xref: /openbmc/linux/fs/fuse/dev.c (revision 0d456bad)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/swap.h>
21 #include <linux/splice.h>
22 
23 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
24 MODULE_ALIAS("devname:fuse");
25 
26 static struct kmem_cache *fuse_req_cachep;
27 
28 static struct fuse_conn *fuse_get_conn(struct file *file)
29 {
30 	/*
31 	 * Lockless access is OK, because file->private data is set
32 	 * once during mount and is valid until the file is released.
33 	 */
34 	return file->private_data;
35 }
36 
37 static void fuse_request_init(struct fuse_req *req)
38 {
39 	memset(req, 0, sizeof(*req));
40 	INIT_LIST_HEAD(&req->list);
41 	INIT_LIST_HEAD(&req->intr_entry);
42 	init_waitqueue_head(&req->waitq);
43 	atomic_set(&req->count, 1);
44 }
45 
46 struct fuse_req *fuse_request_alloc(void)
47 {
48 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
49 	if (req)
50 		fuse_request_init(req);
51 	return req;
52 }
53 EXPORT_SYMBOL_GPL(fuse_request_alloc);
54 
55 struct fuse_req *fuse_request_alloc_nofs(void)
56 {
57 	struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
58 	if (req)
59 		fuse_request_init(req);
60 	return req;
61 }
62 
63 void fuse_request_free(struct fuse_req *req)
64 {
65 	kmem_cache_free(fuse_req_cachep, req);
66 }
67 
68 static void block_sigs(sigset_t *oldset)
69 {
70 	sigset_t mask;
71 
72 	siginitsetinv(&mask, sigmask(SIGKILL));
73 	sigprocmask(SIG_BLOCK, &mask, oldset);
74 }
75 
76 static void restore_sigs(sigset_t *oldset)
77 {
78 	sigprocmask(SIG_SETMASK, oldset, NULL);
79 }
80 
81 static void __fuse_get_request(struct fuse_req *req)
82 {
83 	atomic_inc(&req->count);
84 }
85 
86 /* Must be called with > 1 refcount */
87 static void __fuse_put_request(struct fuse_req *req)
88 {
89 	BUG_ON(atomic_read(&req->count) < 2);
90 	atomic_dec(&req->count);
91 }
92 
93 static void fuse_req_init_context(struct fuse_req *req)
94 {
95 	req->in.h.uid = from_kuid_munged(&init_user_ns, current_fsuid());
96 	req->in.h.gid = from_kgid_munged(&init_user_ns, current_fsgid());
97 	req->in.h.pid = current->pid;
98 }
99 
100 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
101 {
102 	struct fuse_req *req;
103 	sigset_t oldset;
104 	int intr;
105 	int err;
106 
107 	atomic_inc(&fc->num_waiting);
108 	block_sigs(&oldset);
109 	intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
110 	restore_sigs(&oldset);
111 	err = -EINTR;
112 	if (intr)
113 		goto out;
114 
115 	err = -ENOTCONN;
116 	if (!fc->connected)
117 		goto out;
118 
119 	req = fuse_request_alloc();
120 	err = -ENOMEM;
121 	if (!req)
122 		goto out;
123 
124 	fuse_req_init_context(req);
125 	req->waiting = 1;
126 	return req;
127 
128  out:
129 	atomic_dec(&fc->num_waiting);
130 	return ERR_PTR(err);
131 }
132 EXPORT_SYMBOL_GPL(fuse_get_req);
133 
134 /*
135  * Return request in fuse_file->reserved_req.  However that may
136  * currently be in use.  If that is the case, wait for it to become
137  * available.
138  */
139 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
140 					 struct file *file)
141 {
142 	struct fuse_req *req = NULL;
143 	struct fuse_file *ff = file->private_data;
144 
145 	do {
146 		wait_event(fc->reserved_req_waitq, ff->reserved_req);
147 		spin_lock(&fc->lock);
148 		if (ff->reserved_req) {
149 			req = ff->reserved_req;
150 			ff->reserved_req = NULL;
151 			req->stolen_file = get_file(file);
152 		}
153 		spin_unlock(&fc->lock);
154 	} while (!req);
155 
156 	return req;
157 }
158 
159 /*
160  * Put stolen request back into fuse_file->reserved_req
161  */
162 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
163 {
164 	struct file *file = req->stolen_file;
165 	struct fuse_file *ff = file->private_data;
166 
167 	spin_lock(&fc->lock);
168 	fuse_request_init(req);
169 	BUG_ON(ff->reserved_req);
170 	ff->reserved_req = req;
171 	wake_up_all(&fc->reserved_req_waitq);
172 	spin_unlock(&fc->lock);
173 	fput(file);
174 }
175 
176 /*
177  * Gets a requests for a file operation, always succeeds
178  *
179  * This is used for sending the FLUSH request, which must get to
180  * userspace, due to POSIX locks which may need to be unlocked.
181  *
182  * If allocation fails due to OOM, use the reserved request in
183  * fuse_file.
184  *
185  * This is very unlikely to deadlock accidentally, since the
186  * filesystem should not have it's own file open.  If deadlock is
187  * intentional, it can still be broken by "aborting" the filesystem.
188  */
189 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
190 {
191 	struct fuse_req *req;
192 
193 	atomic_inc(&fc->num_waiting);
194 	wait_event(fc->blocked_waitq, !fc->blocked);
195 	req = fuse_request_alloc();
196 	if (!req)
197 		req = get_reserved_req(fc, file);
198 
199 	fuse_req_init_context(req);
200 	req->waiting = 1;
201 	return req;
202 }
203 
204 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
205 {
206 	if (atomic_dec_and_test(&req->count)) {
207 		if (req->waiting)
208 			atomic_dec(&fc->num_waiting);
209 
210 		if (req->stolen_file)
211 			put_reserved_req(fc, req);
212 		else
213 			fuse_request_free(req);
214 	}
215 }
216 EXPORT_SYMBOL_GPL(fuse_put_request);
217 
218 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
219 {
220 	unsigned nbytes = 0;
221 	unsigned i;
222 
223 	for (i = 0; i < numargs; i++)
224 		nbytes += args[i].size;
225 
226 	return nbytes;
227 }
228 
229 static u64 fuse_get_unique(struct fuse_conn *fc)
230 {
231 	fc->reqctr++;
232 	/* zero is special */
233 	if (fc->reqctr == 0)
234 		fc->reqctr = 1;
235 
236 	return fc->reqctr;
237 }
238 
239 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
240 {
241 	req->in.h.len = sizeof(struct fuse_in_header) +
242 		len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
243 	list_add_tail(&req->list, &fc->pending);
244 	req->state = FUSE_REQ_PENDING;
245 	if (!req->waiting) {
246 		req->waiting = 1;
247 		atomic_inc(&fc->num_waiting);
248 	}
249 	wake_up(&fc->waitq);
250 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
251 }
252 
253 void fuse_queue_forget(struct fuse_conn *fc, struct fuse_forget_link *forget,
254 		       u64 nodeid, u64 nlookup)
255 {
256 	forget->forget_one.nodeid = nodeid;
257 	forget->forget_one.nlookup = nlookup;
258 
259 	spin_lock(&fc->lock);
260 	if (fc->connected) {
261 		fc->forget_list_tail->next = forget;
262 		fc->forget_list_tail = forget;
263 		wake_up(&fc->waitq);
264 		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
265 	} else {
266 		kfree(forget);
267 	}
268 	spin_unlock(&fc->lock);
269 }
270 
271 static void flush_bg_queue(struct fuse_conn *fc)
272 {
273 	while (fc->active_background < fc->max_background &&
274 	       !list_empty(&fc->bg_queue)) {
275 		struct fuse_req *req;
276 
277 		req = list_entry(fc->bg_queue.next, struct fuse_req, list);
278 		list_del(&req->list);
279 		fc->active_background++;
280 		req->in.h.unique = fuse_get_unique(fc);
281 		queue_request(fc, req);
282 	}
283 }
284 
285 /*
286  * This function is called when a request is finished.  Either a reply
287  * has arrived or it was aborted (and not yet sent) or some error
288  * occurred during communication with userspace, or the device file
289  * was closed.  The requester thread is woken up (if still waiting),
290  * the 'end' callback is called if given, else the reference to the
291  * request is released
292  *
293  * Called with fc->lock, unlocks it
294  */
295 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
296 __releases(fc->lock)
297 {
298 	void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
299 	req->end = NULL;
300 	list_del(&req->list);
301 	list_del(&req->intr_entry);
302 	req->state = FUSE_REQ_FINISHED;
303 	if (req->background) {
304 		if (fc->num_background == fc->max_background) {
305 			fc->blocked = 0;
306 			wake_up_all(&fc->blocked_waitq);
307 		}
308 		if (fc->num_background == fc->congestion_threshold &&
309 		    fc->connected && fc->bdi_initialized) {
310 			clear_bdi_congested(&fc->bdi, BLK_RW_SYNC);
311 			clear_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
312 		}
313 		fc->num_background--;
314 		fc->active_background--;
315 		flush_bg_queue(fc);
316 	}
317 	spin_unlock(&fc->lock);
318 	wake_up(&req->waitq);
319 	if (end)
320 		end(fc, req);
321 	fuse_put_request(fc, req);
322 }
323 
324 static void wait_answer_interruptible(struct fuse_conn *fc,
325 				      struct fuse_req *req)
326 __releases(fc->lock)
327 __acquires(fc->lock)
328 {
329 	if (signal_pending(current))
330 		return;
331 
332 	spin_unlock(&fc->lock);
333 	wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
334 	spin_lock(&fc->lock);
335 }
336 
337 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
338 {
339 	list_add_tail(&req->intr_entry, &fc->interrupts);
340 	wake_up(&fc->waitq);
341 	kill_fasync(&fc->fasync, SIGIO, POLL_IN);
342 }
343 
344 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
345 __releases(fc->lock)
346 __acquires(fc->lock)
347 {
348 	if (!fc->no_interrupt) {
349 		/* Any signal may interrupt this */
350 		wait_answer_interruptible(fc, req);
351 
352 		if (req->aborted)
353 			goto aborted;
354 		if (req->state == FUSE_REQ_FINISHED)
355 			return;
356 
357 		req->interrupted = 1;
358 		if (req->state == FUSE_REQ_SENT)
359 			queue_interrupt(fc, req);
360 	}
361 
362 	if (!req->force) {
363 		sigset_t oldset;
364 
365 		/* Only fatal signals may interrupt this */
366 		block_sigs(&oldset);
367 		wait_answer_interruptible(fc, req);
368 		restore_sigs(&oldset);
369 
370 		if (req->aborted)
371 			goto aborted;
372 		if (req->state == FUSE_REQ_FINISHED)
373 			return;
374 
375 		/* Request is not yet in userspace, bail out */
376 		if (req->state == FUSE_REQ_PENDING) {
377 			list_del(&req->list);
378 			__fuse_put_request(req);
379 			req->out.h.error = -EINTR;
380 			return;
381 		}
382 	}
383 
384 	/*
385 	 * Either request is already in userspace, or it was forced.
386 	 * Wait it out.
387 	 */
388 	spin_unlock(&fc->lock);
389 	wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
390 	spin_lock(&fc->lock);
391 
392 	if (!req->aborted)
393 		return;
394 
395  aborted:
396 	BUG_ON(req->state != FUSE_REQ_FINISHED);
397 	if (req->locked) {
398 		/* This is uninterruptible sleep, because data is
399 		   being copied to/from the buffers of req.  During
400 		   locked state, there mustn't be any filesystem
401 		   operation (e.g. page fault), since that could lead
402 		   to deadlock */
403 		spin_unlock(&fc->lock);
404 		wait_event(req->waitq, !req->locked);
405 		spin_lock(&fc->lock);
406 	}
407 }
408 
409 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
410 {
411 	req->isreply = 1;
412 	spin_lock(&fc->lock);
413 	if (!fc->connected)
414 		req->out.h.error = -ENOTCONN;
415 	else if (fc->conn_error)
416 		req->out.h.error = -ECONNREFUSED;
417 	else {
418 		req->in.h.unique = fuse_get_unique(fc);
419 		queue_request(fc, req);
420 		/* acquire extra reference, since request is still needed
421 		   after request_end() */
422 		__fuse_get_request(req);
423 
424 		request_wait_answer(fc, req);
425 	}
426 	spin_unlock(&fc->lock);
427 }
428 EXPORT_SYMBOL_GPL(fuse_request_send);
429 
430 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
431 					    struct fuse_req *req)
432 {
433 	req->background = 1;
434 	fc->num_background++;
435 	if (fc->num_background == fc->max_background)
436 		fc->blocked = 1;
437 	if (fc->num_background == fc->congestion_threshold &&
438 	    fc->bdi_initialized) {
439 		set_bdi_congested(&fc->bdi, BLK_RW_SYNC);
440 		set_bdi_congested(&fc->bdi, BLK_RW_ASYNC);
441 	}
442 	list_add_tail(&req->list, &fc->bg_queue);
443 	flush_bg_queue(fc);
444 }
445 
446 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
447 {
448 	spin_lock(&fc->lock);
449 	if (fc->connected) {
450 		fuse_request_send_nowait_locked(fc, req);
451 		spin_unlock(&fc->lock);
452 	} else {
453 		req->out.h.error = -ENOTCONN;
454 		request_end(fc, req);
455 	}
456 }
457 
458 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
459 {
460 	req->isreply = 1;
461 	fuse_request_send_nowait(fc, req);
462 }
463 EXPORT_SYMBOL_GPL(fuse_request_send_background);
464 
465 static int fuse_request_send_notify_reply(struct fuse_conn *fc,
466 					  struct fuse_req *req, u64 unique)
467 {
468 	int err = -ENODEV;
469 
470 	req->isreply = 0;
471 	req->in.h.unique = unique;
472 	spin_lock(&fc->lock);
473 	if (fc->connected) {
474 		queue_request(fc, req);
475 		err = 0;
476 	}
477 	spin_unlock(&fc->lock);
478 
479 	return err;
480 }
481 
482 /*
483  * Called under fc->lock
484  *
485  * fc->connected must have been checked previously
486  */
487 void fuse_request_send_background_locked(struct fuse_conn *fc,
488 					 struct fuse_req *req)
489 {
490 	req->isreply = 1;
491 	fuse_request_send_nowait_locked(fc, req);
492 }
493 
494 /*
495  * Lock the request.  Up to the next unlock_request() there mustn't be
496  * anything that could cause a page-fault.  If the request was already
497  * aborted bail out.
498  */
499 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
500 {
501 	int err = 0;
502 	if (req) {
503 		spin_lock(&fc->lock);
504 		if (req->aborted)
505 			err = -ENOENT;
506 		else
507 			req->locked = 1;
508 		spin_unlock(&fc->lock);
509 	}
510 	return err;
511 }
512 
513 /*
514  * Unlock request.  If it was aborted during being locked, the
515  * requester thread is currently waiting for it to be unlocked, so
516  * wake it up.
517  */
518 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
519 {
520 	if (req) {
521 		spin_lock(&fc->lock);
522 		req->locked = 0;
523 		if (req->aborted)
524 			wake_up(&req->waitq);
525 		spin_unlock(&fc->lock);
526 	}
527 }
528 
529 struct fuse_copy_state {
530 	struct fuse_conn *fc;
531 	int write;
532 	struct fuse_req *req;
533 	const struct iovec *iov;
534 	struct pipe_buffer *pipebufs;
535 	struct pipe_buffer *currbuf;
536 	struct pipe_inode_info *pipe;
537 	unsigned long nr_segs;
538 	unsigned long seglen;
539 	unsigned long addr;
540 	struct page *pg;
541 	void *mapaddr;
542 	void *buf;
543 	unsigned len;
544 	unsigned move_pages:1;
545 };
546 
547 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
548 			   int write,
549 			   const struct iovec *iov, unsigned long nr_segs)
550 {
551 	memset(cs, 0, sizeof(*cs));
552 	cs->fc = fc;
553 	cs->write = write;
554 	cs->iov = iov;
555 	cs->nr_segs = nr_segs;
556 }
557 
558 /* Unmap and put previous page of userspace buffer */
559 static void fuse_copy_finish(struct fuse_copy_state *cs)
560 {
561 	if (cs->currbuf) {
562 		struct pipe_buffer *buf = cs->currbuf;
563 
564 		if (!cs->write) {
565 			buf->ops->unmap(cs->pipe, buf, cs->mapaddr);
566 		} else {
567 			kunmap(buf->page);
568 			buf->len = PAGE_SIZE - cs->len;
569 		}
570 		cs->currbuf = NULL;
571 		cs->mapaddr = NULL;
572 	} else if (cs->mapaddr) {
573 		kunmap(cs->pg);
574 		if (cs->write) {
575 			flush_dcache_page(cs->pg);
576 			set_page_dirty_lock(cs->pg);
577 		}
578 		put_page(cs->pg);
579 		cs->mapaddr = NULL;
580 	}
581 }
582 
583 /*
584  * Get another pagefull of userspace buffer, and map it to kernel
585  * address space, and lock request
586  */
587 static int fuse_copy_fill(struct fuse_copy_state *cs)
588 {
589 	unsigned long offset;
590 	int err;
591 
592 	unlock_request(cs->fc, cs->req);
593 	fuse_copy_finish(cs);
594 	if (cs->pipebufs) {
595 		struct pipe_buffer *buf = cs->pipebufs;
596 
597 		if (!cs->write) {
598 			err = buf->ops->confirm(cs->pipe, buf);
599 			if (err)
600 				return err;
601 
602 			BUG_ON(!cs->nr_segs);
603 			cs->currbuf = buf;
604 			cs->mapaddr = buf->ops->map(cs->pipe, buf, 0);
605 			cs->len = buf->len;
606 			cs->buf = cs->mapaddr + buf->offset;
607 			cs->pipebufs++;
608 			cs->nr_segs--;
609 		} else {
610 			struct page *page;
611 
612 			if (cs->nr_segs == cs->pipe->buffers)
613 				return -EIO;
614 
615 			page = alloc_page(GFP_HIGHUSER);
616 			if (!page)
617 				return -ENOMEM;
618 
619 			buf->page = page;
620 			buf->offset = 0;
621 			buf->len = 0;
622 
623 			cs->currbuf = buf;
624 			cs->mapaddr = kmap(page);
625 			cs->buf = cs->mapaddr;
626 			cs->len = PAGE_SIZE;
627 			cs->pipebufs++;
628 			cs->nr_segs++;
629 		}
630 	} else {
631 		if (!cs->seglen) {
632 			BUG_ON(!cs->nr_segs);
633 			cs->seglen = cs->iov[0].iov_len;
634 			cs->addr = (unsigned long) cs->iov[0].iov_base;
635 			cs->iov++;
636 			cs->nr_segs--;
637 		}
638 		err = get_user_pages_fast(cs->addr, 1, cs->write, &cs->pg);
639 		if (err < 0)
640 			return err;
641 		BUG_ON(err != 1);
642 		offset = cs->addr % PAGE_SIZE;
643 		cs->mapaddr = kmap(cs->pg);
644 		cs->buf = cs->mapaddr + offset;
645 		cs->len = min(PAGE_SIZE - offset, cs->seglen);
646 		cs->seglen -= cs->len;
647 		cs->addr += cs->len;
648 	}
649 
650 	return lock_request(cs->fc, cs->req);
651 }
652 
653 /* Do as much copy to/from userspace buffer as we can */
654 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
655 {
656 	unsigned ncpy = min(*size, cs->len);
657 	if (val) {
658 		if (cs->write)
659 			memcpy(cs->buf, *val, ncpy);
660 		else
661 			memcpy(*val, cs->buf, ncpy);
662 		*val += ncpy;
663 	}
664 	*size -= ncpy;
665 	cs->len -= ncpy;
666 	cs->buf += ncpy;
667 	return ncpy;
668 }
669 
670 static int fuse_check_page(struct page *page)
671 {
672 	if (page_mapcount(page) ||
673 	    page->mapping != NULL ||
674 	    page_count(page) != 1 ||
675 	    (page->flags & PAGE_FLAGS_CHECK_AT_PREP &
676 	     ~(1 << PG_locked |
677 	       1 << PG_referenced |
678 	       1 << PG_uptodate |
679 	       1 << PG_lru |
680 	       1 << PG_active |
681 	       1 << PG_reclaim))) {
682 		printk(KERN_WARNING "fuse: trying to steal weird page\n");
683 		printk(KERN_WARNING "  page=%p index=%li flags=%08lx, count=%i, mapcount=%i, mapping=%p\n", page, page->index, page->flags, page_count(page), page_mapcount(page), page->mapping);
684 		return 1;
685 	}
686 	return 0;
687 }
688 
689 static int fuse_try_move_page(struct fuse_copy_state *cs, struct page **pagep)
690 {
691 	int err;
692 	struct page *oldpage = *pagep;
693 	struct page *newpage;
694 	struct pipe_buffer *buf = cs->pipebufs;
695 	struct address_space *mapping;
696 	pgoff_t index;
697 
698 	unlock_request(cs->fc, cs->req);
699 	fuse_copy_finish(cs);
700 
701 	err = buf->ops->confirm(cs->pipe, buf);
702 	if (err)
703 		return err;
704 
705 	BUG_ON(!cs->nr_segs);
706 	cs->currbuf = buf;
707 	cs->len = buf->len;
708 	cs->pipebufs++;
709 	cs->nr_segs--;
710 
711 	if (cs->len != PAGE_SIZE)
712 		goto out_fallback;
713 
714 	if (buf->ops->steal(cs->pipe, buf) != 0)
715 		goto out_fallback;
716 
717 	newpage = buf->page;
718 
719 	if (WARN_ON(!PageUptodate(newpage)))
720 		return -EIO;
721 
722 	ClearPageMappedToDisk(newpage);
723 
724 	if (fuse_check_page(newpage) != 0)
725 		goto out_fallback_unlock;
726 
727 	mapping = oldpage->mapping;
728 	index = oldpage->index;
729 
730 	/*
731 	 * This is a new and locked page, it shouldn't be mapped or
732 	 * have any special flags on it
733 	 */
734 	if (WARN_ON(page_mapped(oldpage)))
735 		goto out_fallback_unlock;
736 	if (WARN_ON(page_has_private(oldpage)))
737 		goto out_fallback_unlock;
738 	if (WARN_ON(PageDirty(oldpage) || PageWriteback(oldpage)))
739 		goto out_fallback_unlock;
740 	if (WARN_ON(PageMlocked(oldpage)))
741 		goto out_fallback_unlock;
742 
743 	err = replace_page_cache_page(oldpage, newpage, GFP_KERNEL);
744 	if (err) {
745 		unlock_page(newpage);
746 		return err;
747 	}
748 
749 	page_cache_get(newpage);
750 
751 	if (!(buf->flags & PIPE_BUF_FLAG_LRU))
752 		lru_cache_add_file(newpage);
753 
754 	err = 0;
755 	spin_lock(&cs->fc->lock);
756 	if (cs->req->aborted)
757 		err = -ENOENT;
758 	else
759 		*pagep = newpage;
760 	spin_unlock(&cs->fc->lock);
761 
762 	if (err) {
763 		unlock_page(newpage);
764 		page_cache_release(newpage);
765 		return err;
766 	}
767 
768 	unlock_page(oldpage);
769 	page_cache_release(oldpage);
770 	cs->len = 0;
771 
772 	return 0;
773 
774 out_fallback_unlock:
775 	unlock_page(newpage);
776 out_fallback:
777 	cs->mapaddr = buf->ops->map(cs->pipe, buf, 1);
778 	cs->buf = cs->mapaddr + buf->offset;
779 
780 	err = lock_request(cs->fc, cs->req);
781 	if (err)
782 		return err;
783 
784 	return 1;
785 }
786 
787 static int fuse_ref_page(struct fuse_copy_state *cs, struct page *page,
788 			 unsigned offset, unsigned count)
789 {
790 	struct pipe_buffer *buf;
791 
792 	if (cs->nr_segs == cs->pipe->buffers)
793 		return -EIO;
794 
795 	unlock_request(cs->fc, cs->req);
796 	fuse_copy_finish(cs);
797 
798 	buf = cs->pipebufs;
799 	page_cache_get(page);
800 	buf->page = page;
801 	buf->offset = offset;
802 	buf->len = count;
803 
804 	cs->pipebufs++;
805 	cs->nr_segs++;
806 	cs->len = 0;
807 
808 	return 0;
809 }
810 
811 /*
812  * Copy a page in the request to/from the userspace buffer.  Must be
813  * done atomically
814  */
815 static int fuse_copy_page(struct fuse_copy_state *cs, struct page **pagep,
816 			  unsigned offset, unsigned count, int zeroing)
817 {
818 	int err;
819 	struct page *page = *pagep;
820 
821 	if (page && zeroing && count < PAGE_SIZE)
822 		clear_highpage(page);
823 
824 	while (count) {
825 		if (cs->write && cs->pipebufs && page) {
826 			return fuse_ref_page(cs, page, offset, count);
827 		} else if (!cs->len) {
828 			if (cs->move_pages && page &&
829 			    offset == 0 && count == PAGE_SIZE) {
830 				err = fuse_try_move_page(cs, pagep);
831 				if (err <= 0)
832 					return err;
833 			} else {
834 				err = fuse_copy_fill(cs);
835 				if (err)
836 					return err;
837 			}
838 		}
839 		if (page) {
840 			void *mapaddr = kmap_atomic(page);
841 			void *buf = mapaddr + offset;
842 			offset += fuse_copy_do(cs, &buf, &count);
843 			kunmap_atomic(mapaddr);
844 		} else
845 			offset += fuse_copy_do(cs, NULL, &count);
846 	}
847 	if (page && !cs->write)
848 		flush_dcache_page(page);
849 	return 0;
850 }
851 
852 /* Copy pages in the request to/from userspace buffer */
853 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
854 			   int zeroing)
855 {
856 	unsigned i;
857 	struct fuse_req *req = cs->req;
858 	unsigned offset = req->page_offset;
859 	unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
860 
861 	for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
862 		int err;
863 
864 		err = fuse_copy_page(cs, &req->pages[i], offset, count,
865 				     zeroing);
866 		if (err)
867 			return err;
868 
869 		nbytes -= count;
870 		count = min(nbytes, (unsigned) PAGE_SIZE);
871 		offset = 0;
872 	}
873 	return 0;
874 }
875 
876 /* Copy a single argument in the request to/from userspace buffer */
877 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
878 {
879 	while (size) {
880 		if (!cs->len) {
881 			int err = fuse_copy_fill(cs);
882 			if (err)
883 				return err;
884 		}
885 		fuse_copy_do(cs, &val, &size);
886 	}
887 	return 0;
888 }
889 
890 /* Copy request arguments to/from userspace buffer */
891 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
892 			  unsigned argpages, struct fuse_arg *args,
893 			  int zeroing)
894 {
895 	int err = 0;
896 	unsigned i;
897 
898 	for (i = 0; !err && i < numargs; i++)  {
899 		struct fuse_arg *arg = &args[i];
900 		if (i == numargs - 1 && argpages)
901 			err = fuse_copy_pages(cs, arg->size, zeroing);
902 		else
903 			err = fuse_copy_one(cs, arg->value, arg->size);
904 	}
905 	return err;
906 }
907 
908 static int forget_pending(struct fuse_conn *fc)
909 {
910 	return fc->forget_list_head.next != NULL;
911 }
912 
913 static int request_pending(struct fuse_conn *fc)
914 {
915 	return !list_empty(&fc->pending) || !list_empty(&fc->interrupts) ||
916 		forget_pending(fc);
917 }
918 
919 /* Wait until a request is available on the pending list */
920 static void request_wait(struct fuse_conn *fc)
921 __releases(fc->lock)
922 __acquires(fc->lock)
923 {
924 	DECLARE_WAITQUEUE(wait, current);
925 
926 	add_wait_queue_exclusive(&fc->waitq, &wait);
927 	while (fc->connected && !request_pending(fc)) {
928 		set_current_state(TASK_INTERRUPTIBLE);
929 		if (signal_pending(current))
930 			break;
931 
932 		spin_unlock(&fc->lock);
933 		schedule();
934 		spin_lock(&fc->lock);
935 	}
936 	set_current_state(TASK_RUNNING);
937 	remove_wait_queue(&fc->waitq, &wait);
938 }
939 
940 /*
941  * Transfer an interrupt request to userspace
942  *
943  * Unlike other requests this is assembled on demand, without a need
944  * to allocate a separate fuse_req structure.
945  *
946  * Called with fc->lock held, releases it
947  */
948 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_copy_state *cs,
949 			       size_t nbytes, struct fuse_req *req)
950 __releases(fc->lock)
951 {
952 	struct fuse_in_header ih;
953 	struct fuse_interrupt_in arg;
954 	unsigned reqsize = sizeof(ih) + sizeof(arg);
955 	int err;
956 
957 	list_del_init(&req->intr_entry);
958 	req->intr_unique = fuse_get_unique(fc);
959 	memset(&ih, 0, sizeof(ih));
960 	memset(&arg, 0, sizeof(arg));
961 	ih.len = reqsize;
962 	ih.opcode = FUSE_INTERRUPT;
963 	ih.unique = req->intr_unique;
964 	arg.unique = req->in.h.unique;
965 
966 	spin_unlock(&fc->lock);
967 	if (nbytes < reqsize)
968 		return -EINVAL;
969 
970 	err = fuse_copy_one(cs, &ih, sizeof(ih));
971 	if (!err)
972 		err = fuse_copy_one(cs, &arg, sizeof(arg));
973 	fuse_copy_finish(cs);
974 
975 	return err ? err : reqsize;
976 }
977 
978 static struct fuse_forget_link *dequeue_forget(struct fuse_conn *fc,
979 					       unsigned max,
980 					       unsigned *countp)
981 {
982 	struct fuse_forget_link *head = fc->forget_list_head.next;
983 	struct fuse_forget_link **newhead = &head;
984 	unsigned count;
985 
986 	for (count = 0; *newhead != NULL && count < max; count++)
987 		newhead = &(*newhead)->next;
988 
989 	fc->forget_list_head.next = *newhead;
990 	*newhead = NULL;
991 	if (fc->forget_list_head.next == NULL)
992 		fc->forget_list_tail = &fc->forget_list_head;
993 
994 	if (countp != NULL)
995 		*countp = count;
996 
997 	return head;
998 }
999 
1000 static int fuse_read_single_forget(struct fuse_conn *fc,
1001 				   struct fuse_copy_state *cs,
1002 				   size_t nbytes)
1003 __releases(fc->lock)
1004 {
1005 	int err;
1006 	struct fuse_forget_link *forget = dequeue_forget(fc, 1, NULL);
1007 	struct fuse_forget_in arg = {
1008 		.nlookup = forget->forget_one.nlookup,
1009 	};
1010 	struct fuse_in_header ih = {
1011 		.opcode = FUSE_FORGET,
1012 		.nodeid = forget->forget_one.nodeid,
1013 		.unique = fuse_get_unique(fc),
1014 		.len = sizeof(ih) + sizeof(arg),
1015 	};
1016 
1017 	spin_unlock(&fc->lock);
1018 	kfree(forget);
1019 	if (nbytes < ih.len)
1020 		return -EINVAL;
1021 
1022 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1023 	if (!err)
1024 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1025 	fuse_copy_finish(cs);
1026 
1027 	if (err)
1028 		return err;
1029 
1030 	return ih.len;
1031 }
1032 
1033 static int fuse_read_batch_forget(struct fuse_conn *fc,
1034 				   struct fuse_copy_state *cs, size_t nbytes)
1035 __releases(fc->lock)
1036 {
1037 	int err;
1038 	unsigned max_forgets;
1039 	unsigned count;
1040 	struct fuse_forget_link *head;
1041 	struct fuse_batch_forget_in arg = { .count = 0 };
1042 	struct fuse_in_header ih = {
1043 		.opcode = FUSE_BATCH_FORGET,
1044 		.unique = fuse_get_unique(fc),
1045 		.len = sizeof(ih) + sizeof(arg),
1046 	};
1047 
1048 	if (nbytes < ih.len) {
1049 		spin_unlock(&fc->lock);
1050 		return -EINVAL;
1051 	}
1052 
1053 	max_forgets = (nbytes - ih.len) / sizeof(struct fuse_forget_one);
1054 	head = dequeue_forget(fc, max_forgets, &count);
1055 	spin_unlock(&fc->lock);
1056 
1057 	arg.count = count;
1058 	ih.len += count * sizeof(struct fuse_forget_one);
1059 	err = fuse_copy_one(cs, &ih, sizeof(ih));
1060 	if (!err)
1061 		err = fuse_copy_one(cs, &arg, sizeof(arg));
1062 
1063 	while (head) {
1064 		struct fuse_forget_link *forget = head;
1065 
1066 		if (!err) {
1067 			err = fuse_copy_one(cs, &forget->forget_one,
1068 					    sizeof(forget->forget_one));
1069 		}
1070 		head = forget->next;
1071 		kfree(forget);
1072 	}
1073 
1074 	fuse_copy_finish(cs);
1075 
1076 	if (err)
1077 		return err;
1078 
1079 	return ih.len;
1080 }
1081 
1082 static int fuse_read_forget(struct fuse_conn *fc, struct fuse_copy_state *cs,
1083 			    size_t nbytes)
1084 __releases(fc->lock)
1085 {
1086 	if (fc->minor < 16 || fc->forget_list_head.next->next == NULL)
1087 		return fuse_read_single_forget(fc, cs, nbytes);
1088 	else
1089 		return fuse_read_batch_forget(fc, cs, nbytes);
1090 }
1091 
1092 /*
1093  * Read a single request into the userspace filesystem's buffer.  This
1094  * function waits until a request is available, then removes it from
1095  * the pending list and copies request data to userspace buffer.  If
1096  * no reply is needed (FORGET) or request has been aborted or there
1097  * was an error during the copying then it's finished by calling
1098  * request_end().  Otherwise add it to the processing list, and set
1099  * the 'sent' flag.
1100  */
1101 static ssize_t fuse_dev_do_read(struct fuse_conn *fc, struct file *file,
1102 				struct fuse_copy_state *cs, size_t nbytes)
1103 {
1104 	int err;
1105 	struct fuse_req *req;
1106 	struct fuse_in *in;
1107 	unsigned reqsize;
1108 
1109  restart:
1110 	spin_lock(&fc->lock);
1111 	err = -EAGAIN;
1112 	if ((file->f_flags & O_NONBLOCK) && fc->connected &&
1113 	    !request_pending(fc))
1114 		goto err_unlock;
1115 
1116 	request_wait(fc);
1117 	err = -ENODEV;
1118 	if (!fc->connected)
1119 		goto err_unlock;
1120 	err = -ERESTARTSYS;
1121 	if (!request_pending(fc))
1122 		goto err_unlock;
1123 
1124 	if (!list_empty(&fc->interrupts)) {
1125 		req = list_entry(fc->interrupts.next, struct fuse_req,
1126 				 intr_entry);
1127 		return fuse_read_interrupt(fc, cs, nbytes, req);
1128 	}
1129 
1130 	if (forget_pending(fc)) {
1131 		if (list_empty(&fc->pending) || fc->forget_batch-- > 0)
1132 			return fuse_read_forget(fc, cs, nbytes);
1133 
1134 		if (fc->forget_batch <= -8)
1135 			fc->forget_batch = 16;
1136 	}
1137 
1138 	req = list_entry(fc->pending.next, struct fuse_req, list);
1139 	req->state = FUSE_REQ_READING;
1140 	list_move(&req->list, &fc->io);
1141 
1142 	in = &req->in;
1143 	reqsize = in->h.len;
1144 	/* If request is too large, reply with an error and restart the read */
1145 	if (nbytes < reqsize) {
1146 		req->out.h.error = -EIO;
1147 		/* SETXATTR is special, since it may contain too large data */
1148 		if (in->h.opcode == FUSE_SETXATTR)
1149 			req->out.h.error = -E2BIG;
1150 		request_end(fc, req);
1151 		goto restart;
1152 	}
1153 	spin_unlock(&fc->lock);
1154 	cs->req = req;
1155 	err = fuse_copy_one(cs, &in->h, sizeof(in->h));
1156 	if (!err)
1157 		err = fuse_copy_args(cs, in->numargs, in->argpages,
1158 				     (struct fuse_arg *) in->args, 0);
1159 	fuse_copy_finish(cs);
1160 	spin_lock(&fc->lock);
1161 	req->locked = 0;
1162 	if (req->aborted) {
1163 		request_end(fc, req);
1164 		return -ENODEV;
1165 	}
1166 	if (err) {
1167 		req->out.h.error = -EIO;
1168 		request_end(fc, req);
1169 		return err;
1170 	}
1171 	if (!req->isreply)
1172 		request_end(fc, req);
1173 	else {
1174 		req->state = FUSE_REQ_SENT;
1175 		list_move_tail(&req->list, &fc->processing);
1176 		if (req->interrupted)
1177 			queue_interrupt(fc, req);
1178 		spin_unlock(&fc->lock);
1179 	}
1180 	return reqsize;
1181 
1182  err_unlock:
1183 	spin_unlock(&fc->lock);
1184 	return err;
1185 }
1186 
1187 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
1188 			      unsigned long nr_segs, loff_t pos)
1189 {
1190 	struct fuse_copy_state cs;
1191 	struct file *file = iocb->ki_filp;
1192 	struct fuse_conn *fc = fuse_get_conn(file);
1193 	if (!fc)
1194 		return -EPERM;
1195 
1196 	fuse_copy_init(&cs, fc, 1, iov, nr_segs);
1197 
1198 	return fuse_dev_do_read(fc, file, &cs, iov_length(iov, nr_segs));
1199 }
1200 
1201 static int fuse_dev_pipe_buf_steal(struct pipe_inode_info *pipe,
1202 				   struct pipe_buffer *buf)
1203 {
1204 	return 1;
1205 }
1206 
1207 static const struct pipe_buf_operations fuse_dev_pipe_buf_ops = {
1208 	.can_merge = 0,
1209 	.map = generic_pipe_buf_map,
1210 	.unmap = generic_pipe_buf_unmap,
1211 	.confirm = generic_pipe_buf_confirm,
1212 	.release = generic_pipe_buf_release,
1213 	.steal = fuse_dev_pipe_buf_steal,
1214 	.get = generic_pipe_buf_get,
1215 };
1216 
1217 static ssize_t fuse_dev_splice_read(struct file *in, loff_t *ppos,
1218 				    struct pipe_inode_info *pipe,
1219 				    size_t len, unsigned int flags)
1220 {
1221 	int ret;
1222 	int page_nr = 0;
1223 	int do_wakeup = 0;
1224 	struct pipe_buffer *bufs;
1225 	struct fuse_copy_state cs;
1226 	struct fuse_conn *fc = fuse_get_conn(in);
1227 	if (!fc)
1228 		return -EPERM;
1229 
1230 	bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL);
1231 	if (!bufs)
1232 		return -ENOMEM;
1233 
1234 	fuse_copy_init(&cs, fc, 1, NULL, 0);
1235 	cs.pipebufs = bufs;
1236 	cs.pipe = pipe;
1237 	ret = fuse_dev_do_read(fc, in, &cs, len);
1238 	if (ret < 0)
1239 		goto out;
1240 
1241 	ret = 0;
1242 	pipe_lock(pipe);
1243 
1244 	if (!pipe->readers) {
1245 		send_sig(SIGPIPE, current, 0);
1246 		if (!ret)
1247 			ret = -EPIPE;
1248 		goto out_unlock;
1249 	}
1250 
1251 	if (pipe->nrbufs + cs.nr_segs > pipe->buffers) {
1252 		ret = -EIO;
1253 		goto out_unlock;
1254 	}
1255 
1256 	while (page_nr < cs.nr_segs) {
1257 		int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
1258 		struct pipe_buffer *buf = pipe->bufs + newbuf;
1259 
1260 		buf->page = bufs[page_nr].page;
1261 		buf->offset = bufs[page_nr].offset;
1262 		buf->len = bufs[page_nr].len;
1263 		buf->ops = &fuse_dev_pipe_buf_ops;
1264 
1265 		pipe->nrbufs++;
1266 		page_nr++;
1267 		ret += buf->len;
1268 
1269 		if (pipe->inode)
1270 			do_wakeup = 1;
1271 	}
1272 
1273 out_unlock:
1274 	pipe_unlock(pipe);
1275 
1276 	if (do_wakeup) {
1277 		smp_mb();
1278 		if (waitqueue_active(&pipe->wait))
1279 			wake_up_interruptible(&pipe->wait);
1280 		kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1281 	}
1282 
1283 out:
1284 	for (; page_nr < cs.nr_segs; page_nr++)
1285 		page_cache_release(bufs[page_nr].page);
1286 
1287 	kfree(bufs);
1288 	return ret;
1289 }
1290 
1291 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
1292 			    struct fuse_copy_state *cs)
1293 {
1294 	struct fuse_notify_poll_wakeup_out outarg;
1295 	int err = -EINVAL;
1296 
1297 	if (size != sizeof(outarg))
1298 		goto err;
1299 
1300 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1301 	if (err)
1302 		goto err;
1303 
1304 	fuse_copy_finish(cs);
1305 	return fuse_notify_poll_wakeup(fc, &outarg);
1306 
1307 err:
1308 	fuse_copy_finish(cs);
1309 	return err;
1310 }
1311 
1312 static int fuse_notify_inval_inode(struct fuse_conn *fc, unsigned int size,
1313 				   struct fuse_copy_state *cs)
1314 {
1315 	struct fuse_notify_inval_inode_out outarg;
1316 	int err = -EINVAL;
1317 
1318 	if (size != sizeof(outarg))
1319 		goto err;
1320 
1321 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1322 	if (err)
1323 		goto err;
1324 	fuse_copy_finish(cs);
1325 
1326 	down_read(&fc->killsb);
1327 	err = -ENOENT;
1328 	if (fc->sb) {
1329 		err = fuse_reverse_inval_inode(fc->sb, outarg.ino,
1330 					       outarg.off, outarg.len);
1331 	}
1332 	up_read(&fc->killsb);
1333 	return err;
1334 
1335 err:
1336 	fuse_copy_finish(cs);
1337 	return err;
1338 }
1339 
1340 static int fuse_notify_inval_entry(struct fuse_conn *fc, unsigned int size,
1341 				   struct fuse_copy_state *cs)
1342 {
1343 	struct fuse_notify_inval_entry_out outarg;
1344 	int err = -ENOMEM;
1345 	char *buf;
1346 	struct qstr name;
1347 
1348 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1349 	if (!buf)
1350 		goto err;
1351 
1352 	err = -EINVAL;
1353 	if (size < sizeof(outarg))
1354 		goto err;
1355 
1356 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1357 	if (err)
1358 		goto err;
1359 
1360 	err = -ENAMETOOLONG;
1361 	if (outarg.namelen > FUSE_NAME_MAX)
1362 		goto err;
1363 
1364 	err = -EINVAL;
1365 	if (size != sizeof(outarg) + outarg.namelen + 1)
1366 		goto err;
1367 
1368 	name.name = buf;
1369 	name.len = outarg.namelen;
1370 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1371 	if (err)
1372 		goto err;
1373 	fuse_copy_finish(cs);
1374 	buf[outarg.namelen] = 0;
1375 	name.hash = full_name_hash(name.name, name.len);
1376 
1377 	down_read(&fc->killsb);
1378 	err = -ENOENT;
1379 	if (fc->sb)
1380 		err = fuse_reverse_inval_entry(fc->sb, outarg.parent, 0, &name);
1381 	up_read(&fc->killsb);
1382 	kfree(buf);
1383 	return err;
1384 
1385 err:
1386 	kfree(buf);
1387 	fuse_copy_finish(cs);
1388 	return err;
1389 }
1390 
1391 static int fuse_notify_delete(struct fuse_conn *fc, unsigned int size,
1392 			      struct fuse_copy_state *cs)
1393 {
1394 	struct fuse_notify_delete_out outarg;
1395 	int err = -ENOMEM;
1396 	char *buf;
1397 	struct qstr name;
1398 
1399 	buf = kzalloc(FUSE_NAME_MAX + 1, GFP_KERNEL);
1400 	if (!buf)
1401 		goto err;
1402 
1403 	err = -EINVAL;
1404 	if (size < sizeof(outarg))
1405 		goto err;
1406 
1407 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1408 	if (err)
1409 		goto err;
1410 
1411 	err = -ENAMETOOLONG;
1412 	if (outarg.namelen > FUSE_NAME_MAX)
1413 		goto err;
1414 
1415 	err = -EINVAL;
1416 	if (size != sizeof(outarg) + outarg.namelen + 1)
1417 		goto err;
1418 
1419 	name.name = buf;
1420 	name.len = outarg.namelen;
1421 	err = fuse_copy_one(cs, buf, outarg.namelen + 1);
1422 	if (err)
1423 		goto err;
1424 	fuse_copy_finish(cs);
1425 	buf[outarg.namelen] = 0;
1426 	name.hash = full_name_hash(name.name, name.len);
1427 
1428 	down_read(&fc->killsb);
1429 	err = -ENOENT;
1430 	if (fc->sb)
1431 		err = fuse_reverse_inval_entry(fc->sb, outarg.parent,
1432 					       outarg.child, &name);
1433 	up_read(&fc->killsb);
1434 	kfree(buf);
1435 	return err;
1436 
1437 err:
1438 	kfree(buf);
1439 	fuse_copy_finish(cs);
1440 	return err;
1441 }
1442 
1443 static int fuse_notify_store(struct fuse_conn *fc, unsigned int size,
1444 			     struct fuse_copy_state *cs)
1445 {
1446 	struct fuse_notify_store_out outarg;
1447 	struct inode *inode;
1448 	struct address_space *mapping;
1449 	u64 nodeid;
1450 	int err;
1451 	pgoff_t index;
1452 	unsigned int offset;
1453 	unsigned int num;
1454 	loff_t file_size;
1455 	loff_t end;
1456 
1457 	err = -EINVAL;
1458 	if (size < sizeof(outarg))
1459 		goto out_finish;
1460 
1461 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1462 	if (err)
1463 		goto out_finish;
1464 
1465 	err = -EINVAL;
1466 	if (size - sizeof(outarg) != outarg.size)
1467 		goto out_finish;
1468 
1469 	nodeid = outarg.nodeid;
1470 
1471 	down_read(&fc->killsb);
1472 
1473 	err = -ENOENT;
1474 	if (!fc->sb)
1475 		goto out_up_killsb;
1476 
1477 	inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1478 	if (!inode)
1479 		goto out_up_killsb;
1480 
1481 	mapping = inode->i_mapping;
1482 	index = outarg.offset >> PAGE_CACHE_SHIFT;
1483 	offset = outarg.offset & ~PAGE_CACHE_MASK;
1484 	file_size = i_size_read(inode);
1485 	end = outarg.offset + outarg.size;
1486 	if (end > file_size) {
1487 		file_size = end;
1488 		fuse_write_update_size(inode, file_size);
1489 	}
1490 
1491 	num = outarg.size;
1492 	while (num) {
1493 		struct page *page;
1494 		unsigned int this_num;
1495 
1496 		err = -ENOMEM;
1497 		page = find_or_create_page(mapping, index,
1498 					   mapping_gfp_mask(mapping));
1499 		if (!page)
1500 			goto out_iput;
1501 
1502 		this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset);
1503 		err = fuse_copy_page(cs, &page, offset, this_num, 0);
1504 		if (!err && offset == 0 && (num != 0 || file_size == end))
1505 			SetPageUptodate(page);
1506 		unlock_page(page);
1507 		page_cache_release(page);
1508 
1509 		if (err)
1510 			goto out_iput;
1511 
1512 		num -= this_num;
1513 		offset = 0;
1514 		index++;
1515 	}
1516 
1517 	err = 0;
1518 
1519 out_iput:
1520 	iput(inode);
1521 out_up_killsb:
1522 	up_read(&fc->killsb);
1523 out_finish:
1524 	fuse_copy_finish(cs);
1525 	return err;
1526 }
1527 
1528 static void fuse_retrieve_end(struct fuse_conn *fc, struct fuse_req *req)
1529 {
1530 	release_pages(req->pages, req->num_pages, 0);
1531 }
1532 
1533 static int fuse_retrieve(struct fuse_conn *fc, struct inode *inode,
1534 			 struct fuse_notify_retrieve_out *outarg)
1535 {
1536 	int err;
1537 	struct address_space *mapping = inode->i_mapping;
1538 	struct fuse_req *req;
1539 	pgoff_t index;
1540 	loff_t file_size;
1541 	unsigned int num;
1542 	unsigned int offset;
1543 	size_t total_len = 0;
1544 
1545 	req = fuse_get_req(fc);
1546 	if (IS_ERR(req))
1547 		return PTR_ERR(req);
1548 
1549 	offset = outarg->offset & ~PAGE_CACHE_MASK;
1550 
1551 	req->in.h.opcode = FUSE_NOTIFY_REPLY;
1552 	req->in.h.nodeid = outarg->nodeid;
1553 	req->in.numargs = 2;
1554 	req->in.argpages = 1;
1555 	req->page_offset = offset;
1556 	req->end = fuse_retrieve_end;
1557 
1558 	index = outarg->offset >> PAGE_CACHE_SHIFT;
1559 	file_size = i_size_read(inode);
1560 	num = outarg->size;
1561 	if (outarg->offset > file_size)
1562 		num = 0;
1563 	else if (outarg->offset + num > file_size)
1564 		num = file_size - outarg->offset;
1565 
1566 	while (num && req->num_pages < FUSE_MAX_PAGES_PER_REQ) {
1567 		struct page *page;
1568 		unsigned int this_num;
1569 
1570 		page = find_get_page(mapping, index);
1571 		if (!page)
1572 			break;
1573 
1574 		this_num = min_t(unsigned, num, PAGE_CACHE_SIZE - offset);
1575 		req->pages[req->num_pages] = page;
1576 		req->num_pages++;
1577 
1578 		offset = 0;
1579 		num -= this_num;
1580 		total_len += this_num;
1581 		index++;
1582 	}
1583 	req->misc.retrieve_in.offset = outarg->offset;
1584 	req->misc.retrieve_in.size = total_len;
1585 	req->in.args[0].size = sizeof(req->misc.retrieve_in);
1586 	req->in.args[0].value = &req->misc.retrieve_in;
1587 	req->in.args[1].size = total_len;
1588 
1589 	err = fuse_request_send_notify_reply(fc, req, outarg->notify_unique);
1590 	if (err)
1591 		fuse_retrieve_end(fc, req);
1592 
1593 	return err;
1594 }
1595 
1596 static int fuse_notify_retrieve(struct fuse_conn *fc, unsigned int size,
1597 				struct fuse_copy_state *cs)
1598 {
1599 	struct fuse_notify_retrieve_out outarg;
1600 	struct inode *inode;
1601 	int err;
1602 
1603 	err = -EINVAL;
1604 	if (size != sizeof(outarg))
1605 		goto copy_finish;
1606 
1607 	err = fuse_copy_one(cs, &outarg, sizeof(outarg));
1608 	if (err)
1609 		goto copy_finish;
1610 
1611 	fuse_copy_finish(cs);
1612 
1613 	down_read(&fc->killsb);
1614 	err = -ENOENT;
1615 	if (fc->sb) {
1616 		u64 nodeid = outarg.nodeid;
1617 
1618 		inode = ilookup5(fc->sb, nodeid, fuse_inode_eq, &nodeid);
1619 		if (inode) {
1620 			err = fuse_retrieve(fc, inode, &outarg);
1621 			iput(inode);
1622 		}
1623 	}
1624 	up_read(&fc->killsb);
1625 
1626 	return err;
1627 
1628 copy_finish:
1629 	fuse_copy_finish(cs);
1630 	return err;
1631 }
1632 
1633 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
1634 		       unsigned int size, struct fuse_copy_state *cs)
1635 {
1636 	switch (code) {
1637 	case FUSE_NOTIFY_POLL:
1638 		return fuse_notify_poll(fc, size, cs);
1639 
1640 	case FUSE_NOTIFY_INVAL_INODE:
1641 		return fuse_notify_inval_inode(fc, size, cs);
1642 
1643 	case FUSE_NOTIFY_INVAL_ENTRY:
1644 		return fuse_notify_inval_entry(fc, size, cs);
1645 
1646 	case FUSE_NOTIFY_STORE:
1647 		return fuse_notify_store(fc, size, cs);
1648 
1649 	case FUSE_NOTIFY_RETRIEVE:
1650 		return fuse_notify_retrieve(fc, size, cs);
1651 
1652 	case FUSE_NOTIFY_DELETE:
1653 		return fuse_notify_delete(fc, size, cs);
1654 
1655 	default:
1656 		fuse_copy_finish(cs);
1657 		return -EINVAL;
1658 	}
1659 }
1660 
1661 /* Look up request on processing list by unique ID */
1662 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
1663 {
1664 	struct list_head *entry;
1665 
1666 	list_for_each(entry, &fc->processing) {
1667 		struct fuse_req *req;
1668 		req = list_entry(entry, struct fuse_req, list);
1669 		if (req->in.h.unique == unique || req->intr_unique == unique)
1670 			return req;
1671 	}
1672 	return NULL;
1673 }
1674 
1675 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
1676 			 unsigned nbytes)
1677 {
1678 	unsigned reqsize = sizeof(struct fuse_out_header);
1679 
1680 	if (out->h.error)
1681 		return nbytes != reqsize ? -EINVAL : 0;
1682 
1683 	reqsize += len_args(out->numargs, out->args);
1684 
1685 	if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
1686 		return -EINVAL;
1687 	else if (reqsize > nbytes) {
1688 		struct fuse_arg *lastarg = &out->args[out->numargs-1];
1689 		unsigned diffsize = reqsize - nbytes;
1690 		if (diffsize > lastarg->size)
1691 			return -EINVAL;
1692 		lastarg->size -= diffsize;
1693 	}
1694 	return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
1695 			      out->page_zeroing);
1696 }
1697 
1698 /*
1699  * Write a single reply to a request.  First the header is copied from
1700  * the write buffer.  The request is then searched on the processing
1701  * list by the unique ID found in the header.  If found, then remove
1702  * it from the list and copy the rest of the buffer to the request.
1703  * The request is finished by calling request_end()
1704  */
1705 static ssize_t fuse_dev_do_write(struct fuse_conn *fc,
1706 				 struct fuse_copy_state *cs, size_t nbytes)
1707 {
1708 	int err;
1709 	struct fuse_req *req;
1710 	struct fuse_out_header oh;
1711 
1712 	if (nbytes < sizeof(struct fuse_out_header))
1713 		return -EINVAL;
1714 
1715 	err = fuse_copy_one(cs, &oh, sizeof(oh));
1716 	if (err)
1717 		goto err_finish;
1718 
1719 	err = -EINVAL;
1720 	if (oh.len != nbytes)
1721 		goto err_finish;
1722 
1723 	/*
1724 	 * Zero oh.unique indicates unsolicited notification message
1725 	 * and error contains notification code.
1726 	 */
1727 	if (!oh.unique) {
1728 		err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), cs);
1729 		return err ? err : nbytes;
1730 	}
1731 
1732 	err = -EINVAL;
1733 	if (oh.error <= -1000 || oh.error > 0)
1734 		goto err_finish;
1735 
1736 	spin_lock(&fc->lock);
1737 	err = -ENOENT;
1738 	if (!fc->connected)
1739 		goto err_unlock;
1740 
1741 	req = request_find(fc, oh.unique);
1742 	if (!req)
1743 		goto err_unlock;
1744 
1745 	if (req->aborted) {
1746 		spin_unlock(&fc->lock);
1747 		fuse_copy_finish(cs);
1748 		spin_lock(&fc->lock);
1749 		request_end(fc, req);
1750 		return -ENOENT;
1751 	}
1752 	/* Is it an interrupt reply? */
1753 	if (req->intr_unique == oh.unique) {
1754 		err = -EINVAL;
1755 		if (nbytes != sizeof(struct fuse_out_header))
1756 			goto err_unlock;
1757 
1758 		if (oh.error == -ENOSYS)
1759 			fc->no_interrupt = 1;
1760 		else if (oh.error == -EAGAIN)
1761 			queue_interrupt(fc, req);
1762 
1763 		spin_unlock(&fc->lock);
1764 		fuse_copy_finish(cs);
1765 		return nbytes;
1766 	}
1767 
1768 	req->state = FUSE_REQ_WRITING;
1769 	list_move(&req->list, &fc->io);
1770 	req->out.h = oh;
1771 	req->locked = 1;
1772 	cs->req = req;
1773 	if (!req->out.page_replace)
1774 		cs->move_pages = 0;
1775 	spin_unlock(&fc->lock);
1776 
1777 	err = copy_out_args(cs, &req->out, nbytes);
1778 	fuse_copy_finish(cs);
1779 
1780 	spin_lock(&fc->lock);
1781 	req->locked = 0;
1782 	if (!err) {
1783 		if (req->aborted)
1784 			err = -ENOENT;
1785 	} else if (!req->aborted)
1786 		req->out.h.error = -EIO;
1787 	request_end(fc, req);
1788 
1789 	return err ? err : nbytes;
1790 
1791  err_unlock:
1792 	spin_unlock(&fc->lock);
1793  err_finish:
1794 	fuse_copy_finish(cs);
1795 	return err;
1796 }
1797 
1798 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
1799 			      unsigned long nr_segs, loff_t pos)
1800 {
1801 	struct fuse_copy_state cs;
1802 	struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
1803 	if (!fc)
1804 		return -EPERM;
1805 
1806 	fuse_copy_init(&cs, fc, 0, iov, nr_segs);
1807 
1808 	return fuse_dev_do_write(fc, &cs, iov_length(iov, nr_segs));
1809 }
1810 
1811 static ssize_t fuse_dev_splice_write(struct pipe_inode_info *pipe,
1812 				     struct file *out, loff_t *ppos,
1813 				     size_t len, unsigned int flags)
1814 {
1815 	unsigned nbuf;
1816 	unsigned idx;
1817 	struct pipe_buffer *bufs;
1818 	struct fuse_copy_state cs;
1819 	struct fuse_conn *fc;
1820 	size_t rem;
1821 	ssize_t ret;
1822 
1823 	fc = fuse_get_conn(out);
1824 	if (!fc)
1825 		return -EPERM;
1826 
1827 	bufs = kmalloc(pipe->buffers * sizeof(struct pipe_buffer), GFP_KERNEL);
1828 	if (!bufs)
1829 		return -ENOMEM;
1830 
1831 	pipe_lock(pipe);
1832 	nbuf = 0;
1833 	rem = 0;
1834 	for (idx = 0; idx < pipe->nrbufs && rem < len; idx++)
1835 		rem += pipe->bufs[(pipe->curbuf + idx) & (pipe->buffers - 1)].len;
1836 
1837 	ret = -EINVAL;
1838 	if (rem < len) {
1839 		pipe_unlock(pipe);
1840 		goto out;
1841 	}
1842 
1843 	rem = len;
1844 	while (rem) {
1845 		struct pipe_buffer *ibuf;
1846 		struct pipe_buffer *obuf;
1847 
1848 		BUG_ON(nbuf >= pipe->buffers);
1849 		BUG_ON(!pipe->nrbufs);
1850 		ibuf = &pipe->bufs[pipe->curbuf];
1851 		obuf = &bufs[nbuf];
1852 
1853 		if (rem >= ibuf->len) {
1854 			*obuf = *ibuf;
1855 			ibuf->ops = NULL;
1856 			pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1857 			pipe->nrbufs--;
1858 		} else {
1859 			ibuf->ops->get(pipe, ibuf);
1860 			*obuf = *ibuf;
1861 			obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1862 			obuf->len = rem;
1863 			ibuf->offset += obuf->len;
1864 			ibuf->len -= obuf->len;
1865 		}
1866 		nbuf++;
1867 		rem -= obuf->len;
1868 	}
1869 	pipe_unlock(pipe);
1870 
1871 	fuse_copy_init(&cs, fc, 0, NULL, nbuf);
1872 	cs.pipebufs = bufs;
1873 	cs.pipe = pipe;
1874 
1875 	if (flags & SPLICE_F_MOVE)
1876 		cs.move_pages = 1;
1877 
1878 	ret = fuse_dev_do_write(fc, &cs, len);
1879 
1880 	for (idx = 0; idx < nbuf; idx++) {
1881 		struct pipe_buffer *buf = &bufs[idx];
1882 		buf->ops->release(pipe, buf);
1883 	}
1884 out:
1885 	kfree(bufs);
1886 	return ret;
1887 }
1888 
1889 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
1890 {
1891 	unsigned mask = POLLOUT | POLLWRNORM;
1892 	struct fuse_conn *fc = fuse_get_conn(file);
1893 	if (!fc)
1894 		return POLLERR;
1895 
1896 	poll_wait(file, &fc->waitq, wait);
1897 
1898 	spin_lock(&fc->lock);
1899 	if (!fc->connected)
1900 		mask = POLLERR;
1901 	else if (request_pending(fc))
1902 		mask |= POLLIN | POLLRDNORM;
1903 	spin_unlock(&fc->lock);
1904 
1905 	return mask;
1906 }
1907 
1908 /*
1909  * Abort all requests on the given list (pending or processing)
1910  *
1911  * This function releases and reacquires fc->lock
1912  */
1913 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1914 __releases(fc->lock)
1915 __acquires(fc->lock)
1916 {
1917 	while (!list_empty(head)) {
1918 		struct fuse_req *req;
1919 		req = list_entry(head->next, struct fuse_req, list);
1920 		req->out.h.error = -ECONNABORTED;
1921 		request_end(fc, req);
1922 		spin_lock(&fc->lock);
1923 	}
1924 }
1925 
1926 /*
1927  * Abort requests under I/O
1928  *
1929  * The requests are set to aborted and finished, and the request
1930  * waiter is woken up.  This will make request_wait_answer() wait
1931  * until the request is unlocked and then return.
1932  *
1933  * If the request is asynchronous, then the end function needs to be
1934  * called after waiting for the request to be unlocked (if it was
1935  * locked).
1936  */
1937 static void end_io_requests(struct fuse_conn *fc)
1938 __releases(fc->lock)
1939 __acquires(fc->lock)
1940 {
1941 	while (!list_empty(&fc->io)) {
1942 		struct fuse_req *req =
1943 			list_entry(fc->io.next, struct fuse_req, list);
1944 		void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1945 
1946 		req->aborted = 1;
1947 		req->out.h.error = -ECONNABORTED;
1948 		req->state = FUSE_REQ_FINISHED;
1949 		list_del_init(&req->list);
1950 		wake_up(&req->waitq);
1951 		if (end) {
1952 			req->end = NULL;
1953 			__fuse_get_request(req);
1954 			spin_unlock(&fc->lock);
1955 			wait_event(req->waitq, !req->locked);
1956 			end(fc, req);
1957 			fuse_put_request(fc, req);
1958 			spin_lock(&fc->lock);
1959 		}
1960 	}
1961 }
1962 
1963 static void end_queued_requests(struct fuse_conn *fc)
1964 __releases(fc->lock)
1965 __acquires(fc->lock)
1966 {
1967 	fc->max_background = UINT_MAX;
1968 	flush_bg_queue(fc);
1969 	end_requests(fc, &fc->pending);
1970 	end_requests(fc, &fc->processing);
1971 	while (forget_pending(fc))
1972 		kfree(dequeue_forget(fc, 1, NULL));
1973 }
1974 
1975 static void end_polls(struct fuse_conn *fc)
1976 {
1977 	struct rb_node *p;
1978 
1979 	p = rb_first(&fc->polled_files);
1980 
1981 	while (p) {
1982 		struct fuse_file *ff;
1983 		ff = rb_entry(p, struct fuse_file, polled_node);
1984 		wake_up_interruptible_all(&ff->poll_wait);
1985 
1986 		p = rb_next(p);
1987 	}
1988 }
1989 
1990 /*
1991  * Abort all requests.
1992  *
1993  * Emergency exit in case of a malicious or accidental deadlock, or
1994  * just a hung filesystem.
1995  *
1996  * The same effect is usually achievable through killing the
1997  * filesystem daemon and all users of the filesystem.  The exception
1998  * is the combination of an asynchronous request and the tricky
1999  * deadlock (see Documentation/filesystems/fuse.txt).
2000  *
2001  * During the aborting, progression of requests from the pending and
2002  * processing lists onto the io list, and progression of new requests
2003  * onto the pending list is prevented by req->connected being false.
2004  *
2005  * Progression of requests under I/O to the processing list is
2006  * prevented by the req->aborted flag being true for these requests.
2007  * For this reason requests on the io list must be aborted first.
2008  */
2009 void fuse_abort_conn(struct fuse_conn *fc)
2010 {
2011 	spin_lock(&fc->lock);
2012 	if (fc->connected) {
2013 		fc->connected = 0;
2014 		fc->blocked = 0;
2015 		end_io_requests(fc);
2016 		end_queued_requests(fc);
2017 		end_polls(fc);
2018 		wake_up_all(&fc->waitq);
2019 		wake_up_all(&fc->blocked_waitq);
2020 		kill_fasync(&fc->fasync, SIGIO, POLL_IN);
2021 	}
2022 	spin_unlock(&fc->lock);
2023 }
2024 EXPORT_SYMBOL_GPL(fuse_abort_conn);
2025 
2026 int fuse_dev_release(struct inode *inode, struct file *file)
2027 {
2028 	struct fuse_conn *fc = fuse_get_conn(file);
2029 	if (fc) {
2030 		spin_lock(&fc->lock);
2031 		fc->connected = 0;
2032 		fc->blocked = 0;
2033 		end_queued_requests(fc);
2034 		end_polls(fc);
2035 		wake_up_all(&fc->blocked_waitq);
2036 		spin_unlock(&fc->lock);
2037 		fuse_conn_put(fc);
2038 	}
2039 
2040 	return 0;
2041 }
2042 EXPORT_SYMBOL_GPL(fuse_dev_release);
2043 
2044 static int fuse_dev_fasync(int fd, struct file *file, int on)
2045 {
2046 	struct fuse_conn *fc = fuse_get_conn(file);
2047 	if (!fc)
2048 		return -EPERM;
2049 
2050 	/* No locking - fasync_helper does its own locking */
2051 	return fasync_helper(fd, file, on, &fc->fasync);
2052 }
2053 
2054 const struct file_operations fuse_dev_operations = {
2055 	.owner		= THIS_MODULE,
2056 	.llseek		= no_llseek,
2057 	.read		= do_sync_read,
2058 	.aio_read	= fuse_dev_read,
2059 	.splice_read	= fuse_dev_splice_read,
2060 	.write		= do_sync_write,
2061 	.aio_write	= fuse_dev_write,
2062 	.splice_write	= fuse_dev_splice_write,
2063 	.poll		= fuse_dev_poll,
2064 	.release	= fuse_dev_release,
2065 	.fasync		= fuse_dev_fasync,
2066 };
2067 EXPORT_SYMBOL_GPL(fuse_dev_operations);
2068 
2069 static struct miscdevice fuse_miscdevice = {
2070 	.minor = FUSE_MINOR,
2071 	.name  = "fuse",
2072 	.fops = &fuse_dev_operations,
2073 };
2074 
2075 int __init fuse_dev_init(void)
2076 {
2077 	int err = -ENOMEM;
2078 	fuse_req_cachep = kmem_cache_create("fuse_request",
2079 					    sizeof(struct fuse_req),
2080 					    0, 0, NULL);
2081 	if (!fuse_req_cachep)
2082 		goto out;
2083 
2084 	err = misc_register(&fuse_miscdevice);
2085 	if (err)
2086 		goto out_cache_clean;
2087 
2088 	return 0;
2089 
2090  out_cache_clean:
2091 	kmem_cache_destroy(fuse_req_cachep);
2092  out:
2093 	return err;
2094 }
2095 
2096 void fuse_dev_cleanup(void)
2097 {
2098 	misc_deregister(&fuse_miscdevice);
2099 	kmem_cache_destroy(fuse_req_cachep);
2100 }
2101