1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/init.h> 4 #include <linux/fs.h> 5 #include <linux/slab.h> 6 #include <linux/rwsem.h> 7 #include <linux/xattr.h> 8 #include <linux/security.h> 9 #include <linux/posix_acl_xattr.h> 10 #include <linux/iversion.h> 11 #include <linux/fsverity.h> 12 #include <linux/sched/mm.h> 13 #include "ctree.h" 14 #include "btrfs_inode.h" 15 #include "transaction.h" 16 #include "disk-io.h" 17 #include "locking.h" 18 19 /* 20 * Implementation of the interface defined in struct fsverity_operations. 21 * 22 * The main question is how and where to store the verity descriptor and the 23 * Merkle tree. We store both in dedicated btree items in the filesystem tree, 24 * together with the rest of the inode metadata. This means we'll need to do 25 * extra work to encrypt them once encryption is supported in btrfs, but btrfs 26 * has a lot of careful code around i_size and it seems better to make a new key 27 * type than try and adjust all of our expectations for i_size. 28 * 29 * Note that this differs from the implementation in ext4 and f2fs, where 30 * this data is stored as if it were in the file, but past EOF. However, btrfs 31 * does not have a widespread mechanism for caching opaque metadata pages, so we 32 * do pretend that the Merkle tree pages themselves are past EOF for the 33 * purposes of caching them (as opposed to creating a virtual inode). 34 * 35 * fs verity items are stored under two different key types on disk. 36 * The descriptor items: 37 * [ inode objectid, BTRFS_VERITY_DESC_ITEM_KEY, offset ] 38 * 39 * At offset 0, we store a btrfs_verity_descriptor_item which tracks the 40 * size of the descriptor item and some extra data for encryption. 41 * Starting at offset 1, these hold the generic fs verity descriptor. 42 * The latter are opaque to btrfs, we just read and write them as a blob for 43 * the higher level verity code. The most common descriptor size is 256 bytes. 44 * 45 * The merkle tree items: 46 * [ inode objectid, BTRFS_VERITY_MERKLE_ITEM_KEY, offset ] 47 * 48 * These also start at offset 0, and correspond to the merkle tree bytes. 49 * So when fsverity asks for page 0 of the merkle tree, we pull up one page 50 * starting at offset 0 for this key type. These are also opaque to btrfs, 51 * we're blindly storing whatever fsverity sends down. 52 * 53 * Another important consideration is the fact that the Merkle tree data scales 54 * linearly with the size of the file (with 4K pages/blocks and SHA-256, it's 55 * ~1/127th the size) so for large files, writing the tree can be a lengthy 56 * operation. For that reason, we guard the whole enable verity operation 57 * (between begin_enable_verity and end_enable_verity) with an orphan item. 58 * Again, because the data can be pretty large, it's quite possible that we 59 * could run out of space writing it, so we try our best to handle errors by 60 * stopping and rolling back rather than aborting the victim transaction. 61 */ 62 63 #define MERKLE_START_ALIGN 65536 64 65 /* 66 * Compute the logical file offset where we cache the Merkle tree. 67 * 68 * @inode: inode of the verity file 69 * 70 * For the purposes of caching the Merkle tree pages, as required by 71 * fs-verity, it is convenient to do size computations in terms of a file 72 * offset, rather than in terms of page indices. 73 * 74 * Use 64K to be sure it's past the last page in the file, even with 64K pages. 75 * That rounding operation itself can overflow loff_t, so we do it in u64 and 76 * check. 77 * 78 * Returns the file offset on success, negative error code on failure. 79 */ 80 static loff_t merkle_file_pos(const struct inode *inode) 81 { 82 u64 sz = inode->i_size; 83 u64 rounded = round_up(sz, MERKLE_START_ALIGN); 84 85 if (rounded > inode->i_sb->s_maxbytes) 86 return -EFBIG; 87 88 return rounded; 89 } 90 91 /* 92 * Drop all the items for this inode with this key_type. 93 * 94 * @inode: inode to drop items for 95 * @key_type: type of items to drop (BTRFS_VERITY_DESC_ITEM or 96 * BTRFS_VERITY_MERKLE_ITEM) 97 * 98 * Before doing a verity enable we cleanup any existing verity items. 99 * This is also used to clean up if a verity enable failed half way through. 100 * 101 * Returns number of dropped items on success, negative error code on failure. 102 */ 103 static int drop_verity_items(struct btrfs_inode *inode, u8 key_type) 104 { 105 struct btrfs_trans_handle *trans; 106 struct btrfs_root *root = inode->root; 107 struct btrfs_path *path; 108 struct btrfs_key key; 109 int count = 0; 110 int ret; 111 112 path = btrfs_alloc_path(); 113 if (!path) 114 return -ENOMEM; 115 116 while (1) { 117 /* 1 for the item being dropped */ 118 trans = btrfs_start_transaction(root, 1); 119 if (IS_ERR(trans)) { 120 ret = PTR_ERR(trans); 121 goto out; 122 } 123 124 /* 125 * Walk backwards through all the items until we find one that 126 * isn't from our key type or objectid 127 */ 128 key.objectid = btrfs_ino(inode); 129 key.type = key_type; 130 key.offset = (u64)-1; 131 132 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 133 if (ret > 0) { 134 ret = 0; 135 /* No more keys of this type, we're done */ 136 if (path->slots[0] == 0) 137 break; 138 path->slots[0]--; 139 } else if (ret < 0) { 140 btrfs_end_transaction(trans); 141 goto out; 142 } 143 144 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 145 146 /* No more keys of this type, we're done */ 147 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 148 break; 149 150 /* 151 * This shouldn't be a performance sensitive function because 152 * it's not used as part of truncate. If it ever becomes 153 * perf sensitive, change this to walk forward and bulk delete 154 * items 155 */ 156 ret = btrfs_del_items(trans, root, path, path->slots[0], 1); 157 if (ret) { 158 btrfs_end_transaction(trans); 159 goto out; 160 } 161 count++; 162 btrfs_release_path(path); 163 btrfs_end_transaction(trans); 164 } 165 ret = count; 166 btrfs_end_transaction(trans); 167 out: 168 btrfs_free_path(path); 169 return ret; 170 } 171 172 /* 173 * Drop all verity items 174 * 175 * @inode: inode to drop verity items for 176 * 177 * In most contexts where we are dropping verity items, we want to do it for all 178 * the types of verity items, not a particular one. 179 * 180 * Returns: 0 on success, negative error code on failure. 181 */ 182 int btrfs_drop_verity_items(struct btrfs_inode *inode) 183 { 184 int ret; 185 186 ret = drop_verity_items(inode, BTRFS_VERITY_DESC_ITEM_KEY); 187 if (ret < 0) 188 return ret; 189 ret = drop_verity_items(inode, BTRFS_VERITY_MERKLE_ITEM_KEY); 190 if (ret < 0) 191 return ret; 192 193 return 0; 194 } 195 196 /* 197 * Insert and write inode items with a given key type and offset. 198 * 199 * @inode: inode to insert for 200 * @key_type: key type to insert 201 * @offset: item offset to insert at 202 * @src: source data to write 203 * @len: length of source data to write 204 * 205 * Write len bytes from src into items of up to 2K length. 206 * The inserted items will have key (ino, key_type, offset + off) where off is 207 * consecutively increasing from 0 up to the last item ending at offset + len. 208 * 209 * Returns 0 on success and a negative error code on failure. 210 */ 211 static int write_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 212 const char *src, u64 len) 213 { 214 struct btrfs_trans_handle *trans; 215 struct btrfs_path *path; 216 struct btrfs_root *root = inode->root; 217 struct extent_buffer *leaf; 218 struct btrfs_key key; 219 unsigned long copy_bytes; 220 unsigned long src_offset = 0; 221 void *data; 222 int ret = 0; 223 224 path = btrfs_alloc_path(); 225 if (!path) 226 return -ENOMEM; 227 228 while (len > 0) { 229 /* 1 for the new item being inserted */ 230 trans = btrfs_start_transaction(root, 1); 231 if (IS_ERR(trans)) { 232 ret = PTR_ERR(trans); 233 break; 234 } 235 236 key.objectid = btrfs_ino(inode); 237 key.type = key_type; 238 key.offset = offset; 239 240 /* 241 * Insert 2K at a time mostly to be friendly for smaller leaf 242 * size filesystems 243 */ 244 copy_bytes = min_t(u64, len, 2048); 245 246 ret = btrfs_insert_empty_item(trans, root, path, &key, copy_bytes); 247 if (ret) { 248 btrfs_end_transaction(trans); 249 break; 250 } 251 252 leaf = path->nodes[0]; 253 254 data = btrfs_item_ptr(leaf, path->slots[0], void); 255 write_extent_buffer(leaf, src + src_offset, 256 (unsigned long)data, copy_bytes); 257 offset += copy_bytes; 258 src_offset += copy_bytes; 259 len -= copy_bytes; 260 261 btrfs_release_path(path); 262 btrfs_end_transaction(trans); 263 } 264 265 btrfs_free_path(path); 266 return ret; 267 } 268 269 /* 270 * Read inode items of the given key type and offset from the btree. 271 * 272 * @inode: inode to read items of 273 * @key_type: key type to read 274 * @offset: item offset to read from 275 * @dest: Buffer to read into. This parameter has slightly tricky 276 * semantics. If it is NULL, the function will not do any copying 277 * and will just return the size of all the items up to len bytes. 278 * If dest_page is passed, then the function will kmap_local the 279 * page and ignore dest, but it must still be non-NULL to avoid the 280 * counting-only behavior. 281 * @len: length in bytes to read 282 * @dest_page: copy into this page instead of the dest buffer 283 * 284 * Helper function to read items from the btree. This returns the number of 285 * bytes read or < 0 for errors. We can return short reads if the items don't 286 * exist on disk or aren't big enough to fill the desired length. Supports 287 * reading into a provided buffer (dest) or into the page cache 288 * 289 * Returns number of bytes read or a negative error code on failure. 290 */ 291 static int read_key_bytes(struct btrfs_inode *inode, u8 key_type, u64 offset, 292 char *dest, u64 len, struct page *dest_page) 293 { 294 struct btrfs_path *path; 295 struct btrfs_root *root = inode->root; 296 struct extent_buffer *leaf; 297 struct btrfs_key key; 298 u64 item_end; 299 u64 copy_end; 300 int copied = 0; 301 u32 copy_offset; 302 unsigned long copy_bytes; 303 unsigned long dest_offset = 0; 304 void *data; 305 char *kaddr = dest; 306 int ret; 307 308 path = btrfs_alloc_path(); 309 if (!path) 310 return -ENOMEM; 311 312 if (dest_page) 313 path->reada = READA_FORWARD; 314 315 key.objectid = btrfs_ino(inode); 316 key.type = key_type; 317 key.offset = offset; 318 319 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 320 if (ret < 0) { 321 goto out; 322 } else if (ret > 0) { 323 ret = 0; 324 if (path->slots[0] == 0) 325 goto out; 326 path->slots[0]--; 327 } 328 329 while (len > 0) { 330 leaf = path->nodes[0]; 331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 332 333 if (key.objectid != btrfs_ino(inode) || key.type != key_type) 334 break; 335 336 item_end = btrfs_item_size_nr(leaf, path->slots[0]) + key.offset; 337 338 if (copied > 0) { 339 /* 340 * Once we've copied something, we want all of the items 341 * to be sequential 342 */ 343 if (key.offset != offset) 344 break; 345 } else { 346 /* 347 * Our initial offset might be in the middle of an 348 * item. Make sure it all makes sense. 349 */ 350 if (key.offset > offset) 351 break; 352 if (item_end <= offset) 353 break; 354 } 355 356 /* desc = NULL to just sum all the item lengths */ 357 if (!dest) 358 copy_end = item_end; 359 else 360 copy_end = min(offset + len, item_end); 361 362 /* Number of bytes in this item we want to copy */ 363 copy_bytes = copy_end - offset; 364 365 /* Offset from the start of item for copying */ 366 copy_offset = offset - key.offset; 367 368 if (dest) { 369 if (dest_page) 370 kaddr = kmap_local_page(dest_page); 371 372 data = btrfs_item_ptr(leaf, path->slots[0], void); 373 read_extent_buffer(leaf, kaddr + dest_offset, 374 (unsigned long)data + copy_offset, 375 copy_bytes); 376 377 if (dest_page) 378 kunmap_local(kaddr); 379 } 380 381 offset += copy_bytes; 382 dest_offset += copy_bytes; 383 len -= copy_bytes; 384 copied += copy_bytes; 385 386 path->slots[0]++; 387 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 388 /* 389 * We've reached the last slot in this leaf and we need 390 * to go to the next leaf. 391 */ 392 ret = btrfs_next_leaf(root, path); 393 if (ret < 0) { 394 break; 395 } else if (ret > 0) { 396 ret = 0; 397 break; 398 } 399 } 400 } 401 out: 402 btrfs_free_path(path); 403 if (!ret) 404 ret = copied; 405 return ret; 406 } 407 408 /* 409 * Delete an fsverity orphan 410 * 411 * @trans: transaction to do the delete in 412 * @inode: inode to orphan 413 * 414 * Capture verity orphan specific logic that is repeated in the couple places 415 * we delete verity orphans. Specifically, handling ENOENT and ignoring inodes 416 * with 0 links. 417 * 418 * Returns zero on success or a negative error code on failure. 419 */ 420 static int del_orphan(struct btrfs_trans_handle *trans, struct btrfs_inode *inode) 421 { 422 struct btrfs_root *root = inode->root; 423 int ret; 424 425 /* 426 * If the inode has no links, it is either already unlinked, or was 427 * created with O_TMPFILE. In either case, it should have an orphan from 428 * that other operation. Rather than reference count the orphans, we 429 * simply ignore them here, because we only invoke the verity path in 430 * the orphan logic when i_nlink is 1. 431 */ 432 if (!inode->vfs_inode.i_nlink) 433 return 0; 434 435 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode)); 436 if (ret == -ENOENT) 437 ret = 0; 438 return ret; 439 } 440 441 /* 442 * Rollback in-progress verity if we encounter an error. 443 * 444 * @inode: inode verity had an error for 445 * 446 * We try to handle recoverable errors while enabling verity by rolling it back 447 * and just failing the operation, rather than having an fs level error no 448 * matter what. However, any error in rollback is unrecoverable. 449 * 450 * Returns 0 on success, negative error code on failure. 451 */ 452 static int rollback_verity(struct btrfs_inode *inode) 453 { 454 struct btrfs_trans_handle *trans; 455 struct btrfs_root *root = inode->root; 456 int ret; 457 458 ASSERT(inode_is_locked(&inode->vfs_inode)); 459 truncate_inode_pages(inode->vfs_inode.i_mapping, inode->vfs_inode.i_size); 460 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 461 ret = btrfs_drop_verity_items(inode); 462 if (ret) { 463 btrfs_handle_fs_error(root->fs_info, ret, 464 "failed to drop verity items in rollback %llu", 465 (u64)inode->vfs_inode.i_ino); 466 goto out; 467 } 468 469 /* 470 * 1 for updating the inode flag 471 * 1 for deleting the orphan 472 */ 473 trans = btrfs_start_transaction(root, 2); 474 if (IS_ERR(trans)) { 475 ret = PTR_ERR(trans); 476 btrfs_handle_fs_error(root->fs_info, ret, 477 "failed to start transaction in verity rollback %llu", 478 (u64)inode->vfs_inode.i_ino); 479 goto out; 480 } 481 inode->ro_flags &= ~BTRFS_INODE_RO_VERITY; 482 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 483 ret = btrfs_update_inode(trans, root, inode); 484 if (ret) { 485 btrfs_abort_transaction(trans, ret); 486 goto out; 487 } 488 ret = del_orphan(trans, inode); 489 if (ret) { 490 btrfs_abort_transaction(trans, ret); 491 goto out; 492 } 493 btrfs_end_transaction(trans); 494 out: 495 return ret; 496 } 497 498 /* 499 * Finalize making the file a valid verity file 500 * 501 * @inode: inode to be marked as verity 502 * @desc: contents of the verity descriptor to write (not NULL) 503 * @desc_size: size of the verity descriptor 504 * 505 * Do the actual work of finalizing verity after successfully writing the Merkle 506 * tree: 507 * 508 * - write out the descriptor items 509 * - mark the inode with the verity flag 510 * - delete the orphan item 511 * - mark the ro compat bit 512 * - clear the in progress bit 513 * 514 * Returns 0 on success, negative error code on failure. 515 */ 516 static int finish_verity(struct btrfs_inode *inode, const void *desc, 517 size_t desc_size) 518 { 519 struct btrfs_trans_handle *trans = NULL; 520 struct btrfs_root *root = inode->root; 521 struct btrfs_verity_descriptor_item item; 522 int ret; 523 524 /* Write out the descriptor item */ 525 memset(&item, 0, sizeof(item)); 526 btrfs_set_stack_verity_descriptor_size(&item, desc_size); 527 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 0, 528 (const char *)&item, sizeof(item)); 529 if (ret) 530 goto out; 531 532 /* Write out the descriptor itself */ 533 ret = write_key_bytes(inode, BTRFS_VERITY_DESC_ITEM_KEY, 1, 534 desc, desc_size); 535 if (ret) 536 goto out; 537 538 /* 539 * 1 for updating the inode flag 540 * 1 for deleting the orphan 541 */ 542 trans = btrfs_start_transaction(root, 2); 543 if (IS_ERR(trans)) { 544 ret = PTR_ERR(trans); 545 goto out; 546 } 547 inode->ro_flags |= BTRFS_INODE_RO_VERITY; 548 btrfs_sync_inode_flags_to_i_flags(&inode->vfs_inode); 549 ret = btrfs_update_inode(trans, root, inode); 550 if (ret) 551 goto end_trans; 552 ret = del_orphan(trans, inode); 553 if (ret) 554 goto end_trans; 555 clear_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 556 btrfs_set_fs_compat_ro(root->fs_info, VERITY); 557 end_trans: 558 btrfs_end_transaction(trans); 559 out: 560 return ret; 561 562 } 563 564 /* 565 * fsverity op that begins enabling verity. 566 * 567 * @filp: file to enable verity on 568 * 569 * Begin enabling fsverity for the file. We drop any existing verity items, add 570 * an orphan and set the in progress bit. 571 * 572 * Returns 0 on success, negative error code on failure. 573 */ 574 static int btrfs_begin_enable_verity(struct file *filp) 575 { 576 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 577 struct btrfs_root *root = inode->root; 578 struct btrfs_trans_handle *trans; 579 int ret; 580 581 ASSERT(inode_is_locked(file_inode(filp))); 582 583 if (test_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags)) 584 return -EBUSY; 585 586 /* 587 * This should almost never do anything, but theoretically, it's 588 * possible that we failed to enable verity on a file, then were 589 * interrupted or failed while rolling back, failed to cleanup the 590 * orphan, and finally attempt to enable verity again. 591 */ 592 ret = btrfs_drop_verity_items(inode); 593 if (ret) 594 return ret; 595 596 /* 1 for the orphan item */ 597 trans = btrfs_start_transaction(root, 1); 598 if (IS_ERR(trans)) 599 return PTR_ERR(trans); 600 601 ret = btrfs_orphan_add(trans, inode); 602 if (!ret) 603 set_bit(BTRFS_INODE_VERITY_IN_PROGRESS, &inode->runtime_flags); 604 btrfs_end_transaction(trans); 605 606 return 0; 607 } 608 609 /* 610 * fsverity op that ends enabling verity. 611 * 612 * @filp: file we are finishing enabling verity on 613 * @desc: verity descriptor to write out (NULL in error conditions) 614 * @desc_size: size of the verity descriptor (variable with signatures) 615 * @merkle_tree_size: size of the merkle tree in bytes 616 * 617 * If desc is null, then VFS is signaling an error occurred during verity 618 * enable, and we should try to rollback. Otherwise, attempt to finish verity. 619 * 620 * Returns 0 on success, negative error code on error. 621 */ 622 static int btrfs_end_enable_verity(struct file *filp, const void *desc, 623 size_t desc_size, u64 merkle_tree_size) 624 { 625 struct btrfs_inode *inode = BTRFS_I(file_inode(filp)); 626 int ret = 0; 627 int rollback_ret; 628 629 ASSERT(inode_is_locked(file_inode(filp))); 630 631 if (desc == NULL) 632 goto rollback; 633 634 ret = finish_verity(inode, desc, desc_size); 635 if (ret) 636 goto rollback; 637 return ret; 638 639 rollback: 640 rollback_ret = rollback_verity(inode); 641 if (rollback_ret) 642 btrfs_err(inode->root->fs_info, 643 "failed to rollback verity items: %d", rollback_ret); 644 return ret; 645 } 646 647 /* 648 * fsverity op that gets the struct fsverity_descriptor. 649 * 650 * @inode: inode to get the descriptor of 651 * @buf: output buffer for the descriptor contents 652 * @buf_size: size of the output buffer. 0 to query the size 653 * 654 * fsverity does a two pass setup for reading the descriptor, in the first pass 655 * it calls with buf_size = 0 to query the size of the descriptor, and then in 656 * the second pass it actually reads the descriptor off disk. 657 * 658 * Returns the size on success or a negative error code on failure. 659 */ 660 static int btrfs_get_verity_descriptor(struct inode *inode, void *buf, 661 size_t buf_size) 662 { 663 u64 true_size; 664 int ret = 0; 665 struct btrfs_verity_descriptor_item item; 666 667 memset(&item, 0, sizeof(item)); 668 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 0, 669 (char *)&item, sizeof(item), NULL); 670 if (ret < 0) 671 return ret; 672 673 if (item.reserved[0] != 0 || item.reserved[1] != 0) 674 return -EUCLEAN; 675 676 true_size = btrfs_stack_verity_descriptor_size(&item); 677 if (true_size > INT_MAX) 678 return -EUCLEAN; 679 680 if (buf_size == 0) 681 return true_size; 682 if (buf_size < true_size) 683 return -ERANGE; 684 685 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_DESC_ITEM_KEY, 1, 686 buf, buf_size, NULL); 687 if (ret < 0) 688 return ret; 689 if (ret != true_size) 690 return -EIO; 691 692 return true_size; 693 } 694 695 /* 696 * fsverity op that reads and caches a merkle tree page. 697 * 698 * @inode: inode to read a merkle tree page for 699 * @index: page index relative to the start of the merkle tree 700 * @num_ra_pages: number of pages to readahead. Optional, we ignore it 701 * 702 * The Merkle tree is stored in the filesystem btree, but its pages are cached 703 * with a logical position past EOF in the inode's mapping. 704 * 705 * Returns the page we read, or an ERR_PTR on error. 706 */ 707 static struct page *btrfs_read_merkle_tree_page(struct inode *inode, 708 pgoff_t index, 709 unsigned long num_ra_pages) 710 { 711 struct page *page; 712 u64 off = (u64)index << PAGE_SHIFT; 713 loff_t merkle_pos = merkle_file_pos(inode); 714 int ret; 715 716 if (merkle_pos < 0) 717 return ERR_PTR(merkle_pos); 718 if (merkle_pos > inode->i_sb->s_maxbytes - off - PAGE_SIZE) 719 return ERR_PTR(-EFBIG); 720 index += merkle_pos >> PAGE_SHIFT; 721 again: 722 page = find_get_page_flags(inode->i_mapping, index, FGP_ACCESSED); 723 if (page) { 724 if (PageUptodate(page)) 725 return page; 726 727 lock_page(page); 728 /* 729 * We only insert uptodate pages, so !Uptodate has to be 730 * an error 731 */ 732 if (!PageUptodate(page)) { 733 unlock_page(page); 734 put_page(page); 735 return ERR_PTR(-EIO); 736 } 737 unlock_page(page); 738 return page; 739 } 740 741 page = __page_cache_alloc(mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS)); 742 if (!page) 743 return ERR_PTR(-ENOMEM); 744 745 /* 746 * Merkle item keys are indexed from byte 0 in the merkle tree. 747 * They have the form: 748 * 749 * [ inode objectid, BTRFS_MERKLE_ITEM_KEY, offset in bytes ] 750 */ 751 ret = read_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, off, 752 page_address(page), PAGE_SIZE, page); 753 if (ret < 0) { 754 put_page(page); 755 return ERR_PTR(ret); 756 } 757 if (ret < PAGE_SIZE) 758 memzero_page(page, ret, PAGE_SIZE - ret); 759 760 SetPageUptodate(page); 761 ret = add_to_page_cache_lru(page, inode->i_mapping, index, GFP_NOFS); 762 763 if (!ret) { 764 /* Inserted and ready for fsverity */ 765 unlock_page(page); 766 } else { 767 put_page(page); 768 /* Did someone race us into inserting this page? */ 769 if (ret == -EEXIST) 770 goto again; 771 page = ERR_PTR(ret); 772 } 773 return page; 774 } 775 776 /* 777 * fsverity op that writes a Merkle tree block into the btree. 778 * 779 * @inode: inode to write a Merkle tree block for 780 * @buf: Merkle tree data block to write 781 * @index: index of the block in the Merkle tree 782 * @log_blocksize: log base 2 of the Merkle tree block size 783 * 784 * Note that the block size could be different from the page size, so it is not 785 * safe to assume that index is a page index. 786 * 787 * Returns 0 on success or negative error code on failure 788 */ 789 static int btrfs_write_merkle_tree_block(struct inode *inode, const void *buf, 790 u64 index, int log_blocksize) 791 { 792 u64 off = index << log_blocksize; 793 u64 len = 1ULL << log_blocksize; 794 loff_t merkle_pos = merkle_file_pos(inode); 795 796 if (merkle_pos < 0) 797 return merkle_pos; 798 if (merkle_pos > inode->i_sb->s_maxbytes - off - len) 799 return -EFBIG; 800 801 return write_key_bytes(BTRFS_I(inode), BTRFS_VERITY_MERKLE_ITEM_KEY, 802 off, buf, len); 803 } 804 805 const struct fsverity_operations btrfs_verityops = { 806 .begin_enable_verity = btrfs_begin_enable_verity, 807 .end_enable_verity = btrfs_end_enable_verity, 808 .get_verity_descriptor = btrfs_get_verity_descriptor, 809 .read_merkle_tree_page = btrfs_read_merkle_tree_page, 810 .write_merkle_tree_block = btrfs_write_merkle_tree_block, 811 }; 812