1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 36 #ifdef CONFIG_UBIFS_FS_DEBUG 37 38 DEFINE_SPINLOCK(dbg_lock); 39 40 static char dbg_key_buf0[128]; 41 static char dbg_key_buf1[128]; 42 43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 45 unsigned int ubifs_tst_flags; 46 47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 50 51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 52 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 54 55 static const char *get_key_fmt(int fmt) 56 { 57 switch (fmt) { 58 case UBIFS_SIMPLE_KEY_FMT: 59 return "simple"; 60 default: 61 return "unknown/invalid format"; 62 } 63 } 64 65 static const char *get_key_hash(int hash) 66 { 67 switch (hash) { 68 case UBIFS_KEY_HASH_R5: 69 return "R5"; 70 case UBIFS_KEY_HASH_TEST: 71 return "test"; 72 default: 73 return "unknown/invalid name hash"; 74 } 75 } 76 77 static const char *get_key_type(int type) 78 { 79 switch (type) { 80 case UBIFS_INO_KEY: 81 return "inode"; 82 case UBIFS_DENT_KEY: 83 return "direntry"; 84 case UBIFS_XENT_KEY: 85 return "xentry"; 86 case UBIFS_DATA_KEY: 87 return "data"; 88 case UBIFS_TRUN_KEY: 89 return "truncate"; 90 default: 91 return "unknown/invalid key"; 92 } 93 } 94 95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 96 char *buffer) 97 { 98 char *p = buffer; 99 int type = key_type(c, key); 100 101 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 102 switch (type) { 103 case UBIFS_INO_KEY: 104 sprintf(p, "(%lu, %s)", key_inum(c, key), 105 get_key_type(type)); 106 break; 107 case UBIFS_DENT_KEY: 108 case UBIFS_XENT_KEY: 109 sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key), 110 get_key_type(type), key_hash(c, key)); 111 break; 112 case UBIFS_DATA_KEY: 113 sprintf(p, "(%lu, %s, %u)", key_inum(c, key), 114 get_key_type(type), key_block(c, key)); 115 break; 116 case UBIFS_TRUN_KEY: 117 sprintf(p, "(%lu, %s)", 118 key_inum(c, key), get_key_type(type)); 119 break; 120 default: 121 sprintf(p, "(bad key type: %#08x, %#08x)", 122 key->u32[0], key->u32[1]); 123 } 124 } else 125 sprintf(p, "bad key format %d", c->key_fmt); 126 } 127 128 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 129 { 130 /* dbg_lock must be held */ 131 sprintf_key(c, key, dbg_key_buf0); 132 return dbg_key_buf0; 133 } 134 135 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 136 { 137 /* dbg_lock must be held */ 138 sprintf_key(c, key, dbg_key_buf1); 139 return dbg_key_buf1; 140 } 141 142 const char *dbg_ntype(int type) 143 { 144 switch (type) { 145 case UBIFS_PAD_NODE: 146 return "padding node"; 147 case UBIFS_SB_NODE: 148 return "superblock node"; 149 case UBIFS_MST_NODE: 150 return "master node"; 151 case UBIFS_REF_NODE: 152 return "reference node"; 153 case UBIFS_INO_NODE: 154 return "inode node"; 155 case UBIFS_DENT_NODE: 156 return "direntry node"; 157 case UBIFS_XENT_NODE: 158 return "xentry node"; 159 case UBIFS_DATA_NODE: 160 return "data node"; 161 case UBIFS_TRUN_NODE: 162 return "truncate node"; 163 case UBIFS_IDX_NODE: 164 return "indexing node"; 165 case UBIFS_CS_NODE: 166 return "commit start node"; 167 case UBIFS_ORPH_NODE: 168 return "orphan node"; 169 default: 170 return "unknown node"; 171 } 172 } 173 174 static const char *dbg_gtype(int type) 175 { 176 switch (type) { 177 case UBIFS_NO_NODE_GROUP: 178 return "no node group"; 179 case UBIFS_IN_NODE_GROUP: 180 return "in node group"; 181 case UBIFS_LAST_OF_NODE_GROUP: 182 return "last of node group"; 183 default: 184 return "unknown"; 185 } 186 } 187 188 const char *dbg_cstate(int cmt_state) 189 { 190 switch (cmt_state) { 191 case COMMIT_RESTING: 192 return "commit resting"; 193 case COMMIT_BACKGROUND: 194 return "background commit requested"; 195 case COMMIT_REQUIRED: 196 return "commit required"; 197 case COMMIT_RUNNING_BACKGROUND: 198 return "BACKGROUND commit running"; 199 case COMMIT_RUNNING_REQUIRED: 200 return "commit running and required"; 201 case COMMIT_BROKEN: 202 return "broken commit"; 203 default: 204 return "unknown commit state"; 205 } 206 } 207 208 static void dump_ch(const struct ubifs_ch *ch) 209 { 210 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 211 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 212 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 213 dbg_ntype(ch->node_type)); 214 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 215 dbg_gtype(ch->group_type)); 216 printk(KERN_DEBUG "\tsqnum %llu\n", 217 (unsigned long long)le64_to_cpu(ch->sqnum)); 218 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 219 } 220 221 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 222 { 223 const struct ubifs_inode *ui = ubifs_inode(inode); 224 225 printk(KERN_DEBUG "Dump in-memory inode:"); 226 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 227 printk(KERN_DEBUG "\tsize %llu\n", 228 (unsigned long long)i_size_read(inode)); 229 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 230 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 231 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 232 printk(KERN_DEBUG "\tatime %u.%u\n", 233 (unsigned int)inode->i_atime.tv_sec, 234 (unsigned int)inode->i_atime.tv_nsec); 235 printk(KERN_DEBUG "\tmtime %u.%u\n", 236 (unsigned int)inode->i_mtime.tv_sec, 237 (unsigned int)inode->i_mtime.tv_nsec); 238 printk(KERN_DEBUG "\tctime %u.%u\n", 239 (unsigned int)inode->i_ctime.tv_sec, 240 (unsigned int)inode->i_ctime.tv_nsec); 241 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 242 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 243 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 244 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 245 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 246 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 247 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 248 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 249 (unsigned long long)ui->synced_i_size); 250 printk(KERN_DEBUG "\tui_size %llu\n", 251 (unsigned long long)ui->ui_size); 252 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 253 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 254 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 255 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 256 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 257 } 258 259 void dbg_dump_node(const struct ubifs_info *c, const void *node) 260 { 261 int i, n; 262 union ubifs_key key; 263 const struct ubifs_ch *ch = node; 264 265 if (dbg_failure_mode) 266 return; 267 268 /* If the magic is incorrect, just hexdump the first bytes */ 269 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 270 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 271 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 272 (void *)node, UBIFS_CH_SZ, 1); 273 return; 274 } 275 276 spin_lock(&dbg_lock); 277 dump_ch(node); 278 279 switch (ch->node_type) { 280 case UBIFS_PAD_NODE: 281 { 282 const struct ubifs_pad_node *pad = node; 283 284 printk(KERN_DEBUG "\tpad_len %u\n", 285 le32_to_cpu(pad->pad_len)); 286 break; 287 } 288 case UBIFS_SB_NODE: 289 { 290 const struct ubifs_sb_node *sup = node; 291 unsigned int sup_flags = le32_to_cpu(sup->flags); 292 293 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 294 (int)sup->key_hash, get_key_hash(sup->key_hash)); 295 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 296 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 297 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 298 printk(KERN_DEBUG "\t big_lpt %u\n", 299 !!(sup_flags & UBIFS_FLG_BIGLPT)); 300 printk(KERN_DEBUG "\tmin_io_size %u\n", 301 le32_to_cpu(sup->min_io_size)); 302 printk(KERN_DEBUG "\tleb_size %u\n", 303 le32_to_cpu(sup->leb_size)); 304 printk(KERN_DEBUG "\tleb_cnt %u\n", 305 le32_to_cpu(sup->leb_cnt)); 306 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 307 le32_to_cpu(sup->max_leb_cnt)); 308 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 309 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 310 printk(KERN_DEBUG "\tlog_lebs %u\n", 311 le32_to_cpu(sup->log_lebs)); 312 printk(KERN_DEBUG "\tlpt_lebs %u\n", 313 le32_to_cpu(sup->lpt_lebs)); 314 printk(KERN_DEBUG "\torph_lebs %u\n", 315 le32_to_cpu(sup->orph_lebs)); 316 printk(KERN_DEBUG "\tjhead_cnt %u\n", 317 le32_to_cpu(sup->jhead_cnt)); 318 printk(KERN_DEBUG "\tfanout %u\n", 319 le32_to_cpu(sup->fanout)); 320 printk(KERN_DEBUG "\tlsave_cnt %u\n", 321 le32_to_cpu(sup->lsave_cnt)); 322 printk(KERN_DEBUG "\tdefault_compr %u\n", 323 (int)le16_to_cpu(sup->default_compr)); 324 printk(KERN_DEBUG "\trp_size %llu\n", 325 (unsigned long long)le64_to_cpu(sup->rp_size)); 326 printk(KERN_DEBUG "\trp_uid %u\n", 327 le32_to_cpu(sup->rp_uid)); 328 printk(KERN_DEBUG "\trp_gid %u\n", 329 le32_to_cpu(sup->rp_gid)); 330 printk(KERN_DEBUG "\tfmt_version %u\n", 331 le32_to_cpu(sup->fmt_version)); 332 printk(KERN_DEBUG "\ttime_gran %u\n", 333 le32_to_cpu(sup->time_gran)); 334 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" 335 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", 336 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], 337 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], 338 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], 339 sup->uuid[12], sup->uuid[13], sup->uuid[14], 340 sup->uuid[15]); 341 break; 342 } 343 case UBIFS_MST_NODE: 344 { 345 const struct ubifs_mst_node *mst = node; 346 347 printk(KERN_DEBUG "\thighest_inum %llu\n", 348 (unsigned long long)le64_to_cpu(mst->highest_inum)); 349 printk(KERN_DEBUG "\tcommit number %llu\n", 350 (unsigned long long)le64_to_cpu(mst->cmt_no)); 351 printk(KERN_DEBUG "\tflags %#x\n", 352 le32_to_cpu(mst->flags)); 353 printk(KERN_DEBUG "\tlog_lnum %u\n", 354 le32_to_cpu(mst->log_lnum)); 355 printk(KERN_DEBUG "\troot_lnum %u\n", 356 le32_to_cpu(mst->root_lnum)); 357 printk(KERN_DEBUG "\troot_offs %u\n", 358 le32_to_cpu(mst->root_offs)); 359 printk(KERN_DEBUG "\troot_len %u\n", 360 le32_to_cpu(mst->root_len)); 361 printk(KERN_DEBUG "\tgc_lnum %u\n", 362 le32_to_cpu(mst->gc_lnum)); 363 printk(KERN_DEBUG "\tihead_lnum %u\n", 364 le32_to_cpu(mst->ihead_lnum)); 365 printk(KERN_DEBUG "\tihead_offs %u\n", 366 le32_to_cpu(mst->ihead_offs)); 367 printk(KERN_DEBUG "\tindex_size %u\n", 368 le32_to_cpu(mst->index_size)); 369 printk(KERN_DEBUG "\tlpt_lnum %u\n", 370 le32_to_cpu(mst->lpt_lnum)); 371 printk(KERN_DEBUG "\tlpt_offs %u\n", 372 le32_to_cpu(mst->lpt_offs)); 373 printk(KERN_DEBUG "\tnhead_lnum %u\n", 374 le32_to_cpu(mst->nhead_lnum)); 375 printk(KERN_DEBUG "\tnhead_offs %u\n", 376 le32_to_cpu(mst->nhead_offs)); 377 printk(KERN_DEBUG "\tltab_lnum %u\n", 378 le32_to_cpu(mst->ltab_lnum)); 379 printk(KERN_DEBUG "\tltab_offs %u\n", 380 le32_to_cpu(mst->ltab_offs)); 381 printk(KERN_DEBUG "\tlsave_lnum %u\n", 382 le32_to_cpu(mst->lsave_lnum)); 383 printk(KERN_DEBUG "\tlsave_offs %u\n", 384 le32_to_cpu(mst->lsave_offs)); 385 printk(KERN_DEBUG "\tlscan_lnum %u\n", 386 le32_to_cpu(mst->lscan_lnum)); 387 printk(KERN_DEBUG "\tleb_cnt %u\n", 388 le32_to_cpu(mst->leb_cnt)); 389 printk(KERN_DEBUG "\tempty_lebs %u\n", 390 le32_to_cpu(mst->empty_lebs)); 391 printk(KERN_DEBUG "\tidx_lebs %u\n", 392 le32_to_cpu(mst->idx_lebs)); 393 printk(KERN_DEBUG "\ttotal_free %llu\n", 394 (unsigned long long)le64_to_cpu(mst->total_free)); 395 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 396 (unsigned long long)le64_to_cpu(mst->total_dirty)); 397 printk(KERN_DEBUG "\ttotal_used %llu\n", 398 (unsigned long long)le64_to_cpu(mst->total_used)); 399 printk(KERN_DEBUG "\ttotal_dead %llu\n", 400 (unsigned long long)le64_to_cpu(mst->total_dead)); 401 printk(KERN_DEBUG "\ttotal_dark %llu\n", 402 (unsigned long long)le64_to_cpu(mst->total_dark)); 403 break; 404 } 405 case UBIFS_REF_NODE: 406 { 407 const struct ubifs_ref_node *ref = node; 408 409 printk(KERN_DEBUG "\tlnum %u\n", 410 le32_to_cpu(ref->lnum)); 411 printk(KERN_DEBUG "\toffs %u\n", 412 le32_to_cpu(ref->offs)); 413 printk(KERN_DEBUG "\tjhead %u\n", 414 le32_to_cpu(ref->jhead)); 415 break; 416 } 417 case UBIFS_INO_NODE: 418 { 419 const struct ubifs_ino_node *ino = node; 420 421 key_read(c, &ino->key, &key); 422 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 423 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 424 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 425 printk(KERN_DEBUG "\tsize %llu\n", 426 (unsigned long long)le64_to_cpu(ino->size)); 427 printk(KERN_DEBUG "\tnlink %u\n", 428 le32_to_cpu(ino->nlink)); 429 printk(KERN_DEBUG "\tatime %lld.%u\n", 430 (long long)le64_to_cpu(ino->atime_sec), 431 le32_to_cpu(ino->atime_nsec)); 432 printk(KERN_DEBUG "\tmtime %lld.%u\n", 433 (long long)le64_to_cpu(ino->mtime_sec), 434 le32_to_cpu(ino->mtime_nsec)); 435 printk(KERN_DEBUG "\tctime %lld.%u\n", 436 (long long)le64_to_cpu(ino->ctime_sec), 437 le32_to_cpu(ino->ctime_nsec)); 438 printk(KERN_DEBUG "\tuid %u\n", 439 le32_to_cpu(ino->uid)); 440 printk(KERN_DEBUG "\tgid %u\n", 441 le32_to_cpu(ino->gid)); 442 printk(KERN_DEBUG "\tmode %u\n", 443 le32_to_cpu(ino->mode)); 444 printk(KERN_DEBUG "\tflags %#x\n", 445 le32_to_cpu(ino->flags)); 446 printk(KERN_DEBUG "\txattr_cnt %u\n", 447 le32_to_cpu(ino->xattr_cnt)); 448 printk(KERN_DEBUG "\txattr_size %u\n", 449 le32_to_cpu(ino->xattr_size)); 450 printk(KERN_DEBUG "\txattr_names %u\n", 451 le32_to_cpu(ino->xattr_names)); 452 printk(KERN_DEBUG "\tcompr_type %#x\n", 453 (int)le16_to_cpu(ino->compr_type)); 454 printk(KERN_DEBUG "\tdata len %u\n", 455 le32_to_cpu(ino->data_len)); 456 break; 457 } 458 case UBIFS_DENT_NODE: 459 case UBIFS_XENT_NODE: 460 { 461 const struct ubifs_dent_node *dent = node; 462 int nlen = le16_to_cpu(dent->nlen); 463 464 key_read(c, &dent->key, &key); 465 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 466 printk(KERN_DEBUG "\tinum %llu\n", 467 (unsigned long long)le64_to_cpu(dent->inum)); 468 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 469 printk(KERN_DEBUG "\tnlen %d\n", nlen); 470 printk(KERN_DEBUG "\tname "); 471 472 if (nlen > UBIFS_MAX_NLEN) 473 printk(KERN_DEBUG "(bad name length, not printing, " 474 "bad or corrupted node)"); 475 else { 476 for (i = 0; i < nlen && dent->name[i]; i++) 477 printk("%c", dent->name[i]); 478 } 479 printk("\n"); 480 481 break; 482 } 483 case UBIFS_DATA_NODE: 484 { 485 const struct ubifs_data_node *dn = node; 486 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 487 488 key_read(c, &dn->key, &key); 489 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 490 printk(KERN_DEBUG "\tsize %u\n", 491 le32_to_cpu(dn->size)); 492 printk(KERN_DEBUG "\tcompr_typ %d\n", 493 (int)le16_to_cpu(dn->compr_type)); 494 printk(KERN_DEBUG "\tdata size %d\n", 495 dlen); 496 printk(KERN_DEBUG "\tdata:\n"); 497 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 498 (void *)&dn->data, dlen, 0); 499 break; 500 } 501 case UBIFS_TRUN_NODE: 502 { 503 const struct ubifs_trun_node *trun = node; 504 505 printk(KERN_DEBUG "\tinum %u\n", 506 le32_to_cpu(trun->inum)); 507 printk(KERN_DEBUG "\told_size %llu\n", 508 (unsigned long long)le64_to_cpu(trun->old_size)); 509 printk(KERN_DEBUG "\tnew_size %llu\n", 510 (unsigned long long)le64_to_cpu(trun->new_size)); 511 break; 512 } 513 case UBIFS_IDX_NODE: 514 { 515 const struct ubifs_idx_node *idx = node; 516 517 n = le16_to_cpu(idx->child_cnt); 518 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 519 printk(KERN_DEBUG "\tlevel %d\n", 520 (int)le16_to_cpu(idx->level)); 521 printk(KERN_DEBUG "\tBranches:\n"); 522 523 for (i = 0; i < n && i < c->fanout - 1; i++) { 524 const struct ubifs_branch *br; 525 526 br = ubifs_idx_branch(c, idx, i); 527 key_read(c, &br->key, &key); 528 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 529 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 530 le32_to_cpu(br->len), DBGKEY(&key)); 531 } 532 break; 533 } 534 case UBIFS_CS_NODE: 535 break; 536 case UBIFS_ORPH_NODE: 537 { 538 const struct ubifs_orph_node *orph = node; 539 540 printk(KERN_DEBUG "\tcommit number %llu\n", 541 (unsigned long long) 542 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 543 printk(KERN_DEBUG "\tlast node flag %llu\n", 544 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 545 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 546 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 547 for (i = 0; i < n; i++) 548 printk(KERN_DEBUG "\t ino %llu\n", 549 (unsigned long long)le64_to_cpu(orph->inos[i])); 550 break; 551 } 552 default: 553 printk(KERN_DEBUG "node type %d was not recognized\n", 554 (int)ch->node_type); 555 } 556 spin_unlock(&dbg_lock); 557 } 558 559 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 560 { 561 spin_lock(&dbg_lock); 562 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 563 req->new_ino, req->dirtied_ino); 564 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 565 req->new_ino_d, req->dirtied_ino_d); 566 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 567 req->new_page, req->dirtied_page); 568 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 569 req->new_dent, req->mod_dent); 570 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 571 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 572 req->data_growth, req->dd_growth); 573 spin_unlock(&dbg_lock); 574 } 575 576 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 577 { 578 spin_lock(&dbg_lock); 579 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 580 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 581 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 582 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 583 lst->total_dirty); 584 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 585 "total_dead %lld\n", lst->total_used, lst->total_dark, 586 lst->total_dead); 587 spin_unlock(&dbg_lock); 588 } 589 590 void dbg_dump_budg(struct ubifs_info *c) 591 { 592 int i; 593 struct rb_node *rb; 594 struct ubifs_bud *bud; 595 struct ubifs_gced_idx_leb *idx_gc; 596 597 spin_lock(&dbg_lock); 598 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 599 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 600 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 601 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 602 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 603 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 604 c->freeable_cnt); 605 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 606 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 607 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 608 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 609 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 610 atomic_long_read(&c->dirty_zn_cnt), 611 atomic_long_read(&c->clean_zn_cnt)); 612 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 613 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 614 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 615 c->gc_lnum, c->ihead_lnum); 616 for (i = 0; i < c->jhead_cnt; i++) 617 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", 618 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); 619 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 620 bud = rb_entry(rb, struct ubifs_bud, rb); 621 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 622 } 623 list_for_each_entry(bud, &c->old_buds, list) 624 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 625 list_for_each_entry(idx_gc, &c->idx_gc, list) 626 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 627 idx_gc->lnum, idx_gc->unmap); 628 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 629 spin_unlock(&dbg_lock); 630 } 631 632 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 633 { 634 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " 635 "flags %#x\n", lp->lnum, lp->free, lp->dirty, 636 c->leb_size - lp->free - lp->dirty, lp->flags); 637 } 638 639 void dbg_dump_lprops(struct ubifs_info *c) 640 { 641 int lnum, err; 642 struct ubifs_lprops lp; 643 struct ubifs_lp_stats lst; 644 645 printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid); 646 ubifs_get_lp_stats(c, &lst); 647 dbg_dump_lstats(&lst); 648 649 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 650 err = ubifs_read_one_lp(c, lnum, &lp); 651 if (err) 652 ubifs_err("cannot read lprops for LEB %d", lnum); 653 654 dbg_dump_lprop(c, &lp); 655 } 656 } 657 658 void dbg_dump_lpt_info(struct ubifs_info *c) 659 { 660 int i; 661 662 spin_lock(&dbg_lock); 663 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 664 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 665 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 666 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 667 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 668 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 669 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 670 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 671 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 672 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 673 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 674 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 675 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 676 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 677 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 678 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 679 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 680 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 681 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 682 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 683 c->nhead_lnum, c->nhead_offs); 684 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 685 if (c->big_lpt) 686 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 687 c->lsave_lnum, c->lsave_offs); 688 for (i = 0; i < c->lpt_lebs; i++) 689 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 690 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 691 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 692 spin_unlock(&dbg_lock); 693 } 694 695 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 696 { 697 struct ubifs_scan_leb *sleb; 698 struct ubifs_scan_node *snod; 699 700 if (dbg_failure_mode) 701 return; 702 703 printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum); 704 705 sleb = ubifs_scan(c, lnum, 0, c->dbg_buf); 706 if (IS_ERR(sleb)) { 707 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 708 return; 709 } 710 711 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 712 sleb->nodes_cnt, sleb->endpt); 713 714 list_for_each_entry(snod, &sleb->nodes, list) { 715 cond_resched(); 716 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 717 snod->offs, snod->len); 718 dbg_dump_node(c, snod->node); 719 } 720 721 ubifs_scan_destroy(sleb); 722 return; 723 } 724 725 void dbg_dump_znode(const struct ubifs_info *c, 726 const struct ubifs_znode *znode) 727 { 728 int n; 729 const struct ubifs_zbranch *zbr; 730 731 spin_lock(&dbg_lock); 732 if (znode->parent) 733 zbr = &znode->parent->zbranch[znode->iip]; 734 else 735 zbr = &c->zroot; 736 737 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 738 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 739 zbr->len, znode->parent, znode->iip, znode->level, 740 znode->child_cnt, znode->flags); 741 742 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 743 spin_unlock(&dbg_lock); 744 return; 745 } 746 747 printk(KERN_DEBUG "zbranches:\n"); 748 for (n = 0; n < znode->child_cnt; n++) { 749 zbr = &znode->zbranch[n]; 750 if (znode->level > 0) 751 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 752 "%s\n", n, zbr->znode, zbr->lnum, 753 zbr->offs, zbr->len, 754 DBGKEY(&zbr->key)); 755 else 756 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 757 "%s\n", n, zbr->znode, zbr->lnum, 758 zbr->offs, zbr->len, 759 DBGKEY(&zbr->key)); 760 } 761 spin_unlock(&dbg_lock); 762 } 763 764 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 765 { 766 int i; 767 768 printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n", 769 current->pid, cat, heap->cnt); 770 for (i = 0; i < heap->cnt; i++) { 771 struct ubifs_lprops *lprops = heap->arr[i]; 772 773 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 774 "flags %d\n", i, lprops->lnum, lprops->hpos, 775 lprops->free, lprops->dirty, lprops->flags); 776 } 777 } 778 779 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 780 struct ubifs_nnode *parent, int iip) 781 { 782 int i; 783 784 printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid); 785 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 786 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 787 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 788 pnode->flags, iip, pnode->level, pnode->num); 789 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 790 struct ubifs_lprops *lp = &pnode->lprops[i]; 791 792 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 793 i, lp->free, lp->dirty, lp->flags, lp->lnum); 794 } 795 } 796 797 void dbg_dump_tnc(struct ubifs_info *c) 798 { 799 struct ubifs_znode *znode; 800 int level; 801 802 printk(KERN_DEBUG "\n"); 803 printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid); 804 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 805 level = znode->level; 806 printk(KERN_DEBUG "== Level %d ==\n", level); 807 while (znode) { 808 if (level != znode->level) { 809 level = znode->level; 810 printk(KERN_DEBUG "== Level %d ==\n", level); 811 } 812 dbg_dump_znode(c, znode); 813 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 814 } 815 816 printk(KERN_DEBUG "\n"); 817 } 818 819 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 820 void *priv) 821 { 822 dbg_dump_znode(c, znode); 823 return 0; 824 } 825 826 /** 827 * dbg_dump_index - dump the on-flash index. 828 * @c: UBIFS file-system description object 829 * 830 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 831 * which dumps only in-memory znodes and does not read znodes which from flash. 832 */ 833 void dbg_dump_index(struct ubifs_info *c) 834 { 835 dbg_walk_index(c, NULL, dump_znode, NULL); 836 } 837 838 /** 839 * dbg_check_synced_i_size - check synchronized inode size. 840 * @inode: inode to check 841 * 842 * If inode is clean, synchronized inode size has to be equivalent to current 843 * inode size. This function has to be called only for locked inodes (@i_mutex 844 * has to be locked). Returns %0 if synchronized inode size if correct, and 845 * %-EINVAL if not. 846 */ 847 int dbg_check_synced_i_size(struct inode *inode) 848 { 849 int err = 0; 850 struct ubifs_inode *ui = ubifs_inode(inode); 851 852 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 853 return 0; 854 if (!S_ISREG(inode->i_mode)) 855 return 0; 856 857 mutex_lock(&ui->ui_mutex); 858 spin_lock(&ui->ui_lock); 859 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 860 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 861 "is clean", ui->ui_size, ui->synced_i_size); 862 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 863 inode->i_mode, i_size_read(inode)); 864 dbg_dump_stack(); 865 err = -EINVAL; 866 } 867 spin_unlock(&ui->ui_lock); 868 mutex_unlock(&ui->ui_mutex); 869 return err; 870 } 871 872 /* 873 * dbg_check_dir - check directory inode size and link count. 874 * @c: UBIFS file-system description object 875 * @dir: the directory to calculate size for 876 * @size: the result is returned here 877 * 878 * This function makes sure that directory size and link count are correct. 879 * Returns zero in case of success and a negative error code in case of 880 * failure. 881 * 882 * Note, it is good idea to make sure the @dir->i_mutex is locked before 883 * calling this function. 884 */ 885 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 886 { 887 unsigned int nlink = 2; 888 union ubifs_key key; 889 struct ubifs_dent_node *dent, *pdent = NULL; 890 struct qstr nm = { .name = NULL }; 891 loff_t size = UBIFS_INO_NODE_SZ; 892 893 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 894 return 0; 895 896 if (!S_ISDIR(dir->i_mode)) 897 return 0; 898 899 lowest_dent_key(c, &key, dir->i_ino); 900 while (1) { 901 int err; 902 903 dent = ubifs_tnc_next_ent(c, &key, &nm); 904 if (IS_ERR(dent)) { 905 err = PTR_ERR(dent); 906 if (err == -ENOENT) 907 break; 908 return err; 909 } 910 911 nm.name = dent->name; 912 nm.len = le16_to_cpu(dent->nlen); 913 size += CALC_DENT_SIZE(nm.len); 914 if (dent->type == UBIFS_ITYPE_DIR) 915 nlink += 1; 916 kfree(pdent); 917 pdent = dent; 918 key_read(c, &dent->key, &key); 919 } 920 kfree(pdent); 921 922 if (i_size_read(dir) != size) { 923 ubifs_err("directory inode %lu has size %llu, " 924 "but calculated size is %llu", dir->i_ino, 925 (unsigned long long)i_size_read(dir), 926 (unsigned long long)size); 927 dump_stack(); 928 return -EINVAL; 929 } 930 if (dir->i_nlink != nlink) { 931 ubifs_err("directory inode %lu has nlink %u, but calculated " 932 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 933 dump_stack(); 934 return -EINVAL; 935 } 936 937 return 0; 938 } 939 940 /** 941 * dbg_check_key_order - make sure that colliding keys are properly ordered. 942 * @c: UBIFS file-system description object 943 * @zbr1: first zbranch 944 * @zbr2: following zbranch 945 * 946 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 947 * names of the direntries/xentries which are referred by the keys. This 948 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 949 * sure the name of direntry/xentry referred by @zbr1 is less than 950 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 951 * and a negative error code in case of failure. 952 */ 953 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 954 struct ubifs_zbranch *zbr2) 955 { 956 int err, nlen1, nlen2, cmp; 957 struct ubifs_dent_node *dent1, *dent2; 958 union ubifs_key key; 959 960 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 961 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 962 if (!dent1) 963 return -ENOMEM; 964 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 965 if (!dent2) { 966 err = -ENOMEM; 967 goto out_free; 968 } 969 970 err = ubifs_tnc_read_node(c, zbr1, dent1); 971 if (err) 972 goto out_free; 973 err = ubifs_validate_entry(c, dent1); 974 if (err) 975 goto out_free; 976 977 err = ubifs_tnc_read_node(c, zbr2, dent2); 978 if (err) 979 goto out_free; 980 err = ubifs_validate_entry(c, dent2); 981 if (err) 982 goto out_free; 983 984 /* Make sure node keys are the same as in zbranch */ 985 err = 1; 986 key_read(c, &dent1->key, &key); 987 if (keys_cmp(c, &zbr1->key, &key)) { 988 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 989 zbr1->offs, DBGKEY(&key)); 990 dbg_err("but it should have key %s according to tnc", 991 DBGKEY(&zbr1->key)); 992 dbg_dump_node(c, dent1); 993 goto out_free; 994 } 995 996 key_read(c, &dent2->key, &key); 997 if (keys_cmp(c, &zbr2->key, &key)) { 998 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 999 zbr1->offs, DBGKEY(&key)); 1000 dbg_err("but it should have key %s according to tnc", 1001 DBGKEY(&zbr2->key)); 1002 dbg_dump_node(c, dent2); 1003 goto out_free; 1004 } 1005 1006 nlen1 = le16_to_cpu(dent1->nlen); 1007 nlen2 = le16_to_cpu(dent2->nlen); 1008 1009 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1010 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1011 err = 0; 1012 goto out_free; 1013 } 1014 if (cmp == 0 && nlen1 == nlen2) 1015 dbg_err("2 xent/dent nodes with the same name"); 1016 else 1017 dbg_err("bad order of colliding key %s", 1018 DBGKEY(&key)); 1019 1020 dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1021 dbg_dump_node(c, dent1); 1022 dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1023 dbg_dump_node(c, dent2); 1024 1025 out_free: 1026 kfree(dent2); 1027 kfree(dent1); 1028 return err; 1029 } 1030 1031 /** 1032 * dbg_check_znode - check if znode is all right. 1033 * @c: UBIFS file-system description object 1034 * @zbr: zbranch which points to this znode 1035 * 1036 * This function makes sure that znode referred to by @zbr is all right. 1037 * Returns zero if it is, and %-EINVAL if it is not. 1038 */ 1039 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1040 { 1041 struct ubifs_znode *znode = zbr->znode; 1042 struct ubifs_znode *zp = znode->parent; 1043 int n, err, cmp; 1044 1045 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1046 err = 1; 1047 goto out; 1048 } 1049 if (znode->level < 0) { 1050 err = 2; 1051 goto out; 1052 } 1053 if (znode->iip < 0 || znode->iip >= c->fanout) { 1054 err = 3; 1055 goto out; 1056 } 1057 1058 if (zbr->len == 0) 1059 /* Only dirty zbranch may have no on-flash nodes */ 1060 if (!ubifs_zn_dirty(znode)) { 1061 err = 4; 1062 goto out; 1063 } 1064 1065 if (ubifs_zn_dirty(znode)) { 1066 /* 1067 * If znode is dirty, its parent has to be dirty as well. The 1068 * order of the operation is important, so we have to have 1069 * memory barriers. 1070 */ 1071 smp_mb(); 1072 if (zp && !ubifs_zn_dirty(zp)) { 1073 /* 1074 * The dirty flag is atomic and is cleared outside the 1075 * TNC mutex, so znode's dirty flag may now have 1076 * been cleared. The child is always cleared before the 1077 * parent, so we just need to check again. 1078 */ 1079 smp_mb(); 1080 if (ubifs_zn_dirty(znode)) { 1081 err = 5; 1082 goto out; 1083 } 1084 } 1085 } 1086 1087 if (zp) { 1088 const union ubifs_key *min, *max; 1089 1090 if (znode->level != zp->level - 1) { 1091 err = 6; 1092 goto out; 1093 } 1094 1095 /* Make sure the 'parent' pointer in our znode is correct */ 1096 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1097 if (!err) { 1098 /* This zbranch does not exist in the parent */ 1099 err = 7; 1100 goto out; 1101 } 1102 1103 if (znode->iip >= zp->child_cnt) { 1104 err = 8; 1105 goto out; 1106 } 1107 1108 if (znode->iip != n) { 1109 /* This may happen only in case of collisions */ 1110 if (keys_cmp(c, &zp->zbranch[n].key, 1111 &zp->zbranch[znode->iip].key)) { 1112 err = 9; 1113 goto out; 1114 } 1115 n = znode->iip; 1116 } 1117 1118 /* 1119 * Make sure that the first key in our znode is greater than or 1120 * equal to the key in the pointing zbranch. 1121 */ 1122 min = &zbr->key; 1123 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1124 if (cmp == 1) { 1125 err = 10; 1126 goto out; 1127 } 1128 1129 if (n + 1 < zp->child_cnt) { 1130 max = &zp->zbranch[n + 1].key; 1131 1132 /* 1133 * Make sure the last key in our znode is less or 1134 * equivalent than the the key in zbranch which goes 1135 * after our pointing zbranch. 1136 */ 1137 cmp = keys_cmp(c, max, 1138 &znode->zbranch[znode->child_cnt - 1].key); 1139 if (cmp == -1) { 1140 err = 11; 1141 goto out; 1142 } 1143 } 1144 } else { 1145 /* This may only be root znode */ 1146 if (zbr != &c->zroot) { 1147 err = 12; 1148 goto out; 1149 } 1150 } 1151 1152 /* 1153 * Make sure that next key is greater or equivalent then the previous 1154 * one. 1155 */ 1156 for (n = 1; n < znode->child_cnt; n++) { 1157 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1158 &znode->zbranch[n].key); 1159 if (cmp > 0) { 1160 err = 13; 1161 goto out; 1162 } 1163 if (cmp == 0) { 1164 /* This can only be keys with colliding hash */ 1165 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1166 err = 14; 1167 goto out; 1168 } 1169 1170 if (znode->level != 0 || c->replaying) 1171 continue; 1172 1173 /* 1174 * Colliding keys should follow binary order of 1175 * corresponding xentry/dentry names. 1176 */ 1177 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1178 &znode->zbranch[n]); 1179 if (err < 0) 1180 return err; 1181 if (err) { 1182 err = 15; 1183 goto out; 1184 } 1185 } 1186 } 1187 1188 for (n = 0; n < znode->child_cnt; n++) { 1189 if (!znode->zbranch[n].znode && 1190 (znode->zbranch[n].lnum == 0 || 1191 znode->zbranch[n].len == 0)) { 1192 err = 16; 1193 goto out; 1194 } 1195 1196 if (znode->zbranch[n].lnum != 0 && 1197 znode->zbranch[n].len == 0) { 1198 err = 17; 1199 goto out; 1200 } 1201 1202 if (znode->zbranch[n].lnum == 0 && 1203 znode->zbranch[n].len != 0) { 1204 err = 18; 1205 goto out; 1206 } 1207 1208 if (znode->zbranch[n].lnum == 0 && 1209 znode->zbranch[n].offs != 0) { 1210 err = 19; 1211 goto out; 1212 } 1213 1214 if (znode->level != 0 && znode->zbranch[n].znode) 1215 if (znode->zbranch[n].znode->parent != znode) { 1216 err = 20; 1217 goto out; 1218 } 1219 } 1220 1221 return 0; 1222 1223 out: 1224 ubifs_err("failed, error %d", err); 1225 ubifs_msg("dump of the znode"); 1226 dbg_dump_znode(c, znode); 1227 if (zp) { 1228 ubifs_msg("dump of the parent znode"); 1229 dbg_dump_znode(c, zp); 1230 } 1231 dump_stack(); 1232 return -EINVAL; 1233 } 1234 1235 /** 1236 * dbg_check_tnc - check TNC tree. 1237 * @c: UBIFS file-system description object 1238 * @extra: do extra checks that are possible at start commit 1239 * 1240 * This function traverses whole TNC tree and checks every znode. Returns zero 1241 * if everything is all right and %-EINVAL if something is wrong with TNC. 1242 */ 1243 int dbg_check_tnc(struct ubifs_info *c, int extra) 1244 { 1245 struct ubifs_znode *znode; 1246 long clean_cnt = 0, dirty_cnt = 0; 1247 int err, last; 1248 1249 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1250 return 0; 1251 1252 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1253 if (!c->zroot.znode) 1254 return 0; 1255 1256 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1257 while (1) { 1258 struct ubifs_znode *prev; 1259 struct ubifs_zbranch *zbr; 1260 1261 if (!znode->parent) 1262 zbr = &c->zroot; 1263 else 1264 zbr = &znode->parent->zbranch[znode->iip]; 1265 1266 err = dbg_check_znode(c, zbr); 1267 if (err) 1268 return err; 1269 1270 if (extra) { 1271 if (ubifs_zn_dirty(znode)) 1272 dirty_cnt += 1; 1273 else 1274 clean_cnt += 1; 1275 } 1276 1277 prev = znode; 1278 znode = ubifs_tnc_postorder_next(znode); 1279 if (!znode) 1280 break; 1281 1282 /* 1283 * If the last key of this znode is equivalent to the first key 1284 * of the next znode (collision), then check order of the keys. 1285 */ 1286 last = prev->child_cnt - 1; 1287 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1288 !keys_cmp(c, &prev->zbranch[last].key, 1289 &znode->zbranch[0].key)) { 1290 err = dbg_check_key_order(c, &prev->zbranch[last], 1291 &znode->zbranch[0]); 1292 if (err < 0) 1293 return err; 1294 if (err) { 1295 ubifs_msg("first znode"); 1296 dbg_dump_znode(c, prev); 1297 ubifs_msg("second znode"); 1298 dbg_dump_znode(c, znode); 1299 return -EINVAL; 1300 } 1301 } 1302 } 1303 1304 if (extra) { 1305 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1306 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1307 atomic_long_read(&c->clean_zn_cnt), 1308 clean_cnt); 1309 return -EINVAL; 1310 } 1311 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1312 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1313 atomic_long_read(&c->dirty_zn_cnt), 1314 dirty_cnt); 1315 return -EINVAL; 1316 } 1317 } 1318 1319 return 0; 1320 } 1321 1322 /** 1323 * dbg_walk_index - walk the on-flash index. 1324 * @c: UBIFS file-system description object 1325 * @leaf_cb: called for each leaf node 1326 * @znode_cb: called for each indexing node 1327 * @priv: private date which is passed to callbacks 1328 * 1329 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1330 * node and @znode_cb for each indexing node. Returns zero in case of success 1331 * and a negative error code in case of failure. 1332 * 1333 * It would be better if this function removed every znode it pulled to into 1334 * the TNC, so that the behavior more closely matched the non-debugging 1335 * behavior. 1336 */ 1337 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1338 dbg_znode_callback znode_cb, void *priv) 1339 { 1340 int err; 1341 struct ubifs_zbranch *zbr; 1342 struct ubifs_znode *znode, *child; 1343 1344 mutex_lock(&c->tnc_mutex); 1345 /* If the root indexing node is not in TNC - pull it */ 1346 if (!c->zroot.znode) { 1347 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1348 if (IS_ERR(c->zroot.znode)) { 1349 err = PTR_ERR(c->zroot.znode); 1350 c->zroot.znode = NULL; 1351 goto out_unlock; 1352 } 1353 } 1354 1355 /* 1356 * We are going to traverse the indexing tree in the postorder manner. 1357 * Go down and find the leftmost indexing node where we are going to 1358 * start from. 1359 */ 1360 znode = c->zroot.znode; 1361 while (znode->level > 0) { 1362 zbr = &znode->zbranch[0]; 1363 child = zbr->znode; 1364 if (!child) { 1365 child = ubifs_load_znode(c, zbr, znode, 0); 1366 if (IS_ERR(child)) { 1367 err = PTR_ERR(child); 1368 goto out_unlock; 1369 } 1370 zbr->znode = child; 1371 } 1372 1373 znode = child; 1374 } 1375 1376 /* Iterate over all indexing nodes */ 1377 while (1) { 1378 int idx; 1379 1380 cond_resched(); 1381 1382 if (znode_cb) { 1383 err = znode_cb(c, znode, priv); 1384 if (err) { 1385 ubifs_err("znode checking function returned " 1386 "error %d", err); 1387 dbg_dump_znode(c, znode); 1388 goto out_dump; 1389 } 1390 } 1391 if (leaf_cb && znode->level == 0) { 1392 for (idx = 0; idx < znode->child_cnt; idx++) { 1393 zbr = &znode->zbranch[idx]; 1394 err = leaf_cb(c, zbr, priv); 1395 if (err) { 1396 ubifs_err("leaf checking function " 1397 "returned error %d, for leaf " 1398 "at LEB %d:%d", 1399 err, zbr->lnum, zbr->offs); 1400 goto out_dump; 1401 } 1402 } 1403 } 1404 1405 if (!znode->parent) 1406 break; 1407 1408 idx = znode->iip + 1; 1409 znode = znode->parent; 1410 if (idx < znode->child_cnt) { 1411 /* Switch to the next index in the parent */ 1412 zbr = &znode->zbranch[idx]; 1413 child = zbr->znode; 1414 if (!child) { 1415 child = ubifs_load_znode(c, zbr, znode, idx); 1416 if (IS_ERR(child)) { 1417 err = PTR_ERR(child); 1418 goto out_unlock; 1419 } 1420 zbr->znode = child; 1421 } 1422 znode = child; 1423 } else 1424 /* 1425 * This is the last child, switch to the parent and 1426 * continue. 1427 */ 1428 continue; 1429 1430 /* Go to the lowest leftmost znode in the new sub-tree */ 1431 while (znode->level > 0) { 1432 zbr = &znode->zbranch[0]; 1433 child = zbr->znode; 1434 if (!child) { 1435 child = ubifs_load_znode(c, zbr, znode, 0); 1436 if (IS_ERR(child)) { 1437 err = PTR_ERR(child); 1438 goto out_unlock; 1439 } 1440 zbr->znode = child; 1441 } 1442 znode = child; 1443 } 1444 } 1445 1446 mutex_unlock(&c->tnc_mutex); 1447 return 0; 1448 1449 out_dump: 1450 if (znode->parent) 1451 zbr = &znode->parent->zbranch[znode->iip]; 1452 else 1453 zbr = &c->zroot; 1454 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1455 dbg_dump_znode(c, znode); 1456 out_unlock: 1457 mutex_unlock(&c->tnc_mutex); 1458 return err; 1459 } 1460 1461 /** 1462 * add_size - add znode size to partially calculated index size. 1463 * @c: UBIFS file-system description object 1464 * @znode: znode to add size for 1465 * @priv: partially calculated index size 1466 * 1467 * This is a helper function for 'dbg_check_idx_size()' which is called for 1468 * every indexing node and adds its size to the 'long long' variable pointed to 1469 * by @priv. 1470 */ 1471 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1472 { 1473 long long *idx_size = priv; 1474 int add; 1475 1476 add = ubifs_idx_node_sz(c, znode->child_cnt); 1477 add = ALIGN(add, 8); 1478 *idx_size += add; 1479 return 0; 1480 } 1481 1482 /** 1483 * dbg_check_idx_size - check index size. 1484 * @c: UBIFS file-system description object 1485 * @idx_size: size to check 1486 * 1487 * This function walks the UBIFS index, calculates its size and checks that the 1488 * size is equivalent to @idx_size. Returns zero in case of success and a 1489 * negative error code in case of failure. 1490 */ 1491 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1492 { 1493 int err; 1494 long long calc = 0; 1495 1496 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1497 return 0; 1498 1499 err = dbg_walk_index(c, NULL, add_size, &calc); 1500 if (err) { 1501 ubifs_err("error %d while walking the index", err); 1502 return err; 1503 } 1504 1505 if (calc != idx_size) { 1506 ubifs_err("index size check failed: calculated size is %lld, " 1507 "should be %lld", calc, idx_size); 1508 dump_stack(); 1509 return -EINVAL; 1510 } 1511 1512 return 0; 1513 } 1514 1515 /** 1516 * struct fsck_inode - information about an inode used when checking the file-system. 1517 * @rb: link in the RB-tree of inodes 1518 * @inum: inode number 1519 * @mode: inode type, permissions, etc 1520 * @nlink: inode link count 1521 * @xattr_cnt: count of extended attributes 1522 * @references: how many directory/xattr entries refer this inode (calculated 1523 * while walking the index) 1524 * @calc_cnt: for directory inode count of child directories 1525 * @size: inode size (read from on-flash inode) 1526 * @xattr_sz: summary size of all extended attributes (read from on-flash 1527 * inode) 1528 * @calc_sz: for directories calculated directory size 1529 * @calc_xcnt: count of extended attributes 1530 * @calc_xsz: calculated summary size of all extended attributes 1531 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1532 * inode (read from on-flash inode) 1533 * @calc_xnms: calculated sum of lengths of all extended attribute names 1534 */ 1535 struct fsck_inode { 1536 struct rb_node rb; 1537 ino_t inum; 1538 umode_t mode; 1539 unsigned int nlink; 1540 unsigned int xattr_cnt; 1541 int references; 1542 int calc_cnt; 1543 long long size; 1544 unsigned int xattr_sz; 1545 long long calc_sz; 1546 long long calc_xcnt; 1547 long long calc_xsz; 1548 unsigned int xattr_nms; 1549 long long calc_xnms; 1550 }; 1551 1552 /** 1553 * struct fsck_data - private FS checking information. 1554 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1555 */ 1556 struct fsck_data { 1557 struct rb_root inodes; 1558 }; 1559 1560 /** 1561 * add_inode - add inode information to RB-tree of inodes. 1562 * @c: UBIFS file-system description object 1563 * @fsckd: FS checking information 1564 * @ino: raw UBIFS inode to add 1565 * 1566 * This is a helper function for 'check_leaf()' which adds information about 1567 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1568 * case of success and a negative error code in case of failure. 1569 */ 1570 static struct fsck_inode *add_inode(struct ubifs_info *c, 1571 struct fsck_data *fsckd, 1572 struct ubifs_ino_node *ino) 1573 { 1574 struct rb_node **p, *parent = NULL; 1575 struct fsck_inode *fscki; 1576 ino_t inum = key_inum_flash(c, &ino->key); 1577 1578 p = &fsckd->inodes.rb_node; 1579 while (*p) { 1580 parent = *p; 1581 fscki = rb_entry(parent, struct fsck_inode, rb); 1582 if (inum < fscki->inum) 1583 p = &(*p)->rb_left; 1584 else if (inum > fscki->inum) 1585 p = &(*p)->rb_right; 1586 else 1587 return fscki; 1588 } 1589 1590 if (inum > c->highest_inum) { 1591 ubifs_err("too high inode number, max. is %lu", 1592 c->highest_inum); 1593 return ERR_PTR(-EINVAL); 1594 } 1595 1596 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1597 if (!fscki) 1598 return ERR_PTR(-ENOMEM); 1599 1600 fscki->inum = inum; 1601 fscki->nlink = le32_to_cpu(ino->nlink); 1602 fscki->size = le64_to_cpu(ino->size); 1603 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1604 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1605 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1606 fscki->mode = le32_to_cpu(ino->mode); 1607 if (S_ISDIR(fscki->mode)) { 1608 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1609 fscki->calc_cnt = 2; 1610 } 1611 rb_link_node(&fscki->rb, parent, p); 1612 rb_insert_color(&fscki->rb, &fsckd->inodes); 1613 return fscki; 1614 } 1615 1616 /** 1617 * search_inode - search inode in the RB-tree of inodes. 1618 * @fsckd: FS checking information 1619 * @inum: inode number to search 1620 * 1621 * This is a helper function for 'check_leaf()' which searches inode @inum in 1622 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1623 * the inode was not found. 1624 */ 1625 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1626 { 1627 struct rb_node *p; 1628 struct fsck_inode *fscki; 1629 1630 p = fsckd->inodes.rb_node; 1631 while (p) { 1632 fscki = rb_entry(p, struct fsck_inode, rb); 1633 if (inum < fscki->inum) 1634 p = p->rb_left; 1635 else if (inum > fscki->inum) 1636 p = p->rb_right; 1637 else 1638 return fscki; 1639 } 1640 return NULL; 1641 } 1642 1643 /** 1644 * read_add_inode - read inode node and add it to RB-tree of inodes. 1645 * @c: UBIFS file-system description object 1646 * @fsckd: FS checking information 1647 * @inum: inode number to read 1648 * 1649 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1650 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1651 * information pointer in case of success and a negative error code in case of 1652 * failure. 1653 */ 1654 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1655 struct fsck_data *fsckd, ino_t inum) 1656 { 1657 int n, err; 1658 union ubifs_key key; 1659 struct ubifs_znode *znode; 1660 struct ubifs_zbranch *zbr; 1661 struct ubifs_ino_node *ino; 1662 struct fsck_inode *fscki; 1663 1664 fscki = search_inode(fsckd, inum); 1665 if (fscki) 1666 return fscki; 1667 1668 ino_key_init(c, &key, inum); 1669 err = ubifs_lookup_level0(c, &key, &znode, &n); 1670 if (!err) { 1671 ubifs_err("inode %lu not found in index", inum); 1672 return ERR_PTR(-ENOENT); 1673 } else if (err < 0) { 1674 ubifs_err("error %d while looking up inode %lu", err, inum); 1675 return ERR_PTR(err); 1676 } 1677 1678 zbr = &znode->zbranch[n]; 1679 if (zbr->len < UBIFS_INO_NODE_SZ) { 1680 ubifs_err("bad node %lu node length %d", inum, zbr->len); 1681 return ERR_PTR(-EINVAL); 1682 } 1683 1684 ino = kmalloc(zbr->len, GFP_NOFS); 1685 if (!ino) 1686 return ERR_PTR(-ENOMEM); 1687 1688 err = ubifs_tnc_read_node(c, zbr, ino); 1689 if (err) { 1690 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1691 zbr->lnum, zbr->offs, err); 1692 kfree(ino); 1693 return ERR_PTR(err); 1694 } 1695 1696 fscki = add_inode(c, fsckd, ino); 1697 kfree(ino); 1698 if (IS_ERR(fscki)) { 1699 ubifs_err("error %ld while adding inode %lu node", 1700 PTR_ERR(fscki), inum); 1701 return fscki; 1702 } 1703 1704 return fscki; 1705 } 1706 1707 /** 1708 * check_leaf - check leaf node. 1709 * @c: UBIFS file-system description object 1710 * @zbr: zbranch of the leaf node to check 1711 * @priv: FS checking information 1712 * 1713 * This is a helper function for 'dbg_check_filesystem()' which is called for 1714 * every single leaf node while walking the indexing tree. It checks that the 1715 * leaf node referred from the indexing tree exists, has correct CRC, and does 1716 * some other basic validation. This function is also responsible for building 1717 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1718 * calculates reference count, size, etc for each inode in order to later 1719 * compare them to the information stored inside the inodes and detect possible 1720 * inconsistencies. Returns zero in case of success and a negative error code 1721 * in case of failure. 1722 */ 1723 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1724 void *priv) 1725 { 1726 ino_t inum; 1727 void *node; 1728 struct ubifs_ch *ch; 1729 int err, type = key_type(c, &zbr->key); 1730 struct fsck_inode *fscki; 1731 1732 if (zbr->len < UBIFS_CH_SZ) { 1733 ubifs_err("bad leaf length %d (LEB %d:%d)", 1734 zbr->len, zbr->lnum, zbr->offs); 1735 return -EINVAL; 1736 } 1737 1738 node = kmalloc(zbr->len, GFP_NOFS); 1739 if (!node) 1740 return -ENOMEM; 1741 1742 err = ubifs_tnc_read_node(c, zbr, node); 1743 if (err) { 1744 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1745 zbr->lnum, zbr->offs, err); 1746 goto out_free; 1747 } 1748 1749 /* If this is an inode node, add it to RB-tree of inodes */ 1750 if (type == UBIFS_INO_KEY) { 1751 fscki = add_inode(c, priv, node); 1752 if (IS_ERR(fscki)) { 1753 err = PTR_ERR(fscki); 1754 ubifs_err("error %d while adding inode node", err); 1755 goto out_dump; 1756 } 1757 goto out; 1758 } 1759 1760 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1761 type != UBIFS_DATA_KEY) { 1762 ubifs_err("unexpected node type %d at LEB %d:%d", 1763 type, zbr->lnum, zbr->offs); 1764 err = -EINVAL; 1765 goto out_free; 1766 } 1767 1768 ch = node; 1769 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1770 ubifs_err("too high sequence number, max. is %llu", 1771 c->max_sqnum); 1772 err = -EINVAL; 1773 goto out_dump; 1774 } 1775 1776 if (type == UBIFS_DATA_KEY) { 1777 long long blk_offs; 1778 struct ubifs_data_node *dn = node; 1779 1780 /* 1781 * Search the inode node this data node belongs to and insert 1782 * it to the RB-tree of inodes. 1783 */ 1784 inum = key_inum_flash(c, &dn->key); 1785 fscki = read_add_inode(c, priv, inum); 1786 if (IS_ERR(fscki)) { 1787 err = PTR_ERR(fscki); 1788 ubifs_err("error %d while processing data node and " 1789 "trying to find inode node %lu", err, inum); 1790 goto out_dump; 1791 } 1792 1793 /* Make sure the data node is within inode size */ 1794 blk_offs = key_block_flash(c, &dn->key); 1795 blk_offs <<= UBIFS_BLOCK_SHIFT; 1796 blk_offs += le32_to_cpu(dn->size); 1797 if (blk_offs > fscki->size) { 1798 ubifs_err("data node at LEB %d:%d is not within inode " 1799 "size %lld", zbr->lnum, zbr->offs, 1800 fscki->size); 1801 err = -EINVAL; 1802 goto out_dump; 1803 } 1804 } else { 1805 int nlen; 1806 struct ubifs_dent_node *dent = node; 1807 struct fsck_inode *fscki1; 1808 1809 err = ubifs_validate_entry(c, dent); 1810 if (err) 1811 goto out_dump; 1812 1813 /* 1814 * Search the inode node this entry refers to and the parent 1815 * inode node and insert them to the RB-tree of inodes. 1816 */ 1817 inum = le64_to_cpu(dent->inum); 1818 fscki = read_add_inode(c, priv, inum); 1819 if (IS_ERR(fscki)) { 1820 err = PTR_ERR(fscki); 1821 ubifs_err("error %d while processing entry node and " 1822 "trying to find inode node %lu", err, inum); 1823 goto out_dump; 1824 } 1825 1826 /* Count how many direntries or xentries refers this inode */ 1827 fscki->references += 1; 1828 1829 inum = key_inum_flash(c, &dent->key); 1830 fscki1 = read_add_inode(c, priv, inum); 1831 if (IS_ERR(fscki1)) { 1832 err = PTR_ERR(fscki); 1833 ubifs_err("error %d while processing entry node and " 1834 "trying to find parent inode node %lu", 1835 err, inum); 1836 goto out_dump; 1837 } 1838 1839 nlen = le16_to_cpu(dent->nlen); 1840 if (type == UBIFS_XENT_KEY) { 1841 fscki1->calc_xcnt += 1; 1842 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 1843 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 1844 fscki1->calc_xnms += nlen; 1845 } else { 1846 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 1847 if (dent->type == UBIFS_ITYPE_DIR) 1848 fscki1->calc_cnt += 1; 1849 } 1850 } 1851 1852 out: 1853 kfree(node); 1854 return 0; 1855 1856 out_dump: 1857 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 1858 dbg_dump_node(c, node); 1859 out_free: 1860 kfree(node); 1861 return err; 1862 } 1863 1864 /** 1865 * free_inodes - free RB-tree of inodes. 1866 * @fsckd: FS checking information 1867 */ 1868 static void free_inodes(struct fsck_data *fsckd) 1869 { 1870 struct rb_node *this = fsckd->inodes.rb_node; 1871 struct fsck_inode *fscki; 1872 1873 while (this) { 1874 if (this->rb_left) 1875 this = this->rb_left; 1876 else if (this->rb_right) 1877 this = this->rb_right; 1878 else { 1879 fscki = rb_entry(this, struct fsck_inode, rb); 1880 this = rb_parent(this); 1881 if (this) { 1882 if (this->rb_left == &fscki->rb) 1883 this->rb_left = NULL; 1884 else 1885 this->rb_right = NULL; 1886 } 1887 kfree(fscki); 1888 } 1889 } 1890 } 1891 1892 /** 1893 * check_inodes - checks all inodes. 1894 * @c: UBIFS file-system description object 1895 * @fsckd: FS checking information 1896 * 1897 * This is a helper function for 'dbg_check_filesystem()' which walks the 1898 * RB-tree of inodes after the index scan has been finished, and checks that 1899 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 1900 * %-EINVAL if not, and a negative error code in case of failure. 1901 */ 1902 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 1903 { 1904 int n, err; 1905 union ubifs_key key; 1906 struct ubifs_znode *znode; 1907 struct ubifs_zbranch *zbr; 1908 struct ubifs_ino_node *ino; 1909 struct fsck_inode *fscki; 1910 struct rb_node *this = rb_first(&fsckd->inodes); 1911 1912 while (this) { 1913 fscki = rb_entry(this, struct fsck_inode, rb); 1914 this = rb_next(this); 1915 1916 if (S_ISDIR(fscki->mode)) { 1917 /* 1918 * Directories have to have exactly one reference (they 1919 * cannot have hardlinks), although root inode is an 1920 * exception. 1921 */ 1922 if (fscki->inum != UBIFS_ROOT_INO && 1923 fscki->references != 1) { 1924 ubifs_err("directory inode %lu has %d " 1925 "direntries which refer it, but " 1926 "should be 1", fscki->inum, 1927 fscki->references); 1928 goto out_dump; 1929 } 1930 if (fscki->inum == UBIFS_ROOT_INO && 1931 fscki->references != 0) { 1932 ubifs_err("root inode %lu has non-zero (%d) " 1933 "direntries which refer it", 1934 fscki->inum, fscki->references); 1935 goto out_dump; 1936 } 1937 if (fscki->calc_sz != fscki->size) { 1938 ubifs_err("directory inode %lu size is %lld, " 1939 "but calculated size is %lld", 1940 fscki->inum, fscki->size, 1941 fscki->calc_sz); 1942 goto out_dump; 1943 } 1944 if (fscki->calc_cnt != fscki->nlink) { 1945 ubifs_err("directory inode %lu nlink is %d, " 1946 "but calculated nlink is %d", 1947 fscki->inum, fscki->nlink, 1948 fscki->calc_cnt); 1949 goto out_dump; 1950 } 1951 } else { 1952 if (fscki->references != fscki->nlink) { 1953 ubifs_err("inode %lu nlink is %d, but " 1954 "calculated nlink is %d", fscki->inum, 1955 fscki->nlink, fscki->references); 1956 goto out_dump; 1957 } 1958 } 1959 if (fscki->xattr_sz != fscki->calc_xsz) { 1960 ubifs_err("inode %lu has xattr size %u, but " 1961 "calculated size is %lld", 1962 fscki->inum, fscki->xattr_sz, 1963 fscki->calc_xsz); 1964 goto out_dump; 1965 } 1966 if (fscki->xattr_cnt != fscki->calc_xcnt) { 1967 ubifs_err("inode %lu has %u xattrs, but " 1968 "calculated count is %lld", fscki->inum, 1969 fscki->xattr_cnt, fscki->calc_xcnt); 1970 goto out_dump; 1971 } 1972 if (fscki->xattr_nms != fscki->calc_xnms) { 1973 ubifs_err("inode %lu has xattr names' size %u, but " 1974 "calculated names' size is %lld", 1975 fscki->inum, fscki->xattr_nms, 1976 fscki->calc_xnms); 1977 goto out_dump; 1978 } 1979 } 1980 1981 return 0; 1982 1983 out_dump: 1984 /* Read the bad inode and dump it */ 1985 ino_key_init(c, &key, fscki->inum); 1986 err = ubifs_lookup_level0(c, &key, &znode, &n); 1987 if (!err) { 1988 ubifs_err("inode %lu not found in index", fscki->inum); 1989 return -ENOENT; 1990 } else if (err < 0) { 1991 ubifs_err("error %d while looking up inode %lu", 1992 err, fscki->inum); 1993 return err; 1994 } 1995 1996 zbr = &znode->zbranch[n]; 1997 ino = kmalloc(zbr->len, GFP_NOFS); 1998 if (!ino) 1999 return -ENOMEM; 2000 2001 err = ubifs_tnc_read_node(c, zbr, ino); 2002 if (err) { 2003 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2004 zbr->lnum, zbr->offs, err); 2005 kfree(ino); 2006 return err; 2007 } 2008 2009 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2010 fscki->inum, zbr->lnum, zbr->offs); 2011 dbg_dump_node(c, ino); 2012 kfree(ino); 2013 return -EINVAL; 2014 } 2015 2016 /** 2017 * dbg_check_filesystem - check the file-system. 2018 * @c: UBIFS file-system description object 2019 * 2020 * This function checks the file system, namely: 2021 * o makes sure that all leaf nodes exist and their CRCs are correct; 2022 * o makes sure inode nlink, size, xattr size/count are correct (for all 2023 * inodes). 2024 * 2025 * The function reads whole indexing tree and all nodes, so it is pretty 2026 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2027 * not, and a negative error code in case of failure. 2028 */ 2029 int dbg_check_filesystem(struct ubifs_info *c) 2030 { 2031 int err; 2032 struct fsck_data fsckd; 2033 2034 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2035 return 0; 2036 2037 fsckd.inodes = RB_ROOT; 2038 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2039 if (err) 2040 goto out_free; 2041 2042 err = check_inodes(c, &fsckd); 2043 if (err) 2044 goto out_free; 2045 2046 free_inodes(&fsckd); 2047 return 0; 2048 2049 out_free: 2050 ubifs_err("file-system check failed with error %d", err); 2051 dump_stack(); 2052 free_inodes(&fsckd); 2053 return err; 2054 } 2055 2056 static int invocation_cnt; 2057 2058 int dbg_force_in_the_gaps(void) 2059 { 2060 if (!dbg_force_in_the_gaps_enabled) 2061 return 0; 2062 /* Force in-the-gaps every 8th commit */ 2063 return !((invocation_cnt++) & 0x7); 2064 } 2065 2066 /* Failure mode for recovery testing */ 2067 2068 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2069 2070 struct failure_mode_info { 2071 struct list_head list; 2072 struct ubifs_info *c; 2073 }; 2074 2075 static LIST_HEAD(fmi_list); 2076 static DEFINE_SPINLOCK(fmi_lock); 2077 2078 static unsigned int next; 2079 2080 static int simple_rand(void) 2081 { 2082 if (next == 0) 2083 next = current->pid; 2084 next = next * 1103515245 + 12345; 2085 return (next >> 16) & 32767; 2086 } 2087 2088 void dbg_failure_mode_registration(struct ubifs_info *c) 2089 { 2090 struct failure_mode_info *fmi; 2091 2092 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2093 if (!fmi) { 2094 dbg_err("Failed to register failure mode - no memory"); 2095 return; 2096 } 2097 fmi->c = c; 2098 spin_lock(&fmi_lock); 2099 list_add_tail(&fmi->list, &fmi_list); 2100 spin_unlock(&fmi_lock); 2101 } 2102 2103 void dbg_failure_mode_deregistration(struct ubifs_info *c) 2104 { 2105 struct failure_mode_info *fmi, *tmp; 2106 2107 spin_lock(&fmi_lock); 2108 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2109 if (fmi->c == c) { 2110 list_del(&fmi->list); 2111 kfree(fmi); 2112 } 2113 spin_unlock(&fmi_lock); 2114 } 2115 2116 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2117 { 2118 struct failure_mode_info *fmi; 2119 2120 spin_lock(&fmi_lock); 2121 list_for_each_entry(fmi, &fmi_list, list) 2122 if (fmi->c->ubi == desc) { 2123 struct ubifs_info *c = fmi->c; 2124 2125 spin_unlock(&fmi_lock); 2126 return c; 2127 } 2128 spin_unlock(&fmi_lock); 2129 return NULL; 2130 } 2131 2132 static int in_failure_mode(struct ubi_volume_desc *desc) 2133 { 2134 struct ubifs_info *c = dbg_find_info(desc); 2135 2136 if (c && dbg_failure_mode) 2137 return c->failure_mode; 2138 return 0; 2139 } 2140 2141 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2142 { 2143 struct ubifs_info *c = dbg_find_info(desc); 2144 2145 if (!c || !dbg_failure_mode) 2146 return 0; 2147 if (c->failure_mode) 2148 return 1; 2149 if (!c->fail_cnt) { 2150 /* First call - decide delay to failure */ 2151 if (chance(1, 2)) { 2152 unsigned int delay = 1 << (simple_rand() >> 11); 2153 2154 if (chance(1, 2)) { 2155 c->fail_delay = 1; 2156 c->fail_timeout = jiffies + 2157 msecs_to_jiffies(delay); 2158 dbg_rcvry("failing after %ums", delay); 2159 } else { 2160 c->fail_delay = 2; 2161 c->fail_cnt_max = delay; 2162 dbg_rcvry("failing after %u calls", delay); 2163 } 2164 } 2165 c->fail_cnt += 1; 2166 } 2167 /* Determine if failure delay has expired */ 2168 if (c->fail_delay == 1) { 2169 if (time_before(jiffies, c->fail_timeout)) 2170 return 0; 2171 } else if (c->fail_delay == 2) 2172 if (c->fail_cnt++ < c->fail_cnt_max) 2173 return 0; 2174 if (lnum == UBIFS_SB_LNUM) { 2175 if (write) { 2176 if (chance(1, 2)) 2177 return 0; 2178 } else if (chance(19, 20)) 2179 return 0; 2180 dbg_rcvry("failing in super block LEB %d", lnum); 2181 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2182 if (chance(19, 20)) 2183 return 0; 2184 dbg_rcvry("failing in master LEB %d", lnum); 2185 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2186 if (write) { 2187 if (chance(99, 100)) 2188 return 0; 2189 } else if (chance(399, 400)) 2190 return 0; 2191 dbg_rcvry("failing in log LEB %d", lnum); 2192 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2193 if (write) { 2194 if (chance(7, 8)) 2195 return 0; 2196 } else if (chance(19, 20)) 2197 return 0; 2198 dbg_rcvry("failing in LPT LEB %d", lnum); 2199 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2200 if (write) { 2201 if (chance(1, 2)) 2202 return 0; 2203 } else if (chance(9, 10)) 2204 return 0; 2205 dbg_rcvry("failing in orphan LEB %d", lnum); 2206 } else if (lnum == c->ihead_lnum) { 2207 if (chance(99, 100)) 2208 return 0; 2209 dbg_rcvry("failing in index head LEB %d", lnum); 2210 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2211 if (chance(9, 10)) 2212 return 0; 2213 dbg_rcvry("failing in GC head LEB %d", lnum); 2214 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2215 !ubifs_search_bud(c, lnum)) { 2216 if (chance(19, 20)) 2217 return 0; 2218 dbg_rcvry("failing in non-bud LEB %d", lnum); 2219 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2220 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2221 if (chance(999, 1000)) 2222 return 0; 2223 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2224 } else { 2225 if (chance(9999, 10000)) 2226 return 0; 2227 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2228 } 2229 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2230 c->failure_mode = 1; 2231 dump_stack(); 2232 return 1; 2233 } 2234 2235 static void cut_data(const void *buf, int len) 2236 { 2237 int flen, i; 2238 unsigned char *p = (void *)buf; 2239 2240 flen = (len * (long long)simple_rand()) >> 15; 2241 for (i = flen; i < len; i++) 2242 p[i] = 0xff; 2243 } 2244 2245 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2246 int len, int check) 2247 { 2248 if (in_failure_mode(desc)) 2249 return -EIO; 2250 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2251 } 2252 2253 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2254 int offset, int len, int dtype) 2255 { 2256 int err, failing; 2257 2258 if (in_failure_mode(desc)) 2259 return -EIO; 2260 failing = do_fail(desc, lnum, 1); 2261 if (failing) 2262 cut_data(buf, len); 2263 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2264 if (err) 2265 return err; 2266 if (failing) 2267 return -EIO; 2268 return 0; 2269 } 2270 2271 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2272 int len, int dtype) 2273 { 2274 int err; 2275 2276 if (do_fail(desc, lnum, 1)) 2277 return -EIO; 2278 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2279 if (err) 2280 return err; 2281 if (do_fail(desc, lnum, 1)) 2282 return -EIO; 2283 return 0; 2284 } 2285 2286 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2287 { 2288 int err; 2289 2290 if (do_fail(desc, lnum, 0)) 2291 return -EIO; 2292 err = ubi_leb_erase(desc, lnum); 2293 if (err) 2294 return err; 2295 if (do_fail(desc, lnum, 0)) 2296 return -EIO; 2297 return 0; 2298 } 2299 2300 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2301 { 2302 int err; 2303 2304 if (do_fail(desc, lnum, 0)) 2305 return -EIO; 2306 err = ubi_leb_unmap(desc, lnum); 2307 if (err) 2308 return err; 2309 if (do_fail(desc, lnum, 0)) 2310 return -EIO; 2311 return 0; 2312 } 2313 2314 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2315 { 2316 if (in_failure_mode(desc)) 2317 return -EIO; 2318 return ubi_is_mapped(desc, lnum); 2319 } 2320 2321 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2322 { 2323 int err; 2324 2325 if (do_fail(desc, lnum, 0)) 2326 return -EIO; 2327 err = ubi_leb_map(desc, lnum, dtype); 2328 if (err) 2329 return err; 2330 if (do_fail(desc, lnum, 0)) 2331 return -EIO; 2332 return 0; 2333 } 2334 2335 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2336