "2 (data)"; 217 default: 218 return "unknown journal head"; 219 } 220 } 221 222 static void dump_ch(const struct ubifs_ch *ch) 223 { 224 printk(KERN_ERR "\tmagic %#x\n", le32_to_cpu(ch->magic)); 225 printk(KERN_ERR "\tcrc %#x\n", le32_to_cpu(ch->crc)); 226 printk(KERN_ERR "\tnode_type %d (%s)\n", ch->node_type, 227 dbg_ntype(ch->node_type)); 228 printk(KERN_ERR "\tgroup_type %d (%s)\n", ch->group_type, 229 dbg_gtype(ch->group_type)); 230 printk(KERN_ERR "\tsqnum %llu\n", 231 (unsigned long long)le64_to_cpu(ch->sqnum)); 232 printk(KERN_ERR "\tlen %u\n", le32_to_cpu(ch->len)); 233 } 234 235 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode) 236 { 237 const struct ubifs_inode *ui = ubifs_inode(inode); 238 struct qstr nm = { .name = NULL }; 239 union ubifs_key key; 240 struct ubifs_dent_node *dent, *pdent = NULL; 241 int count = 2; 242 243 printk(KERN_ERR "Dump in-memory inode:"); 244 printk(KERN_ERR "\tinode %lu\n", inode->i_ino); 245 printk(KERN_ERR "\tsize %llu\n", 246 (unsigned long long)i_size_read(inode)); 247 printk(KERN_ERR "\tnlink %u\n", inode->i_nlink); 248 printk(KERN_ERR "\tuid %u\n", (unsigned int)inode->i_uid); 249 printk(KERN_ERR "\tgid %u\n", (unsigned int)inode->i_gid); 250 printk(KERN_ERR "\tatime %u.%u\n", 251 (unsigned int)inode->i_atime.tv_sec, 252 (unsigned int)inode->i_atime.tv_nsec); 253 printk(KERN_ERR "\tmtime %u.%u\n", 254 (unsigned int)inode->i_mtime.tv_sec, 255 (unsigned int)inode->i_mtime.tv_nsec); 256 printk(KERN_ERR "\tctime %u.%u\n", 257 (unsigned int)inode->i_ctime.tv_sec, 258 (unsigned int)inode->i_ctime.tv_nsec); 259 printk(KERN_ERR "\tcreat_sqnum %llu\n", ui->creat_sqnum); 260 printk(KERN_ERR "\txattr_size %u\n", ui->xattr_size); 261 printk(KERN_ERR "\txattr_cnt %u\n", ui->xattr_cnt); 262 printk(KERN_ERR "\txattr_names %u\n", ui->xattr_names); 263 printk(KERN_ERR "\tdirty %u\n", ui->dirty); 264 printk(KERN_ERR "\txattr %u\n", ui->xattr); 265 printk(KERN_ERR "\tbulk_read %u\n", ui->xattr); 266 printk(KERN_ERR "\tsynced_i_size %llu\n", 267 (unsigned long long)ui->synced_i_size); 268 printk(KERN_ERR "\tui_size %llu\n", 269 (unsigned long long)ui->ui_size); 270 printk(KERN_ERR "\tflags %d\n", ui->flags); 271 printk(KERN_ERR "\tcompr_type %d\n", ui->compr_type); 272 printk(KERN_ERR "\tlast_page_read %lu\n", ui->last_page_read); 273 printk(KERN_ERR "\tread_in_a_row %lu\n", ui->read_in_a_row); 274 printk(KERN_ERR "\tdata_len %d\n", ui->data_len); 275 276 if (!S_ISDIR(inode->i_mode)) 277 return; 278 279 printk(KERN_ERR "List of directory entries:\n"); 280 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 281 282 lowest_dent_key(c, &key, inode->i_ino); 283 while (1) { 284 dent = ubifs_tnc_next_ent(c, &key, &nm); 285 if (IS_ERR(dent)) { 286 if (PTR_ERR(dent) != -ENOENT) 287 printk(KERN_ERR "error %ld\n", PTR_ERR(dent)); 288 break; 289 } 290 291 printk(KERN_ERR "\t%d: %s (%s)\n", 292 count++, dent->name, get_dent_type(dent->type)); 293 294 nm.name = dent->name; 295 nm.len = le16_to_cpu(dent->nlen); 296 kfree(pdent); 297 pdent = dent; 298 key_read(c, &dent->key, &key); 299 } 300 kfree(pdent); 301 } 302 303 void dbg_dump_node(const struct ubifs_info *c, const void *node) 304 { 305 int i, n; 306 union ubifs_key key; 307 const struct ubifs_ch *ch = node; 308 char key_buf[DBG_KEY_BUF_LEN]; 309 310 if (dbg_is_tst_rcvry(c)) 311 return; 312 313 /* If the magic is incorrect, just hexdump the first bytes */ 314 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 315 printk(KERN_ERR "Not a node, first %zu bytes:", UBIFS_CH_SZ); 316 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 317 (void *)node, UBIFS_CH_SZ, 1); 318 return; 319 } 320 321 spin_lock(&dbg_lock); 322 dump_ch(node); 323 324 switch (ch->node_type) { 325 case UBIFS_PAD_NODE: 326 { 327 const struct ubifs_pad_node *pad = node; 328 329 printk(KERN_ERR "\tpad_len %u\n", 330 le32_to_cpu(pad->pad_len)); 331 break; 332 } 333 case UBIFS_SB_NODE: 334 { 335 const struct ubifs_sb_node *sup = node; 336 unsigned int sup_flags = le32_to_cpu(sup->flags); 337 338 printk(KERN_ERR "\tkey_hash %d (%s)\n", 339 (int)sup->key_hash, get_key_hash(sup->key_hash)); 340 printk(KERN_ERR "\tkey_fmt %d (%s)\n", 341 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 342 printk(KERN_ERR "\tflags %#x\n", sup_flags); 343 printk(KERN_ERR "\t big_lpt %u\n", 344 !!(sup_flags & UBIFS_FLG_BIGLPT)); 345 printk(KERN_ERR "\t space_fixup %u\n", 346 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 347 printk(KERN_ERR "\tmin_io_size %u\n", 348 le32_to_cpu(sup->min_io_size)); 349 printk(KERN_ERR "\tleb_size %u\n", 350 le32_to_cpu(sup->leb_size)); 351 printk(KERN_ERR "\tleb_cnt %u\n", 352 le32_to_cpu(sup->leb_cnt)); 353 printk(KERN_ERR "\tmax_leb_cnt %u\n", 354 le32_to_cpu(sup->max_leb_cnt)); 355 printk(KERN_ERR "\tmax_bud_bytes %llu\n", 356 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 357 printk(KERN_ERR "\tlog_lebs %u\n", 358 le32_to_cpu(sup->log_lebs)); 359 printk(KERN_ERR "\tlpt_lebs %u\n", 360 le32_to_cpu(sup->lpt_lebs)); 361 printk(KERN_ERR "\torph_lebs %u\n", 362 le32_to_cpu(sup->orph_lebs)); 363 printk(KERN_ERR "\tjhead_cnt %u\n", 364 le32_to_cpu(sup->jhead_cnt)); 365 printk(KERN_ERR "\tfanout %u\n", 366 le32_to_cpu(sup->fanout)); 367 printk(KERN_ERR "\tlsave_cnt %u\n", 368 le32_to_cpu(sup->lsave_cnt)); 369 printk(KERN_ERR "\tdefault_compr %u\n", 370 (int)le16_to_cpu(sup->default_compr)); 371 printk(KERN_ERR "\trp_size %llu\n", 372 (unsigned long long)le64_to_cpu(sup->rp_size)); 373 printk(KERN_ERR "\trp_uid %u\n", 374 le32_to_cpu(sup->rp_uid)); 375 printk(KERN_ERR "\trp_gid %u\n", 376 le32_to_cpu(sup->rp_gid)); 377 printk(KERN_ERR "\tfmt_version %u\n", 378 le32_to_cpu(sup->fmt_version)); 379 printk(KERN_ERR "\ttime_gran %u\n", 380 le32_to_cpu(sup->time_gran)); 381 printk(KERN_ERR "\tUUID %pUB\n", 382 sup->uuid); 383 break; 384 } 385 case UBIFS_MST_NODE: 386 { 387 const struct ubifs_mst_node *mst = node; 388 389 printk(KERN_ERR "\thighest_inum %llu\n", 390 (unsigned long long)le64_to_cpu(mst->highest_inum)); 391 printk(KERN_ERR "\tcommit number %llu\n", 392 (unsigned long long)le64_to_cpu(mst->cmt_no)); 393 printk(KERN_ERR "\tflags %#x\n", 394 le32_to_cpu(mst->flags)); 395 printk(KERN_ERR "\tlog_lnum %u\n", 396 le32_to_cpu(mst->log_lnum)); 397 printk(KERN_ERR "\troot_lnum %u\n", 398 le32_to_cpu(mst->root_lnum)); 399 printk(KERN_ERR "\troot_offs %u\n", 400 le32_to_cpu(mst->root_offs)); 401 printk(KERN_ERR "\troot_len %u\n", 402 le32_to_cpu(mst->root_len)); 403 printk(KERN_ERR "\tgc_lnum %u\n", 404 le32_to_cpu(mst->gc_lnum)); 405 printk(KERN_ERR "\tihead_lnum %u\n", 406 le32_to_cpu(mst->ihead_lnum)); 407 printk(KERN_ERR "\tihead_offs %u\n", 408 le32_to_cpu(mst->ihead_offs)); 409 printk(KERN_ERR "\tindex_size %llu\n", 410 (unsigned long long)le64_to_cpu(mst->index_size)); 411 printk(KERN_ERR "\tlpt_lnum %u\n", 412 le32_to_cpu(mst->lpt_lnum)); 413 printk(KERN_ERR "\tlpt_offs %u\n", 414 le32_to_cpu(mst->lpt_offs)); 415 printk(KERN_ERR "\tnhead_lnum %u\n", 416 le32_to_cpu(mst->nhead_lnum)); 417 printk(KERN_ERR "\tnhead_offs %u\n", 418 le32_to_cpu(mst->nhead_offs)); 419 printk(KERN_ERR "\tltab_lnum %u\n", 420 le32_to_cpu(mst->ltab_lnum)); 421 printk(KERN_ERR "\tltab_offs %u\n", 422 le32_to_cpu(mst->ltab_offs)); 423 printk(KERN_ERR "\tlsave_lnum %u\n", 424 le32_to_cpu(mst->lsave_lnum)); 425 printk(KERN_ERR "\tlsave_offs %u\n", 426 le32_to_cpu(mst->lsave_offs)); 427 printk(KERN_ERR "\tlscan_lnum %u\n", 428 le32_to_cpu(mst->lscan_lnum)); 429 printk(KERN_ERR "\tleb_cnt %u\n", 430 le32_to_cpu(mst->leb_cnt)); 431 printk(KERN_ERR "\tempty_lebs %u\n", 432 le32_to_cpu(mst->empty_lebs)); 433 printk(KERN_ERR "\tidx_lebs %u\n", 434 le32_to_cpu(mst->idx_lebs)); 435 printk(KERN_ERR "\ttotal_free %llu\n", 436 (unsigned long long)le64_to_cpu(mst->total_free)); 437 printk(KERN_ERR "\ttotal_dirty %llu\n", 438 (unsigned long long)le64_to_cpu(mst->total_dirty)); 439 printk(KERN_ERR "\ttotal_used %llu\n", 440 (unsigned long long)le64_to_cpu(mst->total_used)); 441 printk(KERN_ERR "\ttotal_dead %llu\n", 442 (unsigned long long)le64_to_cpu(mst->total_dead)); 443 printk(KERN_ERR "\ttotal_dark %llu\n", 444 (unsigned long long)le64_to_cpu(mst->total_dark)); 445 break; 446 } 447 case UBIFS_REF_NODE: 448 { 449 const struct ubifs_ref_node *ref = node; 450 451 printk(KERN_ERR "\tlnum %u\n", 452 le32_to_cpu(ref->lnum)); 453 printk(KERN_ERR "\toffs %u\n", 454 le32_to_cpu(ref->offs)); 455 printk(KERN_ERR "\tjhead %u\n", 456 le32_to_cpu(ref->jhead)); 457 break; 458 } 459 case UBIFS_INO_NODE: 460 { 461 const struct ubifs_ino_node *ino = node; 462 463 key_read(c, &ino->key, &key); 464 printk(KERN_ERR "\tkey %s\n", 465 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 466 printk(KERN_ERR "\tcreat_sqnum %llu\n", 467 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 468 printk(KERN_ERR "\tsize %llu\n", 469 (unsigned long long)le64_to_cpu(ino->size)); 470 printk(KERN_ERR "\tnlink %u\n", 471 le32_to_cpu(ino->nlink)); 472 printk(KERN_ERR "\tatime %lld.%u\n", 473 (long long)le64_to_cpu(ino->atime_sec), 474 le32_to_cpu(ino->atime_nsec)); 475 printk(KERN_ERR "\tmtime %lld.%u\n", 476 (long long)le64_to_cpu(ino->mtime_sec), 477 le32_to_cpu(ino->mtime_nsec)); 478 printk(KERN_ERR "\tctime %lld.%u\n", 479 (long long)le64_to_cpu(ino->ctime_sec), 480 le32_to_cpu(ino->ctime_nsec)); 481 printk(KERN_ERR "\tuid %u\n", 482 le32_to_cpu(ino->uid)); 483 printk(KERN_ERR "\tgid %u\n", 484 le32_to_cpu(ino->gid)); 485 printk(KERN_ERR "\tmode %u\n", 486 le32_to_cpu(ino->mode)); 487 printk(KERN_ERR "\tflags %#x\n", 488 le32_to_cpu(ino->flags)); 489 printk(KERN_ERR "\txattr_cnt %u\n", 490 le32_to_cpu(ino->xattr_cnt)); 491 printk(KERN_ERR "\txattr_size %u\n", 492 le32_to_cpu(ino->xattr_size)); 493 printk(KERN_ERR "\txattr_names %u\n", 494 le32_to_cpu(ino->xattr_names)); 495 printk(KERN_ERR "\tcompr_type %#x\n", 496 (int)le16_to_cpu(ino->compr_type)); 497 printk(KERN_ERR "\tdata len %u\n", 498 le32_to_cpu(ino->data_len)); 499 break; 500 } 501 case UBIFS_DENT_NODE: 502 case UBIFS_XENT_NODE: 503 { 504 const struct ubifs_dent_node *dent = node; 505 int nlen = le16_to_cpu(dent->nlen); 506 507 key_read(c, &dent->key, &key); 508 printk(KERN_ERR "\tkey %s\n", 509 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 510 printk(KERN_ERR "\tinum %llu\n", 511 (unsigned long long)le64_to_cpu(dent->inum)); 512 printk(KERN_ERR "\ttype %d\n", (int)dent->type); 513 printk(KERN_ERR "\tnlen %d\n", nlen); 514 printk(KERN_ERR "\tname "); 515 516 if (nlen > UBIFS_MAX_NLEN) 517 printk(KERN_ERR "(bad name length, not printing, " 518 "bad or corrupted node)"); 519 else { 520 for (i = 0; i < nlen && dent->name[i]; i++) 521 printk(KERN_CONT "%c", dent->name[i]); 522 } 523 printk(KERN_CONT "\n"); 524 525 break; 526 } 527 case UBIFS_DATA_NODE: 528 { 529 const struct ubifs_data_node *dn = node; 530 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 531 532 key_read(c, &dn->key, &key); 533 printk(KERN_ERR "\tkey %s\n", 534 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 535 printk(KERN_ERR "\tsize %u\n", 536 le32_to_cpu(dn->size)); 537 printk(KERN_ERR "\tcompr_typ %d\n", 538 (int)le16_to_cpu(dn->compr_type)); 539 printk(KERN_ERR "\tdata size %d\n", 540 dlen); 541 printk(KERN_ERR "\tdata:\n"); 542 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 543 (void *)&dn->data, dlen, 0); 544 break; 545 } 546 case UBIFS_TRUN_NODE: 547 { 548 const struct ubifs_trun_node *trun = node; 549 550 printk(KERN_ERR "\tinum %u\n", 551 le32_to_cpu(trun->inum)); 552 printk(KERN_ERR "\told_size %llu\n", 553 (unsigned long long)le64_to_cpu(trun->old_size)); 554 printk(KERN_ERR "\tnew_size %llu\n", 555 (unsigned long long)le64_to_cpu(trun->new_size)); 556 break; 557 } 558 case UBIFS_IDX_NODE: 559 { 560 const struct ubifs_idx_node *idx = node; 561 562 n = le16_to_cpu(idx->child_cnt); 563 printk(KERN_ERR "\tchild_cnt %d\n", n); 564 printk(KERN_ERR "\tlevel %d\n", 565 (int)le16_to_cpu(idx->level)); 566 printk(KERN_ERR "\tBranches:\n"); 567 568 for (i = 0; i < n && i < c->fanout - 1; i++) { 569 const struct ubifs_branch *br; 570 571 br = ubifs_idx_branch(c, idx, i); 572 key_read(c, &br->key, &key); 573 printk(KERN_ERR "\t%d: LEB %d:%d len %d key %s\n", 574 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 575 le32_to_cpu(br->len), 576 dbg_snprintf_key(c, &key, key_buf, 577 DBG_KEY_BUF_LEN)); 578 } 579 break; 580 } 581 case UBIFS_CS_NODE: 582 break; 583 case UBIFS_ORPH_NODE: 584 { 585 const struct ubifs_orph_node *orph = node; 586 587 printk(KERN_ERR "\tcommit number %llu\n", 588 (unsigned long long) 589 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 590 printk(KERN_ERR "\tlast node flag %llu\n", 591 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 592 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 593 printk(KERN_ERR "\t%d orphan inode numbers:\n", n); 594 for (i = 0; i < n; i++) 595 printk(KERN_ERR "\t ino %llu\n", 596 (unsigned long long)le64_to_cpu(orph->inos[i])); 597 break; 598 } 599 default: 600 printk(KERN_ERR "node type %d was not recognized\n", 601 (int)ch->node_type); 602 } 603 spin_unlock(&dbg_lock); 604 } 605 606 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 607 { 608 spin_lock(&dbg_lock); 609 printk(KERN_ERR "Budgeting request: new_ino %d, dirtied_ino %d\n", 610 req->new_ino, req->dirtied_ino); 611 printk(KERN_ERR "\tnew_ino_d %d, dirtied_ino_d %d\n", 612 req->new_ino_d, req->dirtied_ino_d); 613 printk(KERN_ERR "\tnew_page %d, dirtied_page %d\n", 614 req->new_page, req->dirtied_page); 615 printk(KERN_ERR "\tnew_dent %d, mod_dent %d\n", 616 req->new_dent, req->mod_dent); 617 printk(KERN_ERR "\tidx_growth %d\n", req->idx_growth); 618 printk(KERN_ERR "\tdata_growth %d dd_growth %d\n", 619 req->data_growth, req->dd_growth); 620 spin_unlock(&dbg_lock); 621 } 622 623 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 624 { 625 spin_lock(&dbg_lock); 626 printk(KERN_ERR "(pid %d) Lprops statistics: empty_lebs %d, " 627 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 628 printk(KERN_ERR "\ttaken_empty_lebs %d, total_free %lld, " 629 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 630 lst->total_dirty); 631 printk(KERN_ERR "\ttotal_used %lld, total_dark %lld, " 632 "total_dead %lld\n", lst->total_used, lst->total_dark, 633 lst->total_dead); 634 spin_unlock(&dbg_lock); 635 } 636 637 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 638 { 639 int i; 640 struct rb_node *rb; 641 struct ubifs_bud *bud; 642 struct ubifs_gced_idx_leb *idx_gc; 643 long long available, outstanding, free; 644 645 spin_lock(&c->space_lock); 646 spin_lock(&dbg_lock); 647 printk(KERN_ERR "(pid %d) Budgeting info: data budget sum %lld, " 648 "total budget sum %lld\n", current->pid, 649 bi->data_growth + bi->dd_growth, 650 bi->data_growth + bi->dd_growth + bi->idx_growth); 651 printk(KERN_ERR "\tbudg_data_growth %lld, budg_dd_growth %lld, " 652 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth, 653 bi->idx_growth); 654 printk(KERN_ERR "\tmin_idx_lebs %d, old_idx_sz %llu, " 655 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz, 656 bi->uncommitted_idx); 657 printk(KERN_ERR "\tpage_budget %d, inode_budget %d, dent_budget %d\n", 658 bi->page_budget, bi->inode_budget, bi->dent_budget); 659 printk(KERN_ERR "\tnospace %u, nospace_rp %u\n", 660 bi->nospace, bi->nospace_rp); 661 printk(KERN_ERR "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 662 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 663 664 if (bi != &c->bi) 665 /* 666 * If we are dumping saved budgeting data, do not print 667 * additional information which is about the current state, not 668 * the old one which corresponded to the saved budgeting data. 669 */ 670 goto out_unlock; 671 672 printk(KERN_ERR "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 673 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 674 printk(KERN_ERR "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 675 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 676 atomic_long_read(&c->dirty_zn_cnt), 677 atomic_long_read(&c->clean_zn_cnt)); 678 printk(KERN_ERR "\tgc_lnum %d, ihead_lnum %d\n", 679 c->gc_lnum, c->ihead_lnum); 680 681 /* If we are in R/O mode, journal heads do not exist */ 682 if (c->jheads) 683 for (i = 0; i < c->jhead_cnt; i++) 684 printk(KERN_ERR "\tjhead %s\t LEB %d\n", 685 dbg_jhead(c->jheads[i].wbuf.jhead), 686 c->jheads[i].wbuf.lnum); 687 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 688 bud = rb_entry(rb, struct ubifs_bud, rb); 689 printk(KERN_ERR "\tbud LEB %d\n", bud->lnum); 690 } 691 list_for_each_entry(bud, &c->old_buds, list) 692 printk(KERN_ERR "\told bud LEB %d\n", bud->lnum); 693 list_for_each_entry(idx_gc, &c->idx_gc, list) 694 printk(KERN_ERR "\tGC'ed idx LEB %d unmap %d\n", 695 idx_gc->lnum, idx_gc->unmap); 696 printk(KERN_ERR "\tcommit state %d\n", c->cmt_state); 697 698 /* Print budgeting predictions */ 699 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 700 outstanding = c->bi.data_growth + c->bi.dd_growth; 701 free = ubifs_get_free_space_nolock(c); 702 printk(KERN_ERR "Budgeting predictions:\n"); 703 printk(KERN_ERR "\tavailable: %lld, outstanding %lld, free %lld\n", 704 available, outstanding, free); 705 out_unlock: 706 spin_unlock(&dbg_lock); 707 spin_unlock(&c->space_lock); 708 } 709 710 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 711 { 712 int i, spc, dark = 0, dead = 0; 713 struct rb_node *rb; 714 struct ubifs_bud *bud; 715 716 spc = lp->free + lp->dirty; 717 if (spc < c->dead_wm) 718 dead = spc; 719 else 720 dark = ubifs_calc_dark(c, spc); 721 722 if (lp->flags & LPROPS_INDEX) 723 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d " 724 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 725 lp->dirty, c->leb_size - spc, spc, lp->flags); 726 else 727 printk(KERN_ERR "LEB %-7d free %-8d dirty %-8d used %-8d " 728 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 729 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 730 c->leb_size - spc, spc, dark, dead, 731 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 732 733 if (lp->flags & LPROPS_TAKEN) { 734 if (lp->flags & LPROPS_INDEX) 735 printk(KERN_CONT "index, taken"); 736 else 737 printk(KERN_CONT "taken"); 738 } else { 739 const char *s; 740 741 if (lp->flags & LPROPS_INDEX) { 742 switch (lp->flags & LPROPS_CAT_MASK) { 743 case LPROPS_DIRTY_IDX: 744 s = "dirty index"; 745 break; 746 case LPROPS_FRDI_IDX: 747 s = "freeable index"; 748 break; 749 default: 750 s = "index"; 751 } 752 } else { 753 switch (lp->flags & LPROPS_CAT_MASK) { 754 case LPROPS_UNCAT: 755 s = "not categorized"; 756 break; 757 case LPROPS_DIRTY: 758 s = "dirty"; 759 break; 760 case LPROPS_FREE: 761 s = "free"; 762 break; 763 case LPROPS_EMPTY: 764 s = "empty"; 765 break; 766 case LPROPS_FREEABLE: 767 s = "freeable"; 768 break; 769 default: 770 s = NULL; 771 break; 772 } 773 } 774 printk(KERN_CONT "%s", s); 775 } 776 777 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 778 bud = rb_entry(rb, struct ubifs_bud, rb); 779 if (bud->lnum == lp->lnum) { 780 int head = 0; 781 for (i = 0; i < c->jhead_cnt; i++) { 782 /* 783 * Note, if we are in R/O mode or in the middle 784 * of mounting/re-mounting, the write-buffers do 785 * not exist. 786 */ 787 if (c->jheads && 788 lp->lnum == c->jheads[i].wbuf.lnum) { 789 printk(KERN_CONT ", jhead %s", 790 dbg_jhead(i)); 791 head = 1; 792 } 793 } 794 if (!head) 795 printk(KERN_CONT ", bud of jhead %s", 796 dbg_jhead(bud->jhead)); 797 } 798 } 799 if (lp->lnum == c->gc_lnum) 800 printk(KERN_CONT ", GC LEB"); 801 printk(KERN_CONT ")\n"); 802 } 803 804 void dbg_dump_lprops(struct ubifs_info *c) 805 { 806 int lnum, err; 807 struct ubifs_lprops lp; 808 struct ubifs_lp_stats lst; 809 810 printk(KERN_ERR "(pid %d) start dumping LEB properties\n", 811 current->pid); 812 ubifs_get_lp_stats(c, &lst); 813 dbg_dump_lstats(&lst); 814 815 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 816 err = ubifs_read_one_lp(c, lnum, &lp); 817 if (err) 818 ubifs_err("cannot read lprops for LEB %d", lnum); 819 820 dbg_dump_lprop(c, &lp); 821 } 822 printk(KERN_ERR "(pid %d) finish dumping LEB properties\n", 823 current->pid); 824 } 825 826 void dbg_dump_lpt_info(struct ubifs_info *c) 827 { 828 int i; 829 830 spin_lock(&dbg_lock); 831 printk(KERN_ERR "(pid %d) dumping LPT information\n", current->pid); 832 printk(KERN_ERR "\tlpt_sz: %lld\n", c->lpt_sz); 833 printk(KERN_ERR "\tpnode_sz: %d\n", c->pnode_sz); 834 printk(KERN_ERR "\tnnode_sz: %d\n", c->nnode_sz); 835 printk(KERN_ERR "\tltab_sz: %d\n", c->ltab_sz); 836 printk(KERN_ERR "\tlsave_sz: %d\n", c->lsave_sz); 837 printk(KERN_ERR "\tbig_lpt: %d\n", c->big_lpt); 838 printk(KERN_ERR "\tlpt_hght: %d\n", c->lpt_hght); 839 printk(KERN_ERR "\tpnode_cnt: %d\n", c->pnode_cnt); 840 printk(KERN_ERR "\tnnode_cnt: %d\n", c->nnode_cnt); 841 printk(KERN_ERR "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 842 printk(KERN_ERR "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 843 printk(KERN_ERR "\tlsave_cnt: %d\n", c->lsave_cnt); 844 printk(KERN_ERR "\tspace_bits: %d\n", c->space_bits); 845 printk(KERN_ERR "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 846 printk(KERN_ERR "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 847 printk(KERN_ERR "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 848 printk(KERN_ERR "\tpcnt_bits: %d\n", c->pcnt_bits); 849 printk(KERN_ERR "\tlnum_bits: %d\n", c->lnum_bits); 850 printk(KERN_ERR "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 851 printk(KERN_ERR "\tLPT head is at %d:%d\n", 852 c->nhead_lnum, c->nhead_offs); 853 printk(KERN_ERR "\tLPT ltab is at %d:%d\n", 854 c->ltab_lnum, c->ltab_offs); 855 if (c->big_lpt) 856 printk(KERN_ERR "\tLPT lsave is at %d:%d\n", 857 c->lsave_lnum, c->lsave_offs); 858 for (i = 0; i < c->lpt_lebs; i++) 859 printk(KERN_ERR "\tLPT LEB %d free %d dirty %d tgc %d " 860 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 861 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 862 spin_unlock(&dbg_lock); 863 } 864 865 void dbg_dump_sleb(const struct ubifs_info *c, 866 const struct ubifs_scan_leb *sleb, int offs) 867 { 868 struct ubifs_scan_node *snod; 869 870 printk(KERN_ERR "(pid %d) start dumping scanned data from LEB %d:%d\n", 871 current->pid, sleb->lnum, offs); 872 873 list_for_each_entry(snod, &sleb->nodes, list) { 874 cond_resched(); 875 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", sleb->lnum, 876 snod->offs, snod->len); 877 dbg_dump_node(c, snod->node); 878 } 879 } 880 881 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 882 { 883 struct ubifs_scan_leb *sleb; 884 struct ubifs_scan_node *snod; 885 void *buf; 886 887 if (dbg_is_tst_rcvry(c)) 888 return; 889 890 printk(KERN_ERR "(pid %d) start dumping LEB %d\n", 891 current->pid, lnum); 892 893 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 894 if (!buf) { 895 ubifs_err("cannot allocate memory for dumping LEB %d", lnum); 896 return; 897 } 898 899 sleb = ubifs_scan(c, lnum, 0, buf, 0); 900 if (IS_ERR(sleb)) { 901 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 902 goto out; 903 } 904 905 printk(KERN_ERR "LEB %d has %d nodes ending at %d\n", lnum, 906 sleb->nodes_cnt, sleb->endpt); 907 908 list_for_each_entry(snod, &sleb->nodes, list) { 909 cond_resched(); 910 printk(KERN_ERR "Dumping node at LEB %d:%d len %d\n", lnum, 911 snod->offs, snod->len); 912 dbg_dump_node(c, snod->node); 913 } 914 915 printk(KERN_ERR "(pid %d) finish dumping LEB %d\n", 916 current->pid, lnum); 917 ubifs_scan_destroy(sleb); 918 919 out: 920 vfree(buf); 921 return; 922 } 923 924 void dbg_dump_znode(const struct ubifs_info *c, 925 const struct ubifs_znode *znode) 926 { 927 int n; 928 const struct ubifs_zbranch *zbr; 929 char key_buf[DBG_KEY_BUF_LEN]; 930 931 spin_lock(&dbg_lock); 932 if (znode->parent) 933 zbr = &znode->parent->zbranch[znode->iip]; 934 else 935 zbr = &c->zroot; 936 937 printk(KERN_ERR "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 938 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 939 zbr->len, znode->parent, znode->iip, znode->level, 940 znode->child_cnt, znode->flags); 941 942 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 943 spin_unlock(&dbg_lock); 944 return; 945 } 946 947 printk(KERN_ERR "zbranches:\n"); 948 for (n = 0; n < znode->child_cnt; n++) { 949 zbr = &znode->zbranch[n]; 950 if (znode->level > 0) 951 printk(KERN_ERR "\t%d: znode %p LEB %d:%d len %d key " 952 "%s\n", n, zbr->znode, zbr->lnum, 953 zbr->offs, zbr->len, 954 dbg_snprintf_key(c, &zbr->key, 955 key_buf, 956 DBG_KEY_BUF_LEN)); 957 else 958 printk(KERN_ERR "\t%d: LNC %p LEB %d:%d len %d key " 959 "%s\n", n, zbr->znode, zbr->lnum, 960 zbr->offs, zbr->len, 961 dbg_snprintf_key(c, &zbr->key, 962 key_buf, 963 DBG_KEY_BUF_LEN)); 964 } 965 spin_unlock(&dbg_lock); 966 } 967 968 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 969 { 970 int i; 971 972 printk(KERN_ERR "(pid %d) start dumping heap cat %d (%d elements)\n", 973 current->pid, cat, heap->cnt); 974 for (i = 0; i < heap->cnt; i++) { 975 struct ubifs_lprops *lprops = heap->arr[i]; 976 977 printk(KERN_ERR "\t%d. LEB %d hpos %d free %d dirty %d " 978 "flags %d\n", i, lprops->lnum, lprops->hpos, 979 lprops->free, lprops->dirty, lprops->flags); 980 } 981 printk(KERN_ERR "(pid %d) finish dumping heap\n", current->pid); 982 } 983 984 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 985 struct ubifs_nnode *parent, int iip) 986 { 987 int i; 988 989 printk(KERN_ERR "(pid %d) dumping pnode:\n", current->pid); 990 printk(KERN_ERR "\taddress %zx parent %zx cnext %zx\n", 991 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 992 printk(KERN_ERR "\tflags %lu iip %d level %d num %d\n", 993 pnode->flags, iip, pnode->level, pnode->num); 994 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 995 struct ubifs_lprops *lp = &pnode->lprops[i]; 996 997 printk(KERN_ERR "\t%d: free %d dirty %d flags %d lnum %d\n", 998 i, lp->free, lp->dirty, lp->flags, lp->lnum); 999 } 1000 } 1001 1002 void dbg_dump_tnc(struct ubifs_info *c) 1003 { 1004 struct ubifs_znode *znode; 1005 int level; 1006 1007 printk(KERN_ERR "\n"); 1008 printk(KERN_ERR "(pid %d) start dumping TNC tree\n", current->pid); 1009 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 1010 level = znode->level; 1011 printk(KERN_ERR "== Level %d ==\n", level); 1012 while (znode) { 1013 if (level != znode->level) { 1014 level = znode->level; 1015 printk(KERN_ERR "== Level %d ==\n", level); 1016 } 1017 dbg_dump_znode(c, znode); 1018 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 1019 } 1020 printk(KERN_ERR "(pid %d) finish dumping TNC tree\n", current->pid); 1021 } 1022 1023 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 1024 void *priv) 1025 { 1026 dbg_dump_znode(c, znode); 1027 return 0; 1028 } 1029 1030 /** 1031 * dbg_dump_index - dump the on-flash index. 1032 * @c: UBIFS file-system description object 1033 * 1034 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 1035 * which dumps only in-memory znodes and does not read znodes which from flash. 1036 */ 1037 void dbg_dump_index(struct ubifs_info *c) 1038 { 1039 dbg_walk_index(c, NULL, dump_znode, NULL); 1040 } 1041 1042 /** 1043 * dbg_save_space_info - save information about flash space. 1044 * @c: UBIFS file-system description object 1045 * 1046 * This function saves information about UBIFS free space, dirty space, etc, in 1047 * order to check it later. 1048 */ 1049 void dbg_save_space_info(struct ubifs_info *c) 1050 { 1051 struct ubifs_debug_info *d = c->dbg; 1052 int freeable_cnt; 1053 1054 spin_lock(&c->space_lock); 1055 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 1056 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 1057 d->saved_idx_gc_cnt = c->idx_gc_cnt; 1058 1059 /* 1060 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1061 * affects the free space calculations, and UBIFS might not know about 1062 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1063 * only when we read their lprops, and we do this only lazily, upon the 1064 * need. So at any given point of time @c->freeable_cnt might be not 1065 * exactly accurate. 1066 * 1067 * Just one example about the issue we hit when we did not zero 1068 * @c->freeable_cnt. 1069 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1070 * amount of free space in @d->saved_free 1071 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1072 * information from flash, where we cache LEBs from various 1073 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1074 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1075 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1076 * -> 'ubifs_add_to_cat()'). 1077 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1078 * becomes %1. 1079 * 4. We calculate the amount of free space when the re-mount is 1080 * finished in 'dbg_check_space_info()' and it does not match 1081 * @d->saved_free. 1082 */ 1083 freeable_cnt = c->freeable_cnt; 1084 c->freeable_cnt = 0; 1085 d->saved_free = ubifs_get_free_space_nolock(c); 1086 c->freeable_cnt = freeable_cnt; 1087 spin_unlock(&c->space_lock); 1088 } 1089 1090 /** 1091 * dbg_check_space_info - check flash space information. 1092 * @c: UBIFS file-system description object 1093 * 1094 * This function compares current flash space information with the information 1095 * which was saved when the 'dbg_save_space_info()' function was called. 1096 * Returns zero if the information has not changed, and %-EINVAL it it has 1097 * changed. 1098 */ 1099 int dbg_check_space_info(struct ubifs_info *c) 1100 { 1101 struct ubifs_debug_info *d = c->dbg; 1102 struct ubifs_lp_stats lst; 1103 long long free; 1104 int freeable_cnt; 1105 1106 spin_lock(&c->space_lock); 1107 freeable_cnt = c->freeable_cnt; 1108 c->freeable_cnt = 0; 1109 free = ubifs_get_free_space_nolock(c); 1110 c->freeable_cnt = freeable_cnt; 1111 spin_unlock(&c->space_lock); 1112 1113 if (free != d->saved_free) { 1114 ubifs_err("free space changed from %lld to %lld", 1115 d->saved_free, free); 1116 goto out; 1117 } 1118 1119 return 0; 1120 1121 out: 1122 ubifs_msg("saved lprops statistics dump"); 1123 dbg_dump_lstats(&d->saved_lst); 1124 ubifs_msg("saved budgeting info dump"); 1125 dbg_dump_budg(c, &d->saved_bi); 1126 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1127 ubifs_msg("current lprops statistics dump"); 1128 ubifs_get_lp_stats(c, &lst); 1129 dbg_dump_lstats(&lst); 1130 ubifs_msg("current budgeting info dump"); 1131 dbg_dump_budg(c, &c->bi); 1132 dump_stack(); 1133 return -EINVAL; 1134 } 1135 1136 /** 1137 * dbg_check_synced_i_size - check synchronized inode size. 1138 * @c: UBIFS file-system description object 1139 * @inode: inode to check 1140 * 1141 * If inode is clean, synchronized inode size has to be equivalent to current 1142 * inode size. This function has to be called only for locked inodes (@i_mutex 1143 * has to be locked). Returns %0 if synchronized inode size if correct, and 1144 * %-EINVAL if not. 1145 */ 1146 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1147 { 1148 int err = 0; 1149 struct ubifs_inode *ui = ubifs_inode(inode); 1150 1151 if (!dbg_is_chk_gen(c)) 1152 return 0; 1153 if (!S_ISREG(inode->i_mode)) 1154 return 0; 1155 1156 mutex_lock(&ui->ui_mutex); 1157 spin_lock(&ui->ui_lock); 1158 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1159 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1160 "is clean", ui->ui_size, ui->synced_i_size); 1161 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1162 inode->i_mode, i_size_read(inode)); 1163 dbg_dump_stack(); 1164 err = -EINVAL; 1165 } 1166 spin_unlock(&ui->ui_lock); 1167 mutex_unlock(&ui->ui_mutex); 1168 return err; 1169 } 1170 1171 /* 1172 * dbg_check_dir - check directory inode size and link count. 1173 * @c: UBIFS file-system description object 1174 * @dir: the directory to calculate size for 1175 * @size: the result is returned here 1176 * 1177 * This function makes sure that directory size and link count are correct. 1178 * Returns zero in case of success and a negative error code in case of 1179 * failure. 1180 * 1181 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1182 * calling this function. 1183 */ 1184 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1185 { 1186 unsigned int nlink = 2; 1187 union ubifs_key key; 1188 struct ubifs_dent_node *dent, *pdent = NULL; 1189 struct qstr nm = { .name = NULL }; 1190 loff_t size = UBIFS_INO_NODE_SZ; 1191 1192 if (!dbg_is_chk_gen(c)) 1193 return 0; 1194 1195 if (!S_ISDIR(dir->i_mode)) 1196 return 0; 1197 1198 lowest_dent_key(c, &key, dir->i_ino); 1199 while (1) { 1200 int err; 1201 1202 dent = ubifs_tnc_next_ent(c, &key, &nm); 1203 if (IS_ERR(dent)) { 1204 err = PTR_ERR(dent); 1205 if (err == -ENOENT) 1206 break; 1207 return err; 1208 } 1209 1210 nm.name = dent->name; 1211 nm.len = le16_to_cpu(dent->nlen); 1212 size += CALC_DENT_SIZE(nm.len); 1213 if (dent->type == UBIFS_ITYPE_DIR) 1214 nlink += 1; 1215 kfree(pdent); 1216 pdent = dent; 1217 key_read(c, &dent->key, &key); 1218 } 1219 kfree(pdent); 1220 1221 if (i_size_read(dir) != size) { 1222 ubifs_err("directory inode %lu has size %llu, " 1223 "but calculated size is %llu", dir->i_ino, 1224 (unsigned long long)i_size_read(dir), 1225 (unsigned long long)size); 1226 dbg_dump_inode(c, dir); 1227 dump_stack(); 1228 return -EINVAL; 1229 } 1230 if (dir->i_nlink != nlink) { 1231 ubifs_err("directory inode %lu has nlink %u, but calculated " 1232 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1233 dbg_dump_inode(c, dir); 1234 dump_stack(); 1235 return -EINVAL; 1236 } 1237 1238 return 0; 1239 } 1240 1241 /** 1242 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1243 * @c: UBIFS file-system description object 1244 * @zbr1: first zbranch 1245 * @zbr2: following zbranch 1246 * 1247 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1248 * names of the direntries/xentries which are referred by the keys. This 1249 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1250 * sure the name of direntry/xentry referred by @zbr1 is less than 1251 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1252 * and a negative error code in case of failure. 1253 */ 1254 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1255 struct ubifs_zbranch *zbr2) 1256 { 1257 int err, nlen1, nlen2, cmp; 1258 struct ubifs_dent_node *dent1, *dent2; 1259 union ubifs_key key; 1260 char key_buf[DBG_KEY_BUF_LEN]; 1261 1262 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1263 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1264 if (!dent1) 1265 return -ENOMEM; 1266 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1267 if (!dent2) { 1268 err = -ENOMEM; 1269 goto out_free; 1270 } 1271 1272 err = ubifs_tnc_read_node(c, zbr1, dent1); 1273 if (err) 1274 goto out_free; 1275 err = ubifs_validate_entry(c, dent1); 1276 if (err) 1277 goto out_free; 1278 1279 err = ubifs_tnc_read_node(c, zbr2, dent2); 1280 if (err) 1281 goto out_free; 1282 err = ubifs_validate_entry(c, dent2); 1283 if (err) 1284 goto out_free; 1285 1286 /* Make sure node keys are the same as in zbranch */ 1287 err = 1; 1288 key_read(c, &dent1->key, &key); 1289 if (keys_cmp(c, &zbr1->key, &key)) { 1290 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1291 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1292 DBG_KEY_BUF_LEN)); 1293 dbg_err("but it should have key %s according to tnc", 1294 dbg_snprintf_key(c, &zbr1->key, key_buf, 1295 DBG_KEY_BUF_LEN)); 1296 dbg_dump_node(c, dent1); 1297 goto out_free; 1298 } 1299 1300 key_read(c, &dent2->key, &key); 1301 if (keys_cmp(c, &zbr2->key, &key)) { 1302 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1303 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1304 DBG_KEY_BUF_LEN)); 1305 dbg_err("but it should have key %s according to tnc", 1306 dbg_snprintf_key(c, &zbr2->key, key_buf, 1307 DBG_KEY_BUF_LEN)); 1308 dbg_dump_node(c, dent2); 1309 goto out_free; 1310 } 1311 1312 nlen1 = le16_to_cpu(dent1->nlen); 1313 nlen2 = le16_to_cpu(dent2->nlen); 1314 1315 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1316 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1317 err = 0; 1318 goto out_free; 1319 } 1320 if (cmp == 0 && nlen1 == nlen2) 1321 dbg_err("2 xent/dent nodes with the same name"); 1322 else 1323 dbg_err("bad order of colliding key %s", 1324 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1325 1326 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1327 dbg_dump_node(c, dent1); 1328 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1329 dbg_dump_node(c, dent2); 1330 1331 out_free: 1332 kfree(dent2); 1333 kfree(dent1); 1334 return err; 1335 } 1336 1337 /** 1338 * dbg_check_znode - check if znode is all right. 1339 * @c: UBIFS file-system description object 1340 * @zbr: zbranch which points to this znode 1341 * 1342 * This function makes sure that znode referred to by @zbr is all right. 1343 * Returns zero if it is, and %-EINVAL if it is not. 1344 */ 1345 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1346 { 1347 struct ubifs_znode *znode = zbr->znode; 1348 struct ubifs_znode *zp = znode->parent; 1349 int n, err, cmp; 1350 1351 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1352 err = 1; 1353 goto out; 1354 } 1355 if (znode->level < 0) { 1356 err = 2; 1357 goto out; 1358 } 1359 if (znode->iip < 0 || znode->iip >= c->fanout) { 1360 err = 3; 1361 goto out; 1362 } 1363 1364 if (zbr->len == 0) 1365 /* Only dirty zbranch may have no on-flash nodes */ 1366 if (!ubifs_zn_dirty(znode)) { 1367 err = 4; 1368 goto out; 1369 } 1370 1371 if (ubifs_zn_dirty(znode)) { 1372 /* 1373 * If znode is dirty, its parent has to be dirty as well. The 1374 * order of the operation is important, so we have to have 1375 * memory barriers. 1376 */ 1377 smp_mb(); 1378 if (zp && !ubifs_zn_dirty(zp)) { 1379 /* 1380 * The dirty flag is atomic and is cleared outside the 1381 * TNC mutex, so znode's dirty flag may now have 1382 * been cleared. The child is always cleared before the 1383 * parent, so we just need to check again. 1384 */ 1385 smp_mb(); 1386 if (ubifs_zn_dirty(znode)) { 1387 err = 5; 1388 goto out; 1389 } 1390 } 1391 } 1392 1393 if (zp) { 1394 const union ubifs_key *min, *max; 1395 1396 if (znode->level != zp->level - 1) { 1397 err = 6; 1398 goto out; 1399 } 1400 1401 /* Make sure the 'parent' pointer in our znode is correct */ 1402 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1403 if (!err) { 1404 /* This zbranch does not exist in the parent */ 1405 err = 7; 1406 goto out; 1407 } 1408 1409 if (znode->iip >= zp->child_cnt) { 1410 err = 8; 1411 goto out; 1412 } 1413 1414 if (znode->iip != n) { 1415 /* This may happen only in case of collisions */ 1416 if (keys_cmp(c, &zp->zbranch[n].key, 1417 &zp->zbranch[znode->iip].key)) { 1418 err = 9; 1419 goto out; 1420 } 1421 n = znode->iip; 1422 } 1423 1424 /* 1425 * Make sure that the first key in our znode is greater than or 1426 * equal to the key in the pointing zbranch. 1427 */ 1428 min = &zbr->key; 1429 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1430 if (cmp == 1) { 1431 err = 10; 1432 goto out; 1433 } 1434 1435 if (n + 1 < zp->child_cnt) { 1436 max = &zp->zbranch[n + 1].key; 1437 1438 /* 1439 * Make sure the last key in our znode is less or 1440 * equivalent than the key in the zbranch which goes 1441 * after our pointing zbranch. 1442 */ 1443 cmp = keys_cmp(c, max, 1444 &znode->zbranch[znode->child_cnt - 1].key); 1445 if (cmp == -1) { 1446 err = 11; 1447 goto out; 1448 } 1449 } 1450 } else { 1451 /* This may only be root znode */ 1452 if (zbr != &c->zroot) { 1453 err = 12; 1454 goto out; 1455 } 1456 } 1457 1458 /* 1459 * Make sure that next key is greater or equivalent then the previous 1460 * one. 1461 */ 1462 for (n = 1; n < znode->child_cnt; n++) { 1463 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1464 &znode->zbranch[n].key); 1465 if (cmp > 0) { 1466 err = 13; 1467 goto out; 1468 } 1469 if (cmp == 0) { 1470 /* This can only be keys with colliding hash */ 1471 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1472 err = 14; 1473 goto out; 1474 } 1475 1476 if (znode->level != 0 || c->replaying) 1477 continue; 1478 1479 /* 1480 * Colliding keys should follow binary order of 1481 * corresponding xentry/dentry names. 1482 */ 1483 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1484 &znode->zbranch[n]); 1485 if (err < 0) 1486 return err; 1487 if (err) { 1488 err = 15; 1489 goto out; 1490 } 1491 } 1492 } 1493 1494 for (n = 0; n < znode->child_cnt; n++) { 1495 if (!znode->zbranch[n].znode && 1496 (znode->zbranch[n].lnum == 0 || 1497 znode->zbranch[n].len == 0)) { 1498 err = 16; 1499 goto out; 1500 } 1501 1502 if (znode->zbranch[n].lnum != 0 && 1503 znode->zbranch[n].len == 0) { 1504 err = 17; 1505 goto out; 1506 } 1507 1508 if (znode->zbranch[n].lnum == 0 && 1509 znode->zbranch[n].len != 0) { 1510 err = 18; 1511 goto out; 1512 } 1513 1514 if (znode->zbranch[n].lnum == 0 && 1515 znode->zbranch[n].offs != 0) { 1516 err = 19; 1517 goto out; 1518 } 1519 1520 if (znode->level != 0 && znode->zbranch[n].znode) 1521 if (znode->zbranch[n].znode->parent != znode) { 1522 err = 20; 1523 goto out; 1524 } 1525 } 1526 1527 return 0; 1528 1529 out: 1530 ubifs_err("failed, error %d", err); 1531 ubifs_msg("dump of the znode"); 1532 dbg_dump_znode(c, znode); 1533 if (zp) { 1534 ubifs_msg("dump of the parent znode"); 1535 dbg_dump_znode(c, zp); 1536 } 1537 dump_stack(); 1538 return -EINVAL; 1539 } 1540 1541 /** 1542 * dbg_check_tnc - check TNC tree. 1543 * @c: UBIFS file-system description object 1544 * @extra: do extra checks that are possible at start commit 1545 * 1546 * This function traverses whole TNC tree and checks every znode. Returns zero 1547 * if everything is all right and %-EINVAL if something is wrong with TNC. 1548 */ 1549 int dbg_check_tnc(struct ubifs_info *c, int extra) 1550 { 1551 struct ubifs_znode *znode; 1552 long clean_cnt = 0, dirty_cnt = 0; 1553 int err, last; 1554 1555 if (!dbg_is_chk_index(c)) 1556 return 0; 1557 1558 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1559 if (!c->zroot.znode) 1560 return 0; 1561 1562 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1563 while (1) { 1564 struct ubifs_znode *prev; 1565 struct ubifs_zbranch *zbr; 1566 1567 if (!znode->parent) 1568 zbr = &c->zroot; 1569 else 1570 zbr = &znode->parent->zbranch[znode->iip]; 1571 1572 err = dbg_check_znode(c, zbr); 1573 if (err) 1574 return err; 1575 1576 if (extra) { 1577 if (ubifs_zn_dirty(znode)) 1578 dirty_cnt += 1; 1579 else 1580 clean_cnt += 1; 1581 } 1582 1583 prev = znode; 1584 znode = ubifs_tnc_postorder_next(znode); 1585 if (!znode) 1586 break; 1587 1588 /* 1589 * If the last key of this znode is equivalent to the first key 1590 * of the next znode (collision), then check order of the keys. 1591 */ 1592 last = prev->child_cnt - 1; 1593 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1594 !keys_cmp(c, &prev->zbranch[last].key, 1595 &znode->zbranch[0].key)) { 1596 err = dbg_check_key_order(c, &prev->zbranch[last], 1597 &znode->zbranch[0]); 1598 if (err < 0) 1599 return err; 1600 if (err) { 1601 ubifs_msg("first znode"); 1602 dbg_dump_znode(c, prev); 1603 ubifs_msg("second znode"); 1604 dbg_dump_znode(c, znode); 1605 return -EINVAL; 1606 } 1607 } 1608 } 1609 1610 if (extra) { 1611 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1612 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1613 atomic_long_read(&c->clean_zn_cnt), 1614 clean_cnt); 1615 return -EINVAL; 1616 } 1617 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1618 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1619 atomic_long_read(&c->dirty_zn_cnt), 1620 dirty_cnt); 1621 return -EINVAL; 1622 } 1623 } 1624 1625 return 0; 1626 } 1627 1628 /** 1629 * dbg_walk_index - walk the on-flash index. 1630 * @c: UBIFS file-system description object 1631 * @leaf_cb: called for each leaf node 1632 * @znode_cb: called for each indexing node 1633 * @priv: private data which is passed to callbacks 1634 * 1635 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1636 * node and @znode_cb for each indexing node. Returns zero in case of success 1637 * and a negative error code in case of failure. 1638 * 1639 * It would be better if this function removed every znode it pulled to into 1640 * the TNC, so that the behavior more closely matched the non-debugging 1641 * behavior. 1642 */ 1643 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1644 dbg_znode_callback znode_cb, void *priv) 1645 { 1646 int err; 1647 struct ubifs_zbranch *zbr; 1648 struct ubifs_znode *znode, *child; 1649 1650 mutex_lock(&c->tnc_mutex); 1651 /* If the root indexing node is not in TNC - pull it */ 1652 if (!c->zroot.znode) { 1653 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1654 if (IS_ERR(c->zroot.znode)) { 1655 err = PTR_ERR(c->zroot.znode); 1656 c->zroot.znode = NULL; 1657 goto out_unlock; 1658 } 1659 } 1660 1661 /* 1662 * We are going to traverse the indexing tree in the postorder manner. 1663 * Go down and find the leftmost indexing node where we are going to 1664 * start from. 1665 */ 1666 znode = c->zroot.znode; 1667 while (znode->level > 0) { 1668 zbr = &znode->zbranch[0]; 1669 child = zbr->znode; 1670 if (!child) { 1671 child = ubifs_load_znode(c, zbr, znode, 0); 1672 if (IS_ERR(child)) { 1673 err = PTR_ERR(child); 1674 goto out_unlock; 1675 } 1676 zbr->znode = child; 1677 } 1678 1679 znode = child; 1680 } 1681 1682 /* Iterate over all indexing nodes */ 1683 while (1) { 1684 int idx; 1685 1686 cond_resched(); 1687 1688 if (znode_cb) { 1689 err = znode_cb(c, znode, priv); 1690 if (err) { 1691 ubifs_err("znode checking function returned " 1692 "error %d", err); 1693 dbg_dump_znode(c, znode); 1694 goto out_dump; 1695 } 1696 } 1697 if (leaf_cb && znode->level == 0) { 1698 for (idx = 0; idx < znode->child_cnt; idx++) { 1699 zbr = &znode->zbranch[idx]; 1700 err = leaf_cb(c, zbr, priv); 1701 if (err) { 1702 ubifs_err("leaf checking function " 1703 "returned error %d, for leaf " 1704 "at LEB %d:%d", 1705 err, zbr->lnum, zbr->offs); 1706 goto out_dump; 1707 } 1708 } 1709 } 1710 1711 if (!znode->parent) 1712 break; 1713 1714 idx = znode->iip + 1; 1715 znode = znode->parent; 1716 if (idx < znode->child_cnt) { 1717 /* Switch to the next index in the parent */ 1718 zbr = &znode->zbranch[idx]; 1719 child = zbr->znode; 1720 if (!child) { 1721 child = ubifs_load_znode(c, zbr, znode, idx); 1722 if (IS_ERR(child)) { 1723 err = PTR_ERR(child); 1724 goto out_unlock; 1725 } 1726 zbr->znode = child; 1727 } 1728 znode = child; 1729 } else 1730 /* 1731 * This is the last child, switch to the parent and 1732 * continue. 1733 */ 1734 continue; 1735 1736 /* Go to the lowest leftmost znode in the new sub-tree */ 1737 while (znode->level > 0) { 1738 zbr = &znode->zbranch[0]; 1739 child = zbr->znode; 1740 if (!child) { 1741 child = ubifs_load_znode(c, zbr, znode, 0); 1742 if (IS_ERR(child)) { 1743 err = PTR_ERR(child); 1744 goto out_unlock; 1745 } 1746 zbr->znode = child; 1747 } 1748 znode = child; 1749 } 1750 } 1751 1752 mutex_unlock(&c->tnc_mutex); 1753 return 0; 1754 1755 out_dump: 1756 if (znode->parent) 1757 zbr = &znode->parent->zbranch[znode->iip]; 1758 else 1759 zbr = &c->zroot; 1760 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1761 dbg_dump_znode(c, znode); 1762 out_unlock: 1763 mutex_unlock(&c->tnc_mutex); 1764 return err; 1765 } 1766 1767 /** 1768 * add_size - add znode size to partially calculated index size. 1769 * @c: UBIFS file-system description object 1770 * @znode: znode to add size for 1771 * @priv: partially calculated index size 1772 * 1773 * This is a helper function for 'dbg_check_idx_size()' which is called for 1774 * every indexing node and adds its size to the 'long long' variable pointed to 1775 * by @priv. 1776 */ 1777 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1778 { 1779 long long *idx_size = priv; 1780 int add; 1781 1782 add = ubifs_idx_node_sz(c, znode->child_cnt); 1783 add = ALIGN(add, 8); 1784 *idx_size += add; 1785 return 0; 1786 } 1787 1788 /** 1789 * dbg_check_idx_size - check index size. 1790 * @c: UBIFS file-system description object 1791 * @idx_size: size to check 1792 * 1793 * This function walks the UBIFS index, calculates its size and checks that the 1794 * size is equivalent to @idx_size. Returns zero in case of success and a 1795 * negative error code in case of failure. 1796 */ 1797 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1798 { 1799 int err; 1800 long long calc = 0; 1801 1802 if (!dbg_is_chk_index(c)) 1803 return 0; 1804 1805 err = dbg_walk_index(c, NULL, add_size, &calc); 1806 if (err) { 1807 ubifs_err("error %d while walking the index", err); 1808 return err; 1809 } 1810 1811 if (calc != idx_size) { 1812 ubifs_err("index size check failed: calculated size is %lld, " 1813 "should be %lld", calc, idx_size); 1814 dump_stack(); 1815 return -EINVAL; 1816 } 1817 1818 return 0; 1819 } 1820 1821 /** 1822 * struct fsck_inode - information about an inode used when checking the file-system. 1823 * @rb: link in the RB-tree of inodes 1824 * @inum: inode number 1825 * @mode: inode type, permissions, etc 1826 * @nlink: inode link count 1827 * @xattr_cnt: count of extended attributes 1828 * @references: how many directory/xattr entries refer this inode (calculated 1829 * while walking the index) 1830 * @calc_cnt: for directory inode count of child directories 1831 * @size: inode size (read from on-flash inode) 1832 * @xattr_sz: summary size of all extended attributes (read from on-flash 1833 * inode) 1834 * @calc_sz: for directories calculated directory size 1835 * @calc_xcnt: count of extended attributes 1836 * @calc_xsz: calculated summary size of all extended attributes 1837 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1838 * inode (read from on-flash inode) 1839 * @calc_xnms: calculated sum of lengths of all extended attribute names 1840 */ 1841 struct fsck_inode { 1842 struct rb_node rb; 1843 ino_t inum; 1844 umode_t mode; 1845 unsigned int nlink; 1846 unsigned int xattr_cnt; 1847 int references; 1848 int calc_cnt; 1849 long long size; 1850 unsigned int xattr_sz; 1851 long long calc_sz; 1852 long long calc_xcnt; 1853 long long calc_xsz; 1854 unsigned int xattr_nms; 1855 long long calc_xnms; 1856 }; 1857 1858 /** 1859 * struct fsck_data - private FS checking information. 1860 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1861 */ 1862 struct fsck_data { 1863 struct rb_root inodes; 1864 }; 1865 1866 /** 1867 * add_inode - add inode information to RB-tree of inodes. 1868 * @c: UBIFS file-system description object 1869 * @fsckd: FS checking information 1870 * @ino: raw UBIFS inode to add 1871 * 1872 * This is a helper function for 'check_leaf()' which adds information about 1873 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1874 * case of success and a negative error code in case of failure. 1875 */ 1876 static struct fsck_inode *add_inode(struct ubifs_info *c, 1877 struct fsck_data *fsckd, 1878 struct ubifs_ino_node *ino) 1879 { 1880 struct rb_node **p, *parent = NULL; 1881 struct fsck_inode *fscki; 1882 ino_t inum = key_inum_flash(c, &ino->key); 1883 struct inode *inode; 1884 struct ubifs_inode *ui; 1885 1886 p = &fsckd->inodes.rb_node; 1887 while (*p) { 1888 parent = *p; 1889 fscki = rb_entry(parent, struct fsck_inode, rb); 1890 if (inum < fscki->inum) 1891 p = &(*p)->rb_left; 1892 else if (inum > fscki->inum) 1893 p = &(*p)->rb_right; 1894 else 1895 return fscki; 1896 } 1897 1898 if (inum > c->highest_inum) { 1899 ubifs_err("too high inode number, max. is %lu", 1900 (unsigned long)c->highest_inum); 1901 return ERR_PTR(-EINVAL); 1902 } 1903 1904 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1905 if (!fscki) 1906 return ERR_PTR(-ENOMEM); 1907 1908 inode = ilookup(c->vfs_sb, inum); 1909 1910 fscki->inum = inum; 1911 /* 1912 * If the inode is present in the VFS inode cache, use it instead of 1913 * the on-flash inode which might be out-of-date. E.g., the size might 1914 * be out-of-date. If we do not do this, the following may happen, for 1915 * example: 1916 * 1. A power cut happens 1917 * 2. We mount the file-system R/O, the replay process fixes up the 1918 * inode size in the VFS cache, but on on-flash. 1919 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1920 * size. 1921 */ 1922 if (!inode) { 1923 fscki->nlink = le32_to_cpu(ino->nlink); 1924 fscki->size = le64_to_cpu(ino->size); 1925 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1926 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1927 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1928 fscki->mode = le32_to_cpu(ino->mode); 1929 } else { 1930 ui = ubifs_inode(inode); 1931 fscki->nlink = inode->i_nlink; 1932 fscki->size = inode->i_size; 1933 fscki->xattr_cnt = ui->xattr_cnt; 1934 fscki->xattr_sz = ui->xattr_size; 1935 fscki->xattr_nms = ui->xattr_names; 1936 fscki->mode = inode->i_mode; 1937 iput(inode); 1938 } 1939 1940 if (S_ISDIR(fscki->mode)) { 1941 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1942 fscki->calc_cnt = 2; 1943 } 1944 1945 rb_link_node(&fscki->rb, parent, p); 1946 rb_insert_color(&fscki->rb, &fsckd->inodes); 1947 1948 return fscki; 1949 } 1950 1951 /** 1952 * search_inode - search inode in the RB-tree of inodes. 1953 * @fsckd: FS checking information 1954 * @inum: inode number to search 1955 * 1956 * This is a helper function for 'check_leaf()' which searches inode @inum in 1957 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1958 * the inode was not found. 1959 */ 1960 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1961 { 1962 struct rb_node *p; 1963 struct fsck_inode *fscki; 1964 1965 p = fsckd->inodes.rb_node; 1966 while (p) { 1967 fscki = rb_entry(p, struct fsck_inode, rb); 1968 if (inum < fscki->inum) 1969 p = p->rb_left; 1970 else if (inum > fscki->inum) 1971 p = p->rb_right; 1972 else 1973 return fscki; 1974 } 1975 return NULL; 1976 } 1977 1978 /** 1979 * read_add_inode - read inode node and add it to RB-tree of inodes. 1980 * @c: UBIFS file-system description object 1981 * @fsckd: FS checking information 1982 * @inum: inode number to read 1983 * 1984 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1985 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1986 * information pointer in case of success and a negative error code in case of 1987 * failure. 1988 */ 1989 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1990 struct fsck_data *fsckd, ino_t inum) 1991 { 1992 int n, err; 1993 union ubifs_key key; 1994 struct ubifs_znode *znode; 1995 struct ubifs_zbranch *zbr; 1996 struct ubifs_ino_node *ino; 1997 struct fsck_inode *fscki; 1998 1999 fscki = search_inode(fsckd, inum); 2000 if (fscki) 2001 return fscki; 2002 2003 ino_key_init(c, &key, inum); 2004 err = ubifs_lookup_level0(c, &key, &znode, &n); 2005 if (!err) { 2006 ubifs_err("inode %lu not found in index", (unsigned long)inum); 2007 return ERR_PTR(-ENOENT); 2008 } else if (err < 0) { 2009 ubifs_err("error %d while looking up inode %lu", 2010 err, (unsigned long)inum); 2011 return ERR_PTR(err); 2012 } 2013 2014 zbr = &znode->zbranch[n]; 2015 if (zbr->len < UBIFS_INO_NODE_SZ) { 2016 ubifs_err("bad node %lu node length %d", 2017 (unsigned long)inum, zbr->len); 2018 return ERR_PTR(-EINVAL); 2019 } 2020 2021 ino = kmalloc(zbr->len, GFP_NOFS); 2022 if (!ino) 2023 return ERR_PTR(-ENOMEM); 2024 2025 err = ubifs_tnc_read_node(c, zbr, ino); 2026 if (err) { 2027 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2028 zbr->lnum, zbr->offs, err); 2029 kfree(ino); 2030 return ERR_PTR(err); 2031 } 2032 2033 fscki = add_inode(c, fsckd, ino); 2034 kfree(ino); 2035 if (IS_ERR(fscki)) { 2036 ubifs_err("error %ld while adding inode %lu node", 2037 PTR_ERR(fscki), (unsigned long)inum); 2038 return fscki; 2039 } 2040 2041 return fscki; 2042 } 2043 2044 /** 2045 * check_leaf - check leaf node. 2046 * @c: UBIFS file-system description object 2047 * @zbr: zbranch of the leaf node to check 2048 * @priv: FS checking information 2049 * 2050 * This is a helper function for 'dbg_check_filesystem()' which is called for 2051 * every single leaf node while walking the indexing tree. It checks that the 2052 * leaf node referred from the indexing tree exists, has correct CRC, and does 2053 * some other basic validation. This function is also responsible for building 2054 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 2055 * calculates reference count, size, etc for each inode in order to later 2056 * compare them to the information stored inside the inodes and detect possible 2057 * inconsistencies. Returns zero in case of success and a negative error code 2058 * in case of failure. 2059 */ 2060 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2061 void *priv) 2062 { 2063 ino_t inum; 2064 void *node; 2065 struct ubifs_ch *ch; 2066 int err, type = key_type(c, &zbr->key); 2067 struct fsck_inode *fscki; 2068 2069 if (zbr->len < UBIFS_CH_SZ) { 2070 ubifs_err("bad leaf length %d (LEB %d:%d)", 2071 zbr->len, zbr->lnum, zbr->offs); 2072 return -EINVAL; 2073 } 2074 2075 node = kmalloc(zbr->len, GFP_NOFS); 2076 if (!node) 2077 return -ENOMEM; 2078 2079 err = ubifs_tnc_read_node(c, zbr, node); 2080 if (err) { 2081 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 2082 zbr->lnum, zbr->offs, err); 2083 goto out_free; 2084 } 2085 2086 /* If this is an inode node, add it to RB-tree of inodes */ 2087 if (type == UBIFS_INO_KEY) { 2088 fscki = add_inode(c, priv, node); 2089 if (IS_ERR(fscki)) { 2090 err = PTR_ERR(fscki); 2091 ubifs_err("error %d while adding inode node", err); 2092 goto out_dump; 2093 } 2094 goto out; 2095 } 2096 2097 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2098 type != UBIFS_DATA_KEY) { 2099 ubifs_err("unexpected node type %d at LEB %d:%d", 2100 type, zbr->lnum, zbr->offs); 2101 err = -EINVAL; 2102 goto out_free; 2103 } 2104 2105 ch = node; 2106 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2107 ubifs_err("too high sequence number, max. is %llu", 2108 c->max_sqnum); 2109 err = -EINVAL; 2110 goto out_dump; 2111 } 2112 2113 if (type == UBIFS_DATA_KEY) { 2114 long long blk_offs; 2115 struct ubifs_data_node *dn = node; 2116 2117 /* 2118 * Search the inode node this data node belongs to and insert 2119 * it to the RB-tree of inodes. 2120 */ 2121 inum = key_inum_flash(c, &dn->key); 2122 fscki = read_add_inode(c, priv, inum); 2123 if (IS_ERR(fscki)) { 2124 err = PTR_ERR(fscki); 2125 ubifs_err("error %d while processing data node and " 2126 "trying to find inode node %lu", 2127 err, (unsigned long)inum); 2128 goto out_dump; 2129 } 2130 2131 /* Make sure the data node is within inode size */ 2132 blk_offs = key_block_flash(c, &dn->key); 2133 blk_offs <<= UBIFS_BLOCK_SHIFT; 2134 blk_offs += le32_to_cpu(dn->size); 2135 if (blk_offs > fscki->size) { 2136 ubifs_err("data node at LEB %d:%d is not within inode " 2137 "size %lld", zbr->lnum, zbr->offs, 2138 fscki->size); 2139 err = -EINVAL; 2140 goto out_dump; 2141 } 2142 } else { 2143 int nlen; 2144 struct ubifs_dent_node *dent = node; 2145 struct fsck_inode *fscki1; 2146 2147 err = ubifs_validate_entry(c, dent); 2148 if (err) 2149 goto out_dump; 2150 2151 /* 2152 * Search the inode node this entry refers to and the parent 2153 * inode node and insert them to the RB-tree of inodes. 2154 */ 2155 inum = le64_to_cpu(dent->inum); 2156 fscki = read_add_inode(c, priv, inum); 2157 if (IS_ERR(fscki)) { 2158 err = PTR_ERR(fscki); 2159 ubifs_err("error %d while processing entry node and " 2160 "trying to find inode node %lu", 2161 err, (unsigned long)inum); 2162 goto out_dump; 2163 } 2164 2165 /* Count how many direntries or xentries refers this inode */ 2166 fscki->references += 1; 2167 2168 inum = key_inum_flash(c, &dent->key); 2169 fscki1 = read_add_inode(c, priv, inum); 2170 if (IS_ERR(fscki1)) { 2171 err = PTR_ERR(fscki1); 2172 ubifs_err("error %d while processing entry node and " 2173 "trying to find parent inode node %lu", 2174 err, (unsigned long)inum); 2175 goto out_dump; 2176 } 2177 2178 nlen = le16_to_cpu(dent->nlen); 2179 if (type == UBIFS_XENT_KEY) { 2180 fscki1->calc_xcnt += 1; 2181 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2182 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2183 fscki1->calc_xnms += nlen; 2184 } else { 2185 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2186 if (dent->type == UBIFS_ITYPE_DIR) 2187 fscki1->calc_cnt += 1; 2188 } 2189 } 2190 2191 out: 2192 kfree(node); 2193 return 0; 2194 2195 out_dump: 2196 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2197 dbg_dump_node(c, node); 2198 out_free: 2199 kfree(node); 2200 return err; 2201 } 2202 2203 /** 2204 * free_inodes - free RB-tree of inodes. 2205 * @fsckd: FS checking information 2206 */ 2207 static void free_inodes(struct fsck_data *fsckd) 2208 { 2209 struct rb_node *this = fsckd->inodes.rb_node; 2210 struct fsck_inode *fscki; 2211 2212 while (this) { 2213 if (this->rb_left) 2214 this = this->rb_left; 2215 else if (this->rb_right) 2216 this = this->rb_right; 2217 else { 2218 fscki = rb_entry(this, struct fsck_inode, rb); 2219 this = rb_parent(this); 2220 if (this) { 2221 if (this->rb_left == &fscki->rb) 2222 this->rb_left = NULL; 2223 else 2224 this->rb_right = NULL; 2225 } 2226 kfree(fscki); 2227 } 2228 } 2229 } 2230 2231 /** 2232 * check_inodes - checks all inodes. 2233 * @c: UBIFS file-system description object 2234 * @fsckd: FS checking information 2235 * 2236 * This is a helper function for 'dbg_check_filesystem()' which walks the 2237 * RB-tree of inodes after the index scan has been finished, and checks that 2238 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2239 * %-EINVAL if not, and a negative error code in case of failure. 2240 */ 2241 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2242 { 2243 int n, err; 2244 union ubifs_key key; 2245 struct ubifs_znode *znode; 2246 struct ubifs_zbranch *zbr; 2247 struct ubifs_ino_node *ino; 2248 struct fsck_inode *fscki; 2249 struct rb_node *this = rb_first(&fsckd->inodes); 2250 2251 while (this) { 2252 fscki = rb_entry(this, struct fsck_inode, rb); 2253 this = rb_next(this); 2254 2255 if (S_ISDIR(fscki->mode)) { 2256 /* 2257 * Directories have to have exactly one reference (they 2258 * cannot have hardlinks), although root inode is an 2259 * exception. 2260 */ 2261 if (fscki->inum != UBIFS_ROOT_INO && 2262 fscki->references != 1) { 2263 ubifs_err("directory inode %lu has %d " 2264 "direntries which refer it, but " 2265 "should be 1", 2266 (unsigned long)fscki->inum, 2267 fscki->references); 2268 goto out_dump; 2269 } 2270 if (fscki->inum == UBIFS_ROOT_INO && 2271 fscki->references != 0) { 2272 ubifs_err("root inode %lu has non-zero (%d) " 2273 "direntries which refer it", 2274 (unsigned long)fscki->inum, 2275 fscki->references); 2276 goto out_dump; 2277 } 2278 if (fscki->calc_sz != fscki->size) { 2279 ubifs_err("directory inode %lu size is %lld, " 2280 "but calculated size is %lld", 2281 (unsigned long)fscki->inum, 2282 fscki->size, fscki->calc_sz); 2283 goto out_dump; 2284 } 2285 if (fscki->calc_cnt != fscki->nlink) { 2286 ubifs_err("directory inode %lu nlink is %d, " 2287 "but calculated nlink is %d", 2288 (unsigned long)fscki->inum, 2289 fscki->nlink, fscki->calc_cnt); 2290 goto out_dump; 2291 } 2292 } else { 2293 if (fscki->references != fscki->nlink) { 2294 ubifs_err("inode %lu nlink is %d, but " 2295 "calculated nlink is %d", 2296 (unsigned long)fscki->inum, 2297 fscki->nlink, fscki->references); 2298 goto out_dump; 2299 } 2300 } 2301 if (fscki->xattr_sz != fscki->calc_xsz) { 2302 ubifs_err("inode %lu has xattr size %u, but " 2303 "calculated size is %lld", 2304 (unsigned long)fscki->inum, fscki->xattr_sz, 2305 fscki->calc_xsz); 2306 goto out_dump; 2307 } 2308 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2309 ubifs_err("inode %lu has %u xattrs, but " 2310 "calculated count is %lld", 2311 (unsigned long)fscki->inum, 2312 fscki->xattr_cnt, fscki->calc_xcnt); 2313 goto out_dump; 2314 } 2315 if (fscki->xattr_nms != fscki->calc_xnms) { 2316 ubifs_err("inode %lu has xattr names' size %u, but " 2317 "calculated names' size is %lld", 2318 (unsigned long)fscki->inum, fscki->xattr_nms, 2319 fscki->calc_xnms); 2320 goto out_dump; 2321 } 2322 } 2323 2324 return 0; 2325 2326 out_dump: 2327 /* Read the bad inode and dump it */ 2328 ino_key_init(c, &key, fscki->inum); 2329 err = ubifs_lookup_level0(c, &key, &znode, &n); 2330 if (!err) { 2331 ubifs_err("inode %lu not found in index", 2332 (unsigned long)fscki->inum); 2333 return -ENOENT; 2334 } else if (err < 0) { 2335 ubifs_err("error %d while looking up inode %lu", 2336 err, (unsigned long)fscki->inum); 2337 return err; 2338 } 2339 2340 zbr = &znode->zbranch[n]; 2341 ino = kmalloc(zbr->len, GFP_NOFS); 2342 if (!ino) 2343 return -ENOMEM; 2344 2345 err = ubifs_tnc_read_node(c, zbr, ino); 2346 if (err) { 2347 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2348 zbr->lnum, zbr->offs, err); 2349 kfree(ino); 2350 return err; 2351 } 2352 2353 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2354 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2355 dbg_dump_node(c, ino); 2356 kfree(ino); 2357 return -EINVAL; 2358 } 2359 2360 /** 2361 * dbg_check_filesystem - check the file-system. 2362 * @c: UBIFS file-system description object 2363 * 2364 * This function checks the file system, namely: 2365 * o makes sure that all leaf nodes exist and their CRCs are correct; 2366 * o makes sure inode nlink, size, xattr size/count are correct (for all 2367 * inodes). 2368 * 2369 * The function reads whole indexing tree and all nodes, so it is pretty 2370 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2371 * not, and a negative error code in case of failure. 2372 */ 2373 int dbg_check_filesystem(struct ubifs_info *c) 2374 { 2375 int err; 2376 struct fsck_data fsckd; 2377 2378 if (!dbg_is_chk_fs(c)) 2379 return 0; 2380 2381 fsckd.inodes = RB_ROOT; 2382 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2383 if (err) 2384 goto out_free; 2385 2386 err = check_inodes(c, &fsckd); 2387 if (err) 2388 goto out_free; 2389 2390 free_inodes(&fsckd); 2391 return 0; 2392 2393 out_free: 2394 ubifs_err("file-system check failed with error %d", err); 2395 dump_stack(); 2396 free_inodes(&fsckd); 2397 return err; 2398 } 2399 2400 /** 2401 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2402 * @c: UBIFS file-system description object 2403 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2404 * 2405 * This function returns zero if the list of data nodes is sorted correctly, 2406 * and %-EINVAL if not. 2407 */ 2408 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2409 { 2410 struct list_head *cur; 2411 struct ubifs_scan_node *sa, *sb; 2412 2413 if (!dbg_is_chk_gen(c)) 2414 return 0; 2415 2416 for (cur = head->next; cur->next != head; cur = cur->next) { 2417 ino_t inuma, inumb; 2418 uint32_t blka, blkb; 2419 2420 cond_resched(); 2421 sa = container_of(cur, struct ubifs_scan_node, list); 2422 sb = container_of(cur->next, struct ubifs_scan_node, list); 2423 2424 if (sa->type != UBIFS_DATA_NODE) { 2425 ubifs_err("bad node type %d", sa->type); 2426 dbg_dump_node(c, sa->node); 2427 return -EINVAL; 2428 } 2429 if (sb->type != UBIFS_DATA_NODE) { 2430 ubifs_err("bad node type %d", sb->type); 2431 dbg_dump_node(c, sb->node); 2432 return -EINVAL; 2433 } 2434 2435 inuma = key_inum(c, &sa->key); 2436 inumb = key_inum(c, &sb->key); 2437 2438 if (inuma < inumb) 2439 continue; 2440 if (inuma > inumb) { 2441 ubifs_err("larger inum %lu goes before inum %lu", 2442 (unsigned long)inuma, (unsigned long)inumb); 2443 goto error_dump; 2444 } 2445 2446 blka = key_block(c, &sa->key); 2447 blkb = key_block(c, &sb->key); 2448 2449 if (blka > blkb) { 2450 ubifs_err("larger block %u goes before %u", blka, blkb); 2451 goto error_dump; 2452 } 2453 if (blka == blkb) { 2454 ubifs_err("two data nodes for the same block"); 2455 goto error_dump; 2456 } 2457 } 2458 2459 return 0; 2460 2461 error_dump: 2462 dbg_dump_node(c, sa->node); 2463 dbg_dump_node(c, sb->node); 2464 return -EINVAL; 2465 } 2466 2467 /** 2468 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2469 * @c: UBIFS file-system description object 2470 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2471 * 2472 * This function returns zero if the list of non-data nodes is sorted correctly, 2473 * and %-EINVAL if not. 2474 */ 2475 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2476 { 2477 struct list_head *cur; 2478 struct ubifs_scan_node *sa, *sb; 2479 2480 if (!dbg_is_chk_gen(c)) 2481 return 0; 2482 2483 for (cur = head->next; cur->next != head; cur = cur->next) { 2484 ino_t inuma, inumb; 2485 uint32_t hasha, hashb; 2486 2487 cond_resched(); 2488 sa = container_of(cur, struct ubifs_scan_node, list); 2489 sb = container_of(cur->next, struct ubifs_scan_node, list); 2490 2491 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2492 sa->type != UBIFS_XENT_NODE) { 2493 ubifs_err("bad node type %d", sa->type); 2494 dbg_dump_node(c, sa->node); 2495 return -EINVAL; 2496 } 2497 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2498 sa->type != UBIFS_XENT_NODE) { 2499 ubifs_err("bad node type %d", sb->type); 2500 dbg_dump_node(c, sb->node); 2501 return -EINVAL; 2502 } 2503 2504 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2505 ubifs_err("non-inode node goes before inode node"); 2506 goto error_dump; 2507 } 2508 2509 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2510 continue; 2511 2512 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2513 /* Inode nodes are sorted in descending size order */ 2514 if (sa->len < sb->len) { 2515 ubifs_err("smaller inode node goes first"); 2516 goto error_dump; 2517 } 2518 continue; 2519 } 2520 2521 /* 2522 * This is either a dentry or xentry, which should be sorted in 2523 * ascending (parent ino, hash) order. 2524 */ 2525 inuma = key_inum(c, &sa->key); 2526 inumb = key_inum(c, &sb->key); 2527 2528 if (inuma < inumb) 2529 continue; 2530 if (inuma > inumb) { 2531 ubifs_err("larger inum %lu goes before inum %lu", 2532 (unsigned long)inuma, (unsigned long)inumb); 2533 goto error_dump; 2534 } 2535 2536 hasha = key_block(c, &sa->key); 2537 hashb = key_block(c, &sb->key); 2538 2539 if (hasha > hashb) { 2540 ubifs_err("larger hash %u goes before %u", 2541 hasha, hashb); 2542 goto error_dump; 2543 } 2544 } 2545 2546 return 0; 2547 2548 error_dump: 2549 ubifs_msg("dumping first node"); 2550 dbg_dump_node(c, sa->node); 2551 ubifs_msg("dumping second node"); 2552 dbg_dump_node(c, sb->node); 2553 return -EINVAL; 2554 return 0; 2555 } 2556 2557 static inline int chance(unsigned int n, unsigned int out_of) 2558 { 2559 return !!((random32() % out_of) + 1 <= n); 2560 2561 } 2562 2563 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2564 { 2565 struct ubifs_debug_info *d = c->dbg; 2566 2567 ubifs_assert(dbg_is_tst_rcvry(c)); 2568 2569 if (!d->pc_cnt) { 2570 /* First call - decide delay to the power cut */ 2571 if (chance(1, 2)) { 2572 unsigned long delay; 2573 2574 if (chance(1, 2)) { 2575 d->pc_delay = 1; 2576 /* Fail withing 1 minute */ 2577 delay = random32() % 60000; 2578 d->pc_timeout = jiffies; 2579 d->pc_timeout += msecs_to_jiffies(delay); 2580 ubifs_warn("failing after %lums", delay); 2581 } else { 2582 d->pc_delay = 2; 2583 delay = random32() % 10000; 2584 /* Fail within 10000 operations */ 2585 d->pc_cnt_max = delay; 2586 ubifs_warn("failing after %lu calls", delay); 2587 } 2588 } 2589 2590 d->pc_cnt += 1; 2591 } 2592 2593 /* Determine if failure delay has expired */ 2594 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2595 return 0; 2596 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2597 return 0; 2598 2599 if (lnum == UBIFS_SB_LNUM) { 2600 if (write && chance(1, 2)) 2601 return 0; 2602 if (chance(19, 20)) 2603 return 0; 2604 ubifs_warn("failing in super block LEB %d", lnum); 2605 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2606 if (chance(19, 20)) 2607 return 0; 2608 ubifs_warn("failing in master LEB %d", lnum); 2609 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2610 if (write && chance(99, 100)) 2611 return 0; 2612 if (chance(399, 400)) 2613 return 0; 2614 ubifs_warn("failing in log LEB %d", lnum); 2615 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2616 if (write && chance(7, 8)) 2617 return 0; 2618 if (chance(19, 20)) 2619 return 0; 2620 ubifs_warn("failing in LPT LEB %d", lnum); 2621 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2622 if (write && chance(1, 2)) 2623 return 0; 2624 if (chance(9, 10)) 2625 return 0; 2626 ubifs_warn("failing in orphan LEB %d", lnum); 2627 } else if (lnum == c->ihead_lnum) { 2628 if (chance(99, 100)) 2629 return 0; 2630 ubifs_warn("failing in index head LEB %d", lnum); 2631 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2632 if (chance(9, 10)) 2633 return 0; 2634 ubifs_warn("failing in GC head LEB %d", lnum); 2635 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2636 !ubifs_search_bud(c, lnum)) { 2637 if (chance(19, 20)) 2638 return 0; 2639 ubifs_warn("failing in non-bud LEB %d", lnum); 2640 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2641 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2642 if (chance(999, 1000)) 2643 return 0; 2644 ubifs_warn("failing in bud LEB %d commit running", lnum); 2645 } else { 2646 if (chance(9999, 10000)) 2647 return 0; 2648 ubifs_warn("failing in bud LEB %d commit not running", lnum); 2649 } 2650 2651 d->pc_happened = 1; 2652 ubifs_warn("========== Power cut emulated =========="); 2653 dump_stack(); 2654 return 1; 2655 } 2656 2657 static void cut_data(const void *buf, unsigned int len) 2658 { 2659 unsigned int from, to, i, ffs = chance(1, 2); 2660 unsigned char *p = (void *)buf; 2661 2662 from = random32() % (len + 1); 2663 if (chance(1, 2)) 2664 to = random32() % (len - from + 1); 2665 else 2666 to = len; 2667 2668 if (from < to) 2669 ubifs_warn("filled bytes %u-%u with %s", from, to - 1, 2670 ffs ? "0xFFs" : "random data"); 2671 2672 if (ffs) 2673 for (i = from; i < to; i++) 2674 p[i] = 0xFF; 2675 else 2676 for (i = from; i < to; i++) 2677 p[i] = random32() % 0x100; 2678 } 2679 2680 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2681 int offs, int len, int dtype) 2682 { 2683 int err, failing; 2684 2685 if (c->dbg->pc_happened) 2686 return -EROFS; 2687 2688 failing = power_cut_emulated(c, lnum, 1); 2689 if (failing) 2690 cut_data(buf, len); 2691 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype); 2692 if (err) 2693 return err; 2694 if (failing) 2695 return -EROFS; 2696 return 0; 2697 } 2698 2699 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2700 int len, int dtype) 2701 { 2702 int err; 2703 2704 if (c->dbg->pc_happened) 2705 return -EROFS; 2706 if (power_cut_emulated(c, lnum, 1)) 2707 return -EROFS; 2708 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype); 2709 if (err) 2710 return err; 2711 if (power_cut_emulated(c, lnum, 1)) 2712 return -EROFS; 2713 return 0; 2714 } 2715 2716 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2717 { 2718 int err; 2719 2720 if (c->dbg->pc_happened) 2721 return -EROFS; 2722 if (power_cut_emulated(c, lnum, 0)) 2723 return -EROFS; 2724 err = ubi_leb_unmap(c->ubi, lnum); 2725 if (err) 2726 return err; 2727 if (power_cut_emulated(c, lnum, 0)) 2728 return -EROFS; 2729 return 0; 2730 } 2731 2732 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype) 2733 { 2734 int err; 2735 2736 if (c->dbg->pc_happened) 2737 return -EROFS; 2738 if (power_cut_emulated(c, lnum, 0)) 2739 return -EROFS; 2740 err = ubi_leb_map(c->ubi, lnum, dtype); 2741 if (err) 2742 return err; 2743 if (power_cut_emulated(c, lnum, 0)) 2744 return -EROFS; 2745 return 0; 2746 } 2747 2748 /* 2749 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2750 * contain the stuff specific to particular file-system mounts. 2751 */ 2752 static struct dentry *dfs_rootdir; 2753 2754 static int dfs_file_open(struct inode *inode, struct file *file) 2755 { 2756 file->private_data = inode->i_private; 2757 return nonseekable_open(inode, file); 2758 } 2759 2760 /** 2761 * provide_user_output - provide output to the user reading a debugfs file. 2762 * @val: boolean value for the answer 2763 * @u: the buffer to store the answer at 2764 * @count: size of the buffer 2765 * @ppos: position in the @u output buffer 2766 * 2767 * This is a simple helper function which stores @val boolean value in the user 2768 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2769 * bytes written to @u in case of success and a negative error code in case of 2770 * failure. 2771 */ 2772 static int provide_user_output(int val, char __user *u, size_t count, 2773 loff_t *ppos) 2774 { 2775 char buf[3]; 2776 2777 if (val) 2778 buf[0] = '1'; 2779 else 2780 buf[0] = '0'; 2781 buf[1] = '\n'; 2782 buf[2] = 0x00; 2783 2784 return simple_read_from_buffer(u, count, ppos, buf, 2); 2785 } 2786 2787 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2788 loff_t *ppos) 2789 { 2790 struct dentry *dent = file->f_path.dentry; 2791 struct ubifs_info *c = file->private_data; 2792 struct ubifs_debug_info *d = c->dbg; 2793 int val; 2794 2795 if (dent == d->dfs_chk_gen) 2796 val = d->chk_gen; 2797 else if (dent == d->dfs_chk_index) 2798 val = d->chk_index; 2799 else if (dent == d->dfs_chk_orph) 2800 val = d->chk_orph; 2801 else if (dent == d->dfs_chk_lprops) 2802 val = d->chk_lprops; 2803 else if (dent == d->dfs_chk_fs) 2804 val = d->chk_fs; 2805 else if (dent == d->dfs_tst_rcvry) 2806 val = d->tst_rcvry; 2807 else 2808 return -EINVAL; 2809 2810 return provide_user_output(val, u, count, ppos); 2811 } 2812 2813 /** 2814 * interpret_user_input - interpret user debugfs file input. 2815 * @u: user-provided buffer with the input 2816 * @count: buffer size 2817 * 2818 * This is a helper function which interpret user input to a boolean UBIFS 2819 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2820 * in case of failure. 2821 */ 2822 static int interpret_user_input(const char __user *u, size_t count) 2823 { 2824 size_t buf_size; 2825 char buf[8]; 2826 2827 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2828 if (copy_from_user(buf, u, buf_size)) 2829 return -EFAULT; 2830 2831 if (buf[0] == '1') 2832 return 1; 2833 else if (buf[0] == '0') 2834 return 0; 2835 2836 return -EINVAL; 2837 } 2838 2839 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2840 size_t count, loff_t *ppos) 2841 { 2842 struct ubifs_info *c = file->private_data; 2843 struct ubifs_debug_info *d = c->dbg; 2844 struct dentry *dent = file->f_path.dentry; 2845 int val; 2846 2847 /* 2848 * TODO: this is racy - the file-system might have already been 2849 * unmounted and we'd oops in this case. The plan is to fix it with 2850 * help of 'iterate_supers_type()' which we should have in v3.0: when 2851 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2852 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2853 * superblocks and fine the one with the same UUID, and take the 2854 * locking right. 2855 * 2856 * The other way to go suggested by Al Viro is to create a separate 2857 * 'ubifs-debug' file-system instead. 2858 */ 2859 if (file->f_path.dentry == d->dfs_dump_lprops) { 2860 dbg_dump_lprops(c); 2861 return count; 2862 } 2863 if (file->f_path.dentry == d->dfs_dump_budg) { 2864 dbg_dump_budg(c, &c->bi); 2865 return count; 2866 } 2867 if (file->f_path.dentry == d->dfs_dump_tnc) { 2868 mutex_lock(&c->tnc_mutex); 2869 dbg_dump_tnc(c); 2870 mutex_unlock(&c->tnc_mutex); 2871 return count; 2872 } 2873 2874 val = interpret_user_input(u, count); 2875 if (val < 0) 2876 return val; 2877 2878 if (dent == d->dfs_chk_gen) 2879 d->chk_gen = val; 2880 else if (dent == d->dfs_chk_index) 2881 d->chk_index = val; 2882 else if (dent == d->dfs_chk_orph) 2883 d->chk_orph = val; 2884 else if (dent == d->dfs_chk_lprops) 2885 d->chk_lprops = val; 2886 else if (dent == d->dfs_chk_fs) 2887 d->chk_fs = val; 2888 else if (dent == d->dfs_tst_rcvry) 2889 d->tst_rcvry = val; 2890 else 2891 return -EINVAL; 2892 2893 return count; 2894 } 2895 2896 static const struct file_operations dfs_fops = { 2897 .open = dfs_file_open, 2898 .read = dfs_file_read, 2899 .write = dfs_file_write, 2900 .owner = THIS_MODULE, 2901 .llseek = no_llseek, 2902 }; 2903 2904 /** 2905 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2906 * @c: UBIFS file-system description object 2907 * 2908 * This function creates all debugfs files for this instance of UBIFS. Returns 2909 * zero in case of success and a negative error code in case of failure. 2910 * 2911 * Note, the only reason we have not merged this function with the 2912 * 'ubifs_debugging_init()' function is because it is better to initialize 2913 * debugfs interfaces at the very end of the mount process, and remove them at 2914 * the very beginning of the mount process. 2915 */ 2916 int dbg_debugfs_init_fs(struct ubifs_info *c) 2917 { 2918 int err, n; 2919 const char *fname; 2920 struct dentry *dent; 2921 struct ubifs_debug_info *d = c->dbg; 2922 2923 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2924 c->vi.ubi_num, c->vi.vol_id); 2925 if (n == UBIFS_DFS_DIR_LEN) { 2926 /* The array size is too small */ 2927 fname = UBIFS_DFS_DIR_NAME; 2928 dent = ERR_PTR(-EINVAL); 2929 goto out; 2930 } 2931 2932 fname = d->dfs_dir_name; 2933 dent = debugfs_create_dir(fname, dfs_rootdir); 2934 if (IS_ERR_OR_NULL(dent)) 2935 goto out; 2936 d->dfs_dir = dent; 2937 2938 fname = "dump_lprops"; 2939 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2940 if (IS_ERR_OR_NULL(dent)) 2941 goto out_remove; 2942 d->dfs_dump_lprops = dent; 2943 2944 fname = "dump_budg"; 2945 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2946 if (IS_ERR_OR_NULL(dent)) 2947 goto out_remove; 2948 d->dfs_dump_budg = dent; 2949 2950 fname = "dump_tnc"; 2951 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2952 if (IS_ERR_OR_NULL(dent)) 2953 goto out_remove; 2954 d->dfs_dump_tnc = dent; 2955 2956 fname = "chk_general"; 2957 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2958 &dfs_fops); 2959 if (IS_ERR_OR_NULL(dent)) 2960 goto out_remove; 2961 d->dfs_chk_gen = dent; 2962 2963 fname = "chk_index"; 2964 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2965 &dfs_fops); 2966 if (IS_ERR_OR_NULL(dent)) 2967 goto out_remove; 2968 d->dfs_chk_index = dent; 2969 2970 fname = "chk_orphans"; 2971 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2972 &dfs_fops); 2973 if (IS_ERR_OR_NULL(dent)) 2974 goto out_remove; 2975 d->dfs_chk_orph = dent; 2976 2977 fname = "chk_lprops"; 2978 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2979 &dfs_fops); 2980 if (IS_ERR_OR_NULL(dent)) 2981 goto out_remove; 2982 d->dfs_chk_lprops = dent; 2983 2984 fname = "chk_fs"; 2985 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2986 &dfs_fops); 2987 if (IS_ERR_OR_NULL(dent)) 2988 goto out_remove; 2989 d->dfs_chk_fs = dent; 2990 2991 fname = "tst_recovery"; 2992 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2993 &dfs_fops); 2994 if (IS_ERR_OR_NULL(dent)) 2995 goto out_remove; 2996 d->dfs_tst_rcvry = dent; 2997 2998 return 0; 2999 3000 out_remove: 3001 debugfs_remove_recursive(d->dfs_dir); 3002 out: 3003 err = dent ? PTR_ERR(dent) : -ENODEV; 3004 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3005 fname, err); 3006 return err; 3007 } 3008 3009 /** 3010 * dbg_debugfs_exit_fs - remove all debugfs files. 3011 * @c: UBIFS file-system description object 3012 */ 3013 void dbg_debugfs_exit_fs(struct ubifs_info *c) 3014 { 3015 debugfs_remove_recursive(c->dbg->dfs_dir); 3016 } 3017 3018 struct ubifs_global_debug_info ubifs_dbg; 3019 3020 static struct dentry *dfs_chk_gen; 3021 static struct dentry *dfs_chk_index; 3022 static struct dentry *dfs_chk_orph; 3023 static struct dentry *dfs_chk_lprops; 3024 static struct dentry *dfs_chk_fs; 3025 static struct dentry *dfs_tst_rcvry; 3026 3027 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 3028 size_t count, loff_t *ppos) 3029 { 3030 struct dentry *dent = file->f_path.dentry; 3031 int val; 3032 3033 if (dent == dfs_chk_gen) 3034 val = ubifs_dbg.chk_gen; 3035 else if (dent == dfs_chk_index) 3036 val = ubifs_dbg.chk_index; 3037 else if (dent == dfs_chk_orph) 3038 val = ubifs_dbg.chk_orph; 3039 else if (dent == dfs_chk_lprops) 3040 val = ubifs_dbg.chk_lprops; 3041 else if (dent == dfs_chk_fs) 3042 val = ubifs_dbg.chk_fs; 3043 else if (dent == dfs_tst_rcvry) 3044 val = ubifs_dbg.tst_rcvry; 3045 else 3046 return -EINVAL; 3047 3048 return provide_user_output(val, u, count, ppos); 3049 } 3050 3051 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 3052 size_t count, loff_t *ppos) 3053 { 3054 struct dentry *dent = file->f_path.dentry; 3055 int val; 3056 3057 val = interpret_user_input(u, count); 3058 if (val < 0) 3059 return val; 3060 3061 if (dent == dfs_chk_gen) 3062 ubifs_dbg.chk_gen = val; 3063 else if (dent == dfs_chk_index) 3064 ubifs_dbg.chk_index = val; 3065 else if (dent == dfs_chk_orph) 3066 ubifs_dbg.chk_orph = val; 3067 else if (dent == dfs_chk_lprops) 3068 ubifs_dbg.chk_lprops = val; 3069 else if (dent == dfs_chk_fs) 3070 ubifs_dbg.chk_fs = val; 3071 else if (dent == dfs_tst_rcvry) 3072 ubifs_dbg.tst_rcvry = val; 3073 else 3074 return -EINVAL; 3075 3076 return count; 3077 } 3078 3079 static const struct file_operations dfs_global_fops = { 3080 .read = dfs_global_file_read, 3081 .write = dfs_global_file_write, 3082 .owner = THIS_MODULE, 3083 .llseek = no_llseek, 3084 }; 3085 3086 /** 3087 * dbg_debugfs_init - initialize debugfs file-system. 3088 * 3089 * UBIFS uses debugfs file-system to expose various debugging knobs to 3090 * user-space. This function creates "ubifs" directory in the debugfs 3091 * file-system. Returns zero in case of success and a negative error code in 3092 * case of failure. 3093 */ 3094 int dbg_debugfs_init(void) 3095 { 3096 int err; 3097 const char *fname; 3098 struct dentry *dent; 3099 3100 fname = "ubifs"; 3101 dent = debugfs_create_dir(fname, NULL); 3102 if (IS_ERR_OR_NULL(dent)) 3103 goto out; 3104 dfs_rootdir = dent; 3105 3106 fname = "chk_general"; 3107 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3108 &dfs_global_fops); 3109 if (IS_ERR_OR_NULL(dent)) 3110 goto out_remove; 3111 dfs_chk_gen = dent; 3112 3113 fname = "chk_index"; 3114 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3115 &dfs_global_fops); 3116 if (IS_ERR_OR_NULL(dent)) 3117 goto out_remove; 3118 dfs_chk_index = dent; 3119 3120 fname = "chk_orphans"; 3121 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3122 &dfs_global_fops); 3123 if (IS_ERR_OR_NULL(dent)) 3124 goto out_remove; 3125 dfs_chk_orph = dent; 3126 3127 fname = "chk_lprops"; 3128 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3129 &dfs_global_fops); 3130 if (IS_ERR_OR_NULL(dent)) 3131 goto out_remove; 3132 dfs_chk_lprops = dent; 3133 3134 fname = "chk_fs"; 3135 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3136 &dfs_global_fops); 3137 if (IS_ERR_OR_NULL(dent)) 3138 goto out_remove; 3139 dfs_chk_fs = dent; 3140 3141 fname = "tst_recovery"; 3142 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3143 &dfs_global_fops); 3144 if (IS_ERR_OR_NULL(dent)) 3145 goto out_remove; 3146 dfs_tst_rcvry = dent; 3147 3148 return 0; 3149 3150 out_remove: 3151 debugfs_remove_recursive(dfs_rootdir); 3152 out: 3153 err = dent ? PTR_ERR(dent) : -ENODEV; 3154 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n", 3155 fname, err); 3156 return err; 3157 } 3158 3159 /** 3160 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3161 */ 3162 void dbg_debugfs_exit(void) 3163 { 3164 debugfs_remove_recursive(dfs_rootdir); 3165 } 3166 3167 /** 3168 * ubifs_debugging_init - initialize UBIFS debugging. 3169 * @c: UBIFS file-system description object 3170 * 3171 * This function initializes debugging-related data for the file system. 3172 * Returns zero in case of success and a negative error code in case of 3173 * failure. 3174 */ 3175 int ubifs_debugging_init(struct ubifs_info *c) 3176 { 3177 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3178 if (!c->dbg) 3179 return -ENOMEM; 3180 3181 return 0; 3182 } 3183 3184 /** 3185 * ubifs_debugging_exit - free debugging data. 3186 * @c: UBIFS file-system description object 3187 */ 3188 void ubifs_debugging_exit(struct ubifs_info *c) 3189 { 3190 kfree(c->dbg); 3191 } 3192 3193 #endif /* CONFIG_UBIFS_FS_DEBUG */ 3194