xref: /openbmc/linux/fs/btrfs/relocation.c (revision fa538f7cf05aab61cd91e01c160d4a09c81b8ffe)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28 
29 /*
30  * Relocation overview
31  *
32  * [What does relocation do]
33  *
34  * The objective of relocation is to relocate all extents of the target block
35  * group to other block groups.
36  * This is utilized by resize (shrink only), profile converting, compacting
37  * space, or balance routine to spread chunks over devices.
38  *
39  * 		Before		|		After
40  * ------------------------------------------------------------------
41  *  BG A: 10 data extents	| BG A: deleted
42  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
43  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
44  *
45  * [How does relocation work]
46  *
47  * 1.   Mark the target block group read-only
48  *      New extents won't be allocated from the target block group.
49  *
50  * 2.1  Record each extent in the target block group
51  *      To build a proper map of extents to be relocated.
52  *
53  * 2.2  Build data reloc tree and reloc trees
54  *      Data reloc tree will contain an inode, recording all newly relocated
55  *      data extents.
56  *      There will be only one data reloc tree for one data block group.
57  *
58  *      Reloc tree will be a special snapshot of its source tree, containing
59  *      relocated tree blocks.
60  *      Each tree referring to a tree block in target block group will get its
61  *      reloc tree built.
62  *
63  * 2.3  Swap source tree with its corresponding reloc tree
64  *      Each involved tree only refers to new extents after swap.
65  *
66  * 3.   Cleanup reloc trees and data reloc tree.
67  *      As old extents in the target block group are still referenced by reloc
68  *      trees, we need to clean them up before really freeing the target block
69  *      group.
70  *
71  * The main complexity is in steps 2.2 and 2.3.
72  *
73  * The entry point of relocation is relocate_block_group() function.
74  */
75 
76 #define RELOCATION_RESERVED_NODES	256
77 /*
78  * map address of tree root to tree
79  */
80 struct mapping_node {
81 	struct {
82 		struct rb_node rb_node;
83 		u64 bytenr;
84 	}; /* Use rb_simle_node for search/insert */
85 	void *data;
86 };
87 
88 struct mapping_tree {
89 	struct rb_root rb_root;
90 	spinlock_t lock;
91 };
92 
93 /*
94  * present a tree block to process
95  */
96 struct tree_block {
97 	struct {
98 		struct rb_node rb_node;
99 		u64 bytenr;
100 	}; /* Use rb_simple_node for search/insert */
101 	struct btrfs_key key;
102 	unsigned int level:8;
103 	unsigned int key_ready:1;
104 };
105 
106 #define MAX_EXTENTS 128
107 
108 struct file_extent_cluster {
109 	u64 start;
110 	u64 end;
111 	u64 boundary[MAX_EXTENTS];
112 	unsigned int nr;
113 };
114 
115 struct reloc_control {
116 	/* block group to relocate */
117 	struct btrfs_block_group *block_group;
118 	/* extent tree */
119 	struct btrfs_root *extent_root;
120 	/* inode for moving data */
121 	struct inode *data_inode;
122 
123 	struct btrfs_block_rsv *block_rsv;
124 
125 	struct btrfs_backref_cache backref_cache;
126 
127 	struct file_extent_cluster cluster;
128 	/* tree blocks have been processed */
129 	struct extent_io_tree processed_blocks;
130 	/* map start of tree root to corresponding reloc tree */
131 	struct mapping_tree reloc_root_tree;
132 	/* list of reloc trees */
133 	struct list_head reloc_roots;
134 	/* list of subvolume trees that get relocated */
135 	struct list_head dirty_subvol_roots;
136 	/* size of metadata reservation for merging reloc trees */
137 	u64 merging_rsv_size;
138 	/* size of relocated tree nodes */
139 	u64 nodes_relocated;
140 	/* reserved size for block group relocation*/
141 	u64 reserved_bytes;
142 
143 	u64 search_start;
144 	u64 extents_found;
145 
146 	unsigned int stage:8;
147 	unsigned int create_reloc_tree:1;
148 	unsigned int merge_reloc_tree:1;
149 	unsigned int found_file_extent:1;
150 };
151 
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS	0
154 #define UPDATE_DATA_PTRS	1
155 
156 static void mark_block_processed(struct reloc_control *rc,
157 				 struct btrfs_backref_node *node)
158 {
159 	u32 blocksize;
160 
161 	if (node->level == 0 ||
162 	    in_range(node->bytenr, rc->block_group->start,
163 		     rc->block_group->length)) {
164 		blocksize = rc->extent_root->fs_info->nodesize;
165 		set_extent_bits(&rc->processed_blocks, node->bytenr,
166 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 	}
168 	node->processed = 1;
169 }
170 
171 
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 	tree->rb_root = RB_ROOT;
175 	spin_lock_init(&tree->lock);
176 }
177 
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
181 static struct btrfs_backref_node *walk_up_backref(
182 		struct btrfs_backref_node *node,
183 		struct btrfs_backref_edge *edges[], int *index)
184 {
185 	struct btrfs_backref_edge *edge;
186 	int idx = *index;
187 
188 	while (!list_empty(&node->upper)) {
189 		edge = list_entry(node->upper.next,
190 				  struct btrfs_backref_edge, list[LOWER]);
191 		edges[idx++] = edge;
192 		node = edge->node[UPPER];
193 	}
194 	BUG_ON(node->detached);
195 	*index = idx;
196 	return node;
197 }
198 
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
202 static struct btrfs_backref_node *walk_down_backref(
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	struct btrfs_backref_node *lower;
207 	int idx = *index;
208 
209 	while (idx > 0) {
210 		edge = edges[idx - 1];
211 		lower = edge->node[LOWER];
212 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 			idx--;
214 			continue;
215 		}
216 		edge = list_entry(edge->list[LOWER].next,
217 				  struct btrfs_backref_edge, list[LOWER]);
218 		edges[idx - 1] = edge;
219 		*index = idx;
220 		return edge->node[UPPER];
221 	}
222 	*index = 0;
223 	return NULL;
224 }
225 
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 				struct btrfs_backref_node *node, u64 bytenr)
228 {
229 	struct rb_node *rb_node;
230 	rb_erase(&node->rb_node, &cache->rb_root);
231 	node->bytenr = bytenr;
232 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 	if (rb_node)
234 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236 
237 /*
238  * update backref cache after a transaction commit
239  */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 				struct btrfs_backref_cache *cache)
242 {
243 	struct btrfs_backref_node *node;
244 	int level = 0;
245 
246 	if (cache->last_trans == 0) {
247 		cache->last_trans = trans->transid;
248 		return 0;
249 	}
250 
251 	if (cache->last_trans == trans->transid)
252 		return 0;
253 
254 	/*
255 	 * detached nodes are used to avoid unnecessary backref
256 	 * lookup. transaction commit changes the extent tree.
257 	 * so the detached nodes are no longer useful.
258 	 */
259 	while (!list_empty(&cache->detached)) {
260 		node = list_entry(cache->detached.next,
261 				  struct btrfs_backref_node, list);
262 		btrfs_backref_cleanup_node(cache, node);
263 	}
264 
265 	while (!list_empty(&cache->changed)) {
266 		node = list_entry(cache->changed.next,
267 				  struct btrfs_backref_node, list);
268 		list_del_init(&node->list);
269 		BUG_ON(node->pending);
270 		update_backref_node(cache, node, node->new_bytenr);
271 	}
272 
273 	/*
274 	 * some nodes can be left in the pending list if there were
275 	 * errors during processing the pending nodes.
276 	 */
277 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 		list_for_each_entry(node, &cache->pending[level], list) {
279 			BUG_ON(!node->pending);
280 			if (node->bytenr == node->new_bytenr)
281 				continue;
282 			update_backref_node(cache, node, node->new_bytenr);
283 		}
284 	}
285 
286 	cache->last_trans = 0;
287 	return 1;
288 }
289 
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 	/*
293 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 	 * btrfs_update_reloc_root. We need to see the updated bit before
295 	 * trying to access reloc_root
296 	 */
297 	smp_rmb();
298 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 		return true;
300 	return false;
301 }
302 
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 	if (reloc_root_is_dead(root))
314 		return false;
315 	if (!root->reloc_root)
316 		return false;
317 	return true;
318 }
319 
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 	struct btrfs_root *reloc_root;
323 
324 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 		return 0;
326 
327 	/* This root has been merged with its reloc tree, we can ignore it */
328 	if (reloc_root_is_dead(root))
329 		return 1;
330 
331 	reloc_root = root->reloc_root;
332 	if (!reloc_root)
333 		return 0;
334 
335 	if (btrfs_header_generation(reloc_root->commit_root) ==
336 	    root->fs_info->running_transaction->transid)
337 		return 0;
338 	/*
339 	 * if there is reloc tree and it was created in previous
340 	 * transaction backref lookup can find the reloc tree,
341 	 * so backref node for the fs tree root is useless for
342 	 * relocation.
343 	 */
344 	return 1;
345 }
346 
347 /*
348  * find reloc tree by address of tree root
349  */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 	struct reloc_control *rc = fs_info->reloc_ctl;
353 	struct rb_node *rb_node;
354 	struct mapping_node *node;
355 	struct btrfs_root *root = NULL;
356 
357 	ASSERT(rc);
358 	spin_lock(&rc->reloc_root_tree.lock);
359 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 	if (rb_node) {
361 		node = rb_entry(rb_node, struct mapping_node, rb_node);
362 		root = (struct btrfs_root *)node->data;
363 	}
364 	spin_unlock(&rc->reloc_root_tree.lock);
365 	return btrfs_grab_root(root);
366 }
367 
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382 				 struct btrfs_backref_node *node)
383 {
384 	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 	struct list_head *useless_node = &cache->useless_node;
386 	bool ret = false;
387 
388 	while (!list_empty(useless_node)) {
389 		struct btrfs_backref_node *cur;
390 
391 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 				 list);
393 		list_del_init(&cur->list);
394 
395 		/* Only tree root nodes can be added to @useless_nodes */
396 		ASSERT(list_empty(&cur->upper));
397 
398 		if (cur == node)
399 			ret = true;
400 
401 		/* The node is the lowest node */
402 		if (cur->lowest) {
403 			list_del_init(&cur->lower);
404 			cur->lowest = 0;
405 		}
406 
407 		/* Cleanup the lower edges */
408 		while (!list_empty(&cur->lower)) {
409 			struct btrfs_backref_edge *edge;
410 			struct btrfs_backref_node *lower;
411 
412 			edge = list_entry(cur->lower.next,
413 					struct btrfs_backref_edge, list[UPPER]);
414 			list_del(&edge->list[UPPER]);
415 			list_del(&edge->list[LOWER]);
416 			lower = edge->node[LOWER];
417 			btrfs_backref_free_edge(cache, edge);
418 
419 			/* Child node is also orphan, queue for cleanup */
420 			if (list_empty(&lower->upper))
421 				list_add(&lower->list, useless_node);
422 		}
423 		/* Mark this block processed for relocation */
424 		mark_block_processed(rc, cur);
425 
426 		/*
427 		 * Backref nodes for tree leaves are deleted from the cache.
428 		 * Backref nodes for upper level tree blocks are left in the
429 		 * cache to avoid unnecessary backref lookup.
430 		 */
431 		if (cur->level > 0) {
432 			list_add(&cur->list, &cache->detached);
433 			cur->detached = 1;
434 		} else {
435 			rb_erase(&cur->rb_node, &cache->rb_root);
436 			btrfs_backref_free_node(cache, cur);
437 		}
438 	}
439 	return ret;
440 }
441 
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 			struct reloc_control *rc, struct btrfs_key *node_key,
458 			int level, u64 bytenr)
459 {
460 	struct btrfs_backref_iter *iter;
461 	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 	/* For searching parent of TREE_BLOCK_REF */
463 	struct btrfs_path *path;
464 	struct btrfs_backref_node *cur;
465 	struct btrfs_backref_node *node = NULL;
466 	struct btrfs_backref_edge *edge;
467 	int ret;
468 	int err = 0;
469 
470 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 	if (!iter)
472 		return ERR_PTR(-ENOMEM);
473 	path = btrfs_alloc_path();
474 	if (!path) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 	if (!node) {
481 		err = -ENOMEM;
482 		goto out;
483 	}
484 
485 	node->lowest = 1;
486 	cur = node;
487 
488 	/* Breadth-first search to build backref cache */
489 	do {
490 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 						  cur);
492 		if (ret < 0) {
493 			err = ret;
494 			goto out;
495 		}
496 		edge = list_first_entry_or_null(&cache->pending_edge,
497 				struct btrfs_backref_edge, list[UPPER]);
498 		/*
499 		 * The pending list isn't empty, take the first block to
500 		 * process
501 		 */
502 		if (edge) {
503 			list_del_init(&edge->list[UPPER]);
504 			cur = edge->node[UPPER];
505 		}
506 	} while (edge);
507 
508 	/* Finish the upper linkage of newly added edges/nodes */
509 	ret = btrfs_backref_finish_upper_links(cache, node);
510 	if (ret < 0) {
511 		err = ret;
512 		goto out;
513 	}
514 
515 	if (handle_useless_nodes(rc, node))
516 		node = NULL;
517 out:
518 	btrfs_backref_iter_free(iter);
519 	btrfs_free_path(path);
520 	if (err) {
521 		btrfs_backref_error_cleanup(cache, node);
522 		return ERR_PTR(err);
523 	}
524 	ASSERT(!node || !node->detached);
525 	ASSERT(list_empty(&cache->useless_node) &&
526 	       list_empty(&cache->pending_edge));
527 	return node;
528 }
529 
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 			      struct reloc_control *rc,
537 			      struct btrfs_root *src,
538 			      struct btrfs_root *dest)
539 {
540 	struct btrfs_root *reloc_root = src->reloc_root;
541 	struct btrfs_backref_cache *cache = &rc->backref_cache;
542 	struct btrfs_backref_node *node = NULL;
543 	struct btrfs_backref_node *new_node;
544 	struct btrfs_backref_edge *edge;
545 	struct btrfs_backref_edge *new_edge;
546 	struct rb_node *rb_node;
547 
548 	if (cache->last_trans > 0)
549 		update_backref_cache(trans, cache);
550 
551 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 	if (rb_node) {
553 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 		if (node->detached)
555 			node = NULL;
556 		else
557 			BUG_ON(node->new_bytenr != reloc_root->node->start);
558 	}
559 
560 	if (!node) {
561 		rb_node = rb_simple_search(&cache->rb_root,
562 					   reloc_root->commit_root->start);
563 		if (rb_node) {
564 			node = rb_entry(rb_node, struct btrfs_backref_node,
565 					rb_node);
566 			BUG_ON(node->detached);
567 		}
568 	}
569 
570 	if (!node)
571 		return 0;
572 
573 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 					    node->level);
575 	if (!new_node)
576 		return -ENOMEM;
577 
578 	new_node->lowest = node->lowest;
579 	new_node->checked = 1;
580 	new_node->root = btrfs_grab_root(dest);
581 	ASSERT(new_node->root);
582 
583 	if (!node->lowest) {
584 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 			new_edge = btrfs_backref_alloc_edge(cache);
586 			if (!new_edge)
587 				goto fail;
588 
589 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 						new_node, LINK_UPPER);
591 		}
592 	} else {
593 		list_add_tail(&new_node->lower, &cache->leaves);
594 	}
595 
596 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 				   &new_node->rb_node);
598 	if (rb_node)
599 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 
601 	if (!new_node->lowest) {
602 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 			list_add_tail(&new_edge->list[LOWER],
604 				      &new_edge->node[LOWER]->upper);
605 		}
606 	}
607 	return 0;
608 fail:
609 	while (!list_empty(&new_node->lower)) {
610 		new_edge = list_entry(new_node->lower.next,
611 				      struct btrfs_backref_edge, list[UPPER]);
612 		list_del(&new_edge->list[UPPER]);
613 		btrfs_backref_free_edge(cache, new_edge);
614 	}
615 	btrfs_backref_free_node(cache, new_node);
616 	return -ENOMEM;
617 }
618 
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	struct rb_node *rb_node;
626 	struct mapping_node *node;
627 	struct reloc_control *rc = fs_info->reloc_ctl;
628 
629 	node = kmalloc(sizeof(*node), GFP_NOFS);
630 	if (!node)
631 		return -ENOMEM;
632 
633 	node->bytenr = root->commit_root->start;
634 	node->data = root;
635 
636 	spin_lock(&rc->reloc_root_tree.lock);
637 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 				   node->bytenr, &node->rb_node);
639 	spin_unlock(&rc->reloc_root_tree.lock);
640 	if (rb_node) {
641 		btrfs_panic(fs_info, -EEXIST,
642 			    "Duplicate root found for start=%llu while inserting into relocation tree",
643 			    node->bytenr);
644 	}
645 
646 	list_add_tail(&root->root_list, &rc->reloc_roots);
647 	return 0;
648 }
649 
650 /*
651  * helper to delete the 'address of tree root -> reloc tree'
652  * mapping
653  */
654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct rb_node *rb_node;
658 	struct mapping_node *node = NULL;
659 	struct reloc_control *rc = fs_info->reloc_ctl;
660 	bool put_ref = false;
661 
662 	if (rc && root->node) {
663 		spin_lock(&rc->reloc_root_tree.lock);
664 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 					   root->commit_root->start);
666 		if (rb_node) {
667 			node = rb_entry(rb_node, struct mapping_node, rb_node);
668 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 			RB_CLEAR_NODE(&node->rb_node);
670 		}
671 		spin_unlock(&rc->reloc_root_tree.lock);
672 		if (!node)
673 			return;
674 		BUG_ON((struct btrfs_root *)node->data != root);
675 	}
676 
677 	/*
678 	 * We only put the reloc root here if it's on the list.  There's a lot
679 	 * of places where the pattern is to splice the rc->reloc_roots, process
680 	 * the reloc roots, and then add the reloc root back onto
681 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
682 	 * list we don't want the reference being dropped, because the guy
683 	 * messing with the list is in charge of the reference.
684 	 */
685 	spin_lock(&fs_info->trans_lock);
686 	if (!list_empty(&root->root_list)) {
687 		put_ref = true;
688 		list_del_init(&root->root_list);
689 	}
690 	spin_unlock(&fs_info->trans_lock);
691 	if (put_ref)
692 		btrfs_put_root(root);
693 	kfree(node);
694 }
695 
696 /*
697  * helper to update the 'address of tree root -> reloc tree'
698  * mapping
699  */
700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 	struct btrfs_fs_info *fs_info = root->fs_info;
703 	struct rb_node *rb_node;
704 	struct mapping_node *node = NULL;
705 	struct reloc_control *rc = fs_info->reloc_ctl;
706 
707 	spin_lock(&rc->reloc_root_tree.lock);
708 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 				   root->commit_root->start);
710 	if (rb_node) {
711 		node = rb_entry(rb_node, struct mapping_node, rb_node);
712 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 	}
714 	spin_unlock(&rc->reloc_root_tree.lock);
715 
716 	if (!node)
717 		return 0;
718 	BUG_ON((struct btrfs_root *)node->data != root);
719 
720 	spin_lock(&rc->reloc_root_tree.lock);
721 	node->bytenr = root->node->start;
722 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 				   node->bytenr, &node->rb_node);
724 	spin_unlock(&rc->reloc_root_tree.lock);
725 	if (rb_node)
726 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 	return 0;
728 }
729 
730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 					struct btrfs_root *root, u64 objectid)
732 {
733 	struct btrfs_fs_info *fs_info = root->fs_info;
734 	struct btrfs_root *reloc_root;
735 	struct extent_buffer *eb;
736 	struct btrfs_root_item *root_item;
737 	struct btrfs_key root_key;
738 	int ret;
739 
740 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 	BUG_ON(!root_item);
742 
743 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 	root_key.type = BTRFS_ROOT_ITEM_KEY;
745 	root_key.offset = objectid;
746 
747 	if (root->root_key.objectid == objectid) {
748 		u64 commit_root_gen;
749 
750 		/* called by btrfs_init_reloc_root */
751 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 				      BTRFS_TREE_RELOC_OBJECTID);
753 		BUG_ON(ret);
754 		/*
755 		 * Set the last_snapshot field to the generation of the commit
756 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 		 * correctly (returns true) when the relocation root is created
758 		 * either inside the critical section of a transaction commit
759 		 * (through transaction.c:qgroup_account_snapshot()) and when
760 		 * it's created before the transaction commit is started.
761 		 */
762 		commit_root_gen = btrfs_header_generation(root->commit_root);
763 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 	} else {
765 		/*
766 		 * called by btrfs_reloc_post_snapshot_hook.
767 		 * the source tree is a reloc tree, all tree blocks
768 		 * modified after it was created have RELOC flag
769 		 * set in their headers. so it's OK to not update
770 		 * the 'last_snapshot'.
771 		 */
772 		ret = btrfs_copy_root(trans, root, root->node, &eb,
773 				      BTRFS_TREE_RELOC_OBJECTID);
774 		BUG_ON(ret);
775 	}
776 
777 	memcpy(root_item, &root->root_item, sizeof(*root_item));
778 	btrfs_set_root_bytenr(root_item, eb->start);
779 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
780 	btrfs_set_root_generation(root_item, trans->transid);
781 
782 	if (root->root_key.objectid == objectid) {
783 		btrfs_set_root_refs(root_item, 0);
784 		memset(&root_item->drop_progress, 0,
785 		       sizeof(struct btrfs_disk_key));
786 		root_item->drop_level = 0;
787 	}
788 
789 	btrfs_tree_unlock(eb);
790 	free_extent_buffer(eb);
791 
792 	ret = btrfs_insert_root(trans, fs_info->tree_root,
793 				&root_key, root_item);
794 	BUG_ON(ret);
795 	kfree(root_item);
796 
797 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798 	BUG_ON(IS_ERR(reloc_root));
799 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800 	reloc_root->last_trans = trans->transid;
801 	return reloc_root;
802 }
803 
804 /*
805  * create reloc tree for a given fs tree. reloc tree is just a
806  * snapshot of the fs tree with special root objectid.
807  *
808  * The reloc_root comes out of here with two references, one for
809  * root->reloc_root, and another for being on the rc->reloc_roots list.
810  */
811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
812 			  struct btrfs_root *root)
813 {
814 	struct btrfs_fs_info *fs_info = root->fs_info;
815 	struct btrfs_root *reloc_root;
816 	struct reloc_control *rc = fs_info->reloc_ctl;
817 	struct btrfs_block_rsv *rsv;
818 	int clear_rsv = 0;
819 	int ret;
820 
821 	if (!rc)
822 		return 0;
823 
824 	/*
825 	 * The subvolume has reloc tree but the swap is finished, no need to
826 	 * create/update the dead reloc tree
827 	 */
828 	if (reloc_root_is_dead(root))
829 		return 0;
830 
831 	/*
832 	 * This is subtle but important.  We do not do
833 	 * record_root_in_transaction for reloc roots, instead we record their
834 	 * corresponding fs root, and then here we update the last trans for the
835 	 * reloc root.  This means that we have to do this for the entire life
836 	 * of the reloc root, regardless of which stage of the relocation we are
837 	 * in.
838 	 */
839 	if (root->reloc_root) {
840 		reloc_root = root->reloc_root;
841 		reloc_root->last_trans = trans->transid;
842 		return 0;
843 	}
844 
845 	/*
846 	 * We are merging reloc roots, we do not need new reloc trees.  Also
847 	 * reloc trees never need their own reloc tree.
848 	 */
849 	if (!rc->create_reloc_tree ||
850 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
851 		return 0;
852 
853 	if (!trans->reloc_reserved) {
854 		rsv = trans->block_rsv;
855 		trans->block_rsv = rc->block_rsv;
856 		clear_rsv = 1;
857 	}
858 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
859 	if (clear_rsv)
860 		trans->block_rsv = rsv;
861 
862 	ret = __add_reloc_root(reloc_root);
863 	BUG_ON(ret < 0);
864 	root->reloc_root = btrfs_grab_root(reloc_root);
865 	return 0;
866 }
867 
868 /*
869  * update root item of reloc tree
870  */
871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
872 			    struct btrfs_root *root)
873 {
874 	struct btrfs_fs_info *fs_info = root->fs_info;
875 	struct btrfs_root *reloc_root;
876 	struct btrfs_root_item *root_item;
877 	int ret;
878 
879 	if (!have_reloc_root(root))
880 		goto out;
881 
882 	reloc_root = root->reloc_root;
883 	root_item = &reloc_root->root_item;
884 
885 	/*
886 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 	 * the root.  We have the ref for root->reloc_root, but just in case
888 	 * hold it while we update the reloc root.
889 	 */
890 	btrfs_grab_root(reloc_root);
891 
892 	/* root->reloc_root will stay until current relocation finished */
893 	if (fs_info->reloc_ctl->merge_reloc_tree &&
894 	    btrfs_root_refs(root_item) == 0) {
895 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 		/*
897 		 * Mark the tree as dead before we change reloc_root so
898 		 * have_reloc_root will not touch it from now on.
899 		 */
900 		smp_wmb();
901 		__del_reloc_root(reloc_root);
902 	}
903 
904 	if (reloc_root->commit_root != reloc_root->node) {
905 		__update_reloc_root(reloc_root);
906 		btrfs_set_root_node(root_item, reloc_root->node);
907 		free_extent_buffer(reloc_root->commit_root);
908 		reloc_root->commit_root = btrfs_root_node(reloc_root);
909 	}
910 
911 	ret = btrfs_update_root(trans, fs_info->tree_root,
912 				&reloc_root->root_key, root_item);
913 	BUG_ON(ret);
914 	btrfs_put_root(reloc_root);
915 out:
916 	return 0;
917 }
918 
919 /*
920  * helper to find first cached inode with inode number >= objectid
921  * in a subvolume
922  */
923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924 {
925 	struct rb_node *node;
926 	struct rb_node *prev;
927 	struct btrfs_inode *entry;
928 	struct inode *inode;
929 
930 	spin_lock(&root->inode_lock);
931 again:
932 	node = root->inode_tree.rb_node;
933 	prev = NULL;
934 	while (node) {
935 		prev = node;
936 		entry = rb_entry(node, struct btrfs_inode, rb_node);
937 
938 		if (objectid < btrfs_ino(entry))
939 			node = node->rb_left;
940 		else if (objectid > btrfs_ino(entry))
941 			node = node->rb_right;
942 		else
943 			break;
944 	}
945 	if (!node) {
946 		while (prev) {
947 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
948 			if (objectid <= btrfs_ino(entry)) {
949 				node = prev;
950 				break;
951 			}
952 			prev = rb_next(prev);
953 		}
954 	}
955 	while (node) {
956 		entry = rb_entry(node, struct btrfs_inode, rb_node);
957 		inode = igrab(&entry->vfs_inode);
958 		if (inode) {
959 			spin_unlock(&root->inode_lock);
960 			return inode;
961 		}
962 
963 		objectid = btrfs_ino(entry) + 1;
964 		if (cond_resched_lock(&root->inode_lock))
965 			goto again;
966 
967 		node = rb_next(node);
968 	}
969 	spin_unlock(&root->inode_lock);
970 	return NULL;
971 }
972 
973 /*
974  * get new location of data
975  */
976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
977 			    u64 bytenr, u64 num_bytes)
978 {
979 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
980 	struct btrfs_path *path;
981 	struct btrfs_file_extent_item *fi;
982 	struct extent_buffer *leaf;
983 	int ret;
984 
985 	path = btrfs_alloc_path();
986 	if (!path)
987 		return -ENOMEM;
988 
989 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 	ret = btrfs_lookup_file_extent(NULL, root, path,
991 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 	if (ret < 0)
993 		goto out;
994 	if (ret > 0) {
995 		ret = -ENOENT;
996 		goto out;
997 	}
998 
999 	leaf = path->nodes[0];
1000 	fi = btrfs_item_ptr(leaf, path->slots[0],
1001 			    struct btrfs_file_extent_item);
1002 
1003 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004 	       btrfs_file_extent_compression(leaf, fi) ||
1005 	       btrfs_file_extent_encryption(leaf, fi) ||
1006 	       btrfs_file_extent_other_encoding(leaf, fi));
1007 
1008 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009 		ret = -EINVAL;
1010 		goto out;
1011 	}
1012 
1013 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 	ret = 0;
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * update file extent items in the tree leaf to point to
1022  * the new locations.
1023  */
1024 static noinline_for_stack
1025 int replace_file_extents(struct btrfs_trans_handle *trans,
1026 			 struct reloc_control *rc,
1027 			 struct btrfs_root *root,
1028 			 struct extent_buffer *leaf)
1029 {
1030 	struct btrfs_fs_info *fs_info = root->fs_info;
1031 	struct btrfs_key key;
1032 	struct btrfs_file_extent_item *fi;
1033 	struct inode *inode = NULL;
1034 	u64 parent;
1035 	u64 bytenr;
1036 	u64 new_bytenr = 0;
1037 	u64 num_bytes;
1038 	u64 end;
1039 	u32 nritems;
1040 	u32 i;
1041 	int ret = 0;
1042 	int first = 1;
1043 	int dirty = 0;
1044 
1045 	if (rc->stage != UPDATE_DATA_PTRS)
1046 		return 0;
1047 
1048 	/* reloc trees always use full backref */
1049 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 		parent = leaf->start;
1051 	else
1052 		parent = 0;
1053 
1054 	nritems = btrfs_header_nritems(leaf);
1055 	for (i = 0; i < nritems; i++) {
1056 		struct btrfs_ref ref = { 0 };
1057 
1058 		cond_resched();
1059 		btrfs_item_key_to_cpu(leaf, &key, i);
1060 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061 			continue;
1062 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063 		if (btrfs_file_extent_type(leaf, fi) ==
1064 		    BTRFS_FILE_EXTENT_INLINE)
1065 			continue;
1066 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068 		if (bytenr == 0)
1069 			continue;
1070 		if (!in_range(bytenr, rc->block_group->start,
1071 			      rc->block_group->length))
1072 			continue;
1073 
1074 		/*
1075 		 * if we are modifying block in fs tree, wait for readpage
1076 		 * to complete and drop the extent cache
1077 		 */
1078 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079 			if (first) {
1080 				inode = find_next_inode(root, key.objectid);
1081 				first = 0;
1082 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083 				btrfs_add_delayed_iput(inode);
1084 				inode = find_next_inode(root, key.objectid);
1085 			}
1086 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 				end = key.offset +
1088 				      btrfs_file_extent_num_bytes(leaf, fi);
1089 				WARN_ON(!IS_ALIGNED(key.offset,
1090 						    fs_info->sectorsize));
1091 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 				end--;
1093 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094 						      key.offset, end);
1095 				if (!ret)
1096 					continue;
1097 
1098 				btrfs_drop_extent_cache(BTRFS_I(inode),
1099 						key.offset,	end, 1);
1100 				unlock_extent(&BTRFS_I(inode)->io_tree,
1101 					      key.offset, end);
1102 			}
1103 		}
1104 
1105 		ret = get_new_location(rc->data_inode, &new_bytenr,
1106 				       bytenr, num_bytes);
1107 		if (ret) {
1108 			/*
1109 			 * Don't have to abort since we've not changed anything
1110 			 * in the file extent yet.
1111 			 */
1112 			break;
1113 		}
1114 
1115 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116 		dirty = 1;
1117 
1118 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120 				       num_bytes, parent);
1121 		ref.real_root = root->root_key.objectid;
1122 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123 				    key.objectid, key.offset);
1124 		ret = btrfs_inc_extent_ref(trans, &ref);
1125 		if (ret) {
1126 			btrfs_abort_transaction(trans, ret);
1127 			break;
1128 		}
1129 
1130 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131 				       num_bytes, parent);
1132 		ref.real_root = root->root_key.objectid;
1133 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134 				    key.objectid, key.offset);
1135 		ret = btrfs_free_extent(trans, &ref);
1136 		if (ret) {
1137 			btrfs_abort_transaction(trans, ret);
1138 			break;
1139 		}
1140 	}
1141 	if (dirty)
1142 		btrfs_mark_buffer_dirty(leaf);
1143 	if (inode)
1144 		btrfs_add_delayed_iput(inode);
1145 	return ret;
1146 }
1147 
1148 static noinline_for_stack
1149 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150 		     struct btrfs_path *path, int level)
1151 {
1152 	struct btrfs_disk_key key1;
1153 	struct btrfs_disk_key key2;
1154 	btrfs_node_key(eb, &key1, slot);
1155 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156 	return memcmp(&key1, &key2, sizeof(key1));
1157 }
1158 
1159 /*
1160  * try to replace tree blocks in fs tree with the new blocks
1161  * in reloc tree. tree blocks haven't been modified since the
1162  * reloc tree was create can be replaced.
1163  *
1164  * if a block was replaced, level of the block + 1 is returned.
1165  * if no block got replaced, 0 is returned. if there are other
1166  * errors, a negative error number is returned.
1167  */
1168 static noinline_for_stack
1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 		 struct btrfs_root *dest, struct btrfs_root *src,
1171 		 struct btrfs_path *path, struct btrfs_key *next_key,
1172 		 int lowest_level, int max_level)
1173 {
1174 	struct btrfs_fs_info *fs_info = dest->fs_info;
1175 	struct extent_buffer *eb;
1176 	struct extent_buffer *parent;
1177 	struct btrfs_ref ref = { 0 };
1178 	struct btrfs_key key;
1179 	u64 old_bytenr;
1180 	u64 new_bytenr;
1181 	u64 old_ptr_gen;
1182 	u64 new_ptr_gen;
1183 	u64 last_snapshot;
1184 	u32 blocksize;
1185 	int cow = 0;
1186 	int level;
1187 	int ret;
1188 	int slot;
1189 
1190 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192 
1193 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194 again:
1195 	slot = path->slots[lowest_level];
1196 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197 
1198 	eb = btrfs_lock_root_node(dest);
1199 	btrfs_set_lock_blocking_write(eb);
1200 	level = btrfs_header_level(eb);
1201 
1202 	if (level < lowest_level) {
1203 		btrfs_tree_unlock(eb);
1204 		free_extent_buffer(eb);
1205 		return 0;
1206 	}
1207 
1208 	if (cow) {
1209 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1210 				      BTRFS_NESTING_COW);
1211 		BUG_ON(ret);
1212 	}
1213 	btrfs_set_lock_blocking_write(eb);
1214 
1215 	if (next_key) {
1216 		next_key->objectid = (u64)-1;
1217 		next_key->type = (u8)-1;
1218 		next_key->offset = (u64)-1;
1219 	}
1220 
1221 	parent = eb;
1222 	while (1) {
1223 		struct btrfs_key first_key;
1224 
1225 		level = btrfs_header_level(parent);
1226 		BUG_ON(level < lowest_level);
1227 
1228 		ret = btrfs_bin_search(parent, &key, &slot);
1229 		if (ret < 0)
1230 			break;
1231 		if (ret && slot > 0)
1232 			slot--;
1233 
1234 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1235 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1236 
1237 		old_bytenr = btrfs_node_blockptr(parent, slot);
1238 		blocksize = fs_info->nodesize;
1239 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1240 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1241 
1242 		if (level <= max_level) {
1243 			eb = path->nodes[level];
1244 			new_bytenr = btrfs_node_blockptr(eb,
1245 							path->slots[level]);
1246 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1247 							path->slots[level]);
1248 		} else {
1249 			new_bytenr = 0;
1250 			new_ptr_gen = 0;
1251 		}
1252 
1253 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1254 			ret = level;
1255 			break;
1256 		}
1257 
1258 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1259 		    memcmp_node_keys(parent, slot, path, level)) {
1260 			if (level <= lowest_level) {
1261 				ret = 0;
1262 				break;
1263 			}
1264 
1265 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1266 					     level - 1, &first_key);
1267 			if (IS_ERR(eb)) {
1268 				ret = PTR_ERR(eb);
1269 				break;
1270 			} else if (!extent_buffer_uptodate(eb)) {
1271 				ret = -EIO;
1272 				free_extent_buffer(eb);
1273 				break;
1274 			}
1275 			btrfs_tree_lock(eb);
1276 			if (cow) {
1277 				ret = btrfs_cow_block(trans, dest, eb, parent,
1278 						      slot, &eb,
1279 						      BTRFS_NESTING_COW);
1280 				BUG_ON(ret);
1281 			}
1282 			btrfs_set_lock_blocking_write(eb);
1283 
1284 			btrfs_tree_unlock(parent);
1285 			free_extent_buffer(parent);
1286 
1287 			parent = eb;
1288 			continue;
1289 		}
1290 
1291 		if (!cow) {
1292 			btrfs_tree_unlock(parent);
1293 			free_extent_buffer(parent);
1294 			cow = 1;
1295 			goto again;
1296 		}
1297 
1298 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1299 				      path->slots[level]);
1300 		btrfs_release_path(path);
1301 
1302 		path->lowest_level = level;
1303 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1304 		path->lowest_level = 0;
1305 		BUG_ON(ret);
1306 
1307 		/*
1308 		 * Info qgroup to trace both subtrees.
1309 		 *
1310 		 * We must trace both trees.
1311 		 * 1) Tree reloc subtree
1312 		 *    If not traced, we will leak data numbers
1313 		 * 2) Fs subtree
1314 		 *    If not traced, we will double count old data
1315 		 *
1316 		 * We don't scan the subtree right now, but only record
1317 		 * the swapped tree blocks.
1318 		 * The real subtree rescan is delayed until we have new
1319 		 * CoW on the subtree root node before transaction commit.
1320 		 */
1321 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1322 				rc->block_group, parent, slot,
1323 				path->nodes[level], path->slots[level],
1324 				last_snapshot);
1325 		if (ret < 0)
1326 			break;
1327 		/*
1328 		 * swap blocks in fs tree and reloc tree.
1329 		 */
1330 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1331 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1332 		btrfs_mark_buffer_dirty(parent);
1333 
1334 		btrfs_set_node_blockptr(path->nodes[level],
1335 					path->slots[level], old_bytenr);
1336 		btrfs_set_node_ptr_generation(path->nodes[level],
1337 					      path->slots[level], old_ptr_gen);
1338 		btrfs_mark_buffer_dirty(path->nodes[level]);
1339 
1340 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1341 				       blocksize, path->nodes[level]->start);
1342 		ref.skip_qgroup = true;
1343 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1344 		ret = btrfs_inc_extent_ref(trans, &ref);
1345 		BUG_ON(ret);
1346 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1347 				       blocksize, 0);
1348 		ref.skip_qgroup = true;
1349 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1350 		ret = btrfs_inc_extent_ref(trans, &ref);
1351 		BUG_ON(ret);
1352 
1353 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1354 				       blocksize, path->nodes[level]->start);
1355 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1356 		ref.skip_qgroup = true;
1357 		ret = btrfs_free_extent(trans, &ref);
1358 		BUG_ON(ret);
1359 
1360 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1361 				       blocksize, 0);
1362 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1363 		ref.skip_qgroup = true;
1364 		ret = btrfs_free_extent(trans, &ref);
1365 		BUG_ON(ret);
1366 
1367 		btrfs_unlock_up_safe(path, 0);
1368 
1369 		ret = level;
1370 		break;
1371 	}
1372 	btrfs_tree_unlock(parent);
1373 	free_extent_buffer(parent);
1374 	return ret;
1375 }
1376 
1377 /*
1378  * helper to find next relocated block in reloc tree
1379  */
1380 static noinline_for_stack
1381 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1382 		       int *level)
1383 {
1384 	struct extent_buffer *eb;
1385 	int i;
1386 	u64 last_snapshot;
1387 	u32 nritems;
1388 
1389 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1390 
1391 	for (i = 0; i < *level; i++) {
1392 		free_extent_buffer(path->nodes[i]);
1393 		path->nodes[i] = NULL;
1394 	}
1395 
1396 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1397 		eb = path->nodes[i];
1398 		nritems = btrfs_header_nritems(eb);
1399 		while (path->slots[i] + 1 < nritems) {
1400 			path->slots[i]++;
1401 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1402 			    last_snapshot)
1403 				continue;
1404 
1405 			*level = i;
1406 			return 0;
1407 		}
1408 		free_extent_buffer(path->nodes[i]);
1409 		path->nodes[i] = NULL;
1410 	}
1411 	return 1;
1412 }
1413 
1414 /*
1415  * walk down reloc tree to find relocated block of lowest level
1416  */
1417 static noinline_for_stack
1418 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1419 			 int *level)
1420 {
1421 	struct btrfs_fs_info *fs_info = root->fs_info;
1422 	struct extent_buffer *eb = NULL;
1423 	int i;
1424 	u64 bytenr;
1425 	u64 ptr_gen = 0;
1426 	u64 last_snapshot;
1427 	u32 nritems;
1428 
1429 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1430 
1431 	for (i = *level; i > 0; i--) {
1432 		struct btrfs_key first_key;
1433 
1434 		eb = path->nodes[i];
1435 		nritems = btrfs_header_nritems(eb);
1436 		while (path->slots[i] < nritems) {
1437 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1438 			if (ptr_gen > last_snapshot)
1439 				break;
1440 			path->slots[i]++;
1441 		}
1442 		if (path->slots[i] >= nritems) {
1443 			if (i == *level)
1444 				break;
1445 			*level = i + 1;
1446 			return 0;
1447 		}
1448 		if (i == 1) {
1449 			*level = i;
1450 			return 0;
1451 		}
1452 
1453 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1454 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1455 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1456 				     &first_key);
1457 		if (IS_ERR(eb)) {
1458 			return PTR_ERR(eb);
1459 		} else if (!extent_buffer_uptodate(eb)) {
1460 			free_extent_buffer(eb);
1461 			return -EIO;
1462 		}
1463 		BUG_ON(btrfs_header_level(eb) != i - 1);
1464 		path->nodes[i - 1] = eb;
1465 		path->slots[i - 1] = 0;
1466 	}
1467 	return 1;
1468 }
1469 
1470 /*
1471  * invalidate extent cache for file extents whose key in range of
1472  * [min_key, max_key)
1473  */
1474 static int invalidate_extent_cache(struct btrfs_root *root,
1475 				   struct btrfs_key *min_key,
1476 				   struct btrfs_key *max_key)
1477 {
1478 	struct btrfs_fs_info *fs_info = root->fs_info;
1479 	struct inode *inode = NULL;
1480 	u64 objectid;
1481 	u64 start, end;
1482 	u64 ino;
1483 
1484 	objectid = min_key->objectid;
1485 	while (1) {
1486 		cond_resched();
1487 		iput(inode);
1488 
1489 		if (objectid > max_key->objectid)
1490 			break;
1491 
1492 		inode = find_next_inode(root, objectid);
1493 		if (!inode)
1494 			break;
1495 		ino = btrfs_ino(BTRFS_I(inode));
1496 
1497 		if (ino > max_key->objectid) {
1498 			iput(inode);
1499 			break;
1500 		}
1501 
1502 		objectid = ino + 1;
1503 		if (!S_ISREG(inode->i_mode))
1504 			continue;
1505 
1506 		if (unlikely(min_key->objectid == ino)) {
1507 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1508 				continue;
1509 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1510 				start = 0;
1511 			else {
1512 				start = min_key->offset;
1513 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1514 			}
1515 		} else {
1516 			start = 0;
1517 		}
1518 
1519 		if (unlikely(max_key->objectid == ino)) {
1520 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1521 				continue;
1522 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1523 				end = (u64)-1;
1524 			} else {
1525 				if (max_key->offset == 0)
1526 					continue;
1527 				end = max_key->offset;
1528 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1529 				end--;
1530 			}
1531 		} else {
1532 			end = (u64)-1;
1533 		}
1534 
1535 		/* the lock_extent waits for readpage to complete */
1536 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1538 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1539 	}
1540 	return 0;
1541 }
1542 
1543 static int find_next_key(struct btrfs_path *path, int level,
1544 			 struct btrfs_key *key)
1545 
1546 {
1547 	while (level < BTRFS_MAX_LEVEL) {
1548 		if (!path->nodes[level])
1549 			break;
1550 		if (path->slots[level] + 1 <
1551 		    btrfs_header_nritems(path->nodes[level])) {
1552 			btrfs_node_key_to_cpu(path->nodes[level], key,
1553 					      path->slots[level] + 1);
1554 			return 0;
1555 		}
1556 		level++;
1557 	}
1558 	return 1;
1559 }
1560 
1561 /*
1562  * Insert current subvolume into reloc_control::dirty_subvol_roots
1563  */
1564 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1565 				struct reloc_control *rc,
1566 				struct btrfs_root *root)
1567 {
1568 	struct btrfs_root *reloc_root = root->reloc_root;
1569 	struct btrfs_root_item *reloc_root_item;
1570 
1571 	/* @root must be a subvolume tree root with a valid reloc tree */
1572 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1573 	ASSERT(reloc_root);
1574 
1575 	reloc_root_item = &reloc_root->root_item;
1576 	memset(&reloc_root_item->drop_progress, 0,
1577 		sizeof(reloc_root_item->drop_progress));
1578 	reloc_root_item->drop_level = 0;
1579 	btrfs_set_root_refs(reloc_root_item, 0);
1580 	btrfs_update_reloc_root(trans, root);
1581 
1582 	if (list_empty(&root->reloc_dirty_list)) {
1583 		btrfs_grab_root(root);
1584 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1585 	}
1586 }
1587 
1588 static int clean_dirty_subvols(struct reloc_control *rc)
1589 {
1590 	struct btrfs_root *root;
1591 	struct btrfs_root *next;
1592 	int ret = 0;
1593 	int ret2;
1594 
1595 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1596 				 reloc_dirty_list) {
1597 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1598 			/* Merged subvolume, cleanup its reloc root */
1599 			struct btrfs_root *reloc_root = root->reloc_root;
1600 
1601 			list_del_init(&root->reloc_dirty_list);
1602 			root->reloc_root = NULL;
1603 			/*
1604 			 * Need barrier to ensure clear_bit() only happens after
1605 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1606 			 */
1607 			smp_wmb();
1608 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1609 			if (reloc_root) {
1610 				/*
1611 				 * btrfs_drop_snapshot drops our ref we hold for
1612 				 * ->reloc_root.  If it fails however we must
1613 				 * drop the ref ourselves.
1614 				 */
1615 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1616 				if (ret2 < 0) {
1617 					btrfs_put_root(reloc_root);
1618 					if (!ret)
1619 						ret = ret2;
1620 				}
1621 			}
1622 			btrfs_put_root(root);
1623 		} else {
1624 			/* Orphan reloc tree, just clean it up */
1625 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1626 			if (ret2 < 0) {
1627 				btrfs_put_root(root);
1628 				if (!ret)
1629 					ret = ret2;
1630 			}
1631 		}
1632 	}
1633 	return ret;
1634 }
1635 
1636 /*
1637  * merge the relocated tree blocks in reloc tree with corresponding
1638  * fs tree.
1639  */
1640 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1641 					       struct btrfs_root *root)
1642 {
1643 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1644 	struct btrfs_key key;
1645 	struct btrfs_key next_key;
1646 	struct btrfs_trans_handle *trans = NULL;
1647 	struct btrfs_root *reloc_root;
1648 	struct btrfs_root_item *root_item;
1649 	struct btrfs_path *path;
1650 	struct extent_buffer *leaf;
1651 	int level;
1652 	int max_level;
1653 	int replaced = 0;
1654 	int ret;
1655 	int err = 0;
1656 	u32 min_reserved;
1657 
1658 	path = btrfs_alloc_path();
1659 	if (!path)
1660 		return -ENOMEM;
1661 	path->reada = READA_FORWARD;
1662 
1663 	reloc_root = root->reloc_root;
1664 	root_item = &reloc_root->root_item;
1665 
1666 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1667 		level = btrfs_root_level(root_item);
1668 		atomic_inc(&reloc_root->node->refs);
1669 		path->nodes[level] = reloc_root->node;
1670 		path->slots[level] = 0;
1671 	} else {
1672 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1673 
1674 		level = root_item->drop_level;
1675 		BUG_ON(level == 0);
1676 		path->lowest_level = level;
1677 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1678 		path->lowest_level = 0;
1679 		if (ret < 0) {
1680 			btrfs_free_path(path);
1681 			return ret;
1682 		}
1683 
1684 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1685 				      path->slots[level]);
1686 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1687 
1688 		btrfs_unlock_up_safe(path, 0);
1689 	}
1690 
1691 	/*
1692 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1693 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1694 	 * block COW, we COW at most from level 1 to root level for each tree.
1695 	 *
1696 	 * Thus the needed metadata size is at most root_level * nodesize,
1697 	 * and * 2 since we have two trees to COW.
1698 	 */
1699 	min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2;
1700 	memset(&next_key, 0, sizeof(next_key));
1701 
1702 	while (1) {
1703 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1704 					     BTRFS_RESERVE_FLUSH_LIMIT);
1705 		if (ret) {
1706 			err = ret;
1707 			goto out;
1708 		}
1709 		trans = btrfs_start_transaction(root, 0);
1710 		if (IS_ERR(trans)) {
1711 			err = PTR_ERR(trans);
1712 			trans = NULL;
1713 			goto out;
1714 		}
1715 
1716 		/*
1717 		 * At this point we no longer have a reloc_control, so we can't
1718 		 * depend on btrfs_init_reloc_root to update our last_trans.
1719 		 *
1720 		 * But that's ok, we started the trans handle on our
1721 		 * corresponding fs_root, which means it's been added to the
1722 		 * dirty list.  At commit time we'll still call
1723 		 * btrfs_update_reloc_root() and update our root item
1724 		 * appropriately.
1725 		 */
1726 		reloc_root->last_trans = trans->transid;
1727 		trans->block_rsv = rc->block_rsv;
1728 
1729 		replaced = 0;
1730 		max_level = level;
1731 
1732 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1733 		if (ret < 0) {
1734 			err = ret;
1735 			goto out;
1736 		}
1737 		if (ret > 0)
1738 			break;
1739 
1740 		if (!find_next_key(path, level, &key) &&
1741 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1742 			ret = 0;
1743 		} else {
1744 			ret = replace_path(trans, rc, root, reloc_root, path,
1745 					   &next_key, level, max_level);
1746 		}
1747 		if (ret < 0) {
1748 			err = ret;
1749 			goto out;
1750 		}
1751 
1752 		if (ret > 0) {
1753 			level = ret;
1754 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1755 					      path->slots[level]);
1756 			replaced = 1;
1757 		}
1758 
1759 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1760 		if (ret > 0)
1761 			break;
1762 
1763 		BUG_ON(level == 0);
1764 		/*
1765 		 * save the merging progress in the drop_progress.
1766 		 * this is OK since root refs == 1 in this case.
1767 		 */
1768 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1769 			       path->slots[level]);
1770 		root_item->drop_level = level;
1771 
1772 		btrfs_end_transaction_throttle(trans);
1773 		trans = NULL;
1774 
1775 		btrfs_btree_balance_dirty(fs_info);
1776 
1777 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1778 			invalidate_extent_cache(root, &key, &next_key);
1779 	}
1780 
1781 	/*
1782 	 * handle the case only one block in the fs tree need to be
1783 	 * relocated and the block is tree root.
1784 	 */
1785 	leaf = btrfs_lock_root_node(root);
1786 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1787 			      BTRFS_NESTING_COW);
1788 	btrfs_tree_unlock(leaf);
1789 	free_extent_buffer(leaf);
1790 	if (ret < 0)
1791 		err = ret;
1792 out:
1793 	btrfs_free_path(path);
1794 
1795 	if (err == 0)
1796 		insert_dirty_subvol(trans, rc, root);
1797 
1798 	if (trans)
1799 		btrfs_end_transaction_throttle(trans);
1800 
1801 	btrfs_btree_balance_dirty(fs_info);
1802 
1803 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1804 		invalidate_extent_cache(root, &key, &next_key);
1805 
1806 	return err;
1807 }
1808 
1809 static noinline_for_stack
1810 int prepare_to_merge(struct reloc_control *rc, int err)
1811 {
1812 	struct btrfs_root *root = rc->extent_root;
1813 	struct btrfs_fs_info *fs_info = root->fs_info;
1814 	struct btrfs_root *reloc_root;
1815 	struct btrfs_trans_handle *trans;
1816 	LIST_HEAD(reloc_roots);
1817 	u64 num_bytes = 0;
1818 	int ret;
1819 
1820 	mutex_lock(&fs_info->reloc_mutex);
1821 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1822 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1823 	mutex_unlock(&fs_info->reloc_mutex);
1824 
1825 again:
1826 	if (!err) {
1827 		num_bytes = rc->merging_rsv_size;
1828 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1829 					  BTRFS_RESERVE_FLUSH_ALL);
1830 		if (ret)
1831 			err = ret;
1832 	}
1833 
1834 	trans = btrfs_join_transaction(rc->extent_root);
1835 	if (IS_ERR(trans)) {
1836 		if (!err)
1837 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1838 						num_bytes, NULL);
1839 		return PTR_ERR(trans);
1840 	}
1841 
1842 	if (!err) {
1843 		if (num_bytes != rc->merging_rsv_size) {
1844 			btrfs_end_transaction(trans);
1845 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1846 						num_bytes, NULL);
1847 			goto again;
1848 		}
1849 	}
1850 
1851 	rc->merge_reloc_tree = 1;
1852 
1853 	while (!list_empty(&rc->reloc_roots)) {
1854 		reloc_root = list_entry(rc->reloc_roots.next,
1855 					struct btrfs_root, root_list);
1856 		list_del_init(&reloc_root->root_list);
1857 
1858 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1859 				false);
1860 		BUG_ON(IS_ERR(root));
1861 		BUG_ON(root->reloc_root != reloc_root);
1862 
1863 		/*
1864 		 * set reference count to 1, so btrfs_recover_relocation
1865 		 * knows it should resumes merging
1866 		 */
1867 		if (!err)
1868 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1869 		btrfs_update_reloc_root(trans, root);
1870 
1871 		list_add(&reloc_root->root_list, &reloc_roots);
1872 		btrfs_put_root(root);
1873 	}
1874 
1875 	list_splice(&reloc_roots, &rc->reloc_roots);
1876 
1877 	if (!err)
1878 		btrfs_commit_transaction(trans);
1879 	else
1880 		btrfs_end_transaction(trans);
1881 	return err;
1882 }
1883 
1884 static noinline_for_stack
1885 void free_reloc_roots(struct list_head *list)
1886 {
1887 	struct btrfs_root *reloc_root, *tmp;
1888 
1889 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1890 		__del_reloc_root(reloc_root);
1891 }
1892 
1893 static noinline_for_stack
1894 void merge_reloc_roots(struct reloc_control *rc)
1895 {
1896 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1897 	struct btrfs_root *root;
1898 	struct btrfs_root *reloc_root;
1899 	LIST_HEAD(reloc_roots);
1900 	int found = 0;
1901 	int ret = 0;
1902 again:
1903 	root = rc->extent_root;
1904 
1905 	/*
1906 	 * this serializes us with btrfs_record_root_in_transaction,
1907 	 * we have to make sure nobody is in the middle of
1908 	 * adding their roots to the list while we are
1909 	 * doing this splice
1910 	 */
1911 	mutex_lock(&fs_info->reloc_mutex);
1912 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1913 	mutex_unlock(&fs_info->reloc_mutex);
1914 
1915 	while (!list_empty(&reloc_roots)) {
1916 		found = 1;
1917 		reloc_root = list_entry(reloc_roots.next,
1918 					struct btrfs_root, root_list);
1919 
1920 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1921 					 false);
1922 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1923 			BUG_ON(IS_ERR(root));
1924 			BUG_ON(root->reloc_root != reloc_root);
1925 			ret = merge_reloc_root(rc, root);
1926 			btrfs_put_root(root);
1927 			if (ret) {
1928 				if (list_empty(&reloc_root->root_list))
1929 					list_add_tail(&reloc_root->root_list,
1930 						      &reloc_roots);
1931 				goto out;
1932 			}
1933 		} else {
1934 			if (!IS_ERR(root)) {
1935 				if (root->reloc_root == reloc_root) {
1936 					root->reloc_root = NULL;
1937 					btrfs_put_root(reloc_root);
1938 				}
1939 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1940 					  &root->state);
1941 				btrfs_put_root(root);
1942 			}
1943 
1944 			list_del_init(&reloc_root->root_list);
1945 			/* Don't forget to queue this reloc root for cleanup */
1946 			list_add_tail(&reloc_root->reloc_dirty_list,
1947 				      &rc->dirty_subvol_roots);
1948 		}
1949 	}
1950 
1951 	if (found) {
1952 		found = 0;
1953 		goto again;
1954 	}
1955 out:
1956 	if (ret) {
1957 		btrfs_handle_fs_error(fs_info, ret, NULL);
1958 		free_reloc_roots(&reloc_roots);
1959 
1960 		/* new reloc root may be added */
1961 		mutex_lock(&fs_info->reloc_mutex);
1962 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1963 		mutex_unlock(&fs_info->reloc_mutex);
1964 		free_reloc_roots(&reloc_roots);
1965 	}
1966 
1967 	/*
1968 	 * We used to have
1969 	 *
1970 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1971 	 *
1972 	 * here, but it's wrong.  If we fail to start the transaction in
1973 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1974 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1975 	 * fine because we're bailing here, and we hold a reference on the root
1976 	 * for the list that holds it, so these roots will be cleaned up when we
1977 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1978 	 * will be cleaned up on unmount.
1979 	 *
1980 	 * The remaining nodes will be cleaned up by free_reloc_control.
1981 	 */
1982 }
1983 
1984 static void free_block_list(struct rb_root *blocks)
1985 {
1986 	struct tree_block *block;
1987 	struct rb_node *rb_node;
1988 	while ((rb_node = rb_first(blocks))) {
1989 		block = rb_entry(rb_node, struct tree_block, rb_node);
1990 		rb_erase(rb_node, blocks);
1991 		kfree(block);
1992 	}
1993 }
1994 
1995 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1996 				      struct btrfs_root *reloc_root)
1997 {
1998 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1999 	struct btrfs_root *root;
2000 	int ret;
2001 
2002 	if (reloc_root->last_trans == trans->transid)
2003 		return 0;
2004 
2005 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2006 	BUG_ON(IS_ERR(root));
2007 	BUG_ON(root->reloc_root != reloc_root);
2008 	ret = btrfs_record_root_in_trans(trans, root);
2009 	btrfs_put_root(root);
2010 
2011 	return ret;
2012 }
2013 
2014 static noinline_for_stack
2015 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2016 				     struct reloc_control *rc,
2017 				     struct btrfs_backref_node *node,
2018 				     struct btrfs_backref_edge *edges[])
2019 {
2020 	struct btrfs_backref_node *next;
2021 	struct btrfs_root *root;
2022 	int index = 0;
2023 
2024 	next = node;
2025 	while (1) {
2026 		cond_resched();
2027 		next = walk_up_backref(next, edges, &index);
2028 		root = next->root;
2029 		BUG_ON(!root);
2030 		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2031 
2032 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2033 			record_reloc_root_in_trans(trans, root);
2034 			break;
2035 		}
2036 
2037 		btrfs_record_root_in_trans(trans, root);
2038 		root = root->reloc_root;
2039 
2040 		if (next->new_bytenr != root->node->start) {
2041 			BUG_ON(next->new_bytenr);
2042 			BUG_ON(!list_empty(&next->list));
2043 			next->new_bytenr = root->node->start;
2044 			btrfs_put_root(next->root);
2045 			next->root = btrfs_grab_root(root);
2046 			ASSERT(next->root);
2047 			list_add_tail(&next->list,
2048 				      &rc->backref_cache.changed);
2049 			mark_block_processed(rc, next);
2050 			break;
2051 		}
2052 
2053 		WARN_ON(1);
2054 		root = NULL;
2055 		next = walk_down_backref(edges, &index);
2056 		if (!next || next->level <= node->level)
2057 			break;
2058 	}
2059 	if (!root)
2060 		return NULL;
2061 
2062 	next = node;
2063 	/* setup backref node path for btrfs_reloc_cow_block */
2064 	while (1) {
2065 		rc->backref_cache.path[next->level] = next;
2066 		if (--index < 0)
2067 			break;
2068 		next = edges[index]->node[UPPER];
2069 	}
2070 	return root;
2071 }
2072 
2073 /*
2074  * Select a tree root for relocation.
2075  *
2076  * Return NULL if the block is not shareable. We should use do_relocation() in
2077  * this case.
2078  *
2079  * Return a tree root pointer if the block is shareable.
2080  * Return -ENOENT if the block is root of reloc tree.
2081  */
2082 static noinline_for_stack
2083 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2084 {
2085 	struct btrfs_backref_node *next;
2086 	struct btrfs_root *root;
2087 	struct btrfs_root *fs_root = NULL;
2088 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2089 	int index = 0;
2090 
2091 	next = node;
2092 	while (1) {
2093 		cond_resched();
2094 		next = walk_up_backref(next, edges, &index);
2095 		root = next->root;
2096 		BUG_ON(!root);
2097 
2098 		/* No other choice for non-shareable tree */
2099 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2100 			return root;
2101 
2102 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2103 			fs_root = root;
2104 
2105 		if (next != node)
2106 			return NULL;
2107 
2108 		next = walk_down_backref(edges, &index);
2109 		if (!next || next->level <= node->level)
2110 			break;
2111 	}
2112 
2113 	if (!fs_root)
2114 		return ERR_PTR(-ENOENT);
2115 	return fs_root;
2116 }
2117 
2118 static noinline_for_stack
2119 u64 calcu_metadata_size(struct reloc_control *rc,
2120 			struct btrfs_backref_node *node, int reserve)
2121 {
2122 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2123 	struct btrfs_backref_node *next = node;
2124 	struct btrfs_backref_edge *edge;
2125 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2126 	u64 num_bytes = 0;
2127 	int index = 0;
2128 
2129 	BUG_ON(reserve && node->processed);
2130 
2131 	while (next) {
2132 		cond_resched();
2133 		while (1) {
2134 			if (next->processed && (reserve || next != node))
2135 				break;
2136 
2137 			num_bytes += fs_info->nodesize;
2138 
2139 			if (list_empty(&next->upper))
2140 				break;
2141 
2142 			edge = list_entry(next->upper.next,
2143 					struct btrfs_backref_edge, list[LOWER]);
2144 			edges[index++] = edge;
2145 			next = edge->node[UPPER];
2146 		}
2147 		next = walk_down_backref(edges, &index);
2148 	}
2149 	return num_bytes;
2150 }
2151 
2152 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2153 				  struct reloc_control *rc,
2154 				  struct btrfs_backref_node *node)
2155 {
2156 	struct btrfs_root *root = rc->extent_root;
2157 	struct btrfs_fs_info *fs_info = root->fs_info;
2158 	u64 num_bytes;
2159 	int ret;
2160 	u64 tmp;
2161 
2162 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2163 
2164 	trans->block_rsv = rc->block_rsv;
2165 	rc->reserved_bytes += num_bytes;
2166 
2167 	/*
2168 	 * We are under a transaction here so we can only do limited flushing.
2169 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2170 	 * transaction and try to refill when we can flush all the things.
2171 	 */
2172 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2173 				BTRFS_RESERVE_FLUSH_LIMIT);
2174 	if (ret) {
2175 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2176 		while (tmp <= rc->reserved_bytes)
2177 			tmp <<= 1;
2178 		/*
2179 		 * only one thread can access block_rsv at this point,
2180 		 * so we don't need hold lock to protect block_rsv.
2181 		 * we expand more reservation size here to allow enough
2182 		 * space for relocation and we will return earlier in
2183 		 * enospc case.
2184 		 */
2185 		rc->block_rsv->size = tmp + fs_info->nodesize *
2186 				      RELOCATION_RESERVED_NODES;
2187 		return -EAGAIN;
2188 	}
2189 
2190 	return 0;
2191 }
2192 
2193 /*
2194  * relocate a block tree, and then update pointers in upper level
2195  * blocks that reference the block to point to the new location.
2196  *
2197  * if called by link_to_upper, the block has already been relocated.
2198  * in that case this function just updates pointers.
2199  */
2200 static int do_relocation(struct btrfs_trans_handle *trans,
2201 			 struct reloc_control *rc,
2202 			 struct btrfs_backref_node *node,
2203 			 struct btrfs_key *key,
2204 			 struct btrfs_path *path, int lowest)
2205 {
2206 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2207 	struct btrfs_backref_node *upper;
2208 	struct btrfs_backref_edge *edge;
2209 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2210 	struct btrfs_root *root;
2211 	struct extent_buffer *eb;
2212 	u32 blocksize;
2213 	u64 bytenr;
2214 	u64 generation;
2215 	int slot;
2216 	int ret;
2217 	int err = 0;
2218 
2219 	BUG_ON(lowest && node->eb);
2220 
2221 	path->lowest_level = node->level + 1;
2222 	rc->backref_cache.path[node->level] = node;
2223 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2224 		struct btrfs_key first_key;
2225 		struct btrfs_ref ref = { 0 };
2226 
2227 		cond_resched();
2228 
2229 		upper = edge->node[UPPER];
2230 		root = select_reloc_root(trans, rc, upper, edges);
2231 		BUG_ON(!root);
2232 
2233 		if (upper->eb && !upper->locked) {
2234 			if (!lowest) {
2235 				ret = btrfs_bin_search(upper->eb, key, &slot);
2236 				if (ret < 0) {
2237 					err = ret;
2238 					goto next;
2239 				}
2240 				BUG_ON(ret);
2241 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2242 				if (node->eb->start == bytenr)
2243 					goto next;
2244 			}
2245 			btrfs_backref_drop_node_buffer(upper);
2246 		}
2247 
2248 		if (!upper->eb) {
2249 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2250 			if (ret) {
2251 				if (ret < 0)
2252 					err = ret;
2253 				else
2254 					err = -ENOENT;
2255 
2256 				btrfs_release_path(path);
2257 				break;
2258 			}
2259 
2260 			if (!upper->eb) {
2261 				upper->eb = path->nodes[upper->level];
2262 				path->nodes[upper->level] = NULL;
2263 			} else {
2264 				BUG_ON(upper->eb != path->nodes[upper->level]);
2265 			}
2266 
2267 			upper->locked = 1;
2268 			path->locks[upper->level] = 0;
2269 
2270 			slot = path->slots[upper->level];
2271 			btrfs_release_path(path);
2272 		} else {
2273 			ret = btrfs_bin_search(upper->eb, key, &slot);
2274 			if (ret < 0) {
2275 				err = ret;
2276 				goto next;
2277 			}
2278 			BUG_ON(ret);
2279 		}
2280 
2281 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2282 		if (lowest) {
2283 			if (bytenr != node->bytenr) {
2284 				btrfs_err(root->fs_info,
2285 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2286 					  bytenr, node->bytenr, slot,
2287 					  upper->eb->start);
2288 				err = -EIO;
2289 				goto next;
2290 			}
2291 		} else {
2292 			if (node->eb->start == bytenr)
2293 				goto next;
2294 		}
2295 
2296 		blocksize = root->fs_info->nodesize;
2297 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2298 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2299 		eb = read_tree_block(fs_info, bytenr, generation,
2300 				     upper->level - 1, &first_key);
2301 		if (IS_ERR(eb)) {
2302 			err = PTR_ERR(eb);
2303 			goto next;
2304 		} else if (!extent_buffer_uptodate(eb)) {
2305 			free_extent_buffer(eb);
2306 			err = -EIO;
2307 			goto next;
2308 		}
2309 		btrfs_tree_lock(eb);
2310 		btrfs_set_lock_blocking_write(eb);
2311 
2312 		if (!node->eb) {
2313 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2314 					      slot, &eb, BTRFS_NESTING_COW);
2315 			btrfs_tree_unlock(eb);
2316 			free_extent_buffer(eb);
2317 			if (ret < 0) {
2318 				err = ret;
2319 				goto next;
2320 			}
2321 			BUG_ON(node->eb != eb);
2322 		} else {
2323 			btrfs_set_node_blockptr(upper->eb, slot,
2324 						node->eb->start);
2325 			btrfs_set_node_ptr_generation(upper->eb, slot,
2326 						      trans->transid);
2327 			btrfs_mark_buffer_dirty(upper->eb);
2328 
2329 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2330 					       node->eb->start, blocksize,
2331 					       upper->eb->start);
2332 			ref.real_root = root->root_key.objectid;
2333 			btrfs_init_tree_ref(&ref, node->level,
2334 					    btrfs_header_owner(upper->eb));
2335 			ret = btrfs_inc_extent_ref(trans, &ref);
2336 			BUG_ON(ret);
2337 
2338 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2339 			BUG_ON(ret);
2340 		}
2341 next:
2342 		if (!upper->pending)
2343 			btrfs_backref_drop_node_buffer(upper);
2344 		else
2345 			btrfs_backref_unlock_node_buffer(upper);
2346 		if (err)
2347 			break;
2348 	}
2349 
2350 	if (!err && node->pending) {
2351 		btrfs_backref_drop_node_buffer(node);
2352 		list_move_tail(&node->list, &rc->backref_cache.changed);
2353 		node->pending = 0;
2354 	}
2355 
2356 	path->lowest_level = 0;
2357 	BUG_ON(err == -ENOSPC);
2358 	return err;
2359 }
2360 
2361 static int link_to_upper(struct btrfs_trans_handle *trans,
2362 			 struct reloc_control *rc,
2363 			 struct btrfs_backref_node *node,
2364 			 struct btrfs_path *path)
2365 {
2366 	struct btrfs_key key;
2367 
2368 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2369 	return do_relocation(trans, rc, node, &key, path, 0);
2370 }
2371 
2372 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2373 				struct reloc_control *rc,
2374 				struct btrfs_path *path, int err)
2375 {
2376 	LIST_HEAD(list);
2377 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2378 	struct btrfs_backref_node *node;
2379 	int level;
2380 	int ret;
2381 
2382 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2383 		while (!list_empty(&cache->pending[level])) {
2384 			node = list_entry(cache->pending[level].next,
2385 					  struct btrfs_backref_node, list);
2386 			list_move_tail(&node->list, &list);
2387 			BUG_ON(!node->pending);
2388 
2389 			if (!err) {
2390 				ret = link_to_upper(trans, rc, node, path);
2391 				if (ret < 0)
2392 					err = ret;
2393 			}
2394 		}
2395 		list_splice_init(&list, &cache->pending[level]);
2396 	}
2397 	return err;
2398 }
2399 
2400 /*
2401  * mark a block and all blocks directly/indirectly reference the block
2402  * as processed.
2403  */
2404 static void update_processed_blocks(struct reloc_control *rc,
2405 				    struct btrfs_backref_node *node)
2406 {
2407 	struct btrfs_backref_node *next = node;
2408 	struct btrfs_backref_edge *edge;
2409 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410 	int index = 0;
2411 
2412 	while (next) {
2413 		cond_resched();
2414 		while (1) {
2415 			if (next->processed)
2416 				break;
2417 
2418 			mark_block_processed(rc, next);
2419 
2420 			if (list_empty(&next->upper))
2421 				break;
2422 
2423 			edge = list_entry(next->upper.next,
2424 					struct btrfs_backref_edge, list[LOWER]);
2425 			edges[index++] = edge;
2426 			next = edge->node[UPPER];
2427 		}
2428 		next = walk_down_backref(edges, &index);
2429 	}
2430 }
2431 
2432 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2433 {
2434 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2435 
2436 	if (test_range_bit(&rc->processed_blocks, bytenr,
2437 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2438 		return 1;
2439 	return 0;
2440 }
2441 
2442 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2443 			      struct tree_block *block)
2444 {
2445 	struct extent_buffer *eb;
2446 
2447 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2448 			     block->level, NULL);
2449 	if (IS_ERR(eb)) {
2450 		return PTR_ERR(eb);
2451 	} else if (!extent_buffer_uptodate(eb)) {
2452 		free_extent_buffer(eb);
2453 		return -EIO;
2454 	}
2455 	if (block->level == 0)
2456 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2457 	else
2458 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2459 	free_extent_buffer(eb);
2460 	block->key_ready = 1;
2461 	return 0;
2462 }
2463 
2464 /*
2465  * helper function to relocate a tree block
2466  */
2467 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2468 				struct reloc_control *rc,
2469 				struct btrfs_backref_node *node,
2470 				struct btrfs_key *key,
2471 				struct btrfs_path *path)
2472 {
2473 	struct btrfs_root *root;
2474 	int ret = 0;
2475 
2476 	if (!node)
2477 		return 0;
2478 
2479 	/*
2480 	 * If we fail here we want to drop our backref_node because we are going
2481 	 * to start over and regenerate the tree for it.
2482 	 */
2483 	ret = reserve_metadata_space(trans, rc, node);
2484 	if (ret)
2485 		goto out;
2486 
2487 	BUG_ON(node->processed);
2488 	root = select_one_root(node);
2489 	if (root == ERR_PTR(-ENOENT)) {
2490 		update_processed_blocks(rc, node);
2491 		goto out;
2492 	}
2493 
2494 	if (root) {
2495 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2496 			BUG_ON(node->new_bytenr);
2497 			BUG_ON(!list_empty(&node->list));
2498 			btrfs_record_root_in_trans(trans, root);
2499 			root = root->reloc_root;
2500 			node->new_bytenr = root->node->start;
2501 			btrfs_put_root(node->root);
2502 			node->root = btrfs_grab_root(root);
2503 			ASSERT(node->root);
2504 			list_add_tail(&node->list, &rc->backref_cache.changed);
2505 		} else {
2506 			path->lowest_level = node->level;
2507 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2508 			btrfs_release_path(path);
2509 			if (ret > 0)
2510 				ret = 0;
2511 		}
2512 		if (!ret)
2513 			update_processed_blocks(rc, node);
2514 	} else {
2515 		ret = do_relocation(trans, rc, node, key, path, 1);
2516 	}
2517 out:
2518 	if (ret || node->level == 0 || node->cowonly)
2519 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2520 	return ret;
2521 }
2522 
2523 /*
2524  * relocate a list of blocks
2525  */
2526 static noinline_for_stack
2527 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2528 			 struct reloc_control *rc, struct rb_root *blocks)
2529 {
2530 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2531 	struct btrfs_backref_node *node;
2532 	struct btrfs_path *path;
2533 	struct tree_block *block;
2534 	struct tree_block *next;
2535 	int ret;
2536 	int err = 0;
2537 
2538 	path = btrfs_alloc_path();
2539 	if (!path) {
2540 		err = -ENOMEM;
2541 		goto out_free_blocks;
2542 	}
2543 
2544 	/* Kick in readahead for tree blocks with missing keys */
2545 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2546 		if (!block->key_ready)
2547 			readahead_tree_block(fs_info, block->bytenr);
2548 	}
2549 
2550 	/* Get first keys */
2551 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2552 		if (!block->key_ready) {
2553 			err = get_tree_block_key(fs_info, block);
2554 			if (err)
2555 				goto out_free_path;
2556 		}
2557 	}
2558 
2559 	/* Do tree relocation */
2560 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2561 		node = build_backref_tree(rc, &block->key,
2562 					  block->level, block->bytenr);
2563 		if (IS_ERR(node)) {
2564 			err = PTR_ERR(node);
2565 			goto out;
2566 		}
2567 
2568 		ret = relocate_tree_block(trans, rc, node, &block->key,
2569 					  path);
2570 		if (ret < 0) {
2571 			err = ret;
2572 			break;
2573 		}
2574 	}
2575 out:
2576 	err = finish_pending_nodes(trans, rc, path, err);
2577 
2578 out_free_path:
2579 	btrfs_free_path(path);
2580 out_free_blocks:
2581 	free_block_list(blocks);
2582 	return err;
2583 }
2584 
2585 static noinline_for_stack int prealloc_file_extent_cluster(
2586 				struct btrfs_inode *inode,
2587 				struct file_extent_cluster *cluster)
2588 {
2589 	u64 alloc_hint = 0;
2590 	u64 start;
2591 	u64 end;
2592 	u64 offset = inode->index_cnt;
2593 	u64 num_bytes;
2594 	int nr;
2595 	int ret = 0;
2596 	u64 prealloc_start = cluster->start - offset;
2597 	u64 prealloc_end = cluster->end - offset;
2598 	u64 cur_offset = prealloc_start;
2599 
2600 	BUG_ON(cluster->start != cluster->boundary[0]);
2601 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2602 					      prealloc_end + 1 - prealloc_start);
2603 	if (ret)
2604 		return ret;
2605 
2606 	inode_lock(&inode->vfs_inode);
2607 	for (nr = 0; nr < cluster->nr; nr++) {
2608 		start = cluster->boundary[nr] - offset;
2609 		if (nr + 1 < cluster->nr)
2610 			end = cluster->boundary[nr + 1] - 1 - offset;
2611 		else
2612 			end = cluster->end - offset;
2613 
2614 		lock_extent(&inode->io_tree, start, end);
2615 		num_bytes = end + 1 - start;
2616 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2617 						num_bytes, num_bytes,
2618 						end + 1, &alloc_hint);
2619 		cur_offset = end + 1;
2620 		unlock_extent(&inode->io_tree, start, end);
2621 		if (ret)
2622 			break;
2623 	}
2624 	inode_unlock(&inode->vfs_inode);
2625 
2626 	if (cur_offset < prealloc_end)
2627 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2628 					       prealloc_end + 1 - cur_offset);
2629 	return ret;
2630 }
2631 
2632 static noinline_for_stack
2633 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2634 			 u64 block_start)
2635 {
2636 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2637 	struct extent_map *em;
2638 	int ret = 0;
2639 
2640 	em = alloc_extent_map();
2641 	if (!em)
2642 		return -ENOMEM;
2643 
2644 	em->start = start;
2645 	em->len = end + 1 - start;
2646 	em->block_len = em->len;
2647 	em->block_start = block_start;
2648 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2649 
2650 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2651 	while (1) {
2652 		write_lock(&em_tree->lock);
2653 		ret = add_extent_mapping(em_tree, em, 0);
2654 		write_unlock(&em_tree->lock);
2655 		if (ret != -EEXIST) {
2656 			free_extent_map(em);
2657 			break;
2658 		}
2659 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2660 	}
2661 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2662 	return ret;
2663 }
2664 
2665 /*
2666  * Allow error injection to test balance cancellation
2667  */
2668 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2669 {
2670 	return atomic_read(&fs_info->balance_cancel_req) ||
2671 		fatal_signal_pending(current);
2672 }
2673 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2674 
2675 static int relocate_file_extent_cluster(struct inode *inode,
2676 					struct file_extent_cluster *cluster)
2677 {
2678 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2679 	u64 page_start;
2680 	u64 page_end;
2681 	u64 offset = BTRFS_I(inode)->index_cnt;
2682 	unsigned long index;
2683 	unsigned long last_index;
2684 	struct page *page;
2685 	struct file_ra_state *ra;
2686 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2687 	int nr = 0;
2688 	int ret = 0;
2689 
2690 	if (!cluster->nr)
2691 		return 0;
2692 
2693 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2694 	if (!ra)
2695 		return -ENOMEM;
2696 
2697 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2698 	if (ret)
2699 		goto out;
2700 
2701 	file_ra_state_init(ra, inode->i_mapping);
2702 
2703 	ret = setup_extent_mapping(inode, cluster->start - offset,
2704 				   cluster->end - offset, cluster->start);
2705 	if (ret)
2706 		goto out;
2707 
2708 	index = (cluster->start - offset) >> PAGE_SHIFT;
2709 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2710 	while (index <= last_index) {
2711 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2712 				PAGE_SIZE);
2713 		if (ret)
2714 			goto out;
2715 
2716 		page = find_lock_page(inode->i_mapping, index);
2717 		if (!page) {
2718 			page_cache_sync_readahead(inode->i_mapping,
2719 						  ra, NULL, index,
2720 						  last_index + 1 - index);
2721 			page = find_or_create_page(inode->i_mapping, index,
2722 						   mask);
2723 			if (!page) {
2724 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2725 							PAGE_SIZE, true);
2726 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2727 							PAGE_SIZE);
2728 				ret = -ENOMEM;
2729 				goto out;
2730 			}
2731 		}
2732 
2733 		if (PageReadahead(page)) {
2734 			page_cache_async_readahead(inode->i_mapping,
2735 						   ra, NULL, page, index,
2736 						   last_index + 1 - index);
2737 		}
2738 
2739 		if (!PageUptodate(page)) {
2740 			btrfs_readpage(NULL, page);
2741 			lock_page(page);
2742 			if (!PageUptodate(page)) {
2743 				unlock_page(page);
2744 				put_page(page);
2745 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2746 							PAGE_SIZE, true);
2747 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2748 							       PAGE_SIZE);
2749 				ret = -EIO;
2750 				goto out;
2751 			}
2752 		}
2753 
2754 		page_start = page_offset(page);
2755 		page_end = page_start + PAGE_SIZE - 1;
2756 
2757 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2758 
2759 		set_page_extent_mapped(page);
2760 
2761 		if (nr < cluster->nr &&
2762 		    page_start + offset == cluster->boundary[nr]) {
2763 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2764 					page_start, page_end,
2765 					EXTENT_BOUNDARY);
2766 			nr++;
2767 		}
2768 
2769 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2770 						page_end, 0, NULL);
2771 		if (ret) {
2772 			unlock_page(page);
2773 			put_page(page);
2774 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2775 							 PAGE_SIZE, true);
2776 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2777 			                               PAGE_SIZE);
2778 
2779 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2780 					  page_start, page_end,
2781 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2782 			goto out;
2783 
2784 		}
2785 		set_page_dirty(page);
2786 
2787 		unlock_extent(&BTRFS_I(inode)->io_tree,
2788 			      page_start, page_end);
2789 		unlock_page(page);
2790 		put_page(page);
2791 
2792 		index++;
2793 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2794 		balance_dirty_pages_ratelimited(inode->i_mapping);
2795 		btrfs_throttle(fs_info);
2796 		if (btrfs_should_cancel_balance(fs_info)) {
2797 			ret = -ECANCELED;
2798 			goto out;
2799 		}
2800 	}
2801 	WARN_ON(nr != cluster->nr);
2802 out:
2803 	kfree(ra);
2804 	return ret;
2805 }
2806 
2807 static noinline_for_stack
2808 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2809 			 struct file_extent_cluster *cluster)
2810 {
2811 	int ret;
2812 
2813 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2814 		ret = relocate_file_extent_cluster(inode, cluster);
2815 		if (ret)
2816 			return ret;
2817 		cluster->nr = 0;
2818 	}
2819 
2820 	if (!cluster->nr)
2821 		cluster->start = extent_key->objectid;
2822 	else
2823 		BUG_ON(cluster->nr >= MAX_EXTENTS);
2824 	cluster->end = extent_key->objectid + extent_key->offset - 1;
2825 	cluster->boundary[cluster->nr] = extent_key->objectid;
2826 	cluster->nr++;
2827 
2828 	if (cluster->nr >= MAX_EXTENTS) {
2829 		ret = relocate_file_extent_cluster(inode, cluster);
2830 		if (ret)
2831 			return ret;
2832 		cluster->nr = 0;
2833 	}
2834 	return 0;
2835 }
2836 
2837 /*
2838  * helper to add a tree block to the list.
2839  * the major work is getting the generation and level of the block
2840  */
2841 static int add_tree_block(struct reloc_control *rc,
2842 			  struct btrfs_key *extent_key,
2843 			  struct btrfs_path *path,
2844 			  struct rb_root *blocks)
2845 {
2846 	struct extent_buffer *eb;
2847 	struct btrfs_extent_item *ei;
2848 	struct btrfs_tree_block_info *bi;
2849 	struct tree_block *block;
2850 	struct rb_node *rb_node;
2851 	u32 item_size;
2852 	int level = -1;
2853 	u64 generation;
2854 
2855 	eb =  path->nodes[0];
2856 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2857 
2858 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2859 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2860 		ei = btrfs_item_ptr(eb, path->slots[0],
2861 				struct btrfs_extent_item);
2862 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2863 			bi = (struct btrfs_tree_block_info *)(ei + 1);
2864 			level = btrfs_tree_block_level(eb, bi);
2865 		} else {
2866 			level = (int)extent_key->offset;
2867 		}
2868 		generation = btrfs_extent_generation(eb, ei);
2869 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2870 		btrfs_print_v0_err(eb->fs_info);
2871 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2872 		return -EINVAL;
2873 	} else {
2874 		BUG();
2875 	}
2876 
2877 	btrfs_release_path(path);
2878 
2879 	BUG_ON(level == -1);
2880 
2881 	block = kmalloc(sizeof(*block), GFP_NOFS);
2882 	if (!block)
2883 		return -ENOMEM;
2884 
2885 	block->bytenr = extent_key->objectid;
2886 	block->key.objectid = rc->extent_root->fs_info->nodesize;
2887 	block->key.offset = generation;
2888 	block->level = level;
2889 	block->key_ready = 0;
2890 
2891 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2892 	if (rb_node)
2893 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2894 				    -EEXIST);
2895 
2896 	return 0;
2897 }
2898 
2899 /*
2900  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2901  */
2902 static int __add_tree_block(struct reloc_control *rc,
2903 			    u64 bytenr, u32 blocksize,
2904 			    struct rb_root *blocks)
2905 {
2906 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2907 	struct btrfs_path *path;
2908 	struct btrfs_key key;
2909 	int ret;
2910 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2911 
2912 	if (tree_block_processed(bytenr, rc))
2913 		return 0;
2914 
2915 	if (rb_simple_search(blocks, bytenr))
2916 		return 0;
2917 
2918 	path = btrfs_alloc_path();
2919 	if (!path)
2920 		return -ENOMEM;
2921 again:
2922 	key.objectid = bytenr;
2923 	if (skinny) {
2924 		key.type = BTRFS_METADATA_ITEM_KEY;
2925 		key.offset = (u64)-1;
2926 	} else {
2927 		key.type = BTRFS_EXTENT_ITEM_KEY;
2928 		key.offset = blocksize;
2929 	}
2930 
2931 	path->search_commit_root = 1;
2932 	path->skip_locking = 1;
2933 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2934 	if (ret < 0)
2935 		goto out;
2936 
2937 	if (ret > 0 && skinny) {
2938 		if (path->slots[0]) {
2939 			path->slots[0]--;
2940 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2941 					      path->slots[0]);
2942 			if (key.objectid == bytenr &&
2943 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2944 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2945 			      key.offset == blocksize)))
2946 				ret = 0;
2947 		}
2948 
2949 		if (ret) {
2950 			skinny = false;
2951 			btrfs_release_path(path);
2952 			goto again;
2953 		}
2954 	}
2955 	if (ret) {
2956 		ASSERT(ret == 1);
2957 		btrfs_print_leaf(path->nodes[0]);
2958 		btrfs_err(fs_info,
2959 	     "tree block extent item (%llu) is not found in extent tree",
2960 		     bytenr);
2961 		WARN_ON(1);
2962 		ret = -EINVAL;
2963 		goto out;
2964 	}
2965 
2966 	ret = add_tree_block(rc, &key, path, blocks);
2967 out:
2968 	btrfs_free_path(path);
2969 	return ret;
2970 }
2971 
2972 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2973 				    struct btrfs_block_group *block_group,
2974 				    struct inode *inode,
2975 				    u64 ino)
2976 {
2977 	struct btrfs_root *root = fs_info->tree_root;
2978 	struct btrfs_trans_handle *trans;
2979 	int ret = 0;
2980 
2981 	if (inode)
2982 		goto truncate;
2983 
2984 	inode = btrfs_iget(fs_info->sb, ino, root);
2985 	if (IS_ERR(inode))
2986 		return -ENOENT;
2987 
2988 truncate:
2989 	ret = btrfs_check_trunc_cache_free_space(fs_info,
2990 						 &fs_info->global_block_rsv);
2991 	if (ret)
2992 		goto out;
2993 
2994 	trans = btrfs_join_transaction(root);
2995 	if (IS_ERR(trans)) {
2996 		ret = PTR_ERR(trans);
2997 		goto out;
2998 	}
2999 
3000 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3001 
3002 	btrfs_end_transaction(trans);
3003 	btrfs_btree_balance_dirty(fs_info);
3004 out:
3005 	iput(inode);
3006 	return ret;
3007 }
3008 
3009 /*
3010  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3011  * cache inode, to avoid free space cache data extent blocking data relocation.
3012  */
3013 static int delete_v1_space_cache(struct extent_buffer *leaf,
3014 				 struct btrfs_block_group *block_group,
3015 				 u64 data_bytenr)
3016 {
3017 	u64 space_cache_ino;
3018 	struct btrfs_file_extent_item *ei;
3019 	struct btrfs_key key;
3020 	bool found = false;
3021 	int i;
3022 	int ret;
3023 
3024 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3025 		return 0;
3026 
3027 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3028 		btrfs_item_key_to_cpu(leaf, &key, i);
3029 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3030 			continue;
3031 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3032 		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3033 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3034 			found = true;
3035 			space_cache_ino = key.objectid;
3036 			break;
3037 		}
3038 	}
3039 	if (!found)
3040 		return -ENOENT;
3041 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3042 					space_cache_ino);
3043 	return ret;
3044 }
3045 
3046 /*
3047  * helper to find all tree blocks that reference a given data extent
3048  */
3049 static noinline_for_stack
3050 int add_data_references(struct reloc_control *rc,
3051 			struct btrfs_key *extent_key,
3052 			struct btrfs_path *path,
3053 			struct rb_root *blocks)
3054 {
3055 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3056 	struct ulist *leaves = NULL;
3057 	struct ulist_iterator leaf_uiter;
3058 	struct ulist_node *ref_node = NULL;
3059 	const u32 blocksize = fs_info->nodesize;
3060 	int ret = 0;
3061 
3062 	btrfs_release_path(path);
3063 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3064 				   0, &leaves, NULL, true);
3065 	if (ret < 0)
3066 		return ret;
3067 
3068 	ULIST_ITER_INIT(&leaf_uiter);
3069 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3070 		struct extent_buffer *eb;
3071 
3072 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3073 		if (IS_ERR(eb)) {
3074 			ret = PTR_ERR(eb);
3075 			break;
3076 		}
3077 		ret = delete_v1_space_cache(eb, rc->block_group,
3078 					    extent_key->objectid);
3079 		free_extent_buffer(eb);
3080 		if (ret < 0)
3081 			break;
3082 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3083 		if (ret < 0)
3084 			break;
3085 	}
3086 	if (ret < 0)
3087 		free_block_list(blocks);
3088 	ulist_free(leaves);
3089 	return ret;
3090 }
3091 
3092 /*
3093  * helper to find next unprocessed extent
3094  */
3095 static noinline_for_stack
3096 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3097 		     struct btrfs_key *extent_key)
3098 {
3099 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3100 	struct btrfs_key key;
3101 	struct extent_buffer *leaf;
3102 	u64 start, end, last;
3103 	int ret;
3104 
3105 	last = rc->block_group->start + rc->block_group->length;
3106 	while (1) {
3107 		cond_resched();
3108 		if (rc->search_start >= last) {
3109 			ret = 1;
3110 			break;
3111 		}
3112 
3113 		key.objectid = rc->search_start;
3114 		key.type = BTRFS_EXTENT_ITEM_KEY;
3115 		key.offset = 0;
3116 
3117 		path->search_commit_root = 1;
3118 		path->skip_locking = 1;
3119 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3120 					0, 0);
3121 		if (ret < 0)
3122 			break;
3123 next:
3124 		leaf = path->nodes[0];
3125 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3126 			ret = btrfs_next_leaf(rc->extent_root, path);
3127 			if (ret != 0)
3128 				break;
3129 			leaf = path->nodes[0];
3130 		}
3131 
3132 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3133 		if (key.objectid >= last) {
3134 			ret = 1;
3135 			break;
3136 		}
3137 
3138 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3139 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3140 			path->slots[0]++;
3141 			goto next;
3142 		}
3143 
3144 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3145 		    key.objectid + key.offset <= rc->search_start) {
3146 			path->slots[0]++;
3147 			goto next;
3148 		}
3149 
3150 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3151 		    key.objectid + fs_info->nodesize <=
3152 		    rc->search_start) {
3153 			path->slots[0]++;
3154 			goto next;
3155 		}
3156 
3157 		ret = find_first_extent_bit(&rc->processed_blocks,
3158 					    key.objectid, &start, &end,
3159 					    EXTENT_DIRTY, NULL);
3160 
3161 		if (ret == 0 && start <= key.objectid) {
3162 			btrfs_release_path(path);
3163 			rc->search_start = end + 1;
3164 		} else {
3165 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3166 				rc->search_start = key.objectid + key.offset;
3167 			else
3168 				rc->search_start = key.objectid +
3169 					fs_info->nodesize;
3170 			memcpy(extent_key, &key, sizeof(key));
3171 			return 0;
3172 		}
3173 	}
3174 	btrfs_release_path(path);
3175 	return ret;
3176 }
3177 
3178 static void set_reloc_control(struct reloc_control *rc)
3179 {
3180 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3181 
3182 	mutex_lock(&fs_info->reloc_mutex);
3183 	fs_info->reloc_ctl = rc;
3184 	mutex_unlock(&fs_info->reloc_mutex);
3185 }
3186 
3187 static void unset_reloc_control(struct reloc_control *rc)
3188 {
3189 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3190 
3191 	mutex_lock(&fs_info->reloc_mutex);
3192 	fs_info->reloc_ctl = NULL;
3193 	mutex_unlock(&fs_info->reloc_mutex);
3194 }
3195 
3196 static int check_extent_flags(u64 flags)
3197 {
3198 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3199 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3200 		return 1;
3201 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3202 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3203 		return 1;
3204 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3205 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3206 		return 1;
3207 	return 0;
3208 }
3209 
3210 static noinline_for_stack
3211 int prepare_to_relocate(struct reloc_control *rc)
3212 {
3213 	struct btrfs_trans_handle *trans;
3214 	int ret;
3215 
3216 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3217 					      BTRFS_BLOCK_RSV_TEMP);
3218 	if (!rc->block_rsv)
3219 		return -ENOMEM;
3220 
3221 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3222 	rc->search_start = rc->block_group->start;
3223 	rc->extents_found = 0;
3224 	rc->nodes_relocated = 0;
3225 	rc->merging_rsv_size = 0;
3226 	rc->reserved_bytes = 0;
3227 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3228 			      RELOCATION_RESERVED_NODES;
3229 	ret = btrfs_block_rsv_refill(rc->extent_root,
3230 				     rc->block_rsv, rc->block_rsv->size,
3231 				     BTRFS_RESERVE_FLUSH_ALL);
3232 	if (ret)
3233 		return ret;
3234 
3235 	rc->create_reloc_tree = 1;
3236 	set_reloc_control(rc);
3237 
3238 	trans = btrfs_join_transaction(rc->extent_root);
3239 	if (IS_ERR(trans)) {
3240 		unset_reloc_control(rc);
3241 		/*
3242 		 * extent tree is not a ref_cow tree and has no reloc_root to
3243 		 * cleanup.  And callers are responsible to free the above
3244 		 * block rsv.
3245 		 */
3246 		return PTR_ERR(trans);
3247 	}
3248 	btrfs_commit_transaction(trans);
3249 	return 0;
3250 }
3251 
3252 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3253 {
3254 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3255 	struct rb_root blocks = RB_ROOT;
3256 	struct btrfs_key key;
3257 	struct btrfs_trans_handle *trans = NULL;
3258 	struct btrfs_path *path;
3259 	struct btrfs_extent_item *ei;
3260 	u64 flags;
3261 	u32 item_size;
3262 	int ret;
3263 	int err = 0;
3264 	int progress = 0;
3265 
3266 	path = btrfs_alloc_path();
3267 	if (!path)
3268 		return -ENOMEM;
3269 	path->reada = READA_FORWARD;
3270 
3271 	ret = prepare_to_relocate(rc);
3272 	if (ret) {
3273 		err = ret;
3274 		goto out_free;
3275 	}
3276 
3277 	while (1) {
3278 		rc->reserved_bytes = 0;
3279 		ret = btrfs_block_rsv_refill(rc->extent_root,
3280 					rc->block_rsv, rc->block_rsv->size,
3281 					BTRFS_RESERVE_FLUSH_ALL);
3282 		if (ret) {
3283 			err = ret;
3284 			break;
3285 		}
3286 		progress++;
3287 		trans = btrfs_start_transaction(rc->extent_root, 0);
3288 		if (IS_ERR(trans)) {
3289 			err = PTR_ERR(trans);
3290 			trans = NULL;
3291 			break;
3292 		}
3293 restart:
3294 		if (update_backref_cache(trans, &rc->backref_cache)) {
3295 			btrfs_end_transaction(trans);
3296 			trans = NULL;
3297 			continue;
3298 		}
3299 
3300 		ret = find_next_extent(rc, path, &key);
3301 		if (ret < 0)
3302 			err = ret;
3303 		if (ret != 0)
3304 			break;
3305 
3306 		rc->extents_found++;
3307 
3308 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3309 				    struct btrfs_extent_item);
3310 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3311 		if (item_size >= sizeof(*ei)) {
3312 			flags = btrfs_extent_flags(path->nodes[0], ei);
3313 			ret = check_extent_flags(flags);
3314 			BUG_ON(ret);
3315 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3316 			err = -EINVAL;
3317 			btrfs_print_v0_err(trans->fs_info);
3318 			btrfs_abort_transaction(trans, err);
3319 			break;
3320 		} else {
3321 			BUG();
3322 		}
3323 
3324 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3325 			ret = add_tree_block(rc, &key, path, &blocks);
3326 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3327 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3328 			ret = add_data_references(rc, &key, path, &blocks);
3329 		} else {
3330 			btrfs_release_path(path);
3331 			ret = 0;
3332 		}
3333 		if (ret < 0) {
3334 			err = ret;
3335 			break;
3336 		}
3337 
3338 		if (!RB_EMPTY_ROOT(&blocks)) {
3339 			ret = relocate_tree_blocks(trans, rc, &blocks);
3340 			if (ret < 0) {
3341 				if (ret != -EAGAIN) {
3342 					err = ret;
3343 					break;
3344 				}
3345 				rc->extents_found--;
3346 				rc->search_start = key.objectid;
3347 			}
3348 		}
3349 
3350 		btrfs_end_transaction_throttle(trans);
3351 		btrfs_btree_balance_dirty(fs_info);
3352 		trans = NULL;
3353 
3354 		if (rc->stage == MOVE_DATA_EXTENTS &&
3355 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3356 			rc->found_file_extent = 1;
3357 			ret = relocate_data_extent(rc->data_inode,
3358 						   &key, &rc->cluster);
3359 			if (ret < 0) {
3360 				err = ret;
3361 				break;
3362 			}
3363 		}
3364 		if (btrfs_should_cancel_balance(fs_info)) {
3365 			err = -ECANCELED;
3366 			break;
3367 		}
3368 	}
3369 	if (trans && progress && err == -ENOSPC) {
3370 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3371 		if (ret == 1) {
3372 			err = 0;
3373 			progress = 0;
3374 			goto restart;
3375 		}
3376 	}
3377 
3378 	btrfs_release_path(path);
3379 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3380 
3381 	if (trans) {
3382 		btrfs_end_transaction_throttle(trans);
3383 		btrfs_btree_balance_dirty(fs_info);
3384 	}
3385 
3386 	if (!err) {
3387 		ret = relocate_file_extent_cluster(rc->data_inode,
3388 						   &rc->cluster);
3389 		if (ret < 0)
3390 			err = ret;
3391 	}
3392 
3393 	rc->create_reloc_tree = 0;
3394 	set_reloc_control(rc);
3395 
3396 	btrfs_backref_release_cache(&rc->backref_cache);
3397 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3398 
3399 	/*
3400 	 * Even in the case when the relocation is cancelled, we should all go
3401 	 * through prepare_to_merge() and merge_reloc_roots().
3402 	 *
3403 	 * For error (including cancelled balance), prepare_to_merge() will
3404 	 * mark all reloc trees orphan, then queue them for cleanup in
3405 	 * merge_reloc_roots()
3406 	 */
3407 	err = prepare_to_merge(rc, err);
3408 
3409 	merge_reloc_roots(rc);
3410 
3411 	rc->merge_reloc_tree = 0;
3412 	unset_reloc_control(rc);
3413 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3414 
3415 	/* get rid of pinned extents */
3416 	trans = btrfs_join_transaction(rc->extent_root);
3417 	if (IS_ERR(trans)) {
3418 		err = PTR_ERR(trans);
3419 		goto out_free;
3420 	}
3421 	btrfs_commit_transaction(trans);
3422 out_free:
3423 	ret = clean_dirty_subvols(rc);
3424 	if (ret < 0 && !err)
3425 		err = ret;
3426 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3427 	btrfs_free_path(path);
3428 	return err;
3429 }
3430 
3431 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3432 				 struct btrfs_root *root, u64 objectid)
3433 {
3434 	struct btrfs_path *path;
3435 	struct btrfs_inode_item *item;
3436 	struct extent_buffer *leaf;
3437 	int ret;
3438 
3439 	path = btrfs_alloc_path();
3440 	if (!path)
3441 		return -ENOMEM;
3442 
3443 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3444 	if (ret)
3445 		goto out;
3446 
3447 	leaf = path->nodes[0];
3448 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3449 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3450 	btrfs_set_inode_generation(leaf, item, 1);
3451 	btrfs_set_inode_size(leaf, item, 0);
3452 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3453 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3454 					  BTRFS_INODE_PREALLOC);
3455 	btrfs_mark_buffer_dirty(leaf);
3456 out:
3457 	btrfs_free_path(path);
3458 	return ret;
3459 }
3460 
3461 /*
3462  * helper to create inode for data relocation.
3463  * the inode is in data relocation tree and its link count is 0
3464  */
3465 static noinline_for_stack
3466 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3467 				 struct btrfs_block_group *group)
3468 {
3469 	struct inode *inode = NULL;
3470 	struct btrfs_trans_handle *trans;
3471 	struct btrfs_root *root;
3472 	u64 objectid;
3473 	int err = 0;
3474 
3475 	root = btrfs_grab_root(fs_info->data_reloc_root);
3476 	trans = btrfs_start_transaction(root, 6);
3477 	if (IS_ERR(trans)) {
3478 		btrfs_put_root(root);
3479 		return ERR_CAST(trans);
3480 	}
3481 
3482 	err = btrfs_find_free_objectid(root, &objectid);
3483 	if (err)
3484 		goto out;
3485 
3486 	err = __insert_orphan_inode(trans, root, objectid);
3487 	BUG_ON(err);
3488 
3489 	inode = btrfs_iget(fs_info->sb, objectid, root);
3490 	BUG_ON(IS_ERR(inode));
3491 	BTRFS_I(inode)->index_cnt = group->start;
3492 
3493 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3494 out:
3495 	btrfs_put_root(root);
3496 	btrfs_end_transaction(trans);
3497 	btrfs_btree_balance_dirty(fs_info);
3498 	if (err) {
3499 		if (inode)
3500 			iput(inode);
3501 		inode = ERR_PTR(err);
3502 	}
3503 	return inode;
3504 }
3505 
3506 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3507 {
3508 	struct reloc_control *rc;
3509 
3510 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3511 	if (!rc)
3512 		return NULL;
3513 
3514 	INIT_LIST_HEAD(&rc->reloc_roots);
3515 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3516 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3517 	mapping_tree_init(&rc->reloc_root_tree);
3518 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3519 			    IO_TREE_RELOC_BLOCKS, NULL);
3520 	return rc;
3521 }
3522 
3523 static void free_reloc_control(struct reloc_control *rc)
3524 {
3525 	struct mapping_node *node, *tmp;
3526 
3527 	free_reloc_roots(&rc->reloc_roots);
3528 	rbtree_postorder_for_each_entry_safe(node, tmp,
3529 			&rc->reloc_root_tree.rb_root, rb_node)
3530 		kfree(node);
3531 
3532 	kfree(rc);
3533 }
3534 
3535 /*
3536  * Print the block group being relocated
3537  */
3538 static void describe_relocation(struct btrfs_fs_info *fs_info,
3539 				struct btrfs_block_group *block_group)
3540 {
3541 	char buf[128] = {'\0'};
3542 
3543 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3544 
3545 	btrfs_info(fs_info,
3546 		   "relocating block group %llu flags %s",
3547 		   block_group->start, buf);
3548 }
3549 
3550 static const char *stage_to_string(int stage)
3551 {
3552 	if (stage == MOVE_DATA_EXTENTS)
3553 		return "move data extents";
3554 	if (stage == UPDATE_DATA_PTRS)
3555 		return "update data pointers";
3556 	return "unknown";
3557 }
3558 
3559 /*
3560  * function to relocate all extents in a block group.
3561  */
3562 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3563 {
3564 	struct btrfs_block_group *bg;
3565 	struct btrfs_root *extent_root = fs_info->extent_root;
3566 	struct reloc_control *rc;
3567 	struct inode *inode;
3568 	struct btrfs_path *path;
3569 	int ret;
3570 	int rw = 0;
3571 	int err = 0;
3572 
3573 	bg = btrfs_lookup_block_group(fs_info, group_start);
3574 	if (!bg)
3575 		return -ENOENT;
3576 
3577 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3578 		btrfs_put_block_group(bg);
3579 		return -ETXTBSY;
3580 	}
3581 
3582 	rc = alloc_reloc_control(fs_info);
3583 	if (!rc) {
3584 		btrfs_put_block_group(bg);
3585 		return -ENOMEM;
3586 	}
3587 
3588 	rc->extent_root = extent_root;
3589 	rc->block_group = bg;
3590 
3591 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3592 	if (ret) {
3593 		err = ret;
3594 		goto out;
3595 	}
3596 	rw = 1;
3597 
3598 	path = btrfs_alloc_path();
3599 	if (!path) {
3600 		err = -ENOMEM;
3601 		goto out;
3602 	}
3603 
3604 	inode = lookup_free_space_inode(rc->block_group, path);
3605 	btrfs_free_path(path);
3606 
3607 	if (!IS_ERR(inode))
3608 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3609 	else
3610 		ret = PTR_ERR(inode);
3611 
3612 	if (ret && ret != -ENOENT) {
3613 		err = ret;
3614 		goto out;
3615 	}
3616 
3617 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3618 	if (IS_ERR(rc->data_inode)) {
3619 		err = PTR_ERR(rc->data_inode);
3620 		rc->data_inode = NULL;
3621 		goto out;
3622 	}
3623 
3624 	describe_relocation(fs_info, rc->block_group);
3625 
3626 	btrfs_wait_block_group_reservations(rc->block_group);
3627 	btrfs_wait_nocow_writers(rc->block_group);
3628 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3629 				 rc->block_group->start,
3630 				 rc->block_group->length);
3631 
3632 	while (1) {
3633 		int finishes_stage;
3634 
3635 		mutex_lock(&fs_info->cleaner_mutex);
3636 		ret = relocate_block_group(rc);
3637 		mutex_unlock(&fs_info->cleaner_mutex);
3638 		if (ret < 0)
3639 			err = ret;
3640 
3641 		finishes_stage = rc->stage;
3642 		/*
3643 		 * We may have gotten ENOSPC after we already dirtied some
3644 		 * extents.  If writeout happens while we're relocating a
3645 		 * different block group we could end up hitting the
3646 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3647 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3648 		 * properly so we don't trip over this problem, and then break
3649 		 * out of the loop if we hit an error.
3650 		 */
3651 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3652 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3653 						       (u64)-1);
3654 			if (ret)
3655 				err = ret;
3656 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3657 						 0, -1);
3658 			rc->stage = UPDATE_DATA_PTRS;
3659 		}
3660 
3661 		if (err < 0)
3662 			goto out;
3663 
3664 		if (rc->extents_found == 0)
3665 			break;
3666 
3667 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3668 			   rc->extents_found, stage_to_string(finishes_stage));
3669 	}
3670 
3671 	WARN_ON(rc->block_group->pinned > 0);
3672 	WARN_ON(rc->block_group->reserved > 0);
3673 	WARN_ON(rc->block_group->used > 0);
3674 out:
3675 	if (err && rw)
3676 		btrfs_dec_block_group_ro(rc->block_group);
3677 	iput(rc->data_inode);
3678 	btrfs_put_block_group(rc->block_group);
3679 	free_reloc_control(rc);
3680 	return err;
3681 }
3682 
3683 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3684 {
3685 	struct btrfs_fs_info *fs_info = root->fs_info;
3686 	struct btrfs_trans_handle *trans;
3687 	int ret, err;
3688 
3689 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3690 	if (IS_ERR(trans))
3691 		return PTR_ERR(trans);
3692 
3693 	memset(&root->root_item.drop_progress, 0,
3694 		sizeof(root->root_item.drop_progress));
3695 	root->root_item.drop_level = 0;
3696 	btrfs_set_root_refs(&root->root_item, 0);
3697 	ret = btrfs_update_root(trans, fs_info->tree_root,
3698 				&root->root_key, &root->root_item);
3699 
3700 	err = btrfs_end_transaction(trans);
3701 	if (err)
3702 		return err;
3703 	return ret;
3704 }
3705 
3706 /*
3707  * recover relocation interrupted by system crash.
3708  *
3709  * this function resumes merging reloc trees with corresponding fs trees.
3710  * this is important for keeping the sharing of tree blocks
3711  */
3712 int btrfs_recover_relocation(struct btrfs_root *root)
3713 {
3714 	struct btrfs_fs_info *fs_info = root->fs_info;
3715 	LIST_HEAD(reloc_roots);
3716 	struct btrfs_key key;
3717 	struct btrfs_root *fs_root;
3718 	struct btrfs_root *reloc_root;
3719 	struct btrfs_path *path;
3720 	struct extent_buffer *leaf;
3721 	struct reloc_control *rc = NULL;
3722 	struct btrfs_trans_handle *trans;
3723 	int ret;
3724 	int err = 0;
3725 
3726 	path = btrfs_alloc_path();
3727 	if (!path)
3728 		return -ENOMEM;
3729 	path->reada = READA_BACK;
3730 
3731 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3732 	key.type = BTRFS_ROOT_ITEM_KEY;
3733 	key.offset = (u64)-1;
3734 
3735 	while (1) {
3736 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3737 					path, 0, 0);
3738 		if (ret < 0) {
3739 			err = ret;
3740 			goto out;
3741 		}
3742 		if (ret > 0) {
3743 			if (path->slots[0] == 0)
3744 				break;
3745 			path->slots[0]--;
3746 		}
3747 		leaf = path->nodes[0];
3748 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3749 		btrfs_release_path(path);
3750 
3751 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3752 		    key.type != BTRFS_ROOT_ITEM_KEY)
3753 			break;
3754 
3755 		reloc_root = btrfs_read_tree_root(root, &key);
3756 		if (IS_ERR(reloc_root)) {
3757 			err = PTR_ERR(reloc_root);
3758 			goto out;
3759 		}
3760 
3761 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3762 		list_add(&reloc_root->root_list, &reloc_roots);
3763 
3764 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3765 			fs_root = btrfs_get_fs_root(fs_info,
3766 					reloc_root->root_key.offset, false);
3767 			if (IS_ERR(fs_root)) {
3768 				ret = PTR_ERR(fs_root);
3769 				if (ret != -ENOENT) {
3770 					err = ret;
3771 					goto out;
3772 				}
3773 				ret = mark_garbage_root(reloc_root);
3774 				if (ret < 0) {
3775 					err = ret;
3776 					goto out;
3777 				}
3778 			} else {
3779 				btrfs_put_root(fs_root);
3780 			}
3781 		}
3782 
3783 		if (key.offset == 0)
3784 			break;
3785 
3786 		key.offset--;
3787 	}
3788 	btrfs_release_path(path);
3789 
3790 	if (list_empty(&reloc_roots))
3791 		goto out;
3792 
3793 	rc = alloc_reloc_control(fs_info);
3794 	if (!rc) {
3795 		err = -ENOMEM;
3796 		goto out;
3797 	}
3798 
3799 	rc->extent_root = fs_info->extent_root;
3800 
3801 	set_reloc_control(rc);
3802 
3803 	trans = btrfs_join_transaction(rc->extent_root);
3804 	if (IS_ERR(trans)) {
3805 		err = PTR_ERR(trans);
3806 		goto out_unset;
3807 	}
3808 
3809 	rc->merge_reloc_tree = 1;
3810 
3811 	while (!list_empty(&reloc_roots)) {
3812 		reloc_root = list_entry(reloc_roots.next,
3813 					struct btrfs_root, root_list);
3814 		list_del(&reloc_root->root_list);
3815 
3816 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3817 			list_add_tail(&reloc_root->root_list,
3818 				      &rc->reloc_roots);
3819 			continue;
3820 		}
3821 
3822 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3823 					    false);
3824 		if (IS_ERR(fs_root)) {
3825 			err = PTR_ERR(fs_root);
3826 			list_add_tail(&reloc_root->root_list, &reloc_roots);
3827 			btrfs_end_transaction(trans);
3828 			goto out_unset;
3829 		}
3830 
3831 		err = __add_reloc_root(reloc_root);
3832 		BUG_ON(err < 0); /* -ENOMEM or logic error */
3833 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3834 		btrfs_put_root(fs_root);
3835 	}
3836 
3837 	err = btrfs_commit_transaction(trans);
3838 	if (err)
3839 		goto out_unset;
3840 
3841 	merge_reloc_roots(rc);
3842 
3843 	unset_reloc_control(rc);
3844 
3845 	trans = btrfs_join_transaction(rc->extent_root);
3846 	if (IS_ERR(trans)) {
3847 		err = PTR_ERR(trans);
3848 		goto out_clean;
3849 	}
3850 	err = btrfs_commit_transaction(trans);
3851 out_clean:
3852 	ret = clean_dirty_subvols(rc);
3853 	if (ret < 0 && !err)
3854 		err = ret;
3855 out_unset:
3856 	unset_reloc_control(rc);
3857 	free_reloc_control(rc);
3858 out:
3859 	free_reloc_roots(&reloc_roots);
3860 
3861 	btrfs_free_path(path);
3862 
3863 	if (err == 0) {
3864 		/* cleanup orphan inode in data relocation tree */
3865 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3866 		ASSERT(fs_root);
3867 		err = btrfs_orphan_cleanup(fs_root);
3868 		btrfs_put_root(fs_root);
3869 	}
3870 	return err;
3871 }
3872 
3873 /*
3874  * helper to add ordered checksum for data relocation.
3875  *
3876  * cloning checksum properly handles the nodatasum extents.
3877  * it also saves CPU time to re-calculate the checksum.
3878  */
3879 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3880 {
3881 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3882 	struct btrfs_ordered_sum *sums;
3883 	struct btrfs_ordered_extent *ordered;
3884 	int ret;
3885 	u64 disk_bytenr;
3886 	u64 new_bytenr;
3887 	LIST_HEAD(list);
3888 
3889 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3890 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3891 
3892 	disk_bytenr = file_pos + inode->index_cnt;
3893 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3894 				       disk_bytenr + len - 1, &list, 0);
3895 	if (ret)
3896 		goto out;
3897 
3898 	while (!list_empty(&list)) {
3899 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3900 		list_del_init(&sums->list);
3901 
3902 		/*
3903 		 * We need to offset the new_bytenr based on where the csum is.
3904 		 * We need to do this because we will read in entire prealloc
3905 		 * extents but we may have written to say the middle of the
3906 		 * prealloc extent, so we need to make sure the csum goes with
3907 		 * the right disk offset.
3908 		 *
3909 		 * We can do this because the data reloc inode refers strictly
3910 		 * to the on disk bytes, so we don't have to worry about
3911 		 * disk_len vs real len like with real inodes since it's all
3912 		 * disk length.
3913 		 */
3914 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3915 		sums->bytenr = new_bytenr;
3916 
3917 		btrfs_add_ordered_sum(ordered, sums);
3918 	}
3919 out:
3920 	btrfs_put_ordered_extent(ordered);
3921 	return ret;
3922 }
3923 
3924 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3925 			  struct btrfs_root *root, struct extent_buffer *buf,
3926 			  struct extent_buffer *cow)
3927 {
3928 	struct btrfs_fs_info *fs_info = root->fs_info;
3929 	struct reloc_control *rc;
3930 	struct btrfs_backref_node *node;
3931 	int first_cow = 0;
3932 	int level;
3933 	int ret = 0;
3934 
3935 	rc = fs_info->reloc_ctl;
3936 	if (!rc)
3937 		return 0;
3938 
3939 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3940 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3941 
3942 	level = btrfs_header_level(buf);
3943 	if (btrfs_header_generation(buf) <=
3944 	    btrfs_root_last_snapshot(&root->root_item))
3945 		first_cow = 1;
3946 
3947 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3948 	    rc->create_reloc_tree) {
3949 		WARN_ON(!first_cow && level == 0);
3950 
3951 		node = rc->backref_cache.path[level];
3952 		BUG_ON(node->bytenr != buf->start &&
3953 		       node->new_bytenr != buf->start);
3954 
3955 		btrfs_backref_drop_node_buffer(node);
3956 		atomic_inc(&cow->refs);
3957 		node->eb = cow;
3958 		node->new_bytenr = cow->start;
3959 
3960 		if (!node->pending) {
3961 			list_move_tail(&node->list,
3962 				       &rc->backref_cache.pending[level]);
3963 			node->pending = 1;
3964 		}
3965 
3966 		if (first_cow)
3967 			mark_block_processed(rc, node);
3968 
3969 		if (first_cow && level > 0)
3970 			rc->nodes_relocated += buf->len;
3971 	}
3972 
3973 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3974 		ret = replace_file_extents(trans, rc, root, cow);
3975 	return ret;
3976 }
3977 
3978 /*
3979  * called before creating snapshot. it calculates metadata reservation
3980  * required for relocating tree blocks in the snapshot
3981  */
3982 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3983 			      u64 *bytes_to_reserve)
3984 {
3985 	struct btrfs_root *root = pending->root;
3986 	struct reloc_control *rc = root->fs_info->reloc_ctl;
3987 
3988 	if (!rc || !have_reloc_root(root))
3989 		return;
3990 
3991 	if (!rc->merge_reloc_tree)
3992 		return;
3993 
3994 	root = root->reloc_root;
3995 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3996 	/*
3997 	 * relocation is in the stage of merging trees. the space
3998 	 * used by merging a reloc tree is twice the size of
3999 	 * relocated tree nodes in the worst case. half for cowing
4000 	 * the reloc tree, half for cowing the fs tree. the space
4001 	 * used by cowing the reloc tree will be freed after the
4002 	 * tree is dropped. if we create snapshot, cowing the fs
4003 	 * tree may use more space than it frees. so we need
4004 	 * reserve extra space.
4005 	 */
4006 	*bytes_to_reserve += rc->nodes_relocated;
4007 }
4008 
4009 /*
4010  * called after snapshot is created. migrate block reservation
4011  * and create reloc root for the newly created snapshot
4012  *
4013  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4014  * references held on the reloc_root, one for root->reloc_root and one for
4015  * rc->reloc_roots.
4016  */
4017 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4018 			       struct btrfs_pending_snapshot *pending)
4019 {
4020 	struct btrfs_root *root = pending->root;
4021 	struct btrfs_root *reloc_root;
4022 	struct btrfs_root *new_root;
4023 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4024 	int ret;
4025 
4026 	if (!rc || !have_reloc_root(root))
4027 		return 0;
4028 
4029 	rc = root->fs_info->reloc_ctl;
4030 	rc->merging_rsv_size += rc->nodes_relocated;
4031 
4032 	if (rc->merge_reloc_tree) {
4033 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4034 					      rc->block_rsv,
4035 					      rc->nodes_relocated, true);
4036 		if (ret)
4037 			return ret;
4038 	}
4039 
4040 	new_root = pending->snap;
4041 	reloc_root = create_reloc_root(trans, root->reloc_root,
4042 				       new_root->root_key.objectid);
4043 	if (IS_ERR(reloc_root))
4044 		return PTR_ERR(reloc_root);
4045 
4046 	ret = __add_reloc_root(reloc_root);
4047 	BUG_ON(ret < 0);
4048 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4049 
4050 	if (rc->create_reloc_tree)
4051 		ret = clone_backref_node(trans, rc, root, reloc_root);
4052 	return ret;
4053 }
4054