1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements most of the debugging stuff which is compiled in only 13 * when it is enabled. But some debugging check functions are implemented in 14 * corresponding subsystem, just because they are closely related and utilize 15 * various local functions of those subsystems. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/debugfs.h> 20 #include <linux/math64.h> 21 #include <linux/uaccess.h> 22 #include <linux/random.h> 23 #include <linux/ctype.h> 24 #include "ubifs.h" 25 26 static DEFINE_SPINLOCK(dbg_lock); 27 28 static const char *get_key_fmt(int fmt) 29 { 30 switch (fmt) { 31 case UBIFS_SIMPLE_KEY_FMT: 32 return "simple"; 33 default: 34 return "unknown/invalid format"; 35 } 36 } 37 38 static const char *get_key_hash(int hash) 39 { 40 switch (hash) { 41 case UBIFS_KEY_HASH_R5: 42 return "R5"; 43 case UBIFS_KEY_HASH_TEST: 44 return "test"; 45 default: 46 return "unknown/invalid name hash"; 47 } 48 } 49 50 static const char *get_key_type(int type) 51 { 52 switch (type) { 53 case UBIFS_INO_KEY: 54 return "inode"; 55 case UBIFS_DENT_KEY: 56 return "direntry"; 57 case UBIFS_XENT_KEY: 58 return "xentry"; 59 case UBIFS_DATA_KEY: 60 return "data"; 61 case UBIFS_TRUN_KEY: 62 return "truncate"; 63 default: 64 return "unknown/invalid key"; 65 } 66 } 67 68 static const char *get_dent_type(int type) 69 { 70 switch (type) { 71 case UBIFS_ITYPE_REG: 72 return "file"; 73 case UBIFS_ITYPE_DIR: 74 return "dir"; 75 case UBIFS_ITYPE_LNK: 76 return "symlink"; 77 case UBIFS_ITYPE_BLK: 78 return "blkdev"; 79 case UBIFS_ITYPE_CHR: 80 return "char dev"; 81 case UBIFS_ITYPE_FIFO: 82 return "fifo"; 83 case UBIFS_ITYPE_SOCK: 84 return "socket"; 85 default: 86 return "unknown/invalid type"; 87 } 88 } 89 90 const char *dbg_snprintf_key(const struct ubifs_info *c, 91 const union ubifs_key *key, char *buffer, int len) 92 { 93 char *p = buffer; 94 int type = key_type(c, key); 95 96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 97 switch (type) { 98 case UBIFS_INO_KEY: 99 len -= snprintf(p, len, "(%lu, %s)", 100 (unsigned long)key_inum(c, key), 101 get_key_type(type)); 102 break; 103 case UBIFS_DENT_KEY: 104 case UBIFS_XENT_KEY: 105 len -= snprintf(p, len, "(%lu, %s, %#08x)", 106 (unsigned long)key_inum(c, key), 107 get_key_type(type), key_hash(c, key)); 108 break; 109 case UBIFS_DATA_KEY: 110 len -= snprintf(p, len, "(%lu, %s, %u)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type), key_block(c, key)); 113 break; 114 case UBIFS_TRUN_KEY: 115 len -= snprintf(p, len, "(%lu, %s)", 116 (unsigned long)key_inum(c, key), 117 get_key_type(type)); 118 break; 119 default: 120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 121 key->u32[0], key->u32[1]); 122 } 123 } else 124 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 125 ubifs_assert(c, len > 0); 126 return p; 127 } 128 129 const char *dbg_ntype(int type) 130 { 131 switch (type) { 132 case UBIFS_PAD_NODE: 133 return "padding node"; 134 case UBIFS_SB_NODE: 135 return "superblock node"; 136 case UBIFS_MST_NODE: 137 return "master node"; 138 case UBIFS_REF_NODE: 139 return "reference node"; 140 case UBIFS_INO_NODE: 141 return "inode node"; 142 case UBIFS_DENT_NODE: 143 return "direntry node"; 144 case UBIFS_XENT_NODE: 145 return "xentry node"; 146 case UBIFS_DATA_NODE: 147 return "data node"; 148 case UBIFS_TRUN_NODE: 149 return "truncate node"; 150 case UBIFS_IDX_NODE: 151 return "indexing node"; 152 case UBIFS_CS_NODE: 153 return "commit start node"; 154 case UBIFS_ORPH_NODE: 155 return "orphan node"; 156 case UBIFS_AUTH_NODE: 157 return "auth node"; 158 default: 159 return "unknown node"; 160 } 161 } 162 163 static const char *dbg_gtype(int type) 164 { 165 switch (type) { 166 case UBIFS_NO_NODE_GROUP: 167 return "no node group"; 168 case UBIFS_IN_NODE_GROUP: 169 return "in node group"; 170 case UBIFS_LAST_OF_NODE_GROUP: 171 return "last of node group"; 172 default: 173 return "unknown"; 174 } 175 } 176 177 const char *dbg_cstate(int cmt_state) 178 { 179 switch (cmt_state) { 180 case COMMIT_RESTING: 181 return "commit resting"; 182 case COMMIT_BACKGROUND: 183 return "background commit requested"; 184 case COMMIT_REQUIRED: 185 return "commit required"; 186 case COMMIT_RUNNING_BACKGROUND: 187 return "BACKGROUND commit running"; 188 case COMMIT_RUNNING_REQUIRED: 189 return "commit running and required"; 190 case COMMIT_BROKEN: 191 return "broken commit"; 192 default: 193 return "unknown commit state"; 194 } 195 } 196 197 const char *dbg_jhead(int jhead) 198 { 199 switch (jhead) { 200 case GCHD: 201 return "0 (GC)"; 202 case BASEHD: 203 return "1 (base)"; 204 case DATAHD: 205 return "2 (data)"; 206 default: 207 return "unknown journal head"; 208 } 209 } 210 211 static void dump_ch(const struct ubifs_ch *ch) 212 { 213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 215 pr_err("\tnode_type %d (%s)\n", ch->node_type, 216 dbg_ntype(ch->node_type)); 217 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 218 dbg_gtype(ch->group_type)); 219 pr_err("\tsqnum %llu\n", 220 (unsigned long long)le64_to_cpu(ch->sqnum)); 221 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 222 } 223 224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 225 { 226 const struct ubifs_inode *ui = ubifs_inode(inode); 227 struct fscrypt_name nm = {0}; 228 union ubifs_key key; 229 struct ubifs_dent_node *dent, *pdent = NULL; 230 int count = 2; 231 232 pr_err("Dump in-memory inode:"); 233 pr_err("\tinode %lu\n", inode->i_ino); 234 pr_err("\tsize %llu\n", 235 (unsigned long long)i_size_read(inode)); 236 pr_err("\tnlink %u\n", inode->i_nlink); 237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 239 pr_err("\tatime %u.%u\n", 240 (unsigned int)inode->i_atime.tv_sec, 241 (unsigned int)inode->i_atime.tv_nsec); 242 pr_err("\tmtime %u.%u\n", 243 (unsigned int)inode->i_mtime.tv_sec, 244 (unsigned int)inode->i_mtime.tv_nsec); 245 pr_err("\tctime %u.%u\n", 246 (unsigned int)inode->i_ctime.tv_sec, 247 (unsigned int)inode->i_ctime.tv_nsec); 248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 249 pr_err("\txattr_size %u\n", ui->xattr_size); 250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 251 pr_err("\txattr_names %u\n", ui->xattr_names); 252 pr_err("\tdirty %u\n", ui->dirty); 253 pr_err("\txattr %u\n", ui->xattr); 254 pr_err("\tbulk_read %u\n", ui->bulk_read); 255 pr_err("\tsynced_i_size %llu\n", 256 (unsigned long long)ui->synced_i_size); 257 pr_err("\tui_size %llu\n", 258 (unsigned long long)ui->ui_size); 259 pr_err("\tflags %d\n", ui->flags); 260 pr_err("\tcompr_type %d\n", ui->compr_type); 261 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 263 pr_err("\tdata_len %d\n", ui->data_len); 264 265 if (!S_ISDIR(inode->i_mode)) 266 return; 267 268 pr_err("List of directory entries:\n"); 269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex)); 270 271 lowest_dent_key(c, &key, inode->i_ino); 272 while (1) { 273 dent = ubifs_tnc_next_ent(c, &key, &nm); 274 if (IS_ERR(dent)) { 275 if (PTR_ERR(dent) != -ENOENT) 276 pr_err("error %ld\n", PTR_ERR(dent)); 277 break; 278 } 279 280 pr_err("\t%d: inode %llu, type %s, len %d\n", 281 count++, (unsigned long long) le64_to_cpu(dent->inum), 282 get_dent_type(dent->type), 283 le16_to_cpu(dent->nlen)); 284 285 fname_name(&nm) = dent->name; 286 fname_len(&nm) = le16_to_cpu(dent->nlen); 287 kfree(pdent); 288 pdent = dent; 289 key_read(c, &dent->key, &key); 290 } 291 kfree(pdent); 292 } 293 294 void ubifs_dump_node(const struct ubifs_info *c, const void *node) 295 { 296 int i, n; 297 union ubifs_key key; 298 const struct ubifs_ch *ch = node; 299 char key_buf[DBG_KEY_BUF_LEN]; 300 301 /* If the magic is incorrect, just hexdump the first bytes */ 302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 305 (void *)node, UBIFS_CH_SZ, 1); 306 return; 307 } 308 309 spin_lock(&dbg_lock); 310 dump_ch(node); 311 312 switch (ch->node_type) { 313 case UBIFS_PAD_NODE: 314 { 315 const struct ubifs_pad_node *pad = node; 316 317 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 318 break; 319 } 320 case UBIFS_SB_NODE: 321 { 322 const struct ubifs_sb_node *sup = node; 323 unsigned int sup_flags = le32_to_cpu(sup->flags); 324 325 pr_err("\tkey_hash %d (%s)\n", 326 (int)sup->key_hash, get_key_hash(sup->key_hash)); 327 pr_err("\tkey_fmt %d (%s)\n", 328 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 329 pr_err("\tflags %#x\n", sup_flags); 330 pr_err("\tbig_lpt %u\n", 331 !!(sup_flags & UBIFS_FLG_BIGLPT)); 332 pr_err("\tspace_fixup %u\n", 333 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 334 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 335 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 336 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 337 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 338 pr_err("\tmax_bud_bytes %llu\n", 339 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 340 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 341 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 342 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 343 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 344 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 345 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 346 pr_err("\tdefault_compr %u\n", 347 (int)le16_to_cpu(sup->default_compr)); 348 pr_err("\trp_size %llu\n", 349 (unsigned long long)le64_to_cpu(sup->rp_size)); 350 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 351 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 352 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 353 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 354 pr_err("\tUUID %pUB\n", sup->uuid); 355 break; 356 } 357 case UBIFS_MST_NODE: 358 { 359 const struct ubifs_mst_node *mst = node; 360 361 pr_err("\thighest_inum %llu\n", 362 (unsigned long long)le64_to_cpu(mst->highest_inum)); 363 pr_err("\tcommit number %llu\n", 364 (unsigned long long)le64_to_cpu(mst->cmt_no)); 365 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 366 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 367 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 368 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 369 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 370 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 371 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 372 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 373 pr_err("\tindex_size %llu\n", 374 (unsigned long long)le64_to_cpu(mst->index_size)); 375 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 376 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 377 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 378 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 379 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 380 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 381 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 382 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 383 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 384 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 385 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 386 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 387 pr_err("\ttotal_free %llu\n", 388 (unsigned long long)le64_to_cpu(mst->total_free)); 389 pr_err("\ttotal_dirty %llu\n", 390 (unsigned long long)le64_to_cpu(mst->total_dirty)); 391 pr_err("\ttotal_used %llu\n", 392 (unsigned long long)le64_to_cpu(mst->total_used)); 393 pr_err("\ttotal_dead %llu\n", 394 (unsigned long long)le64_to_cpu(mst->total_dead)); 395 pr_err("\ttotal_dark %llu\n", 396 (unsigned long long)le64_to_cpu(mst->total_dark)); 397 break; 398 } 399 case UBIFS_REF_NODE: 400 { 401 const struct ubifs_ref_node *ref = node; 402 403 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 404 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 405 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 406 break; 407 } 408 case UBIFS_INO_NODE: 409 { 410 const struct ubifs_ino_node *ino = node; 411 412 key_read(c, &ino->key, &key); 413 pr_err("\tkey %s\n", 414 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 415 pr_err("\tcreat_sqnum %llu\n", 416 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 417 pr_err("\tsize %llu\n", 418 (unsigned long long)le64_to_cpu(ino->size)); 419 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 420 pr_err("\tatime %lld.%u\n", 421 (long long)le64_to_cpu(ino->atime_sec), 422 le32_to_cpu(ino->atime_nsec)); 423 pr_err("\tmtime %lld.%u\n", 424 (long long)le64_to_cpu(ino->mtime_sec), 425 le32_to_cpu(ino->mtime_nsec)); 426 pr_err("\tctime %lld.%u\n", 427 (long long)le64_to_cpu(ino->ctime_sec), 428 le32_to_cpu(ino->ctime_nsec)); 429 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 430 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 431 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 432 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 433 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 434 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 435 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 436 pr_err("\tcompr_type %#x\n", 437 (int)le16_to_cpu(ino->compr_type)); 438 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 439 break; 440 } 441 case UBIFS_DENT_NODE: 442 case UBIFS_XENT_NODE: 443 { 444 const struct ubifs_dent_node *dent = node; 445 int nlen = le16_to_cpu(dent->nlen); 446 447 key_read(c, &dent->key, &key); 448 pr_err("\tkey %s\n", 449 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 450 pr_err("\tinum %llu\n", 451 (unsigned long long)le64_to_cpu(dent->inum)); 452 pr_err("\ttype %d\n", (int)dent->type); 453 pr_err("\tnlen %d\n", nlen); 454 pr_err("\tname "); 455 456 if (nlen > UBIFS_MAX_NLEN) 457 pr_err("(bad name length, not printing, bad or corrupted node)"); 458 else { 459 for (i = 0; i < nlen && dent->name[i]; i++) 460 pr_cont("%c", isprint(dent->name[i]) ? 461 dent->name[i] : '?'); 462 } 463 pr_cont("\n"); 464 465 break; 466 } 467 case UBIFS_DATA_NODE: 468 { 469 const struct ubifs_data_node *dn = node; 470 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 471 472 key_read(c, &dn->key, &key); 473 pr_err("\tkey %s\n", 474 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 475 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 476 pr_err("\tcompr_typ %d\n", 477 (int)le16_to_cpu(dn->compr_type)); 478 pr_err("\tdata size %d\n", dlen); 479 pr_err("\tdata:\n"); 480 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 481 (void *)&dn->data, dlen, 0); 482 break; 483 } 484 case UBIFS_TRUN_NODE: 485 { 486 const struct ubifs_trun_node *trun = node; 487 488 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 489 pr_err("\told_size %llu\n", 490 (unsigned long long)le64_to_cpu(trun->old_size)); 491 pr_err("\tnew_size %llu\n", 492 (unsigned long long)le64_to_cpu(trun->new_size)); 493 break; 494 } 495 case UBIFS_IDX_NODE: 496 { 497 const struct ubifs_idx_node *idx = node; 498 499 n = le16_to_cpu(idx->child_cnt); 500 pr_err("\tchild_cnt %d\n", n); 501 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 502 pr_err("\tBranches:\n"); 503 504 for (i = 0; i < n && i < c->fanout - 1; i++) { 505 const struct ubifs_branch *br; 506 507 br = ubifs_idx_branch(c, idx, i); 508 key_read(c, &br->key, &key); 509 pr_err("\t%d: LEB %d:%d len %d key %s\n", 510 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 511 le32_to_cpu(br->len), 512 dbg_snprintf_key(c, &key, key_buf, 513 DBG_KEY_BUF_LEN)); 514 } 515 break; 516 } 517 case UBIFS_CS_NODE: 518 break; 519 case UBIFS_ORPH_NODE: 520 { 521 const struct ubifs_orph_node *orph = node; 522 523 pr_err("\tcommit number %llu\n", 524 (unsigned long long) 525 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 526 pr_err("\tlast node flag %llu\n", 527 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 528 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 529 pr_err("\t%d orphan inode numbers:\n", n); 530 for (i = 0; i < n; i++) 531 pr_err("\t ino %llu\n", 532 (unsigned long long)le64_to_cpu(orph->inos[i])); 533 break; 534 } 535 case UBIFS_AUTH_NODE: 536 { 537 break; 538 } 539 default: 540 pr_err("node type %d was not recognized\n", 541 (int)ch->node_type); 542 } 543 spin_unlock(&dbg_lock); 544 } 545 546 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 547 { 548 spin_lock(&dbg_lock); 549 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 550 req->new_ino, req->dirtied_ino); 551 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 552 req->new_ino_d, req->dirtied_ino_d); 553 pr_err("\tnew_page %d, dirtied_page %d\n", 554 req->new_page, req->dirtied_page); 555 pr_err("\tnew_dent %d, mod_dent %d\n", 556 req->new_dent, req->mod_dent); 557 pr_err("\tidx_growth %d\n", req->idx_growth); 558 pr_err("\tdata_growth %d dd_growth %d\n", 559 req->data_growth, req->dd_growth); 560 spin_unlock(&dbg_lock); 561 } 562 563 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 564 { 565 spin_lock(&dbg_lock); 566 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 567 current->pid, lst->empty_lebs, lst->idx_lebs); 568 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 569 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 570 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 571 lst->total_used, lst->total_dark, lst->total_dead); 572 spin_unlock(&dbg_lock); 573 } 574 575 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 576 { 577 int i; 578 struct rb_node *rb; 579 struct ubifs_bud *bud; 580 struct ubifs_gced_idx_leb *idx_gc; 581 long long available, outstanding, free; 582 583 spin_lock(&c->space_lock); 584 spin_lock(&dbg_lock); 585 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 586 current->pid, bi->data_growth + bi->dd_growth, 587 bi->data_growth + bi->dd_growth + bi->idx_growth); 588 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 589 bi->data_growth, bi->dd_growth, bi->idx_growth); 590 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 591 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 592 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 593 bi->page_budget, bi->inode_budget, bi->dent_budget); 594 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 595 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 596 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 597 598 if (bi != &c->bi) 599 /* 600 * If we are dumping saved budgeting data, do not print 601 * additional information which is about the current state, not 602 * the old one which corresponded to the saved budgeting data. 603 */ 604 goto out_unlock; 605 606 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 607 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 608 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 609 atomic_long_read(&c->dirty_pg_cnt), 610 atomic_long_read(&c->dirty_zn_cnt), 611 atomic_long_read(&c->clean_zn_cnt)); 612 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 613 614 /* If we are in R/O mode, journal heads do not exist */ 615 if (c->jheads) 616 for (i = 0; i < c->jhead_cnt; i++) 617 pr_err("\tjhead %s\t LEB %d\n", 618 dbg_jhead(c->jheads[i].wbuf.jhead), 619 c->jheads[i].wbuf.lnum); 620 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 621 bud = rb_entry(rb, struct ubifs_bud, rb); 622 pr_err("\tbud LEB %d\n", bud->lnum); 623 } 624 list_for_each_entry(bud, &c->old_buds, list) 625 pr_err("\told bud LEB %d\n", bud->lnum); 626 list_for_each_entry(idx_gc, &c->idx_gc, list) 627 pr_err("\tGC'ed idx LEB %d unmap %d\n", 628 idx_gc->lnum, idx_gc->unmap); 629 pr_err("\tcommit state %d\n", c->cmt_state); 630 631 /* Print budgeting predictions */ 632 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 633 outstanding = c->bi.data_growth + c->bi.dd_growth; 634 free = ubifs_get_free_space_nolock(c); 635 pr_err("Budgeting predictions:\n"); 636 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 637 available, outstanding, free); 638 out_unlock: 639 spin_unlock(&dbg_lock); 640 spin_unlock(&c->space_lock); 641 } 642 643 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 644 { 645 int i, spc, dark = 0, dead = 0; 646 struct rb_node *rb; 647 struct ubifs_bud *bud; 648 649 spc = lp->free + lp->dirty; 650 if (spc < c->dead_wm) 651 dead = spc; 652 else 653 dark = ubifs_calc_dark(c, spc); 654 655 if (lp->flags & LPROPS_INDEX) 656 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 657 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 658 lp->flags); 659 else 660 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 661 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 662 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 663 664 if (lp->flags & LPROPS_TAKEN) { 665 if (lp->flags & LPROPS_INDEX) 666 pr_cont("index, taken"); 667 else 668 pr_cont("taken"); 669 } else { 670 const char *s; 671 672 if (lp->flags & LPROPS_INDEX) { 673 switch (lp->flags & LPROPS_CAT_MASK) { 674 case LPROPS_DIRTY_IDX: 675 s = "dirty index"; 676 break; 677 case LPROPS_FRDI_IDX: 678 s = "freeable index"; 679 break; 680 default: 681 s = "index"; 682 } 683 } else { 684 switch (lp->flags & LPROPS_CAT_MASK) { 685 case LPROPS_UNCAT: 686 s = "not categorized"; 687 break; 688 case LPROPS_DIRTY: 689 s = "dirty"; 690 break; 691 case LPROPS_FREE: 692 s = "free"; 693 break; 694 case LPROPS_EMPTY: 695 s = "empty"; 696 break; 697 case LPROPS_FREEABLE: 698 s = "freeable"; 699 break; 700 default: 701 s = NULL; 702 break; 703 } 704 } 705 pr_cont("%s", s); 706 } 707 708 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 709 bud = rb_entry(rb, struct ubifs_bud, rb); 710 if (bud->lnum == lp->lnum) { 711 int head = 0; 712 for (i = 0; i < c->jhead_cnt; i++) { 713 /* 714 * Note, if we are in R/O mode or in the middle 715 * of mounting/re-mounting, the write-buffers do 716 * not exist. 717 */ 718 if (c->jheads && 719 lp->lnum == c->jheads[i].wbuf.lnum) { 720 pr_cont(", jhead %s", dbg_jhead(i)); 721 head = 1; 722 } 723 } 724 if (!head) 725 pr_cont(", bud of jhead %s", 726 dbg_jhead(bud->jhead)); 727 } 728 } 729 if (lp->lnum == c->gc_lnum) 730 pr_cont(", GC LEB"); 731 pr_cont(")\n"); 732 } 733 734 void ubifs_dump_lprops(struct ubifs_info *c) 735 { 736 int lnum, err; 737 struct ubifs_lprops lp; 738 struct ubifs_lp_stats lst; 739 740 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 741 ubifs_get_lp_stats(c, &lst); 742 ubifs_dump_lstats(&lst); 743 744 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 745 err = ubifs_read_one_lp(c, lnum, &lp); 746 if (err) { 747 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 748 continue; 749 } 750 751 ubifs_dump_lprop(c, &lp); 752 } 753 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 754 } 755 756 void ubifs_dump_lpt_info(struct ubifs_info *c) 757 { 758 int i; 759 760 spin_lock(&dbg_lock); 761 pr_err("(pid %d) dumping LPT information\n", current->pid); 762 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 763 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 764 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 765 pr_err("\tltab_sz: %d\n", c->ltab_sz); 766 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 767 pr_err("\tbig_lpt: %d\n", c->big_lpt); 768 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 769 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 770 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 771 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 772 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 773 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 774 pr_err("\tspace_bits: %d\n", c->space_bits); 775 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 776 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 777 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 778 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 779 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 780 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 781 pr_err("\tLPT head is at %d:%d\n", 782 c->nhead_lnum, c->nhead_offs); 783 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 784 if (c->big_lpt) 785 pr_err("\tLPT lsave is at %d:%d\n", 786 c->lsave_lnum, c->lsave_offs); 787 for (i = 0; i < c->lpt_lebs; i++) 788 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 789 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 790 c->ltab[i].tgc, c->ltab[i].cmt); 791 spin_unlock(&dbg_lock); 792 } 793 794 void ubifs_dump_sleb(const struct ubifs_info *c, 795 const struct ubifs_scan_leb *sleb, int offs) 796 { 797 struct ubifs_scan_node *snod; 798 799 pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n", 800 current->pid, sleb->lnum, offs); 801 802 list_for_each_entry(snod, &sleb->nodes, list) { 803 cond_resched(); 804 pr_err("Dumping node at LEB %d:%d len %d\n", 805 sleb->lnum, snod->offs, snod->len); 806 ubifs_dump_node(c, snod->node); 807 } 808 } 809 810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 811 { 812 struct ubifs_scan_leb *sleb; 813 struct ubifs_scan_node *snod; 814 void *buf; 815 816 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 817 818 buf = __vmalloc(c->leb_size, GFP_NOFS); 819 if (!buf) { 820 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 821 return; 822 } 823 824 sleb = ubifs_scan(c, lnum, 0, buf, 0); 825 if (IS_ERR(sleb)) { 826 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 827 goto out; 828 } 829 830 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 831 sleb->nodes_cnt, sleb->endpt); 832 833 list_for_each_entry(snod, &sleb->nodes, list) { 834 cond_resched(); 835 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 836 snod->offs, snod->len); 837 ubifs_dump_node(c, snod->node); 838 } 839 840 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 841 ubifs_scan_destroy(sleb); 842 843 out: 844 vfree(buf); 845 return; 846 } 847 848 void ubifs_dump_znode(const struct ubifs_info *c, 849 const struct ubifs_znode *znode) 850 { 851 int n; 852 const struct ubifs_zbranch *zbr; 853 char key_buf[DBG_KEY_BUF_LEN]; 854 855 spin_lock(&dbg_lock); 856 if (znode->parent) 857 zbr = &znode->parent->zbranch[znode->iip]; 858 else 859 zbr = &c->zroot; 860 861 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 862 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 863 znode->level, znode->child_cnt, znode->flags); 864 865 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 866 spin_unlock(&dbg_lock); 867 return; 868 } 869 870 pr_err("zbranches:\n"); 871 for (n = 0; n < znode->child_cnt; n++) { 872 zbr = &znode->zbranch[n]; 873 if (znode->level > 0) 874 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 875 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 876 dbg_snprintf_key(c, &zbr->key, key_buf, 877 DBG_KEY_BUF_LEN)); 878 else 879 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 880 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 881 dbg_snprintf_key(c, &zbr->key, key_buf, 882 DBG_KEY_BUF_LEN)); 883 } 884 spin_unlock(&dbg_lock); 885 } 886 887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 888 { 889 int i; 890 891 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 892 current->pid, cat, heap->cnt); 893 for (i = 0; i < heap->cnt; i++) { 894 struct ubifs_lprops *lprops = heap->arr[i]; 895 896 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 897 i, lprops->lnum, lprops->hpos, lprops->free, 898 lprops->dirty, lprops->flags); 899 } 900 pr_err("(pid %d) finish dumping heap\n", current->pid); 901 } 902 903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 904 struct ubifs_nnode *parent, int iip) 905 { 906 int i; 907 908 pr_err("(pid %d) dumping pnode:\n", current->pid); 909 pr_err("\taddress %zx parent %zx cnext %zx\n", 910 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 911 pr_err("\tflags %lu iip %d level %d num %d\n", 912 pnode->flags, iip, pnode->level, pnode->num); 913 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 914 struct ubifs_lprops *lp = &pnode->lprops[i]; 915 916 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 917 i, lp->free, lp->dirty, lp->flags, lp->lnum); 918 } 919 } 920 921 void ubifs_dump_tnc(struct ubifs_info *c) 922 { 923 struct ubifs_znode *znode; 924 int level; 925 926 pr_err("\n"); 927 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 928 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL); 929 level = znode->level; 930 pr_err("== Level %d ==\n", level); 931 while (znode) { 932 if (level != znode->level) { 933 level = znode->level; 934 pr_err("== Level %d ==\n", level); 935 } 936 ubifs_dump_znode(c, znode); 937 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode); 938 } 939 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 940 } 941 942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 943 void *priv) 944 { 945 ubifs_dump_znode(c, znode); 946 return 0; 947 } 948 949 /** 950 * ubifs_dump_index - dump the on-flash index. 951 * @c: UBIFS file-system description object 952 * 953 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 954 * which dumps only in-memory znodes and does not read znodes which from flash. 955 */ 956 void ubifs_dump_index(struct ubifs_info *c) 957 { 958 dbg_walk_index(c, NULL, dump_znode, NULL); 959 } 960 961 /** 962 * dbg_save_space_info - save information about flash space. 963 * @c: UBIFS file-system description object 964 * 965 * This function saves information about UBIFS free space, dirty space, etc, in 966 * order to check it later. 967 */ 968 void dbg_save_space_info(struct ubifs_info *c) 969 { 970 struct ubifs_debug_info *d = c->dbg; 971 int freeable_cnt; 972 973 spin_lock(&c->space_lock); 974 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 975 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 976 d->saved_idx_gc_cnt = c->idx_gc_cnt; 977 978 /* 979 * We use a dirty hack here and zero out @c->freeable_cnt, because it 980 * affects the free space calculations, and UBIFS might not know about 981 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 982 * only when we read their lprops, and we do this only lazily, upon the 983 * need. So at any given point of time @c->freeable_cnt might be not 984 * exactly accurate. 985 * 986 * Just one example about the issue we hit when we did not zero 987 * @c->freeable_cnt. 988 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 989 * amount of free space in @d->saved_free 990 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 991 * information from flash, where we cache LEBs from various 992 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 993 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 994 * -> 'ubifs_get_pnode()' -> 'update_cats()' 995 * -> 'ubifs_add_to_cat()'). 996 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 997 * becomes %1. 998 * 4. We calculate the amount of free space when the re-mount is 999 * finished in 'dbg_check_space_info()' and it does not match 1000 * @d->saved_free. 1001 */ 1002 freeable_cnt = c->freeable_cnt; 1003 c->freeable_cnt = 0; 1004 d->saved_free = ubifs_get_free_space_nolock(c); 1005 c->freeable_cnt = freeable_cnt; 1006 spin_unlock(&c->space_lock); 1007 } 1008 1009 /** 1010 * dbg_check_space_info - check flash space information. 1011 * @c: UBIFS file-system description object 1012 * 1013 * This function compares current flash space information with the information 1014 * which was saved when the 'dbg_save_space_info()' function was called. 1015 * Returns zero if the information has not changed, and %-EINVAL it it has 1016 * changed. 1017 */ 1018 int dbg_check_space_info(struct ubifs_info *c) 1019 { 1020 struct ubifs_debug_info *d = c->dbg; 1021 struct ubifs_lp_stats lst; 1022 long long free; 1023 int freeable_cnt; 1024 1025 spin_lock(&c->space_lock); 1026 freeable_cnt = c->freeable_cnt; 1027 c->freeable_cnt = 0; 1028 free = ubifs_get_free_space_nolock(c); 1029 c->freeable_cnt = freeable_cnt; 1030 spin_unlock(&c->space_lock); 1031 1032 if (free != d->saved_free) { 1033 ubifs_err(c, "free space changed from %lld to %lld", 1034 d->saved_free, free); 1035 goto out; 1036 } 1037 1038 return 0; 1039 1040 out: 1041 ubifs_msg(c, "saved lprops statistics dump"); 1042 ubifs_dump_lstats(&d->saved_lst); 1043 ubifs_msg(c, "saved budgeting info dump"); 1044 ubifs_dump_budg(c, &d->saved_bi); 1045 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1046 ubifs_msg(c, "current lprops statistics dump"); 1047 ubifs_get_lp_stats(c, &lst); 1048 ubifs_dump_lstats(&lst); 1049 ubifs_msg(c, "current budgeting info dump"); 1050 ubifs_dump_budg(c, &c->bi); 1051 dump_stack(); 1052 return -EINVAL; 1053 } 1054 1055 /** 1056 * dbg_check_synced_i_size - check synchronized inode size. 1057 * @c: UBIFS file-system description object 1058 * @inode: inode to check 1059 * 1060 * If inode is clean, synchronized inode size has to be equivalent to current 1061 * inode size. This function has to be called only for locked inodes (@i_mutex 1062 * has to be locked). Returns %0 if synchronized inode size if correct, and 1063 * %-EINVAL if not. 1064 */ 1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1066 { 1067 int err = 0; 1068 struct ubifs_inode *ui = ubifs_inode(inode); 1069 1070 if (!dbg_is_chk_gen(c)) 1071 return 0; 1072 if (!S_ISREG(inode->i_mode)) 1073 return 0; 1074 1075 mutex_lock(&ui->ui_mutex); 1076 spin_lock(&ui->ui_lock); 1077 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1078 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1079 ui->ui_size, ui->synced_i_size); 1080 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1081 inode->i_mode, i_size_read(inode)); 1082 dump_stack(); 1083 err = -EINVAL; 1084 } 1085 spin_unlock(&ui->ui_lock); 1086 mutex_unlock(&ui->ui_mutex); 1087 return err; 1088 } 1089 1090 /* 1091 * dbg_check_dir - check directory inode size and link count. 1092 * @c: UBIFS file-system description object 1093 * @dir: the directory to calculate size for 1094 * @size: the result is returned here 1095 * 1096 * This function makes sure that directory size and link count are correct. 1097 * Returns zero in case of success and a negative error code in case of 1098 * failure. 1099 * 1100 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1101 * calling this function. 1102 */ 1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1104 { 1105 unsigned int nlink = 2; 1106 union ubifs_key key; 1107 struct ubifs_dent_node *dent, *pdent = NULL; 1108 struct fscrypt_name nm = {0}; 1109 loff_t size = UBIFS_INO_NODE_SZ; 1110 1111 if (!dbg_is_chk_gen(c)) 1112 return 0; 1113 1114 if (!S_ISDIR(dir->i_mode)) 1115 return 0; 1116 1117 lowest_dent_key(c, &key, dir->i_ino); 1118 while (1) { 1119 int err; 1120 1121 dent = ubifs_tnc_next_ent(c, &key, &nm); 1122 if (IS_ERR(dent)) { 1123 err = PTR_ERR(dent); 1124 if (err == -ENOENT) 1125 break; 1126 return err; 1127 } 1128 1129 fname_name(&nm) = dent->name; 1130 fname_len(&nm) = le16_to_cpu(dent->nlen); 1131 size += CALC_DENT_SIZE(fname_len(&nm)); 1132 if (dent->type == UBIFS_ITYPE_DIR) 1133 nlink += 1; 1134 kfree(pdent); 1135 pdent = dent; 1136 key_read(c, &dent->key, &key); 1137 } 1138 kfree(pdent); 1139 1140 if (i_size_read(dir) != size) { 1141 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1142 dir->i_ino, (unsigned long long)i_size_read(dir), 1143 (unsigned long long)size); 1144 ubifs_dump_inode(c, dir); 1145 dump_stack(); 1146 return -EINVAL; 1147 } 1148 if (dir->i_nlink != nlink) { 1149 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1150 dir->i_ino, dir->i_nlink, nlink); 1151 ubifs_dump_inode(c, dir); 1152 dump_stack(); 1153 return -EINVAL; 1154 } 1155 1156 return 0; 1157 } 1158 1159 /** 1160 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1161 * @c: UBIFS file-system description object 1162 * @zbr1: first zbranch 1163 * @zbr2: following zbranch 1164 * 1165 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1166 * names of the direntries/xentries which are referred by the keys. This 1167 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1168 * sure the name of direntry/xentry referred by @zbr1 is less than 1169 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1170 * and a negative error code in case of failure. 1171 */ 1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1173 struct ubifs_zbranch *zbr2) 1174 { 1175 int err, nlen1, nlen2, cmp; 1176 struct ubifs_dent_node *dent1, *dent2; 1177 union ubifs_key key; 1178 char key_buf[DBG_KEY_BUF_LEN]; 1179 1180 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key)); 1181 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1182 if (!dent1) 1183 return -ENOMEM; 1184 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1185 if (!dent2) { 1186 err = -ENOMEM; 1187 goto out_free; 1188 } 1189 1190 err = ubifs_tnc_read_node(c, zbr1, dent1); 1191 if (err) 1192 goto out_free; 1193 err = ubifs_validate_entry(c, dent1); 1194 if (err) 1195 goto out_free; 1196 1197 err = ubifs_tnc_read_node(c, zbr2, dent2); 1198 if (err) 1199 goto out_free; 1200 err = ubifs_validate_entry(c, dent2); 1201 if (err) 1202 goto out_free; 1203 1204 /* Make sure node keys are the same as in zbranch */ 1205 err = 1; 1206 key_read(c, &dent1->key, &key); 1207 if (keys_cmp(c, &zbr1->key, &key)) { 1208 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1209 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1210 DBG_KEY_BUF_LEN)); 1211 ubifs_err(c, "but it should have key %s according to tnc", 1212 dbg_snprintf_key(c, &zbr1->key, key_buf, 1213 DBG_KEY_BUF_LEN)); 1214 ubifs_dump_node(c, dent1); 1215 goto out_free; 1216 } 1217 1218 key_read(c, &dent2->key, &key); 1219 if (keys_cmp(c, &zbr2->key, &key)) { 1220 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1221 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1222 DBG_KEY_BUF_LEN)); 1223 ubifs_err(c, "but it should have key %s according to tnc", 1224 dbg_snprintf_key(c, &zbr2->key, key_buf, 1225 DBG_KEY_BUF_LEN)); 1226 ubifs_dump_node(c, dent2); 1227 goto out_free; 1228 } 1229 1230 nlen1 = le16_to_cpu(dent1->nlen); 1231 nlen2 = le16_to_cpu(dent2->nlen); 1232 1233 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1234 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1235 err = 0; 1236 goto out_free; 1237 } 1238 if (cmp == 0 && nlen1 == nlen2) 1239 ubifs_err(c, "2 xent/dent nodes with the same name"); 1240 else 1241 ubifs_err(c, "bad order of colliding key %s", 1242 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1243 1244 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1245 ubifs_dump_node(c, dent1); 1246 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1247 ubifs_dump_node(c, dent2); 1248 1249 out_free: 1250 kfree(dent2); 1251 kfree(dent1); 1252 return err; 1253 } 1254 1255 /** 1256 * dbg_check_znode - check if znode is all right. 1257 * @c: UBIFS file-system description object 1258 * @zbr: zbranch which points to this znode 1259 * 1260 * This function makes sure that znode referred to by @zbr is all right. 1261 * Returns zero if it is, and %-EINVAL if it is not. 1262 */ 1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1264 { 1265 struct ubifs_znode *znode = zbr->znode; 1266 struct ubifs_znode *zp = znode->parent; 1267 int n, err, cmp; 1268 1269 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1270 err = 1; 1271 goto out; 1272 } 1273 if (znode->level < 0) { 1274 err = 2; 1275 goto out; 1276 } 1277 if (znode->iip < 0 || znode->iip >= c->fanout) { 1278 err = 3; 1279 goto out; 1280 } 1281 1282 if (zbr->len == 0) 1283 /* Only dirty zbranch may have no on-flash nodes */ 1284 if (!ubifs_zn_dirty(znode)) { 1285 err = 4; 1286 goto out; 1287 } 1288 1289 if (ubifs_zn_dirty(znode)) { 1290 /* 1291 * If znode is dirty, its parent has to be dirty as well. The 1292 * order of the operation is important, so we have to have 1293 * memory barriers. 1294 */ 1295 smp_mb(); 1296 if (zp && !ubifs_zn_dirty(zp)) { 1297 /* 1298 * The dirty flag is atomic and is cleared outside the 1299 * TNC mutex, so znode's dirty flag may now have 1300 * been cleared. The child is always cleared before the 1301 * parent, so we just need to check again. 1302 */ 1303 smp_mb(); 1304 if (ubifs_zn_dirty(znode)) { 1305 err = 5; 1306 goto out; 1307 } 1308 } 1309 } 1310 1311 if (zp) { 1312 const union ubifs_key *min, *max; 1313 1314 if (znode->level != zp->level - 1) { 1315 err = 6; 1316 goto out; 1317 } 1318 1319 /* Make sure the 'parent' pointer in our znode is correct */ 1320 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1321 if (!err) { 1322 /* This zbranch does not exist in the parent */ 1323 err = 7; 1324 goto out; 1325 } 1326 1327 if (znode->iip >= zp->child_cnt) { 1328 err = 8; 1329 goto out; 1330 } 1331 1332 if (znode->iip != n) { 1333 /* This may happen only in case of collisions */ 1334 if (keys_cmp(c, &zp->zbranch[n].key, 1335 &zp->zbranch[znode->iip].key)) { 1336 err = 9; 1337 goto out; 1338 } 1339 n = znode->iip; 1340 } 1341 1342 /* 1343 * Make sure that the first key in our znode is greater than or 1344 * equal to the key in the pointing zbranch. 1345 */ 1346 min = &zbr->key; 1347 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1348 if (cmp == 1) { 1349 err = 10; 1350 goto out; 1351 } 1352 1353 if (n + 1 < zp->child_cnt) { 1354 max = &zp->zbranch[n + 1].key; 1355 1356 /* 1357 * Make sure the last key in our znode is less or 1358 * equivalent than the key in the zbranch which goes 1359 * after our pointing zbranch. 1360 */ 1361 cmp = keys_cmp(c, max, 1362 &znode->zbranch[znode->child_cnt - 1].key); 1363 if (cmp == -1) { 1364 err = 11; 1365 goto out; 1366 } 1367 } 1368 } else { 1369 /* This may only be root znode */ 1370 if (zbr != &c->zroot) { 1371 err = 12; 1372 goto out; 1373 } 1374 } 1375 1376 /* 1377 * Make sure that next key is greater or equivalent then the previous 1378 * one. 1379 */ 1380 for (n = 1; n < znode->child_cnt; n++) { 1381 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1382 &znode->zbranch[n].key); 1383 if (cmp > 0) { 1384 err = 13; 1385 goto out; 1386 } 1387 if (cmp == 0) { 1388 /* This can only be keys with colliding hash */ 1389 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1390 err = 14; 1391 goto out; 1392 } 1393 1394 if (znode->level != 0 || c->replaying) 1395 continue; 1396 1397 /* 1398 * Colliding keys should follow binary order of 1399 * corresponding xentry/dentry names. 1400 */ 1401 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1402 &znode->zbranch[n]); 1403 if (err < 0) 1404 return err; 1405 if (err) { 1406 err = 15; 1407 goto out; 1408 } 1409 } 1410 } 1411 1412 for (n = 0; n < znode->child_cnt; n++) { 1413 if (!znode->zbranch[n].znode && 1414 (znode->zbranch[n].lnum == 0 || 1415 znode->zbranch[n].len == 0)) { 1416 err = 16; 1417 goto out; 1418 } 1419 1420 if (znode->zbranch[n].lnum != 0 && 1421 znode->zbranch[n].len == 0) { 1422 err = 17; 1423 goto out; 1424 } 1425 1426 if (znode->zbranch[n].lnum == 0 && 1427 znode->zbranch[n].len != 0) { 1428 err = 18; 1429 goto out; 1430 } 1431 1432 if (znode->zbranch[n].lnum == 0 && 1433 znode->zbranch[n].offs != 0) { 1434 err = 19; 1435 goto out; 1436 } 1437 1438 if (znode->level != 0 && znode->zbranch[n].znode) 1439 if (znode->zbranch[n].znode->parent != znode) { 1440 err = 20; 1441 goto out; 1442 } 1443 } 1444 1445 return 0; 1446 1447 out: 1448 ubifs_err(c, "failed, error %d", err); 1449 ubifs_msg(c, "dump of the znode"); 1450 ubifs_dump_znode(c, znode); 1451 if (zp) { 1452 ubifs_msg(c, "dump of the parent znode"); 1453 ubifs_dump_znode(c, zp); 1454 } 1455 dump_stack(); 1456 return -EINVAL; 1457 } 1458 1459 /** 1460 * dbg_check_tnc - check TNC tree. 1461 * @c: UBIFS file-system description object 1462 * @extra: do extra checks that are possible at start commit 1463 * 1464 * This function traverses whole TNC tree and checks every znode. Returns zero 1465 * if everything is all right and %-EINVAL if something is wrong with TNC. 1466 */ 1467 int dbg_check_tnc(struct ubifs_info *c, int extra) 1468 { 1469 struct ubifs_znode *znode; 1470 long clean_cnt = 0, dirty_cnt = 0; 1471 int err, last; 1472 1473 if (!dbg_is_chk_index(c)) 1474 return 0; 1475 1476 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex)); 1477 if (!c->zroot.znode) 1478 return 0; 1479 1480 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1481 while (1) { 1482 struct ubifs_znode *prev; 1483 struct ubifs_zbranch *zbr; 1484 1485 if (!znode->parent) 1486 zbr = &c->zroot; 1487 else 1488 zbr = &znode->parent->zbranch[znode->iip]; 1489 1490 err = dbg_check_znode(c, zbr); 1491 if (err) 1492 return err; 1493 1494 if (extra) { 1495 if (ubifs_zn_dirty(znode)) 1496 dirty_cnt += 1; 1497 else 1498 clean_cnt += 1; 1499 } 1500 1501 prev = znode; 1502 znode = ubifs_tnc_postorder_next(c, znode); 1503 if (!znode) 1504 break; 1505 1506 /* 1507 * If the last key of this znode is equivalent to the first key 1508 * of the next znode (collision), then check order of the keys. 1509 */ 1510 last = prev->child_cnt - 1; 1511 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1512 !keys_cmp(c, &prev->zbranch[last].key, 1513 &znode->zbranch[0].key)) { 1514 err = dbg_check_key_order(c, &prev->zbranch[last], 1515 &znode->zbranch[0]); 1516 if (err < 0) 1517 return err; 1518 if (err) { 1519 ubifs_msg(c, "first znode"); 1520 ubifs_dump_znode(c, prev); 1521 ubifs_msg(c, "second znode"); 1522 ubifs_dump_znode(c, znode); 1523 return -EINVAL; 1524 } 1525 } 1526 } 1527 1528 if (extra) { 1529 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1530 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1531 atomic_long_read(&c->clean_zn_cnt), 1532 clean_cnt); 1533 return -EINVAL; 1534 } 1535 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1536 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1537 atomic_long_read(&c->dirty_zn_cnt), 1538 dirty_cnt); 1539 return -EINVAL; 1540 } 1541 } 1542 1543 return 0; 1544 } 1545 1546 /** 1547 * dbg_walk_index - walk the on-flash index. 1548 * @c: UBIFS file-system description object 1549 * @leaf_cb: called for each leaf node 1550 * @znode_cb: called for each indexing node 1551 * @priv: private data which is passed to callbacks 1552 * 1553 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1554 * node and @znode_cb for each indexing node. Returns zero in case of success 1555 * and a negative error code in case of failure. 1556 * 1557 * It would be better if this function removed every znode it pulled to into 1558 * the TNC, so that the behavior more closely matched the non-debugging 1559 * behavior. 1560 */ 1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1562 dbg_znode_callback znode_cb, void *priv) 1563 { 1564 int err; 1565 struct ubifs_zbranch *zbr; 1566 struct ubifs_znode *znode, *child; 1567 1568 mutex_lock(&c->tnc_mutex); 1569 /* If the root indexing node is not in TNC - pull it */ 1570 if (!c->zroot.znode) { 1571 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1572 if (IS_ERR(c->zroot.znode)) { 1573 err = PTR_ERR(c->zroot.znode); 1574 c->zroot.znode = NULL; 1575 goto out_unlock; 1576 } 1577 } 1578 1579 /* 1580 * We are going to traverse the indexing tree in the postorder manner. 1581 * Go down and find the leftmost indexing node where we are going to 1582 * start from. 1583 */ 1584 znode = c->zroot.znode; 1585 while (znode->level > 0) { 1586 zbr = &znode->zbranch[0]; 1587 child = zbr->znode; 1588 if (!child) { 1589 child = ubifs_load_znode(c, zbr, znode, 0); 1590 if (IS_ERR(child)) { 1591 err = PTR_ERR(child); 1592 goto out_unlock; 1593 } 1594 } 1595 1596 znode = child; 1597 } 1598 1599 /* Iterate over all indexing nodes */ 1600 while (1) { 1601 int idx; 1602 1603 cond_resched(); 1604 1605 if (znode_cb) { 1606 err = znode_cb(c, znode, priv); 1607 if (err) { 1608 ubifs_err(c, "znode checking function returned error %d", 1609 err); 1610 ubifs_dump_znode(c, znode); 1611 goto out_dump; 1612 } 1613 } 1614 if (leaf_cb && znode->level == 0) { 1615 for (idx = 0; idx < znode->child_cnt; idx++) { 1616 zbr = &znode->zbranch[idx]; 1617 err = leaf_cb(c, zbr, priv); 1618 if (err) { 1619 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1620 err, zbr->lnum, zbr->offs); 1621 goto out_dump; 1622 } 1623 } 1624 } 1625 1626 if (!znode->parent) 1627 break; 1628 1629 idx = znode->iip + 1; 1630 znode = znode->parent; 1631 if (idx < znode->child_cnt) { 1632 /* Switch to the next index in the parent */ 1633 zbr = &znode->zbranch[idx]; 1634 child = zbr->znode; 1635 if (!child) { 1636 child = ubifs_load_znode(c, zbr, znode, idx); 1637 if (IS_ERR(child)) { 1638 err = PTR_ERR(child); 1639 goto out_unlock; 1640 } 1641 zbr->znode = child; 1642 } 1643 znode = child; 1644 } else 1645 /* 1646 * This is the last child, switch to the parent and 1647 * continue. 1648 */ 1649 continue; 1650 1651 /* Go to the lowest leftmost znode in the new sub-tree */ 1652 while (znode->level > 0) { 1653 zbr = &znode->zbranch[0]; 1654 child = zbr->znode; 1655 if (!child) { 1656 child = ubifs_load_znode(c, zbr, znode, 0); 1657 if (IS_ERR(child)) { 1658 err = PTR_ERR(child); 1659 goto out_unlock; 1660 } 1661 zbr->znode = child; 1662 } 1663 znode = child; 1664 } 1665 } 1666 1667 mutex_unlock(&c->tnc_mutex); 1668 return 0; 1669 1670 out_dump: 1671 if (znode->parent) 1672 zbr = &znode->parent->zbranch[znode->iip]; 1673 else 1674 zbr = &c->zroot; 1675 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1676 ubifs_dump_znode(c, znode); 1677 out_unlock: 1678 mutex_unlock(&c->tnc_mutex); 1679 return err; 1680 } 1681 1682 /** 1683 * add_size - add znode size to partially calculated index size. 1684 * @c: UBIFS file-system description object 1685 * @znode: znode to add size for 1686 * @priv: partially calculated index size 1687 * 1688 * This is a helper function for 'dbg_check_idx_size()' which is called for 1689 * every indexing node and adds its size to the 'long long' variable pointed to 1690 * by @priv. 1691 */ 1692 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1693 { 1694 long long *idx_size = priv; 1695 int add; 1696 1697 add = ubifs_idx_node_sz(c, znode->child_cnt); 1698 add = ALIGN(add, 8); 1699 *idx_size += add; 1700 return 0; 1701 } 1702 1703 /** 1704 * dbg_check_idx_size - check index size. 1705 * @c: UBIFS file-system description object 1706 * @idx_size: size to check 1707 * 1708 * This function walks the UBIFS index, calculates its size and checks that the 1709 * size is equivalent to @idx_size. Returns zero in case of success and a 1710 * negative error code in case of failure. 1711 */ 1712 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1713 { 1714 int err; 1715 long long calc = 0; 1716 1717 if (!dbg_is_chk_index(c)) 1718 return 0; 1719 1720 err = dbg_walk_index(c, NULL, add_size, &calc); 1721 if (err) { 1722 ubifs_err(c, "error %d while walking the index", err); 1723 return err; 1724 } 1725 1726 if (calc != idx_size) { 1727 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1728 calc, idx_size); 1729 dump_stack(); 1730 return -EINVAL; 1731 } 1732 1733 return 0; 1734 } 1735 1736 /** 1737 * struct fsck_inode - information about an inode used when checking the file-system. 1738 * @rb: link in the RB-tree of inodes 1739 * @inum: inode number 1740 * @mode: inode type, permissions, etc 1741 * @nlink: inode link count 1742 * @xattr_cnt: count of extended attributes 1743 * @references: how many directory/xattr entries refer this inode (calculated 1744 * while walking the index) 1745 * @calc_cnt: for directory inode count of child directories 1746 * @size: inode size (read from on-flash inode) 1747 * @xattr_sz: summary size of all extended attributes (read from on-flash 1748 * inode) 1749 * @calc_sz: for directories calculated directory size 1750 * @calc_xcnt: count of extended attributes 1751 * @calc_xsz: calculated summary size of all extended attributes 1752 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1753 * inode (read from on-flash inode) 1754 * @calc_xnms: calculated sum of lengths of all extended attribute names 1755 */ 1756 struct fsck_inode { 1757 struct rb_node rb; 1758 ino_t inum; 1759 umode_t mode; 1760 unsigned int nlink; 1761 unsigned int xattr_cnt; 1762 int references; 1763 int calc_cnt; 1764 long long size; 1765 unsigned int xattr_sz; 1766 long long calc_sz; 1767 long long calc_xcnt; 1768 long long calc_xsz; 1769 unsigned int xattr_nms; 1770 long long calc_xnms; 1771 }; 1772 1773 /** 1774 * struct fsck_data - private FS checking information. 1775 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1776 */ 1777 struct fsck_data { 1778 struct rb_root inodes; 1779 }; 1780 1781 /** 1782 * add_inode - add inode information to RB-tree of inodes. 1783 * @c: UBIFS file-system description object 1784 * @fsckd: FS checking information 1785 * @ino: raw UBIFS inode to add 1786 * 1787 * This is a helper function for 'check_leaf()' which adds information about 1788 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1789 * case of success and a negative error code in case of failure. 1790 */ 1791 static struct fsck_inode *add_inode(struct ubifs_info *c, 1792 struct fsck_data *fsckd, 1793 struct ubifs_ino_node *ino) 1794 { 1795 struct rb_node **p, *parent = NULL; 1796 struct fsck_inode *fscki; 1797 ino_t inum = key_inum_flash(c, &ino->key); 1798 struct inode *inode; 1799 struct ubifs_inode *ui; 1800 1801 p = &fsckd->inodes.rb_node; 1802 while (*p) { 1803 parent = *p; 1804 fscki = rb_entry(parent, struct fsck_inode, rb); 1805 if (inum < fscki->inum) 1806 p = &(*p)->rb_left; 1807 else if (inum > fscki->inum) 1808 p = &(*p)->rb_right; 1809 else 1810 return fscki; 1811 } 1812 1813 if (inum > c->highest_inum) { 1814 ubifs_err(c, "too high inode number, max. is %lu", 1815 (unsigned long)c->highest_inum); 1816 return ERR_PTR(-EINVAL); 1817 } 1818 1819 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1820 if (!fscki) 1821 return ERR_PTR(-ENOMEM); 1822 1823 inode = ilookup(c->vfs_sb, inum); 1824 1825 fscki->inum = inum; 1826 /* 1827 * If the inode is present in the VFS inode cache, use it instead of 1828 * the on-flash inode which might be out-of-date. E.g., the size might 1829 * be out-of-date. If we do not do this, the following may happen, for 1830 * example: 1831 * 1. A power cut happens 1832 * 2. We mount the file-system R/O, the replay process fixes up the 1833 * inode size in the VFS cache, but on on-flash. 1834 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1835 * size. 1836 */ 1837 if (!inode) { 1838 fscki->nlink = le32_to_cpu(ino->nlink); 1839 fscki->size = le64_to_cpu(ino->size); 1840 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1841 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1842 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1843 fscki->mode = le32_to_cpu(ino->mode); 1844 } else { 1845 ui = ubifs_inode(inode); 1846 fscki->nlink = inode->i_nlink; 1847 fscki->size = inode->i_size; 1848 fscki->xattr_cnt = ui->xattr_cnt; 1849 fscki->xattr_sz = ui->xattr_size; 1850 fscki->xattr_nms = ui->xattr_names; 1851 fscki->mode = inode->i_mode; 1852 iput(inode); 1853 } 1854 1855 if (S_ISDIR(fscki->mode)) { 1856 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1857 fscki->calc_cnt = 2; 1858 } 1859 1860 rb_link_node(&fscki->rb, parent, p); 1861 rb_insert_color(&fscki->rb, &fsckd->inodes); 1862 1863 return fscki; 1864 } 1865 1866 /** 1867 * search_inode - search inode in the RB-tree of inodes. 1868 * @fsckd: FS checking information 1869 * @inum: inode number to search 1870 * 1871 * This is a helper function for 'check_leaf()' which searches inode @inum in 1872 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1873 * the inode was not found. 1874 */ 1875 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1876 { 1877 struct rb_node *p; 1878 struct fsck_inode *fscki; 1879 1880 p = fsckd->inodes.rb_node; 1881 while (p) { 1882 fscki = rb_entry(p, struct fsck_inode, rb); 1883 if (inum < fscki->inum) 1884 p = p->rb_left; 1885 else if (inum > fscki->inum) 1886 p = p->rb_right; 1887 else 1888 return fscki; 1889 } 1890 return NULL; 1891 } 1892 1893 /** 1894 * read_add_inode - read inode node and add it to RB-tree of inodes. 1895 * @c: UBIFS file-system description object 1896 * @fsckd: FS checking information 1897 * @inum: inode number to read 1898 * 1899 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1900 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1901 * information pointer in case of success and a negative error code in case of 1902 * failure. 1903 */ 1904 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1905 struct fsck_data *fsckd, ino_t inum) 1906 { 1907 int n, err; 1908 union ubifs_key key; 1909 struct ubifs_znode *znode; 1910 struct ubifs_zbranch *zbr; 1911 struct ubifs_ino_node *ino; 1912 struct fsck_inode *fscki; 1913 1914 fscki = search_inode(fsckd, inum); 1915 if (fscki) 1916 return fscki; 1917 1918 ino_key_init(c, &key, inum); 1919 err = ubifs_lookup_level0(c, &key, &znode, &n); 1920 if (!err) { 1921 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1922 return ERR_PTR(-ENOENT); 1923 } else if (err < 0) { 1924 ubifs_err(c, "error %d while looking up inode %lu", 1925 err, (unsigned long)inum); 1926 return ERR_PTR(err); 1927 } 1928 1929 zbr = &znode->zbranch[n]; 1930 if (zbr->len < UBIFS_INO_NODE_SZ) { 1931 ubifs_err(c, "bad node %lu node length %d", 1932 (unsigned long)inum, zbr->len); 1933 return ERR_PTR(-EINVAL); 1934 } 1935 1936 ino = kmalloc(zbr->len, GFP_NOFS); 1937 if (!ino) 1938 return ERR_PTR(-ENOMEM); 1939 1940 err = ubifs_tnc_read_node(c, zbr, ino); 1941 if (err) { 1942 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1943 zbr->lnum, zbr->offs, err); 1944 kfree(ino); 1945 return ERR_PTR(err); 1946 } 1947 1948 fscki = add_inode(c, fsckd, ino); 1949 kfree(ino); 1950 if (IS_ERR(fscki)) { 1951 ubifs_err(c, "error %ld while adding inode %lu node", 1952 PTR_ERR(fscki), (unsigned long)inum); 1953 return fscki; 1954 } 1955 1956 return fscki; 1957 } 1958 1959 /** 1960 * check_leaf - check leaf node. 1961 * @c: UBIFS file-system description object 1962 * @zbr: zbranch of the leaf node to check 1963 * @priv: FS checking information 1964 * 1965 * This is a helper function for 'dbg_check_filesystem()' which is called for 1966 * every single leaf node while walking the indexing tree. It checks that the 1967 * leaf node referred from the indexing tree exists, has correct CRC, and does 1968 * some other basic validation. This function is also responsible for building 1969 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1970 * calculates reference count, size, etc for each inode in order to later 1971 * compare them to the information stored inside the inodes and detect possible 1972 * inconsistencies. Returns zero in case of success and a negative error code 1973 * in case of failure. 1974 */ 1975 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1976 void *priv) 1977 { 1978 ino_t inum; 1979 void *node; 1980 struct ubifs_ch *ch; 1981 int err, type = key_type(c, &zbr->key); 1982 struct fsck_inode *fscki; 1983 1984 if (zbr->len < UBIFS_CH_SZ) { 1985 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 1986 zbr->len, zbr->lnum, zbr->offs); 1987 return -EINVAL; 1988 } 1989 1990 node = kmalloc(zbr->len, GFP_NOFS); 1991 if (!node) 1992 return -ENOMEM; 1993 1994 err = ubifs_tnc_read_node(c, zbr, node); 1995 if (err) { 1996 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 1997 zbr->lnum, zbr->offs, err); 1998 goto out_free; 1999 } 2000 2001 /* If this is an inode node, add it to RB-tree of inodes */ 2002 if (type == UBIFS_INO_KEY) { 2003 fscki = add_inode(c, priv, node); 2004 if (IS_ERR(fscki)) { 2005 err = PTR_ERR(fscki); 2006 ubifs_err(c, "error %d while adding inode node", err); 2007 goto out_dump; 2008 } 2009 goto out; 2010 } 2011 2012 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2013 type != UBIFS_DATA_KEY) { 2014 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2015 type, zbr->lnum, zbr->offs); 2016 err = -EINVAL; 2017 goto out_free; 2018 } 2019 2020 ch = node; 2021 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2022 ubifs_err(c, "too high sequence number, max. is %llu", 2023 c->max_sqnum); 2024 err = -EINVAL; 2025 goto out_dump; 2026 } 2027 2028 if (type == UBIFS_DATA_KEY) { 2029 long long blk_offs; 2030 struct ubifs_data_node *dn = node; 2031 2032 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ); 2033 2034 /* 2035 * Search the inode node this data node belongs to and insert 2036 * it to the RB-tree of inodes. 2037 */ 2038 inum = key_inum_flash(c, &dn->key); 2039 fscki = read_add_inode(c, priv, inum); 2040 if (IS_ERR(fscki)) { 2041 err = PTR_ERR(fscki); 2042 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2043 err, (unsigned long)inum); 2044 goto out_dump; 2045 } 2046 2047 /* Make sure the data node is within inode size */ 2048 blk_offs = key_block_flash(c, &dn->key); 2049 blk_offs <<= UBIFS_BLOCK_SHIFT; 2050 blk_offs += le32_to_cpu(dn->size); 2051 if (blk_offs > fscki->size) { 2052 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2053 zbr->lnum, zbr->offs, fscki->size); 2054 err = -EINVAL; 2055 goto out_dump; 2056 } 2057 } else { 2058 int nlen; 2059 struct ubifs_dent_node *dent = node; 2060 struct fsck_inode *fscki1; 2061 2062 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ); 2063 2064 err = ubifs_validate_entry(c, dent); 2065 if (err) 2066 goto out_dump; 2067 2068 /* 2069 * Search the inode node this entry refers to and the parent 2070 * inode node and insert them to the RB-tree of inodes. 2071 */ 2072 inum = le64_to_cpu(dent->inum); 2073 fscki = read_add_inode(c, priv, inum); 2074 if (IS_ERR(fscki)) { 2075 err = PTR_ERR(fscki); 2076 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2077 err, (unsigned long)inum); 2078 goto out_dump; 2079 } 2080 2081 /* Count how many direntries or xentries refers this inode */ 2082 fscki->references += 1; 2083 2084 inum = key_inum_flash(c, &dent->key); 2085 fscki1 = read_add_inode(c, priv, inum); 2086 if (IS_ERR(fscki1)) { 2087 err = PTR_ERR(fscki1); 2088 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2089 err, (unsigned long)inum); 2090 goto out_dump; 2091 } 2092 2093 nlen = le16_to_cpu(dent->nlen); 2094 if (type == UBIFS_XENT_KEY) { 2095 fscki1->calc_xcnt += 1; 2096 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2097 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2098 fscki1->calc_xnms += nlen; 2099 } else { 2100 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2101 if (dent->type == UBIFS_ITYPE_DIR) 2102 fscki1->calc_cnt += 1; 2103 } 2104 } 2105 2106 out: 2107 kfree(node); 2108 return 0; 2109 2110 out_dump: 2111 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2112 ubifs_dump_node(c, node); 2113 out_free: 2114 kfree(node); 2115 return err; 2116 } 2117 2118 /** 2119 * free_inodes - free RB-tree of inodes. 2120 * @fsckd: FS checking information 2121 */ 2122 static void free_inodes(struct fsck_data *fsckd) 2123 { 2124 struct fsck_inode *fscki, *n; 2125 2126 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2127 kfree(fscki); 2128 } 2129 2130 /** 2131 * check_inodes - checks all inodes. 2132 * @c: UBIFS file-system description object 2133 * @fsckd: FS checking information 2134 * 2135 * This is a helper function for 'dbg_check_filesystem()' which walks the 2136 * RB-tree of inodes after the index scan has been finished, and checks that 2137 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2138 * %-EINVAL if not, and a negative error code in case of failure. 2139 */ 2140 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2141 { 2142 int n, err; 2143 union ubifs_key key; 2144 struct ubifs_znode *znode; 2145 struct ubifs_zbranch *zbr; 2146 struct ubifs_ino_node *ino; 2147 struct fsck_inode *fscki; 2148 struct rb_node *this = rb_first(&fsckd->inodes); 2149 2150 while (this) { 2151 fscki = rb_entry(this, struct fsck_inode, rb); 2152 this = rb_next(this); 2153 2154 if (S_ISDIR(fscki->mode)) { 2155 /* 2156 * Directories have to have exactly one reference (they 2157 * cannot have hardlinks), although root inode is an 2158 * exception. 2159 */ 2160 if (fscki->inum != UBIFS_ROOT_INO && 2161 fscki->references != 1) { 2162 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2163 (unsigned long)fscki->inum, 2164 fscki->references); 2165 goto out_dump; 2166 } 2167 if (fscki->inum == UBIFS_ROOT_INO && 2168 fscki->references != 0) { 2169 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2170 (unsigned long)fscki->inum, 2171 fscki->references); 2172 goto out_dump; 2173 } 2174 if (fscki->calc_sz != fscki->size) { 2175 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2176 (unsigned long)fscki->inum, 2177 fscki->size, fscki->calc_sz); 2178 goto out_dump; 2179 } 2180 if (fscki->calc_cnt != fscki->nlink) { 2181 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2182 (unsigned long)fscki->inum, 2183 fscki->nlink, fscki->calc_cnt); 2184 goto out_dump; 2185 } 2186 } else { 2187 if (fscki->references != fscki->nlink) { 2188 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2189 (unsigned long)fscki->inum, 2190 fscki->nlink, fscki->references); 2191 goto out_dump; 2192 } 2193 } 2194 if (fscki->xattr_sz != fscki->calc_xsz) { 2195 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2196 (unsigned long)fscki->inum, fscki->xattr_sz, 2197 fscki->calc_xsz); 2198 goto out_dump; 2199 } 2200 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2201 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2202 (unsigned long)fscki->inum, 2203 fscki->xattr_cnt, fscki->calc_xcnt); 2204 goto out_dump; 2205 } 2206 if (fscki->xattr_nms != fscki->calc_xnms) { 2207 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2208 (unsigned long)fscki->inum, fscki->xattr_nms, 2209 fscki->calc_xnms); 2210 goto out_dump; 2211 } 2212 } 2213 2214 return 0; 2215 2216 out_dump: 2217 /* Read the bad inode and dump it */ 2218 ino_key_init(c, &key, fscki->inum); 2219 err = ubifs_lookup_level0(c, &key, &znode, &n); 2220 if (!err) { 2221 ubifs_err(c, "inode %lu not found in index", 2222 (unsigned long)fscki->inum); 2223 return -ENOENT; 2224 } else if (err < 0) { 2225 ubifs_err(c, "error %d while looking up inode %lu", 2226 err, (unsigned long)fscki->inum); 2227 return err; 2228 } 2229 2230 zbr = &znode->zbranch[n]; 2231 ino = kmalloc(zbr->len, GFP_NOFS); 2232 if (!ino) 2233 return -ENOMEM; 2234 2235 err = ubifs_tnc_read_node(c, zbr, ino); 2236 if (err) { 2237 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2238 zbr->lnum, zbr->offs, err); 2239 kfree(ino); 2240 return err; 2241 } 2242 2243 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2244 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2245 ubifs_dump_node(c, ino); 2246 kfree(ino); 2247 return -EINVAL; 2248 } 2249 2250 /** 2251 * dbg_check_filesystem - check the file-system. 2252 * @c: UBIFS file-system description object 2253 * 2254 * This function checks the file system, namely: 2255 * o makes sure that all leaf nodes exist and their CRCs are correct; 2256 * o makes sure inode nlink, size, xattr size/count are correct (for all 2257 * inodes). 2258 * 2259 * The function reads whole indexing tree and all nodes, so it is pretty 2260 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2261 * not, and a negative error code in case of failure. 2262 */ 2263 int dbg_check_filesystem(struct ubifs_info *c) 2264 { 2265 int err; 2266 struct fsck_data fsckd; 2267 2268 if (!dbg_is_chk_fs(c)) 2269 return 0; 2270 2271 fsckd.inodes = RB_ROOT; 2272 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2273 if (err) 2274 goto out_free; 2275 2276 err = check_inodes(c, &fsckd); 2277 if (err) 2278 goto out_free; 2279 2280 free_inodes(&fsckd); 2281 return 0; 2282 2283 out_free: 2284 ubifs_err(c, "file-system check failed with error %d", err); 2285 dump_stack(); 2286 free_inodes(&fsckd); 2287 return err; 2288 } 2289 2290 /** 2291 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2292 * @c: UBIFS file-system description object 2293 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2294 * 2295 * This function returns zero if the list of data nodes is sorted correctly, 2296 * and %-EINVAL if not. 2297 */ 2298 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2299 { 2300 struct list_head *cur; 2301 struct ubifs_scan_node *sa, *sb; 2302 2303 if (!dbg_is_chk_gen(c)) 2304 return 0; 2305 2306 for (cur = head->next; cur->next != head; cur = cur->next) { 2307 ino_t inuma, inumb; 2308 uint32_t blka, blkb; 2309 2310 cond_resched(); 2311 sa = container_of(cur, struct ubifs_scan_node, list); 2312 sb = container_of(cur->next, struct ubifs_scan_node, list); 2313 2314 if (sa->type != UBIFS_DATA_NODE) { 2315 ubifs_err(c, "bad node type %d", sa->type); 2316 ubifs_dump_node(c, sa->node); 2317 return -EINVAL; 2318 } 2319 if (sb->type != UBIFS_DATA_NODE) { 2320 ubifs_err(c, "bad node type %d", sb->type); 2321 ubifs_dump_node(c, sb->node); 2322 return -EINVAL; 2323 } 2324 2325 inuma = key_inum(c, &sa->key); 2326 inumb = key_inum(c, &sb->key); 2327 2328 if (inuma < inumb) 2329 continue; 2330 if (inuma > inumb) { 2331 ubifs_err(c, "larger inum %lu goes before inum %lu", 2332 (unsigned long)inuma, (unsigned long)inumb); 2333 goto error_dump; 2334 } 2335 2336 blka = key_block(c, &sa->key); 2337 blkb = key_block(c, &sb->key); 2338 2339 if (blka > blkb) { 2340 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2341 goto error_dump; 2342 } 2343 if (blka == blkb) { 2344 ubifs_err(c, "two data nodes for the same block"); 2345 goto error_dump; 2346 } 2347 } 2348 2349 return 0; 2350 2351 error_dump: 2352 ubifs_dump_node(c, sa->node); 2353 ubifs_dump_node(c, sb->node); 2354 return -EINVAL; 2355 } 2356 2357 /** 2358 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2359 * @c: UBIFS file-system description object 2360 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2361 * 2362 * This function returns zero if the list of non-data nodes is sorted correctly, 2363 * and %-EINVAL if not. 2364 */ 2365 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2366 { 2367 struct list_head *cur; 2368 struct ubifs_scan_node *sa, *sb; 2369 2370 if (!dbg_is_chk_gen(c)) 2371 return 0; 2372 2373 for (cur = head->next; cur->next != head; cur = cur->next) { 2374 ino_t inuma, inumb; 2375 uint32_t hasha, hashb; 2376 2377 cond_resched(); 2378 sa = container_of(cur, struct ubifs_scan_node, list); 2379 sb = container_of(cur->next, struct ubifs_scan_node, list); 2380 2381 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2382 sa->type != UBIFS_XENT_NODE) { 2383 ubifs_err(c, "bad node type %d", sa->type); 2384 ubifs_dump_node(c, sa->node); 2385 return -EINVAL; 2386 } 2387 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && 2388 sb->type != UBIFS_XENT_NODE) { 2389 ubifs_err(c, "bad node type %d", sb->type); 2390 ubifs_dump_node(c, sb->node); 2391 return -EINVAL; 2392 } 2393 2394 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2395 ubifs_err(c, "non-inode node goes before inode node"); 2396 goto error_dump; 2397 } 2398 2399 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2400 continue; 2401 2402 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2403 /* Inode nodes are sorted in descending size order */ 2404 if (sa->len < sb->len) { 2405 ubifs_err(c, "smaller inode node goes first"); 2406 goto error_dump; 2407 } 2408 continue; 2409 } 2410 2411 /* 2412 * This is either a dentry or xentry, which should be sorted in 2413 * ascending (parent ino, hash) order. 2414 */ 2415 inuma = key_inum(c, &sa->key); 2416 inumb = key_inum(c, &sb->key); 2417 2418 if (inuma < inumb) 2419 continue; 2420 if (inuma > inumb) { 2421 ubifs_err(c, "larger inum %lu goes before inum %lu", 2422 (unsigned long)inuma, (unsigned long)inumb); 2423 goto error_dump; 2424 } 2425 2426 hasha = key_block(c, &sa->key); 2427 hashb = key_block(c, &sb->key); 2428 2429 if (hasha > hashb) { 2430 ubifs_err(c, "larger hash %u goes before %u", 2431 hasha, hashb); 2432 goto error_dump; 2433 } 2434 } 2435 2436 return 0; 2437 2438 error_dump: 2439 ubifs_msg(c, "dumping first node"); 2440 ubifs_dump_node(c, sa->node); 2441 ubifs_msg(c, "dumping second node"); 2442 ubifs_dump_node(c, sb->node); 2443 return -EINVAL; 2444 return 0; 2445 } 2446 2447 static inline int chance(unsigned int n, unsigned int out_of) 2448 { 2449 return !!((prandom_u32() % out_of) + 1 <= n); 2450 2451 } 2452 2453 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2454 { 2455 struct ubifs_debug_info *d = c->dbg; 2456 2457 ubifs_assert(c, dbg_is_tst_rcvry(c)); 2458 2459 if (!d->pc_cnt) { 2460 /* First call - decide delay to the power cut */ 2461 if (chance(1, 2)) { 2462 unsigned long delay; 2463 2464 if (chance(1, 2)) { 2465 d->pc_delay = 1; 2466 /* Fail within 1 minute */ 2467 delay = prandom_u32() % 60000; 2468 d->pc_timeout = jiffies; 2469 d->pc_timeout += msecs_to_jiffies(delay); 2470 ubifs_warn(c, "failing after %lums", delay); 2471 } else { 2472 d->pc_delay = 2; 2473 delay = prandom_u32() % 10000; 2474 /* Fail within 10000 operations */ 2475 d->pc_cnt_max = delay; 2476 ubifs_warn(c, "failing after %lu calls", delay); 2477 } 2478 } 2479 2480 d->pc_cnt += 1; 2481 } 2482 2483 /* Determine if failure delay has expired */ 2484 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2485 return 0; 2486 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2487 return 0; 2488 2489 if (lnum == UBIFS_SB_LNUM) { 2490 if (write && chance(1, 2)) 2491 return 0; 2492 if (chance(19, 20)) 2493 return 0; 2494 ubifs_warn(c, "failing in super block LEB %d", lnum); 2495 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2496 if (chance(19, 20)) 2497 return 0; 2498 ubifs_warn(c, "failing in master LEB %d", lnum); 2499 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2500 if (write && chance(99, 100)) 2501 return 0; 2502 if (chance(399, 400)) 2503 return 0; 2504 ubifs_warn(c, "failing in log LEB %d", lnum); 2505 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2506 if (write && chance(7, 8)) 2507 return 0; 2508 if (chance(19, 20)) 2509 return 0; 2510 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2511 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2512 if (write && chance(1, 2)) 2513 return 0; 2514 if (chance(9, 10)) 2515 return 0; 2516 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2517 } else if (lnum == c->ihead_lnum) { 2518 if (chance(99, 100)) 2519 return 0; 2520 ubifs_warn(c, "failing in index head LEB %d", lnum); 2521 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2522 if (chance(9, 10)) 2523 return 0; 2524 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2525 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2526 !ubifs_search_bud(c, lnum)) { 2527 if (chance(19, 20)) 2528 return 0; 2529 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2530 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2531 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2532 if (chance(999, 1000)) 2533 return 0; 2534 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2535 } else { 2536 if (chance(9999, 10000)) 2537 return 0; 2538 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2539 } 2540 2541 d->pc_happened = 1; 2542 ubifs_warn(c, "========== Power cut emulated =========="); 2543 dump_stack(); 2544 return 1; 2545 } 2546 2547 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2548 unsigned int len) 2549 { 2550 unsigned int from, to, ffs = chance(1, 2); 2551 unsigned char *p = (void *)buf; 2552 2553 from = prandom_u32() % len; 2554 /* Corruption span max to end of write unit */ 2555 to = min(len, ALIGN(from + 1, c->max_write_size)); 2556 2557 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2558 ffs ? "0xFFs" : "random data"); 2559 2560 if (ffs) 2561 memset(p + from, 0xFF, to - from); 2562 else 2563 prandom_bytes(p + from, to - from); 2564 2565 return to; 2566 } 2567 2568 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2569 int offs, int len) 2570 { 2571 int err, failing; 2572 2573 if (dbg_is_power_cut(c)) 2574 return -EROFS; 2575 2576 failing = power_cut_emulated(c, lnum, 1); 2577 if (failing) { 2578 len = corrupt_data(c, buf, len); 2579 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2580 len, lnum, offs); 2581 } 2582 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2583 if (err) 2584 return err; 2585 if (failing) 2586 return -EROFS; 2587 return 0; 2588 } 2589 2590 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2591 int len) 2592 { 2593 int err; 2594 2595 if (dbg_is_power_cut(c)) 2596 return -EROFS; 2597 if (power_cut_emulated(c, lnum, 1)) 2598 return -EROFS; 2599 err = ubi_leb_change(c->ubi, lnum, buf, len); 2600 if (err) 2601 return err; 2602 if (power_cut_emulated(c, lnum, 1)) 2603 return -EROFS; 2604 return 0; 2605 } 2606 2607 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2608 { 2609 int err; 2610 2611 if (dbg_is_power_cut(c)) 2612 return -EROFS; 2613 if (power_cut_emulated(c, lnum, 0)) 2614 return -EROFS; 2615 err = ubi_leb_unmap(c->ubi, lnum); 2616 if (err) 2617 return err; 2618 if (power_cut_emulated(c, lnum, 0)) 2619 return -EROFS; 2620 return 0; 2621 } 2622 2623 int dbg_leb_map(struct ubifs_info *c, int lnum) 2624 { 2625 int err; 2626 2627 if (dbg_is_power_cut(c)) 2628 return -EROFS; 2629 if (power_cut_emulated(c, lnum, 0)) 2630 return -EROFS; 2631 err = ubi_leb_map(c->ubi, lnum); 2632 if (err) 2633 return err; 2634 if (power_cut_emulated(c, lnum, 0)) 2635 return -EROFS; 2636 return 0; 2637 } 2638 2639 /* 2640 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2641 * contain the stuff specific to particular file-system mounts. 2642 */ 2643 static struct dentry *dfs_rootdir; 2644 2645 static int dfs_file_open(struct inode *inode, struct file *file) 2646 { 2647 file->private_data = inode->i_private; 2648 return nonseekable_open(inode, file); 2649 } 2650 2651 /** 2652 * provide_user_output - provide output to the user reading a debugfs file. 2653 * @val: boolean value for the answer 2654 * @u: the buffer to store the answer at 2655 * @count: size of the buffer 2656 * @ppos: position in the @u output buffer 2657 * 2658 * This is a simple helper function which stores @val boolean value in the user 2659 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2660 * bytes written to @u in case of success and a negative error code in case of 2661 * failure. 2662 */ 2663 static int provide_user_output(int val, char __user *u, size_t count, 2664 loff_t *ppos) 2665 { 2666 char buf[3]; 2667 2668 if (val) 2669 buf[0] = '1'; 2670 else 2671 buf[0] = '0'; 2672 buf[1] = '\n'; 2673 buf[2] = 0x00; 2674 2675 return simple_read_from_buffer(u, count, ppos, buf, 2); 2676 } 2677 2678 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2679 loff_t *ppos) 2680 { 2681 struct dentry *dent = file->f_path.dentry; 2682 struct ubifs_info *c = file->private_data; 2683 struct ubifs_debug_info *d = c->dbg; 2684 int val; 2685 2686 if (dent == d->dfs_chk_gen) 2687 val = d->chk_gen; 2688 else if (dent == d->dfs_chk_index) 2689 val = d->chk_index; 2690 else if (dent == d->dfs_chk_orph) 2691 val = d->chk_orph; 2692 else if (dent == d->dfs_chk_lprops) 2693 val = d->chk_lprops; 2694 else if (dent == d->dfs_chk_fs) 2695 val = d->chk_fs; 2696 else if (dent == d->dfs_tst_rcvry) 2697 val = d->tst_rcvry; 2698 else if (dent == d->dfs_ro_error) 2699 val = c->ro_error; 2700 else 2701 return -EINVAL; 2702 2703 return provide_user_output(val, u, count, ppos); 2704 } 2705 2706 /** 2707 * interpret_user_input - interpret user debugfs file input. 2708 * @u: user-provided buffer with the input 2709 * @count: buffer size 2710 * 2711 * This is a helper function which interpret user input to a boolean UBIFS 2712 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2713 * in case of failure. 2714 */ 2715 static int interpret_user_input(const char __user *u, size_t count) 2716 { 2717 size_t buf_size; 2718 char buf[8]; 2719 2720 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2721 if (copy_from_user(buf, u, buf_size)) 2722 return -EFAULT; 2723 2724 if (buf[0] == '1') 2725 return 1; 2726 else if (buf[0] == '0') 2727 return 0; 2728 2729 return -EINVAL; 2730 } 2731 2732 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2733 size_t count, loff_t *ppos) 2734 { 2735 struct ubifs_info *c = file->private_data; 2736 struct ubifs_debug_info *d = c->dbg; 2737 struct dentry *dent = file->f_path.dentry; 2738 int val; 2739 2740 if (file->f_path.dentry == d->dfs_dump_lprops) { 2741 ubifs_dump_lprops(c); 2742 return count; 2743 } 2744 if (file->f_path.dentry == d->dfs_dump_budg) { 2745 ubifs_dump_budg(c, &c->bi); 2746 return count; 2747 } 2748 if (file->f_path.dentry == d->dfs_dump_tnc) { 2749 mutex_lock(&c->tnc_mutex); 2750 ubifs_dump_tnc(c); 2751 mutex_unlock(&c->tnc_mutex); 2752 return count; 2753 } 2754 2755 val = interpret_user_input(u, count); 2756 if (val < 0) 2757 return val; 2758 2759 if (dent == d->dfs_chk_gen) 2760 d->chk_gen = val; 2761 else if (dent == d->dfs_chk_index) 2762 d->chk_index = val; 2763 else if (dent == d->dfs_chk_orph) 2764 d->chk_orph = val; 2765 else if (dent == d->dfs_chk_lprops) 2766 d->chk_lprops = val; 2767 else if (dent == d->dfs_chk_fs) 2768 d->chk_fs = val; 2769 else if (dent == d->dfs_tst_rcvry) 2770 d->tst_rcvry = val; 2771 else if (dent == d->dfs_ro_error) 2772 c->ro_error = !!val; 2773 else 2774 return -EINVAL; 2775 2776 return count; 2777 } 2778 2779 static const struct file_operations dfs_fops = { 2780 .open = dfs_file_open, 2781 .read = dfs_file_read, 2782 .write = dfs_file_write, 2783 .owner = THIS_MODULE, 2784 .llseek = no_llseek, 2785 }; 2786 2787 /** 2788 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2789 * @c: UBIFS file-system description object 2790 * 2791 * This function creates all debugfs files for this instance of UBIFS. 2792 * 2793 * Note, the only reason we have not merged this function with the 2794 * 'ubifs_debugging_init()' function is because it is better to initialize 2795 * debugfs interfaces at the very end of the mount process, and remove them at 2796 * the very beginning of the mount process. 2797 */ 2798 void dbg_debugfs_init_fs(struct ubifs_info *c) 2799 { 2800 int n; 2801 const char *fname; 2802 struct ubifs_debug_info *d = c->dbg; 2803 2804 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME, 2805 c->vi.ubi_num, c->vi.vol_id); 2806 if (n == UBIFS_DFS_DIR_LEN) { 2807 /* The array size is too small */ 2808 return; 2809 } 2810 2811 fname = d->dfs_dir_name; 2812 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir); 2813 2814 fname = "dump_lprops"; 2815 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2816 &dfs_fops); 2817 2818 fname = "dump_budg"; 2819 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2820 &dfs_fops); 2821 2822 fname = "dump_tnc"; 2823 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2824 &dfs_fops); 2825 2826 fname = "chk_general"; 2827 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2828 d->dfs_dir, c, &dfs_fops); 2829 2830 fname = "chk_index"; 2831 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2832 d->dfs_dir, c, &dfs_fops); 2833 2834 fname = "chk_orphans"; 2835 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2836 d->dfs_dir, c, &dfs_fops); 2837 2838 fname = "chk_lprops"; 2839 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2840 d->dfs_dir, c, &dfs_fops); 2841 2842 fname = "chk_fs"; 2843 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2844 d->dfs_dir, c, &dfs_fops); 2845 2846 fname = "tst_recovery"; 2847 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2848 d->dfs_dir, c, &dfs_fops); 2849 2850 fname = "ro_error"; 2851 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2852 d->dfs_dir, c, &dfs_fops); 2853 } 2854 2855 /** 2856 * dbg_debugfs_exit_fs - remove all debugfs files. 2857 * @c: UBIFS file-system description object 2858 */ 2859 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2860 { 2861 debugfs_remove_recursive(c->dbg->dfs_dir); 2862 } 2863 2864 struct ubifs_global_debug_info ubifs_dbg; 2865 2866 static struct dentry *dfs_chk_gen; 2867 static struct dentry *dfs_chk_index; 2868 static struct dentry *dfs_chk_orph; 2869 static struct dentry *dfs_chk_lprops; 2870 static struct dentry *dfs_chk_fs; 2871 static struct dentry *dfs_tst_rcvry; 2872 2873 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2874 size_t count, loff_t *ppos) 2875 { 2876 struct dentry *dent = file->f_path.dentry; 2877 int val; 2878 2879 if (dent == dfs_chk_gen) 2880 val = ubifs_dbg.chk_gen; 2881 else if (dent == dfs_chk_index) 2882 val = ubifs_dbg.chk_index; 2883 else if (dent == dfs_chk_orph) 2884 val = ubifs_dbg.chk_orph; 2885 else if (dent == dfs_chk_lprops) 2886 val = ubifs_dbg.chk_lprops; 2887 else if (dent == dfs_chk_fs) 2888 val = ubifs_dbg.chk_fs; 2889 else if (dent == dfs_tst_rcvry) 2890 val = ubifs_dbg.tst_rcvry; 2891 else 2892 return -EINVAL; 2893 2894 return provide_user_output(val, u, count, ppos); 2895 } 2896 2897 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2898 size_t count, loff_t *ppos) 2899 { 2900 struct dentry *dent = file->f_path.dentry; 2901 int val; 2902 2903 val = interpret_user_input(u, count); 2904 if (val < 0) 2905 return val; 2906 2907 if (dent == dfs_chk_gen) 2908 ubifs_dbg.chk_gen = val; 2909 else if (dent == dfs_chk_index) 2910 ubifs_dbg.chk_index = val; 2911 else if (dent == dfs_chk_orph) 2912 ubifs_dbg.chk_orph = val; 2913 else if (dent == dfs_chk_lprops) 2914 ubifs_dbg.chk_lprops = val; 2915 else if (dent == dfs_chk_fs) 2916 ubifs_dbg.chk_fs = val; 2917 else if (dent == dfs_tst_rcvry) 2918 ubifs_dbg.tst_rcvry = val; 2919 else 2920 return -EINVAL; 2921 2922 return count; 2923 } 2924 2925 static const struct file_operations dfs_global_fops = { 2926 .read = dfs_global_file_read, 2927 .write = dfs_global_file_write, 2928 .owner = THIS_MODULE, 2929 .llseek = no_llseek, 2930 }; 2931 2932 /** 2933 * dbg_debugfs_init - initialize debugfs file-system. 2934 * 2935 * UBIFS uses debugfs file-system to expose various debugging knobs to 2936 * user-space. This function creates "ubifs" directory in the debugfs 2937 * file-system. 2938 */ 2939 void dbg_debugfs_init(void) 2940 { 2941 const char *fname; 2942 2943 fname = "ubifs"; 2944 dfs_rootdir = debugfs_create_dir(fname, NULL); 2945 2946 fname = "chk_general"; 2947 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2948 NULL, &dfs_global_fops); 2949 2950 fname = "chk_index"; 2951 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2952 dfs_rootdir, NULL, &dfs_global_fops); 2953 2954 fname = "chk_orphans"; 2955 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2956 dfs_rootdir, NULL, &dfs_global_fops); 2957 2958 fname = "chk_lprops"; 2959 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2960 dfs_rootdir, NULL, &dfs_global_fops); 2961 2962 fname = "chk_fs"; 2963 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2964 NULL, &dfs_global_fops); 2965 2966 fname = "tst_recovery"; 2967 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2968 dfs_rootdir, NULL, &dfs_global_fops); 2969 } 2970 2971 /** 2972 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2973 */ 2974 void dbg_debugfs_exit(void) 2975 { 2976 debugfs_remove_recursive(dfs_rootdir); 2977 } 2978 2979 void ubifs_assert_failed(struct ubifs_info *c, const char *expr, 2980 const char *file, int line) 2981 { 2982 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line); 2983 2984 switch (c->assert_action) { 2985 case ASSACT_PANIC: 2986 BUG(); 2987 break; 2988 2989 case ASSACT_RO: 2990 ubifs_ro_mode(c, -EINVAL); 2991 break; 2992 2993 case ASSACT_REPORT: 2994 default: 2995 dump_stack(); 2996 break; 2997 2998 } 2999 } 3000 3001 /** 3002 * ubifs_debugging_init - initialize UBIFS debugging. 3003 * @c: UBIFS file-system description object 3004 * 3005 * This function initializes debugging-related data for the file system. 3006 * Returns zero in case of success and a negative error code in case of 3007 * failure. 3008 */ 3009 int ubifs_debugging_init(struct ubifs_info *c) 3010 { 3011 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3012 if (!c->dbg) 3013 return -ENOMEM; 3014 3015 return 0; 3016 } 3017 3018 /** 3019 * ubifs_debugging_exit - free debugging data. 3020 * @c: UBIFS file-system description object 3021 */ 3022 void ubifs_debugging_exit(struct ubifs_info *c) 3023 { 3024 kfree(c->dbg); 3025 } 3026