1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright © 2001-2007 Red Hat, Inc. 5 * 6 * Created by David Woodhouse <dwmw2@infradead.org> 7 * 8 * For licensing information, see the file 'LICENCE' in this directory. 9 * 10 */ 11 12 #include <linux/kernel.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/mtd/mtd.h> 16 #include <linux/pagemap.h> 17 #include <linux/crc32.h> 18 #include <linux/compiler.h> 19 #include "nodelist.h" 20 #include "summary.h" 21 #include "debug.h" 22 23 #define DEFAULT_EMPTY_SCAN_SIZE 256 24 25 #define noisy_printk(noise, args...) do { \ 26 if (*(noise)) { \ 27 printk(KERN_NOTICE args); \ 28 (*(noise))--; \ 29 if (!(*(noise))) { \ 30 printk(KERN_NOTICE "Further such events for this erase block will not be printed\n"); \ 31 } \ 32 } \ 33 } while(0) 34 35 static uint32_t pseudo_random; 36 37 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 38 unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s); 39 40 /* These helper functions _must_ increase ofs and also do the dirty/used space accounting. 41 * Returning an error will abort the mount - bad checksums etc. should just mark the space 42 * as dirty. 43 */ 44 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 45 struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s); 46 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 47 struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s); 48 49 static inline int min_free(struct jffs2_sb_info *c) 50 { 51 uint32_t min = 2 * sizeof(struct jffs2_raw_inode); 52 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 53 if (!jffs2_can_mark_obsolete(c) && min < c->wbuf_pagesize) 54 return c->wbuf_pagesize; 55 #endif 56 return min; 57 58 } 59 60 static inline uint32_t EMPTY_SCAN_SIZE(uint32_t sector_size) { 61 if (sector_size < DEFAULT_EMPTY_SCAN_SIZE) 62 return sector_size; 63 else 64 return DEFAULT_EMPTY_SCAN_SIZE; 65 } 66 67 static int file_dirty(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 68 { 69 int ret; 70 71 if ((ret = jffs2_prealloc_raw_node_refs(c, jeb, 1))) 72 return ret; 73 if ((ret = jffs2_scan_dirty_space(c, jeb, jeb->free_size))) 74 return ret; 75 /* Turned wasted size into dirty, since we apparently 76 think it's recoverable now. */ 77 jeb->dirty_size += jeb->wasted_size; 78 c->dirty_size += jeb->wasted_size; 79 c->wasted_size -= jeb->wasted_size; 80 jeb->wasted_size = 0; 81 if (VERYDIRTY(c, jeb->dirty_size)) { 82 list_add(&jeb->list, &c->very_dirty_list); 83 } else { 84 list_add(&jeb->list, &c->dirty_list); 85 } 86 return 0; 87 } 88 89 int jffs2_scan_medium(struct jffs2_sb_info *c) 90 { 91 int i, ret; 92 uint32_t empty_blocks = 0, bad_blocks = 0; 93 unsigned char *flashbuf = NULL; 94 uint32_t buf_size = 0; 95 struct jffs2_summary *s = NULL; /* summary info collected by the scan process */ 96 #ifndef __ECOS 97 size_t pointlen, try_size; 98 99 if (c->mtd->point) { 100 ret = c->mtd->point(c->mtd, 0, c->mtd->size, &pointlen, 101 (void **)&flashbuf, NULL); 102 if (!ret && pointlen < c->mtd->size) { 103 /* Don't muck about if it won't let us point to the whole flash */ 104 D1(printk(KERN_DEBUG "MTD point returned len too short: 0x%zx\n", pointlen)); 105 c->mtd->unpoint(c->mtd, 0, pointlen); 106 flashbuf = NULL; 107 } 108 if (ret) 109 D1(printk(KERN_DEBUG "MTD point failed %d\n", ret)); 110 } 111 #endif 112 if (!flashbuf) { 113 /* For NAND it's quicker to read a whole eraseblock at a time, 114 apparently */ 115 if (jffs2_cleanmarker_oob(c)) 116 try_size = c->sector_size; 117 else 118 try_size = PAGE_SIZE; 119 120 D1(printk(KERN_DEBUG "Trying to allocate readbuf of %zu " 121 "bytes\n", try_size)); 122 123 flashbuf = mtd_kmalloc_up_to(c->mtd, &try_size); 124 if (!flashbuf) 125 return -ENOMEM; 126 127 D1(printk(KERN_DEBUG "Allocated readbuf of %zu bytes\n", 128 try_size)); 129 130 buf_size = (uint32_t)try_size; 131 } 132 133 if (jffs2_sum_active()) { 134 s = kzalloc(sizeof(struct jffs2_summary), GFP_KERNEL); 135 if (!s) { 136 JFFS2_WARNING("Can't allocate memory for summary\n"); 137 ret = -ENOMEM; 138 goto out; 139 } 140 } 141 142 for (i=0; i<c->nr_blocks; i++) { 143 struct jffs2_eraseblock *jeb = &c->blocks[i]; 144 145 cond_resched(); 146 147 /* reset summary info for next eraseblock scan */ 148 jffs2_sum_reset_collected(s); 149 150 ret = jffs2_scan_eraseblock(c, jeb, buf_size?flashbuf:(flashbuf+jeb->offset), 151 buf_size, s); 152 153 if (ret < 0) 154 goto out; 155 156 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 157 158 /* Now decide which list to put it on */ 159 switch(ret) { 160 case BLK_STATE_ALLFF: 161 /* 162 * Empty block. Since we can't be sure it 163 * was entirely erased, we just queue it for erase 164 * again. It will be marked as such when the erase 165 * is complete. Meanwhile we still count it as empty 166 * for later checks. 167 */ 168 empty_blocks++; 169 list_add(&jeb->list, &c->erase_pending_list); 170 c->nr_erasing_blocks++; 171 break; 172 173 case BLK_STATE_CLEANMARKER: 174 /* Only a CLEANMARKER node is valid */ 175 if (!jeb->dirty_size) { 176 /* It's actually free */ 177 list_add(&jeb->list, &c->free_list); 178 c->nr_free_blocks++; 179 } else { 180 /* Dirt */ 181 D1(printk(KERN_DEBUG "Adding all-dirty block at 0x%08x to erase_pending_list\n", jeb->offset)); 182 list_add(&jeb->list, &c->erase_pending_list); 183 c->nr_erasing_blocks++; 184 } 185 break; 186 187 case BLK_STATE_CLEAN: 188 /* Full (or almost full) of clean data. Clean list */ 189 list_add(&jeb->list, &c->clean_list); 190 break; 191 192 case BLK_STATE_PARTDIRTY: 193 /* Some data, but not full. Dirty list. */ 194 /* We want to remember the block with most free space 195 and stick it in the 'nextblock' position to start writing to it. */ 196 if (jeb->free_size > min_free(c) && 197 (!c->nextblock || c->nextblock->free_size < jeb->free_size)) { 198 /* Better candidate for the next writes to go to */ 199 if (c->nextblock) { 200 ret = file_dirty(c, c->nextblock); 201 if (ret) 202 goto out; 203 /* deleting summary information of the old nextblock */ 204 jffs2_sum_reset_collected(c->summary); 205 } 206 /* update collected summary information for the current nextblock */ 207 jffs2_sum_move_collected(c, s); 208 D1(printk(KERN_DEBUG "jffs2_scan_medium(): new nextblock = 0x%08x\n", jeb->offset)); 209 c->nextblock = jeb; 210 } else { 211 ret = file_dirty(c, jeb); 212 if (ret) 213 goto out; 214 } 215 break; 216 217 case BLK_STATE_ALLDIRTY: 218 /* Nothing valid - not even a clean marker. Needs erasing. */ 219 /* For now we just put it on the erasing list. We'll start the erases later */ 220 D1(printk(KERN_NOTICE "JFFS2: Erase block at 0x%08x is not formatted. It will be erased\n", jeb->offset)); 221 list_add(&jeb->list, &c->erase_pending_list); 222 c->nr_erasing_blocks++; 223 break; 224 225 case BLK_STATE_BADBLOCK: 226 D1(printk(KERN_NOTICE "JFFS2: Block at 0x%08x is bad\n", jeb->offset)); 227 list_add(&jeb->list, &c->bad_list); 228 c->bad_size += c->sector_size; 229 c->free_size -= c->sector_size; 230 bad_blocks++; 231 break; 232 default: 233 printk(KERN_WARNING "jffs2_scan_medium(): unknown block state\n"); 234 BUG(); 235 } 236 } 237 238 /* Nextblock dirty is always seen as wasted, because we cannot recycle it now */ 239 if (c->nextblock && (c->nextblock->dirty_size)) { 240 c->nextblock->wasted_size += c->nextblock->dirty_size; 241 c->wasted_size += c->nextblock->dirty_size; 242 c->dirty_size -= c->nextblock->dirty_size; 243 c->nextblock->dirty_size = 0; 244 } 245 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 246 if (!jffs2_can_mark_obsolete(c) && c->wbuf_pagesize && c->nextblock && (c->nextblock->free_size % c->wbuf_pagesize)) { 247 /* If we're going to start writing into a block which already 248 contains data, and the end of the data isn't page-aligned, 249 skip a little and align it. */ 250 251 uint32_t skip = c->nextblock->free_size % c->wbuf_pagesize; 252 253 D1(printk(KERN_DEBUG "jffs2_scan_medium(): Skipping %d bytes in nextblock to ensure page alignment\n", 254 skip)); 255 jffs2_prealloc_raw_node_refs(c, c->nextblock, 1); 256 jffs2_scan_dirty_space(c, c->nextblock, skip); 257 } 258 #endif 259 if (c->nr_erasing_blocks) { 260 if ( !c->used_size && ((c->nr_free_blocks+empty_blocks+bad_blocks)!= c->nr_blocks || bad_blocks == c->nr_blocks) ) { 261 printk(KERN_NOTICE "Cowardly refusing to erase blocks on filesystem with no valid JFFS2 nodes\n"); 262 printk(KERN_NOTICE "empty_blocks %d, bad_blocks %d, c->nr_blocks %d\n",empty_blocks,bad_blocks,c->nr_blocks); 263 ret = -EIO; 264 goto out; 265 } 266 spin_lock(&c->erase_completion_lock); 267 jffs2_garbage_collect_trigger(c); 268 spin_unlock(&c->erase_completion_lock); 269 } 270 ret = 0; 271 out: 272 if (buf_size) 273 kfree(flashbuf); 274 #ifndef __ECOS 275 else 276 c->mtd->unpoint(c->mtd, 0, c->mtd->size); 277 #endif 278 kfree(s); 279 return ret; 280 } 281 282 static int jffs2_fill_scan_buf(struct jffs2_sb_info *c, void *buf, 283 uint32_t ofs, uint32_t len) 284 { 285 int ret; 286 size_t retlen; 287 288 ret = jffs2_flash_read(c, ofs, len, &retlen, buf); 289 if (ret) { 290 D1(printk(KERN_WARNING "mtd->read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret)); 291 return ret; 292 } 293 if (retlen < len) { 294 D1(printk(KERN_WARNING "Read at 0x%x gave only 0x%zx bytes\n", ofs, retlen)); 295 return -EIO; 296 } 297 return 0; 298 } 299 300 int jffs2_scan_classify_jeb(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 301 { 302 if ((jeb->used_size + jeb->unchecked_size) == PAD(c->cleanmarker_size) && !jeb->dirty_size 303 && (!jeb->first_node || !ref_next(jeb->first_node)) ) 304 return BLK_STATE_CLEANMARKER; 305 306 /* move blocks with max 4 byte dirty space to cleanlist */ 307 else if (!ISDIRTY(c->sector_size - (jeb->used_size + jeb->unchecked_size))) { 308 c->dirty_size -= jeb->dirty_size; 309 c->wasted_size += jeb->dirty_size; 310 jeb->wasted_size += jeb->dirty_size; 311 jeb->dirty_size = 0; 312 return BLK_STATE_CLEAN; 313 } else if (jeb->used_size || jeb->unchecked_size) 314 return BLK_STATE_PARTDIRTY; 315 else 316 return BLK_STATE_ALLDIRTY; 317 } 318 319 #ifdef CONFIG_JFFS2_FS_XATTR 320 static int jffs2_scan_xattr_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 321 struct jffs2_raw_xattr *rx, uint32_t ofs, 322 struct jffs2_summary *s) 323 { 324 struct jffs2_xattr_datum *xd; 325 uint32_t xid, version, totlen, crc; 326 int err; 327 328 crc = crc32(0, rx, sizeof(struct jffs2_raw_xattr) - 4); 329 if (crc != je32_to_cpu(rx->node_crc)) { 330 JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n", 331 ofs, je32_to_cpu(rx->node_crc), crc); 332 if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen)))) 333 return err; 334 return 0; 335 } 336 337 xid = je32_to_cpu(rx->xid); 338 version = je32_to_cpu(rx->version); 339 340 totlen = PAD(sizeof(struct jffs2_raw_xattr) 341 + rx->name_len + 1 + je16_to_cpu(rx->value_len)); 342 if (totlen != je32_to_cpu(rx->totlen)) { 343 JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%u\n", 344 ofs, je32_to_cpu(rx->totlen), totlen); 345 if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rx->totlen)))) 346 return err; 347 return 0; 348 } 349 350 xd = jffs2_setup_xattr_datum(c, xid, version); 351 if (IS_ERR(xd)) 352 return PTR_ERR(xd); 353 354 if (xd->version > version) { 355 struct jffs2_raw_node_ref *raw 356 = jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, NULL); 357 raw->next_in_ino = xd->node->next_in_ino; 358 xd->node->next_in_ino = raw; 359 } else { 360 xd->version = version; 361 xd->xprefix = rx->xprefix; 362 xd->name_len = rx->name_len; 363 xd->value_len = je16_to_cpu(rx->value_len); 364 xd->data_crc = je32_to_cpu(rx->data_crc); 365 366 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, totlen, (void *)xd); 367 } 368 369 if (jffs2_sum_active()) 370 jffs2_sum_add_xattr_mem(s, rx, ofs - jeb->offset); 371 dbg_xattr("scaning xdatum at %#08x (xid=%u, version=%u)\n", 372 ofs, xd->xid, xd->version); 373 return 0; 374 } 375 376 static int jffs2_scan_xref_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 377 struct jffs2_raw_xref *rr, uint32_t ofs, 378 struct jffs2_summary *s) 379 { 380 struct jffs2_xattr_ref *ref; 381 uint32_t crc; 382 int err; 383 384 crc = crc32(0, rr, sizeof(*rr) - 4); 385 if (crc != je32_to_cpu(rr->node_crc)) { 386 JFFS2_WARNING("node CRC failed at %#08x, read=%#08x, calc=%#08x\n", 387 ofs, je32_to_cpu(rr->node_crc), crc); 388 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rr->totlen))))) 389 return err; 390 return 0; 391 } 392 393 if (PAD(sizeof(struct jffs2_raw_xref)) != je32_to_cpu(rr->totlen)) { 394 JFFS2_WARNING("node length mismatch at %#08x, read=%u, calc=%zd\n", 395 ofs, je32_to_cpu(rr->totlen), 396 PAD(sizeof(struct jffs2_raw_xref))); 397 if ((err = jffs2_scan_dirty_space(c, jeb, je32_to_cpu(rr->totlen)))) 398 return err; 399 return 0; 400 } 401 402 ref = jffs2_alloc_xattr_ref(); 403 if (!ref) 404 return -ENOMEM; 405 406 /* BEFORE jffs2_build_xattr_subsystem() called, 407 * and AFTER xattr_ref is marked as a dead xref, 408 * ref->xid is used to store 32bit xid, xd is not used 409 * ref->ino is used to store 32bit inode-number, ic is not used 410 * Thoes variables are declared as union, thus using those 411 * are exclusive. In a similar way, ref->next is temporarily 412 * used to chain all xattr_ref object. It's re-chained to 413 * jffs2_inode_cache in jffs2_build_xattr_subsystem() correctly. 414 */ 415 ref->ino = je32_to_cpu(rr->ino); 416 ref->xid = je32_to_cpu(rr->xid); 417 ref->xseqno = je32_to_cpu(rr->xseqno); 418 if (ref->xseqno > c->highest_xseqno) 419 c->highest_xseqno = (ref->xseqno & ~XREF_DELETE_MARKER); 420 ref->next = c->xref_temp; 421 c->xref_temp = ref; 422 423 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(rr->totlen)), (void *)ref); 424 425 if (jffs2_sum_active()) 426 jffs2_sum_add_xref_mem(s, rr, ofs - jeb->offset); 427 dbg_xattr("scan xref at %#08x (xid=%u, ino=%u)\n", 428 ofs, ref->xid, ref->ino); 429 return 0; 430 } 431 #endif 432 433 /* Called with 'buf_size == 0' if buf is in fact a pointer _directly_ into 434 the flash, XIP-style */ 435 static int jffs2_scan_eraseblock (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 436 unsigned char *buf, uint32_t buf_size, struct jffs2_summary *s) { 437 struct jffs2_unknown_node *node; 438 struct jffs2_unknown_node crcnode; 439 uint32_t ofs, prevofs, max_ofs; 440 uint32_t hdr_crc, buf_ofs, buf_len; 441 int err; 442 int noise = 0; 443 444 445 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 446 int cleanmarkerfound = 0; 447 #endif 448 449 ofs = jeb->offset; 450 prevofs = jeb->offset - 1; 451 452 D1(printk(KERN_DEBUG "jffs2_scan_eraseblock(): Scanning block at 0x%x\n", ofs)); 453 454 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 455 if (jffs2_cleanmarker_oob(c)) { 456 int ret; 457 458 if (c->mtd->block_isbad(c->mtd, jeb->offset)) 459 return BLK_STATE_BADBLOCK; 460 461 ret = jffs2_check_nand_cleanmarker(c, jeb); 462 D2(printk(KERN_NOTICE "jffs_check_nand_cleanmarker returned %d\n",ret)); 463 464 /* Even if it's not found, we still scan to see 465 if the block is empty. We use this information 466 to decide whether to erase it or not. */ 467 switch (ret) { 468 case 0: cleanmarkerfound = 1; break; 469 case 1: break; 470 default: return ret; 471 } 472 } 473 #endif 474 475 if (jffs2_sum_active()) { 476 struct jffs2_sum_marker *sm; 477 void *sumptr = NULL; 478 uint32_t sumlen; 479 480 if (!buf_size) { 481 /* XIP case. Just look, point at the summary if it's there */ 482 sm = (void *)buf + c->sector_size - sizeof(*sm); 483 if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) { 484 sumptr = buf + je32_to_cpu(sm->offset); 485 sumlen = c->sector_size - je32_to_cpu(sm->offset); 486 } 487 } else { 488 /* If NAND flash, read a whole page of it. Else just the end */ 489 if (c->wbuf_pagesize) 490 buf_len = c->wbuf_pagesize; 491 else 492 buf_len = sizeof(*sm); 493 494 /* Read as much as we want into the _end_ of the preallocated buffer */ 495 err = jffs2_fill_scan_buf(c, buf + buf_size - buf_len, 496 jeb->offset + c->sector_size - buf_len, 497 buf_len); 498 if (err) 499 return err; 500 501 sm = (void *)buf + buf_size - sizeof(*sm); 502 if (je32_to_cpu(sm->magic) == JFFS2_SUM_MAGIC) { 503 sumlen = c->sector_size - je32_to_cpu(sm->offset); 504 sumptr = buf + buf_size - sumlen; 505 506 /* Now, make sure the summary itself is available */ 507 if (sumlen > buf_size) { 508 /* Need to kmalloc for this. */ 509 sumptr = kmalloc(sumlen, GFP_KERNEL); 510 if (!sumptr) 511 return -ENOMEM; 512 memcpy(sumptr + sumlen - buf_len, buf + buf_size - buf_len, buf_len); 513 } 514 if (buf_len < sumlen) { 515 /* Need to read more so that the entire summary node is present */ 516 err = jffs2_fill_scan_buf(c, sumptr, 517 jeb->offset + c->sector_size - sumlen, 518 sumlen - buf_len); 519 if (err) 520 return err; 521 } 522 } 523 524 } 525 526 if (sumptr) { 527 err = jffs2_sum_scan_sumnode(c, jeb, sumptr, sumlen, &pseudo_random); 528 529 if (buf_size && sumlen > buf_size) 530 kfree(sumptr); 531 /* If it returns with a real error, bail. 532 If it returns positive, that's a block classification 533 (i.e. BLK_STATE_xxx) so return that too. 534 If it returns zero, fall through to full scan. */ 535 if (err) 536 return err; 537 } 538 } 539 540 buf_ofs = jeb->offset; 541 542 if (!buf_size) { 543 /* This is the XIP case -- we're reading _directly_ from the flash chip */ 544 buf_len = c->sector_size; 545 } else { 546 buf_len = EMPTY_SCAN_SIZE(c->sector_size); 547 err = jffs2_fill_scan_buf(c, buf, buf_ofs, buf_len); 548 if (err) 549 return err; 550 } 551 552 /* We temporarily use 'ofs' as a pointer into the buffer/jeb */ 553 ofs = 0; 554 max_ofs = EMPTY_SCAN_SIZE(c->sector_size); 555 /* Scan only EMPTY_SCAN_SIZE of 0xFF before declaring it's empty */ 556 while(ofs < max_ofs && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) 557 ofs += 4; 558 559 if (ofs == max_ofs) { 560 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER 561 if (jffs2_cleanmarker_oob(c)) { 562 /* scan oob, take care of cleanmarker */ 563 int ret = jffs2_check_oob_empty(c, jeb, cleanmarkerfound); 564 D2(printk(KERN_NOTICE "jffs2_check_oob_empty returned %d\n",ret)); 565 switch (ret) { 566 case 0: return cleanmarkerfound ? BLK_STATE_CLEANMARKER : BLK_STATE_ALLFF; 567 case 1: return BLK_STATE_ALLDIRTY; 568 default: return ret; 569 } 570 } 571 #endif 572 D1(printk(KERN_DEBUG "Block at 0x%08x is empty (erased)\n", jeb->offset)); 573 if (c->cleanmarker_size == 0) 574 return BLK_STATE_CLEANMARKER; /* don't bother with re-erase */ 575 else 576 return BLK_STATE_ALLFF; /* OK to erase if all blocks are like this */ 577 } 578 if (ofs) { 579 D1(printk(KERN_DEBUG "Free space at %08x ends at %08x\n", jeb->offset, 580 jeb->offset + ofs)); 581 if ((err = jffs2_prealloc_raw_node_refs(c, jeb, 1))) 582 return err; 583 if ((err = jffs2_scan_dirty_space(c, jeb, ofs))) 584 return err; 585 } 586 587 /* Now ofs is a complete physical flash offset as it always was... */ 588 ofs += jeb->offset; 589 590 noise = 10; 591 592 dbg_summary("no summary found in jeb 0x%08x. Apply original scan.\n",jeb->offset); 593 594 scan_more: 595 while(ofs < jeb->offset + c->sector_size) { 596 597 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 598 599 /* Make sure there are node refs available for use */ 600 err = jffs2_prealloc_raw_node_refs(c, jeb, 2); 601 if (err) 602 return err; 603 604 cond_resched(); 605 606 if (ofs & 3) { 607 printk(KERN_WARNING "Eep. ofs 0x%08x not word-aligned!\n", ofs); 608 ofs = PAD(ofs); 609 continue; 610 } 611 if (ofs == prevofs) { 612 printk(KERN_WARNING "ofs 0x%08x has already been seen. Skipping\n", ofs); 613 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 614 return err; 615 ofs += 4; 616 continue; 617 } 618 prevofs = ofs; 619 620 if (jeb->offset + c->sector_size < ofs + sizeof(*node)) { 621 D1(printk(KERN_DEBUG "Fewer than %zd bytes left to end of block. (%x+%x<%x+%zx) Not reading\n", sizeof(struct jffs2_unknown_node), 622 jeb->offset, c->sector_size, ofs, sizeof(*node))); 623 if ((err = jffs2_scan_dirty_space(c, jeb, (jeb->offset + c->sector_size)-ofs))) 624 return err; 625 break; 626 } 627 628 if (buf_ofs + buf_len < ofs + sizeof(*node)) { 629 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 630 D1(printk(KERN_DEBUG "Fewer than %zd bytes (node header) left to end of buf. Reading 0x%x at 0x%08x\n", 631 sizeof(struct jffs2_unknown_node), buf_len, ofs)); 632 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 633 if (err) 634 return err; 635 buf_ofs = ofs; 636 } 637 638 node = (struct jffs2_unknown_node *)&buf[ofs-buf_ofs]; 639 640 if (*(uint32_t *)(&buf[ofs-buf_ofs]) == 0xffffffff) { 641 uint32_t inbuf_ofs; 642 uint32_t empty_start, scan_end; 643 644 empty_start = ofs; 645 ofs += 4; 646 scan_end = min_t(uint32_t, EMPTY_SCAN_SIZE(c->sector_size)/8, buf_len); 647 648 D1(printk(KERN_DEBUG "Found empty flash at 0x%08x\n", ofs)); 649 more_empty: 650 inbuf_ofs = ofs - buf_ofs; 651 while (inbuf_ofs < scan_end) { 652 if (unlikely(*(uint32_t *)(&buf[inbuf_ofs]) != 0xffffffff)) { 653 printk(KERN_WARNING "Empty flash at 0x%08x ends at 0x%08x\n", 654 empty_start, ofs); 655 if ((err = jffs2_scan_dirty_space(c, jeb, ofs-empty_start))) 656 return err; 657 goto scan_more; 658 } 659 660 inbuf_ofs+=4; 661 ofs += 4; 662 } 663 /* Ran off end. */ 664 D1(printk(KERN_DEBUG "Empty flash to end of buffer at 0x%08x\n", ofs)); 665 666 /* If we're only checking the beginning of a block with a cleanmarker, 667 bail now */ 668 if (buf_ofs == jeb->offset && jeb->used_size == PAD(c->cleanmarker_size) && 669 c->cleanmarker_size && !jeb->dirty_size && !ref_next(jeb->first_node)) { 670 D1(printk(KERN_DEBUG "%d bytes at start of block seems clean... assuming all clean\n", EMPTY_SCAN_SIZE(c->sector_size))); 671 return BLK_STATE_CLEANMARKER; 672 } 673 if (!buf_size && (scan_end != buf_len)) {/* XIP/point case */ 674 scan_end = buf_len; 675 goto more_empty; 676 } 677 678 /* See how much more there is to read in this eraseblock... */ 679 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 680 if (!buf_len) { 681 /* No more to read. Break out of main loop without marking 682 this range of empty space as dirty (because it's not) */ 683 D1(printk(KERN_DEBUG "Empty flash at %08x runs to end of block. Treating as free_space\n", 684 empty_start)); 685 break; 686 } 687 /* point never reaches here */ 688 scan_end = buf_len; 689 D1(printk(KERN_DEBUG "Reading another 0x%x at 0x%08x\n", buf_len, ofs)); 690 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 691 if (err) 692 return err; 693 buf_ofs = ofs; 694 goto more_empty; 695 } 696 697 if (ofs == jeb->offset && je16_to_cpu(node->magic) == KSAMTIB_CIGAM_2SFFJ) { 698 printk(KERN_WARNING "Magic bitmask is backwards at offset 0x%08x. Wrong endian filesystem?\n", ofs); 699 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 700 return err; 701 ofs += 4; 702 continue; 703 } 704 if (je16_to_cpu(node->magic) == JFFS2_DIRTY_BITMASK) { 705 D1(printk(KERN_DEBUG "Dirty bitmask at 0x%08x\n", ofs)); 706 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 707 return err; 708 ofs += 4; 709 continue; 710 } 711 if (je16_to_cpu(node->magic) == JFFS2_OLD_MAGIC_BITMASK) { 712 printk(KERN_WARNING "Old JFFS2 bitmask found at 0x%08x\n", ofs); 713 printk(KERN_WARNING "You cannot use older JFFS2 filesystems with newer kernels\n"); 714 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 715 return err; 716 ofs += 4; 717 continue; 718 } 719 if (je16_to_cpu(node->magic) != JFFS2_MAGIC_BITMASK) { 720 /* OK. We're out of possibilities. Whinge and move on */ 721 noisy_printk(&noise, "jffs2_scan_eraseblock(): Magic bitmask 0x%04x not found at 0x%08x: 0x%04x instead\n", 722 JFFS2_MAGIC_BITMASK, ofs, 723 je16_to_cpu(node->magic)); 724 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 725 return err; 726 ofs += 4; 727 continue; 728 } 729 /* We seem to have a node of sorts. Check the CRC */ 730 crcnode.magic = node->magic; 731 crcnode.nodetype = cpu_to_je16( je16_to_cpu(node->nodetype) | JFFS2_NODE_ACCURATE); 732 crcnode.totlen = node->totlen; 733 hdr_crc = crc32(0, &crcnode, sizeof(crcnode)-4); 734 735 if (hdr_crc != je32_to_cpu(node->hdr_crc)) { 736 noisy_printk(&noise, "jffs2_scan_eraseblock(): Node at 0x%08x {0x%04x, 0x%04x, 0x%08x) has invalid CRC 0x%08x (calculated 0x%08x)\n", 737 ofs, je16_to_cpu(node->magic), 738 je16_to_cpu(node->nodetype), 739 je32_to_cpu(node->totlen), 740 je32_to_cpu(node->hdr_crc), 741 hdr_crc); 742 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 743 return err; 744 ofs += 4; 745 continue; 746 } 747 748 if (ofs + je32_to_cpu(node->totlen) > jeb->offset + c->sector_size) { 749 /* Eep. Node goes over the end of the erase block. */ 750 printk(KERN_WARNING "Node at 0x%08x with length 0x%08x would run over the end of the erase block\n", 751 ofs, je32_to_cpu(node->totlen)); 752 printk(KERN_WARNING "Perhaps the file system was created with the wrong erase size?\n"); 753 if ((err = jffs2_scan_dirty_space(c, jeb, 4))) 754 return err; 755 ofs += 4; 756 continue; 757 } 758 759 if (!(je16_to_cpu(node->nodetype) & JFFS2_NODE_ACCURATE)) { 760 /* Wheee. This is an obsoleted node */ 761 D2(printk(KERN_DEBUG "Node at 0x%08x is obsolete. Skipping\n", ofs)); 762 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 763 return err; 764 ofs += PAD(je32_to_cpu(node->totlen)); 765 continue; 766 } 767 768 switch(je16_to_cpu(node->nodetype)) { 769 case JFFS2_NODETYPE_INODE: 770 if (buf_ofs + buf_len < ofs + sizeof(struct jffs2_raw_inode)) { 771 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 772 D1(printk(KERN_DEBUG "Fewer than %zd bytes (inode node) left to end of buf. Reading 0x%x at 0x%08x\n", 773 sizeof(struct jffs2_raw_inode), buf_len, ofs)); 774 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 775 if (err) 776 return err; 777 buf_ofs = ofs; 778 node = (void *)buf; 779 } 780 err = jffs2_scan_inode_node(c, jeb, (void *)node, ofs, s); 781 if (err) return err; 782 ofs += PAD(je32_to_cpu(node->totlen)); 783 break; 784 785 case JFFS2_NODETYPE_DIRENT: 786 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 787 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 788 D1(printk(KERN_DEBUG "Fewer than %d bytes (dirent node) left to end of buf. Reading 0x%x at 0x%08x\n", 789 je32_to_cpu(node->totlen), buf_len, ofs)); 790 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 791 if (err) 792 return err; 793 buf_ofs = ofs; 794 node = (void *)buf; 795 } 796 err = jffs2_scan_dirent_node(c, jeb, (void *)node, ofs, s); 797 if (err) return err; 798 ofs += PAD(je32_to_cpu(node->totlen)); 799 break; 800 801 #ifdef CONFIG_JFFS2_FS_XATTR 802 case JFFS2_NODETYPE_XATTR: 803 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 804 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 805 D1(printk(KERN_DEBUG "Fewer than %d bytes (xattr node)" 806 " left to end of buf. Reading 0x%x at 0x%08x\n", 807 je32_to_cpu(node->totlen), buf_len, ofs)); 808 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 809 if (err) 810 return err; 811 buf_ofs = ofs; 812 node = (void *)buf; 813 } 814 err = jffs2_scan_xattr_node(c, jeb, (void *)node, ofs, s); 815 if (err) 816 return err; 817 ofs += PAD(je32_to_cpu(node->totlen)); 818 break; 819 case JFFS2_NODETYPE_XREF: 820 if (buf_ofs + buf_len < ofs + je32_to_cpu(node->totlen)) { 821 buf_len = min_t(uint32_t, buf_size, jeb->offset + c->sector_size - ofs); 822 D1(printk(KERN_DEBUG "Fewer than %d bytes (xref node)" 823 " left to end of buf. Reading 0x%x at 0x%08x\n", 824 je32_to_cpu(node->totlen), buf_len, ofs)); 825 err = jffs2_fill_scan_buf(c, buf, ofs, buf_len); 826 if (err) 827 return err; 828 buf_ofs = ofs; 829 node = (void *)buf; 830 } 831 err = jffs2_scan_xref_node(c, jeb, (void *)node, ofs, s); 832 if (err) 833 return err; 834 ofs += PAD(je32_to_cpu(node->totlen)); 835 break; 836 #endif /* CONFIG_JFFS2_FS_XATTR */ 837 838 case JFFS2_NODETYPE_CLEANMARKER: 839 D1(printk(KERN_DEBUG "CLEANMARKER node found at 0x%08x\n", ofs)); 840 if (je32_to_cpu(node->totlen) != c->cleanmarker_size) { 841 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x has totlen 0x%x != normal 0x%x\n", 842 ofs, je32_to_cpu(node->totlen), c->cleanmarker_size); 843 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) 844 return err; 845 ofs += PAD(sizeof(struct jffs2_unknown_node)); 846 } else if (jeb->first_node) { 847 printk(KERN_NOTICE "CLEANMARKER node found at 0x%08x, not first node in block (0x%08x)\n", ofs, jeb->offset); 848 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(sizeof(struct jffs2_unknown_node))))) 849 return err; 850 ofs += PAD(sizeof(struct jffs2_unknown_node)); 851 } else { 852 jffs2_link_node_ref(c, jeb, ofs | REF_NORMAL, c->cleanmarker_size, NULL); 853 854 ofs += PAD(c->cleanmarker_size); 855 } 856 break; 857 858 case JFFS2_NODETYPE_PADDING: 859 if (jffs2_sum_active()) 860 jffs2_sum_add_padding_mem(s, je32_to_cpu(node->totlen)); 861 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 862 return err; 863 ofs += PAD(je32_to_cpu(node->totlen)); 864 break; 865 866 default: 867 switch (je16_to_cpu(node->nodetype) & JFFS2_COMPAT_MASK) { 868 case JFFS2_FEATURE_ROCOMPAT: 869 printk(KERN_NOTICE "Read-only compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); 870 c->flags |= JFFS2_SB_FLAG_RO; 871 if (!(jffs2_is_readonly(c))) 872 return -EROFS; 873 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 874 return err; 875 ofs += PAD(je32_to_cpu(node->totlen)); 876 break; 877 878 case JFFS2_FEATURE_INCOMPAT: 879 printk(KERN_NOTICE "Incompatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs); 880 return -EINVAL; 881 882 case JFFS2_FEATURE_RWCOMPAT_DELETE: 883 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); 884 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(node->totlen))))) 885 return err; 886 ofs += PAD(je32_to_cpu(node->totlen)); 887 break; 888 889 case JFFS2_FEATURE_RWCOMPAT_COPY: { 890 D1(printk(KERN_NOTICE "Unknown but compatible feature node (0x%04x) found at offset 0x%08x\n", je16_to_cpu(node->nodetype), ofs)); 891 892 jffs2_link_node_ref(c, jeb, ofs | REF_PRISTINE, PAD(je32_to_cpu(node->totlen)), NULL); 893 894 /* We can't summarise nodes we don't grok */ 895 jffs2_sum_disable_collecting(s); 896 ofs += PAD(je32_to_cpu(node->totlen)); 897 break; 898 } 899 } 900 } 901 } 902 903 if (jffs2_sum_active()) { 904 if (PAD(s->sum_size + JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size) { 905 dbg_summary("There is not enough space for " 906 "summary information, disabling for this jeb!\n"); 907 jffs2_sum_disable_collecting(s); 908 } 909 } 910 911 D1(printk(KERN_DEBUG "Block at 0x%08x: free 0x%08x, dirty 0x%08x, unchecked 0x%08x, used 0x%08x, wasted 0x%08x\n", 912 jeb->offset,jeb->free_size, jeb->dirty_size, jeb->unchecked_size, jeb->used_size, jeb->wasted_size)); 913 914 /* mark_node_obsolete can add to wasted !! */ 915 if (jeb->wasted_size) { 916 jeb->dirty_size += jeb->wasted_size; 917 c->dirty_size += jeb->wasted_size; 918 c->wasted_size -= jeb->wasted_size; 919 jeb->wasted_size = 0; 920 } 921 922 return jffs2_scan_classify_jeb(c, jeb); 923 } 924 925 struct jffs2_inode_cache *jffs2_scan_make_ino_cache(struct jffs2_sb_info *c, uint32_t ino) 926 { 927 struct jffs2_inode_cache *ic; 928 929 ic = jffs2_get_ino_cache(c, ino); 930 if (ic) 931 return ic; 932 933 if (ino > c->highest_ino) 934 c->highest_ino = ino; 935 936 ic = jffs2_alloc_inode_cache(); 937 if (!ic) { 938 printk(KERN_NOTICE "jffs2_scan_make_inode_cache(): allocation of inode cache failed\n"); 939 return NULL; 940 } 941 memset(ic, 0, sizeof(*ic)); 942 943 ic->ino = ino; 944 ic->nodes = (void *)ic; 945 jffs2_add_ino_cache(c, ic); 946 if (ino == 1) 947 ic->pino_nlink = 1; 948 return ic; 949 } 950 951 static int jffs2_scan_inode_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 952 struct jffs2_raw_inode *ri, uint32_t ofs, struct jffs2_summary *s) 953 { 954 struct jffs2_inode_cache *ic; 955 uint32_t crc, ino = je32_to_cpu(ri->ino); 956 957 D1(printk(KERN_DEBUG "jffs2_scan_inode_node(): Node at 0x%08x\n", ofs)); 958 959 /* We do very little here now. Just check the ino# to which we should attribute 960 this node; we can do all the CRC checking etc. later. There's a tradeoff here -- 961 we used to scan the flash once only, reading everything we want from it into 962 memory, then building all our in-core data structures and freeing the extra 963 information. Now we allow the first part of the mount to complete a lot quicker, 964 but we have to go _back_ to the flash in order to finish the CRC checking, etc. 965 Which means that the _full_ amount of time to get to proper write mode with GC 966 operational may actually be _longer_ than before. Sucks to be me. */ 967 968 /* Check the node CRC in any case. */ 969 crc = crc32(0, ri, sizeof(*ri)-8); 970 if (crc != je32_to_cpu(ri->node_crc)) { 971 printk(KERN_NOTICE "jffs2_scan_inode_node(): CRC failed on " 972 "node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 973 ofs, je32_to_cpu(ri->node_crc), crc); 974 /* 975 * We believe totlen because the CRC on the node 976 * _header_ was OK, just the node itself failed. 977 */ 978 return jffs2_scan_dirty_space(c, jeb, 979 PAD(je32_to_cpu(ri->totlen))); 980 } 981 982 ic = jffs2_get_ino_cache(c, ino); 983 if (!ic) { 984 ic = jffs2_scan_make_ino_cache(c, ino); 985 if (!ic) 986 return -ENOMEM; 987 } 988 989 /* Wheee. It worked */ 990 jffs2_link_node_ref(c, jeb, ofs | REF_UNCHECKED, PAD(je32_to_cpu(ri->totlen)), ic); 991 992 D1(printk(KERN_DEBUG "Node is ino #%u, version %d. Range 0x%x-0x%x\n", 993 je32_to_cpu(ri->ino), je32_to_cpu(ri->version), 994 je32_to_cpu(ri->offset), 995 je32_to_cpu(ri->offset)+je32_to_cpu(ri->dsize))); 996 997 pseudo_random += je32_to_cpu(ri->version); 998 999 if (jffs2_sum_active()) { 1000 jffs2_sum_add_inode_mem(s, ri, ofs - jeb->offset); 1001 } 1002 1003 return 0; 1004 } 1005 1006 static int jffs2_scan_dirent_node(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, 1007 struct jffs2_raw_dirent *rd, uint32_t ofs, struct jffs2_summary *s) 1008 { 1009 struct jffs2_full_dirent *fd; 1010 struct jffs2_inode_cache *ic; 1011 uint32_t checkedlen; 1012 uint32_t crc; 1013 int err; 1014 1015 D1(printk(KERN_DEBUG "jffs2_scan_dirent_node(): Node at 0x%08x\n", ofs)); 1016 1017 /* We don't get here unless the node is still valid, so we don't have to 1018 mask in the ACCURATE bit any more. */ 1019 crc = crc32(0, rd, sizeof(*rd)-8); 1020 1021 if (crc != je32_to_cpu(rd->node_crc)) { 1022 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Node CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1023 ofs, je32_to_cpu(rd->node_crc), crc); 1024 /* We believe totlen because the CRC on the node _header_ was OK, just the node itself failed. */ 1025 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) 1026 return err; 1027 return 0; 1028 } 1029 1030 pseudo_random += je32_to_cpu(rd->version); 1031 1032 /* Should never happen. Did. (OLPC trac #4184)*/ 1033 checkedlen = strnlen(rd->name, rd->nsize); 1034 if (checkedlen < rd->nsize) { 1035 printk(KERN_ERR "Dirent at %08x has zeroes in name. Truncating to %d chars\n", 1036 ofs, checkedlen); 1037 } 1038 fd = jffs2_alloc_full_dirent(checkedlen+1); 1039 if (!fd) { 1040 return -ENOMEM; 1041 } 1042 memcpy(&fd->name, rd->name, checkedlen); 1043 fd->name[checkedlen] = 0; 1044 1045 crc = crc32(0, fd->name, rd->nsize); 1046 if (crc != je32_to_cpu(rd->name_crc)) { 1047 printk(KERN_NOTICE "jffs2_scan_dirent_node(): Name CRC failed on node at 0x%08x: Read 0x%08x, calculated 0x%08x\n", 1048 ofs, je32_to_cpu(rd->name_crc), crc); 1049 D1(printk(KERN_NOTICE "Name for which CRC failed is (now) '%s', ino #%d\n", fd->name, je32_to_cpu(rd->ino))); 1050 jffs2_free_full_dirent(fd); 1051 /* FIXME: Why do we believe totlen? */ 1052 /* We believe totlen because the CRC on the node _header_ was OK, just the name failed. */ 1053 if ((err = jffs2_scan_dirty_space(c, jeb, PAD(je32_to_cpu(rd->totlen))))) 1054 return err; 1055 return 0; 1056 } 1057 ic = jffs2_scan_make_ino_cache(c, je32_to_cpu(rd->pino)); 1058 if (!ic) { 1059 jffs2_free_full_dirent(fd); 1060 return -ENOMEM; 1061 } 1062 1063 fd->raw = jffs2_link_node_ref(c, jeb, ofs | dirent_node_state(rd), 1064 PAD(je32_to_cpu(rd->totlen)), ic); 1065 1066 fd->next = NULL; 1067 fd->version = je32_to_cpu(rd->version); 1068 fd->ino = je32_to_cpu(rd->ino); 1069 fd->nhash = full_name_hash(fd->name, checkedlen); 1070 fd->type = rd->type; 1071 jffs2_add_fd_to_list(c, fd, &ic->scan_dents); 1072 1073 if (jffs2_sum_active()) { 1074 jffs2_sum_add_dirent_mem(s, rd, ofs - jeb->offset); 1075 } 1076 1077 return 0; 1078 } 1079 1080 static int count_list(struct list_head *l) 1081 { 1082 uint32_t count = 0; 1083 struct list_head *tmp; 1084 1085 list_for_each(tmp, l) { 1086 count++; 1087 } 1088 return count; 1089 } 1090 1091 /* Note: This breaks if list_empty(head). I don't care. You 1092 might, if you copy this code and use it elsewhere :) */ 1093 static void rotate_list(struct list_head *head, uint32_t count) 1094 { 1095 struct list_head *n = head->next; 1096 1097 list_del(head); 1098 while(count--) { 1099 n = n->next; 1100 } 1101 list_add(head, n); 1102 } 1103 1104 void jffs2_rotate_lists(struct jffs2_sb_info *c) 1105 { 1106 uint32_t x; 1107 uint32_t rotateby; 1108 1109 x = count_list(&c->clean_list); 1110 if (x) { 1111 rotateby = pseudo_random % x; 1112 rotate_list((&c->clean_list), rotateby); 1113 } 1114 1115 x = count_list(&c->very_dirty_list); 1116 if (x) { 1117 rotateby = pseudo_random % x; 1118 rotate_list((&c->very_dirty_list), rotateby); 1119 } 1120 1121 x = count_list(&c->dirty_list); 1122 if (x) { 1123 rotateby = pseudo_random % x; 1124 rotate_list((&c->dirty_list), rotateby); 1125 } 1126 1127 x = count_list(&c->erasable_list); 1128 if (x) { 1129 rotateby = pseudo_random % x; 1130 rotate_list((&c->erasable_list), rotateby); 1131 } 1132 1133 if (c->nr_erasing_blocks) { 1134 rotateby = pseudo_random % c->nr_erasing_blocks; 1135 rotate_list((&c->erase_pending_list), rotateby); 1136 } 1137 1138 if (c->nr_free_blocks) { 1139 rotateby = pseudo_random % c->nr_free_blocks; 1140 rotate_list((&c->free_list), rotateby); 1141 } 1142 } 1143