xref: /openbmc/linux/fs/ubifs/debug.c (revision 367b8112)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 
36 #ifdef CONFIG_UBIFS_FS_DEBUG
37 
38 DEFINE_SPINLOCK(dbg_lock);
39 
40 static char dbg_key_buf0[128];
41 static char dbg_key_buf1[128];
42 
43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
45 unsigned int ubifs_tst_flags;
46 
47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50 
51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
52 MODULE_PARM_DESC(debug_chks, "Debug check flags");
53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
54 
55 static const char *get_key_fmt(int fmt)
56 {
57 	switch (fmt) {
58 	case UBIFS_SIMPLE_KEY_FMT:
59 		return "simple";
60 	default:
61 		return "unknown/invalid format";
62 	}
63 }
64 
65 static const char *get_key_hash(int hash)
66 {
67 	switch (hash) {
68 	case UBIFS_KEY_HASH_R5:
69 		return "R5";
70 	case UBIFS_KEY_HASH_TEST:
71 		return "test";
72 	default:
73 		return "unknown/invalid name hash";
74 	}
75 }
76 
77 static const char *get_key_type(int type)
78 {
79 	switch (type) {
80 	case UBIFS_INO_KEY:
81 		return "inode";
82 	case UBIFS_DENT_KEY:
83 		return "direntry";
84 	case UBIFS_XENT_KEY:
85 		return "xentry";
86 	case UBIFS_DATA_KEY:
87 		return "data";
88 	case UBIFS_TRUN_KEY:
89 		return "truncate";
90 	default:
91 		return "unknown/invalid key";
92 	}
93 }
94 
95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
96 			char *buffer)
97 {
98 	char *p = buffer;
99 	int type = key_type(c, key);
100 
101 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
102 		switch (type) {
103 		case UBIFS_INO_KEY:
104 			sprintf(p, "(%lu, %s)", key_inum(c, key),
105 			       get_key_type(type));
106 			break;
107 		case UBIFS_DENT_KEY:
108 		case UBIFS_XENT_KEY:
109 			sprintf(p, "(%lu, %s, %#08x)", key_inum(c, key),
110 				get_key_type(type), key_hash(c, key));
111 			break;
112 		case UBIFS_DATA_KEY:
113 			sprintf(p, "(%lu, %s, %u)", key_inum(c, key),
114 				get_key_type(type), key_block(c, key));
115 			break;
116 		case UBIFS_TRUN_KEY:
117 			sprintf(p, "(%lu, %s)",
118 				key_inum(c, key), get_key_type(type));
119 			break;
120 		default:
121 			sprintf(p, "(bad key type: %#08x, %#08x)",
122 				key->u32[0], key->u32[1]);
123 		}
124 	} else
125 		sprintf(p, "bad key format %d", c->key_fmt);
126 }
127 
128 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
129 {
130 	/* dbg_lock must be held */
131 	sprintf_key(c, key, dbg_key_buf0);
132 	return dbg_key_buf0;
133 }
134 
135 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
136 {
137 	/* dbg_lock must be held */
138 	sprintf_key(c, key, dbg_key_buf1);
139 	return dbg_key_buf1;
140 }
141 
142 const char *dbg_ntype(int type)
143 {
144 	switch (type) {
145 	case UBIFS_PAD_NODE:
146 		return "padding node";
147 	case UBIFS_SB_NODE:
148 		return "superblock node";
149 	case UBIFS_MST_NODE:
150 		return "master node";
151 	case UBIFS_REF_NODE:
152 		return "reference node";
153 	case UBIFS_INO_NODE:
154 		return "inode node";
155 	case UBIFS_DENT_NODE:
156 		return "direntry node";
157 	case UBIFS_XENT_NODE:
158 		return "xentry node";
159 	case UBIFS_DATA_NODE:
160 		return "data node";
161 	case UBIFS_TRUN_NODE:
162 		return "truncate node";
163 	case UBIFS_IDX_NODE:
164 		return "indexing node";
165 	case UBIFS_CS_NODE:
166 		return "commit start node";
167 	case UBIFS_ORPH_NODE:
168 		return "orphan node";
169 	default:
170 		return "unknown node";
171 	}
172 }
173 
174 static const char *dbg_gtype(int type)
175 {
176 	switch (type) {
177 	case UBIFS_NO_NODE_GROUP:
178 		return "no node group";
179 	case UBIFS_IN_NODE_GROUP:
180 		return "in node group";
181 	case UBIFS_LAST_OF_NODE_GROUP:
182 		return "last of node group";
183 	default:
184 		return "unknown";
185 	}
186 }
187 
188 const char *dbg_cstate(int cmt_state)
189 {
190 	switch (cmt_state) {
191 	case COMMIT_RESTING:
192 		return "commit resting";
193 	case COMMIT_BACKGROUND:
194 		return "background commit requested";
195 	case COMMIT_REQUIRED:
196 		return "commit required";
197 	case COMMIT_RUNNING_BACKGROUND:
198 		return "BACKGROUND commit running";
199 	case COMMIT_RUNNING_REQUIRED:
200 		return "commit running and required";
201 	case COMMIT_BROKEN:
202 		return "broken commit";
203 	default:
204 		return "unknown commit state";
205 	}
206 }
207 
208 static void dump_ch(const struct ubifs_ch *ch)
209 {
210 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
211 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
212 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
213 	       dbg_ntype(ch->node_type));
214 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
215 	       dbg_gtype(ch->group_type));
216 	printk(KERN_DEBUG "\tsqnum          %llu\n",
217 	       (unsigned long long)le64_to_cpu(ch->sqnum));
218 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
219 }
220 
221 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
222 {
223 	const struct ubifs_inode *ui = ubifs_inode(inode);
224 
225 	printk(KERN_DEBUG "Dump in-memory inode:");
226 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
227 	printk(KERN_DEBUG "\tsize           %llu\n",
228 	       (unsigned long long)i_size_read(inode));
229 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
230 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
231 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
232 	printk(KERN_DEBUG "\tatime          %u.%u\n",
233 	       (unsigned int)inode->i_atime.tv_sec,
234 	       (unsigned int)inode->i_atime.tv_nsec);
235 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
236 	       (unsigned int)inode->i_mtime.tv_sec,
237 	       (unsigned int)inode->i_mtime.tv_nsec);
238 	printk(KERN_DEBUG "\tctime          %u.%u\n",
239 	       (unsigned int)inode->i_ctime.tv_sec,
240 	       (unsigned int)inode->i_ctime.tv_nsec);
241 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
242 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
243 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
244 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
245 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
246 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
247 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
248 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
249 	       (unsigned long long)ui->synced_i_size);
250 	printk(KERN_DEBUG "\tui_size        %llu\n",
251 	       (unsigned long long)ui->ui_size);
252 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
253 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
254 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
255 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
256 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
257 }
258 
259 void dbg_dump_node(const struct ubifs_info *c, const void *node)
260 {
261 	int i, n;
262 	union ubifs_key key;
263 	const struct ubifs_ch *ch = node;
264 
265 	if (dbg_failure_mode)
266 		return;
267 
268 	/* If the magic is incorrect, just hexdump the first bytes */
269 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
270 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
271 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
272 			       (void *)node, UBIFS_CH_SZ, 1);
273 		return;
274 	}
275 
276 	spin_lock(&dbg_lock);
277 	dump_ch(node);
278 
279 	switch (ch->node_type) {
280 	case UBIFS_PAD_NODE:
281 	{
282 		const struct ubifs_pad_node *pad = node;
283 
284 		printk(KERN_DEBUG "\tpad_len        %u\n",
285 		       le32_to_cpu(pad->pad_len));
286 		break;
287 	}
288 	case UBIFS_SB_NODE:
289 	{
290 		const struct ubifs_sb_node *sup = node;
291 		unsigned int sup_flags = le32_to_cpu(sup->flags);
292 
293 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
294 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
295 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
296 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
297 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
298 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
299 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
300 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
301 		       le32_to_cpu(sup->min_io_size));
302 		printk(KERN_DEBUG "\tleb_size       %u\n",
303 		       le32_to_cpu(sup->leb_size));
304 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
305 		       le32_to_cpu(sup->leb_cnt));
306 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
307 		       le32_to_cpu(sup->max_leb_cnt));
308 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
309 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
310 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
311 		       le32_to_cpu(sup->log_lebs));
312 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
313 		       le32_to_cpu(sup->lpt_lebs));
314 		printk(KERN_DEBUG "\torph_lebs      %u\n",
315 		       le32_to_cpu(sup->orph_lebs));
316 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
317 		       le32_to_cpu(sup->jhead_cnt));
318 		printk(KERN_DEBUG "\tfanout         %u\n",
319 		       le32_to_cpu(sup->fanout));
320 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
321 		       le32_to_cpu(sup->lsave_cnt));
322 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
323 		       (int)le16_to_cpu(sup->default_compr));
324 		printk(KERN_DEBUG "\trp_size        %llu\n",
325 		       (unsigned long long)le64_to_cpu(sup->rp_size));
326 		printk(KERN_DEBUG "\trp_uid         %u\n",
327 		       le32_to_cpu(sup->rp_uid));
328 		printk(KERN_DEBUG "\trp_gid         %u\n",
329 		       le32_to_cpu(sup->rp_gid));
330 		printk(KERN_DEBUG "\tfmt_version    %u\n",
331 		       le32_to_cpu(sup->fmt_version));
332 		printk(KERN_DEBUG "\ttime_gran      %u\n",
333 		       le32_to_cpu(sup->time_gran));
334 		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
335 		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
336 		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
337 		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
338 		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
339 		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
340 		       sup->uuid[15]);
341 		break;
342 	}
343 	case UBIFS_MST_NODE:
344 	{
345 		const struct ubifs_mst_node *mst = node;
346 
347 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
348 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
349 		printk(KERN_DEBUG "\tcommit number  %llu\n",
350 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
351 		printk(KERN_DEBUG "\tflags          %#x\n",
352 		       le32_to_cpu(mst->flags));
353 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
354 		       le32_to_cpu(mst->log_lnum));
355 		printk(KERN_DEBUG "\troot_lnum      %u\n",
356 		       le32_to_cpu(mst->root_lnum));
357 		printk(KERN_DEBUG "\troot_offs      %u\n",
358 		       le32_to_cpu(mst->root_offs));
359 		printk(KERN_DEBUG "\troot_len       %u\n",
360 		       le32_to_cpu(mst->root_len));
361 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
362 		       le32_to_cpu(mst->gc_lnum));
363 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
364 		       le32_to_cpu(mst->ihead_lnum));
365 		printk(KERN_DEBUG "\tihead_offs     %u\n",
366 		       le32_to_cpu(mst->ihead_offs));
367 		printk(KERN_DEBUG "\tindex_size     %u\n",
368 		       le32_to_cpu(mst->index_size));
369 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
370 		       le32_to_cpu(mst->lpt_lnum));
371 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
372 		       le32_to_cpu(mst->lpt_offs));
373 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
374 		       le32_to_cpu(mst->nhead_lnum));
375 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
376 		       le32_to_cpu(mst->nhead_offs));
377 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
378 		       le32_to_cpu(mst->ltab_lnum));
379 		printk(KERN_DEBUG "\tltab_offs      %u\n",
380 		       le32_to_cpu(mst->ltab_offs));
381 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
382 		       le32_to_cpu(mst->lsave_lnum));
383 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
384 		       le32_to_cpu(mst->lsave_offs));
385 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
386 		       le32_to_cpu(mst->lscan_lnum));
387 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
388 		       le32_to_cpu(mst->leb_cnt));
389 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
390 		       le32_to_cpu(mst->empty_lebs));
391 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
392 		       le32_to_cpu(mst->idx_lebs));
393 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->total_free));
395 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
396 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
397 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
398 		       (unsigned long long)le64_to_cpu(mst->total_used));
399 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
400 		       (unsigned long long)le64_to_cpu(mst->total_dead));
401 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
402 		       (unsigned long long)le64_to_cpu(mst->total_dark));
403 		break;
404 	}
405 	case UBIFS_REF_NODE:
406 	{
407 		const struct ubifs_ref_node *ref = node;
408 
409 		printk(KERN_DEBUG "\tlnum           %u\n",
410 		       le32_to_cpu(ref->lnum));
411 		printk(KERN_DEBUG "\toffs           %u\n",
412 		       le32_to_cpu(ref->offs));
413 		printk(KERN_DEBUG "\tjhead          %u\n",
414 		       le32_to_cpu(ref->jhead));
415 		break;
416 	}
417 	case UBIFS_INO_NODE:
418 	{
419 		const struct ubifs_ino_node *ino = node;
420 
421 		key_read(c, &ino->key, &key);
422 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
423 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
424 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
425 		printk(KERN_DEBUG "\tsize           %llu\n",
426 		       (unsigned long long)le64_to_cpu(ino->size));
427 		printk(KERN_DEBUG "\tnlink          %u\n",
428 		       le32_to_cpu(ino->nlink));
429 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
430 		       (long long)le64_to_cpu(ino->atime_sec),
431 		       le32_to_cpu(ino->atime_nsec));
432 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
433 		       (long long)le64_to_cpu(ino->mtime_sec),
434 		       le32_to_cpu(ino->mtime_nsec));
435 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
436 		       (long long)le64_to_cpu(ino->ctime_sec),
437 		       le32_to_cpu(ino->ctime_nsec));
438 		printk(KERN_DEBUG "\tuid            %u\n",
439 		       le32_to_cpu(ino->uid));
440 		printk(KERN_DEBUG "\tgid            %u\n",
441 		       le32_to_cpu(ino->gid));
442 		printk(KERN_DEBUG "\tmode           %u\n",
443 		       le32_to_cpu(ino->mode));
444 		printk(KERN_DEBUG "\tflags          %#x\n",
445 		       le32_to_cpu(ino->flags));
446 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
447 		       le32_to_cpu(ino->xattr_cnt));
448 		printk(KERN_DEBUG "\txattr_size     %u\n",
449 		       le32_to_cpu(ino->xattr_size));
450 		printk(KERN_DEBUG "\txattr_names    %u\n",
451 		       le32_to_cpu(ino->xattr_names));
452 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
453 		       (int)le16_to_cpu(ino->compr_type));
454 		printk(KERN_DEBUG "\tdata len       %u\n",
455 		       le32_to_cpu(ino->data_len));
456 		break;
457 	}
458 	case UBIFS_DENT_NODE:
459 	case UBIFS_XENT_NODE:
460 	{
461 		const struct ubifs_dent_node *dent = node;
462 		int nlen = le16_to_cpu(dent->nlen);
463 
464 		key_read(c, &dent->key, &key);
465 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
466 		printk(KERN_DEBUG "\tinum           %llu\n",
467 		       (unsigned long long)le64_to_cpu(dent->inum));
468 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
469 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
470 		printk(KERN_DEBUG "\tname           ");
471 
472 		if (nlen > UBIFS_MAX_NLEN)
473 			printk(KERN_DEBUG "(bad name length, not printing, "
474 					  "bad or corrupted node)");
475 		else {
476 			for (i = 0; i < nlen && dent->name[i]; i++)
477 				printk("%c", dent->name[i]);
478 		}
479 		printk("\n");
480 
481 		break;
482 	}
483 	case UBIFS_DATA_NODE:
484 	{
485 		const struct ubifs_data_node *dn = node;
486 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
487 
488 		key_read(c, &dn->key, &key);
489 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
490 		printk(KERN_DEBUG "\tsize           %u\n",
491 		       le32_to_cpu(dn->size));
492 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
493 		       (int)le16_to_cpu(dn->compr_type));
494 		printk(KERN_DEBUG "\tdata size      %d\n",
495 		       dlen);
496 		printk(KERN_DEBUG "\tdata:\n");
497 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
498 			       (void *)&dn->data, dlen, 0);
499 		break;
500 	}
501 	case UBIFS_TRUN_NODE:
502 	{
503 		const struct ubifs_trun_node *trun = node;
504 
505 		printk(KERN_DEBUG "\tinum           %u\n",
506 		       le32_to_cpu(trun->inum));
507 		printk(KERN_DEBUG "\told_size       %llu\n",
508 		       (unsigned long long)le64_to_cpu(trun->old_size));
509 		printk(KERN_DEBUG "\tnew_size       %llu\n",
510 		       (unsigned long long)le64_to_cpu(trun->new_size));
511 		break;
512 	}
513 	case UBIFS_IDX_NODE:
514 	{
515 		const struct ubifs_idx_node *idx = node;
516 
517 		n = le16_to_cpu(idx->child_cnt);
518 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
519 		printk(KERN_DEBUG "\tlevel          %d\n",
520 		       (int)le16_to_cpu(idx->level));
521 		printk(KERN_DEBUG "\tBranches:\n");
522 
523 		for (i = 0; i < n && i < c->fanout - 1; i++) {
524 			const struct ubifs_branch *br;
525 
526 			br = ubifs_idx_branch(c, idx, i);
527 			key_read(c, &br->key, &key);
528 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
529 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
530 			       le32_to_cpu(br->len), DBGKEY(&key));
531 		}
532 		break;
533 	}
534 	case UBIFS_CS_NODE:
535 		break;
536 	case UBIFS_ORPH_NODE:
537 	{
538 		const struct ubifs_orph_node *orph = node;
539 
540 		printk(KERN_DEBUG "\tcommit number  %llu\n",
541 		       (unsigned long long)
542 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
543 		printk(KERN_DEBUG "\tlast node flag %llu\n",
544 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
545 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
546 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
547 		for (i = 0; i < n; i++)
548 			printk(KERN_DEBUG "\t  ino %llu\n",
549 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
550 		break;
551 	}
552 	default:
553 		printk(KERN_DEBUG "node type %d was not recognized\n",
554 		       (int)ch->node_type);
555 	}
556 	spin_unlock(&dbg_lock);
557 }
558 
559 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
560 {
561 	spin_lock(&dbg_lock);
562 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
563 	       req->new_ino, req->dirtied_ino);
564 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
565 	       req->new_ino_d, req->dirtied_ino_d);
566 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
567 	       req->new_page, req->dirtied_page);
568 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
569 	       req->new_dent, req->mod_dent);
570 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
571 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
572 	       req->data_growth, req->dd_growth);
573 	spin_unlock(&dbg_lock);
574 }
575 
576 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
577 {
578 	spin_lock(&dbg_lock);
579 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
580 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
581 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
582 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
583 	       lst->total_dirty);
584 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
585 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
586 	       lst->total_dead);
587 	spin_unlock(&dbg_lock);
588 }
589 
590 void dbg_dump_budg(struct ubifs_info *c)
591 {
592 	int i;
593 	struct rb_node *rb;
594 	struct ubifs_bud *bud;
595 	struct ubifs_gced_idx_leb *idx_gc;
596 
597 	spin_lock(&dbg_lock);
598 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
599 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
600 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
601 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
602 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
603 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
604 	       c->freeable_cnt);
605 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
606 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
607 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
608 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
609 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
610 	       atomic_long_read(&c->dirty_zn_cnt),
611 	       atomic_long_read(&c->clean_zn_cnt));
612 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
613 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
614 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
615 	       c->gc_lnum, c->ihead_lnum);
616 	for (i = 0; i < c->jhead_cnt; i++)
617 		printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
618 		       c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
619 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
620 		bud = rb_entry(rb, struct ubifs_bud, rb);
621 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
622 	}
623 	list_for_each_entry(bud, &c->old_buds, list)
624 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
625 	list_for_each_entry(idx_gc, &c->idx_gc, list)
626 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
627 		       idx_gc->lnum, idx_gc->unmap);
628 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
629 	spin_unlock(&dbg_lock);
630 }
631 
632 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
633 {
634 	printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
635 	       "flags %#x\n", lp->lnum, lp->free, lp->dirty,
636 	       c->leb_size - lp->free - lp->dirty, lp->flags);
637 }
638 
639 void dbg_dump_lprops(struct ubifs_info *c)
640 {
641 	int lnum, err;
642 	struct ubifs_lprops lp;
643 	struct ubifs_lp_stats lst;
644 
645 	printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid);
646 	ubifs_get_lp_stats(c, &lst);
647 	dbg_dump_lstats(&lst);
648 
649 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
650 		err = ubifs_read_one_lp(c, lnum, &lp);
651 		if (err)
652 			ubifs_err("cannot read lprops for LEB %d", lnum);
653 
654 		dbg_dump_lprop(c, &lp);
655 	}
656 }
657 
658 void dbg_dump_lpt_info(struct ubifs_info *c)
659 {
660 	int i;
661 
662 	spin_lock(&dbg_lock);
663 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
664 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
665 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
666 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
667 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
668 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
669 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
670 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
671 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
672 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
673 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
674 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
675 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
676 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
677 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
678 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
679 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
680 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
681 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
682 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
683 	       c->nhead_lnum, c->nhead_offs);
684 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
685 	if (c->big_lpt)
686 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
687 		       c->lsave_lnum, c->lsave_offs);
688 	for (i = 0; i < c->lpt_lebs; i++)
689 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
690 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
691 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
692 	spin_unlock(&dbg_lock);
693 }
694 
695 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
696 {
697 	struct ubifs_scan_leb *sleb;
698 	struct ubifs_scan_node *snod;
699 
700 	if (dbg_failure_mode)
701 		return;
702 
703 	printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum);
704 
705 	sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
706 	if (IS_ERR(sleb)) {
707 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
708 		return;
709 	}
710 
711 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
712 	       sleb->nodes_cnt, sleb->endpt);
713 
714 	list_for_each_entry(snod, &sleb->nodes, list) {
715 		cond_resched();
716 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
717 		       snod->offs, snod->len);
718 		dbg_dump_node(c, snod->node);
719 	}
720 
721 	ubifs_scan_destroy(sleb);
722 	return;
723 }
724 
725 void dbg_dump_znode(const struct ubifs_info *c,
726 		    const struct ubifs_znode *znode)
727 {
728 	int n;
729 	const struct ubifs_zbranch *zbr;
730 
731 	spin_lock(&dbg_lock);
732 	if (znode->parent)
733 		zbr = &znode->parent->zbranch[znode->iip];
734 	else
735 		zbr = &c->zroot;
736 
737 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
738 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
739 	       zbr->len, znode->parent, znode->iip, znode->level,
740 	       znode->child_cnt, znode->flags);
741 
742 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
743 		spin_unlock(&dbg_lock);
744 		return;
745 	}
746 
747 	printk(KERN_DEBUG "zbranches:\n");
748 	for (n = 0; n < znode->child_cnt; n++) {
749 		zbr = &znode->zbranch[n];
750 		if (znode->level > 0)
751 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
752 					  "%s\n", n, zbr->znode, zbr->lnum,
753 					  zbr->offs, zbr->len,
754 					  DBGKEY(&zbr->key));
755 		else
756 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
757 					  "%s\n", n, zbr->znode, zbr->lnum,
758 					  zbr->offs, zbr->len,
759 					  DBGKEY(&zbr->key));
760 	}
761 	spin_unlock(&dbg_lock);
762 }
763 
764 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
765 {
766 	int i;
767 
768 	printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n",
769 	       current->pid, cat, heap->cnt);
770 	for (i = 0; i < heap->cnt; i++) {
771 		struct ubifs_lprops *lprops = heap->arr[i];
772 
773 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
774 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
775 		       lprops->free, lprops->dirty, lprops->flags);
776 	}
777 }
778 
779 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
780 		    struct ubifs_nnode *parent, int iip)
781 {
782 	int i;
783 
784 	printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid);
785 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
786 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
787 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
788 	       pnode->flags, iip, pnode->level, pnode->num);
789 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
790 		struct ubifs_lprops *lp = &pnode->lprops[i];
791 
792 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
793 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
794 	}
795 }
796 
797 void dbg_dump_tnc(struct ubifs_info *c)
798 {
799 	struct ubifs_znode *znode;
800 	int level;
801 
802 	printk(KERN_DEBUG "\n");
803 	printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid);
804 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
805 	level = znode->level;
806 	printk(KERN_DEBUG "== Level %d ==\n", level);
807 	while (znode) {
808 		if (level != znode->level) {
809 			level = znode->level;
810 			printk(KERN_DEBUG "== Level %d ==\n", level);
811 		}
812 		dbg_dump_znode(c, znode);
813 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
814 	}
815 
816 	printk(KERN_DEBUG "\n");
817 }
818 
819 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
820 		      void *priv)
821 {
822 	dbg_dump_znode(c, znode);
823 	return 0;
824 }
825 
826 /**
827  * dbg_dump_index - dump the on-flash index.
828  * @c: UBIFS file-system description object
829  *
830  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
831  * which dumps only in-memory znodes and does not read znodes which from flash.
832  */
833 void dbg_dump_index(struct ubifs_info *c)
834 {
835 	dbg_walk_index(c, NULL, dump_znode, NULL);
836 }
837 
838 /**
839  * dbg_check_synced_i_size - check synchronized inode size.
840  * @inode: inode to check
841  *
842  * If inode is clean, synchronized inode size has to be equivalent to current
843  * inode size. This function has to be called only for locked inodes (@i_mutex
844  * has to be locked). Returns %0 if synchronized inode size if correct, and
845  * %-EINVAL if not.
846  */
847 int dbg_check_synced_i_size(struct inode *inode)
848 {
849 	int err = 0;
850 	struct ubifs_inode *ui = ubifs_inode(inode);
851 
852 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
853 		return 0;
854 	if (!S_ISREG(inode->i_mode))
855 		return 0;
856 
857 	mutex_lock(&ui->ui_mutex);
858 	spin_lock(&ui->ui_lock);
859 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
860 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
861 			  "is clean", ui->ui_size, ui->synced_i_size);
862 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
863 			  inode->i_mode, i_size_read(inode));
864 		dbg_dump_stack();
865 		err = -EINVAL;
866 	}
867 	spin_unlock(&ui->ui_lock);
868 	mutex_unlock(&ui->ui_mutex);
869 	return err;
870 }
871 
872 /*
873  * dbg_check_dir - check directory inode size and link count.
874  * @c: UBIFS file-system description object
875  * @dir: the directory to calculate size for
876  * @size: the result is returned here
877  *
878  * This function makes sure that directory size and link count are correct.
879  * Returns zero in case of success and a negative error code in case of
880  * failure.
881  *
882  * Note, it is good idea to make sure the @dir->i_mutex is locked before
883  * calling this function.
884  */
885 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
886 {
887 	unsigned int nlink = 2;
888 	union ubifs_key key;
889 	struct ubifs_dent_node *dent, *pdent = NULL;
890 	struct qstr nm = { .name = NULL };
891 	loff_t size = UBIFS_INO_NODE_SZ;
892 
893 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
894 		return 0;
895 
896 	if (!S_ISDIR(dir->i_mode))
897 		return 0;
898 
899 	lowest_dent_key(c, &key, dir->i_ino);
900 	while (1) {
901 		int err;
902 
903 		dent = ubifs_tnc_next_ent(c, &key, &nm);
904 		if (IS_ERR(dent)) {
905 			err = PTR_ERR(dent);
906 			if (err == -ENOENT)
907 				break;
908 			return err;
909 		}
910 
911 		nm.name = dent->name;
912 		nm.len = le16_to_cpu(dent->nlen);
913 		size += CALC_DENT_SIZE(nm.len);
914 		if (dent->type == UBIFS_ITYPE_DIR)
915 			nlink += 1;
916 		kfree(pdent);
917 		pdent = dent;
918 		key_read(c, &dent->key, &key);
919 	}
920 	kfree(pdent);
921 
922 	if (i_size_read(dir) != size) {
923 		ubifs_err("directory inode %lu has size %llu, "
924 			  "but calculated size is %llu", dir->i_ino,
925 			  (unsigned long long)i_size_read(dir),
926 			  (unsigned long long)size);
927 		dump_stack();
928 		return -EINVAL;
929 	}
930 	if (dir->i_nlink != nlink) {
931 		ubifs_err("directory inode %lu has nlink %u, but calculated "
932 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
933 		dump_stack();
934 		return -EINVAL;
935 	}
936 
937 	return 0;
938 }
939 
940 /**
941  * dbg_check_key_order - make sure that colliding keys are properly ordered.
942  * @c: UBIFS file-system description object
943  * @zbr1: first zbranch
944  * @zbr2: following zbranch
945  *
946  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
947  * names of the direntries/xentries which are referred by the keys. This
948  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
949  * sure the name of direntry/xentry referred by @zbr1 is less than
950  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
951  * and a negative error code in case of failure.
952  */
953 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
954 			       struct ubifs_zbranch *zbr2)
955 {
956 	int err, nlen1, nlen2, cmp;
957 	struct ubifs_dent_node *dent1, *dent2;
958 	union ubifs_key key;
959 
960 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
961 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
962 	if (!dent1)
963 		return -ENOMEM;
964 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
965 	if (!dent2) {
966 		err = -ENOMEM;
967 		goto out_free;
968 	}
969 
970 	err = ubifs_tnc_read_node(c, zbr1, dent1);
971 	if (err)
972 		goto out_free;
973 	err = ubifs_validate_entry(c, dent1);
974 	if (err)
975 		goto out_free;
976 
977 	err = ubifs_tnc_read_node(c, zbr2, dent2);
978 	if (err)
979 		goto out_free;
980 	err = ubifs_validate_entry(c, dent2);
981 	if (err)
982 		goto out_free;
983 
984 	/* Make sure node keys are the same as in zbranch */
985 	err = 1;
986 	key_read(c, &dent1->key, &key);
987 	if (keys_cmp(c, &zbr1->key, &key)) {
988 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
989 			zbr1->offs, DBGKEY(&key));
990 		dbg_err("but it should have key %s according to tnc",
991 			DBGKEY(&zbr1->key));
992 			dbg_dump_node(c, dent1);
993 			goto out_free;
994 	}
995 
996 	key_read(c, &dent2->key, &key);
997 	if (keys_cmp(c, &zbr2->key, &key)) {
998 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
999 			zbr1->offs, DBGKEY(&key));
1000 		dbg_err("but it should have key %s according to tnc",
1001 			DBGKEY(&zbr2->key));
1002 			dbg_dump_node(c, dent2);
1003 			goto out_free;
1004 	}
1005 
1006 	nlen1 = le16_to_cpu(dent1->nlen);
1007 	nlen2 = le16_to_cpu(dent2->nlen);
1008 
1009 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1010 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1011 		err = 0;
1012 		goto out_free;
1013 	}
1014 	if (cmp == 0 && nlen1 == nlen2)
1015 		dbg_err("2 xent/dent nodes with the same name");
1016 	else
1017 		dbg_err("bad order of colliding key %s",
1018 			DBGKEY(&key));
1019 
1020 	dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1021 	dbg_dump_node(c, dent1);
1022 	dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1023 	dbg_dump_node(c, dent2);
1024 
1025 out_free:
1026 	kfree(dent2);
1027 	kfree(dent1);
1028 	return err;
1029 }
1030 
1031 /**
1032  * dbg_check_znode - check if znode is all right.
1033  * @c: UBIFS file-system description object
1034  * @zbr: zbranch which points to this znode
1035  *
1036  * This function makes sure that znode referred to by @zbr is all right.
1037  * Returns zero if it is, and %-EINVAL if it is not.
1038  */
1039 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1040 {
1041 	struct ubifs_znode *znode = zbr->znode;
1042 	struct ubifs_znode *zp = znode->parent;
1043 	int n, err, cmp;
1044 
1045 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1046 		err = 1;
1047 		goto out;
1048 	}
1049 	if (znode->level < 0) {
1050 		err = 2;
1051 		goto out;
1052 	}
1053 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1054 		err = 3;
1055 		goto out;
1056 	}
1057 
1058 	if (zbr->len == 0)
1059 		/* Only dirty zbranch may have no on-flash nodes */
1060 		if (!ubifs_zn_dirty(znode)) {
1061 			err = 4;
1062 			goto out;
1063 		}
1064 
1065 	if (ubifs_zn_dirty(znode)) {
1066 		/*
1067 		 * If znode is dirty, its parent has to be dirty as well. The
1068 		 * order of the operation is important, so we have to have
1069 		 * memory barriers.
1070 		 */
1071 		smp_mb();
1072 		if (zp && !ubifs_zn_dirty(zp)) {
1073 			/*
1074 			 * The dirty flag is atomic and is cleared outside the
1075 			 * TNC mutex, so znode's dirty flag may now have
1076 			 * been cleared. The child is always cleared before the
1077 			 * parent, so we just need to check again.
1078 			 */
1079 			smp_mb();
1080 			if (ubifs_zn_dirty(znode)) {
1081 				err = 5;
1082 				goto out;
1083 			}
1084 		}
1085 	}
1086 
1087 	if (zp) {
1088 		const union ubifs_key *min, *max;
1089 
1090 		if (znode->level != zp->level - 1) {
1091 			err = 6;
1092 			goto out;
1093 		}
1094 
1095 		/* Make sure the 'parent' pointer in our znode is correct */
1096 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1097 		if (!err) {
1098 			/* This zbranch does not exist in the parent */
1099 			err = 7;
1100 			goto out;
1101 		}
1102 
1103 		if (znode->iip >= zp->child_cnt) {
1104 			err = 8;
1105 			goto out;
1106 		}
1107 
1108 		if (znode->iip != n) {
1109 			/* This may happen only in case of collisions */
1110 			if (keys_cmp(c, &zp->zbranch[n].key,
1111 				     &zp->zbranch[znode->iip].key)) {
1112 				err = 9;
1113 				goto out;
1114 			}
1115 			n = znode->iip;
1116 		}
1117 
1118 		/*
1119 		 * Make sure that the first key in our znode is greater than or
1120 		 * equal to the key in the pointing zbranch.
1121 		 */
1122 		min = &zbr->key;
1123 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1124 		if (cmp == 1) {
1125 			err = 10;
1126 			goto out;
1127 		}
1128 
1129 		if (n + 1 < zp->child_cnt) {
1130 			max = &zp->zbranch[n + 1].key;
1131 
1132 			/*
1133 			 * Make sure the last key in our znode is less or
1134 			 * equivalent than the the key in zbranch which goes
1135 			 * after our pointing zbranch.
1136 			 */
1137 			cmp = keys_cmp(c, max,
1138 				&znode->zbranch[znode->child_cnt - 1].key);
1139 			if (cmp == -1) {
1140 				err = 11;
1141 				goto out;
1142 			}
1143 		}
1144 	} else {
1145 		/* This may only be root znode */
1146 		if (zbr != &c->zroot) {
1147 			err = 12;
1148 			goto out;
1149 		}
1150 	}
1151 
1152 	/*
1153 	 * Make sure that next key is greater or equivalent then the previous
1154 	 * one.
1155 	 */
1156 	for (n = 1; n < znode->child_cnt; n++) {
1157 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1158 			       &znode->zbranch[n].key);
1159 		if (cmp > 0) {
1160 			err = 13;
1161 			goto out;
1162 		}
1163 		if (cmp == 0) {
1164 			/* This can only be keys with colliding hash */
1165 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1166 				err = 14;
1167 				goto out;
1168 			}
1169 
1170 			if (znode->level != 0 || c->replaying)
1171 				continue;
1172 
1173 			/*
1174 			 * Colliding keys should follow binary order of
1175 			 * corresponding xentry/dentry names.
1176 			 */
1177 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1178 						  &znode->zbranch[n]);
1179 			if (err < 0)
1180 				return err;
1181 			if (err) {
1182 				err = 15;
1183 				goto out;
1184 			}
1185 		}
1186 	}
1187 
1188 	for (n = 0; n < znode->child_cnt; n++) {
1189 		if (!znode->zbranch[n].znode &&
1190 		    (znode->zbranch[n].lnum == 0 ||
1191 		     znode->zbranch[n].len == 0)) {
1192 			err = 16;
1193 			goto out;
1194 		}
1195 
1196 		if (znode->zbranch[n].lnum != 0 &&
1197 		    znode->zbranch[n].len == 0) {
1198 			err = 17;
1199 			goto out;
1200 		}
1201 
1202 		if (znode->zbranch[n].lnum == 0 &&
1203 		    znode->zbranch[n].len != 0) {
1204 			err = 18;
1205 			goto out;
1206 		}
1207 
1208 		if (znode->zbranch[n].lnum == 0 &&
1209 		    znode->zbranch[n].offs != 0) {
1210 			err = 19;
1211 			goto out;
1212 		}
1213 
1214 		if (znode->level != 0 && znode->zbranch[n].znode)
1215 			if (znode->zbranch[n].znode->parent != znode) {
1216 				err = 20;
1217 				goto out;
1218 			}
1219 	}
1220 
1221 	return 0;
1222 
1223 out:
1224 	ubifs_err("failed, error %d", err);
1225 	ubifs_msg("dump of the znode");
1226 	dbg_dump_znode(c, znode);
1227 	if (zp) {
1228 		ubifs_msg("dump of the parent znode");
1229 		dbg_dump_znode(c, zp);
1230 	}
1231 	dump_stack();
1232 	return -EINVAL;
1233 }
1234 
1235 /**
1236  * dbg_check_tnc - check TNC tree.
1237  * @c: UBIFS file-system description object
1238  * @extra: do extra checks that are possible at start commit
1239  *
1240  * This function traverses whole TNC tree and checks every znode. Returns zero
1241  * if everything is all right and %-EINVAL if something is wrong with TNC.
1242  */
1243 int dbg_check_tnc(struct ubifs_info *c, int extra)
1244 {
1245 	struct ubifs_znode *znode;
1246 	long clean_cnt = 0, dirty_cnt = 0;
1247 	int err, last;
1248 
1249 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1250 		return 0;
1251 
1252 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1253 	if (!c->zroot.znode)
1254 		return 0;
1255 
1256 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1257 	while (1) {
1258 		struct ubifs_znode *prev;
1259 		struct ubifs_zbranch *zbr;
1260 
1261 		if (!znode->parent)
1262 			zbr = &c->zroot;
1263 		else
1264 			zbr = &znode->parent->zbranch[znode->iip];
1265 
1266 		err = dbg_check_znode(c, zbr);
1267 		if (err)
1268 			return err;
1269 
1270 		if (extra) {
1271 			if (ubifs_zn_dirty(znode))
1272 				dirty_cnt += 1;
1273 			else
1274 				clean_cnt += 1;
1275 		}
1276 
1277 		prev = znode;
1278 		znode = ubifs_tnc_postorder_next(znode);
1279 		if (!znode)
1280 			break;
1281 
1282 		/*
1283 		 * If the last key of this znode is equivalent to the first key
1284 		 * of the next znode (collision), then check order of the keys.
1285 		 */
1286 		last = prev->child_cnt - 1;
1287 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1288 		    !keys_cmp(c, &prev->zbranch[last].key,
1289 			      &znode->zbranch[0].key)) {
1290 			err = dbg_check_key_order(c, &prev->zbranch[last],
1291 						  &znode->zbranch[0]);
1292 			if (err < 0)
1293 				return err;
1294 			if (err) {
1295 				ubifs_msg("first znode");
1296 				dbg_dump_znode(c, prev);
1297 				ubifs_msg("second znode");
1298 				dbg_dump_znode(c, znode);
1299 				return -EINVAL;
1300 			}
1301 		}
1302 	}
1303 
1304 	if (extra) {
1305 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1306 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1307 				  atomic_long_read(&c->clean_zn_cnt),
1308 				  clean_cnt);
1309 			return -EINVAL;
1310 		}
1311 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1312 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1313 				  atomic_long_read(&c->dirty_zn_cnt),
1314 				  dirty_cnt);
1315 			return -EINVAL;
1316 		}
1317 	}
1318 
1319 	return 0;
1320 }
1321 
1322 /**
1323  * dbg_walk_index - walk the on-flash index.
1324  * @c: UBIFS file-system description object
1325  * @leaf_cb: called for each leaf node
1326  * @znode_cb: called for each indexing node
1327  * @priv: private date which is passed to callbacks
1328  *
1329  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1330  * node and @znode_cb for each indexing node. Returns zero in case of success
1331  * and a negative error code in case of failure.
1332  *
1333  * It would be better if this function removed every znode it pulled to into
1334  * the TNC, so that the behavior more closely matched the non-debugging
1335  * behavior.
1336  */
1337 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1338 		   dbg_znode_callback znode_cb, void *priv)
1339 {
1340 	int err;
1341 	struct ubifs_zbranch *zbr;
1342 	struct ubifs_znode *znode, *child;
1343 
1344 	mutex_lock(&c->tnc_mutex);
1345 	/* If the root indexing node is not in TNC - pull it */
1346 	if (!c->zroot.znode) {
1347 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1348 		if (IS_ERR(c->zroot.znode)) {
1349 			err = PTR_ERR(c->zroot.znode);
1350 			c->zroot.znode = NULL;
1351 			goto out_unlock;
1352 		}
1353 	}
1354 
1355 	/*
1356 	 * We are going to traverse the indexing tree in the postorder manner.
1357 	 * Go down and find the leftmost indexing node where we are going to
1358 	 * start from.
1359 	 */
1360 	znode = c->zroot.znode;
1361 	while (znode->level > 0) {
1362 		zbr = &znode->zbranch[0];
1363 		child = zbr->znode;
1364 		if (!child) {
1365 			child = ubifs_load_znode(c, zbr, znode, 0);
1366 			if (IS_ERR(child)) {
1367 				err = PTR_ERR(child);
1368 				goto out_unlock;
1369 			}
1370 			zbr->znode = child;
1371 		}
1372 
1373 		znode = child;
1374 	}
1375 
1376 	/* Iterate over all indexing nodes */
1377 	while (1) {
1378 		int idx;
1379 
1380 		cond_resched();
1381 
1382 		if (znode_cb) {
1383 			err = znode_cb(c, znode, priv);
1384 			if (err) {
1385 				ubifs_err("znode checking function returned "
1386 					  "error %d", err);
1387 				dbg_dump_znode(c, znode);
1388 				goto out_dump;
1389 			}
1390 		}
1391 		if (leaf_cb && znode->level == 0) {
1392 			for (idx = 0; idx < znode->child_cnt; idx++) {
1393 				zbr = &znode->zbranch[idx];
1394 				err = leaf_cb(c, zbr, priv);
1395 				if (err) {
1396 					ubifs_err("leaf checking function "
1397 						  "returned error %d, for leaf "
1398 						  "at LEB %d:%d",
1399 						  err, zbr->lnum, zbr->offs);
1400 					goto out_dump;
1401 				}
1402 			}
1403 		}
1404 
1405 		if (!znode->parent)
1406 			break;
1407 
1408 		idx = znode->iip + 1;
1409 		znode = znode->parent;
1410 		if (idx < znode->child_cnt) {
1411 			/* Switch to the next index in the parent */
1412 			zbr = &znode->zbranch[idx];
1413 			child = zbr->znode;
1414 			if (!child) {
1415 				child = ubifs_load_znode(c, zbr, znode, idx);
1416 				if (IS_ERR(child)) {
1417 					err = PTR_ERR(child);
1418 					goto out_unlock;
1419 				}
1420 				zbr->znode = child;
1421 			}
1422 			znode = child;
1423 		} else
1424 			/*
1425 			 * This is the last child, switch to the parent and
1426 			 * continue.
1427 			 */
1428 			continue;
1429 
1430 		/* Go to the lowest leftmost znode in the new sub-tree */
1431 		while (znode->level > 0) {
1432 			zbr = &znode->zbranch[0];
1433 			child = zbr->znode;
1434 			if (!child) {
1435 				child = ubifs_load_znode(c, zbr, znode, 0);
1436 				if (IS_ERR(child)) {
1437 					err = PTR_ERR(child);
1438 					goto out_unlock;
1439 				}
1440 				zbr->znode = child;
1441 			}
1442 			znode = child;
1443 		}
1444 	}
1445 
1446 	mutex_unlock(&c->tnc_mutex);
1447 	return 0;
1448 
1449 out_dump:
1450 	if (znode->parent)
1451 		zbr = &znode->parent->zbranch[znode->iip];
1452 	else
1453 		zbr = &c->zroot;
1454 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1455 	dbg_dump_znode(c, znode);
1456 out_unlock:
1457 	mutex_unlock(&c->tnc_mutex);
1458 	return err;
1459 }
1460 
1461 /**
1462  * add_size - add znode size to partially calculated index size.
1463  * @c: UBIFS file-system description object
1464  * @znode: znode to add size for
1465  * @priv: partially calculated index size
1466  *
1467  * This is a helper function for 'dbg_check_idx_size()' which is called for
1468  * every indexing node and adds its size to the 'long long' variable pointed to
1469  * by @priv.
1470  */
1471 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1472 {
1473 	long long *idx_size = priv;
1474 	int add;
1475 
1476 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1477 	add = ALIGN(add, 8);
1478 	*idx_size += add;
1479 	return 0;
1480 }
1481 
1482 /**
1483  * dbg_check_idx_size - check index size.
1484  * @c: UBIFS file-system description object
1485  * @idx_size: size to check
1486  *
1487  * This function walks the UBIFS index, calculates its size and checks that the
1488  * size is equivalent to @idx_size. Returns zero in case of success and a
1489  * negative error code in case of failure.
1490  */
1491 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1492 {
1493 	int err;
1494 	long long calc = 0;
1495 
1496 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1497 		return 0;
1498 
1499 	err = dbg_walk_index(c, NULL, add_size, &calc);
1500 	if (err) {
1501 		ubifs_err("error %d while walking the index", err);
1502 		return err;
1503 	}
1504 
1505 	if (calc != idx_size) {
1506 		ubifs_err("index size check failed: calculated size is %lld, "
1507 			  "should be %lld", calc, idx_size);
1508 		dump_stack();
1509 		return -EINVAL;
1510 	}
1511 
1512 	return 0;
1513 }
1514 
1515 /**
1516  * struct fsck_inode - information about an inode used when checking the file-system.
1517  * @rb: link in the RB-tree of inodes
1518  * @inum: inode number
1519  * @mode: inode type, permissions, etc
1520  * @nlink: inode link count
1521  * @xattr_cnt: count of extended attributes
1522  * @references: how many directory/xattr entries refer this inode (calculated
1523  *              while walking the index)
1524  * @calc_cnt: for directory inode count of child directories
1525  * @size: inode size (read from on-flash inode)
1526  * @xattr_sz: summary size of all extended attributes (read from on-flash
1527  *            inode)
1528  * @calc_sz: for directories calculated directory size
1529  * @calc_xcnt: count of extended attributes
1530  * @calc_xsz: calculated summary size of all extended attributes
1531  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1532  *             inode (read from on-flash inode)
1533  * @calc_xnms: calculated sum of lengths of all extended attribute names
1534  */
1535 struct fsck_inode {
1536 	struct rb_node rb;
1537 	ino_t inum;
1538 	umode_t mode;
1539 	unsigned int nlink;
1540 	unsigned int xattr_cnt;
1541 	int references;
1542 	int calc_cnt;
1543 	long long size;
1544 	unsigned int xattr_sz;
1545 	long long calc_sz;
1546 	long long calc_xcnt;
1547 	long long calc_xsz;
1548 	unsigned int xattr_nms;
1549 	long long calc_xnms;
1550 };
1551 
1552 /**
1553  * struct fsck_data - private FS checking information.
1554  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1555  */
1556 struct fsck_data {
1557 	struct rb_root inodes;
1558 };
1559 
1560 /**
1561  * add_inode - add inode information to RB-tree of inodes.
1562  * @c: UBIFS file-system description object
1563  * @fsckd: FS checking information
1564  * @ino: raw UBIFS inode to add
1565  *
1566  * This is a helper function for 'check_leaf()' which adds information about
1567  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1568  * case of success and a negative error code in case of failure.
1569  */
1570 static struct fsck_inode *add_inode(struct ubifs_info *c,
1571 				    struct fsck_data *fsckd,
1572 				    struct ubifs_ino_node *ino)
1573 {
1574 	struct rb_node **p, *parent = NULL;
1575 	struct fsck_inode *fscki;
1576 	ino_t inum = key_inum_flash(c, &ino->key);
1577 
1578 	p = &fsckd->inodes.rb_node;
1579 	while (*p) {
1580 		parent = *p;
1581 		fscki = rb_entry(parent, struct fsck_inode, rb);
1582 		if (inum < fscki->inum)
1583 			p = &(*p)->rb_left;
1584 		else if (inum > fscki->inum)
1585 			p = &(*p)->rb_right;
1586 		else
1587 			return fscki;
1588 	}
1589 
1590 	if (inum > c->highest_inum) {
1591 		ubifs_err("too high inode number, max. is %lu",
1592 			  c->highest_inum);
1593 		return ERR_PTR(-EINVAL);
1594 	}
1595 
1596 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1597 	if (!fscki)
1598 		return ERR_PTR(-ENOMEM);
1599 
1600 	fscki->inum = inum;
1601 	fscki->nlink = le32_to_cpu(ino->nlink);
1602 	fscki->size = le64_to_cpu(ino->size);
1603 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1604 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1605 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1606 	fscki->mode = le32_to_cpu(ino->mode);
1607 	if (S_ISDIR(fscki->mode)) {
1608 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1609 		fscki->calc_cnt = 2;
1610 	}
1611 	rb_link_node(&fscki->rb, parent, p);
1612 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1613 	return fscki;
1614 }
1615 
1616 /**
1617  * search_inode - search inode in the RB-tree of inodes.
1618  * @fsckd: FS checking information
1619  * @inum: inode number to search
1620  *
1621  * This is a helper function for 'check_leaf()' which searches inode @inum in
1622  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1623  * the inode was not found.
1624  */
1625 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1626 {
1627 	struct rb_node *p;
1628 	struct fsck_inode *fscki;
1629 
1630 	p = fsckd->inodes.rb_node;
1631 	while (p) {
1632 		fscki = rb_entry(p, struct fsck_inode, rb);
1633 		if (inum < fscki->inum)
1634 			p = p->rb_left;
1635 		else if (inum > fscki->inum)
1636 			p = p->rb_right;
1637 		else
1638 			return fscki;
1639 	}
1640 	return NULL;
1641 }
1642 
1643 /**
1644  * read_add_inode - read inode node and add it to RB-tree of inodes.
1645  * @c: UBIFS file-system description object
1646  * @fsckd: FS checking information
1647  * @inum: inode number to read
1648  *
1649  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1650  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1651  * information pointer in case of success and a negative error code in case of
1652  * failure.
1653  */
1654 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1655 					 struct fsck_data *fsckd, ino_t inum)
1656 {
1657 	int n, err;
1658 	union ubifs_key key;
1659 	struct ubifs_znode *znode;
1660 	struct ubifs_zbranch *zbr;
1661 	struct ubifs_ino_node *ino;
1662 	struct fsck_inode *fscki;
1663 
1664 	fscki = search_inode(fsckd, inum);
1665 	if (fscki)
1666 		return fscki;
1667 
1668 	ino_key_init(c, &key, inum);
1669 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1670 	if (!err) {
1671 		ubifs_err("inode %lu not found in index", inum);
1672 		return ERR_PTR(-ENOENT);
1673 	} else if (err < 0) {
1674 		ubifs_err("error %d while looking up inode %lu", err, inum);
1675 		return ERR_PTR(err);
1676 	}
1677 
1678 	zbr = &znode->zbranch[n];
1679 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1680 		ubifs_err("bad node %lu node length %d", inum, zbr->len);
1681 		return ERR_PTR(-EINVAL);
1682 	}
1683 
1684 	ino = kmalloc(zbr->len, GFP_NOFS);
1685 	if (!ino)
1686 		return ERR_PTR(-ENOMEM);
1687 
1688 	err = ubifs_tnc_read_node(c, zbr, ino);
1689 	if (err) {
1690 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1691 			  zbr->lnum, zbr->offs, err);
1692 		kfree(ino);
1693 		return ERR_PTR(err);
1694 	}
1695 
1696 	fscki = add_inode(c, fsckd, ino);
1697 	kfree(ino);
1698 	if (IS_ERR(fscki)) {
1699 		ubifs_err("error %ld while adding inode %lu node",
1700 			  PTR_ERR(fscki), inum);
1701 		return fscki;
1702 	}
1703 
1704 	return fscki;
1705 }
1706 
1707 /**
1708  * check_leaf - check leaf node.
1709  * @c: UBIFS file-system description object
1710  * @zbr: zbranch of the leaf node to check
1711  * @priv: FS checking information
1712  *
1713  * This is a helper function for 'dbg_check_filesystem()' which is called for
1714  * every single leaf node while walking the indexing tree. It checks that the
1715  * leaf node referred from the indexing tree exists, has correct CRC, and does
1716  * some other basic validation. This function is also responsible for building
1717  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1718  * calculates reference count, size, etc for each inode in order to later
1719  * compare them to the information stored inside the inodes and detect possible
1720  * inconsistencies. Returns zero in case of success and a negative error code
1721  * in case of failure.
1722  */
1723 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1724 		      void *priv)
1725 {
1726 	ino_t inum;
1727 	void *node;
1728 	struct ubifs_ch *ch;
1729 	int err, type = key_type(c, &zbr->key);
1730 	struct fsck_inode *fscki;
1731 
1732 	if (zbr->len < UBIFS_CH_SZ) {
1733 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1734 			  zbr->len, zbr->lnum, zbr->offs);
1735 		return -EINVAL;
1736 	}
1737 
1738 	node = kmalloc(zbr->len, GFP_NOFS);
1739 	if (!node)
1740 		return -ENOMEM;
1741 
1742 	err = ubifs_tnc_read_node(c, zbr, node);
1743 	if (err) {
1744 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1745 			  zbr->lnum, zbr->offs, err);
1746 		goto out_free;
1747 	}
1748 
1749 	/* If this is an inode node, add it to RB-tree of inodes */
1750 	if (type == UBIFS_INO_KEY) {
1751 		fscki = add_inode(c, priv, node);
1752 		if (IS_ERR(fscki)) {
1753 			err = PTR_ERR(fscki);
1754 			ubifs_err("error %d while adding inode node", err);
1755 			goto out_dump;
1756 		}
1757 		goto out;
1758 	}
1759 
1760 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1761 	    type != UBIFS_DATA_KEY) {
1762 		ubifs_err("unexpected node type %d at LEB %d:%d",
1763 			  type, zbr->lnum, zbr->offs);
1764 		err = -EINVAL;
1765 		goto out_free;
1766 	}
1767 
1768 	ch = node;
1769 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1770 		ubifs_err("too high sequence number, max. is %llu",
1771 			  c->max_sqnum);
1772 		err = -EINVAL;
1773 		goto out_dump;
1774 	}
1775 
1776 	if (type == UBIFS_DATA_KEY) {
1777 		long long blk_offs;
1778 		struct ubifs_data_node *dn = node;
1779 
1780 		/*
1781 		 * Search the inode node this data node belongs to and insert
1782 		 * it to the RB-tree of inodes.
1783 		 */
1784 		inum = key_inum_flash(c, &dn->key);
1785 		fscki = read_add_inode(c, priv, inum);
1786 		if (IS_ERR(fscki)) {
1787 			err = PTR_ERR(fscki);
1788 			ubifs_err("error %d while processing data node and "
1789 				  "trying to find inode node %lu", err, inum);
1790 			goto out_dump;
1791 		}
1792 
1793 		/* Make sure the data node is within inode size */
1794 		blk_offs = key_block_flash(c, &dn->key);
1795 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1796 		blk_offs += le32_to_cpu(dn->size);
1797 		if (blk_offs > fscki->size) {
1798 			ubifs_err("data node at LEB %d:%d is not within inode "
1799 				  "size %lld", zbr->lnum, zbr->offs,
1800 				  fscki->size);
1801 			err = -EINVAL;
1802 			goto out_dump;
1803 		}
1804 	} else {
1805 		int nlen;
1806 		struct ubifs_dent_node *dent = node;
1807 		struct fsck_inode *fscki1;
1808 
1809 		err = ubifs_validate_entry(c, dent);
1810 		if (err)
1811 			goto out_dump;
1812 
1813 		/*
1814 		 * Search the inode node this entry refers to and the parent
1815 		 * inode node and insert them to the RB-tree of inodes.
1816 		 */
1817 		inum = le64_to_cpu(dent->inum);
1818 		fscki = read_add_inode(c, priv, inum);
1819 		if (IS_ERR(fscki)) {
1820 			err = PTR_ERR(fscki);
1821 			ubifs_err("error %d while processing entry node and "
1822 				  "trying to find inode node %lu", err, inum);
1823 			goto out_dump;
1824 		}
1825 
1826 		/* Count how many direntries or xentries refers this inode */
1827 		fscki->references += 1;
1828 
1829 		inum = key_inum_flash(c, &dent->key);
1830 		fscki1 = read_add_inode(c, priv, inum);
1831 		if (IS_ERR(fscki1)) {
1832 			err = PTR_ERR(fscki);
1833 			ubifs_err("error %d while processing entry node and "
1834 				  "trying to find parent inode node %lu",
1835 				  err, inum);
1836 			goto out_dump;
1837 		}
1838 
1839 		nlen = le16_to_cpu(dent->nlen);
1840 		if (type == UBIFS_XENT_KEY) {
1841 			fscki1->calc_xcnt += 1;
1842 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1843 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1844 			fscki1->calc_xnms += nlen;
1845 		} else {
1846 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1847 			if (dent->type == UBIFS_ITYPE_DIR)
1848 				fscki1->calc_cnt += 1;
1849 		}
1850 	}
1851 
1852 out:
1853 	kfree(node);
1854 	return 0;
1855 
1856 out_dump:
1857 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1858 	dbg_dump_node(c, node);
1859 out_free:
1860 	kfree(node);
1861 	return err;
1862 }
1863 
1864 /**
1865  * free_inodes - free RB-tree of inodes.
1866  * @fsckd: FS checking information
1867  */
1868 static void free_inodes(struct fsck_data *fsckd)
1869 {
1870 	struct rb_node *this = fsckd->inodes.rb_node;
1871 	struct fsck_inode *fscki;
1872 
1873 	while (this) {
1874 		if (this->rb_left)
1875 			this = this->rb_left;
1876 		else if (this->rb_right)
1877 			this = this->rb_right;
1878 		else {
1879 			fscki = rb_entry(this, struct fsck_inode, rb);
1880 			this = rb_parent(this);
1881 			if (this) {
1882 				if (this->rb_left == &fscki->rb)
1883 					this->rb_left = NULL;
1884 				else
1885 					this->rb_right = NULL;
1886 			}
1887 			kfree(fscki);
1888 		}
1889 	}
1890 }
1891 
1892 /**
1893  * check_inodes - checks all inodes.
1894  * @c: UBIFS file-system description object
1895  * @fsckd: FS checking information
1896  *
1897  * This is a helper function for 'dbg_check_filesystem()' which walks the
1898  * RB-tree of inodes after the index scan has been finished, and checks that
1899  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1900  * %-EINVAL if not, and a negative error code in case of failure.
1901  */
1902 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1903 {
1904 	int n, err;
1905 	union ubifs_key key;
1906 	struct ubifs_znode *znode;
1907 	struct ubifs_zbranch *zbr;
1908 	struct ubifs_ino_node *ino;
1909 	struct fsck_inode *fscki;
1910 	struct rb_node *this = rb_first(&fsckd->inodes);
1911 
1912 	while (this) {
1913 		fscki = rb_entry(this, struct fsck_inode, rb);
1914 		this = rb_next(this);
1915 
1916 		if (S_ISDIR(fscki->mode)) {
1917 			/*
1918 			 * Directories have to have exactly one reference (they
1919 			 * cannot have hardlinks), although root inode is an
1920 			 * exception.
1921 			 */
1922 			if (fscki->inum != UBIFS_ROOT_INO &&
1923 			    fscki->references != 1) {
1924 				ubifs_err("directory inode %lu has %d "
1925 					  "direntries which refer it, but "
1926 					  "should be 1", fscki->inum,
1927 					  fscki->references);
1928 				goto out_dump;
1929 			}
1930 			if (fscki->inum == UBIFS_ROOT_INO &&
1931 			    fscki->references != 0) {
1932 				ubifs_err("root inode %lu has non-zero (%d) "
1933 					  "direntries which refer it",
1934 					  fscki->inum, fscki->references);
1935 				goto out_dump;
1936 			}
1937 			if (fscki->calc_sz != fscki->size) {
1938 				ubifs_err("directory inode %lu size is %lld, "
1939 					  "but calculated size is %lld",
1940 					  fscki->inum, fscki->size,
1941 					  fscki->calc_sz);
1942 				goto out_dump;
1943 			}
1944 			if (fscki->calc_cnt != fscki->nlink) {
1945 				ubifs_err("directory inode %lu nlink is %d, "
1946 					  "but calculated nlink is %d",
1947 					  fscki->inum, fscki->nlink,
1948 					  fscki->calc_cnt);
1949 				goto out_dump;
1950 			}
1951 		} else {
1952 			if (fscki->references != fscki->nlink) {
1953 				ubifs_err("inode %lu nlink is %d, but "
1954 					  "calculated nlink is %d", fscki->inum,
1955 					  fscki->nlink, fscki->references);
1956 				goto out_dump;
1957 			}
1958 		}
1959 		if (fscki->xattr_sz != fscki->calc_xsz) {
1960 			ubifs_err("inode %lu has xattr size %u, but "
1961 				  "calculated size is %lld",
1962 				  fscki->inum, fscki->xattr_sz,
1963 				  fscki->calc_xsz);
1964 			goto out_dump;
1965 		}
1966 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
1967 			ubifs_err("inode %lu has %u xattrs, but "
1968 				  "calculated count is %lld", fscki->inum,
1969 				  fscki->xattr_cnt, fscki->calc_xcnt);
1970 			goto out_dump;
1971 		}
1972 		if (fscki->xattr_nms != fscki->calc_xnms) {
1973 			ubifs_err("inode %lu has xattr names' size %u, but "
1974 				  "calculated names' size is %lld",
1975 				  fscki->inum, fscki->xattr_nms,
1976 				  fscki->calc_xnms);
1977 			goto out_dump;
1978 		}
1979 	}
1980 
1981 	return 0;
1982 
1983 out_dump:
1984 	/* Read the bad inode and dump it */
1985 	ino_key_init(c, &key, fscki->inum);
1986 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1987 	if (!err) {
1988 		ubifs_err("inode %lu not found in index", fscki->inum);
1989 		return -ENOENT;
1990 	} else if (err < 0) {
1991 		ubifs_err("error %d while looking up inode %lu",
1992 			  err, fscki->inum);
1993 		return err;
1994 	}
1995 
1996 	zbr = &znode->zbranch[n];
1997 	ino = kmalloc(zbr->len, GFP_NOFS);
1998 	if (!ino)
1999 		return -ENOMEM;
2000 
2001 	err = ubifs_tnc_read_node(c, zbr, ino);
2002 	if (err) {
2003 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2004 			  zbr->lnum, zbr->offs, err);
2005 		kfree(ino);
2006 		return err;
2007 	}
2008 
2009 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2010 		  fscki->inum, zbr->lnum, zbr->offs);
2011 	dbg_dump_node(c, ino);
2012 	kfree(ino);
2013 	return -EINVAL;
2014 }
2015 
2016 /**
2017  * dbg_check_filesystem - check the file-system.
2018  * @c: UBIFS file-system description object
2019  *
2020  * This function checks the file system, namely:
2021  * o makes sure that all leaf nodes exist and their CRCs are correct;
2022  * o makes sure inode nlink, size, xattr size/count are correct (for all
2023  *   inodes).
2024  *
2025  * The function reads whole indexing tree and all nodes, so it is pretty
2026  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2027  * not, and a negative error code in case of failure.
2028  */
2029 int dbg_check_filesystem(struct ubifs_info *c)
2030 {
2031 	int err;
2032 	struct fsck_data fsckd;
2033 
2034 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2035 		return 0;
2036 
2037 	fsckd.inodes = RB_ROOT;
2038 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2039 	if (err)
2040 		goto out_free;
2041 
2042 	err = check_inodes(c, &fsckd);
2043 	if (err)
2044 		goto out_free;
2045 
2046 	free_inodes(&fsckd);
2047 	return 0;
2048 
2049 out_free:
2050 	ubifs_err("file-system check failed with error %d", err);
2051 	dump_stack();
2052 	free_inodes(&fsckd);
2053 	return err;
2054 }
2055 
2056 static int invocation_cnt;
2057 
2058 int dbg_force_in_the_gaps(void)
2059 {
2060 	if (!dbg_force_in_the_gaps_enabled)
2061 		return 0;
2062 	/* Force in-the-gaps every 8th commit */
2063 	return !((invocation_cnt++) & 0x7);
2064 }
2065 
2066 /* Failure mode for recovery testing */
2067 
2068 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2069 
2070 struct failure_mode_info {
2071 	struct list_head list;
2072 	struct ubifs_info *c;
2073 };
2074 
2075 static LIST_HEAD(fmi_list);
2076 static DEFINE_SPINLOCK(fmi_lock);
2077 
2078 static unsigned int next;
2079 
2080 static int simple_rand(void)
2081 {
2082 	if (next == 0)
2083 		next = current->pid;
2084 	next = next * 1103515245 + 12345;
2085 	return (next >> 16) & 32767;
2086 }
2087 
2088 void dbg_failure_mode_registration(struct ubifs_info *c)
2089 {
2090 	struct failure_mode_info *fmi;
2091 
2092 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2093 	if (!fmi) {
2094 		dbg_err("Failed to register failure mode - no memory");
2095 		return;
2096 	}
2097 	fmi->c = c;
2098 	spin_lock(&fmi_lock);
2099 	list_add_tail(&fmi->list, &fmi_list);
2100 	spin_unlock(&fmi_lock);
2101 }
2102 
2103 void dbg_failure_mode_deregistration(struct ubifs_info *c)
2104 {
2105 	struct failure_mode_info *fmi, *tmp;
2106 
2107 	spin_lock(&fmi_lock);
2108 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2109 		if (fmi->c == c) {
2110 			list_del(&fmi->list);
2111 			kfree(fmi);
2112 		}
2113 	spin_unlock(&fmi_lock);
2114 }
2115 
2116 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2117 {
2118 	struct failure_mode_info *fmi;
2119 
2120 	spin_lock(&fmi_lock);
2121 	list_for_each_entry(fmi, &fmi_list, list)
2122 		if (fmi->c->ubi == desc) {
2123 			struct ubifs_info *c = fmi->c;
2124 
2125 			spin_unlock(&fmi_lock);
2126 			return c;
2127 		}
2128 	spin_unlock(&fmi_lock);
2129 	return NULL;
2130 }
2131 
2132 static int in_failure_mode(struct ubi_volume_desc *desc)
2133 {
2134 	struct ubifs_info *c = dbg_find_info(desc);
2135 
2136 	if (c && dbg_failure_mode)
2137 		return c->failure_mode;
2138 	return 0;
2139 }
2140 
2141 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2142 {
2143 	struct ubifs_info *c = dbg_find_info(desc);
2144 
2145 	if (!c || !dbg_failure_mode)
2146 		return 0;
2147 	if (c->failure_mode)
2148 		return 1;
2149 	if (!c->fail_cnt) {
2150 		/* First call - decide delay to failure */
2151 		if (chance(1, 2)) {
2152 			unsigned int delay = 1 << (simple_rand() >> 11);
2153 
2154 			if (chance(1, 2)) {
2155 				c->fail_delay = 1;
2156 				c->fail_timeout = jiffies +
2157 						  msecs_to_jiffies(delay);
2158 				dbg_rcvry("failing after %ums", delay);
2159 			} else {
2160 				c->fail_delay = 2;
2161 				c->fail_cnt_max = delay;
2162 				dbg_rcvry("failing after %u calls", delay);
2163 			}
2164 		}
2165 		c->fail_cnt += 1;
2166 	}
2167 	/* Determine if failure delay has expired */
2168 	if (c->fail_delay == 1) {
2169 		if (time_before(jiffies, c->fail_timeout))
2170 			return 0;
2171 	} else if (c->fail_delay == 2)
2172 		if (c->fail_cnt++ < c->fail_cnt_max)
2173 			return 0;
2174 	if (lnum == UBIFS_SB_LNUM) {
2175 		if (write) {
2176 			if (chance(1, 2))
2177 				return 0;
2178 		} else if (chance(19, 20))
2179 			return 0;
2180 		dbg_rcvry("failing in super block LEB %d", lnum);
2181 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2182 		if (chance(19, 20))
2183 			return 0;
2184 		dbg_rcvry("failing in master LEB %d", lnum);
2185 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2186 		if (write) {
2187 			if (chance(99, 100))
2188 				return 0;
2189 		} else if (chance(399, 400))
2190 			return 0;
2191 		dbg_rcvry("failing in log LEB %d", lnum);
2192 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2193 		if (write) {
2194 			if (chance(7, 8))
2195 				return 0;
2196 		} else if (chance(19, 20))
2197 			return 0;
2198 		dbg_rcvry("failing in LPT LEB %d", lnum);
2199 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2200 		if (write) {
2201 			if (chance(1, 2))
2202 				return 0;
2203 		} else if (chance(9, 10))
2204 			return 0;
2205 		dbg_rcvry("failing in orphan LEB %d", lnum);
2206 	} else if (lnum == c->ihead_lnum) {
2207 		if (chance(99, 100))
2208 			return 0;
2209 		dbg_rcvry("failing in index head LEB %d", lnum);
2210 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2211 		if (chance(9, 10))
2212 			return 0;
2213 		dbg_rcvry("failing in GC head LEB %d", lnum);
2214 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2215 		   !ubifs_search_bud(c, lnum)) {
2216 		if (chance(19, 20))
2217 			return 0;
2218 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2219 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2220 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2221 		if (chance(999, 1000))
2222 			return 0;
2223 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2224 	} else {
2225 		if (chance(9999, 10000))
2226 			return 0;
2227 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2228 	}
2229 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2230 	c->failure_mode = 1;
2231 	dump_stack();
2232 	return 1;
2233 }
2234 
2235 static void cut_data(const void *buf, int len)
2236 {
2237 	int flen, i;
2238 	unsigned char *p = (void *)buf;
2239 
2240 	flen = (len * (long long)simple_rand()) >> 15;
2241 	for (i = flen; i < len; i++)
2242 		p[i] = 0xff;
2243 }
2244 
2245 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2246 		 int len, int check)
2247 {
2248 	if (in_failure_mode(desc))
2249 		return -EIO;
2250 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2251 }
2252 
2253 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2254 		  int offset, int len, int dtype)
2255 {
2256 	int err, failing;
2257 
2258 	if (in_failure_mode(desc))
2259 		return -EIO;
2260 	failing = do_fail(desc, lnum, 1);
2261 	if (failing)
2262 		cut_data(buf, len);
2263 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2264 	if (err)
2265 		return err;
2266 	if (failing)
2267 		return -EIO;
2268 	return 0;
2269 }
2270 
2271 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2272 		   int len, int dtype)
2273 {
2274 	int err;
2275 
2276 	if (do_fail(desc, lnum, 1))
2277 		return -EIO;
2278 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2279 	if (err)
2280 		return err;
2281 	if (do_fail(desc, lnum, 1))
2282 		return -EIO;
2283 	return 0;
2284 }
2285 
2286 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2287 {
2288 	int err;
2289 
2290 	if (do_fail(desc, lnum, 0))
2291 		return -EIO;
2292 	err = ubi_leb_erase(desc, lnum);
2293 	if (err)
2294 		return err;
2295 	if (do_fail(desc, lnum, 0))
2296 		return -EIO;
2297 	return 0;
2298 }
2299 
2300 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2301 {
2302 	int err;
2303 
2304 	if (do_fail(desc, lnum, 0))
2305 		return -EIO;
2306 	err = ubi_leb_unmap(desc, lnum);
2307 	if (err)
2308 		return err;
2309 	if (do_fail(desc, lnum, 0))
2310 		return -EIO;
2311 	return 0;
2312 }
2313 
2314 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2315 {
2316 	if (in_failure_mode(desc))
2317 		return -EIO;
2318 	return ubi_is_mapped(desc, lnum);
2319 }
2320 
2321 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2322 {
2323 	int err;
2324 
2325 	if (do_fail(desc, lnum, 0))
2326 		return -EIO;
2327 	err = ubi_leb_map(desc, lnum, dtype);
2328 	if (err)
2329 		return err;
2330 	if (do_fail(desc, lnum, 0))
2331 		return -EIO;
2332 	return 0;
2333 }
2334 
2335 #endif /* CONFIG_UBIFS_FS_DEBUG */
2336