1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #include <linux/module.h> 31 #include <linux/debugfs.h> 32 #include <linux/math64.h> 33 #include <linux/uaccess.h> 34 #include <linux/random.h> 35 #include <linux/ctype.h> 36 #include "ubifs.h" 37 38 static DEFINE_SPINLOCK(dbg_lock); 39 40 static const char *get_key_fmt(int fmt) 41 { 42 switch (fmt) { 43 case UBIFS_SIMPLE_KEY_FMT: 44 return "simple"; 45 default: 46 return "unknown/invalid format"; 47 } 48 } 49 50 static const char *get_key_hash(int hash) 51 { 52 switch (hash) { 53 case UBIFS_KEY_HASH_R5: 54 return "R5"; 55 case UBIFS_KEY_HASH_TEST: 56 return "test"; 57 default: 58 return "unknown/invalid name hash"; 59 } 60 } 61 62 static const char *get_key_type(int type) 63 { 64 switch (type) { 65 case UBIFS_INO_KEY: 66 return "inode"; 67 case UBIFS_DENT_KEY: 68 return "direntry"; 69 case UBIFS_XENT_KEY: 70 return "xentry"; 71 case UBIFS_DATA_KEY: 72 return "data"; 73 case UBIFS_TRUN_KEY: 74 return "truncate"; 75 default: 76 return "unknown/invalid key"; 77 } 78 } 79 80 static const char *get_dent_type(int type) 81 { 82 switch (type) { 83 case UBIFS_ITYPE_REG: 84 return "file"; 85 case UBIFS_ITYPE_DIR: 86 return "dir"; 87 case UBIFS_ITYPE_LNK: 88 return "symlink"; 89 case UBIFS_ITYPE_BLK: 90 return "blkdev"; 91 case UBIFS_ITYPE_CHR: 92 return "char dev"; 93 case UBIFS_ITYPE_FIFO: 94 return "fifo"; 95 case UBIFS_ITYPE_SOCK: 96 return "socket"; 97 default: 98 return "unknown/invalid type"; 99 } 100 } 101 102 const char *dbg_snprintf_key(const struct ubifs_info *c, 103 const union ubifs_key *key, char *buffer, int len) 104 { 105 char *p = buffer; 106 int type = key_type(c, key); 107 108 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 109 switch (type) { 110 case UBIFS_INO_KEY: 111 len -= snprintf(p, len, "(%lu, %s)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type)); 114 break; 115 case UBIFS_DENT_KEY: 116 case UBIFS_XENT_KEY: 117 len -= snprintf(p, len, "(%lu, %s, %#08x)", 118 (unsigned long)key_inum(c, key), 119 get_key_type(type), key_hash(c, key)); 120 break; 121 case UBIFS_DATA_KEY: 122 len -= snprintf(p, len, "(%lu, %s, %u)", 123 (unsigned long)key_inum(c, key), 124 get_key_type(type), key_block(c, key)); 125 break; 126 case UBIFS_TRUN_KEY: 127 len -= snprintf(p, len, "(%lu, %s)", 128 (unsigned long)key_inum(c, key), 129 get_key_type(type)); 130 break; 131 default: 132 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 133 key->u32[0], key->u32[1]); 134 } 135 } else 136 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 137 ubifs_assert(len > 0); 138 return p; 139 } 140 141 const char *dbg_ntype(int type) 142 { 143 switch (type) { 144 case UBIFS_PAD_NODE: 145 return "padding node"; 146 case UBIFS_SB_NODE: 147 return "superblock node"; 148 case UBIFS_MST_NODE: 149 return "master node"; 150 case UBIFS_REF_NODE: 151 return "reference node"; 152 case UBIFS_INO_NODE: 153 return "inode node"; 154 case UBIFS_DENT_NODE: 155 return "direntry node"; 156 case UBIFS_XENT_NODE: 157 return "xentry node"; 158 case UBIFS_DATA_NODE: 159 return "data node"; 160 case UBIFS_TRUN_NODE: 161 return "truncate node"; 162 case UBIFS_IDX_NODE: 163 return "indexing node"; 164 case UBIFS_CS_NODE: 165 return "commit start node"; 166 case UBIFS_ORPH_NODE: 167 return "orphan node"; 168 default: 169 return "unknown node"; 170 } 171 } 172 173 static const char *dbg_gtype(int type) 174 { 175 switch (type) { 176 case UBIFS_NO_NODE_GROUP: 177 return "no node group"; 178 case UBIFS_IN_NODE_GROUP: 179 return "in node group"; 180 case UBIFS_LAST_OF_NODE_GROUP: 181 return "last of node group"; 182 default: 183 return "unknown"; 184 } 185 } 186 187 const char *dbg_cstate(int cmt_state) 188 { 189 switch (cmt_state) { 190 case COMMIT_RESTING: 191 return "commit resting"; 192 case COMMIT_BACKGROUND: 193 return "background commit requested"; 194 case COMMIT_REQUIRED: 195 return "commit required"; 196 case COMMIT_RUNNING_BACKGROUND: 197 return "BACKGROUND commit running"; 198 case COMMIT_RUNNING_REQUIRED: 199 return "commit running and required"; 200 case COMMIT_BROKEN: 201 return "broken commit"; 202 default: 203 return "unknown commit state"; 204 } 205 } 206 207 const char *dbg_jhead(int jhead) 208 { 209 switch (jhead) { 210 case GCHD: 211 return "0 (GC)"; 212 case BASEHD: 213 return "1 (base)"; 214 case DATAHD: 215 return "2 (data)"; 216 default: 217 return "unknown journal head"; 218 } 219 } 220 221 static void dump_ch(const struct ubifs_ch *ch) 222 { 223 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 224 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 225 pr_err("\tnode_type %d (%s)\n", ch->node_type, 226 dbg_ntype(ch->node_type)); 227 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 228 dbg_gtype(ch->group_type)); 229 pr_err("\tsqnum %llu\n", 230 (unsigned long long)le64_to_cpu(ch->sqnum)); 231 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 232 } 233 234 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 235 { 236 const struct ubifs_inode *ui = ubifs_inode(inode); 237 struct fscrypt_name nm = {0}; 238 union ubifs_key key; 239 struct ubifs_dent_node *dent, *pdent = NULL; 240 int count = 2; 241 242 pr_err("Dump in-memory inode:"); 243 pr_err("\tinode %lu\n", inode->i_ino); 244 pr_err("\tsize %llu\n", 245 (unsigned long long)i_size_read(inode)); 246 pr_err("\tnlink %u\n", inode->i_nlink); 247 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 248 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 249 pr_err("\tatime %u.%u\n", 250 (unsigned int)inode->i_atime.tv_sec, 251 (unsigned int)inode->i_atime.tv_nsec); 252 pr_err("\tmtime %u.%u\n", 253 (unsigned int)inode->i_mtime.tv_sec, 254 (unsigned int)inode->i_mtime.tv_nsec); 255 pr_err("\tctime %u.%u\n", 256 (unsigned int)inode->i_ctime.tv_sec, 257 (unsigned int)inode->i_ctime.tv_nsec); 258 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 259 pr_err("\txattr_size %u\n", ui->xattr_size); 260 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 261 pr_err("\txattr_names %u\n", ui->xattr_names); 262 pr_err("\tdirty %u\n", ui->dirty); 263 pr_err("\txattr %u\n", ui->xattr); 264 pr_err("\tbulk_read %u\n", ui->bulk_read); 265 pr_err("\tsynced_i_size %llu\n", 266 (unsigned long long)ui->synced_i_size); 267 pr_err("\tui_size %llu\n", 268 (unsigned long long)ui->ui_size); 269 pr_err("\tflags %d\n", ui->flags); 270 pr_err("\tcompr_type %d\n", ui->compr_type); 271 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 272 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 273 pr_err("\tdata_len %d\n", ui->data_len); 274 275 if (!S_ISDIR(inode->i_mode)) 276 return; 277 278 pr_err("List of directory entries:\n"); 279 ubifs_assert(!mutex_is_locked(&c->tnc_mutex)); 280 281 lowest_dent_key(c, &key, inode->i_ino); 282 while (1) { 283 dent = ubifs_tnc_next_ent(c, &key, &nm); 284 if (IS_ERR(dent)) { 285 if (PTR_ERR(dent) != -ENOENT) 286 pr_err("error %ld\n", PTR_ERR(dent)); 287 break; 288 } 289 290 pr_err("\t%d: inode %llu, type %s, len %d\n", 291 count++, (unsigned long long) le64_to_cpu(dent->inum), 292 get_dent_type(dent->type), 293 le16_to_cpu(dent->nlen)); 294 295 fname_name(&nm) = dent->name; 296 fname_len(&nm) = le16_to_cpu(dent->nlen); 297 kfree(pdent); 298 pdent = dent; 299 key_read(c, &dent->key, &key); 300 } 301 kfree(pdent); 302 } 303 304 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 305 { 306 int i, n; 307 union ubifs_key key; 308 const struct ubifs_ch *ch = node; 309 char key_buf[DBG_KEY_BUF_LEN]; 310 311 /* If the magic is incorrect, just hexdump the first bytes */ 312 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 313 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 314 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 315 (void *)node, UBIFS_CH_SZ, 1); 316 return; 317 } 318 319 spin_lock(&dbg_lock); 320 dump_ch(node); 321 322 switch (ch->node_type) { 323 case UBIFS_PAD_NODE: 324 { 325 const struct ubifs_pad_node *pad = node; 326 327 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 328 break; 329 } 330 case UBIFS_SB_NODE: 331 { 332 const struct ubifs_sb_node *sup = node; 333 unsigned int sup_flags = le32_to_cpu(sup->flags); 334 335 pr_err("\tkey_hash %d (%s)\n", 336 (int)sup->key_hash, get_key_hash(sup->key_hash)); 337 pr_err("\tkey_fmt %d (%s)\n", 338 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 339 pr_err("\tflags %#x\n", sup_flags); 340 pr_err("\tbig_lpt %u\n", 341 !!(sup_flags & UBIFS_FLG_BIGLPT)); 342 pr_err("\tspace_fixup %u\n", 343 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 344 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 345 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 346 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 347 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 348 pr_err("\tmax_bud_bytes %llu\n", 349 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 350 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 351 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 352 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 353 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 354 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 355 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 356 pr_err("\tdefault_compr %u\n", 357 (int)le16_to_cpu(sup->default_compr)); 358 pr_err("\trp_size %llu\n", 359 (unsigned long long)le64_to_cpu(sup->rp_size)); 360 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 361 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 362 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 363 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 364 pr_err("\tUUID %pUB\n", sup->uuid); 365 break; 366 } 367 case UBIFS_MST_NODE: 368 { 369 const struct ubifs_mst_node *mst = node; 370 371 pr_err("\thighest_inum %llu\n", 372 (unsigned long long)le64_to_cpu(mst->highest_inum)); 373 pr_err("\tcommit number %llu\n", 374 (unsigned long long)le64_to_cpu(mst->cmt_no)); 375 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 376 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 377 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 378 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 379 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 380 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 381 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 382 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 383 pr_err("\tindex_size %llu\n", 384 (unsigned long long)le64_to_cpu(mst->index_size)); 385 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 386 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 387 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 388 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 389 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 390 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 391 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 392 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 393 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 394 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 395 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 396 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 397 pr_err("\ttotal_free %llu\n", 398 (unsigned long long)le64_to_cpu(mst->total_free)); 399 pr_err("\ttotal_dirty %llu\n", 400 (unsigned long long)le64_to_cpu(mst->total_dirty)); 401 pr_err("\ttotal_used %llu\n", 402 (unsigned long long)le64_to_cpu(mst->total_used)); 403 pr_err("\ttotal_dead %llu\n", 404 (unsigned long long)le64_to_cpu(mst->total_dead)); 405 pr_err("\ttotal_dark %llu\n", 406 (unsigned long long)le64_to_cpu(mst->total_dark)); 407 break; 408 } 409 case UBIFS_REF_NODE: 410 { 411 const struct ubifs_ref_node *ref = node; 412 413 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 414 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 415 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 416 break; 417 } 418 case UBIFS_INO_NODE: 419 { 420 const struct ubifs_ino_node *ino = node; 421 422 key_read(c, &ino->key, &key); 423 pr_err("\tkey %s\n", 424 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 425 pr_err("\tcreat_sqnum %llu\n", 426 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 427 pr_err("\tsize %llu\n", 428 (unsigned long long)le64_to_cpu(ino->size)); 429 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 430 pr_err("\tatime %lld.%u\n", 431 (long long)le64_to_cpu(ino->atime_sec), 432 le32_to_cpu(ino->atime_nsec)); 433 pr_err("\tmtime %lld.%u\n", 434 (long long)le64_to_cpu(ino->mtime_sec), 435 le32_to_cpu(ino->mtime_nsec)); 436 pr_err("\tctime %lld.%u\n", 437 (long long)le64_to_cpu(ino->ctime_sec), 438 le32_to_cpu(ino->ctime_nsec)); 439 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 440 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 441 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 442 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 443 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 444 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 445 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 446 pr_err("\tcompr_type %#x\n", 447 (int)le16_to_cpu(ino->compr_type)); 448 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 449 break; 450 } 451 case UBIFS_DENT_NODE: 452 case UBIFS_XENT_NODE: 453 { 454 const struct ubifs_dent_node *dent = node; 455 int nlen = le16_to_cpu(dent->nlen); 456 457 key_read(c, &dent->key, &key); 458 pr_err("\tkey %s\n", 459 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 460 pr_err("\tinum %llu\n", 461 (unsigned long long)le64_to_cpu(dent->inum)); 462 pr_err("\ttype %d\n", (int)dent->type); 463 pr_err("\tnlen %d\n", nlen); 464 pr_err("\tname "); 465 466 if (nlen > UBIFS_MAX_NLEN) 467 pr_err("(bad name length, not printing, bad or corrupted node)"); 468 else { 469 for (i = 0; i < nlen && dent->name[i]; i++) 470 pr_cont("%c", isprint(dent->name[i]) ? 471 dent->name[i] : '?'); 472 } 473 pr_cont("\n"); 474 475 break; 476 } 477 case UBIFS_DATA_NODE: 478 { 479 const struct ubifs_data_node *dn = node; 480 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 481 482 key_read(c, &dn->key, &key); 483 pr_err("\tkey %s\n", 484 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 485 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 486 pr_err("\tcompr_typ %d\n", 487 (int)le16_to_cpu(dn->compr_type)); 488 pr_err("\tdata size %d\n", dlen); 489 pr_err("\tdata:\n"); 490 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 491 (void *)&dn->data, dlen, 0); 492 break; 493 } 494 case UBIFS_TRUN_NODE: 495 { 496 const struct ubifs_trun_node *trun = node; 497 498 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 499 pr_err("\told_size %llu\n", 500 (unsigned long long)le64_to_cpu(trun->old_size)); 501 pr_err("\tnew_size %llu\n", 502 (unsigned long long)le64_to_cpu(trun->new_size)); 503 break; 504 } 505 case UBIFS_IDX_NODE: 506 { 507 const struct ubifs_idx_node *idx = node; 508 509 n = le16_to_cpu(idx->child_cnt); 510 pr_err("\tchild_cnt %d\n", n); 511 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 512 pr_err("\tBranches:\n"); 513 514 for (i = 0; i < n && i < c->fanout - 1; i++) { 515 const struct ubifs_branch *br; 516 517 br = ubifs_idx_branch(c, idx, i); 518 key_read(c, &br->key, &key); 519 pr_err("\t%d: LEB %d:%d len %d key %s\n", 520 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 521 le32_to_cpu(br->len), 522 dbg_snprintf_key(c, &key, key_buf, 523 DBG_KEY_BUF_LEN)); 524 } 525 break; 526 } 527 case UBIFS_CS_NODE: 528 break; 529 case UBIFS_ORPH_NODE: 530 { 531 const struct ubifs_orph_node *orph = node; 532 533 pr_err("\tcommit number %llu\n", 534 (unsigned long long) 535 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 536 pr_err("\tlast node flag %llu\n", 537 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 538 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 539 pr_err("\t%d orphan inode numbers:\n", n); 540 for (i = 0; i < n; i++) 541 pr_err("\t ino %llu\n", 542 (unsigned long long)le64_to_cpu(orph->inos[i])); 543 break; 544 } 545 default: 546 pr_err("node type %d was not recognized\n", 547 (int)ch->node_type); 548 } 549 spin_unlock(&dbg_lock); 550 } 551 552 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 553 { 554 spin_lock(&dbg_lock); 555 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 556 req->new_ino, req->dirtied_ino); 557 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 558 req->new_ino_d, req->dirtied_ino_d); 559 pr_err("\tnew_page %d, dirtied_page %d\n", 560 req->new_page, req->dirtied_page); 561 pr_err("\tnew_dent %d, mod_dent %d\n", 562 req->new_dent, req->mod_dent); 563 pr_err("\tidx_growth %d\n", req->idx_growth); 564 pr_err("\tdata_growth %d dd_growth %d\n", 565 req->data_growth, req->dd_growth); 566 spin_unlock(&dbg_lock); 567 } 568 569 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 570 { 571 spin_lock(&dbg_lock); 572 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 573 current->pid, lst->empty_lebs, lst->idx_lebs); 574 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 575 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 576 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 577 lst->total_used, lst->total_dark, lst->total_dead); 578 spin_unlock(&dbg_lock); 579 } 580 581 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 582 { 583 int i; 584 struct rb_node *rb; 585 struct ubifs_bud *bud; 586 struct ubifs_gced_idx_leb *idx_gc; 587 long long available, outstanding, free; 588 589 spin_lock(&c->space_lock); 590 spin_lock(&dbg_lock); 591 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 592 current->pid, bi->data_growth + bi->dd_growth, 593 bi->data_growth + bi->dd_growth + bi->idx_growth); 594 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 595 bi->data_growth, bi->dd_growth, bi->idx_growth); 596 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 597 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 598 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 599 bi->page_budget, bi->inode_budget, bi->dent_budget); 600 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 601 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 602 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 603 604 if (bi != &c->bi) 605 /* 606 * If we are dumping saved budgeting data, do not print 607 * additional information which is about the current state, not 608 * the old one which corresponded to the saved budgeting data. 609 */ 610 goto out_unlock; 611 612 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 613 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 614 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 615 atomic_long_read(&c->dirty_pg_cnt), 616 atomic_long_read(&c->dirty_zn_cnt), 617 atomic_long_read(&c->clean_zn_cnt)); 618 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 619 620 /* If we are in R/O mode, journal heads do not exist */ 621 if (c->jheads) 622 for (i = 0; i < c->jhead_cnt; i++) 623 pr_err("\tjhead %s\t LEB %d\n", 624 dbg_jhead(c->jheads[i].wbuf.jhead), 625 c->jheads[i].wbuf.lnum); 626 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 627 bud = rb_entry(rb, struct ubifs_bud, rb); 628 pr_err("\tbud LEB %d\n", bud->lnum); 629 } 630 list_for_each_entry(bud, &c->old_buds, list) 631 pr_err("\told bud LEB %d\n", bud->lnum); 632 list_for_each_entry(idx_gc, &c->idx_gc, list) 633 pr_err("\tGC'ed idx LEB %d unmap %d\n", 634 idx_gc->lnum, idx_gc->unmap); 635 pr_err("\tcommit state %d\n", c->cmt_state); 636 637 /* Print budgeting predictions */ 638 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 639 outstanding = c->bi.data_growth + c->bi.dd_growth; 640 free = ubifs_get_free_space_nolock(c); 641 pr_err("Budgeting predictions:\n"); 642 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 643 available, outstanding, free); 644 out_unlock: 645 spin_unlock(&dbg_lock); 646 spin_unlock(&c->space_lock); 647 } 648 649 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 650 { 651 int i, spc, dark = 0, dead = 0; 652 struct rb_node *rb; 653 struct ubifs_bud *bud; 654 655 spc = lp->free + lp->dirty; 656 if (spc < c->dead_wm) 657 dead = spc; 658 else 659 dark = ubifs_calc_dark(c, spc); 660 661 if (lp->flags & LPROPS_INDEX) 662 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 663 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 664 lp->flags); 665 else 666 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 667 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 668 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 669 670 if (lp->flags & LPROPS_TAKEN) { 671 if (lp->flags & LPROPS_INDEX) 672 pr_cont("index, taken"); 673 else 674 pr_cont("taken"); 675 } else { 676 const char *s; 677 678 if (lp->flags & LPROPS_INDEX) { 679 switch (lp->flags & LPROPS_CAT_MASK) { 680 case LPROPS_DIRTY_IDX: 681 s = "dirty index"; 682 break; 683 case LPROPS_FRDI_IDX: 684 s = "freeable index"; 685 break; 686 default: 687 s = "index"; 688 } 689 } else { 690 switch (lp->flags & LPROPS_CAT_MASK) { 691 case LPROPS_UNCAT: 692 s = "not categorized"; 693 break; 694 case LPROPS_DIRTY: 695 s = "dirty"; 696 break; 697 case LPROPS_FREE: 698 s = "free"; 699 break; 700 case LPROPS_EMPTY: 701 s = "empty"; 702 break; 703 case LPROPS_FREEABLE: 704 s = "freeable"; 705 break; 706 default: 707 s = NULL; 708 break; 709 } 710 } 711 pr_cont("%s", s); 712 } 713 714 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 715 bud = rb_entry(rb, struct ubifs_bud, rb); 716 if (bud->lnum == lp->lnum) { 717 int head = 0; 718 for (i = 0; i < c->jhead_cnt; i++) { 719 /* 720 * Note, if we are in R/O mode or in the middle 721 * of mounting/re-mounting, the write-buffers do 722 * not exist. 723 */ 724 if (c->jheads && 725 lp->lnum == c->jheads[i].wbuf.lnum) { 726 pr_cont(", jhead %s", dbg_jhead(i)); 727 head = 1; 728 } 729 } 730 if (!head) 731 pr_cont(", bud of jhead %s", 732 dbg_jhead(bud->jhead)); 733 } 734 } 735 if (lp->lnum == c->gc_lnum) 736 pr_cont(", GC LEB"); 737 pr_cont(")\n"); 738 } 739 740 void ubifs_dump_lprops(struct ubifs_info *c) 741 { 742 int lnum, err; 743 struct ubifs_lprops lp; 744 struct ubifs_lp_stats lst; 745 746 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 747 ubifs_get_lp_stats(c, &lst); 748 ubifs_dump_lstats(&lst); 749 750 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 751 err = ubifs_read_one_lp(c, lnum, &lp); 752 if (err) { 753 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 754 continue; 755 } 756 757 ubifs_dump_lprop(c, &lp); 758 } 759 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 760 } 761 762 void ubifs_dump_lpt_info(struct ubifs_info *c) 763 { 764 int i; 765 766 spin_lock(&dbg_lock); 767 pr_err("(pid %d) dumping LPT information\n", current->pid); 768 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 769 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 770 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 771 pr_err("\tltab_sz: %d\n", c->ltab_sz); 772 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 773 pr_err("\tbig_lpt: %d\n", c->big_lpt); 774 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 775 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 776 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 777 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 778 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 779 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 780 pr_err("\tspace_bits: %d\n", c->space_bits); 781 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 782 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 783 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 784 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 785 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 786 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 787 pr_err("\tLPT head is at %d:%d\n", 788 c->nhead_lnum, c->nhead_offs); 789 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 790 if (c->big_lpt) 791 pr_err("\tLPT lsave is at %d:%d\n", 792 c->lsave_lnum, c->lsave_offs); 793 for (i = 0; i < c->lpt_lebs; i++) 794 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 795 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 796 c->ltab[i].tgc, c->ltab[i].cmt); 797 spin_unlock(&dbg_lock); 798 } 799 800 void ubifs_dump_sleb(const struct ubifs_info *c, 801 const struct ubifs_scan_leb *sleb, int offs) 802 { 803 struct ubifs_scan_node *snod; 804 805 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 806 current->pid, sleb->lnum, offs); 807 808 list_for_each_entry(snod, &sleb->nodes, list) { 809 cond_resched(); 810 pr_err("Dumping node at LEB %d:%d len %d\n", 811 sleb->lnum, snod->offs, snod->len); 812 ubifs_dump_node(c, snod->node); 813 } 814 } 815 816 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 817 { 818 struct ubifs_scan_leb *sleb; 819 struct ubifs_scan_node *snod; 820 void *buf; 821 822 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 823 824 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 825 if (!buf) { 826 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 827 return; 828 } 829 830 sleb = ubifs_scan(c, lnum, 0, buf, 0); 831 if (IS_ERR(sleb)) { 832 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 833 goto out; 834 } 835 836 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 837 sleb->nodes_cnt, sleb->endpt); 838 839 list_for_each_entry(snod, &sleb->nodes, list) { 840 cond_resched(); 841 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 842 snod->offs, snod->len); 843 ubifs_dump_node(c, snod->node); 844 } 845 846 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 847 ubifs_scan_destroy(sleb); 848 849 out: 850 vfree(buf); 851 return; 852 } 853 854 void ubifs_dump_znode(const struct ubifs_info *c, 855 const struct ubifs_znode *znode) 856 { 857 int n; 858 const struct ubifs_zbranch *zbr; 859 char key_buf[DBG_KEY_BUF_LEN]; 860 861 spin_lock(&dbg_lock); 862 if (znode->parent) 863 zbr = &znode->parent->zbranch[znode->iip]; 864 else 865 zbr = &c->zroot; 866 867 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 868 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 869 znode->level, znode->child_cnt, znode->flags); 870 871 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 872 spin_unlock(&dbg_lock); 873 return; 874 } 875 876 pr_err("zbranches:\n"); 877 for (n = 0; n < znode->child_cnt; n++) { 878 zbr = &znode->zbranch[n]; 879 if (znode->level > 0) 880 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 881 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 882 dbg_snprintf_key(c, &zbr->key, key_buf, 883 DBG_KEY_BUF_LEN)); 884 else 885 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 886 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 887 dbg_snprintf_key(c, &zbr->key, key_buf, 888 DBG_KEY_BUF_LEN)); 889 } 890 spin_unlock(&dbg_lock); 891 } 892 893 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 894 { 895 int i; 896 897 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 898 current->pid, cat, heap->cnt); 899 for (i = 0; i < heap->cnt; i++) { 900 struct ubifs_lprops *lprops = heap->arr[i]; 901 902 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 903 i, lprops->lnum, lprops->hpos, lprops->free, 904 lprops->dirty, lprops->flags); 905 } 906 pr_err("(pid %d) finish dumping heap\n", current->pid); 907 } 908 909 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 910 struct ubifs_nnode *parent, int iip) 911 { 912 int i; 913 914 pr_err("(pid %d) dumping pnode:\n", current->pid); 915 pr_err("\taddress %zx parent %zx cnext %zx\n", 916 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 917 pr_err("\tflags %lu iip %d level %d num %d\n", 918 pnode->flags, iip, pnode->level, pnode->num); 919 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 920 struct ubifs_lprops *lp = &pnode->lprops[i]; 921 922 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 923 i, lp->free, lp->dirty, lp->flags, lp->lnum); 924 } 925 } 926 927 void ubifs_dump_tnc(struct ubifs_info *c) 928 { 929 struct ubifs_znode *znode; 930 int level; 931 932 pr_err("\n"); 933 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 934 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 935 level = znode->level; 936 pr_err("== Level %d ==\n", level); 937 while (znode) { 938 if (level != znode->level) { 939 level = znode->level; 940 pr_err("== Level %d ==\n", level); 941 } 942 ubifs_dump_znode(c, znode); 943 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 944 } 945 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 946 } 947 948 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 949 void *priv) 950 { 951 ubifs_dump_znode(c, znode); 952 return 0; 953 } 954 955 /** 956 * ubifs_dump_index - dump the on-flash index. 957 * @c: UBIFS file-system description object 958 * 959 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 960 * which dumps only in-memory znodes and does not read znodes which from flash. 961 */ 962 void ubifs_dump_index(struct ubifs_info *c) 963 { 964 dbg_walk_index(c, NULL, dump_znode, NULL); 965 } 966 967 /** 968 * dbg_save_space_info - save information about flash space. 969 * @c: UBIFS file-system description object 970 * 971 * This function saves information about UBIFS free space, dirty space, etc, in 972 * order to check it later. 973 */ 974 void dbg_save_space_info(struct ubifs_info *c) 975 { 976 struct ubifs_debug_info *d = c->dbg; 977 int freeable_cnt; 978 979 spin_lock(&c->space_lock); 980 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 981 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 982 d->saved_idx_gc_cnt = c->idx_gc_cnt; 983 984 /* 985 * We use a dirty hack here and zero out @c->freeable_cnt, because it 986 * affects the free space calculations, and UBIFS might not know about 987 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 988 * only when we read their lprops, and we do this only lazily, upon the 989 * need. So at any given point of time @c->freeable_cnt might be not 990 * exactly accurate. 991 * 992 * Just one example about the issue we hit when we did not zero 993 * @c->freeable_cnt. 994 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 995 * amount of free space in @d->saved_free 996 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 997 * information from flash, where we cache LEBs from various 998 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 999 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1000 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1001 * -> 'ubifs_add_to_cat()'). 1002 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1003 * becomes %1. 1004 * 4. We calculate the amount of free space when the re-mount is 1005 * finished in 'dbg_check_space_info()' and it does not match 1006 * @d->saved_free. 1007 */ 1008 freeable_cnt = c->freeable_cnt; 1009 c->freeable_cnt = 0; 1010 d->saved_free = ubifs_get_free_space_nolock(c); 1011 c->freeable_cnt = freeable_cnt; 1012 spin_unlock(&c->space_lock); 1013 } 1014 1015 /** 1016 * dbg_check_space_info - check flash space information. 1017 * @c: UBIFS file-system description object 1018 * 1019 * This function compares current flash space information with the information 1020 * which was saved when the 'dbg_save_space_info()' function was called. 1021 * Returns zero if the information has not changed, and %-EINVAL it it has 1022 * changed. 1023 */ 1024 int dbg_check_space_info(struct ubifs_info *c) 1025 { 1026 struct ubifs_debug_info *d = c->dbg; 1027 struct ubifs_lp_stats lst; 1028 long long free; 1029 int freeable_cnt; 1030 1031 spin_lock(&c->space_lock); 1032 freeable_cnt = c->freeable_cnt; 1033 c->freeable_cnt = 0; 1034 free = ubifs_get_free_space_nolock(c); 1035 c->freeable_cnt = freeable_cnt; 1036 spin_unlock(&c->space_lock); 1037 1038 if (free != d->saved_free) { 1039 ubifs_err(c, "free space changed from %lld to %lld", 1040 d->saved_free, free); 1041 goto out; 1042 } 1043 1044 return 0; 1045 1046 out: 1047 ubifs_msg(c, "saved lprops statistics dump"); 1048 ubifs_dump_lstats(&d->saved_lst); 1049 ubifs_msg(c, "saved budgeting info dump"); 1050 ubifs_dump_budg(c, &d->saved_bi); 1051 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1052 ubifs_msg(c, "current lprops statistics dump"); 1053 ubifs_get_lp_stats(c, &lst); 1054 ubifs_dump_lstats(&lst); 1055 ubifs_msg(c, "current budgeting info dump"); 1056 ubifs_dump_budg(c, &c->bi); 1057 dump_stack(); 1058 return -EINVAL; 1059 } 1060 1061 /** 1062 * dbg_check_synced_i_size - check synchronized inode size. 1063 * @c: UBIFS file-system description object 1064 * @inode: inode to check 1065 * 1066 * If inode is clean, synchronized inode size has to be equivalent to current 1067 * inode size. This function has to be called only for locked inodes (@i_mutex 1068 * has to be locked). Returns %0 if synchronized inode size if correct, and 1069 * %-EINVAL if not. 1070 */ 1071 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1072 { 1073 int err = 0; 1074 struct ubifs_inode *ui = ubifs_inode(inode); 1075 1076 if (!dbg_is_chk_gen(c)) 1077 return 0; 1078 if (!S_ISREG(inode->i_mode)) 1079 return 0; 1080 1081 mutex_lock(&ui->ui_mutex); 1082 spin_lock(&ui->ui_lock); 1083 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1084 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1085 ui->ui_size, ui->synced_i_size); 1086 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1087 inode->i_mode, i_size_read(inode)); 1088 dump_stack(); 1089 err = -EINVAL; 1090 } 1091 spin_unlock(&ui->ui_lock); 1092 mutex_unlock(&ui->ui_mutex); 1093 return err; 1094 } 1095 1096 /* 1097 * dbg_check_dir - check directory inode size and link count. 1098 * @c: UBIFS file-system description object 1099 * @dir: the directory to calculate size for 1100 * @size: the result is returned here 1101 * 1102 * This function makes sure that directory size and link count are correct. 1103 * Returns zero in case of success and a negative error code in case of 1104 * failure. 1105 * 1106 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1107 * calling this function. 1108 */ 1109 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1110 { 1111 unsigned int nlink = 2; 1112 union ubifs_key key; 1113 struct ubifs_dent_node *dent, *pdent = NULL; 1114 struct fscrypt_name nm = {0}; 1115 loff_t size = UBIFS_INO_NODE_SZ; 1116 1117 if (!dbg_is_chk_gen(c)) 1118 return 0; 1119 1120 if (!S_ISDIR(dir->i_mode)) 1121 return 0; 1122 1123 lowest_dent_key(c, &key, dir->i_ino); 1124 while (1) { 1125 int err; 1126 1127 dent = ubifs_tnc_next_ent(c, &key, &nm); 1128 if (IS_ERR(dent)) { 1129 err = PTR_ERR(dent); 1130 if (err == -ENOENT) 1131 break; 1132 return err; 1133 } 1134 1135 fname_name(&nm) = dent->name; 1136 fname_len(&nm) = le16_to_cpu(dent->nlen); 1137 size += CALC_DENT_SIZE(fname_len(&nm)); 1138 if (dent->type == UBIFS_ITYPE_DIR) 1139 nlink += 1; 1140 kfree(pdent); 1141 pdent = dent; 1142 key_read(c, &dent->key, &key); 1143 } 1144 kfree(pdent); 1145 1146 if (i_size_read(dir) != size) { 1147 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1148 dir->i_ino, (unsigned long long)i_size_read(dir), 1149 (unsigned long long)size); 1150 ubifs_dump_inode(c, dir); 1151 dump_stack(); 1152 return -EINVAL; 1153 } 1154 if (dir->i_nlink != nlink) { 1155 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1156 dir->i_ino, dir->i_nlink, nlink); 1157 ubifs_dump_inode(c, dir); 1158 dump_stack(); 1159 return -EINVAL; 1160 } 1161 1162 return 0; 1163 } 1164 1165 /** 1166 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1167 * @c: UBIFS file-system description object 1168 * @zbr1: first zbranch 1169 * @zbr2: following zbranch 1170 * 1171 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1172 * names of the direntries/xentries which are referred by the keys. This 1173 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1174 * sure the name of direntry/xentry referred by @zbr1 is less than 1175 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1176 * and a negative error code in case of failure. 1177 */ 1178 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1179 struct ubifs_zbranch *zbr2) 1180 { 1181 int err, nlen1, nlen2, cmp; 1182 struct ubifs_dent_node *dent1, *dent2; 1183 union ubifs_key key; 1184 char key_buf[DBG_KEY_BUF_LEN]; 1185 1186 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1187 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1188 if (!dent1) 1189 return -ENOMEM; 1190 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1191 if (!dent2) { 1192 err = -ENOMEM; 1193 goto out_free; 1194 } 1195 1196 err = ubifs_tnc_read_node(c, zbr1, dent1); 1197 if (err) 1198 goto out_free; 1199 err = ubifs_validate_entry(c, dent1); 1200 if (err) 1201 goto out_free; 1202 1203 err = ubifs_tnc_read_node(c, zbr2, dent2); 1204 if (err) 1205 goto out_free; 1206 err = ubifs_validate_entry(c, dent2); 1207 if (err) 1208 goto out_free; 1209 1210 /* Make sure node keys are the same as in zbranch */ 1211 err = 1; 1212 key_read(c, &dent1->key, &key); 1213 if (keys_cmp(c, &zbr1->key, &key)) { 1214 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1215 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1216 DBG_KEY_BUF_LEN)); 1217 ubifs_err(c, "but it should have key %s according to tnc", 1218 dbg_snprintf_key(c, &zbr1->key, key_buf, 1219 DBG_KEY_BUF_LEN)); 1220 ubifs_dump_node(c, dent1); 1221 goto out_free; 1222 } 1223 1224 key_read(c, &dent2->key, &key); 1225 if (keys_cmp(c, &zbr2->key, &key)) { 1226 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1227 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1228 DBG_KEY_BUF_LEN)); 1229 ubifs_err(c, "but it should have key %s according to tnc", 1230 dbg_snprintf_key(c, &zbr2->key, key_buf, 1231 DBG_KEY_BUF_LEN)); 1232 ubifs_dump_node(c, dent2); 1233 goto out_free; 1234 } 1235 1236 nlen1 = le16_to_cpu(dent1->nlen); 1237 nlen2 = le16_to_cpu(dent2->nlen); 1238 1239 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1240 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1241 err = 0; 1242 goto out_free; 1243 } 1244 if (cmp == 0 && nlen1 == nlen2) 1245 ubifs_err(c, "2 xent/dent nodes with the same name"); 1246 else 1247 ubifs_err(c, "bad order of colliding key %s", 1248 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1249 1250 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1251 ubifs_dump_node(c, dent1); 1252 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1253 ubifs_dump_node(c, dent2); 1254 1255 out_free: 1256 kfree(dent2); 1257 kfree(dent1); 1258 return err; 1259 } 1260 1261 /** 1262 * dbg_check_znode - check if znode is all right. 1263 * @c: UBIFS file-system description object 1264 * @zbr: zbranch which points to this znode 1265 * 1266 * This function makes sure that znode referred to by @zbr is all right. 1267 * Returns zero if it is, and %-EINVAL if it is not. 1268 */ 1269 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1270 { 1271 struct ubifs_znode *znode = zbr->znode; 1272 struct ubifs_znode *zp = znode->parent; 1273 int n, err, cmp; 1274 1275 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1276 err = 1; 1277 goto out; 1278 } 1279 if (znode->level < 0) { 1280 err = 2; 1281 goto out; 1282 } 1283 if (znode->iip < 0 || znode->iip >= c->fanout) { 1284 err = 3; 1285 goto out; 1286 } 1287 1288 if (zbr->len == 0) 1289 /* Only dirty zbranch may have no on-flash nodes */ 1290 if (!ubifs_zn_dirty(znode)) { 1291 err = 4; 1292 goto out; 1293 } 1294 1295 if (ubifs_zn_dirty(znode)) { 1296 /* 1297 * If znode is dirty, its parent has to be dirty as well. The 1298 * order of the operation is important, so we have to have 1299 * memory barriers. 1300 */ 1301 smp_mb(); 1302 if (zp && !ubifs_zn_dirty(zp)) { 1303 /* 1304 * The dirty flag is atomic and is cleared outside the 1305 * TNC mutex, so znode's dirty flag may now have 1306 * been cleared. The child is always cleared before the 1307 * parent, so we just need to check again. 1308 */ 1309 smp_mb(); 1310 if (ubifs_zn_dirty(znode)) { 1311 err = 5; 1312 goto out; 1313 } 1314 } 1315 } 1316 1317 if (zp) { 1318 const union ubifs_key *min, *max; 1319 1320 if (znode->level != zp->level - 1) { 1321 err = 6; 1322 goto out; 1323 } 1324 1325 /* Make sure the 'parent' pointer in our znode is correct */ 1326 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1327 if (!err) { 1328 /* This zbranch does not exist in the parent */ 1329 err = 7; 1330 goto out; 1331 } 1332 1333 if (znode->iip >= zp->child_cnt) { 1334 err = 8; 1335 goto out; 1336 } 1337 1338 if (znode->iip != n) { 1339 /* This may happen only in case of collisions */ 1340 if (keys_cmp(c, &zp->zbranch[n].key, 1341 &zp->zbranch[znode->iip].key)) { 1342 err = 9; 1343 goto out; 1344 } 1345 n = znode->iip; 1346 } 1347 1348 /* 1349 * Make sure that the first key in our znode is greater than or 1350 * equal to the key in the pointing zbranch. 1351 */ 1352 min = &zbr->key; 1353 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1354 if (cmp == 1) { 1355 err = 10; 1356 goto out; 1357 } 1358 1359 if (n + 1 < zp->child_cnt) { 1360 max = &zp->zbranch[n + 1].key; 1361 1362 /* 1363 * Make sure the last key in our znode is less or 1364 * equivalent than the key in the zbranch which goes 1365 * after our pointing zbranch. 1366 */ 1367 cmp = keys_cmp(c, max, 1368 &znode->zbranch[znode->child_cnt - 1].key); 1369 if (cmp == -1) { 1370 err = 11; 1371 goto out; 1372 } 1373 } 1374 } else { 1375 /* This may only be root znode */ 1376 if (zbr != &c->zroot) { 1377 err = 12; 1378 goto out; 1379 } 1380 } 1381 1382 /* 1383 * Make sure that next key is greater or equivalent then the previous 1384 * one. 1385 */ 1386 for (n = 1; n < znode->child_cnt; n++) { 1387 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1388 &znode->zbranch[n].key); 1389 if (cmp > 0) { 1390 err = 13; 1391 goto out; 1392 } 1393 if (cmp == 0) { 1394 /* This can only be keys with colliding hash */ 1395 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1396 err = 14; 1397 goto out; 1398 } 1399 1400 if (znode->level != 0 || c->replaying) 1401 continue; 1402 1403 /* 1404 * Colliding keys should follow binary order of 1405 * corresponding xentry/dentry names. 1406 */ 1407 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1408 &znode->zbranch[n]); 1409 if (err < 0) 1410 return err; 1411 if (err) { 1412 err = 15; 1413 goto out; 1414 } 1415 } 1416 } 1417 1418 for (n = 0; n < znode->child_cnt; n++) { 1419 if (!znode->zbranch[n].znode && 1420 (znode->zbranch[n].lnum == 0 || 1421 znode->zbranch[n].len == 0)) { 1422 err = 16; 1423 goto out; 1424 } 1425 1426 if (znode->zbranch[n].lnum != 0 && 1427 znode->zbranch[n].len == 0) { 1428 err = 17; 1429 goto out; 1430 } 1431 1432 if (znode->zbranch[n].lnum == 0 && 1433 znode->zbranch[n].len != 0) { 1434 err = 18; 1435 goto out; 1436 } 1437 1438 if (znode->zbranch[n].lnum == 0 && 1439 znode->zbranch[n].offs != 0) { 1440 err = 19; 1441 goto out; 1442 } 1443 1444 if (znode->level != 0 && znode->zbranch[n].znode) 1445 if (znode->zbranch[n].znode->parent != znode) { 1446 err = 20; 1447 goto out; 1448 } 1449 } 1450 1451 return 0; 1452 1453 out: 1454 ubifs_err(c, "failed, error %d", err); 1455 ubifs_msg(c, "dump of the znode"); 1456 ubifs_dump_znode(c, znode); 1457 if (zp) { 1458 ubifs_msg(c, "dump of the parent znode"); 1459 ubifs_dump_znode(c, zp); 1460 } 1461 dump_stack(); 1462 return -EINVAL; 1463 } 1464 1465 /** 1466 * dbg_check_tnc - check TNC tree. 1467 * @c: UBIFS file-system description object 1468 * @extra: do extra checks that are possible at start commit 1469 * 1470 * This function traverses whole TNC tree and checks every znode. Returns zero 1471 * if everything is all right and %-EINVAL if something is wrong with TNC. 1472 */ 1473 int dbg_check_tnc(struct ubifs_info *c, int extra) 1474 { 1475 struct ubifs_znode *znode; 1476 long clean_cnt = 0, dirty_cnt = 0; 1477 int err, last; 1478 1479 if (!dbg_is_chk_index(c)) 1480 return 0; 1481 1482 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1483 if (!c->zroot.znode) 1484 return 0; 1485 1486 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1487 while (1) { 1488 struct ubifs_znode *prev; 1489 struct ubifs_zbranch *zbr; 1490 1491 if (!znode->parent) 1492 zbr = &c->zroot; 1493 else 1494 zbr = &znode->parent->zbranch[znode->iip]; 1495 1496 err = dbg_check_znode(c, zbr); 1497 if (err) 1498 return err; 1499 1500 if (extra) { 1501 if (ubifs_zn_dirty(znode)) 1502 dirty_cnt += 1; 1503 else 1504 clean_cnt += 1; 1505 } 1506 1507 prev = znode; 1508 znode = ubifs_tnc_postorder_next(znode); 1509 if (!znode) 1510 break; 1511 1512 /* 1513 * If the last key of this znode is equivalent to the first key 1514 * of the next znode (collision), then check order of the keys. 1515 */ 1516 last = prev->child_cnt - 1; 1517 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1518 !keys_cmp(c, &prev->zbranch[last].key, 1519 &znode->zbranch[0].key)) { 1520 err = dbg_check_key_order(c, &prev->zbranch[last], 1521 &znode->zbranch[0]); 1522 if (err < 0) 1523 return err; 1524 if (err) { 1525 ubifs_msg(c, "first znode"); 1526 ubifs_dump_znode(c, prev); 1527 ubifs_msg(c, "second znode"); 1528 ubifs_dump_znode(c, znode); 1529 return -EINVAL; 1530 } 1531 } 1532 } 1533 1534 if (extra) { 1535 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1536 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1537 atomic_long_read(&c->clean_zn_cnt), 1538 clean_cnt); 1539 return -EINVAL; 1540 } 1541 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1542 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1543 atomic_long_read(&c->dirty_zn_cnt), 1544 dirty_cnt); 1545 return -EINVAL; 1546 } 1547 } 1548 1549 return 0; 1550 } 1551 1552 /** 1553 * dbg_walk_index - walk the on-flash index. 1554 * @c: UBIFS file-system description object 1555 * @leaf_cb: called for each leaf node 1556 * @znode_cb: called for each indexing node 1557 * @priv: private data which is passed to callbacks 1558 * 1559 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1560 * node and @znode_cb for each indexing node. Returns zero in case of success 1561 * and a negative error code in case of failure. 1562 * 1563 * It would be better if this function removed every znode it pulled to into 1564 * the TNC, so that the behavior more closely matched the non-debugging 1565 * behavior. 1566 */ 1567 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1568 dbg_znode_callback znode_cb, void *priv) 1569 { 1570 int err; 1571 struct ubifs_zbranch *zbr; 1572 struct ubifs_znode *znode, *child; 1573 1574 mutex_lock(&c->tnc_mutex); 1575 /* If the root indexing node is not in TNC - pull it */ 1576 if (!c->zroot.znode) { 1577 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1578 if (IS_ERR(c->zroot.znode)) { 1579 err = PTR_ERR(c->zroot.znode); 1580 c->zroot.znode = NULL; 1581 goto out_unlock; 1582 } 1583 } 1584 1585 /* 1586 * We are going to traverse the indexing tree in the postorder manner. 1587 * Go down and find the leftmost indexing node where we are going to 1588 * start from. 1589 */ 1590 znode = c->zroot.znode; 1591 while (znode->level > 0) { 1592 zbr = &znode->zbranch[0]; 1593 child = zbr->znode; 1594 if (!child) { 1595 child = ubifs_load_znode(c, zbr, znode, 0); 1596 if (IS_ERR(child)) { 1597 err = PTR_ERR(child); 1598 goto out_unlock; 1599 } 1600 zbr->znode = child; 1601 } 1602 1603 znode = child; 1604 } 1605 1606 /* Iterate over all indexing nodes */ 1607 while (1) { 1608 int idx; 1609 1610 cond_resched(); 1611 1612 if (znode_cb) { 1613 err = znode_cb(c, znode, priv); 1614 if (err) { 1615 ubifs_err(c, "znode checking function returned error %d", 1616 err); 1617 ubifs_dump_znode(c, znode); 1618 goto out_dump; 1619 } 1620 } 1621 if (leaf_cb && znode->level == 0) { 1622 for (idx = 0; idx < znode->child_cnt; idx++) { 1623 zbr = &znode->zbranch[idx]; 1624 err = leaf_cb(c, zbr, priv); 1625 if (err) { 1626 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1627 err, zbr->lnum, zbr->offs); 1628 goto out_dump; 1629 } 1630 } 1631 } 1632 1633 if (!znode->parent) 1634 break; 1635 1636 idx = znode->iip + 1; 1637 znode = znode->parent; 1638 if (idx < znode->child_cnt) { 1639 /* Switch to the next index in the parent */ 1640 zbr = &znode->zbranch[idx]; 1641 child = zbr->znode; 1642 if (!child) { 1643 child = ubifs_load_znode(c, zbr, znode, idx); 1644 if (IS_ERR(child)) { 1645 err = PTR_ERR(child); 1646 goto out_unlock; 1647 } 1648 zbr->znode = child; 1649 } 1650 znode = child; 1651 } else 1652 /* 1653 * This is the last child, switch to the parent and 1654 * continue. 1655 */ 1656 continue; 1657 1658 /* Go to the lowest leftmost znode in the new sub-tree */ 1659 while (znode->level > 0) { 1660 zbr = &znode->zbranch[0]; 1661 child = zbr->znode; 1662 if (!child) { 1663 child = ubifs_load_znode(c, zbr, znode, 0); 1664 if (IS_ERR(child)) { 1665 err = PTR_ERR(child); 1666 goto out_unlock; 1667 } 1668 zbr->znode = child; 1669 } 1670 znode = child; 1671 } 1672 } 1673 1674 mutex_unlock(&c->tnc_mutex); 1675 return 0; 1676 1677 out_dump: 1678 if (znode->parent) 1679 zbr = &znode->parent->zbranch[znode->iip]; 1680 else 1681 zbr = &c->zroot; 1682 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1683 ubifs_dump_znode(c, znode); 1684 out_unlock: 1685 mutex_unlock(&c->tnc_mutex); 1686 return err; 1687 } 1688 1689 /** 1690 * add_size - add znode size to partially calculated index size. 1691 * @c: UBIFS file-system description object 1692 * @znode: znode to add size for 1693 * @priv: partially calculated index size 1694 * 1695 * This is a helper function for 'dbg_check_idx_size()' which is called for 1696 * every indexing node and adds its size to the 'long long' variable pointed to 1697 * by @priv. 1698 */ 1699 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1700 { 1701 long long *idx_size = priv; 1702 int add; 1703 1704 add = ubifs_idx_node_sz(c, znode->child_cnt); 1705 add = ALIGN(add, 8); 1706 *idx_size += add; 1707 return 0; 1708 } 1709 1710 /** 1711 * dbg_check_idx_size - check index size. 1712 * @c: UBIFS file-system description object 1713 * @idx_size: size to check 1714 * 1715 * This function walks the UBIFS index, calculates its size and checks that the 1716 * size is equivalent to @idx_size. Returns zero in case of success and a 1717 * negative error code in case of failure. 1718 */ 1719 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1720 { 1721 int err; 1722 long long calc = 0; 1723 1724 if (!dbg_is_chk_index(c)) 1725 return 0; 1726 1727 err = dbg_walk_index(c, NULL, add_size, &calc); 1728 if (err) { 1729 ubifs_err(c, "error %d while walking the index", err); 1730 return err; 1731 } 1732 1733 if (calc != idx_size) { 1734 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1735 calc, idx_size); 1736 dump_stack(); 1737 return -EINVAL; 1738 } 1739 1740 return 0; 1741 } 1742 1743 /** 1744 * struct fsck_inode - information about an inode used when checking the file-system. 1745 * @rb: link in the RB-tree of inodes 1746 * @inum: inode number 1747 * @mode: inode type, permissions, etc 1748 * @nlink: inode link count 1749 * @xattr_cnt: count of extended attributes 1750 * @references: how many directory/xattr entries refer this inode (calculated 1751 * while walking the index) 1752 * @calc_cnt: for directory inode count of child directories 1753 * @size: inode size (read from on-flash inode) 1754 * @xattr_sz: summary size of all extended attributes (read from on-flash 1755 * inode) 1756 * @calc_sz: for directories calculated directory size 1757 * @calc_xcnt: count of extended attributes 1758 * @calc_xsz: calculated summary size of all extended attributes 1759 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1760 * inode (read from on-flash inode) 1761 * @calc_xnms: calculated sum of lengths of all extended attribute names 1762 */ 1763 struct fsck_inode { 1764 struct rb_node rb; 1765 ino_t inum; 1766 umode_t mode; 1767 unsigned int nlink; 1768 unsigned int xattr_cnt; 1769 int references; 1770 int calc_cnt; 1771 long long size; 1772 unsigned int xattr_sz; 1773 long long calc_sz; 1774 long long calc_xcnt; 1775 long long calc_xsz; 1776 unsigned int xattr_nms; 1777 long long calc_xnms; 1778 }; 1779 1780 /** 1781 * struct fsck_data - private FS checking information. 1782 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1783 */ 1784 struct fsck_data { 1785 struct rb_root inodes; 1786 }; 1787 1788 /** 1789 * add_inode - add inode information to RB-tree of inodes. 1790 * @c: UBIFS file-system description object 1791 * @fsckd: FS checking information 1792 * @ino: raw UBIFS inode to add 1793 * 1794 * This is a helper function for 'check_leaf()' which adds information about 1795 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1796 * case of success and a negative error code in case of failure. 1797 */ 1798 static struct fsck_inode *add_inode(struct ubifs_info *c, 1799 struct fsck_data *fsckd, 1800 struct ubifs_ino_node *ino) 1801 { 1802 struct rb_node **p, *parent = NULL; 1803 struct fsck_inode *fscki; 1804 ino_t inum = key_inum_flash(c, &ino->key); 1805 struct inode *inode; 1806 struct ubifs_inode *ui; 1807 1808 p = &fsckd->inodes.rb_node; 1809 while (*p) { 1810 parent = *p; 1811 fscki = rb_entry(parent, struct fsck_inode, rb); 1812 if (inum < fscki->inum) 1813 p = &(*p)->rb_left; 1814 else if (inum > fscki->inum) 1815 p = &(*p)->rb_right; 1816 else 1817 return fscki; 1818 } 1819 1820 if (inum > c->highest_inum) { 1821 ubifs_err(c, "too high inode number, max. is %lu", 1822 (unsigned long)c->highest_inum); 1823 return ERR_PTR(-EINVAL); 1824 } 1825 1826 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1827 if (!fscki) 1828 return ERR_PTR(-ENOMEM); 1829 1830 inode = ilookup(c->vfs_sb, inum); 1831 1832 fscki->inum = inum; 1833 /* 1834 * If the inode is present in the VFS inode cache, use it instead of 1835 * the on-flash inode which might be out-of-date. E.g., the size might 1836 * be out-of-date. If we do not do this, the following may happen, for 1837 * example: 1838 * 1. A power cut happens 1839 * 2. We mount the file-system R/O, the replay process fixes up the 1840 * inode size in the VFS cache, but on on-flash. 1841 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1842 * size. 1843 */ 1844 if (!inode) { 1845 fscki->nlink = le32_to_cpu(ino->nlink); 1846 fscki->size = le64_to_cpu(ino->size); 1847 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1848 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1849 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1850 fscki->mode = le32_to_cpu(ino->mode); 1851 } else { 1852 ui = ubifs_inode(inode); 1853 fscki->nlink = inode->i_nlink; 1854 fscki->size = inode->i_size; 1855 fscki->xattr_cnt = ui->xattr_cnt; 1856 fscki->xattr_sz = ui->xattr_size; 1857 fscki->xattr_nms = ui->xattr_names; 1858 fscki->mode = inode->i_mode; 1859 iput(inode); 1860 } 1861 1862 if (S_ISDIR(fscki->mode)) { 1863 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1864 fscki->calc_cnt = 2; 1865 } 1866 1867 rb_link_node(&fscki->rb, parent, p); 1868 rb_insert_color(&fscki->rb, &fsckd->inodes); 1869 1870 return fscki; 1871 } 1872 1873 /** 1874 * search_inode - search inode in the RB-tree of inodes. 1875 * @fsckd: FS checking information 1876 * @inum: inode number to search 1877 * 1878 * This is a helper function for 'check_leaf()' which searches inode @inum in 1879 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1880 * the inode was not found. 1881 */ 1882 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1883 { 1884 struct rb_node *p; 1885 struct fsck_inode *fscki; 1886 1887 p = fsckd->inodes.rb_node; 1888 while (p) { 1889 fscki = rb_entry(p, struct fsck_inode, rb); 1890 if (inum < fscki->inum) 1891 p = p->rb_left; 1892 else if (inum > fscki->inum) 1893 p = p->rb_right; 1894 else 1895 return fscki; 1896 } 1897 return NULL; 1898 } 1899 1900 /** 1901 * read_add_inode - read inode node and add it to RB-tree of inodes. 1902 * @c: UBIFS file-system description object 1903 * @fsckd: FS checking information 1904 * @inum: inode number to read 1905 * 1906 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1907 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1908 * information pointer in case of success and a negative error code in case of 1909 * failure. 1910 */ 1911 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1912 struct fsck_data *fsckd, ino_t inum) 1913 { 1914 int n, err; 1915 union ubifs_key key; 1916 struct ubifs_znode *znode; 1917 struct ubifs_zbranch *zbr; 1918 struct ubifs_ino_node *ino; 1919 struct fsck_inode *fscki; 1920 1921 fscki = search_inode(fsckd, inum); 1922 if (fscki) 1923 return fscki; 1924 1925 ino_key_init(c, &key, inum); 1926 err = ubifs_lookup_level0(c, &key, &znode, &n); 1927 if (!err) { 1928 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1929 return ERR_PTR(-ENOENT); 1930 } else if (err < 0) { 1931 ubifs_err(c, "error %d while looking up inode %lu", 1932 err, (unsigned long)inum); 1933 return ERR_PTR(err); 1934 } 1935 1936 zbr = &znode->zbranch[n]; 1937 if (zbr->len < UBIFS_INO_NODE_SZ) { 1938 ubifs_err(c, "bad node %lu node length %d", 1939 (unsigned long)inum, zbr->len); 1940 return ERR_PTR(-EINVAL); 1941 } 1942 1943 ino = kmalloc(zbr->len, GFP_NOFS); 1944 if (!ino) 1945 return ERR_PTR(-ENOMEM); 1946 1947 err = ubifs_tnc_read_node(c, zbr, ino); 1948 if (err) { 1949 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1950 zbr->lnum, zbr->offs, err); 1951 kfree(ino); 1952 return ERR_PTR(err); 1953 } 1954 1955 fscki = add_inode(c, fsckd, ino); 1956 kfree(ino); 1957 if (IS_ERR(fscki)) { 1958 ubifs_err(c, "error %ld while adding inode %lu node", 1959 PTR_ERR(fscki), (unsigned long)inum); 1960 return fscki; 1961 } 1962 1963 return fscki; 1964 } 1965 1966 /** 1967 * check_leaf - check leaf node. 1968 * @c: UBIFS file-system description object 1969 * @zbr: zbranch of the leaf node to check 1970 * @priv: FS checking information 1971 * 1972 * This is a helper function for 'dbg_check_filesystem()' which is called for 1973 * every single leaf node while walking the indexing tree. It checks that the 1974 * leaf node referred from the indexing tree exists, has correct CRC, and does 1975 * some other basic validation. This function is also responsible for building 1976 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1977 * calculates reference count, size, etc for each inode in order to later 1978 * compare them to the information stored inside the inodes and detect possible 1979 * inconsistencies. Returns zero in case of success and a negative error code 1980 * in case of failure. 1981 */ 1982 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1983 void *priv) 1984 { 1985 ino_t inum; 1986 void *node; 1987 struct ubifs_ch *ch; 1988 int err, type = key_type(c, &zbr->key); 1989 struct fsck_inode *fscki; 1990 1991 if (zbr->len < UBIFS_CH_SZ) { 1992 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 1993 zbr->len, zbr->lnum, zbr->offs); 1994 return -EINVAL; 1995 } 1996 1997 node = kmalloc(zbr->len, GFP_NOFS); 1998 if (!node) 1999 return -ENOMEM; 2000 2001 err = ubifs_tnc_read_node(c, zbr, node); 2002 if (err) { 2003 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2004 zbr->lnum, zbr->offs, err); 2005 goto out_free; 2006 } 2007 2008 /* If this is an inode node, add it to RB-tree of inodes */ 2009 if (type == UBIFS_INO_KEY) { 2010 fscki = add_inode(c, priv, node); 2011 if (IS_ERR(fscki)) { 2012 err = PTR_ERR(fscki); 2013 ubifs_err(c, "error %d while adding inode node", err); 2014 goto out_dump; 2015 } 2016 goto out; 2017 } 2018 2019 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2020 type != UBIFS_DATA_KEY) { 2021 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2022 type, zbr->lnum, zbr->offs); 2023 err = -EINVAL; 2024 goto out_free; 2025 } 2026 2027 ch = node; 2028 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2029 ubifs_err(c, "too high sequence number, max. is %llu", 2030 c->max_sqnum); 2031 err = -EINVAL; 2032 goto out_dump; 2033 } 2034 2035 if (type == UBIFS_DATA_KEY) { 2036 long long blk_offs; 2037 struct ubifs_data_node *dn = node; 2038 2039 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ); 2040 2041 /* 2042 * Search the inode node this data node belongs to and insert 2043 * it to the RB-tree of inodes. 2044 */ 2045 inum = key_inum_flash(c, &dn->key); 2046 fscki = read_add_inode(c, priv, inum); 2047 if (IS_ERR(fscki)) { 2048 err = PTR_ERR(fscki); 2049 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2050 err, (unsigned long)inum); 2051 goto out_dump; 2052 } 2053 2054 /* Make sure the data node is within inode size */ 2055 blk_offs = key_block_flash(c, &dn->key); 2056 blk_offs <<= UBIFS_BLOCK_SHIFT; 2057 blk_offs += le32_to_cpu(dn->size); 2058 if (blk_offs > fscki->size) { 2059 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2060 zbr->lnum, zbr->offs, fscki->size); 2061 err = -EINVAL; 2062 goto out_dump; 2063 } 2064 } else { 2065 int nlen; 2066 struct ubifs_dent_node *dent = node; 2067 struct fsck_inode *fscki1; 2068 2069 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ); 2070 2071 err = ubifs_validate_entry(c, dent); 2072 if (err) 2073 goto out_dump; 2074 2075 /* 2076 * Search the inode node this entry refers to and the parent 2077 * inode node and insert them to the RB-tree of inodes. 2078 */ 2079 inum = le64_to_cpu(dent->inum); 2080 fscki = read_add_inode(c, priv, inum); 2081 if (IS_ERR(fscki)) { 2082 err = PTR_ERR(fscki); 2083 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2084 err, (unsigned long)inum); 2085 goto out_dump; 2086 } 2087 2088 /* Count how many direntries or xentries refers this inode */ 2089 fscki->references += 1; 2090 2091 inum = key_inum_flash(c, &dent->key); 2092 fscki1 = read_add_inode(c, priv, inum); 2093 if (IS_ERR(fscki1)) { 2094 err = PTR_ERR(fscki1); 2095 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2096 err, (unsigned long)inum); 2097 goto out_dump; 2098 } 2099 2100 nlen = le16_to_cpu(dent->nlen); 2101 if (type == UBIFS_XENT_KEY) { 2102 fscki1->calc_xcnt += 1; 2103 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2104 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2105 fscki1->calc_xnms += nlen; 2106 } else { 2107 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2108 if (dent->type == UBIFS_ITYPE_DIR) 2109 fscki1->calc_cnt += 1; 2110 } 2111 } 2112 2113 out: 2114 kfree(node); 2115 return 0; 2116 2117 out_dump: 2118 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2119 ubifs_dump_node(c, node); 2120 out_free: 2121 kfree(node); 2122 return err; 2123 } 2124 2125 /** 2126 * free_inodes - free RB-tree of inodes. 2127 * @fsckd: FS checking information 2128 */ 2129 static void free_inodes(struct fsck_data *fsckd) 2130 { 2131 struct fsck_inode *fscki, *n; 2132 2133 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2134 kfree(fscki); 2135 } 2136 2137 /** 2138 * check_inodes - checks all inodes. 2139 * @c: UBIFS file-system description object 2140 * @fsckd: FS checking information 2141 * 2142 * This is a helper function for 'dbg_check_filesystem()' which walks the 2143 * RB-tree of inodes after the index scan has been finished, and checks that 2144 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2145 * %-EINVAL if not, and a negative error code in case of failure. 2146 */ 2147 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2148 { 2149 int n, err; 2150 union ubifs_key key; 2151 struct ubifs_znode *znode; 2152 struct ubifs_zbranch *zbr; 2153 struct ubifs_ino_node *ino; 2154 struct fsck_inode *fscki; 2155 struct rb_node *this = rb_first(&fsckd->inodes); 2156 2157 while (this) { 2158 fscki = rb_entry(this, struct fsck_inode, rb); 2159 this = rb_next(this); 2160 2161 if (S_ISDIR(fscki->mode)) { 2162 /* 2163 * Directories have to have exactly one reference (they 2164 * cannot have hardlinks), although root inode is an 2165 * exception. 2166 */ 2167 if (fscki->inum != UBIFS_ROOT_INO && 2168 fscki->references != 1) { 2169 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2170 (unsigned long)fscki->inum, 2171 fscki->references); 2172 goto out_dump; 2173 } 2174 if (fscki->inum == UBIFS_ROOT_INO && 2175 fscki->references != 0) { 2176 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2177 (unsigned long)fscki->inum, 2178 fscki->references); 2179 goto out_dump; 2180 } 2181 if (fscki->calc_sz != fscki->size) { 2182 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2183 (unsigned long)fscki->inum, 2184 fscki->size, fscki->calc_sz); 2185 goto out_dump; 2186 } 2187 if (fscki->calc_cnt != fscki->nlink) { 2188 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2189 (unsigned long)fscki->inum, 2190 fscki->nlink, fscki->calc_cnt); 2191 goto out_dump; 2192 } 2193 } else { 2194 if (fscki->references != fscki->nlink) { 2195 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2196 (unsigned long)fscki->inum, 2197 fscki->nlink, fscki->references); 2198 goto out_dump; 2199 } 2200 } 2201 if (fscki->xattr_sz != fscki->calc_xsz) { 2202 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2203 (unsigned long)fscki->inum, fscki->xattr_sz, 2204 fscki->calc_xsz); 2205 goto out_dump; 2206 } 2207 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2208 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2209 (unsigned long)fscki->inum, 2210 fscki->xattr_cnt, fscki->calc_xcnt); 2211 goto out_dump; 2212 } 2213 if (fscki->xattr_nms != fscki->calc_xnms) { 2214 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2215 (unsigned long)fscki->inum, fscki->xattr_nms, 2216 fscki->calc_xnms); 2217 goto out_dump; 2218 } 2219 } 2220 2221 return 0; 2222 2223 out_dump: 2224 /* Read the bad inode and dump it */ 2225 ino_key_init(c, &key, fscki->inum); 2226 err = ubifs_lookup_level0(c, &key, &znode, &n); 2227 if (!err) { 2228 ubifs_err(c, "inode %lu not found in index", 2229 (unsigned long)fscki->inum); 2230 return -ENOENT; 2231 } else if (err < 0) { 2232 ubifs_err(c, "error %d while looking up inode %lu", 2233 err, (unsigned long)fscki->inum); 2234 return err; 2235 } 2236 2237 zbr = &znode->zbranch[n]; 2238 ino = kmalloc(zbr->len, GFP_NOFS); 2239 if (!ino) 2240 return -ENOMEM; 2241 2242 err = ubifs_tnc_read_node(c, zbr, ino); 2243 if (err) { 2244 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2245 zbr->lnum, zbr->offs, err); 2246 kfree(ino); 2247 return err; 2248 } 2249 2250 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2251 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2252 ubifs_dump_node(c, ino); 2253 kfree(ino); 2254 return -EINVAL; 2255 } 2256 2257 /** 2258 * dbg_check_filesystem - check the file-system. 2259 * @c: UBIFS file-system description object 2260 * 2261 * This function checks the file system, namely: 2262 * o makes sure that all leaf nodes exist and their CRCs are correct; 2263 * o makes sure inode nlink, size, xattr size/count are correct (for all 2264 * inodes). 2265 * 2266 * The function reads whole indexing tree and all nodes, so it is pretty 2267 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2268 * not, and a negative error code in case of failure. 2269 */ 2270 int dbg_check_filesystem(struct ubifs_info *c) 2271 { 2272 int err; 2273 struct fsck_data fsckd; 2274 2275 if (!dbg_is_chk_fs(c)) 2276 return 0; 2277 2278 fsckd.inodes = RB_ROOT; 2279 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2280 if (err) 2281 goto out_free; 2282 2283 err = check_inodes(c, &fsckd); 2284 if (err) 2285 goto out_free; 2286 2287 free_inodes(&fsckd); 2288 return 0; 2289 2290 out_free: 2291 ubifs_err(c, "file-system check failed with error %d", err); 2292 dump_stack(); 2293 free_inodes(&fsckd); 2294 return err; 2295 } 2296 2297 /** 2298 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2299 * @c: UBIFS file-system description object 2300 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2301 * 2302 * This function returns zero if the list of data nodes is sorted correctly, 2303 * and %-EINVAL if not. 2304 */ 2305 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2306 { 2307 struct list_head *cur; 2308 struct ubifs_scan_node *sa, *sb; 2309 2310 if (!dbg_is_chk_gen(c)) 2311 return 0; 2312 2313 for (cur = head->next; cur->next != head; cur = cur->next) { 2314 ino_t inuma, inumb; 2315 uint32_t blka, blkb; 2316 2317 cond_resched(); 2318 sa = container_of(cur, struct ubifs_scan_node, list); 2319 sb = container_of(cur->next, struct ubifs_scan_node, list); 2320 2321 if (sa->type != UBIFS_DATA_NODE) { 2322 ubifs_err(c, "bad node type %d", sa->type); 2323 ubifs_dump_node(c, sa->node); 2324 return -EINVAL; 2325 } 2326 if (sb->type != UBIFS_DATA_NODE) { 2327 ubifs_err(c, "bad node type %d", sb->type); 2328 ubifs_dump_node(c, sb->node); 2329 return -EINVAL; 2330 } 2331 2332 inuma = key_inum(c, &sa->key); 2333 inumb = key_inum(c, &sb->key); 2334 2335 if (inuma < inumb) 2336 continue; 2337 if (inuma > inumb) { 2338 ubifs_err(c, "larger inum %lu goes before inum %lu", 2339 (unsigned long)inuma, (unsigned long)inumb); 2340 goto error_dump; 2341 } 2342 2343 blka = key_block(c, &sa->key); 2344 blkb = key_block(c, &sb->key); 2345 2346 if (blka > blkb) { 2347 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2348 goto error_dump; 2349 } 2350 if (blka == blkb) { 2351 ubifs_err(c, "two data nodes for the same block"); 2352 goto error_dump; 2353 } 2354 } 2355 2356 return 0; 2357 2358 error_dump: 2359 ubifs_dump_node(c, sa->node); 2360 ubifs_dump_node(c, sb->node); 2361 return -EINVAL; 2362 } 2363 2364 /** 2365 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2366 * @c: UBIFS file-system description object 2367 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2368 * 2369 * This function returns zero if the list of non-data nodes is sorted correctly, 2370 * and %-EINVAL if not. 2371 */ 2372 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2373 { 2374 struct list_head *cur; 2375 struct ubifs_scan_node *sa, *sb; 2376 2377 if (!dbg_is_chk_gen(c)) 2378 return 0; 2379 2380 for (cur = head->next; cur->next != head; cur = cur->next) { 2381 ino_t inuma, inumb; 2382 uint32_t hasha, hashb; 2383 2384 cond_resched(); 2385 sa = container_of(cur, struct ubifs_scan_node, list); 2386 sb = container_of(cur->next, struct ubifs_scan_node, list); 2387 2388 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2389 sa->type != UBIFS_XENT_NODE) { 2390 ubifs_err(c, "bad node type %d", sa->type); 2391 ubifs_dump_node(c, sa->node); 2392 return -EINVAL; 2393 } 2394 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && 2395 sb->type != UBIFS_XENT_NODE) { 2396 ubifs_err(c, "bad node type %d", sb->type); 2397 ubifs_dump_node(c, sb->node); 2398 return -EINVAL; 2399 } 2400 2401 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2402 ubifs_err(c, "non-inode node goes before inode node"); 2403 goto error_dump; 2404 } 2405 2406 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2407 continue; 2408 2409 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2410 /* Inode nodes are sorted in descending size order */ 2411 if (sa->len < sb->len) { 2412 ubifs_err(c, "smaller inode node goes first"); 2413 goto error_dump; 2414 } 2415 continue; 2416 } 2417 2418 /* 2419 * This is either a dentry or xentry, which should be sorted in 2420 * ascending (parent ino, hash) order. 2421 */ 2422 inuma = key_inum(c, &sa->key); 2423 inumb = key_inum(c, &sb->key); 2424 2425 if (inuma < inumb) 2426 continue; 2427 if (inuma > inumb) { 2428 ubifs_err(c, "larger inum %lu goes before inum %lu", 2429 (unsigned long)inuma, (unsigned long)inumb); 2430 goto error_dump; 2431 } 2432 2433 hasha = key_block(c, &sa->key); 2434 hashb = key_block(c, &sb->key); 2435 2436 if (hasha > hashb) { 2437 ubifs_err(c, "larger hash %u goes before %u", 2438 hasha, hashb); 2439 goto error_dump; 2440 } 2441 } 2442 2443 return 0; 2444 2445 error_dump: 2446 ubifs_msg(c, "dumping first node"); 2447 ubifs_dump_node(c, sa->node); 2448 ubifs_msg(c, "dumping second node"); 2449 ubifs_dump_node(c, sb->node); 2450 return -EINVAL; 2451 return 0; 2452 } 2453 2454 static inline int chance(unsigned int n, unsigned int out_of) 2455 { 2456 return !!((prandom_u32() % out_of) + 1 <= n); 2457 2458 } 2459 2460 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2461 { 2462 struct ubifs_debug_info *d = c->dbg; 2463 2464 ubifs_assert(dbg_is_tst_rcvry(c)); 2465 2466 if (!d->pc_cnt) { 2467 /* First call - decide delay to the power cut */ 2468 if (chance(1, 2)) { 2469 unsigned long delay; 2470 2471 if (chance(1, 2)) { 2472 d->pc_delay = 1; 2473 /* Fail within 1 minute */ 2474 delay = prandom_u32() % 60000; 2475 d->pc_timeout = jiffies; 2476 d->pc_timeout += msecs_to_jiffies(delay); 2477 ubifs_warn(c, "failing after %lums", delay); 2478 } else { 2479 d->pc_delay = 2; 2480 delay = prandom_u32() % 10000; 2481 /* Fail within 10000 operations */ 2482 d->pc_cnt_max = delay; 2483 ubifs_warn(c, "failing after %lu calls", delay); 2484 } 2485 } 2486 2487 d->pc_cnt += 1; 2488 } 2489 2490 /* Determine if failure delay has expired */ 2491 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2492 return 0; 2493 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2494 return 0; 2495 2496 if (lnum == UBIFS_SB_LNUM) { 2497 if (write && chance(1, 2)) 2498 return 0; 2499 if (chance(19, 20)) 2500 return 0; 2501 ubifs_warn(c, "failing in super block LEB %d", lnum); 2502 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2503 if (chance(19, 20)) 2504 return 0; 2505 ubifs_warn(c, "failing in master LEB %d", lnum); 2506 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2507 if (write && chance(99, 100)) 2508 return 0; 2509 if (chance(399, 400)) 2510 return 0; 2511 ubifs_warn(c, "failing in log LEB %d", lnum); 2512 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2513 if (write && chance(7, 8)) 2514 return 0; 2515 if (chance(19, 20)) 2516 return 0; 2517 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2518 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2519 if (write && chance(1, 2)) 2520 return 0; 2521 if (chance(9, 10)) 2522 return 0; 2523 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2524 } else if (lnum == c->ihead_lnum) { 2525 if (chance(99, 100)) 2526 return 0; 2527 ubifs_warn(c, "failing in index head LEB %d", lnum); 2528 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2529 if (chance(9, 10)) 2530 return 0; 2531 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2532 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2533 !ubifs_search_bud(c, lnum)) { 2534 if (chance(19, 20)) 2535 return 0; 2536 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2537 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2538 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2539 if (chance(999, 1000)) 2540 return 0; 2541 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2542 } else { 2543 if (chance(9999, 10000)) 2544 return 0; 2545 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2546 } 2547 2548 d->pc_happened = 1; 2549 ubifs_warn(c, "========== Power cut emulated =========="); 2550 dump_stack(); 2551 return 1; 2552 } 2553 2554 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2555 unsigned int len) 2556 { 2557 unsigned int from, to, ffs = chance(1, 2); 2558 unsigned char *p = (void *)buf; 2559 2560 from = prandom_u32() % len; 2561 /* Corruption span max to end of write unit */ 2562 to = min(len, ALIGN(from + 1, c->max_write_size)); 2563 2564 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2565 ffs ? "0xFFs" : "random data"); 2566 2567 if (ffs) 2568 memset(p + from, 0xFF, to - from); 2569 else 2570 prandom_bytes(p + from, to - from); 2571 2572 return to; 2573 } 2574 2575 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2576 int offs, int len) 2577 { 2578 int err, failing; 2579 2580 if (dbg_is_power_cut(c)) 2581 return -EROFS; 2582 2583 failing = power_cut_emulated(c, lnum, 1); 2584 if (failing) { 2585 len = corrupt_data(c, buf, len); 2586 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2587 len, lnum, offs); 2588 } 2589 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2590 if (err) 2591 return err; 2592 if (failing) 2593 return -EROFS; 2594 return 0; 2595 } 2596 2597 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2598 int len) 2599 { 2600 int err; 2601 2602 if (dbg_is_power_cut(c)) 2603 return -EROFS; 2604 if (power_cut_emulated(c, lnum, 1)) 2605 return -EROFS; 2606 err = ubi_leb_change(c->ubi, lnum, buf, len); 2607 if (err) 2608 return err; 2609 if (power_cut_emulated(c, lnum, 1)) 2610 return -EROFS; 2611 return 0; 2612 } 2613 2614 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2615 { 2616 int err; 2617 2618 if (dbg_is_power_cut(c)) 2619 return -EROFS; 2620 if (power_cut_emulated(c, lnum, 0)) 2621 return -EROFS; 2622 err = ubi_leb_unmap(c->ubi, lnum); 2623 if (err) 2624 return err; 2625 if (power_cut_emulated(c, lnum, 0)) 2626 return -EROFS; 2627 return 0; 2628 } 2629 2630 int dbg_leb_map(struct ubifs_info *c, int lnum) 2631 { 2632 int err; 2633 2634 if (dbg_is_power_cut(c)) 2635 return -EROFS; 2636 if (power_cut_emulated(c, lnum, 0)) 2637 return -EROFS; 2638 err = ubi_leb_map(c->ubi, lnum); 2639 if (err) 2640 return err; 2641 if (power_cut_emulated(c, lnum, 0)) 2642 return -EROFS; 2643 return 0; 2644 } 2645 2646 /* 2647 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2648 * contain the stuff specific to particular file-system mounts. 2649 */ 2650 static struct dentry *dfs_rootdir; 2651 2652 static int dfs_file_open(struct inode *inode, struct file *file) 2653 { 2654 file->private_data = inode->i_private; 2655 return nonseekable_open(inode, file); 2656 } 2657 2658 /** 2659 * provide_user_output - provide output to the user reading a debugfs file. 2660 * @val: boolean value for the answer 2661 * @u: the buffer to store the answer at 2662 * @count: size of the buffer 2663 * @ppos: position in the @u output buffer 2664 * 2665 * This is a simple helper function which stores @val boolean value in the user 2666 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2667 * bytes written to @u in case of success and a negative error code in case of 2668 * failure. 2669 */ 2670 static int provide_user_output(int val, char __user *u, size_t count, 2671 loff_t *ppos) 2672 { 2673 char buf[3]; 2674 2675 if (val) 2676 buf[0] = '1'; 2677 else 2678 buf[0] = '0'; 2679 buf[1] = '\n'; 2680 buf[2] = 0x00; 2681 2682 return simple_read_from_buffer(u, count, ppos, buf, 2); 2683 } 2684 2685 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2686 loff_t *ppos) 2687 { 2688 struct dentry *dent = file->f_path.dentry; 2689 struct ubifs_info *c = file->private_data; 2690 struct ubifs_debug_info *d = c->dbg; 2691 int val; 2692 2693 if (dent == d->dfs_chk_gen) 2694 val = d->chk_gen; 2695 else if (dent == d->dfs_chk_index) 2696 val = d->chk_index; 2697 else if (dent == d->dfs_chk_orph) 2698 val = d->chk_orph; 2699 else if (dent == d->dfs_chk_lprops) 2700 val = d->chk_lprops; 2701 else if (dent == d->dfs_chk_fs) 2702 val = d->chk_fs; 2703 else if (dent == d->dfs_tst_rcvry) 2704 val = d->tst_rcvry; 2705 else if (dent == d->dfs_ro_error) 2706 val = c->ro_error; 2707 else 2708 return -EINVAL; 2709 2710 return provide_user_output(val, u, count, ppos); 2711 } 2712 2713 /** 2714 * interpret_user_input - interpret user debugfs file input. 2715 * @u: user-provided buffer with the input 2716 * @count: buffer size 2717 * 2718 * This is a helper function which interpret user input to a boolean UBIFS 2719 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2720 * in case of failure. 2721 */ 2722 static int interpret_user_input(const char __user *u, size_t count) 2723 { 2724 size_t buf_size; 2725 char buf[8]; 2726 2727 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2728 if (copy_from_user(buf, u, buf_size)) 2729 return -EFAULT; 2730 2731 if (buf[0] == '1') 2732 return 1; 2733 else if (buf[0] == '0') 2734 return 0; 2735 2736 return -EINVAL; 2737 } 2738 2739 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2740 size_t count, loff_t *ppos) 2741 { 2742 struct ubifs_info *c = file->private_data; 2743 struct ubifs_debug_info *d = c->dbg; 2744 struct dentry *dent = file->f_path.dentry; 2745 int val; 2746 2747 /* 2748 * TODO: this is racy - the file-system might have already been 2749 * unmounted and we'd oops in this case. The plan is to fix it with 2750 * help of 'iterate_supers_type()' which we should have in v3.0: when 2751 * a debugfs opened, we rember FS's UUID in file->private_data. Then 2752 * whenever we access the FS via a debugfs file, we iterate all UBIFS 2753 * superblocks and fine the one with the same UUID, and take the 2754 * locking right. 2755 * 2756 * The other way to go suggested by Al Viro is to create a separate 2757 * 'ubifs-debug' file-system instead. 2758 */ 2759 if (file->f_path.dentry == d->dfs_dump_lprops) { 2760 ubifs_dump_lprops(c); 2761 return count; 2762 } 2763 if (file->f_path.dentry == d->dfs_dump_budg) { 2764 ubifs_dump_budg(c, &c->bi); 2765 return count; 2766 } 2767 if (file->f_path.dentry == d->dfs_dump_tnc) { 2768 mutex_lock(&c->tnc_mutex); 2769 ubifs_dump_tnc(c); 2770 mutex_unlock(&c->tnc_mutex); 2771 return count; 2772 } 2773 2774 val = interpret_user_input(u, count); 2775 if (val < 0) 2776 return val; 2777 2778 if (dent == d->dfs_chk_gen) 2779 d->chk_gen = val; 2780 else if (dent == d->dfs_chk_index) 2781 d->chk_index = val; 2782 else if (dent == d->dfs_chk_orph) 2783 d->chk_orph = val; 2784 else if (dent == d->dfs_chk_lprops) 2785 d->chk_lprops = val; 2786 else if (dent == d->dfs_chk_fs) 2787 d->chk_fs = val; 2788 else if (dent == d->dfs_tst_rcvry) 2789 d->tst_rcvry = val; 2790 else if (dent == d->dfs_ro_error) 2791 c->ro_error = !!val; 2792 else 2793 return -EINVAL; 2794 2795 return count; 2796 } 2797 2798 static const struct file_operations dfs_fops = { 2799 .open = dfs_file_open, 2800 .read = dfs_file_read, 2801 .write = dfs_file_write, 2802 .owner = THIS_MODULE, 2803 .llseek = no_llseek, 2804 }; 2805 2806 /** 2807 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2808 * @c: UBIFS file-system description object 2809 * 2810 * This function creates all debugfs files for this instance of UBIFS. Returns 2811 * zero in case of success and a negative error code in case of failure. 2812 * 2813 * Note, the only reason we have not merged this function with the 2814 * 'ubifs_debugging_init()' function is because it is better to initialize 2815 * debugfs interfaces at the very end of the mount process, and remove them at 2816 * the very beginning of the mount process. 2817 */ 2818 int dbg_debugfs_init_fs(struct ubifs_info *c) 2819 { 2820 int err, n; 2821 const char *fname; 2822 struct dentry *dent; 2823 struct ubifs_debug_info *d = c->dbg; 2824 2825 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 2826 return 0; 2827 2828 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2829 c->vi.ubi_num, c->vi.vol_id); 2830 if (n == UBIFS_DFS_DIR_LEN) { 2831 /* The array size is too small */ 2832 fname = UBIFS_DFS_DIR_NAME; 2833 dent = ERR_PTR(-EINVAL); 2834 goto out; 2835 } 2836 2837 fname = d->dfs_dir_name; 2838 dent = debugfs_create_dir(fname, dfs_rootdir); 2839 if (IS_ERR_OR_NULL(dent)) 2840 goto out; 2841 d->dfs_dir = dent; 2842 2843 fname = "dump_lprops"; 2844 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2845 if (IS_ERR_OR_NULL(dent)) 2846 goto out_remove; 2847 d->dfs_dump_lprops = dent; 2848 2849 fname = "dump_budg"; 2850 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2851 if (IS_ERR_OR_NULL(dent)) 2852 goto out_remove; 2853 d->dfs_dump_budg = dent; 2854 2855 fname = "dump_tnc"; 2856 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops); 2857 if (IS_ERR_OR_NULL(dent)) 2858 goto out_remove; 2859 d->dfs_dump_tnc = dent; 2860 2861 fname = "chk_general"; 2862 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2863 &dfs_fops); 2864 if (IS_ERR_OR_NULL(dent)) 2865 goto out_remove; 2866 d->dfs_chk_gen = dent; 2867 2868 fname = "chk_index"; 2869 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2870 &dfs_fops); 2871 if (IS_ERR_OR_NULL(dent)) 2872 goto out_remove; 2873 d->dfs_chk_index = dent; 2874 2875 fname = "chk_orphans"; 2876 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2877 &dfs_fops); 2878 if (IS_ERR_OR_NULL(dent)) 2879 goto out_remove; 2880 d->dfs_chk_orph = dent; 2881 2882 fname = "chk_lprops"; 2883 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2884 &dfs_fops); 2885 if (IS_ERR_OR_NULL(dent)) 2886 goto out_remove; 2887 d->dfs_chk_lprops = dent; 2888 2889 fname = "chk_fs"; 2890 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2891 &dfs_fops); 2892 if (IS_ERR_OR_NULL(dent)) 2893 goto out_remove; 2894 d->dfs_chk_fs = dent; 2895 2896 fname = "tst_recovery"; 2897 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2898 &dfs_fops); 2899 if (IS_ERR_OR_NULL(dent)) 2900 goto out_remove; 2901 d->dfs_tst_rcvry = dent; 2902 2903 fname = "ro_error"; 2904 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c, 2905 &dfs_fops); 2906 if (IS_ERR_OR_NULL(dent)) 2907 goto out_remove; 2908 d->dfs_ro_error = dent; 2909 2910 return 0; 2911 2912 out_remove: 2913 debugfs_remove_recursive(d->dfs_dir); 2914 out: 2915 err = dent ? PTR_ERR(dent) : -ENODEV; 2916 ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n", 2917 fname, err); 2918 return err; 2919 } 2920 2921 /** 2922 * dbg_debugfs_exit_fs - remove all debugfs files. 2923 * @c: UBIFS file-system description object 2924 */ 2925 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2926 { 2927 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2928 debugfs_remove_recursive(c->dbg->dfs_dir); 2929 } 2930 2931 struct ubifs_global_debug_info ubifs_dbg; 2932 2933 static struct dentry *dfs_chk_gen; 2934 static struct dentry *dfs_chk_index; 2935 static struct dentry *dfs_chk_orph; 2936 static struct dentry *dfs_chk_lprops; 2937 static struct dentry *dfs_chk_fs; 2938 static struct dentry *dfs_tst_rcvry; 2939 2940 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2941 size_t count, loff_t *ppos) 2942 { 2943 struct dentry *dent = file->f_path.dentry; 2944 int val; 2945 2946 if (dent == dfs_chk_gen) 2947 val = ubifs_dbg.chk_gen; 2948 else if (dent == dfs_chk_index) 2949 val = ubifs_dbg.chk_index; 2950 else if (dent == dfs_chk_orph) 2951 val = ubifs_dbg.chk_orph; 2952 else if (dent == dfs_chk_lprops) 2953 val = ubifs_dbg.chk_lprops; 2954 else if (dent == dfs_chk_fs) 2955 val = ubifs_dbg.chk_fs; 2956 else if (dent == dfs_tst_rcvry) 2957 val = ubifs_dbg.tst_rcvry; 2958 else 2959 return -EINVAL; 2960 2961 return provide_user_output(val, u, count, ppos); 2962 } 2963 2964 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2965 size_t count, loff_t *ppos) 2966 { 2967 struct dentry *dent = file->f_path.dentry; 2968 int val; 2969 2970 val = interpret_user_input(u, count); 2971 if (val < 0) 2972 return val; 2973 2974 if (dent == dfs_chk_gen) 2975 ubifs_dbg.chk_gen = val; 2976 else if (dent == dfs_chk_index) 2977 ubifs_dbg.chk_index = val; 2978 else if (dent == dfs_chk_orph) 2979 ubifs_dbg.chk_orph = val; 2980 else if (dent == dfs_chk_lprops) 2981 ubifs_dbg.chk_lprops = val; 2982 else if (dent == dfs_chk_fs) 2983 ubifs_dbg.chk_fs = val; 2984 else if (dent == dfs_tst_rcvry) 2985 ubifs_dbg.tst_rcvry = val; 2986 else 2987 return -EINVAL; 2988 2989 return count; 2990 } 2991 2992 static const struct file_operations dfs_global_fops = { 2993 .read = dfs_global_file_read, 2994 .write = dfs_global_file_write, 2995 .owner = THIS_MODULE, 2996 .llseek = no_llseek, 2997 }; 2998 2999 /** 3000 * dbg_debugfs_init - initialize debugfs file-system. 3001 * 3002 * UBIFS uses debugfs file-system to expose various debugging knobs to 3003 * user-space. This function creates "ubifs" directory in the debugfs 3004 * file-system. Returns zero in case of success and a negative error code in 3005 * case of failure. 3006 */ 3007 int dbg_debugfs_init(void) 3008 { 3009 int err; 3010 const char *fname; 3011 struct dentry *dent; 3012 3013 if (!IS_ENABLED(CONFIG_DEBUG_FS)) 3014 return 0; 3015 3016 fname = "ubifs"; 3017 dent = debugfs_create_dir(fname, NULL); 3018 if (IS_ERR_OR_NULL(dent)) 3019 goto out; 3020 dfs_rootdir = dent; 3021 3022 fname = "chk_general"; 3023 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3024 &dfs_global_fops); 3025 if (IS_ERR_OR_NULL(dent)) 3026 goto out_remove; 3027 dfs_chk_gen = dent; 3028 3029 fname = "chk_index"; 3030 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3031 &dfs_global_fops); 3032 if (IS_ERR_OR_NULL(dent)) 3033 goto out_remove; 3034 dfs_chk_index = dent; 3035 3036 fname = "chk_orphans"; 3037 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3038 &dfs_global_fops); 3039 if (IS_ERR_OR_NULL(dent)) 3040 goto out_remove; 3041 dfs_chk_orph = dent; 3042 3043 fname = "chk_lprops"; 3044 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3045 &dfs_global_fops); 3046 if (IS_ERR_OR_NULL(dent)) 3047 goto out_remove; 3048 dfs_chk_lprops = dent; 3049 3050 fname = "chk_fs"; 3051 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3052 &dfs_global_fops); 3053 if (IS_ERR_OR_NULL(dent)) 3054 goto out_remove; 3055 dfs_chk_fs = dent; 3056 3057 fname = "tst_recovery"; 3058 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL, 3059 &dfs_global_fops); 3060 if (IS_ERR_OR_NULL(dent)) 3061 goto out_remove; 3062 dfs_tst_rcvry = dent; 3063 3064 return 0; 3065 3066 out_remove: 3067 debugfs_remove_recursive(dfs_rootdir); 3068 out: 3069 err = dent ? PTR_ERR(dent) : -ENODEV; 3070 pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n", 3071 current->pid, fname, err); 3072 return err; 3073 } 3074 3075 /** 3076 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 3077 */ 3078 void dbg_debugfs_exit(void) 3079 { 3080 if (IS_ENABLED(CONFIG_DEBUG_FS)) 3081 debugfs_remove_recursive(dfs_rootdir); 3082 } 3083 3084 /** 3085 * ubifs_debugging_init - initialize UBIFS debugging. 3086 * @c: UBIFS file-system description object 3087 * 3088 * This function initializes debugging-related data for the file system. 3089 * Returns zero in case of success and a negative error code in case of 3090 * failure. 3091 */ 3092 int ubifs_debugging_init(struct ubifs_info *c) 3093 { 3094 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3095 if (!c->dbg) 3096 return -ENOMEM; 3097 3098 return 0; 3099 } 3100 3101 /** 3102 * ubifs_debugging_exit - free debugging data. 3103 * @c: UBIFS file-system description object 3104 */ 3105 void ubifs_debugging_exit(struct ubifs_info *c) 3106 { 3107 kfree(c->dbg); 3108 } 3109