1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/init.h> 12 #include <linux/module.h> 13 #include <linux/poll.h> 14 #include <linux/uio.h> 15 #include <linux/miscdevice.h> 16 #include <linux/pagemap.h> 17 #include <linux/file.h> 18 #include <linux/slab.h> 19 #include <linux/pipe_fs_i.h> 20 #include <linux/swap.h> 21 #include <linux/splice.h> 22 23 MODULE_ALIAS_MISCDEV(FUSE_MINOR); 24 MODULE_ALIAS("devname:fuse"); 25 26 static struct kmem_cache *fuse_req_cachep; 27 28 static struct fuse_conn *fuse_get_conn(struct file *file) 29 { 30 /* 31 * Lockless access is OK, because file->private data is set 32 * once during mount and is valid until the file is released. 33 */ 34 return file->private_data; 35 } 36 37 static void fuse_request_init(struct fuse_req *req) 38 { 39 memset(req, 0, sizeof(*req)); 40 INIT_LIST_HEAD(&req->list); 41 INIT_LIST_HEAD(&req->intr_entry); 42 init_waitqueue_head(&req->waitq); 43 atomic_set(&req->count, 1); 44 } 45 46 struct fuse_req *fuse_request_alloc(void) 47 { 48 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL); 49 if (req) 50 fuse_request_init(req); 51 return req; 52 } 53 EXPORT_SYMBOL_GPL(fuse_request_alloc); 54 55 struct fuse_req *fuse_request_alloc_nofs(void) 56 { 57 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS); 58 if (req) 59 fuse_request_init(req); 60 return req; 61 } 62 63 void fuse_request_free(struct fuse_req *req) 64 { 65 kmem_cache_free(fuse_req_cachep, req); 66 } 67 68 static void block_sigs(sigset_t *oldset) 69 { 70 sigset_t mask; 71 72 siginitsetinv(&mask, sigmask(SIGKILL)); 73 sigprocmask(SIG_BLOCK, &mask, oldset); 74 } 75 76 static void restore_sigs(sigset_t *oldset) 77 { 78 sigprocmask(SIG_SETMASK, oldset, NULL); 79 } 80 81 static void __fuse_get_request(struct fuse_req *req) 82 { 83 atomic_inc(&req->count); 84 } 85 86 /* Must be called with > 1 refcount */ 87 static void __fuse_put_request(struct fuse_req *req) 88 { 89 BUG_ON(atomic_read(&req->count) < 2); 90 atomic_dec(&req->count); 91 } 92 93 static void fuse_req_init_context(struct fuse_req *req) 94 { 95 req->in.h.uid = current_fsuid(); 96 req->in.h.gid = current_fsgid(); 97 req->in.h.pid = current->pid; 98 } 99 100 struct fuse_req *fuse_get_req(struct fuse_conn *fc) 101 { 102 struct fuse_req *req; 103 sigset_t oldset; 104 int intr; 105 int err; 106 107 atomic_inc(&fc->num_waiting); 108 block_sigs(&oldset); 109 intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked); 110 restore_sigs(&oldset); 111 err = -EINTR; 112 if (intr) 113 goto out; 114 115 err = -ENOTCONN; 116 if (!fc->connected) 117 goto out; 118 119 req = fuse_request_alloc(); 120 err = -ENOMEM; 121 if (!req) 122 goto out; 123 124 fuse_req_init_context(req); 125 req->waiting = 1; 126 return req; 127 128 out: 129 atomic_dec(&fc->num_waiting); 130 return ERR_PTR(err); 131 } 132 EXPORT_SYMBOL_GPL(fuse_get_req); 133 134 /* 135 * Return request in fuse_file->reserved_req. However that may 136 * currently be in use. If that is the case, wait for it to become 137 * available. 138 */ 139 static struct fuse_req *get_reserved_req(struct fuse_conn *fc, 140 struct file *file) 141 { 142 struct fuse_req *req = NULL; 143 struct fuse_file *ff = file->private_data; 144 145 do { 146 wait_event(fc->reserved_req_waitq, ff->reserved_req); 147 spin_lock(&fc->lock); 148 if (ff->reserved_req) { 149 req = ff->reserved_req; 150 ff->reserved_req = NULL; 151 get_file(file); 152 req->stolen_file = file; 153 } 154 spin_unlock(&fc->lock); 155 } while (!req); 156 157 return req; 158 } 159 160 /* 161 * Put stolen request back into fuse_file->reserved_req 162 */ 163 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req) 164 { 165 struct file *file = req->stolen_file; 166 struct fuse_file *ff = file->private_data; 167 168 spin_lock(&fc->lock); 169 fuse_request_init(req); 170 BUG_ON(ff->reserved_req); 171 ff->reserved_req = req; 172 wake_up_all(&fc->reserved_req_waitq); 173 spin_unlock(&fc->lock); 174 fput(file); 175 } 176 177 /* 178 * Gets a requests for a file operation, always succeeds 179 * 180 * This is used for sending the FLUSH request, which must get to 181 * userspace, due to POSIX locks which may need to be unlocked. 182 * 183 * If allocation fails due to OOM, use the reserved request in 184 * fuse_file. 185 * 186 * This is very unlikely to deadlock accidentally, since the 187 * filesystem should not have it's own file open. If deadlock is 188 * intentional, it can still be broken by "aborting" the filesystem. 189 */ 190 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file) 191 { 192 struct fuse_req *req; 193 194 atomic_inc(&fc->num_waiting); 195 wait_event(fc->blocked_waitq, !fc->blocked); 196 req = fuse_request_alloc(); 197 if (!req) 198 req = get_reserved_req(fc, file); 199 200 fuse_req_init_context(req); 201 req->waiting = 1; 202 return req; 203 } 204 205 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req) 206 { 207 if (atomic_dec_and_test(&req->count)) { 208 if (req->waiting) 209 atomic_dec(&fc->num_waiting); 210 211 if (req->stolen_file) 212 put_reserved_req(fc, req); 213 else 214 fuse_request_free(req); 215 } 216 } 217 EXPORT_SYMBOL_GPL(fuse_put_request); 218 219 static unsigned len_args(unsigned numargs, struct fuse_arg *args) 220 { 221 unsigned nbytes = 0; 222 unsigned i; 223 224 for (i = 0; i < numargs; i++) 225 nbytes += args[i].size; 226 227 return nbytes; 228 } 229 230 static u64 fuse_get_unique(struct fuse_conn *fc) 231 { 232 fc->reqctr++; 233 /* zero is special */ 234 if (fc->reqctr == 0) 235 fc->reqctr = 1; 236 237 return fc->reqctr; 238 } 239 240 static void queue_request(struct fuse_conn *fc, struct fuse_req *req) 241 { 242 req->in.h.len = sizeof(struct fuse_in_header) + 243 len_args(req->in.numargs, (struct fuse_arg *) req->in.args); 244 list_add_tail(&req->list, &fc->pending); 245 req->state = FUSE_REQ_PENDING; 246 if (!req->waiting) { 247 req->waiting = 1; 248 atomic_inc(&fc->num_waiting); 249 } 250 wake_up(&fc->waitq); 251 kill_fasync(&fc->fasync, SIGIO, POLL_IN); 252 } 253 254 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget, 255 u64 nodeid, u64 nlookup) 256 { 257 forget->forget_one.nodeid = nodeid; 258 forget->forget_one.nlookup = nlookup; 259 260 spin_lock(&fc->lock); 261 if (fc->connected) { 262 fc->forget_list_tail->next = forget; 263 fc->forget_list_tail = forget; 264 wake_up(&fc->waitq); 265 kill_fasync(&fc->fasync, SIGIO, POLL_IN); 266 } else { 267 kfree(forget); 268 } 269 spin_unlock(&fc->lock); 270 } 271 272 static void flush_bg_queue(struct fuse_conn *fc) 273 { 274 while (fc->active_background < fc->max_background && 275 !list_empty(&fc->bg_queue)) { 276 struct fuse_req *req; 277 278 req = list_entry(fc->bg_queue.next, struct fuse_req, list); 279 list_del(&req->list); 280 fc->active_background++; 281 req->in.h.unique = fuse_get_unique(fc); 282 queue_request(fc, req); 283 } 284 } 285 286 /* 287 * This function is called when a request is finished. Either a reply 288 * has arrived or it was aborted (and not yet sent) or some error 289 * occurred during communication with userspace, or the device file 290 * was closed. The requester thread is woken up (if still waiting), 291 * the 'end' callback is called if given, else the reference to the 292 * request is released 293 * 294 * Called with fc->lock, unlocks it 295 */ 296 static void request_end(struct fuse_conn *fc, struct fuse_req *req) 297 __releases(fc->lock) 298 { 299 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end; 300 req->end = NULL; 301 list_del(&req->list); 302 list_del(&req->intr_entry); 303 req->state = FUSE_REQ_FINISHED; 304 if (req->background) { 305 if (fc->num_background == fc->max_background) { 306 fc->blocked = 0; 307 wake_up_all(&fc->blocked_waitq); 308 } 309 if (fc->num_background == fc->congestion_threshold && 310 fc->connected && fc->bdi_initialized) { 311 clear_bdi_congested(&fc->bdi, BLK_RW_SYNC); 312 clear_bdi_congested(&fc->bdi, BLK_RW_ASYNC); 313 } 314 fc->num_background--; 315 fc->active_background--; 316 flush_bg_queue(fc); 317 } 318 spin_unlock(&fc->lock); 319 wake_up(&req->waitq); 320 if (end) 321 end(fc, req); 322 fuse_put_request(fc, req); 323 } 324 325 static void wait_answer_interruptible(struct fuse_conn *fc, 326 struct fuse_req *req) 327 __releases(fc->lock) 328 __acquires(fc->lock) 329 { 330 if (signal_pending(current)) 331 return; 332 333 spin_unlock(&fc->lock); 334 wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED); 335 spin_lock(&fc->lock); 336 } 337 338 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req) 339 { 340 list_add_tail(&req->intr_entry, &fc->interrupts); 341 wake_up(&fc->waitq); 342 kill_fasync(&fc->fasync, SIGIO, POLL_IN); 343 } 344 345 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req) 346 __releases(fc->lock) 347 __acquires(fc->lock) 348 { 349 if (!fc->no_interrupt) { 350 /* Any signal may interrupt this */ 351 wait_answer_interruptible(fc, req); 352 353 if (req->aborted) 354 goto aborted; 355 if (req->state == FUSE_REQ_FINISHED) 356 return; 357 358 req->interrupted = 1; 359 if (req->state == FUSE_REQ_SENT) 360 queue_interrupt(fc, req); 361 } 362 363 if (!req->force) { 364 sigset_t oldset; 365 366 /* Only fatal signals may interrupt this */ 367 block_sigs(&oldset); 368 wait_answer_interruptible(fc, req); 369 restore_sigs(&oldset); 370 371 if (req->aborted) 372 goto aborted; 373 if (req->state == FUSE_REQ_FINISHED) 374 return; 375 376 /* Request is not yet in userspace, bail out */ 377 if (req->state == FUSE_REQ_PENDING) { 378 list_del(&req->list); 379 __fuse_put_request(req); 380 req->out.h.error = -EINTR; 381 return; 382 } 383 } 384 385 /* 386 * Either request is already in userspace, or it was forced. 387 * Wait it out. 388 */ 389 spin_unlock(&fc->lock); 390 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED); 391 spin_lock(&fc->lock); 392 393 if (!req->aborted) 394 return; 395 396 aborted: 397 BUG_ON(req->state != FUSE_REQ_FINISHED); 398 if (req->locked) { 399 /* This is uninterruptible sleep, because data is 400 being copied to/from the buffers of req. During 401 locked state, there mustn't be any filesystem 402 operation (e.g. page fault), since that could lead 403 to deadlock */ 404 spin_unlock(&fc->lock); 405 wait_event(req->waitq, !req->locked); 406 spin_lock(&fc->lock); 407 } 408 } 409 410 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req) 411 { 412 req->isreply = 1; 413 spin_lock(&fc->lock); 414 if (!fc->connected) 415 req->out.h.error = -ENOTCONN; 416 else if (fc->conn_error) 417 req->out.h.error = -ECONNREFUSED; 418 else { 419 req->in.h.unique = fuse_get_unique(fc); 420 queue_request(fc, req); 421 /* acquire extra reference, since request is still needed 422 after request_end() */ 423 __fuse_get_request(req); 424 425 request_wait_answer(fc, req); 426 } 427 spin_unlock(&fc->lock); 428 } 429 EXPORT_SYMBOL_GPL(fuse_request_send); 430 431 static void fuse_request_send_nowait_locked(struct fuse_conn *fc, 432 struct fuse_req *req) 433 { 434 req->background = 1; 435 fc->num_background++; 436 if (fc->num_background == fc->max_background) 437 fc->blocked = 1; 438 if (fc->num_background == fc->congestion_threshold && 439 fc->bdi_initialized) { 440 set_bdi_congested(&fc->bdi, BLK_RW_SYNC); 441 set_bdi_congested(&fc->bdi, BLK_RW_ASYNC); 442 } 443 list_add_tail(&req->list, &fc->bg_queue); 444 flush_bg_queue(fc); 445 } 446 447 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req) 448 { 449 spin_lock(&fc->lock); 450 if (fc->connected) { 451 fuse_request_send_nowait_locked(fc, req); 452 spin_unlock(&fc->lock); 453 } else { 454 req->out.h.error = -ENOTCONN; 455 request_end(fc, req); 456 } 457 } 458 459 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req) 460 { 461 req->isreply = 1; 462 fuse_request_send_nowait(fc, req); 463 } 464 EXPORT_SYMBOL_GPL(fuse_request_send_background); 465 466 static int fuse_request_send_notify_reply(struct fuse_conn *fc, 467 struct fuse_req *req, u64 unique) 468 { 469 int err = -ENODEV; 470 471 req->isreply = 0; 472 req->in.h.unique = unique; 473 spin_lock(&fc->lock); 474 if (fc->connected) { 475 queue_request(fc, req); 476 err = 0; 477 } 478 spin_unlock(&fc->lock); 479 480 return err; 481 } 482 483 /* 484 * Called under fc->lock 485 * 486 * fc->connected must have been checked previously 487 */ 488 void fuse_request_send_background_locked(struct fuse_conn *fc, 489 struct fuse_req *req) 490 { 491 req->isreply = 1; 492 fuse_request_send_nowait_locked(fc, req); 493 } 494 495 /* 496 * Lock the request. Up to the next unlock_request() there mustn't be 497 * anything that could cause a page-fault. If the request was already 498 * aborted bail out. 499 */ 500 static int lock_request(struct fuse_conn *fc, struct fuse_req *req) 501 { 502 int err = 0; 503 if (req) { 504 spin_lock(&fc->lock); 505 if (req->aborted) 506 err = -ENOENT; 507 else 508 req->locked = 1; 509 spin_unlock(&fc->lock); 510 } 511 return err; 512 } 513 514 /* 515 * Unlock request. If it was aborted during being locked, the 516 * requester thread is currently waiting for it to be unlocked, so 517 * wake it up. 518 */ 519 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req) 520 { 521 if (req) { 522 spin_lock(&fc->lock); 523 req->locked = 0; 524 if (req->aborted) 525 wake_up(&req->waitq); 526 spin_unlock(&fc->lock); 527 } 528 } 529 530 struct fuse_copy_state { 531 struct fuse_conn *fc; 532 int write; 533 struct fuse_req *req; 534 const struct iovec *iov; 535 struct pipe_buffer *pipebufs; 536 struct pipe_buffer *currbuf; 537 struct pipe_inode_info *pipe; 538 unsigned long nr_segs; 539 unsigned long seglen; 540 unsigned long addr; 541 struct page *pg; 542 void *mapaddr; 543 void *buf; 544 unsigned len; 545 unsigned move_pages:1; 546 }; 547 548 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc, 549 int write, 550 const struct iovec *iov, unsigned long nr_segs) 551 { 552 memset(cs, 0, sizeof(*cs)); 553 cs->fc = fc; 554 cs->write = write; 555 cs->iov = iov; 556 cs->nr_segs = nr_segs; 557 } 558 559 /* Unmap and put previous page of userspace buffer */ 560 static void fuse_copy_finish(struct fuse_copy_state *cs) 561 { 562 if (cs->currbuf) { 563 struct pipe_buffer *buf = cs->currbuf; 564 565 if (!cs->write) { 566 buf->ops->unmap(cs->pipe, buf, cs->mapaddr); 567 } else { 568 kunmap(buf->page); 569 buf->len = PAGE_SIZE - cs->len; 570 } 571 cs->currbuf = NULL; 572 cs->mapaddr = NULL; 573 } else if (cs->mapaddr) { 574 kunmap(cs->pg); 575 if (cs->write) { 576 flush_dcache_page(cs->pg); 577 set_page_dirty_lock(cs->pg); 578 } 579 put_page(cs->pg); 580 cs->mapaddr = NULL; 581 } 582 } 583 584 /* 585 * Get another pagefull of userspace buffer, and map it to kernel 586 * address space, and lock request 587 */ 588 static int fuse_copy_fill(struct fuse_copy_state *cs) 589 { 590 unsigned long offset; 591 int err; 592 593 unlock_request(cs->fc, cs->req); 594 fuse_copy_finish(cs); 595 if (cs->pipebufs) { 596 struct pipe_buffer *buf = cs->pipebufs; 597 598 if (!cs->write) { 599 err = buf->ops->confirm(cs->pipe, buf); 600 if (err) 601 return err; 602 603 BUG_ON(!cs->nr_segs); 604 cs->currbuf = buf; 605 cs->mapaddr = buf->ops->map(cs->pipe, buf, 0); 606 cs->len = buf->len; 607 cs->buf = cs->mapaddr + buf->offset; 608 cs->pipebufs++; 609 cs->nr_segs--; 610 } else { 611 struct page *page; 612 613 if (cs->nr_segs == cs->pipe->buffers) 614 return -EIO; 615 616 page = alloc_page(GFP_HIGHUSER); 617 if (!page) 618 return -ENOMEM; 619 620 buf->page = page; 621 buf->offset = 0; 622 buf->len = 0; 623 624 cs->currbuf = buf; 625 cs->mapaddr = kmap(page); 626 cs->buf = cs->mapaddr; 627 cs->len = PAGE_SIZE; 628 cs->pipebufs++; 629 cs->nr_segs++; 630 } 631 } else { 632 if (!cs->seglen) { 633 BUG_ON(!cs->nr_segs); 634 cs->seglen = cs->iov[0].iov_len; 635 cs->addr = (unsigned long) cs->iov[0].iov_base; 636 cs->iov++; 637 cs->nr_segs--; 638 } 639 err = get_user_pages_fast(cs->addr, 1, cs->write, &cs->pg); 640 if (err < 0) 641 return err; 642 BUG_ON(err != 1); 643 offset = cs->addr % PAGE_SIZE; 644 cs->mapaddr = kmap(cs->pg); 645 cs->buf = cs->mapaddr + offset; 646 cs->len = min(PAGE_SIZE - offset, cs->seglen); 647 cs->seglen -= cs->len; 648 cs->addr += cs->len; 649 } 650 651 return lock_request(cs->fc, cs->req); 652 } 653 654 /* Do as much copy to/from userspace buffer as we can */ 655 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size) 656 { 657 unsigned ncpy = min(*size, cs->len); 658 if (val) { 659 if (cs->write) 660 memcpy(cs->buf, *val, ncpy); 661 else 662 memcpy(*val, cs->buf, ncpy); 663 *val += ncpy; 664 } 665 *size -= ncpy; 666 cs->len -= ncpy; 667 cs->buf += ncpy; 668 return ncpy; 669 } 670 671 static int fuse_check_page(struct page *page) 672 { 673 if (page_mapcount(page) || 674 page->mapping != NULL || 675 page_count(page) != 1 || 676 (page->flags & PAGE_FLAGS_CHECK_AT_PREP & 677 ~(1 << PG_locked | 678 1 << PG_referenced | 679 1 << PG_uptodate | 680 1 << PG_lru | 681 1 << PG_active | 682 1 << PG_reclaim))) { 683 printk(KERN_WARNING "fuse: trying to steal weird page\n"); 684 printk(KERN_WARNING " page=%p index=%li flags=%08lx, count=%i, mapcount=%i, mapping=%p\n", page, page->index, page->flags, page_count(page), page_mapcount(page), page->mapping); 685 return 1; 686 } 687 return 0; 688 } 689 690 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep) 691 { 692 int err; 693 struct page *oldpage = *pagep; 694 struct page *newpage; 695 struct pipe_buffer *buf = cs->pipebufs; 696 struct address_space *mapping; 697 pgoff_t index; 698 699 unlock_request(cs->fc, cs->req); 700 fuse_copy_finish(cs); 701 702 err = buf->ops->confirm(cs->pipe, buf); 703 if (err) 704 return err; 705 706 BUG_ON(!cs->nr_segs); 707 cs->currbuf = buf; 708 cs->len = buf->len; 709 cs->pipebufs++; 710 cs->nr_segs--; 711 712 if (cs->len != PAGE_SIZE) 713 goto out_fallback; 714 715 if (buf->ops->steal(cs->pipe, buf) != 0) 716 goto out_fallback; 717 718 newpage = buf->page; 719 720 if (WARN_ON(!PageUptodate(newpage))) 721 return -EIO; 722 723 ClearPageMappedToDisk(newpage); 724 725 if (fuse_check_page(newpage) != 0) 726 goto out_fallback_unlock; 727 728 mapping = oldpage->mapping; 729 index = oldpage->index; 730 731 /* 732 * This is a new and locked page, it shouldn't be mapped or 733 * have any special flags on it 734 */ 735 if (WARN_ON(page_mapped(oldpage))) 736 goto out_fallback_unlock; 737 if (WARN_ON(page_has_private(oldpage))) 738 goto out_fallback_unlock; 739 if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage))) 740 goto out_fallback_unlock; 741 if (WARN_ON(PageMlocked(oldpage))) 742 goto out_fallback_unlock; 743 744 err = replace_page_cache_page(oldpage, newpage, GFP_KERNEL); 745 if (err) { 746 unlock_page(newpage); 747 return err; 748 } 749 750 page_cache_get(newpage); 751 752 if (!(buf->flags & PIPE_BUF_FLAG_LRU)) 753 lru_cache_add_file(newpage); 754 755 err = 0; 756 spin_lock(&cs->fc->lock); 757 if (cs->req->aborted) 758 err = -ENOENT; 759 else 760 *pagep = newpage; 761 spin_unlock(&cs->fc->lock); 762 763 if (err) { 764 unlock_page(newpage); 765 page_cache_release(newpage); 766 return err; 767 } 768 769 unlock_page(oldpage); 770 page_cache_release(oldpage); 771 cs->len = 0; 772 773 return 0; 774 775 out_fallback_unlock: 776 unlock_page(newpage); 777 out_fallback: 778 cs->mapaddr = buf->ops->map(cs->pipe, buf, 1); 779 cs->buf = cs->mapaddr + buf->offset; 780 781 err = lock_request(cs->fc, cs->req); 782 if (err) 783 return err; 784 785 return 1; 786 } 787 788 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page, 789 unsigned offset, unsigned count) 790 { 791 struct pipe_buffer *buf; 792 793 if (cs->nr_segs == cs->pipe->buffers) 794 return -EIO; 795 796 unlock_request(cs->fc, cs->req); 797 fuse_copy_finish(cs); 798 799 buf = cs->pipebufs; 800 page_cache_get(page); 801 buf->page = page; 802 buf->offset = offset; 803 buf->len = count; 804 805 cs->pipebufs++; 806 cs->nr_segs++; 807 cs->len = 0; 808 809 return 0; 810 } 811 812 /* 813 * Copy a page in the request to/from the userspace buffer. Must be 814 * done atomically 815 */ 816 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep, 817 unsigned offset, unsigned count, int zeroing) 818 { 819 int err; 820 struct page *page = *pagep; 821 822 if (page && zeroing && count < PAGE_SIZE) 823 clear_highpage(page); 824 825 while (count) { 826 if (cs->write && cs->pipebufs && page) { 827 return fuse_ref_page(cs, page, offset, count); 828 } else if (!cs->len) { 829 if (cs->move_pages && page && 830 offset == 0 && count == PAGE_SIZE) { 831 err = fuse_try_move_page(cs, pagep); 832 if (err <= 0) 833 return err; 834 } else { 835 err = fuse_copy_fill(cs); 836 if (err) 837 return err; 838 } 839 } 840 if (page) { 841 void *mapaddr = kmap_atomic(page, KM_USER0); 842 void *buf = mapaddr + offset; 843 offset += fuse_copy_do(cs, &buf, &count); 844 kunmap_atomic(mapaddr, KM_USER0); 845 } else 846 offset += fuse_copy_do(cs, NULL, &count); 847 } 848 if (page && !cs->write) 849 flush_dcache_page(page); 850 return 0; 851 } 852 853 /* Copy pages in the request to/from userspace buffer */ 854 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes, 855 int zeroing) 856 { 857 unsigned i; 858 struct fuse_req *req = cs->req; 859 unsigned offset = req->page_offset; 860 unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset); 861 862 for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) { 863 int err; 864 865 err = fuse_copy_page(cs, &req->pages[i], offset, count, 866 zeroing); 867 if (err) 868 return err; 869 870 nbytes -= count; 871 count = min(nbytes, (unsigned) PAGE_SIZE); 872 offset = 0; 873 } 874 return 0; 875 } 876 877 /* Copy a single argument in the request to/from userspace buffer */ 878 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size) 879 { 880 while (size) { 881 if (!cs->len) { 882 int err = fuse_copy_fill(cs); 883 if (err) 884 return err; 885 } 886 fuse_copy_do(cs, &val, &size); 887 } 888 return 0; 889 } 890 891 /* Copy request arguments to/from userspace buffer */ 892 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs, 893 unsigned argpages, struct fuse_arg *args, 894 int zeroing) 895 { 896 int err = 0; 897 unsigned i; 898 899 for (i = 0; !err && i < numargs; i++) { 900 struct fuse_arg *arg = &args[i]; 901 if (i == numargs - 1 && argpages) 902 err = fuse_copy_pages(cs, arg->size, zeroing); 903 else 904 err = fuse_copy_one(cs, arg->value, arg->size); 905 } 906 return err; 907 } 908 909 static int forget_pending(struct fuse_conn *fc) 910 { 911 return fc->forget_list_head.next != NULL; 912 } 913 914 static int request_pending(struct fuse_conn *fc) 915 { 916 return !list_empty(&fc->pending) || !list_empty(&fc->interrupts) || 917 forget_pending(fc); 918 } 919 920 /* Wait until a request is available on the pending list */ 921 static void request_wait(struct fuse_conn *fc) 922 __releases(fc->lock) 923 __acquires(fc->lock) 924 { 925 DECLARE_WAITQUEUE(wait, current); 926 927 add_wait_queue_exclusive(&fc->waitq, &wait); 928 while (fc->connected && !request_pending(fc)) { 929 set_current_state(TASK_INTERRUPTIBLE); 930 if (signal_pending(current)) 931 break; 932 933 spin_unlock(&fc->lock); 934 schedule(); 935 spin_lock(&fc->lock); 936 } 937 set_current_state(TASK_RUNNING); 938 remove_wait_queue(&fc->waitq, &wait); 939 } 940 941 /* 942 * Transfer an interrupt request to userspace 943 * 944 * Unlike other requests this is assembled on demand, without a need 945 * to allocate a separate fuse_req structure. 946 * 947 * Called with fc->lock held, releases it 948 */ 949 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_copy_state *cs, 950 size_t nbytes, struct fuse_req *req) 951 __releases(fc->lock) 952 { 953 struct fuse_in_header ih; 954 struct fuse_interrupt_in arg; 955 unsigned reqsize = sizeof(ih) + sizeof(arg); 956 int err; 957 958 list_del_init(&req->intr_entry); 959 req->intr_unique = fuse_get_unique(fc); 960 memset(&ih, 0, sizeof(ih)); 961 memset(&arg, 0, sizeof(arg)); 962 ih.len = reqsize; 963 ih.opcode = FUSE_INTERRUPT; 964 ih.unique = req->intr_unique; 965 arg.unique = req->in.h.unique; 966 967 spin_unlock(&fc->lock); 968 if (nbytes < reqsize) 969 return -EINVAL; 970 971 err = fuse_copy_one(cs, &ih, sizeof(ih)); 972 if (!err) 973 err = fuse_copy_one(cs, &arg, sizeof(arg)); 974 fuse_copy_finish(cs); 975 976 return err ? err : reqsize; 977 } 978 979 static struct fuse_forget_link *dequeue_forget(struct fuse_conn *fc, 980 unsigned max, 981 unsigned *countp) 982 { 983 struct fuse_forget_link *head = fc->forget_list_head.next; 984 struct fuse_forget_link **newhead = &head; 985 unsigned count; 986 987 for (count = 0; *newhead != NULL && count < max; count++) 988 newhead = &(*newhead)->next; 989 990 fc->forget_list_head.next = *newhead; 991 *newhead = NULL; 992 if (fc->forget_list_head.next == NULL) 993 fc->forget_list_tail = &fc->forget_list_head; 994 995 if (countp != NULL) 996 *countp = count; 997 998 return head; 999 } 1000 1001 static int fuse_read_single_forget(struct fuse_conn *fc, 1002 struct fuse_copy_state *cs, 1003 size_t nbytes) 1004 __releases(fc->lock) 1005 { 1006 int err; 1007 struct fuse_forget_link *forget = dequeue_forget(fc, 1, NULL); 1008 struct fuse_forget_in arg = { 1009 .nlookup = forget->forget_one.nlookup, 1010 }; 1011 struct fuse_in_header ih = { 1012 .opcode = FUSE_FORGET, 1013 .nodeid = forget->forget_one.nodeid, 1014 .unique = fuse_get_unique(fc), 1015 .len = sizeof(ih) + sizeof(arg), 1016 }; 1017 1018 spin_unlock(&fc->lock); 1019 kfree(forget); 1020 if (nbytes < ih.len) 1021 return -EINVAL; 1022 1023 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1024 if (!err) 1025 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1026 fuse_copy_finish(cs); 1027 1028 if (err) 1029 return err; 1030 1031 return ih.len; 1032 } 1033 1034 static int fuse_read_batch_forget(struct fuse_conn *fc, 1035 struct fuse_copy_state *cs, size_t nbytes) 1036 __releases(fc->lock) 1037 { 1038 int err; 1039 unsigned max_forgets; 1040 unsigned count; 1041 struct fuse_forget_link *head; 1042 struct fuse_batch_forget_in arg = { .count = 0 }; 1043 struct fuse_in_header ih = { 1044 .opcode = FUSE_BATCH_FORGET, 1045 .unique = fuse_get_unique(fc), 1046 .len = sizeof(ih) + sizeof(arg), 1047 }; 1048 1049 if (nbytes < ih.len) { 1050 spin_unlock(&fc->lock); 1051 return -EINVAL; 1052 } 1053 1054 max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one); 1055 head = dequeue_forget(fc, max_forgets, &count); 1056 spin_unlock(&fc->lock); 1057 1058 arg.count = count; 1059 ih.len += count * sizeof(struct fuse_forget_one); 1060 err = fuse_copy_one(cs, &ih, sizeof(ih)); 1061 if (!err) 1062 err = fuse_copy_one(cs, &arg, sizeof(arg)); 1063 1064 while (head) { 1065 struct fuse_forget_link *forget = head; 1066 1067 if (!err) { 1068 err = fuse_copy_one(cs, &forget->forget_one, 1069 sizeof(forget->forget_one)); 1070 } 1071 head = forget->next; 1072 kfree(forget); 1073 } 1074 1075 fuse_copy_finish(cs); 1076 1077 if (err) 1078 return err; 1079 1080 return ih.len; 1081 } 1082 1083 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_copy_state *cs, 1084 size_t nbytes) 1085 __releases(fc->lock) 1086 { 1087 if (fc->minor < 16 || fc->forget_list_head.next->next == NULL) 1088 return fuse_read_single_forget(fc, cs, nbytes); 1089 else 1090 return fuse_read_batch_forget(fc, cs, nbytes); 1091 } 1092 1093 /* 1094 * Read a single request into the userspace filesystem's buffer. This 1095 * function waits until a request is available, then removes it from 1096 * the pending list and copies request data to userspace buffer. If 1097 * no reply is needed (FORGET) or request has been aborted or there 1098 * was an error during the copying then it's finished by calling 1099 * request_end(). Otherwise add it to the processing list, and set 1100 * the 'sent' flag. 1101 */ 1102 static ssize_t fuse_dev_do_read(struct fuse_conn *fc, struct file *file, 1103 struct fuse_copy_state *cs, size_t nbytes) 1104 { 1105 int err; 1106 struct fuse_req *req; 1107 struct fuse_in *in; 1108 unsigned reqsize; 1109 1110 restart: 1111 spin_lock(&fc->lock); 1112 err = -EAGAIN; 1113 if ((file->f_flags & O_NONBLOCK) && fc->connected && 1114 !request_pending(fc)) 1115 goto err_unlock; 1116 1117 request_wait(fc); 1118 err = -ENODEV; 1119 if (!fc->connected) 1120 goto err_unlock; 1121 err = -ERESTARTSYS; 1122 if (!request_pending(fc)) 1123 goto err_unlock; 1124 1125 if (!list_empty(&fc->interrupts)) { 1126 req = list_entry(fc->interrupts.next, struct fuse_req, 1127 intr_entry); 1128 return fuse_read_interrupt(fc, cs, nbytes, req); 1129 } 1130 1131 if (forget_pending(fc)) { 1132 if (list_empty(&fc->pending) || fc->forget_batch-- > 0) 1133 return fuse_read_forget(fc, cs, nbytes); 1134 1135 if (fc->forget_batch <= -8) 1136 fc->forget_batch = 16; 1137 } 1138 1139 req = list_entry(fc->pending.next, struct fuse_req, list); 1140 req->state = FUSE_REQ_READING; 1141 list_move(&req->list, &fc->io); 1142 1143 in = &req->in; 1144 reqsize = in->h.len; 1145 /* If request is too large, reply with an error and restart the read */ 1146 if (nbytes < reqsize) { 1147 req->out.h.error = -EIO; 1148 /* SETXATTR is special, since it may contain too large data */ 1149 if (in->h.opcode == FUSE_SETXATTR) 1150 req->out.h.error = -E2BIG; 1151 request_end(fc, req); 1152 goto restart; 1153 } 1154 spin_unlock(&fc->lock); 1155 cs->req = req; 1156 err = fuse_copy_one(cs, &in->h, sizeof(in->h)); 1157 if (!err) 1158 err = fuse_copy_args(cs, in->numargs, in->argpages, 1159 (struct fuse_arg *) in->args, 0); 1160 fuse_copy_finish(cs); 1161 spin_lock(&fc->lock); 1162 req->locked = 0; 1163 if (req->aborted) { 1164 request_end(fc, req); 1165 return -ENODEV; 1166 } 1167 if (err) { 1168 req->out.h.error = -EIO; 1169 request_end(fc, req); 1170 return err; 1171 } 1172 if (!req->isreply) 1173 request_end(fc, req); 1174 else { 1175 req->state = FUSE_REQ_SENT; 1176 list_move_tail(&req->list, &fc->processing); 1177 if (req->interrupted) 1178 queue_interrupt(fc, req); 1179 spin_unlock(&fc->lock); 1180 } 1181 return reqsize; 1182 1183 err_unlock: 1184 spin_unlock(&fc->lock); 1185 return err; 1186 } 1187 1188 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov, 1189 unsigned long nr_segs, loff_t pos) 1190 { 1191 struct fuse_copy_state cs; 1192 struct file *file = iocb->ki_filp; 1193 struct fuse_conn *fc = fuse_get_conn(file); 1194 if (!fc) 1195 return -EPERM; 1196 1197 fuse_copy_init(&cs, fc, 1, iov, nr_segs); 1198 1199 return fuse_dev_do_read(fc, file, &cs, iov_length(iov, nr_segs)); 1200 } 1201 1202 static int fuse_dev_pipe_buf_steal(struct pipe_inode_info *pipe, 1203 struct pipe_buffer *buf) 1204 { 1205 return 1; 1206 } 1207 1208 static const struct pipe_buf_operations fuse_dev_pipe_buf_ops = { 1209 .can_merge = 0, 1210 .map = generic_pipe_buf_map, 1211 .unmap = generic_pipe_buf_unmap, 1212 .confirm = generic_pipe_buf_confirm, 1213 .release = generic_pipe_buf_release, 1214 .steal = fuse_dev_pipe_buf_steal, 1215 .get = generic_pipe_buf_get, 1216 }; 1217 1218 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos, 1219 struct pipe_inode_info *pipe, 1220 size_t len, unsigned int flags) 1221 { 1222 int ret; 1223 int page_nr = 0; 1224 int do_wakeup = 0; 1225 struct pipe_buffer *bufs; 1226 struct fuse_copy_state cs; 1227 struct fuse_conn *fc = fuse_get_conn(in); 1228 if (!fc) 1229 return -EPERM; 1230 1231 bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL); 1232 if (!bufs) 1233 return -ENOMEM; 1234 1235 fuse_copy_init(&cs, fc, 1, NULL, 0); 1236 cs.pipebufs = bufs; 1237 cs.pipe = pipe; 1238 ret = fuse_dev_do_read(fc, in, &cs, len); 1239 if (ret < 0) 1240 goto out; 1241 1242 ret = 0; 1243 pipe_lock(pipe); 1244 1245 if (!pipe->readers) { 1246 send_sig(SIGPIPE, current, 0); 1247 if (!ret) 1248 ret = -EPIPE; 1249 goto out_unlock; 1250 } 1251 1252 if (pipe->nrbufs + cs.nr_segs > pipe->buffers) { 1253 ret = -EIO; 1254 goto out_unlock; 1255 } 1256 1257 while (page_nr < cs.nr_segs) { 1258 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); 1259 struct pipe_buffer *buf = pipe->bufs + newbuf; 1260 1261 buf->page = bufs[page_nr].page; 1262 buf->offset = bufs[page_nr].offset; 1263 buf->len = bufs[page_nr].len; 1264 buf->ops = &fuse_dev_pipe_buf_ops; 1265 1266 pipe->nrbufs++; 1267 page_nr++; 1268 ret += buf->len; 1269 1270 if (pipe->inode) 1271 do_wakeup = 1; 1272 } 1273 1274 out_unlock: 1275 pipe_unlock(pipe); 1276 1277 if (do_wakeup) { 1278 smp_mb(); 1279 if (waitqueue_active(&pipe->wait)) 1280 wake_up_interruptible(&pipe->wait); 1281 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); 1282 } 1283 1284 out: 1285 for (; page_nr < cs.nr_segs; page_nr++) 1286 page_cache_release(bufs[page_nr].page); 1287 1288 kfree(bufs); 1289 return ret; 1290 } 1291 1292 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size, 1293 struct fuse_copy_state *cs) 1294 { 1295 struct fuse_notify_poll_wakeup_out outarg; 1296 int err = -EINVAL; 1297 1298 if (size != sizeof(outarg)) 1299 goto err; 1300 1301 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1302 if (err) 1303 goto err; 1304 1305 fuse_copy_finish(cs); 1306 return fuse_notify_poll_wakeup(fc, &outarg); 1307 1308 err: 1309 fuse_copy_finish(cs); 1310 return err; 1311 } 1312 1313 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size, 1314 struct fuse_copy_state *cs) 1315 { 1316 struct fuse_notify_inval_inode_out outarg; 1317 int err = -EINVAL; 1318 1319 if (size != sizeof(outarg)) 1320 goto err; 1321 1322 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1323 if (err) 1324 goto err; 1325 fuse_copy_finish(cs); 1326 1327 down_read(&fc->killsb); 1328 err = -ENOENT; 1329 if (fc->sb) { 1330 err = fuse_reverse_inval_inode(fc->sb, outarg.ino, 1331 outarg.off, outarg.len); 1332 } 1333 up_read(&fc->killsb); 1334 return err; 1335 1336 err: 1337 fuse_copy_finish(cs); 1338 return err; 1339 } 1340 1341 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size, 1342 struct fuse_copy_state *cs) 1343 { 1344 struct fuse_notify_inval_entry_out outarg; 1345 int err = -ENOMEM; 1346 char *buf; 1347 struct qstr name; 1348 1349 buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL); 1350 if (!buf) 1351 goto err; 1352 1353 err = -EINVAL; 1354 if (size < sizeof(outarg)) 1355 goto err; 1356 1357 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1358 if (err) 1359 goto err; 1360 1361 err = -ENAMETOOLONG; 1362 if (outarg.namelen > FUSE_NAME_MAX) 1363 goto err; 1364 1365 err = -EINVAL; 1366 if (size != sizeof(outarg) + outarg.namelen + 1) 1367 goto err; 1368 1369 name.name = buf; 1370 name.len = outarg.namelen; 1371 err = fuse_copy_one(cs, buf, outarg.namelen + 1); 1372 if (err) 1373 goto err; 1374 fuse_copy_finish(cs); 1375 buf[outarg.namelen] = 0; 1376 name.hash = full_name_hash(name.name, name.len); 1377 1378 down_read(&fc->killsb); 1379 err = -ENOENT; 1380 if (fc->sb) 1381 err = fuse_reverse_inval_entry(fc->sb, outarg.parent, &name); 1382 up_read(&fc->killsb); 1383 kfree(buf); 1384 return err; 1385 1386 err: 1387 kfree(buf); 1388 fuse_copy_finish(cs); 1389 return err; 1390 } 1391 1392 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size, 1393 struct fuse_copy_state *cs) 1394 { 1395 struct fuse_notify_store_out outarg; 1396 struct inode *inode; 1397 struct address_space *mapping; 1398 u64 nodeid; 1399 int err; 1400 pgoff_t index; 1401 unsigned int offset; 1402 unsigned int num; 1403 loff_t file_size; 1404 loff_t end; 1405 1406 err = -EINVAL; 1407 if (size < sizeof(outarg)) 1408 goto out_finish; 1409 1410 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1411 if (err) 1412 goto out_finish; 1413 1414 err = -EINVAL; 1415 if (size - sizeof(outarg) != outarg.size) 1416 goto out_finish; 1417 1418 nodeid = outarg.nodeid; 1419 1420 down_read(&fc->killsb); 1421 1422 err = -ENOENT; 1423 if (!fc->sb) 1424 goto out_up_killsb; 1425 1426 inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid); 1427 if (!inode) 1428 goto out_up_killsb; 1429 1430 mapping = inode->i_mapping; 1431 index = outarg.offset >> PAGE_CACHE_SHIFT; 1432 offset = outarg.offset & ~PAGE_CACHE_MASK; 1433 file_size = i_size_read(inode); 1434 end = outarg.offset + outarg.size; 1435 if (end > file_size) { 1436 file_size = end; 1437 fuse_write_update_size(inode, file_size); 1438 } 1439 1440 num = outarg.size; 1441 while (num) { 1442 struct page *page; 1443 unsigned int this_num; 1444 1445 err = -ENOMEM; 1446 page = find_or_create_page(mapping, index, 1447 mapping_gfp_mask(mapping)); 1448 if (!page) 1449 goto out_iput; 1450 1451 this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset); 1452 err = fuse_copy_page(cs, &page, offset, this_num, 0); 1453 if (!err && offset == 0 && (num != 0 || file_size == end)) 1454 SetPageUptodate(page); 1455 unlock_page(page); 1456 page_cache_release(page); 1457 1458 if (err) 1459 goto out_iput; 1460 1461 num -= this_num; 1462 offset = 0; 1463 index++; 1464 } 1465 1466 err = 0; 1467 1468 out_iput: 1469 iput(inode); 1470 out_up_killsb: 1471 up_read(&fc->killsb); 1472 out_finish: 1473 fuse_copy_finish(cs); 1474 return err; 1475 } 1476 1477 static void fuse_retrieve_end(struct fuse_conn *fc, struct fuse_req *req) 1478 { 1479 release_pages(req->pages, req->num_pages, 0); 1480 } 1481 1482 static int fuse_retrieve(struct fuse_conn *fc, struct inode *inode, 1483 struct fuse_notify_retrieve_out *outarg) 1484 { 1485 int err; 1486 struct address_space *mapping = inode->i_mapping; 1487 struct fuse_req *req; 1488 pgoff_t index; 1489 loff_t file_size; 1490 unsigned int num; 1491 unsigned int offset; 1492 size_t total_len = 0; 1493 1494 req = fuse_get_req(fc); 1495 if (IS_ERR(req)) 1496 return PTR_ERR(req); 1497 1498 offset = outarg->offset & ~PAGE_CACHE_MASK; 1499 1500 req->in.h.opcode = FUSE_NOTIFY_REPLY; 1501 req->in.h.nodeid = outarg->nodeid; 1502 req->in.numargs = 2; 1503 req->in.argpages = 1; 1504 req->page_offset = offset; 1505 req->end = fuse_retrieve_end; 1506 1507 index = outarg->offset >> PAGE_CACHE_SHIFT; 1508 file_size = i_size_read(inode); 1509 num = outarg->size; 1510 if (outarg->offset > file_size) 1511 num = 0; 1512 else if (outarg->offset + num > file_size) 1513 num = file_size - outarg->offset; 1514 1515 while (num) { 1516 struct page *page; 1517 unsigned int this_num; 1518 1519 page = find_get_page(mapping, index); 1520 if (!page) 1521 break; 1522 1523 this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset); 1524 req->pages[req->num_pages] = page; 1525 req->num_pages++; 1526 1527 num -= this_num; 1528 total_len += this_num; 1529 } 1530 req->misc.retrieve_in.offset = outarg->offset; 1531 req->misc.retrieve_in.size = total_len; 1532 req->in.args[0].size = sizeof(req->misc.retrieve_in); 1533 req->in.args[0].value = &req->misc.retrieve_in; 1534 req->in.args[1].size = total_len; 1535 1536 err = fuse_request_send_notify_reply(fc, req, outarg->notify_unique); 1537 if (err) 1538 fuse_retrieve_end(fc, req); 1539 1540 return err; 1541 } 1542 1543 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size, 1544 struct fuse_copy_state *cs) 1545 { 1546 struct fuse_notify_retrieve_out outarg; 1547 struct inode *inode; 1548 int err; 1549 1550 err = -EINVAL; 1551 if (size != sizeof(outarg)) 1552 goto copy_finish; 1553 1554 err = fuse_copy_one(cs, &outarg, sizeof(outarg)); 1555 if (err) 1556 goto copy_finish; 1557 1558 fuse_copy_finish(cs); 1559 1560 down_read(&fc->killsb); 1561 err = -ENOENT; 1562 if (fc->sb) { 1563 u64 nodeid = outarg.nodeid; 1564 1565 inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid); 1566 if (inode) { 1567 err = fuse_retrieve(fc, inode, &outarg); 1568 iput(inode); 1569 } 1570 } 1571 up_read(&fc->killsb); 1572 1573 return err; 1574 1575 copy_finish: 1576 fuse_copy_finish(cs); 1577 return err; 1578 } 1579 1580 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code, 1581 unsigned int size, struct fuse_copy_state *cs) 1582 { 1583 switch (code) { 1584 case FUSE_NOTIFY_POLL: 1585 return fuse_notify_poll(fc, size, cs); 1586 1587 case FUSE_NOTIFY_INVAL_INODE: 1588 return fuse_notify_inval_inode(fc, size, cs); 1589 1590 case FUSE_NOTIFY_INVAL_ENTRY: 1591 return fuse_notify_inval_entry(fc, size, cs); 1592 1593 case FUSE_NOTIFY_STORE: 1594 return fuse_notify_store(fc, size, cs); 1595 1596 case FUSE_NOTIFY_RETRIEVE: 1597 return fuse_notify_retrieve(fc, size, cs); 1598 1599 default: 1600 fuse_copy_finish(cs); 1601 return -EINVAL; 1602 } 1603 } 1604 1605 /* Look up request on processing list by unique ID */ 1606 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique) 1607 { 1608 struct list_head *entry; 1609 1610 list_for_each(entry, &fc->processing) { 1611 struct fuse_req *req; 1612 req = list_entry(entry, struct fuse_req, list); 1613 if (req->in.h.unique == unique || req->intr_unique == unique) 1614 return req; 1615 } 1616 return NULL; 1617 } 1618 1619 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out, 1620 unsigned nbytes) 1621 { 1622 unsigned reqsize = sizeof(struct fuse_out_header); 1623 1624 if (out->h.error) 1625 return nbytes != reqsize ? -EINVAL : 0; 1626 1627 reqsize += len_args(out->numargs, out->args); 1628 1629 if (reqsize < nbytes || (reqsize > nbytes && !out->argvar)) 1630 return -EINVAL; 1631 else if (reqsize > nbytes) { 1632 struct fuse_arg *lastarg = &out->args[out->numargs-1]; 1633 unsigned diffsize = reqsize - nbytes; 1634 if (diffsize > lastarg->size) 1635 return -EINVAL; 1636 lastarg->size -= diffsize; 1637 } 1638 return fuse_copy_args(cs, out->numargs, out->argpages, out->args, 1639 out->page_zeroing); 1640 } 1641 1642 /* 1643 * Write a single reply to a request. First the header is copied from 1644 * the write buffer. The request is then searched on the processing 1645 * list by the unique ID found in the header. If found, then remove 1646 * it from the list and copy the rest of the buffer to the request. 1647 * The request is finished by calling request_end() 1648 */ 1649 static ssize_t fuse_dev_do_write(struct fuse_conn *fc, 1650 struct fuse_copy_state *cs, size_t nbytes) 1651 { 1652 int err; 1653 struct fuse_req *req; 1654 struct fuse_out_header oh; 1655 1656 if (nbytes < sizeof(struct fuse_out_header)) 1657 return -EINVAL; 1658 1659 err = fuse_copy_one(cs, &oh, sizeof(oh)); 1660 if (err) 1661 goto err_finish; 1662 1663 err = -EINVAL; 1664 if (oh.len != nbytes) 1665 goto err_finish; 1666 1667 /* 1668 * Zero oh.unique indicates unsolicited notification message 1669 * and error contains notification code. 1670 */ 1671 if (!oh.unique) { 1672 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs); 1673 return err ? err : nbytes; 1674 } 1675 1676 err = -EINVAL; 1677 if (oh.error <= -1000 || oh.error > 0) 1678 goto err_finish; 1679 1680 spin_lock(&fc->lock); 1681 err = -ENOENT; 1682 if (!fc->connected) 1683 goto err_unlock; 1684 1685 req = request_find(fc, oh.unique); 1686 if (!req) 1687 goto err_unlock; 1688 1689 if (req->aborted) { 1690 spin_unlock(&fc->lock); 1691 fuse_copy_finish(cs); 1692 spin_lock(&fc->lock); 1693 request_end(fc, req); 1694 return -ENOENT; 1695 } 1696 /* Is it an interrupt reply? */ 1697 if (req->intr_unique == oh.unique) { 1698 err = -EINVAL; 1699 if (nbytes != sizeof(struct fuse_out_header)) 1700 goto err_unlock; 1701 1702 if (oh.error == -ENOSYS) 1703 fc->no_interrupt = 1; 1704 else if (oh.error == -EAGAIN) 1705 queue_interrupt(fc, req); 1706 1707 spin_unlock(&fc->lock); 1708 fuse_copy_finish(cs); 1709 return nbytes; 1710 } 1711 1712 req->state = FUSE_REQ_WRITING; 1713 list_move(&req->list, &fc->io); 1714 req->out.h = oh; 1715 req->locked = 1; 1716 cs->req = req; 1717 if (!req->out.page_replace) 1718 cs->move_pages = 0; 1719 spin_unlock(&fc->lock); 1720 1721 err = copy_out_args(cs, &req->out, nbytes); 1722 fuse_copy_finish(cs); 1723 1724 spin_lock(&fc->lock); 1725 req->locked = 0; 1726 if (!err) { 1727 if (req->aborted) 1728 err = -ENOENT; 1729 } else if (!req->aborted) 1730 req->out.h.error = -EIO; 1731 request_end(fc, req); 1732 1733 return err ? err : nbytes; 1734 1735 err_unlock: 1736 spin_unlock(&fc->lock); 1737 err_finish: 1738 fuse_copy_finish(cs); 1739 return err; 1740 } 1741 1742 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov, 1743 unsigned long nr_segs, loff_t pos) 1744 { 1745 struct fuse_copy_state cs; 1746 struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp); 1747 if (!fc) 1748 return -EPERM; 1749 1750 fuse_copy_init(&cs, fc, 0, iov, nr_segs); 1751 1752 return fuse_dev_do_write(fc, &cs, iov_length(iov, nr_segs)); 1753 } 1754 1755 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe, 1756 struct file *out, loff_t *ppos, 1757 size_t len, unsigned int flags) 1758 { 1759 unsigned nbuf; 1760 unsigned idx; 1761 struct pipe_buffer *bufs; 1762 struct fuse_copy_state cs; 1763 struct fuse_conn *fc; 1764 size_t rem; 1765 ssize_t ret; 1766 1767 fc = fuse_get_conn(out); 1768 if (!fc) 1769 return -EPERM; 1770 1771 bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL); 1772 if (!bufs) 1773 return -ENOMEM; 1774 1775 pipe_lock(pipe); 1776 nbuf = 0; 1777 rem = 0; 1778 for (idx = 0; idx < pipe->nrbufs && rem < len; idx++) 1779 rem += pipe->bufs[(pipe->curbuf + idx) & (pipe->buffers - 1)].len; 1780 1781 ret = -EINVAL; 1782 if (rem < len) { 1783 pipe_unlock(pipe); 1784 goto out; 1785 } 1786 1787 rem = len; 1788 while (rem) { 1789 struct pipe_buffer *ibuf; 1790 struct pipe_buffer *obuf; 1791 1792 BUG_ON(nbuf >= pipe->buffers); 1793 BUG_ON(!pipe->nrbufs); 1794 ibuf = &pipe->bufs[pipe->curbuf]; 1795 obuf = &bufs[nbuf]; 1796 1797 if (rem >= ibuf->len) { 1798 *obuf = *ibuf; 1799 ibuf->ops = NULL; 1800 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1); 1801 pipe->nrbufs--; 1802 } else { 1803 ibuf->ops->get(pipe, ibuf); 1804 *obuf = *ibuf; 1805 obuf->flags &= ~PIPE_BUF_FLAG_GIFT; 1806 obuf->len = rem; 1807 ibuf->offset += obuf->len; 1808 ibuf->len -= obuf->len; 1809 } 1810 nbuf++; 1811 rem -= obuf->len; 1812 } 1813 pipe_unlock(pipe); 1814 1815 fuse_copy_init(&cs, fc, 0, NULL, nbuf); 1816 cs.pipebufs = bufs; 1817 cs.pipe = pipe; 1818 1819 if (flags & SPLICE_F_MOVE) 1820 cs.move_pages = 1; 1821 1822 ret = fuse_dev_do_write(fc, &cs, len); 1823 1824 for (idx = 0; idx < nbuf; idx++) { 1825 struct pipe_buffer *buf = &bufs[idx]; 1826 buf->ops->release(pipe, buf); 1827 } 1828 out: 1829 kfree(bufs); 1830 return ret; 1831 } 1832 1833 static unsigned fuse_dev_poll(struct file *file, poll_table *wait) 1834 { 1835 unsigned mask = POLLOUT | POLLWRNORM; 1836 struct fuse_conn *fc = fuse_get_conn(file); 1837 if (!fc) 1838 return POLLERR; 1839 1840 poll_wait(file, &fc->waitq, wait); 1841 1842 spin_lock(&fc->lock); 1843 if (!fc->connected) 1844 mask = POLLERR; 1845 else if (request_pending(fc)) 1846 mask |= POLLIN | POLLRDNORM; 1847 spin_unlock(&fc->lock); 1848 1849 return mask; 1850 } 1851 1852 /* 1853 * Abort all requests on the given list (pending or processing) 1854 * 1855 * This function releases and reacquires fc->lock 1856 */ 1857 static void end_requests(struct fuse_conn *fc, struct list_head *head) 1858 __releases(fc->lock) 1859 __acquires(fc->lock) 1860 { 1861 while (!list_empty(head)) { 1862 struct fuse_req *req; 1863 req = list_entry(head->next, struct fuse_req, list); 1864 req->out.h.error = -ECONNABORTED; 1865 request_end(fc, req); 1866 spin_lock(&fc->lock); 1867 } 1868 } 1869 1870 /* 1871 * Abort requests under I/O 1872 * 1873 * The requests are set to aborted and finished, and the request 1874 * waiter is woken up. This will make request_wait_answer() wait 1875 * until the request is unlocked and then return. 1876 * 1877 * If the request is asynchronous, then the end function needs to be 1878 * called after waiting for the request to be unlocked (if it was 1879 * locked). 1880 */ 1881 static void end_io_requests(struct fuse_conn *fc) 1882 __releases(fc->lock) 1883 __acquires(fc->lock) 1884 { 1885 while (!list_empty(&fc->io)) { 1886 struct fuse_req *req = 1887 list_entry(fc->io.next, struct fuse_req, list); 1888 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end; 1889 1890 req->aborted = 1; 1891 req->out.h.error = -ECONNABORTED; 1892 req->state = FUSE_REQ_FINISHED; 1893 list_del_init(&req->list); 1894 wake_up(&req->waitq); 1895 if (end) { 1896 req->end = NULL; 1897 __fuse_get_request(req); 1898 spin_unlock(&fc->lock); 1899 wait_event(req->waitq, !req->locked); 1900 end(fc, req); 1901 fuse_put_request(fc, req); 1902 spin_lock(&fc->lock); 1903 } 1904 } 1905 } 1906 1907 static void end_queued_requests(struct fuse_conn *fc) 1908 __releases(fc->lock) 1909 __acquires(fc->lock) 1910 { 1911 fc->max_background = UINT_MAX; 1912 flush_bg_queue(fc); 1913 end_requests(fc, &fc->pending); 1914 end_requests(fc, &fc->processing); 1915 while (forget_pending(fc)) 1916 kfree(dequeue_forget(fc, 1, NULL)); 1917 } 1918 1919 static void end_polls(struct fuse_conn *fc) 1920 { 1921 struct rb_node *p; 1922 1923 p = rb_first(&fc->polled_files); 1924 1925 while (p) { 1926 struct fuse_file *ff; 1927 ff = rb_entry(p, struct fuse_file, polled_node); 1928 wake_up_interruptible_all(&ff->poll_wait); 1929 1930 p = rb_next(p); 1931 } 1932 } 1933 1934 /* 1935 * Abort all requests. 1936 * 1937 * Emergency exit in case of a malicious or accidental deadlock, or 1938 * just a hung filesystem. 1939 * 1940 * The same effect is usually achievable through killing the 1941 * filesystem daemon and all users of the filesystem. The exception 1942 * is the combination of an asynchronous request and the tricky 1943 * deadlock (see Documentation/filesystems/fuse.txt). 1944 * 1945 * During the aborting, progression of requests from the pending and 1946 * processing lists onto the io list, and progression of new requests 1947 * onto the pending list is prevented by req->connected being false. 1948 * 1949 * Progression of requests under I/O to the processing list is 1950 * prevented by the req->aborted flag being true for these requests. 1951 * For this reason requests on the io list must be aborted first. 1952 */ 1953 void fuse_abort_conn(struct fuse_conn *fc) 1954 { 1955 spin_lock(&fc->lock); 1956 if (fc->connected) { 1957 fc->connected = 0; 1958 fc->blocked = 0; 1959 end_io_requests(fc); 1960 end_queued_requests(fc); 1961 end_polls(fc); 1962 wake_up_all(&fc->waitq); 1963 wake_up_all(&fc->blocked_waitq); 1964 kill_fasync(&fc->fasync, SIGIO, POLL_IN); 1965 } 1966 spin_unlock(&fc->lock); 1967 } 1968 EXPORT_SYMBOL_GPL(fuse_abort_conn); 1969 1970 int fuse_dev_release(struct inode *inode, struct file *file) 1971 { 1972 struct fuse_conn *fc = fuse_get_conn(file); 1973 if (fc) { 1974 spin_lock(&fc->lock); 1975 fc->connected = 0; 1976 fc->blocked = 0; 1977 end_queued_requests(fc); 1978 end_polls(fc); 1979 wake_up_all(&fc->blocked_waitq); 1980 spin_unlock(&fc->lock); 1981 fuse_conn_put(fc); 1982 } 1983 1984 return 0; 1985 } 1986 EXPORT_SYMBOL_GPL(fuse_dev_release); 1987 1988 static int fuse_dev_fasync(int fd, struct file *file, int on) 1989 { 1990 struct fuse_conn *fc = fuse_get_conn(file); 1991 if (!fc) 1992 return -EPERM; 1993 1994 /* No locking - fasync_helper does its own locking */ 1995 return fasync_helper(fd, file, on, &fc->fasync); 1996 } 1997 1998 const struct file_operations fuse_dev_operations = { 1999 .owner = THIS_MODULE, 2000 .llseek = no_llseek, 2001 .read = do_sync_read, 2002 .aio_read = fuse_dev_read, 2003 .splice_read = fuse_dev_splice_read, 2004 .write = do_sync_write, 2005 .aio_write = fuse_dev_write, 2006 .splice_write = fuse_dev_splice_write, 2007 .poll = fuse_dev_poll, 2008 .release = fuse_dev_release, 2009 .fasync = fuse_dev_fasync, 2010 }; 2011 EXPORT_SYMBOL_GPL(fuse_dev_operations); 2012 2013 static struct miscdevice fuse_miscdevice = { 2014 .minor = FUSE_MINOR, 2015 .name = "fuse", 2016 .fops = &fuse_dev_operations, 2017 }; 2018 2019 int __init fuse_dev_init(void) 2020 { 2021 int err = -ENOMEM; 2022 fuse_req_cachep = kmem_cache_create("fuse_request", 2023 sizeof(struct fuse_req), 2024 0, 0, NULL); 2025 if (!fuse_req_cachep) 2026 goto out; 2027 2028 err = misc_register(&fuse_miscdevice); 2029 if (err) 2030 goto out_cache_clean; 2031 2032 return 0; 2033 2034 out_cache_clean: 2035 kmem_cache_destroy(fuse_req_cachep); 2036 out: 2037 return err; 2038 } 2039 2040 void fuse_dev_cleanup(void) 2041 { 2042 misc_deregister(&fuse_miscdevice); 2043 kmem_cache_destroy(fuse_req_cachep); 2044 } 2045