xref: /openbmc/linux/fs/fuse/dev.c (revision d6344cc8)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/sched/signal.h>
15 #include <linux/uio.h>
16 #include <linux/miscdevice.h>
17 #include <linux/pagemap.h>
18 #include <linux/file.h>
19 #include <linux/slab.h>
20 #include <linux/pipe_fs_i.h>
21 #include <linux/swap.h>
22 #include <linux/splice.h>
23 #include <linux/sched.h>
24 
25 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
26 MODULE_ALIAS("devname:fuse");
27 
28 /* Ordinary requests have even IDs, while interrupts IDs are odd */
29 #define FUSE_INT_REQ_BIT (1ULL << 0)
30 #define FUSE_REQ_ID_STEP (1ULL << 1)
31 
32 static struct kmem_cache *fuse_req_cachep;
33 
34 static struct fuse_dev *fuse_get_dev(struct file *file)
35 {
36 	/*
37 	 * Lockless access is OK, because file->private data is set
38 	 * once during mount and is valid until the file is released.
39 	 */
40 	return READ_ONCE(file->private_data);
41 }
42 
43 static void fuse_request_init(struct fuse_mount *fm, struct fuse_req *req)
44 {
45 	INIT_LIST_HEAD(&req->list);
46 	INIT_LIST_HEAD(&req->intr_entry);
47 	init_waitqueue_head(&req->waitq);
48 	refcount_set(&req->count, 1);
49 	__set_bit(FR_PENDING, &req->flags);
50 	req->fm = fm;
51 }
52 
53 static struct fuse_req *fuse_request_alloc(struct fuse_mount *fm, gfp_t flags)
54 {
55 	struct fuse_req *req = kmem_cache_zalloc(fuse_req_cachep, flags);
56 	if (req)
57 		fuse_request_init(fm, req);
58 
59 	return req;
60 }
61 
62 static void fuse_request_free(struct fuse_req *req)
63 {
64 	kmem_cache_free(fuse_req_cachep, req);
65 }
66 
67 static void __fuse_get_request(struct fuse_req *req)
68 {
69 	refcount_inc(&req->count);
70 }
71 
72 /* Must be called with > 1 refcount */
73 static void __fuse_put_request(struct fuse_req *req)
74 {
75 	refcount_dec(&req->count);
76 }
77 
78 void fuse_set_initialized(struct fuse_conn *fc)
79 {
80 	/* Make sure stores before this are seen on another CPU */
81 	smp_wmb();
82 	fc->initialized = 1;
83 }
84 
85 static bool fuse_block_alloc(struct fuse_conn *fc, bool for_background)
86 {
87 	return !fc->initialized || (for_background && fc->blocked);
88 }
89 
90 static void fuse_drop_waiting(struct fuse_conn *fc)
91 {
92 	/*
93 	 * lockess check of fc->connected is okay, because atomic_dec_and_test()
94 	 * provides a memory barrier matched with the one in fuse_wait_aborted()
95 	 * to ensure no wake-up is missed.
96 	 */
97 	if (atomic_dec_and_test(&fc->num_waiting) &&
98 	    !READ_ONCE(fc->connected)) {
99 		/* wake up aborters */
100 		wake_up_all(&fc->blocked_waitq);
101 	}
102 }
103 
104 static void fuse_put_request(struct fuse_req *req);
105 
106 static struct fuse_req *fuse_get_req(struct fuse_mount *fm, bool for_background)
107 {
108 	struct fuse_conn *fc = fm->fc;
109 	struct fuse_req *req;
110 	int err;
111 	atomic_inc(&fc->num_waiting);
112 
113 	if (fuse_block_alloc(fc, for_background)) {
114 		err = -EINTR;
115 		if (wait_event_killable_exclusive(fc->blocked_waitq,
116 				!fuse_block_alloc(fc, for_background)))
117 			goto out;
118 	}
119 	/* Matches smp_wmb() in fuse_set_initialized() */
120 	smp_rmb();
121 
122 	err = -ENOTCONN;
123 	if (!fc->connected)
124 		goto out;
125 
126 	err = -ECONNREFUSED;
127 	if (fc->conn_error)
128 		goto out;
129 
130 	req = fuse_request_alloc(fm, GFP_KERNEL);
131 	err = -ENOMEM;
132 	if (!req) {
133 		if (for_background)
134 			wake_up(&fc->blocked_waitq);
135 		goto out;
136 	}
137 
138 	req->in.h.uid = from_kuid(fc->user_ns, current_fsuid());
139 	req->in.h.gid = from_kgid(fc->user_ns, current_fsgid());
140 	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
141 
142 	__set_bit(FR_WAITING, &req->flags);
143 	if (for_background)
144 		__set_bit(FR_BACKGROUND, &req->flags);
145 
146 	if (unlikely(req->in.h.uid == ((uid_t)-1) ||
147 		     req->in.h.gid == ((gid_t)-1))) {
148 		fuse_put_request(req);
149 		return ERR_PTR(-EOVERFLOW);
150 	}
151 	return req;
152 
153  out:
154 	fuse_drop_waiting(fc);
155 	return ERR_PTR(err);
156 }
157 
158 static void fuse_put_request(struct fuse_req *req)
159 {
160 	struct fuse_conn *fc = req->fm->fc;
161 
162 	if (refcount_dec_and_test(&req->count)) {
163 		if (test_bit(FR_BACKGROUND, &req->flags)) {
164 			/*
165 			 * We get here in the unlikely case that a background
166 			 * request was allocated but not sent
167 			 */
168 			spin_lock(&fc->bg_lock);
169 			if (!fc->blocked)
170 				wake_up(&fc->blocked_waitq);
171 			spin_unlock(&fc->bg_lock);
172 		}
173 
174 		if (test_bit(FR_WAITING, &req->flags)) {
175 			__clear_bit(FR_WAITING, &req->flags);
176 			fuse_drop_waiting(fc);
177 		}
178 
179 		fuse_request_free(req);
180 	}
181 }
182 
183 unsigned int fuse_len_args(unsigned int numargs, struct fuse_arg *args)
184 {
185 	unsigned nbytes = 0;
186 	unsigned i;
187 
188 	for (i = 0; i < numargs; i++)
189 		nbytes += args[i].size;
190 
191 	return nbytes;
192 }
193 EXPORT_SYMBOL_GPL(fuse_len_args);
194 
195 u64 fuse_get_unique(struct fuse_iqueue *fiq)
196 {
197 	fiq->reqctr += FUSE_REQ_ID_STEP;
198 	return fiq->reqctr;
199 }
200 EXPORT_SYMBOL_GPL(fuse_get_unique);
201 
202 static unsigned int fuse_req_hash(u64 unique)
203 {
204 	return hash_long(unique & ~FUSE_INT_REQ_BIT, FUSE_PQ_HASH_BITS);
205 }
206 
207 /*
208  * A new request is available, wake fiq->waitq
209  */
210 static void fuse_dev_wake_and_unlock(struct fuse_iqueue *fiq)
211 __releases(fiq->lock)
212 {
213 	wake_up(&fiq->waitq);
214 	kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
215 	spin_unlock(&fiq->lock);
216 }
217 
218 const struct fuse_iqueue_ops fuse_dev_fiq_ops = {
219 	.wake_forget_and_unlock		= fuse_dev_wake_and_unlock,
220 	.wake_interrupt_and_unlock	= fuse_dev_wake_and_unlock,
221 	.wake_pending_and_unlock	= fuse_dev_wake_and_unlock,
222 };
223 EXPORT_SYMBOL_GPL(fuse_dev_fiq_ops);
224 
225 static void queue_request_and_unlock(struct fuse_iqueue *fiq,
226 				     struct fuse_req *req)
227 __releases(fiq->lock)
228 {
229 	req->in.h.len = sizeof(struct fuse_in_header) +
230 		fuse_len_args(req->args->in_numargs,
231 			      (struct fuse_arg *) req->args->in_args);
232 	list_add_tail(&req->list, &fiq->pending);
233 	fiq->ops->wake_pending_and_unlock(fiq);
234 }
235 
236 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
237 		       u64 nodeid, u64 nlookup)
238 {
239 	struct fuse_iqueue *fiq = &fc->iq;
240 
241 	forget->forget_one.nodeid = nodeid;
242 	forget->forget_one.nlookup = nlookup;
243 
244 	spin_lock(&fiq->lock);
245 	if (fiq->connected) {
246 		fiq->forget_list_tail->next = forget;
247 		fiq->forget_list_tail = forget;
248 		fiq->ops->wake_forget_and_unlock(fiq);
249 	} else {
250 		kfree(forget);
251 		spin_unlock(&fiq->lock);
252 	}
253 }
254 
255 static void flush_bg_queue(struct fuse_conn *fc)
256 {
257 	struct fuse_iqueue *fiq = &fc->iq;
258 
259 	while (fc->active_background < fc->max_background &&
260 	       !list_empty(&fc->bg_queue)) {
261 		struct fuse_req *req;
262 
263 		req = list_first_entry(&fc->bg_queue, struct fuse_req, list);
264 		list_del(&req->list);
265 		fc->active_background++;
266 		spin_lock(&fiq->lock);
267 		req->in.h.unique = fuse_get_unique(fiq);
268 		queue_request_and_unlock(fiq, req);
269 	}
270 }
271 
272 /*
273  * This function is called when a request is finished.  Either a reply
274  * has arrived or it was aborted (and not yet sent) or some error
275  * occurred during communication with userspace, or the device file
276  * was closed.  The requester thread is woken up (if still waiting),
277  * the 'end' callback is called if given, else the reference to the
278  * request is released
279  */
280 void fuse_request_end(struct fuse_req *req)
281 {
282 	struct fuse_mount *fm = req->fm;
283 	struct fuse_conn *fc = fm->fc;
284 	struct fuse_iqueue *fiq = &fc->iq;
285 
286 	if (test_and_set_bit(FR_FINISHED, &req->flags))
287 		goto put_request;
288 
289 	/*
290 	 * test_and_set_bit() implies smp_mb() between bit
291 	 * changing and below FR_INTERRUPTED check. Pairs with
292 	 * smp_mb() from queue_interrupt().
293 	 */
294 	if (test_bit(FR_INTERRUPTED, &req->flags)) {
295 		spin_lock(&fiq->lock);
296 		list_del_init(&req->intr_entry);
297 		spin_unlock(&fiq->lock);
298 	}
299 	WARN_ON(test_bit(FR_PENDING, &req->flags));
300 	WARN_ON(test_bit(FR_SENT, &req->flags));
301 	if (test_bit(FR_BACKGROUND, &req->flags)) {
302 		spin_lock(&fc->bg_lock);
303 		clear_bit(FR_BACKGROUND, &req->flags);
304 		if (fc->num_background == fc->max_background) {
305 			fc->blocked = 0;
306 			wake_up(&fc->blocked_waitq);
307 		} else if (!fc->blocked) {
308 			/*
309 			 * Wake up next waiter, if any.  It's okay to use
310 			 * waitqueue_active(), as we've already synced up
311 			 * fc->blocked with waiters with the wake_up() call
312 			 * above.
313 			 */
314 			if (waitqueue_active(&fc->blocked_waitq))
315 				wake_up(&fc->blocked_waitq);
316 		}
317 
318 		fc->num_background--;
319 		fc->active_background--;
320 		flush_bg_queue(fc);
321 		spin_unlock(&fc->bg_lock);
322 	} else {
323 		/* Wake up waiter sleeping in request_wait_answer() */
324 		wake_up(&req->waitq);
325 	}
326 
327 	if (test_bit(FR_ASYNC, &req->flags))
328 		req->args->end(fm, req->args, req->out.h.error);
329 put_request:
330 	fuse_put_request(req);
331 }
332 EXPORT_SYMBOL_GPL(fuse_request_end);
333 
334 static int queue_interrupt(struct fuse_req *req)
335 {
336 	struct fuse_iqueue *fiq = &req->fm->fc->iq;
337 
338 	spin_lock(&fiq->lock);
339 	/* Check for we've sent request to interrupt this req */
340 	if (unlikely(!test_bit(FR_INTERRUPTED, &req->flags))) {
341 		spin_unlock(&fiq->lock);
342 		return -EINVAL;
343 	}
344 
345 	if (list_empty(&req->intr_entry)) {
346 		list_add_tail(&req->intr_entry, &fiq->interrupts);
347 		/*
348 		 * Pairs with smp_mb() implied by test_and_set_bit()
349 		 * from fuse_request_end().
350 		 */
351 		smp_mb();
352 		if (test_bit(FR_FINISHED, &req->flags)) {
353 			list_del_init(&req->intr_entry);
354 			spin_unlock(&fiq->lock);
355 			return 0;
356 		}
357 		fiq->ops->wake_interrupt_and_unlock(fiq);
358 	} else {
359 		spin_unlock(&fiq->lock);
360 	}
361 	return 0;
362 }
363 
364 static void request_wait_answer(struct fuse_req *req)
365 {
366 	struct fuse_conn *fc = req->fm->fc;
367 	struct fuse_iqueue *fiq = &fc->iq;
368 	int err;
369 
370 	if (!fc->no_interrupt) {
371 		/* Any signal may interrupt this */
372 		err = wait_event_interruptible(req->waitq,
373 					test_bit(FR_FINISHED, &req->flags));
374 		if (!err)
375 			return;
376 
377 		set_bit(FR_INTERRUPTED, &req->flags);
378 		/* matches barrier in fuse_dev_do_read() */
379 		smp_mb__after_atomic();
380 		if (test_bit(FR_SENT, &req->flags))
381 			queue_interrupt(req);
382 	}
383 
384 	if (!test_bit(FR_FORCE, &req->flags)) {
385 		/* Only fatal signals may interrupt this */
386 		err = wait_event_killable(req->waitq,
387 					test_bit(FR_FINISHED, &req->flags));
388 		if (!err)
389 			return;
390 
391 		spin_lock(&fiq->lock);
392 		/* Request is not yet in userspace, bail out */
393 		if (test_bit(FR_PENDING, &req->flags)) {
394 			list_del(&req->list);
395 			spin_unlock(&fiq->lock);
396 			__fuse_put_request(req);
397 			req->out.h.error = -EINTR;
398 			return;
399 		}
400 		spin_unlock(&fiq->lock);
401 	}
402 
403 	/*
404 	 * Either request is already in userspace, or it was forced.
405 	 * Wait it out.
406 	 */
407 	wait_event(req->waitq, test_bit(FR_FINISHED, &req->flags));
408 }
409 
410 static void __fuse_request_send(struct fuse_req *req)
411 {
412 	struct fuse_iqueue *fiq = &req->fm->fc->iq;
413 
414 	BUG_ON(test_bit(FR_BACKGROUND, &req->flags));
415 	spin_lock(&fiq->lock);
416 	if (!fiq->connected) {
417 		spin_unlock(&fiq->lock);
418 		req->out.h.error = -ENOTCONN;
419 	} else {
420 		req->in.h.unique = fuse_get_unique(fiq);
421 		/* acquire extra reference, since request is still needed
422 		   after fuse_request_end() */
423 		__fuse_get_request(req);
424 		queue_request_and_unlock(fiq, req);
425 
426 		request_wait_answer(req);
427 		/* Pairs with smp_wmb() in fuse_request_end() */
428 		smp_rmb();
429 	}
430 }
431 
432 static void fuse_adjust_compat(struct fuse_conn *fc, struct fuse_args *args)
433 {
434 	if (fc->minor < 4 && args->opcode == FUSE_STATFS)
435 		args->out_args[0].size = FUSE_COMPAT_STATFS_SIZE;
436 
437 	if (fc->minor < 9) {
438 		switch (args->opcode) {
439 		case FUSE_LOOKUP:
440 		case FUSE_CREATE:
441 		case FUSE_MKNOD:
442 		case FUSE_MKDIR:
443 		case FUSE_SYMLINK:
444 		case FUSE_LINK:
445 			args->out_args[0].size = FUSE_COMPAT_ENTRY_OUT_SIZE;
446 			break;
447 		case FUSE_GETATTR:
448 		case FUSE_SETATTR:
449 			args->out_args[0].size = FUSE_COMPAT_ATTR_OUT_SIZE;
450 			break;
451 		}
452 	}
453 	if (fc->minor < 12) {
454 		switch (args->opcode) {
455 		case FUSE_CREATE:
456 			args->in_args[0].size = sizeof(struct fuse_open_in);
457 			break;
458 		case FUSE_MKNOD:
459 			args->in_args[0].size = FUSE_COMPAT_MKNOD_IN_SIZE;
460 			break;
461 		}
462 	}
463 }
464 
465 static void fuse_force_creds(struct fuse_req *req)
466 {
467 	struct fuse_conn *fc = req->fm->fc;
468 
469 	req->in.h.uid = from_kuid_munged(fc->user_ns, current_fsuid());
470 	req->in.h.gid = from_kgid_munged(fc->user_ns, current_fsgid());
471 	req->in.h.pid = pid_nr_ns(task_pid(current), fc->pid_ns);
472 }
473 
474 static void fuse_args_to_req(struct fuse_req *req, struct fuse_args *args)
475 {
476 	req->in.h.opcode = args->opcode;
477 	req->in.h.nodeid = args->nodeid;
478 	req->args = args;
479 	if (args->is_ext)
480 		req->in.h.total_extlen = args->in_args[args->ext_idx].size / 8;
481 	if (args->end)
482 		__set_bit(FR_ASYNC, &req->flags);
483 }
484 
485 ssize_t fuse_simple_request(struct fuse_mount *fm, struct fuse_args *args)
486 {
487 	struct fuse_conn *fc = fm->fc;
488 	struct fuse_req *req;
489 	ssize_t ret;
490 
491 	if (args->force) {
492 		atomic_inc(&fc->num_waiting);
493 		req = fuse_request_alloc(fm, GFP_KERNEL | __GFP_NOFAIL);
494 
495 		if (!args->nocreds)
496 			fuse_force_creds(req);
497 
498 		__set_bit(FR_WAITING, &req->flags);
499 		__set_bit(FR_FORCE, &req->flags);
500 	} else {
501 		WARN_ON(args->nocreds);
502 		req = fuse_get_req(fm, false);
503 		if (IS_ERR(req))
504 			return PTR_ERR(req);
505 	}
506 
507 	/* Needs to be done after fuse_get_req() so that fc->minor is valid */
508 	fuse_adjust_compat(fc, args);
509 	fuse_args_to_req(req, args);
510 
511 	if (!args->noreply)
512 		__set_bit(FR_ISREPLY, &req->flags);
513 	__fuse_request_send(req);
514 	ret = req->out.h.error;
515 	if (!ret && args->out_argvar) {
516 		BUG_ON(args->out_numargs == 0);
517 		ret = args->out_args[args->out_numargs - 1].size;
518 	}
519 	fuse_put_request(req);
520 
521 	return ret;
522 }
523 
524 static bool fuse_request_queue_background(struct fuse_req *req)
525 {
526 	struct fuse_mount *fm = req->fm;
527 	struct fuse_conn *fc = fm->fc;
528 	bool queued = false;
529 
530 	WARN_ON(!test_bit(FR_BACKGROUND, &req->flags));
531 	if (!test_bit(FR_WAITING, &req->flags)) {
532 		__set_bit(FR_WAITING, &req->flags);
533 		atomic_inc(&fc->num_waiting);
534 	}
535 	__set_bit(FR_ISREPLY, &req->flags);
536 	spin_lock(&fc->bg_lock);
537 	if (likely(fc->connected)) {
538 		fc->num_background++;
539 		if (fc->num_background == fc->max_background)
540 			fc->blocked = 1;
541 		list_add_tail(&req->list, &fc->bg_queue);
542 		flush_bg_queue(fc);
543 		queued = true;
544 	}
545 	spin_unlock(&fc->bg_lock);
546 
547 	return queued;
548 }
549 
550 int fuse_simple_background(struct fuse_mount *fm, struct fuse_args *args,
551 			    gfp_t gfp_flags)
552 {
553 	struct fuse_req *req;
554 
555 	if (args->force) {
556 		WARN_ON(!args->nocreds);
557 		req = fuse_request_alloc(fm, gfp_flags);
558 		if (!req)
559 			return -ENOMEM;
560 		__set_bit(FR_BACKGROUND, &req->flags);
561 	} else {
562 		WARN_ON(args->nocreds);
563 		req = fuse_get_req(fm, true);
564 		if (IS_ERR(req))
565 			return PTR_ERR(req);
566 	}
567 
568 	fuse_args_to_req(req, args);
569 
570 	if (!fuse_request_queue_background(req)) {
571 		fuse_put_request(req);
572 		return -ENOTCONN;
573 	}
574 
575 	return 0;
576 }
577 EXPORT_SYMBOL_GPL(fuse_simple_background);
578 
579 static int fuse_simple_notify_reply(struct fuse_mount *fm,
580 				    struct fuse_args *args, u64 unique)
581 {
582 	struct fuse_req *req;
583 	struct fuse_iqueue *fiq = &fm->fc->iq;
584 	int err = 0;
585 
586 	req = fuse_get_req(fm, false);
587 	if (IS_ERR(req))
588 		return PTR_ERR(req);
589 
590 	__clear_bit(FR_ISREPLY, &req->flags);
591 	req->in.h.unique = unique;
592 
593 	fuse_args_to_req(req, args);
594 
595 	spin_lock(&fiq->lock);
596 	if (fiq->connected) {
597 		queue_request_and_unlock(fiq, req);
598 	} else {
599 		err = -ENODEV;
600 		spin_unlock(&fiq->lock);
601 		fuse_put_request(req);
602 	}
603 
604 	return err;
605 }
606 
607 /*
608  * Lock the request.  Up to the next unlock_request() there mustn't be
609  * anything that could cause a page-fault.  If the request was already
610  * aborted bail out.
611  */
612 static int lock_request(struct fuse_req *req)
613 {
614 	int err = 0;
615 	if (req) {
616 		spin_lock(&req->waitq.lock);
617 		if (test_bit(FR_ABORTED, &req->flags))
618 			err = -ENOENT;
619 		else
620 			set_bit(FR_LOCKED, &req->flags);
621 		spin_unlock(&req->waitq.lock);
622 	}
623 	return err;
624 }
625 
626 /*
627  * Unlock request.  If it was aborted while locked, caller is responsible
628  * for unlocking and ending the request.
629  */
630 static int unlock_request(struct fuse_req *req)
631 {
632 	int err = 0;
633 	if (req) {
634 		spin_lock(&req->waitq.lock);
635 		if (test_bit(FR_ABORTED, &req->flags))
636 			err = -ENOENT;
637 		else
638 			clear_bit(FR_LOCKED, &req->flags);
639 		spin_unlock(&req->waitq.lock);
640 	}
641 	return err;
642 }
643 
644 struct fuse_copy_state {
645 	int write;
646 	struct fuse_req *req;
647 	struct iov_iter *iter;
648 	struct pipe_buffer *pipebufs;
649 	struct pipe_buffer *currbuf;
650 	struct pipe_inode_info *pipe;
651 	unsigned long nr_segs;
652 	struct page *pg;
653 	unsigned len;
654 	unsigned offset;
655 	unsigned move_pages:1;
656 };
657 
658 static void fuse_copy_init(struct fuse_copy_state *cs, int write,
659 			   struct iov_iter *iter)
660 {
661 	memset(cs, 0, sizeof(*cs));
662 	cs->write = write;
663 	cs->iter = iter;
664 }
665 
666 /* Unmap and put previous page of userspace buffer */
667 static void fuse_copy_finish(struct fuse_copy_state *cs)
668 {
669 	if (cs->currbuf) {
670 		struct pipe_buffer *buf = cs->currbuf;
671 
672 		if (cs->write)
673 			buf->len = PAGE_SIZE - cs->len;
674 		cs->currbuf = NULL;
675 	} else if (cs->pg) {
676 		if (cs->write) {
677 			flush_dcache_page(cs->pg);
678 			set_page_dirty_lock(cs->pg);
679 		}
680 		put_page(cs->pg);
681 	}
682 	cs->pg = NULL;
683 }
684 
685 /*
686  * Get another pagefull of userspace buffer, and map it to kernel
687  * address space, and lock request
688  */
689 static int fuse_copy_fill(struct fuse_copy_state *cs)
690 {
691 	struct page *page;
692 	int err;
693 
694 	err = unlock_request(cs->req);
695 	if (err)
696 		return err;
697 
698 	fuse_copy_finish(cs);
699 	if (cs->pipebufs) {
700 		struct pipe_buffer *buf = cs->pipebufs;
701 
702 		if (!cs->write) {
703 			err = pipe_buf_confirm(cs->pipe, buf);
704 			if (err)
705 				return err;
706 
707 			BUG_ON(!cs->nr_segs);
708 			cs->currbuf = buf;
709 			cs->pg = buf->page;
710 			cs->offset = buf->offset;
711 			cs->len = buf->len;
712 			cs->pipebufs++;
713 			cs->nr_segs--;
714 		} else {
715 			if (cs->nr_segs >= cs->pipe->max_usage)
716 				return -EIO;
717 
718 			page = alloc_page(GFP_HIGHUSER);
719 			if (!page)
720 				return -ENOMEM;
721 
722 			buf->page = page;
723 			buf->offset = 0;
724 			buf->len = 0;
725 
726 			cs->currbuf = buf;
727 			cs->pg = page;
728 			cs->offset = 0;
729 			cs->len = PAGE_SIZE;
730 			cs->pipebufs++;
731 			cs->nr_segs++;
732 		}
733 	} else {
734 		size_t off;
735 		err = iov_iter_get_pages2(cs->iter, &page, PAGE_SIZE, 1, &off);
736 		if (err < 0)
737 			return err;
738 		BUG_ON(!err);
739 		cs->len = err;
740 		cs->offset = off;
741 		cs->pg = page;
742 	}
743 
744 	return lock_request(cs->req);
745 }
746 
747 /* Do as much copy to/from userspace buffer as we can */
748 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
749 {
750 	unsigned ncpy = min(*size, cs->len);
751 	if (val) {
752 		void *pgaddr = kmap_local_page(cs->pg);
753 		void *buf = pgaddr + cs->offset;
754 
755 		if (cs->write)
756 			memcpy(buf, *val, ncpy);
757 		else
758 			memcpy(*val, buf, ncpy);
759 
760 		kunmap_local(pgaddr);
761 		*val += ncpy;
762 	}
763 	*size -= ncpy;
764 	cs->len -= ncpy;
765 	cs->offset += ncpy;
766 	return ncpy;
767 }
768 
769 static int fuse_check_folio(struct folio *folio)
770 {
771 	if (folio_mapped(folio) ||
772 	    folio->mapping != NULL ||
773 	    (folio->flags & PAGE_FLAGS_CHECK_AT_PREP &
774 	     ~(1 << PG_locked |
775 	       1 << PG_referenced |
776 	       1 << PG_uptodate |
777 	       1 << PG_lru |
778 	       1 << PG_active |
779 	       1 << PG_workingset |
780 	       1 << PG_reclaim |
781 	       1 << PG_waiters |
782 	       LRU_GEN_MASK | LRU_REFS_MASK))) {
783 		dump_page(&folio->page, "fuse: trying to steal weird page");
784 		return 1;
785 	}
786 	return 0;
787 }
788 
789 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
790 {
791 	int err;
792 	struct folio *oldfolio = page_folio(*pagep);
793 	struct folio *newfolio;
794 	struct pipe_buffer *buf = cs->pipebufs;
795 
796 	folio_get(oldfolio);
797 	err = unlock_request(cs->req);
798 	if (err)
799 		goto out_put_old;
800 
801 	fuse_copy_finish(cs);
802 
803 	err = pipe_buf_confirm(cs->pipe, buf);
804 	if (err)
805 		goto out_put_old;
806 
807 	BUG_ON(!cs->nr_segs);
808 	cs->currbuf = buf;
809 	cs->len = buf->len;
810 	cs->pipebufs++;
811 	cs->nr_segs--;
812 
813 	if (cs->len != PAGE_SIZE)
814 		goto out_fallback;
815 
816 	if (!pipe_buf_try_steal(cs->pipe, buf))
817 		goto out_fallback;
818 
819 	newfolio = page_folio(buf->page);
820 
821 	if (!folio_test_uptodate(newfolio))
822 		folio_mark_uptodate(newfolio);
823 
824 	folio_clear_mappedtodisk(newfolio);
825 
826 	if (fuse_check_folio(newfolio) != 0)
827 		goto out_fallback_unlock;
828 
829 	/*
830 	 * This is a new and locked page, it shouldn't be mapped or
831 	 * have any special flags on it
832 	 */
833 	if (WARN_ON(folio_mapped(oldfolio)))
834 		goto out_fallback_unlock;
835 	if (WARN_ON(folio_has_private(oldfolio)))
836 		goto out_fallback_unlock;
837 	if (WARN_ON(folio_test_dirty(oldfolio) ||
838 				folio_test_writeback(oldfolio)))
839 		goto out_fallback_unlock;
840 	if (WARN_ON(folio_test_mlocked(oldfolio)))
841 		goto out_fallback_unlock;
842 
843 	replace_page_cache_folio(oldfolio, newfolio);
844 
845 	folio_get(newfolio);
846 
847 	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
848 		folio_add_lru(newfolio);
849 
850 	/*
851 	 * Release while we have extra ref on stolen page.  Otherwise
852 	 * anon_pipe_buf_release() might think the page can be reused.
853 	 */
854 	pipe_buf_release(cs->pipe, buf);
855 
856 	err = 0;
857 	spin_lock(&cs->req->waitq.lock);
858 	if (test_bit(FR_ABORTED, &cs->req->flags))
859 		err = -ENOENT;
860 	else
861 		*pagep = &newfolio->page;
862 	spin_unlock(&cs->req->waitq.lock);
863 
864 	if (err) {
865 		folio_unlock(newfolio);
866 		folio_put(newfolio);
867 		goto out_put_old;
868 	}
869 
870 	folio_unlock(oldfolio);
871 	/* Drop ref for ap->pages[] array */
872 	folio_put(oldfolio);
873 	cs->len = 0;
874 
875 	err = 0;
876 out_put_old:
877 	/* Drop ref obtained in this function */
878 	folio_put(oldfolio);
879 	return err;
880 
881 out_fallback_unlock:
882 	folio_unlock(newfolio);
883 out_fallback:
884 	cs->pg = buf->page;
885 	cs->offset = buf->offset;
886 
887 	err = lock_request(cs->req);
888 	if (!err)
889 		err = 1;
890 
891 	goto out_put_old;
892 }
893 
894 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
895 			 unsigned offset, unsigned count)
896 {
897 	struct pipe_buffer *buf;
898 	int err;
899 
900 	if (cs->nr_segs >= cs->pipe->max_usage)
901 		return -EIO;
902 
903 	get_page(page);
904 	err = unlock_request(cs->req);
905 	if (err) {
906 		put_page(page);
907 		return err;
908 	}
909 
910 	fuse_copy_finish(cs);
911 
912 	buf = cs->pipebufs;
913 	buf->page = page;
914 	buf->offset = offset;
915 	buf->len = count;
916 
917 	cs->pipebufs++;
918 	cs->nr_segs++;
919 	cs->len = 0;
920 
921 	return 0;
922 }
923 
924 /*
925  * Copy a page in the request to/from the userspace buffer.  Must be
926  * done atomically
927  */
928 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
929 			  unsigned offset, unsigned count, int zeroing)
930 {
931 	int err;
932 	struct page *page = *pagep;
933 
934 	if (page && zeroing && count < PAGE_SIZE)
935 		clear_highpage(page);
936 
937 	while (count) {
938 		if (cs->write && cs->pipebufs && page) {
939 			/*
940 			 * Can't control lifetime of pipe buffers, so always
941 			 * copy user pages.
942 			 */
943 			if (cs->req->args->user_pages) {
944 				err = fuse_copy_fill(cs);
945 				if (err)
946 					return err;
947 			} else {
948 				return fuse_ref_page(cs, page, offset, count);
949 			}
950 		} else if (!cs->len) {
951 			if (cs->move_pages && page &&
952 			    offset == 0 && count == PAGE_SIZE) {
953 				err = fuse_try_move_page(cs, pagep);
954 				if (err <= 0)
955 					return err;
956 			} else {
957 				err = fuse_copy_fill(cs);
958 				if (err)
959 					return err;
960 			}
961 		}
962 		if (page) {
963 			void *mapaddr = kmap_local_page(page);
964 			void *buf = mapaddr + offset;
965 			offset += fuse_copy_do(cs, &buf, &count);
966 			kunmap_local(mapaddr);
967 		} else
968 			offset += fuse_copy_do(cs, NULL, &count);
969 	}
970 	if (page && !cs->write)
971 		flush_dcache_page(page);
972 	return 0;
973 }
974 
975 /* Copy pages in the request to/from userspace buffer */
976 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
977 			   int zeroing)
978 {
979 	unsigned i;
980 	struct fuse_req *req = cs->req;
981 	struct fuse_args_pages *ap = container_of(req->args, typeof(*ap), args);
982 
983 
984 	for (i = 0; i < ap->num_pages && (nbytes || zeroing); i++) {
985 		int err;
986 		unsigned int offset = ap->descs[i].offset;
987 		unsigned int count = min(nbytes, ap->descs[i].length);
988 
989 		err = fuse_copy_page(cs, &ap->pages[i], offset, count, zeroing);
990 		if (err)
991 			return err;
992 
993 		nbytes -= count;
994 	}
995 	return 0;
996 }
997 
998 /* Copy a single argument in the request to/from userspace buffer */
999 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
1000 {
1001 	while (size) {
1002 		if (!cs->len) {
1003 			int err = fuse_copy_fill(cs);
1004 			if (err)
1005 				return err;
1006 		}
1007 		fuse_copy_do(cs, &val, &size);
1008 	}
1009 	return 0;
1010 }
1011 
1012 /* Copy request arguments to/from userspace buffer */
1013 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
1014 			  unsigned argpages, struct fuse_arg *args,
1015 			  int zeroing)
1016 {
1017 	int err = 0;
1018 	unsigned i;
1019 
1020 	for (i = 0; !err && i < numargs; i++)  {
1021 		struct fuse_arg *arg = &args[i];
1022 		if (i == numargs - 1 && argpages)
1023 			err = fuse_copy_pages(cs, arg->size, zeroing);
1024 		else
1025 			err = fuse_copy_one(cs, arg->value, arg->size);
1026 	}
1027 	return err;
1028 }
1029 
1030 static int forget_pending(struct fuse_iqueue *fiq)
1031 {
1032 	return fiq->forget_list_head.next != NULL;
1033 }
1034 
1035 static int request_pending(struct fuse_iqueue *fiq)
1036 {
1037 	return !list_empty(&fiq->pending) || !list_empty(&fiq->interrupts) ||
1038 		forget_pending(fiq);
1039 }
1040 
1041 /*
1042  * Transfer an interrupt request to userspace
1043  *
1044  * Unlike other requests this is assembled on demand, without a need
1045  * to allocate a separate fuse_req structure.
1046  *
1047  * Called with fiq->lock held, releases it
1048  */
1049 static int fuse_read_interrupt(struct fuse_iqueue *fiq,
1050 			       struct fuse_copy_state *cs,
1051 			       size_t nbytes, struct fuse_req *req)
1052 __releases(fiq->lock)
1053 {
1054 	struct fuse_in_header ih;
1055 	struct fuse_interrupt_in arg;
1056 	unsigned reqsize = sizeof(ih) + sizeof(arg);
1057 	int err;
1058 
1059 	list_del_init(&req->intr_entry);
1060 	memset(&ih, 0, sizeof(ih));
1061 	memset(&arg, 0, sizeof(arg));
1062 	ih.len = reqsize;
1063 	ih.opcode = FUSE_INTERRUPT;
1064 	ih.unique = (req->in.h.unique | FUSE_INT_REQ_BIT);
1065 	arg.unique = req->in.h.unique;
1066 
1067 	spin_unlock(&fiq->lock);
1068 	if (nbytes < reqsize)
1069 		return -EINVAL;
1070 
1071 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1072 	if (!err)
1073 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1074 	fuse_copy_finish(cs);
1075 
1076 	return err ? err : reqsize;
1077 }
1078 
1079 struct fuse_forget_link *fuse_dequeue_forget(struct fuse_iqueue *fiq,
1080 					     unsigned int max,
1081 					     unsigned int *countp)
1082 {
1083 	struct fuse_forget_link *head = fiq->forget_list_head.next;
1084 	struct fuse_forget_link **newhead = &head;
1085 	unsigned count;
1086 
1087 	for (count = 0; *newhead != NULL && count < max; count++)
1088 		newhead = &(*newhead)->next;
1089 
1090 	fiq->forget_list_head.next = *newhead;
1091 	*newhead = NULL;
1092 	if (fiq->forget_list_head.next == NULL)
1093 		fiq->forget_list_tail = &fiq->forget_list_head;
1094 
1095 	if (countp != NULL)
1096 		*countp = count;
1097 
1098 	return head;
1099 }
1100 EXPORT_SYMBOL(fuse_dequeue_forget);
1101 
1102 static int fuse_read_single_forget(struct fuse_iqueue *fiq,
1103 				   struct fuse_copy_state *cs,
1104 				   size_t nbytes)
1105 __releases(fiq->lock)
1106 {
1107 	int err;
1108 	struct fuse_forget_link *forget = fuse_dequeue_forget(fiq, 1, NULL);
1109 	struct fuse_forget_in arg = {
1110 		.nlookup = forget->forget_one.nlookup,
1111 	};
1112 	struct fuse_in_header ih = {
1113 		.opcode = FUSE_FORGET,
1114 		.nodeid = forget->forget_one.nodeid,
1115 		.unique = fuse_get_unique(fiq),
1116 		.len = sizeof(ih) + sizeof(arg),
1117 	};
1118 
1119 	spin_unlock(&fiq->lock);
1120 	kfree(forget);
1121 	if (nbytes < ih.len)
1122 		return -EINVAL;
1123 
1124 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1125 	if (!err)
1126 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1127 	fuse_copy_finish(cs);
1128 
1129 	if (err)
1130 		return err;
1131 
1132 	return ih.len;
1133 }
1134 
1135 static int fuse_read_batch_forget(struct fuse_iqueue *fiq,
1136 				   struct fuse_copy_state *cs, size_t nbytes)
1137 __releases(fiq->lock)
1138 {
1139 	int err;
1140 	unsigned max_forgets;
1141 	unsigned count;
1142 	struct fuse_forget_link *head;
1143 	struct fuse_batch_forget_in arg = { .count = 0 };
1144 	struct fuse_in_header ih = {
1145 		.opcode = FUSE_BATCH_FORGET,
1146 		.unique = fuse_get_unique(fiq),
1147 		.len = sizeof(ih) + sizeof(arg),
1148 	};
1149 
1150 	if (nbytes < ih.len) {
1151 		spin_unlock(&fiq->lock);
1152 		return -EINVAL;
1153 	}
1154 
1155 	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1156 	head = fuse_dequeue_forget(fiq, max_forgets, &count);
1157 	spin_unlock(&fiq->lock);
1158 
1159 	arg.count = count;
1160 	ih.len += count * sizeof(struct fuse_forget_one);
1161 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1162 	if (!err)
1163 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1164 
1165 	while (head) {
1166 		struct fuse_forget_link *forget = head;
1167 
1168 		if (!err) {
1169 			err = fuse_copy_one(cs, &forget->forget_one,
1170 					    sizeof(forget->forget_one));
1171 		}
1172 		head = forget->next;
1173 		kfree(forget);
1174 	}
1175 
1176 	fuse_copy_finish(cs);
1177 
1178 	if (err)
1179 		return err;
1180 
1181 	return ih.len;
1182 }
1183 
1184 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_iqueue *fiq,
1185 			    struct fuse_copy_state *cs,
1186 			    size_t nbytes)
1187 __releases(fiq->lock)
1188 {
1189 	if (fc->minor < 16 || fiq->forget_list_head.next->next == NULL)
1190 		return fuse_read_single_forget(fiq, cs, nbytes);
1191 	else
1192 		return fuse_read_batch_forget(fiq, cs, nbytes);
1193 }
1194 
1195 /*
1196  * Read a single request into the userspace filesystem's buffer.  This
1197  * function waits until a request is available, then removes it from
1198  * the pending list and copies request data to userspace buffer.  If
1199  * no reply is needed (FORGET) or request has been aborted or there
1200  * was an error during the copying then it's finished by calling
1201  * fuse_request_end().  Otherwise add it to the processing list, and set
1202  * the 'sent' flag.
1203  */
1204 static ssize_t fuse_dev_do_read(struct fuse_dev *fud, struct file *file,
1205 				struct fuse_copy_state *cs, size_t nbytes)
1206 {
1207 	ssize_t err;
1208 	struct fuse_conn *fc = fud->fc;
1209 	struct fuse_iqueue *fiq = &fc->iq;
1210 	struct fuse_pqueue *fpq = &fud->pq;
1211 	struct fuse_req *req;
1212 	struct fuse_args *args;
1213 	unsigned reqsize;
1214 	unsigned int hash;
1215 
1216 	/*
1217 	 * Require sane minimum read buffer - that has capacity for fixed part
1218 	 * of any request header + negotiated max_write room for data.
1219 	 *
1220 	 * Historically libfuse reserves 4K for fixed header room, but e.g.
1221 	 * GlusterFS reserves only 80 bytes
1222 	 *
1223 	 *	= `sizeof(fuse_in_header) + sizeof(fuse_write_in)`
1224 	 *
1225 	 * which is the absolute minimum any sane filesystem should be using
1226 	 * for header room.
1227 	 */
1228 	if (nbytes < max_t(size_t, FUSE_MIN_READ_BUFFER,
1229 			   sizeof(struct fuse_in_header) +
1230 			   sizeof(struct fuse_write_in) +
1231 			   fc->max_write))
1232 		return -EINVAL;
1233 
1234  restart:
1235 	for (;;) {
1236 		spin_lock(&fiq->lock);
1237 		if (!fiq->connected || request_pending(fiq))
1238 			break;
1239 		spin_unlock(&fiq->lock);
1240 
1241 		if (file->f_flags & O_NONBLOCK)
1242 			return -EAGAIN;
1243 		err = wait_event_interruptible_exclusive(fiq->waitq,
1244 				!fiq->connected || request_pending(fiq));
1245 		if (err)
1246 			return err;
1247 	}
1248 
1249 	if (!fiq->connected) {
1250 		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1251 		goto err_unlock;
1252 	}
1253 
1254 	if (!list_empty(&fiq->interrupts)) {
1255 		req = list_entry(fiq->interrupts.next, struct fuse_req,
1256 				 intr_entry);
1257 		return fuse_read_interrupt(fiq, cs, nbytes, req);
1258 	}
1259 
1260 	if (forget_pending(fiq)) {
1261 		if (list_empty(&fiq->pending) || fiq->forget_batch-- > 0)
1262 			return fuse_read_forget(fc, fiq, cs, nbytes);
1263 
1264 		if (fiq->forget_batch <= -8)
1265 			fiq->forget_batch = 16;
1266 	}
1267 
1268 	req = list_entry(fiq->pending.next, struct fuse_req, list);
1269 	clear_bit(FR_PENDING, &req->flags);
1270 	list_del_init(&req->list);
1271 	spin_unlock(&fiq->lock);
1272 
1273 	args = req->args;
1274 	reqsize = req->in.h.len;
1275 
1276 	/* If request is too large, reply with an error and restart the read */
1277 	if (nbytes < reqsize) {
1278 		req->out.h.error = -EIO;
1279 		/* SETXATTR is special, since it may contain too large data */
1280 		if (args->opcode == FUSE_SETXATTR)
1281 			req->out.h.error = -E2BIG;
1282 		fuse_request_end(req);
1283 		goto restart;
1284 	}
1285 	spin_lock(&fpq->lock);
1286 	/*
1287 	 *  Must not put request on fpq->io queue after having been shut down by
1288 	 *  fuse_abort_conn()
1289 	 */
1290 	if (!fpq->connected) {
1291 		req->out.h.error = err = -ECONNABORTED;
1292 		goto out_end;
1293 
1294 	}
1295 	list_add(&req->list, &fpq->io);
1296 	spin_unlock(&fpq->lock);
1297 	cs->req = req;
1298 	err = fuse_copy_one(cs, &req->in.h, sizeof(req->in.h));
1299 	if (!err)
1300 		err = fuse_copy_args(cs, args->in_numargs, args->in_pages,
1301 				     (struct fuse_arg *) args->in_args, 0);
1302 	fuse_copy_finish(cs);
1303 	spin_lock(&fpq->lock);
1304 	clear_bit(FR_LOCKED, &req->flags);
1305 	if (!fpq->connected) {
1306 		err = fc->aborted ? -ECONNABORTED : -ENODEV;
1307 		goto out_end;
1308 	}
1309 	if (err) {
1310 		req->out.h.error = -EIO;
1311 		goto out_end;
1312 	}
1313 	if (!test_bit(FR_ISREPLY, &req->flags)) {
1314 		err = reqsize;
1315 		goto out_end;
1316 	}
1317 	hash = fuse_req_hash(req->in.h.unique);
1318 	list_move_tail(&req->list, &fpq->processing[hash]);
1319 	__fuse_get_request(req);
1320 	set_bit(FR_SENT, &req->flags);
1321 	spin_unlock(&fpq->lock);
1322 	/* matches barrier in request_wait_answer() */
1323 	smp_mb__after_atomic();
1324 	if (test_bit(FR_INTERRUPTED, &req->flags))
1325 		queue_interrupt(req);
1326 	fuse_put_request(req);
1327 
1328 	return reqsize;
1329 
1330 out_end:
1331 	if (!test_bit(FR_PRIVATE, &req->flags))
1332 		list_del_init(&req->list);
1333 	spin_unlock(&fpq->lock);
1334 	fuse_request_end(req);
1335 	return err;
1336 
1337  err_unlock:
1338 	spin_unlock(&fiq->lock);
1339 	return err;
1340 }
1341 
1342 static int fuse_dev_open(struct inode *inode, struct file *file)
1343 {
1344 	/*
1345 	 * The fuse device's file's private_data is used to hold
1346 	 * the fuse_conn(ection) when it is mounted, and is used to
1347 	 * keep track of whether the file has been mounted already.
1348 	 */
1349 	file->private_data = NULL;
1350 	return 0;
1351 }
1352 
1353 static ssize_t fuse_dev_read(struct kiocb *iocb, struct iov_iter *to)
1354 {
1355 	struct fuse_copy_state cs;
1356 	struct file *file = iocb->ki_filp;
1357 	struct fuse_dev *fud = fuse_get_dev(file);
1358 
1359 	if (!fud)
1360 		return -EPERM;
1361 
1362 	if (!user_backed_iter(to))
1363 		return -EINVAL;
1364 
1365 	fuse_copy_init(&cs, 1, to);
1366 
1367 	return fuse_dev_do_read(fud, file, &cs, iov_iter_count(to));
1368 }
1369 
1370 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1371 				    struct pipe_inode_info *pipe,
1372 				    size_t len, unsigned int flags)
1373 {
1374 	int total, ret;
1375 	int page_nr = 0;
1376 	struct pipe_buffer *bufs;
1377 	struct fuse_copy_state cs;
1378 	struct fuse_dev *fud = fuse_get_dev(in);
1379 
1380 	if (!fud)
1381 		return -EPERM;
1382 
1383 	bufs = kvmalloc_array(pipe->max_usage, sizeof(struct pipe_buffer),
1384 			      GFP_KERNEL);
1385 	if (!bufs)
1386 		return -ENOMEM;
1387 
1388 	fuse_copy_init(&cs, 1, NULL);
1389 	cs.pipebufs = bufs;
1390 	cs.pipe = pipe;
1391 	ret = fuse_dev_do_read(fud, in, &cs, len);
1392 	if (ret < 0)
1393 		goto out;
1394 
1395 	if (pipe_occupancy(pipe->head, pipe->tail) + cs.nr_segs > pipe->max_usage) {
1396 		ret = -EIO;
1397 		goto out;
1398 	}
1399 
1400 	for (ret = total = 0; page_nr < cs.nr_segs; total += ret) {
1401 		/*
1402 		 * Need to be careful about this.  Having buf->ops in module
1403 		 * code can Oops if the buffer persists after module unload.
1404 		 */
1405 		bufs[page_nr].ops = &nosteal_pipe_buf_ops;
1406 		bufs[page_nr].flags = 0;
1407 		ret = add_to_pipe(pipe, &bufs[page_nr++]);
1408 		if (unlikely(ret < 0))
1409 			break;
1410 	}
1411 	if (total)
1412 		ret = total;
1413 out:
1414 	for (; page_nr < cs.nr_segs; page_nr++)
1415 		put_page(bufs[page_nr].page);
1416 
1417 	kvfree(bufs);
1418 	return ret;
1419 }
1420 
1421 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1422 			    struct fuse_copy_state *cs)
1423 {
1424 	struct fuse_notify_poll_wakeup_out outarg;
1425 	int err = -EINVAL;
1426 
1427 	if (size != sizeof(outarg))
1428 		goto err;
1429 
1430 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1431 	if (err)
1432 		goto err;
1433 
1434 	fuse_copy_finish(cs);
1435 	return fuse_notify_poll_wakeup(fc, &outarg);
1436 
1437 err:
1438 	fuse_copy_finish(cs);
1439 	return err;
1440 }
1441 
1442 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1443 				   struct fuse_copy_state *cs)
1444 {
1445 	struct fuse_notify_inval_inode_out outarg;
1446 	int err = -EINVAL;
1447 
1448 	if (size != sizeof(outarg))
1449 		goto err;
1450 
1451 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1452 	if (err)
1453 		goto err;
1454 	fuse_copy_finish(cs);
1455 
1456 	down_read(&fc->killsb);
1457 	err = fuse_reverse_inval_inode(fc, outarg.ino,
1458 				       outarg.off, outarg.len);
1459 	up_read(&fc->killsb);
1460 	return err;
1461 
1462 err:
1463 	fuse_copy_finish(cs);
1464 	return err;
1465 }
1466 
1467 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1468 				   struct fuse_copy_state *cs)
1469 {
1470 	struct fuse_notify_inval_entry_out outarg;
1471 	int err = -ENOMEM;
1472 	char *buf;
1473 	struct qstr name;
1474 
1475 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1476 	if (!buf)
1477 		goto err;
1478 
1479 	err = -EINVAL;
1480 	if (size < sizeof(outarg))
1481 		goto err;
1482 
1483 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1484 	if (err)
1485 		goto err;
1486 
1487 	err = -ENAMETOOLONG;
1488 	if (outarg.namelen > FUSE_NAME_MAX)
1489 		goto err;
1490 
1491 	err = -EINVAL;
1492 	if (size != sizeof(outarg) + outarg.namelen + 1)
1493 		goto err;
1494 
1495 	name.name = buf;
1496 	name.len = outarg.namelen;
1497 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1498 	if (err)
1499 		goto err;
1500 	fuse_copy_finish(cs);
1501 	buf[outarg.namelen] = 0;
1502 
1503 	down_read(&fc->killsb);
1504 	err = fuse_reverse_inval_entry(fc, outarg.parent, 0, &name, outarg.flags);
1505 	up_read(&fc->killsb);
1506 	kfree(buf);
1507 	return err;
1508 
1509 err:
1510 	kfree(buf);
1511 	fuse_copy_finish(cs);
1512 	return err;
1513 }
1514 
1515 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1516 			      struct fuse_copy_state *cs)
1517 {
1518 	struct fuse_notify_delete_out outarg;
1519 	int err = -ENOMEM;
1520 	char *buf;
1521 	struct qstr name;
1522 
1523 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1524 	if (!buf)
1525 		goto err;
1526 
1527 	err = -EINVAL;
1528 	if (size < sizeof(outarg))
1529 		goto err;
1530 
1531 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1532 	if (err)
1533 		goto err;
1534 
1535 	err = -ENAMETOOLONG;
1536 	if (outarg.namelen > FUSE_NAME_MAX)
1537 		goto err;
1538 
1539 	err = -EINVAL;
1540 	if (size != sizeof(outarg) + outarg.namelen + 1)
1541 		goto err;
1542 
1543 	name.name = buf;
1544 	name.len = outarg.namelen;
1545 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1546 	if (err)
1547 		goto err;
1548 	fuse_copy_finish(cs);
1549 	buf[outarg.namelen] = 0;
1550 
1551 	down_read(&fc->killsb);
1552 	err = fuse_reverse_inval_entry(fc, outarg.parent, outarg.child, &name, 0);
1553 	up_read(&fc->killsb);
1554 	kfree(buf);
1555 	return err;
1556 
1557 err:
1558 	kfree(buf);
1559 	fuse_copy_finish(cs);
1560 	return err;
1561 }
1562 
1563 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1564 			     struct fuse_copy_state *cs)
1565 {
1566 	struct fuse_notify_store_out outarg;
1567 	struct inode *inode;
1568 	struct address_space *mapping;
1569 	u64 nodeid;
1570 	int err;
1571 	pgoff_t index;
1572 	unsigned int offset;
1573 	unsigned int num;
1574 	loff_t file_size;
1575 	loff_t end;
1576 
1577 	err = -EINVAL;
1578 	if (size < sizeof(outarg))
1579 		goto out_finish;
1580 
1581 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1582 	if (err)
1583 		goto out_finish;
1584 
1585 	err = -EINVAL;
1586 	if (size - sizeof(outarg) != outarg.size)
1587 		goto out_finish;
1588 
1589 	nodeid = outarg.nodeid;
1590 
1591 	down_read(&fc->killsb);
1592 
1593 	err = -ENOENT;
1594 	inode = fuse_ilookup(fc, nodeid,  NULL);
1595 	if (!inode)
1596 		goto out_up_killsb;
1597 
1598 	mapping = inode->i_mapping;
1599 	index = outarg.offset >> PAGE_SHIFT;
1600 	offset = outarg.offset & ~PAGE_MASK;
1601 	file_size = i_size_read(inode);
1602 	end = outarg.offset + outarg.size;
1603 	if (end > file_size) {
1604 		file_size = end;
1605 		fuse_write_update_attr(inode, file_size, outarg.size);
1606 	}
1607 
1608 	num = outarg.size;
1609 	while (num) {
1610 		struct page *page;
1611 		unsigned int this_num;
1612 
1613 		err = -ENOMEM;
1614 		page = find_or_create_page(mapping, index,
1615 					   mapping_gfp_mask(mapping));
1616 		if (!page)
1617 			goto out_iput;
1618 
1619 		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1620 		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1621 		if (!PageUptodate(page) && !err && offset == 0 &&
1622 		    (this_num == PAGE_SIZE || file_size == end)) {
1623 			zero_user_segment(page, this_num, PAGE_SIZE);
1624 			SetPageUptodate(page);
1625 		}
1626 		unlock_page(page);
1627 		put_page(page);
1628 
1629 		if (err)
1630 			goto out_iput;
1631 
1632 		num -= this_num;
1633 		offset = 0;
1634 		index++;
1635 	}
1636 
1637 	err = 0;
1638 
1639 out_iput:
1640 	iput(inode);
1641 out_up_killsb:
1642 	up_read(&fc->killsb);
1643 out_finish:
1644 	fuse_copy_finish(cs);
1645 	return err;
1646 }
1647 
1648 struct fuse_retrieve_args {
1649 	struct fuse_args_pages ap;
1650 	struct fuse_notify_retrieve_in inarg;
1651 };
1652 
1653 static void fuse_retrieve_end(struct fuse_mount *fm, struct fuse_args *args,
1654 			      int error)
1655 {
1656 	struct fuse_retrieve_args *ra =
1657 		container_of(args, typeof(*ra), ap.args);
1658 
1659 	release_pages(ra->ap.pages, ra->ap.num_pages);
1660 	kfree(ra);
1661 }
1662 
1663 static int fuse_retrieve(struct fuse_mount *fm, struct inode *inode,
1664 			 struct fuse_notify_retrieve_out *outarg)
1665 {
1666 	int err;
1667 	struct address_space *mapping = inode->i_mapping;
1668 	pgoff_t index;
1669 	loff_t file_size;
1670 	unsigned int num;
1671 	unsigned int offset;
1672 	size_t total_len = 0;
1673 	unsigned int num_pages;
1674 	struct fuse_conn *fc = fm->fc;
1675 	struct fuse_retrieve_args *ra;
1676 	size_t args_size = sizeof(*ra);
1677 	struct fuse_args_pages *ap;
1678 	struct fuse_args *args;
1679 
1680 	offset = outarg->offset & ~PAGE_MASK;
1681 	file_size = i_size_read(inode);
1682 
1683 	num = min(outarg->size, fc->max_write);
1684 	if (outarg->offset > file_size)
1685 		num = 0;
1686 	else if (outarg->offset + num > file_size)
1687 		num = file_size - outarg->offset;
1688 
1689 	num_pages = (num + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1690 	num_pages = min(num_pages, fc->max_pages);
1691 
1692 	args_size += num_pages * (sizeof(ap->pages[0]) + sizeof(ap->descs[0]));
1693 
1694 	ra = kzalloc(args_size, GFP_KERNEL);
1695 	if (!ra)
1696 		return -ENOMEM;
1697 
1698 	ap = &ra->ap;
1699 	ap->pages = (void *) (ra + 1);
1700 	ap->descs = (void *) (ap->pages + num_pages);
1701 
1702 	args = &ap->args;
1703 	args->nodeid = outarg->nodeid;
1704 	args->opcode = FUSE_NOTIFY_REPLY;
1705 	args->in_numargs = 2;
1706 	args->in_pages = true;
1707 	args->end = fuse_retrieve_end;
1708 
1709 	index = outarg->offset >> PAGE_SHIFT;
1710 
1711 	while (num && ap->num_pages < num_pages) {
1712 		struct page *page;
1713 		unsigned int this_num;
1714 
1715 		page = find_get_page(mapping, index);
1716 		if (!page)
1717 			break;
1718 
1719 		this_num = min_t(unsigned, num, PAGE_SIZE - offset);
1720 		ap->pages[ap->num_pages] = page;
1721 		ap->descs[ap->num_pages].offset = offset;
1722 		ap->descs[ap->num_pages].length = this_num;
1723 		ap->num_pages++;
1724 
1725 		offset = 0;
1726 		num -= this_num;
1727 		total_len += this_num;
1728 		index++;
1729 	}
1730 	ra->inarg.offset = outarg->offset;
1731 	ra->inarg.size = total_len;
1732 	args->in_args[0].size = sizeof(ra->inarg);
1733 	args->in_args[0].value = &ra->inarg;
1734 	args->in_args[1].size = total_len;
1735 
1736 	err = fuse_simple_notify_reply(fm, args, outarg->notify_unique);
1737 	if (err)
1738 		fuse_retrieve_end(fm, args, err);
1739 
1740 	return err;
1741 }
1742 
1743 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1744 				struct fuse_copy_state *cs)
1745 {
1746 	struct fuse_notify_retrieve_out outarg;
1747 	struct fuse_mount *fm;
1748 	struct inode *inode;
1749 	u64 nodeid;
1750 	int err;
1751 
1752 	err = -EINVAL;
1753 	if (size != sizeof(outarg))
1754 		goto copy_finish;
1755 
1756 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1757 	if (err)
1758 		goto copy_finish;
1759 
1760 	fuse_copy_finish(cs);
1761 
1762 	down_read(&fc->killsb);
1763 	err = -ENOENT;
1764 	nodeid = outarg.nodeid;
1765 
1766 	inode = fuse_ilookup(fc, nodeid, &fm);
1767 	if (inode) {
1768 		err = fuse_retrieve(fm, inode, &outarg);
1769 		iput(inode);
1770 	}
1771 	up_read(&fc->killsb);
1772 
1773 	return err;
1774 
1775 copy_finish:
1776 	fuse_copy_finish(cs);
1777 	return err;
1778 }
1779 
1780 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1781 		       unsigned int size, struct fuse_copy_state *cs)
1782 {
1783 	/* Don't try to move pages (yet) */
1784 	cs->move_pages = 0;
1785 
1786 	switch (code) {
1787 	case FUSE_NOTIFY_POLL:
1788 		return fuse_notify_poll(fc, size, cs);
1789 
1790 	case FUSE_NOTIFY_INVAL_INODE:
1791 		return fuse_notify_inval_inode(fc, size, cs);
1792 
1793 	case FUSE_NOTIFY_INVAL_ENTRY:
1794 		return fuse_notify_inval_entry(fc, size, cs);
1795 
1796 	case FUSE_NOTIFY_STORE:
1797 		return fuse_notify_store(fc, size, cs);
1798 
1799 	case FUSE_NOTIFY_RETRIEVE:
1800 		return fuse_notify_retrieve(fc, size, cs);
1801 
1802 	case FUSE_NOTIFY_DELETE:
1803 		return fuse_notify_delete(fc, size, cs);
1804 
1805 	default:
1806 		fuse_copy_finish(cs);
1807 		return -EINVAL;
1808 	}
1809 }
1810 
1811 /* Look up request on processing list by unique ID */
1812 static struct fuse_req *request_find(struct fuse_pqueue *fpq, u64 unique)
1813 {
1814 	unsigned int hash = fuse_req_hash(unique);
1815 	struct fuse_req *req;
1816 
1817 	list_for_each_entry(req, &fpq->processing[hash], list) {
1818 		if (req->in.h.unique == unique)
1819 			return req;
1820 	}
1821 	return NULL;
1822 }
1823 
1824 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_args *args,
1825 			 unsigned nbytes)
1826 {
1827 	unsigned reqsize = sizeof(struct fuse_out_header);
1828 
1829 	reqsize += fuse_len_args(args->out_numargs, args->out_args);
1830 
1831 	if (reqsize < nbytes || (reqsize > nbytes && !args->out_argvar))
1832 		return -EINVAL;
1833 	else if (reqsize > nbytes) {
1834 		struct fuse_arg *lastarg = &args->out_args[args->out_numargs-1];
1835 		unsigned diffsize = reqsize - nbytes;
1836 
1837 		if (diffsize > lastarg->size)
1838 			return -EINVAL;
1839 		lastarg->size -= diffsize;
1840 	}
1841 	return fuse_copy_args(cs, args->out_numargs, args->out_pages,
1842 			      args->out_args, args->page_zeroing);
1843 }
1844 
1845 /*
1846  * Write a single reply to a request.  First the header is copied from
1847  * the write buffer.  The request is then searched on the processing
1848  * list by the unique ID found in the header.  If found, then remove
1849  * it from the list and copy the rest of the buffer to the request.
1850  * The request is finished by calling fuse_request_end().
1851  */
1852 static ssize_t fuse_dev_do_write(struct fuse_dev *fud,
1853 				 struct fuse_copy_state *cs, size_t nbytes)
1854 {
1855 	int err;
1856 	struct fuse_conn *fc = fud->fc;
1857 	struct fuse_pqueue *fpq = &fud->pq;
1858 	struct fuse_req *req;
1859 	struct fuse_out_header oh;
1860 
1861 	err = -EINVAL;
1862 	if (nbytes < sizeof(struct fuse_out_header))
1863 		goto out;
1864 
1865 	err = fuse_copy_one(cs, &oh, sizeof(oh));
1866 	if (err)
1867 		goto copy_finish;
1868 
1869 	err = -EINVAL;
1870 	if (oh.len != nbytes)
1871 		goto copy_finish;
1872 
1873 	/*
1874 	 * Zero oh.unique indicates unsolicited notification message
1875 	 * and error contains notification code.
1876 	 */
1877 	if (!oh.unique) {
1878 		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1879 		goto out;
1880 	}
1881 
1882 	err = -EINVAL;
1883 	if (oh.error <= -512 || oh.error > 0)
1884 		goto copy_finish;
1885 
1886 	spin_lock(&fpq->lock);
1887 	req = NULL;
1888 	if (fpq->connected)
1889 		req = request_find(fpq, oh.unique & ~FUSE_INT_REQ_BIT);
1890 
1891 	err = -ENOENT;
1892 	if (!req) {
1893 		spin_unlock(&fpq->lock);
1894 		goto copy_finish;
1895 	}
1896 
1897 	/* Is it an interrupt reply ID? */
1898 	if (oh.unique & FUSE_INT_REQ_BIT) {
1899 		__fuse_get_request(req);
1900 		spin_unlock(&fpq->lock);
1901 
1902 		err = 0;
1903 		if (nbytes != sizeof(struct fuse_out_header))
1904 			err = -EINVAL;
1905 		else if (oh.error == -ENOSYS)
1906 			fc->no_interrupt = 1;
1907 		else if (oh.error == -EAGAIN)
1908 			err = queue_interrupt(req);
1909 
1910 		fuse_put_request(req);
1911 
1912 		goto copy_finish;
1913 	}
1914 
1915 	clear_bit(FR_SENT, &req->flags);
1916 	list_move(&req->list, &fpq->io);
1917 	req->out.h = oh;
1918 	set_bit(FR_LOCKED, &req->flags);
1919 	spin_unlock(&fpq->lock);
1920 	cs->req = req;
1921 	if (!req->args->page_replace)
1922 		cs->move_pages = 0;
1923 
1924 	if (oh.error)
1925 		err = nbytes != sizeof(oh) ? -EINVAL : 0;
1926 	else
1927 		err = copy_out_args(cs, req->args, nbytes);
1928 	fuse_copy_finish(cs);
1929 
1930 	spin_lock(&fpq->lock);
1931 	clear_bit(FR_LOCKED, &req->flags);
1932 	if (!fpq->connected)
1933 		err = -ENOENT;
1934 	else if (err)
1935 		req->out.h.error = -EIO;
1936 	if (!test_bit(FR_PRIVATE, &req->flags))
1937 		list_del_init(&req->list);
1938 	spin_unlock(&fpq->lock);
1939 
1940 	fuse_request_end(req);
1941 out:
1942 	return err ? err : nbytes;
1943 
1944 copy_finish:
1945 	fuse_copy_finish(cs);
1946 	goto out;
1947 }
1948 
1949 static ssize_t fuse_dev_write(struct kiocb *iocb, struct iov_iter *from)
1950 {
1951 	struct fuse_copy_state cs;
1952 	struct fuse_dev *fud = fuse_get_dev(iocb->ki_filp);
1953 
1954 	if (!fud)
1955 		return -EPERM;
1956 
1957 	if (!user_backed_iter(from))
1958 		return -EINVAL;
1959 
1960 	fuse_copy_init(&cs, 0, from);
1961 
1962 	return fuse_dev_do_write(fud, &cs, iov_iter_count(from));
1963 }
1964 
1965 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1966 				     struct file *out, loff_t *ppos,
1967 				     size_t len, unsigned int flags)
1968 {
1969 	unsigned int head, tail, mask, count;
1970 	unsigned nbuf;
1971 	unsigned idx;
1972 	struct pipe_buffer *bufs;
1973 	struct fuse_copy_state cs;
1974 	struct fuse_dev *fud;
1975 	size_t rem;
1976 	ssize_t ret;
1977 
1978 	fud = fuse_get_dev(out);
1979 	if (!fud)
1980 		return -EPERM;
1981 
1982 	pipe_lock(pipe);
1983 
1984 	head = pipe->head;
1985 	tail = pipe->tail;
1986 	mask = pipe->ring_size - 1;
1987 	count = head - tail;
1988 
1989 	bufs = kvmalloc_array(count, sizeof(struct pipe_buffer), GFP_KERNEL);
1990 	if (!bufs) {
1991 		pipe_unlock(pipe);
1992 		return -ENOMEM;
1993 	}
1994 
1995 	nbuf = 0;
1996 	rem = 0;
1997 	for (idx = tail; idx != head && rem < len; idx++)
1998 		rem += pipe->bufs[idx & mask].len;
1999 
2000 	ret = -EINVAL;
2001 	if (rem < len)
2002 		goto out_free;
2003 
2004 	rem = len;
2005 	while (rem) {
2006 		struct pipe_buffer *ibuf;
2007 		struct pipe_buffer *obuf;
2008 
2009 		if (WARN_ON(nbuf >= count || tail == head))
2010 			goto out_free;
2011 
2012 		ibuf = &pipe->bufs[tail & mask];
2013 		obuf = &bufs[nbuf];
2014 
2015 		if (rem >= ibuf->len) {
2016 			*obuf = *ibuf;
2017 			ibuf->ops = NULL;
2018 			tail++;
2019 			pipe->tail = tail;
2020 		} else {
2021 			if (!pipe_buf_get(pipe, ibuf))
2022 				goto out_free;
2023 
2024 			*obuf = *ibuf;
2025 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
2026 			obuf->len = rem;
2027 			ibuf->offset += obuf->len;
2028 			ibuf->len -= obuf->len;
2029 		}
2030 		nbuf++;
2031 		rem -= obuf->len;
2032 	}
2033 	pipe_unlock(pipe);
2034 
2035 	fuse_copy_init(&cs, 0, NULL);
2036 	cs.pipebufs = bufs;
2037 	cs.nr_segs = nbuf;
2038 	cs.pipe = pipe;
2039 
2040 	if (flags & SPLICE_F_MOVE)
2041 		cs.move_pages = 1;
2042 
2043 	ret = fuse_dev_do_write(fud, &cs, len);
2044 
2045 	pipe_lock(pipe);
2046 out_free:
2047 	for (idx = 0; idx < nbuf; idx++) {
2048 		struct pipe_buffer *buf = &bufs[idx];
2049 
2050 		if (buf->ops)
2051 			pipe_buf_release(pipe, buf);
2052 	}
2053 	pipe_unlock(pipe);
2054 
2055 	kvfree(bufs);
2056 	return ret;
2057 }
2058 
2059 static __poll_t fuse_dev_poll(struct file *file, poll_table *wait)
2060 {
2061 	__poll_t mask = EPOLLOUT | EPOLLWRNORM;
2062 	struct fuse_iqueue *fiq;
2063 	struct fuse_dev *fud = fuse_get_dev(file);
2064 
2065 	if (!fud)
2066 		return EPOLLERR;
2067 
2068 	fiq = &fud->fc->iq;
2069 	poll_wait(file, &fiq->waitq, wait);
2070 
2071 	spin_lock(&fiq->lock);
2072 	if (!fiq->connected)
2073 		mask = EPOLLERR;
2074 	else if (request_pending(fiq))
2075 		mask |= EPOLLIN | EPOLLRDNORM;
2076 	spin_unlock(&fiq->lock);
2077 
2078 	return mask;
2079 }
2080 
2081 /* Abort all requests on the given list (pending or processing) */
2082 static void end_requests(struct list_head *head)
2083 {
2084 	while (!list_empty(head)) {
2085 		struct fuse_req *req;
2086 		req = list_entry(head->next, struct fuse_req, list);
2087 		req->out.h.error = -ECONNABORTED;
2088 		clear_bit(FR_SENT, &req->flags);
2089 		list_del_init(&req->list);
2090 		fuse_request_end(req);
2091 	}
2092 }
2093 
2094 static void end_polls(struct fuse_conn *fc)
2095 {
2096 	struct rb_node *p;
2097 
2098 	p = rb_first(&fc->polled_files);
2099 
2100 	while (p) {
2101 		struct fuse_file *ff;
2102 		ff = rb_entry(p, struct fuse_file, polled_node);
2103 		wake_up_interruptible_all(&ff->poll_wait);
2104 
2105 		p = rb_next(p);
2106 	}
2107 }
2108 
2109 /*
2110  * Abort all requests.
2111  *
2112  * Emergency exit in case of a malicious or accidental deadlock, or just a hung
2113  * filesystem.
2114  *
2115  * The same effect is usually achievable through killing the filesystem daemon
2116  * and all users of the filesystem.  The exception is the combination of an
2117  * asynchronous request and the tricky deadlock (see
2118  * Documentation/filesystems/fuse.rst).
2119  *
2120  * Aborting requests under I/O goes as follows: 1: Separate out unlocked
2121  * requests, they should be finished off immediately.  Locked requests will be
2122  * finished after unlock; see unlock_request(). 2: Finish off the unlocked
2123  * requests.  It is possible that some request will finish before we can.  This
2124  * is OK, the request will in that case be removed from the list before we touch
2125  * it.
2126  */
2127 void fuse_abort_conn(struct fuse_conn *fc)
2128 {
2129 	struct fuse_iqueue *fiq = &fc->iq;
2130 
2131 	spin_lock(&fc->lock);
2132 	if (fc->connected) {
2133 		struct fuse_dev *fud;
2134 		struct fuse_req *req, *next;
2135 		LIST_HEAD(to_end);
2136 		unsigned int i;
2137 
2138 		/* Background queuing checks fc->connected under bg_lock */
2139 		spin_lock(&fc->bg_lock);
2140 		fc->connected = 0;
2141 		spin_unlock(&fc->bg_lock);
2142 
2143 		fuse_set_initialized(fc);
2144 		list_for_each_entry(fud, &fc->devices, entry) {
2145 			struct fuse_pqueue *fpq = &fud->pq;
2146 
2147 			spin_lock(&fpq->lock);
2148 			fpq->connected = 0;
2149 			list_for_each_entry_safe(req, next, &fpq->io, list) {
2150 				req->out.h.error = -ECONNABORTED;
2151 				spin_lock(&req->waitq.lock);
2152 				set_bit(FR_ABORTED, &req->flags);
2153 				if (!test_bit(FR_LOCKED, &req->flags)) {
2154 					set_bit(FR_PRIVATE, &req->flags);
2155 					__fuse_get_request(req);
2156 					list_move(&req->list, &to_end);
2157 				}
2158 				spin_unlock(&req->waitq.lock);
2159 			}
2160 			for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2161 				list_splice_tail_init(&fpq->processing[i],
2162 						      &to_end);
2163 			spin_unlock(&fpq->lock);
2164 		}
2165 		spin_lock(&fc->bg_lock);
2166 		fc->blocked = 0;
2167 		fc->max_background = UINT_MAX;
2168 		flush_bg_queue(fc);
2169 		spin_unlock(&fc->bg_lock);
2170 
2171 		spin_lock(&fiq->lock);
2172 		fiq->connected = 0;
2173 		list_for_each_entry(req, &fiq->pending, list)
2174 			clear_bit(FR_PENDING, &req->flags);
2175 		list_splice_tail_init(&fiq->pending, &to_end);
2176 		while (forget_pending(fiq))
2177 			kfree(fuse_dequeue_forget(fiq, 1, NULL));
2178 		wake_up_all(&fiq->waitq);
2179 		spin_unlock(&fiq->lock);
2180 		kill_fasync(&fiq->fasync, SIGIO, POLL_IN);
2181 		end_polls(fc);
2182 		wake_up_all(&fc->blocked_waitq);
2183 		spin_unlock(&fc->lock);
2184 
2185 		end_requests(&to_end);
2186 	} else {
2187 		spin_unlock(&fc->lock);
2188 	}
2189 }
2190 EXPORT_SYMBOL_GPL(fuse_abort_conn);
2191 
2192 void fuse_wait_aborted(struct fuse_conn *fc)
2193 {
2194 	/* matches implicit memory barrier in fuse_drop_waiting() */
2195 	smp_mb();
2196 	wait_event(fc->blocked_waitq, atomic_read(&fc->num_waiting) == 0);
2197 }
2198 
2199 int fuse_dev_release(struct inode *inode, struct file *file)
2200 {
2201 	struct fuse_dev *fud = fuse_get_dev(file);
2202 
2203 	if (fud) {
2204 		struct fuse_conn *fc = fud->fc;
2205 		struct fuse_pqueue *fpq = &fud->pq;
2206 		LIST_HEAD(to_end);
2207 		unsigned int i;
2208 
2209 		spin_lock(&fpq->lock);
2210 		WARN_ON(!list_empty(&fpq->io));
2211 		for (i = 0; i < FUSE_PQ_HASH_SIZE; i++)
2212 			list_splice_init(&fpq->processing[i], &to_end);
2213 		spin_unlock(&fpq->lock);
2214 
2215 		end_requests(&to_end);
2216 
2217 		/* Are we the last open device? */
2218 		if (atomic_dec_and_test(&fc->dev_count)) {
2219 			WARN_ON(fc->iq.fasync != NULL);
2220 			fuse_abort_conn(fc);
2221 		}
2222 		fuse_dev_free(fud);
2223 	}
2224 	return 0;
2225 }
2226 EXPORT_SYMBOL_GPL(fuse_dev_release);
2227 
2228 static int fuse_dev_fasync(int fd, struct file *file, int on)
2229 {
2230 	struct fuse_dev *fud = fuse_get_dev(file);
2231 
2232 	if (!fud)
2233 		return -EPERM;
2234 
2235 	/* No locking - fasync_helper does its own locking */
2236 	return fasync_helper(fd, file, on, &fud->fc->iq.fasync);
2237 }
2238 
2239 static int fuse_device_clone(struct fuse_conn *fc, struct file *new)
2240 {
2241 	struct fuse_dev *fud;
2242 
2243 	if (new->private_data)
2244 		return -EINVAL;
2245 
2246 	fud = fuse_dev_alloc_install(fc);
2247 	if (!fud)
2248 		return -ENOMEM;
2249 
2250 	new->private_data = fud;
2251 	atomic_inc(&fc->dev_count);
2252 
2253 	return 0;
2254 }
2255 
2256 static long fuse_dev_ioctl(struct file *file, unsigned int cmd,
2257 			   unsigned long arg)
2258 {
2259 	int res;
2260 	int oldfd;
2261 	struct fuse_dev *fud = NULL;
2262 	struct fd f;
2263 
2264 	switch (cmd) {
2265 	case FUSE_DEV_IOC_CLONE:
2266 		if (get_user(oldfd, (__u32 __user *)arg))
2267 			return -EFAULT;
2268 
2269 		f = fdget(oldfd);
2270 		if (!f.file)
2271 			return -EINVAL;
2272 
2273 		/*
2274 		 * Check against file->f_op because CUSE
2275 		 * uses the same ioctl handler.
2276 		 */
2277 		if (f.file->f_op == file->f_op)
2278 			fud = fuse_get_dev(f.file);
2279 
2280 		res = -EINVAL;
2281 		if (fud) {
2282 			mutex_lock(&fuse_mutex);
2283 			res = fuse_device_clone(fud->fc, file);
2284 			mutex_unlock(&fuse_mutex);
2285 		}
2286 		fdput(f);
2287 		break;
2288 	default:
2289 		res = -ENOTTY;
2290 		break;
2291 	}
2292 	return res;
2293 }
2294 
2295 const struct file_operations fuse_dev_operations = {
2296 	.owner		= THIS_MODULE,
2297 	.open		= fuse_dev_open,
2298 	.llseek		= no_llseek,
2299 	.read_iter	= fuse_dev_read,
2300 	.splice_read	= fuse_dev_splice_read,
2301 	.write_iter	= fuse_dev_write,
2302 	.splice_write	= fuse_dev_splice_write,
2303 	.poll		= fuse_dev_poll,
2304 	.release	= fuse_dev_release,
2305 	.fasync		= fuse_dev_fasync,
2306 	.unlocked_ioctl = fuse_dev_ioctl,
2307 	.compat_ioctl   = compat_ptr_ioctl,
2308 };
2309 EXPORT_SYMBOL_GPL(fuse_dev_operations);
2310 
2311 static struct miscdevice fuse_miscdevice = {
2312 	.minor = FUSE_MINOR,
2313 	.name  = "fuse",
2314 	.fops = &fuse_dev_operations,
2315 };
2316 
2317 int __init fuse_dev_init(void)
2318 {
2319 	int err = -ENOMEM;
2320 	fuse_req_cachep = kmem_cache_create("fuse_request",
2321 					    sizeof(struct fuse_req),
2322 					    0, 0, NULL);
2323 	if (!fuse_req_cachep)
2324 		goto out;
2325 
2326 	err = misc_register(&fuse_miscdevice);
2327 	if (err)
2328 		goto out_cache_clean;
2329 
2330 	return 0;
2331 
2332  out_cache_clean:
2333 	kmem_cache_destroy(fuse_req_cachep);
2334  out:
2335 	return err;
2336 }
2337 
2338 void fuse_dev_cleanup(void)
2339 {
2340 	misc_deregister(&fuse_miscdevice);
2341 	kmem_cache_destroy(fuse_req_cachep);
2342 }
2343