xref: /openbmc/linux/fs/btrfs/relocation.c (revision f35e839a)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
330 {
331 
332 	struct btrfs_fs_info *fs_info = NULL;
333 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
334 					      rb_node);
335 	if (bnode->root)
336 		fs_info = bnode->root->fs_info;
337 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
338 		    "found at offset %llu\n", (unsigned long long)bytenr);
339 }
340 
341 /*
342  * walk up backref nodes until reach node presents tree root
343  */
344 static struct backref_node *walk_up_backref(struct backref_node *node,
345 					    struct backref_edge *edges[],
346 					    int *index)
347 {
348 	struct backref_edge *edge;
349 	int idx = *index;
350 
351 	while (!list_empty(&node->upper)) {
352 		edge = list_entry(node->upper.next,
353 				  struct backref_edge, list[LOWER]);
354 		edges[idx++] = edge;
355 		node = edge->node[UPPER];
356 	}
357 	BUG_ON(node->detached);
358 	*index = idx;
359 	return node;
360 }
361 
362 /*
363  * walk down backref nodes to find start of next reference path
364  */
365 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
366 					      int *index)
367 {
368 	struct backref_edge *edge;
369 	struct backref_node *lower;
370 	int idx = *index;
371 
372 	while (idx > 0) {
373 		edge = edges[idx - 1];
374 		lower = edge->node[LOWER];
375 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
376 			idx--;
377 			continue;
378 		}
379 		edge = list_entry(edge->list[LOWER].next,
380 				  struct backref_edge, list[LOWER]);
381 		edges[idx - 1] = edge;
382 		*index = idx;
383 		return edge->node[UPPER];
384 	}
385 	*index = 0;
386 	return NULL;
387 }
388 
389 static void unlock_node_buffer(struct backref_node *node)
390 {
391 	if (node->locked) {
392 		btrfs_tree_unlock(node->eb);
393 		node->locked = 0;
394 	}
395 }
396 
397 static void drop_node_buffer(struct backref_node *node)
398 {
399 	if (node->eb) {
400 		unlock_node_buffer(node);
401 		free_extent_buffer(node->eb);
402 		node->eb = NULL;
403 	}
404 }
405 
406 static void drop_backref_node(struct backref_cache *tree,
407 			      struct backref_node *node)
408 {
409 	BUG_ON(!list_empty(&node->upper));
410 
411 	drop_node_buffer(node);
412 	list_del(&node->list);
413 	list_del(&node->lower);
414 	if (!RB_EMPTY_NODE(&node->rb_node))
415 		rb_erase(&node->rb_node, &tree->rb_root);
416 	free_backref_node(tree, node);
417 }
418 
419 /*
420  * remove a backref node from the backref cache
421  */
422 static void remove_backref_node(struct backref_cache *cache,
423 				struct backref_node *node)
424 {
425 	struct backref_node *upper;
426 	struct backref_edge *edge;
427 
428 	if (!node)
429 		return;
430 
431 	BUG_ON(!node->lowest && !node->detached);
432 	while (!list_empty(&node->upper)) {
433 		edge = list_entry(node->upper.next, struct backref_edge,
434 				  list[LOWER]);
435 		upper = edge->node[UPPER];
436 		list_del(&edge->list[LOWER]);
437 		list_del(&edge->list[UPPER]);
438 		free_backref_edge(cache, edge);
439 
440 		if (RB_EMPTY_NODE(&upper->rb_node)) {
441 			BUG_ON(!list_empty(&node->upper));
442 			drop_backref_node(cache, node);
443 			node = upper;
444 			node->lowest = 1;
445 			continue;
446 		}
447 		/*
448 		 * add the node to leaf node list if no other
449 		 * child block cached.
450 		 */
451 		if (list_empty(&upper->lower)) {
452 			list_add_tail(&upper->lower, &cache->leaves);
453 			upper->lowest = 1;
454 		}
455 	}
456 
457 	drop_backref_node(cache, node);
458 }
459 
460 static void update_backref_node(struct backref_cache *cache,
461 				struct backref_node *node, u64 bytenr)
462 {
463 	struct rb_node *rb_node;
464 	rb_erase(&node->rb_node, &cache->rb_root);
465 	node->bytenr = bytenr;
466 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
467 	if (rb_node)
468 		backref_tree_panic(rb_node, -EEXIST, bytenr);
469 }
470 
471 /*
472  * update backref cache after a transaction commit
473  */
474 static int update_backref_cache(struct btrfs_trans_handle *trans,
475 				struct backref_cache *cache)
476 {
477 	struct backref_node *node;
478 	int level = 0;
479 
480 	if (cache->last_trans == 0) {
481 		cache->last_trans = trans->transid;
482 		return 0;
483 	}
484 
485 	if (cache->last_trans == trans->transid)
486 		return 0;
487 
488 	/*
489 	 * detached nodes are used to avoid unnecessary backref
490 	 * lookup. transaction commit changes the extent tree.
491 	 * so the detached nodes are no longer useful.
492 	 */
493 	while (!list_empty(&cache->detached)) {
494 		node = list_entry(cache->detached.next,
495 				  struct backref_node, list);
496 		remove_backref_node(cache, node);
497 	}
498 
499 	while (!list_empty(&cache->changed)) {
500 		node = list_entry(cache->changed.next,
501 				  struct backref_node, list);
502 		list_del_init(&node->list);
503 		BUG_ON(node->pending);
504 		update_backref_node(cache, node, node->new_bytenr);
505 	}
506 
507 	/*
508 	 * some nodes can be left in the pending list if there were
509 	 * errors during processing the pending nodes.
510 	 */
511 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
512 		list_for_each_entry(node, &cache->pending[level], list) {
513 			BUG_ON(!node->pending);
514 			if (node->bytenr == node->new_bytenr)
515 				continue;
516 			update_backref_node(cache, node, node->new_bytenr);
517 		}
518 	}
519 
520 	cache->last_trans = 0;
521 	return 1;
522 }
523 
524 
525 static int should_ignore_root(struct btrfs_root *root)
526 {
527 	struct btrfs_root *reloc_root;
528 
529 	if (!root->ref_cows)
530 		return 0;
531 
532 	reloc_root = root->reloc_root;
533 	if (!reloc_root)
534 		return 0;
535 
536 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
537 	    root->fs_info->running_transaction->transid - 1)
538 		return 0;
539 	/*
540 	 * if there is reloc tree and it was created in previous
541 	 * transaction backref lookup can find the reloc tree,
542 	 * so backref node for the fs tree root is useless for
543 	 * relocation.
544 	 */
545 	return 1;
546 }
547 /*
548  * find reloc tree by address of tree root
549  */
550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
551 					  u64 bytenr)
552 {
553 	struct rb_node *rb_node;
554 	struct mapping_node *node;
555 	struct btrfs_root *root = NULL;
556 
557 	spin_lock(&rc->reloc_root_tree.lock);
558 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
559 	if (rb_node) {
560 		node = rb_entry(rb_node, struct mapping_node, rb_node);
561 		root = (struct btrfs_root *)node->data;
562 	}
563 	spin_unlock(&rc->reloc_root_tree.lock);
564 	return root;
565 }
566 
567 static int is_cowonly_root(u64 root_objectid)
568 {
569 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
570 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
574 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
575 		return 1;
576 	return 0;
577 }
578 
579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
580 					u64 root_objectid)
581 {
582 	struct btrfs_key key;
583 
584 	key.objectid = root_objectid;
585 	key.type = BTRFS_ROOT_ITEM_KEY;
586 	if (is_cowonly_root(root_objectid))
587 		key.offset = 0;
588 	else
589 		key.offset = (u64)-1;
590 
591 	return btrfs_read_fs_root_no_name(fs_info, &key);
592 }
593 
594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
595 static noinline_for_stack
596 struct btrfs_root *find_tree_root(struct reloc_control *rc,
597 				  struct extent_buffer *leaf,
598 				  struct btrfs_extent_ref_v0 *ref0)
599 {
600 	struct btrfs_root *root;
601 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
602 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
603 
604 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
605 
606 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
607 	BUG_ON(IS_ERR(root));
608 
609 	if (root->ref_cows &&
610 	    generation != btrfs_root_generation(&root->root_item))
611 		return NULL;
612 
613 	return root;
614 }
615 #endif
616 
617 static noinline_for_stack
618 int find_inline_backref(struct extent_buffer *leaf, int slot,
619 			unsigned long *ptr, unsigned long *end)
620 {
621 	struct btrfs_key key;
622 	struct btrfs_extent_item *ei;
623 	struct btrfs_tree_block_info *bi;
624 	u32 item_size;
625 
626 	btrfs_item_key_to_cpu(leaf, &key, slot);
627 
628 	item_size = btrfs_item_size_nr(leaf, slot);
629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
630 	if (item_size < sizeof(*ei)) {
631 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
632 		return 1;
633 	}
634 #endif
635 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
636 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
637 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
638 
639 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
640 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
641 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
642 		return 1;
643 	}
644 
645 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
646 		bi = (struct btrfs_tree_block_info *)(ei + 1);
647 		*ptr = (unsigned long)(bi + 1);
648 	} else {
649 		*ptr = (unsigned long)(ei + 1);
650 	}
651 	*end = (unsigned long)ei + item_size;
652 	return 0;
653 }
654 
655 /*
656  * build backref tree for a given tree block. root of the backref tree
657  * corresponds the tree block, leaves of the backref tree correspond
658  * roots of b-trees that reference the tree block.
659  *
660  * the basic idea of this function is check backrefs of a given block
661  * to find upper level blocks that refernece the block, and then check
662  * bakcrefs of these upper level blocks recursively. the recursion stop
663  * when tree root is reached or backrefs for the block is cached.
664  *
665  * NOTE: if we find backrefs for a block are cached, we know backrefs
666  * for all upper level blocks that directly/indirectly reference the
667  * block are also cached.
668  */
669 static noinline_for_stack
670 struct backref_node *build_backref_tree(struct reloc_control *rc,
671 					struct btrfs_key *node_key,
672 					int level, u64 bytenr)
673 {
674 	struct backref_cache *cache = &rc->backref_cache;
675 	struct btrfs_path *path1;
676 	struct btrfs_path *path2;
677 	struct extent_buffer *eb;
678 	struct btrfs_root *root;
679 	struct backref_node *cur;
680 	struct backref_node *upper;
681 	struct backref_node *lower;
682 	struct backref_node *node = NULL;
683 	struct backref_node *exist = NULL;
684 	struct backref_edge *edge;
685 	struct rb_node *rb_node;
686 	struct btrfs_key key;
687 	unsigned long end;
688 	unsigned long ptr;
689 	LIST_HEAD(list);
690 	LIST_HEAD(useless);
691 	int cowonly;
692 	int ret;
693 	int err = 0;
694 
695 	path1 = btrfs_alloc_path();
696 	path2 = btrfs_alloc_path();
697 	if (!path1 || !path2) {
698 		err = -ENOMEM;
699 		goto out;
700 	}
701 	path1->reada = 1;
702 	path2->reada = 2;
703 
704 	node = alloc_backref_node(cache);
705 	if (!node) {
706 		err = -ENOMEM;
707 		goto out;
708 	}
709 
710 	node->bytenr = bytenr;
711 	node->level = level;
712 	node->lowest = 1;
713 	cur = node;
714 again:
715 	end = 0;
716 	ptr = 0;
717 	key.objectid = cur->bytenr;
718 	key.type = BTRFS_METADATA_ITEM_KEY;
719 	key.offset = (u64)-1;
720 
721 	path1->search_commit_root = 1;
722 	path1->skip_locking = 1;
723 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
724 				0, 0);
725 	if (ret < 0) {
726 		err = ret;
727 		goto out;
728 	}
729 	BUG_ON(!ret || !path1->slots[0]);
730 
731 	path1->slots[0]--;
732 
733 	WARN_ON(cur->checked);
734 	if (!list_empty(&cur->upper)) {
735 		/*
736 		 * the backref was added previously when processing
737 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
738 		 */
739 		BUG_ON(!list_is_singular(&cur->upper));
740 		edge = list_entry(cur->upper.next, struct backref_edge,
741 				  list[LOWER]);
742 		BUG_ON(!list_empty(&edge->list[UPPER]));
743 		exist = edge->node[UPPER];
744 		/*
745 		 * add the upper level block to pending list if we need
746 		 * check its backrefs
747 		 */
748 		if (!exist->checked)
749 			list_add_tail(&edge->list[UPPER], &list);
750 	} else {
751 		exist = NULL;
752 	}
753 
754 	while (1) {
755 		cond_resched();
756 		eb = path1->nodes[0];
757 
758 		if (ptr >= end) {
759 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
760 				ret = btrfs_next_leaf(rc->extent_root, path1);
761 				if (ret < 0) {
762 					err = ret;
763 					goto out;
764 				}
765 				if (ret > 0)
766 					break;
767 				eb = path1->nodes[0];
768 			}
769 
770 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
771 			if (key.objectid != cur->bytenr) {
772 				WARN_ON(exist);
773 				break;
774 			}
775 
776 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
777 			    key.type == BTRFS_METADATA_ITEM_KEY) {
778 				ret = find_inline_backref(eb, path1->slots[0],
779 							  &ptr, &end);
780 				if (ret)
781 					goto next;
782 			}
783 		}
784 
785 		if (ptr < end) {
786 			/* update key for inline back ref */
787 			struct btrfs_extent_inline_ref *iref;
788 			iref = (struct btrfs_extent_inline_ref *)ptr;
789 			key.type = btrfs_extent_inline_ref_type(eb, iref);
790 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
791 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
792 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
793 		}
794 
795 		if (exist &&
796 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
797 		      exist->owner == key.offset) ||
798 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
799 		      exist->bytenr == key.offset))) {
800 			exist = NULL;
801 			goto next;
802 		}
803 
804 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
805 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
806 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
807 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
808 				struct btrfs_extent_ref_v0 *ref0;
809 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
810 						struct btrfs_extent_ref_v0);
811 				if (key.objectid == key.offset) {
812 					root = find_tree_root(rc, eb, ref0);
813 					if (root && !should_ignore_root(root))
814 						cur->root = root;
815 					else
816 						list_add(&cur->list, &useless);
817 					break;
818 				}
819 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
820 								      ref0)))
821 					cur->cowonly = 1;
822 			}
823 #else
824 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
825 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
826 #endif
827 			if (key.objectid == key.offset) {
828 				/*
829 				 * only root blocks of reloc trees use
830 				 * backref of this type.
831 				 */
832 				root = find_reloc_root(rc, cur->bytenr);
833 				BUG_ON(!root);
834 				cur->root = root;
835 				break;
836 			}
837 
838 			edge = alloc_backref_edge(cache);
839 			if (!edge) {
840 				err = -ENOMEM;
841 				goto out;
842 			}
843 			rb_node = tree_search(&cache->rb_root, key.offset);
844 			if (!rb_node) {
845 				upper = alloc_backref_node(cache);
846 				if (!upper) {
847 					free_backref_edge(cache, edge);
848 					err = -ENOMEM;
849 					goto out;
850 				}
851 				upper->bytenr = key.offset;
852 				upper->level = cur->level + 1;
853 				/*
854 				 *  backrefs for the upper level block isn't
855 				 *  cached, add the block to pending list
856 				 */
857 				list_add_tail(&edge->list[UPPER], &list);
858 			} else {
859 				upper = rb_entry(rb_node, struct backref_node,
860 						 rb_node);
861 				BUG_ON(!upper->checked);
862 				INIT_LIST_HEAD(&edge->list[UPPER]);
863 			}
864 			list_add_tail(&edge->list[LOWER], &cur->upper);
865 			edge->node[LOWER] = cur;
866 			edge->node[UPPER] = upper;
867 
868 			goto next;
869 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
870 			goto next;
871 		}
872 
873 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
874 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
875 		if (IS_ERR(root)) {
876 			err = PTR_ERR(root);
877 			goto out;
878 		}
879 
880 		if (!root->ref_cows)
881 			cur->cowonly = 1;
882 
883 		if (btrfs_root_level(&root->root_item) == cur->level) {
884 			/* tree root */
885 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
886 			       cur->bytenr);
887 			if (should_ignore_root(root))
888 				list_add(&cur->list, &useless);
889 			else
890 				cur->root = root;
891 			break;
892 		}
893 
894 		level = cur->level + 1;
895 
896 		/*
897 		 * searching the tree to find upper level blocks
898 		 * reference the block.
899 		 */
900 		path2->search_commit_root = 1;
901 		path2->skip_locking = 1;
902 		path2->lowest_level = level;
903 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
904 		path2->lowest_level = 0;
905 		if (ret < 0) {
906 			err = ret;
907 			goto out;
908 		}
909 		if (ret > 0 && path2->slots[level] > 0)
910 			path2->slots[level]--;
911 
912 		eb = path2->nodes[level];
913 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
914 			cur->bytenr);
915 
916 		lower = cur;
917 		for (; level < BTRFS_MAX_LEVEL; level++) {
918 			if (!path2->nodes[level]) {
919 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
920 				       lower->bytenr);
921 				if (should_ignore_root(root))
922 					list_add(&lower->list, &useless);
923 				else
924 					lower->root = root;
925 				break;
926 			}
927 
928 			edge = alloc_backref_edge(cache);
929 			if (!edge) {
930 				err = -ENOMEM;
931 				goto out;
932 			}
933 
934 			eb = path2->nodes[level];
935 			rb_node = tree_search(&cache->rb_root, eb->start);
936 			if (!rb_node) {
937 				upper = alloc_backref_node(cache);
938 				if (!upper) {
939 					free_backref_edge(cache, edge);
940 					err = -ENOMEM;
941 					goto out;
942 				}
943 				upper->bytenr = eb->start;
944 				upper->owner = btrfs_header_owner(eb);
945 				upper->level = lower->level + 1;
946 				if (!root->ref_cows)
947 					upper->cowonly = 1;
948 
949 				/*
950 				 * if we know the block isn't shared
951 				 * we can void checking its backrefs.
952 				 */
953 				if (btrfs_block_can_be_shared(root, eb))
954 					upper->checked = 0;
955 				else
956 					upper->checked = 1;
957 
958 				/*
959 				 * add the block to pending list if we
960 				 * need check its backrefs. only block
961 				 * at 'cur->level + 1' is added to the
962 				 * tail of pending list. this guarantees
963 				 * we check backrefs from lower level
964 				 * blocks to upper level blocks.
965 				 */
966 				if (!upper->checked &&
967 				    level == cur->level + 1) {
968 					list_add_tail(&edge->list[UPPER],
969 						      &list);
970 				} else
971 					INIT_LIST_HEAD(&edge->list[UPPER]);
972 			} else {
973 				upper = rb_entry(rb_node, struct backref_node,
974 						 rb_node);
975 				BUG_ON(!upper->checked);
976 				INIT_LIST_HEAD(&edge->list[UPPER]);
977 				if (!upper->owner)
978 					upper->owner = btrfs_header_owner(eb);
979 			}
980 			list_add_tail(&edge->list[LOWER], &lower->upper);
981 			edge->node[LOWER] = lower;
982 			edge->node[UPPER] = upper;
983 
984 			if (rb_node)
985 				break;
986 			lower = upper;
987 			upper = NULL;
988 		}
989 		btrfs_release_path(path2);
990 next:
991 		if (ptr < end) {
992 			ptr += btrfs_extent_inline_ref_size(key.type);
993 			if (ptr >= end) {
994 				WARN_ON(ptr > end);
995 				ptr = 0;
996 				end = 0;
997 			}
998 		}
999 		if (ptr >= end)
1000 			path1->slots[0]++;
1001 	}
1002 	btrfs_release_path(path1);
1003 
1004 	cur->checked = 1;
1005 	WARN_ON(exist);
1006 
1007 	/* the pending list isn't empty, take the first block to process */
1008 	if (!list_empty(&list)) {
1009 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1010 		list_del_init(&edge->list[UPPER]);
1011 		cur = edge->node[UPPER];
1012 		goto again;
1013 	}
1014 
1015 	/*
1016 	 * everything goes well, connect backref nodes and insert backref nodes
1017 	 * into the cache.
1018 	 */
1019 	BUG_ON(!node->checked);
1020 	cowonly = node->cowonly;
1021 	if (!cowonly) {
1022 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1023 				      &node->rb_node);
1024 		if (rb_node)
1025 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1026 		list_add_tail(&node->lower, &cache->leaves);
1027 	}
1028 
1029 	list_for_each_entry(edge, &node->upper, list[LOWER])
1030 		list_add_tail(&edge->list[UPPER], &list);
1031 
1032 	while (!list_empty(&list)) {
1033 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1034 		list_del_init(&edge->list[UPPER]);
1035 		upper = edge->node[UPPER];
1036 		if (upper->detached) {
1037 			list_del(&edge->list[LOWER]);
1038 			lower = edge->node[LOWER];
1039 			free_backref_edge(cache, edge);
1040 			if (list_empty(&lower->upper))
1041 				list_add(&lower->list, &useless);
1042 			continue;
1043 		}
1044 
1045 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1046 			if (upper->lowest) {
1047 				list_del_init(&upper->lower);
1048 				upper->lowest = 0;
1049 			}
1050 
1051 			list_add_tail(&edge->list[UPPER], &upper->lower);
1052 			continue;
1053 		}
1054 
1055 		BUG_ON(!upper->checked);
1056 		BUG_ON(cowonly != upper->cowonly);
1057 		if (!cowonly) {
1058 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1059 					      &upper->rb_node);
1060 			if (rb_node)
1061 				backref_tree_panic(rb_node, -EEXIST,
1062 						   upper->bytenr);
1063 		}
1064 
1065 		list_add_tail(&edge->list[UPPER], &upper->lower);
1066 
1067 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1068 			list_add_tail(&edge->list[UPPER], &list);
1069 	}
1070 	/*
1071 	 * process useless backref nodes. backref nodes for tree leaves
1072 	 * are deleted from the cache. backref nodes for upper level
1073 	 * tree blocks are left in the cache to avoid unnecessary backref
1074 	 * lookup.
1075 	 */
1076 	while (!list_empty(&useless)) {
1077 		upper = list_entry(useless.next, struct backref_node, list);
1078 		list_del_init(&upper->list);
1079 		BUG_ON(!list_empty(&upper->upper));
1080 		if (upper == node)
1081 			node = NULL;
1082 		if (upper->lowest) {
1083 			list_del_init(&upper->lower);
1084 			upper->lowest = 0;
1085 		}
1086 		while (!list_empty(&upper->lower)) {
1087 			edge = list_entry(upper->lower.next,
1088 					  struct backref_edge, list[UPPER]);
1089 			list_del(&edge->list[UPPER]);
1090 			list_del(&edge->list[LOWER]);
1091 			lower = edge->node[LOWER];
1092 			free_backref_edge(cache, edge);
1093 
1094 			if (list_empty(&lower->upper))
1095 				list_add(&lower->list, &useless);
1096 		}
1097 		__mark_block_processed(rc, upper);
1098 		if (upper->level > 0) {
1099 			list_add(&upper->list, &cache->detached);
1100 			upper->detached = 1;
1101 		} else {
1102 			rb_erase(&upper->rb_node, &cache->rb_root);
1103 			free_backref_node(cache, upper);
1104 		}
1105 	}
1106 out:
1107 	btrfs_free_path(path1);
1108 	btrfs_free_path(path2);
1109 	if (err) {
1110 		while (!list_empty(&useless)) {
1111 			lower = list_entry(useless.next,
1112 					   struct backref_node, upper);
1113 			list_del_init(&lower->upper);
1114 		}
1115 		upper = node;
1116 		INIT_LIST_HEAD(&list);
1117 		while (upper) {
1118 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1119 				list_splice_tail(&upper->upper, &list);
1120 				free_backref_node(cache, upper);
1121 			}
1122 
1123 			if (list_empty(&list))
1124 				break;
1125 
1126 			edge = list_entry(list.next, struct backref_edge,
1127 					  list[LOWER]);
1128 			list_del(&edge->list[LOWER]);
1129 			upper = edge->node[UPPER];
1130 			free_backref_edge(cache, edge);
1131 		}
1132 		return ERR_PTR(err);
1133 	}
1134 	BUG_ON(node && node->detached);
1135 	return node;
1136 }
1137 
1138 /*
1139  * helper to add backref node for the newly created snapshot.
1140  * the backref node is created by cloning backref node that
1141  * corresponds to root of source tree
1142  */
1143 static int clone_backref_node(struct btrfs_trans_handle *trans,
1144 			      struct reloc_control *rc,
1145 			      struct btrfs_root *src,
1146 			      struct btrfs_root *dest)
1147 {
1148 	struct btrfs_root *reloc_root = src->reloc_root;
1149 	struct backref_cache *cache = &rc->backref_cache;
1150 	struct backref_node *node = NULL;
1151 	struct backref_node *new_node;
1152 	struct backref_edge *edge;
1153 	struct backref_edge *new_edge;
1154 	struct rb_node *rb_node;
1155 
1156 	if (cache->last_trans > 0)
1157 		update_backref_cache(trans, cache);
1158 
1159 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1160 	if (rb_node) {
1161 		node = rb_entry(rb_node, struct backref_node, rb_node);
1162 		if (node->detached)
1163 			node = NULL;
1164 		else
1165 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1166 	}
1167 
1168 	if (!node) {
1169 		rb_node = tree_search(&cache->rb_root,
1170 				      reloc_root->commit_root->start);
1171 		if (rb_node) {
1172 			node = rb_entry(rb_node, struct backref_node,
1173 					rb_node);
1174 			BUG_ON(node->detached);
1175 		}
1176 	}
1177 
1178 	if (!node)
1179 		return 0;
1180 
1181 	new_node = alloc_backref_node(cache);
1182 	if (!new_node)
1183 		return -ENOMEM;
1184 
1185 	new_node->bytenr = dest->node->start;
1186 	new_node->level = node->level;
1187 	new_node->lowest = node->lowest;
1188 	new_node->checked = 1;
1189 	new_node->root = dest;
1190 
1191 	if (!node->lowest) {
1192 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1193 			new_edge = alloc_backref_edge(cache);
1194 			if (!new_edge)
1195 				goto fail;
1196 
1197 			new_edge->node[UPPER] = new_node;
1198 			new_edge->node[LOWER] = edge->node[LOWER];
1199 			list_add_tail(&new_edge->list[UPPER],
1200 				      &new_node->lower);
1201 		}
1202 	} else {
1203 		list_add_tail(&new_node->lower, &cache->leaves);
1204 	}
1205 
1206 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1207 			      &new_node->rb_node);
1208 	if (rb_node)
1209 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1210 
1211 	if (!new_node->lowest) {
1212 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1213 			list_add_tail(&new_edge->list[LOWER],
1214 				      &new_edge->node[LOWER]->upper);
1215 		}
1216 	}
1217 	return 0;
1218 fail:
1219 	while (!list_empty(&new_node->lower)) {
1220 		new_edge = list_entry(new_node->lower.next,
1221 				      struct backref_edge, list[UPPER]);
1222 		list_del(&new_edge->list[UPPER]);
1223 		free_backref_edge(cache, new_edge);
1224 	}
1225 	free_backref_node(cache, new_node);
1226 	return -ENOMEM;
1227 }
1228 
1229 /*
1230  * helper to add 'address of tree root -> reloc tree' mapping
1231  */
1232 static int __must_check __add_reloc_root(struct btrfs_root *root)
1233 {
1234 	struct rb_node *rb_node;
1235 	struct mapping_node *node;
1236 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1237 
1238 	node = kmalloc(sizeof(*node), GFP_NOFS);
1239 	if (!node)
1240 		return -ENOMEM;
1241 
1242 	node->bytenr = root->node->start;
1243 	node->data = root;
1244 
1245 	spin_lock(&rc->reloc_root_tree.lock);
1246 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1247 			      node->bytenr, &node->rb_node);
1248 	spin_unlock(&rc->reloc_root_tree.lock);
1249 	if (rb_node) {
1250 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1251 			    "for start=%llu while inserting into relocation "
1252 			    "tree\n", node->bytenr);
1253 		kfree(node);
1254 		return -EEXIST;
1255 	}
1256 
1257 	list_add_tail(&root->root_list, &rc->reloc_roots);
1258 	return 0;
1259 }
1260 
1261 /*
1262  * helper to update/delete the 'address of tree root -> reloc tree'
1263  * mapping
1264  */
1265 static int __update_reloc_root(struct btrfs_root *root, int del)
1266 {
1267 	struct rb_node *rb_node;
1268 	struct mapping_node *node = NULL;
1269 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1270 
1271 	spin_lock(&rc->reloc_root_tree.lock);
1272 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1273 			      root->commit_root->start);
1274 	if (rb_node) {
1275 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1276 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1277 	}
1278 	spin_unlock(&rc->reloc_root_tree.lock);
1279 
1280 	if (!node)
1281 		return 0;
1282 	BUG_ON((struct btrfs_root *)node->data != root);
1283 
1284 	if (!del) {
1285 		spin_lock(&rc->reloc_root_tree.lock);
1286 		node->bytenr = root->node->start;
1287 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1288 				      node->bytenr, &node->rb_node);
1289 		spin_unlock(&rc->reloc_root_tree.lock);
1290 		if (rb_node)
1291 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1292 	} else {
1293 		spin_lock(&root->fs_info->trans_lock);
1294 		list_del_init(&root->root_list);
1295 		spin_unlock(&root->fs_info->trans_lock);
1296 		kfree(node);
1297 	}
1298 	return 0;
1299 }
1300 
1301 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1302 					struct btrfs_root *root, u64 objectid)
1303 {
1304 	struct btrfs_root *reloc_root;
1305 	struct extent_buffer *eb;
1306 	struct btrfs_root_item *root_item;
1307 	struct btrfs_key root_key;
1308 	int ret;
1309 
1310 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1311 	BUG_ON(!root_item);
1312 
1313 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1314 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1315 	root_key.offset = objectid;
1316 
1317 	if (root->root_key.objectid == objectid) {
1318 		/* called by btrfs_init_reloc_root */
1319 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1320 				      BTRFS_TREE_RELOC_OBJECTID);
1321 		BUG_ON(ret);
1322 
1323 		btrfs_set_root_last_snapshot(&root->root_item,
1324 					     trans->transid - 1);
1325 	} else {
1326 		/*
1327 		 * called by btrfs_reloc_post_snapshot_hook.
1328 		 * the source tree is a reloc tree, all tree blocks
1329 		 * modified after it was created have RELOC flag
1330 		 * set in their headers. so it's OK to not update
1331 		 * the 'last_snapshot'.
1332 		 */
1333 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1334 				      BTRFS_TREE_RELOC_OBJECTID);
1335 		BUG_ON(ret);
1336 	}
1337 
1338 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1339 	btrfs_set_root_bytenr(root_item, eb->start);
1340 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1341 	btrfs_set_root_generation(root_item, trans->transid);
1342 
1343 	if (root->root_key.objectid == objectid) {
1344 		btrfs_set_root_refs(root_item, 0);
1345 		memset(&root_item->drop_progress, 0,
1346 		       sizeof(struct btrfs_disk_key));
1347 		root_item->drop_level = 0;
1348 	}
1349 
1350 	btrfs_tree_unlock(eb);
1351 	free_extent_buffer(eb);
1352 
1353 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1354 				&root_key, root_item);
1355 	BUG_ON(ret);
1356 	kfree(root_item);
1357 
1358 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1359 						 &root_key);
1360 	BUG_ON(IS_ERR(reloc_root));
1361 	reloc_root->last_trans = trans->transid;
1362 	return reloc_root;
1363 }
1364 
1365 /*
1366  * create reloc tree for a given fs tree. reloc tree is just a
1367  * snapshot of the fs tree with special root objectid.
1368  */
1369 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1370 			  struct btrfs_root *root)
1371 {
1372 	struct btrfs_root *reloc_root;
1373 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1374 	int clear_rsv = 0;
1375 	int ret;
1376 
1377 	if (root->reloc_root) {
1378 		reloc_root = root->reloc_root;
1379 		reloc_root->last_trans = trans->transid;
1380 		return 0;
1381 	}
1382 
1383 	if (!rc || !rc->create_reloc_tree ||
1384 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1385 		return 0;
1386 
1387 	if (!trans->block_rsv) {
1388 		trans->block_rsv = rc->block_rsv;
1389 		clear_rsv = 1;
1390 	}
1391 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1392 	if (clear_rsv)
1393 		trans->block_rsv = NULL;
1394 
1395 	ret = __add_reloc_root(reloc_root);
1396 	BUG_ON(ret < 0);
1397 	root->reloc_root = reloc_root;
1398 	return 0;
1399 }
1400 
1401 /*
1402  * update root item of reloc tree
1403  */
1404 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1405 			    struct btrfs_root *root)
1406 {
1407 	struct btrfs_root *reloc_root;
1408 	struct btrfs_root_item *root_item;
1409 	int del = 0;
1410 	int ret;
1411 
1412 	if (!root->reloc_root)
1413 		goto out;
1414 
1415 	reloc_root = root->reloc_root;
1416 	root_item = &reloc_root->root_item;
1417 
1418 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1419 	    btrfs_root_refs(root_item) == 0) {
1420 		root->reloc_root = NULL;
1421 		del = 1;
1422 	}
1423 
1424 	__update_reloc_root(reloc_root, del);
1425 
1426 	if (reloc_root->commit_root != reloc_root->node) {
1427 		btrfs_set_root_node(root_item, reloc_root->node);
1428 		free_extent_buffer(reloc_root->commit_root);
1429 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1430 	}
1431 
1432 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1433 				&reloc_root->root_key, root_item);
1434 	BUG_ON(ret);
1435 
1436 out:
1437 	return 0;
1438 }
1439 
1440 /*
1441  * helper to find first cached inode with inode number >= objectid
1442  * in a subvolume
1443  */
1444 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1445 {
1446 	struct rb_node *node;
1447 	struct rb_node *prev;
1448 	struct btrfs_inode *entry;
1449 	struct inode *inode;
1450 
1451 	spin_lock(&root->inode_lock);
1452 again:
1453 	node = root->inode_tree.rb_node;
1454 	prev = NULL;
1455 	while (node) {
1456 		prev = node;
1457 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1458 
1459 		if (objectid < btrfs_ino(&entry->vfs_inode))
1460 			node = node->rb_left;
1461 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1462 			node = node->rb_right;
1463 		else
1464 			break;
1465 	}
1466 	if (!node) {
1467 		while (prev) {
1468 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1469 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1470 				node = prev;
1471 				break;
1472 			}
1473 			prev = rb_next(prev);
1474 		}
1475 	}
1476 	while (node) {
1477 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1478 		inode = igrab(&entry->vfs_inode);
1479 		if (inode) {
1480 			spin_unlock(&root->inode_lock);
1481 			return inode;
1482 		}
1483 
1484 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1485 		if (cond_resched_lock(&root->inode_lock))
1486 			goto again;
1487 
1488 		node = rb_next(node);
1489 	}
1490 	spin_unlock(&root->inode_lock);
1491 	return NULL;
1492 }
1493 
1494 static int in_block_group(u64 bytenr,
1495 			  struct btrfs_block_group_cache *block_group)
1496 {
1497 	if (bytenr >= block_group->key.objectid &&
1498 	    bytenr < block_group->key.objectid + block_group->key.offset)
1499 		return 1;
1500 	return 0;
1501 }
1502 
1503 /*
1504  * get new location of data
1505  */
1506 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1507 			    u64 bytenr, u64 num_bytes)
1508 {
1509 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1510 	struct btrfs_path *path;
1511 	struct btrfs_file_extent_item *fi;
1512 	struct extent_buffer *leaf;
1513 	int ret;
1514 
1515 	path = btrfs_alloc_path();
1516 	if (!path)
1517 		return -ENOMEM;
1518 
1519 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1520 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1521 				       bytenr, 0);
1522 	if (ret < 0)
1523 		goto out;
1524 	if (ret > 0) {
1525 		ret = -ENOENT;
1526 		goto out;
1527 	}
1528 
1529 	leaf = path->nodes[0];
1530 	fi = btrfs_item_ptr(leaf, path->slots[0],
1531 			    struct btrfs_file_extent_item);
1532 
1533 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1534 	       btrfs_file_extent_compression(leaf, fi) ||
1535 	       btrfs_file_extent_encryption(leaf, fi) ||
1536 	       btrfs_file_extent_other_encoding(leaf, fi));
1537 
1538 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1539 		ret = 1;
1540 		goto out;
1541 	}
1542 
1543 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1544 	ret = 0;
1545 out:
1546 	btrfs_free_path(path);
1547 	return ret;
1548 }
1549 
1550 /*
1551  * update file extent items in the tree leaf to point to
1552  * the new locations.
1553  */
1554 static noinline_for_stack
1555 int replace_file_extents(struct btrfs_trans_handle *trans,
1556 			 struct reloc_control *rc,
1557 			 struct btrfs_root *root,
1558 			 struct extent_buffer *leaf)
1559 {
1560 	struct btrfs_key key;
1561 	struct btrfs_file_extent_item *fi;
1562 	struct inode *inode = NULL;
1563 	u64 parent;
1564 	u64 bytenr;
1565 	u64 new_bytenr = 0;
1566 	u64 num_bytes;
1567 	u64 end;
1568 	u32 nritems;
1569 	u32 i;
1570 	int ret;
1571 	int first = 1;
1572 	int dirty = 0;
1573 
1574 	if (rc->stage != UPDATE_DATA_PTRS)
1575 		return 0;
1576 
1577 	/* reloc trees always use full backref */
1578 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1579 		parent = leaf->start;
1580 	else
1581 		parent = 0;
1582 
1583 	nritems = btrfs_header_nritems(leaf);
1584 	for (i = 0; i < nritems; i++) {
1585 		cond_resched();
1586 		btrfs_item_key_to_cpu(leaf, &key, i);
1587 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1588 			continue;
1589 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1590 		if (btrfs_file_extent_type(leaf, fi) ==
1591 		    BTRFS_FILE_EXTENT_INLINE)
1592 			continue;
1593 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1594 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1595 		if (bytenr == 0)
1596 			continue;
1597 		if (!in_block_group(bytenr, rc->block_group))
1598 			continue;
1599 
1600 		/*
1601 		 * if we are modifying block in fs tree, wait for readpage
1602 		 * to complete and drop the extent cache
1603 		 */
1604 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1605 			if (first) {
1606 				inode = find_next_inode(root, key.objectid);
1607 				first = 0;
1608 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1609 				btrfs_add_delayed_iput(inode);
1610 				inode = find_next_inode(root, key.objectid);
1611 			}
1612 			if (inode && btrfs_ino(inode) == key.objectid) {
1613 				end = key.offset +
1614 				      btrfs_file_extent_num_bytes(leaf, fi);
1615 				WARN_ON(!IS_ALIGNED(key.offset,
1616 						    root->sectorsize));
1617 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1618 				end--;
1619 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1620 						      key.offset, end);
1621 				if (!ret)
1622 					continue;
1623 
1624 				btrfs_drop_extent_cache(inode, key.offset, end,
1625 							1);
1626 				unlock_extent(&BTRFS_I(inode)->io_tree,
1627 					      key.offset, end);
1628 			}
1629 		}
1630 
1631 		ret = get_new_location(rc->data_inode, &new_bytenr,
1632 				       bytenr, num_bytes);
1633 		if (ret > 0) {
1634 			WARN_ON(1);
1635 			continue;
1636 		}
1637 		BUG_ON(ret < 0);
1638 
1639 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1640 		dirty = 1;
1641 
1642 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1643 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1644 					   num_bytes, parent,
1645 					   btrfs_header_owner(leaf),
1646 					   key.objectid, key.offset, 1);
1647 		BUG_ON(ret);
1648 
1649 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1650 					parent, btrfs_header_owner(leaf),
1651 					key.objectid, key.offset, 1);
1652 		BUG_ON(ret);
1653 	}
1654 	if (dirty)
1655 		btrfs_mark_buffer_dirty(leaf);
1656 	if (inode)
1657 		btrfs_add_delayed_iput(inode);
1658 	return 0;
1659 }
1660 
1661 static noinline_for_stack
1662 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1663 		     struct btrfs_path *path, int level)
1664 {
1665 	struct btrfs_disk_key key1;
1666 	struct btrfs_disk_key key2;
1667 	btrfs_node_key(eb, &key1, slot);
1668 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1669 	return memcmp(&key1, &key2, sizeof(key1));
1670 }
1671 
1672 /*
1673  * try to replace tree blocks in fs tree with the new blocks
1674  * in reloc tree. tree blocks haven't been modified since the
1675  * reloc tree was create can be replaced.
1676  *
1677  * if a block was replaced, level of the block + 1 is returned.
1678  * if no block got replaced, 0 is returned. if there are other
1679  * errors, a negative error number is returned.
1680  */
1681 static noinline_for_stack
1682 int replace_path(struct btrfs_trans_handle *trans,
1683 		 struct btrfs_root *dest, struct btrfs_root *src,
1684 		 struct btrfs_path *path, struct btrfs_key *next_key,
1685 		 int lowest_level, int max_level)
1686 {
1687 	struct extent_buffer *eb;
1688 	struct extent_buffer *parent;
1689 	struct btrfs_key key;
1690 	u64 old_bytenr;
1691 	u64 new_bytenr;
1692 	u64 old_ptr_gen;
1693 	u64 new_ptr_gen;
1694 	u64 last_snapshot;
1695 	u32 blocksize;
1696 	int cow = 0;
1697 	int level;
1698 	int ret;
1699 	int slot;
1700 
1701 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1702 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1703 
1704 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1705 again:
1706 	slot = path->slots[lowest_level];
1707 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1708 
1709 	eb = btrfs_lock_root_node(dest);
1710 	btrfs_set_lock_blocking(eb);
1711 	level = btrfs_header_level(eb);
1712 
1713 	if (level < lowest_level) {
1714 		btrfs_tree_unlock(eb);
1715 		free_extent_buffer(eb);
1716 		return 0;
1717 	}
1718 
1719 	if (cow) {
1720 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1721 		BUG_ON(ret);
1722 	}
1723 	btrfs_set_lock_blocking(eb);
1724 
1725 	if (next_key) {
1726 		next_key->objectid = (u64)-1;
1727 		next_key->type = (u8)-1;
1728 		next_key->offset = (u64)-1;
1729 	}
1730 
1731 	parent = eb;
1732 	while (1) {
1733 		level = btrfs_header_level(parent);
1734 		BUG_ON(level < lowest_level);
1735 
1736 		ret = btrfs_bin_search(parent, &key, level, &slot);
1737 		if (ret && slot > 0)
1738 			slot--;
1739 
1740 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1741 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1742 
1743 		old_bytenr = btrfs_node_blockptr(parent, slot);
1744 		blocksize = btrfs_level_size(dest, level - 1);
1745 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1746 
1747 		if (level <= max_level) {
1748 			eb = path->nodes[level];
1749 			new_bytenr = btrfs_node_blockptr(eb,
1750 							path->slots[level]);
1751 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1752 							path->slots[level]);
1753 		} else {
1754 			new_bytenr = 0;
1755 			new_ptr_gen = 0;
1756 		}
1757 
1758 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1759 			WARN_ON(1);
1760 			ret = level;
1761 			break;
1762 		}
1763 
1764 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1765 		    memcmp_node_keys(parent, slot, path, level)) {
1766 			if (level <= lowest_level) {
1767 				ret = 0;
1768 				break;
1769 			}
1770 
1771 			eb = read_tree_block(dest, old_bytenr, blocksize,
1772 					     old_ptr_gen);
1773 			if (!eb || !extent_buffer_uptodate(eb)) {
1774 				ret = (!eb) ? -ENOMEM : -EIO;
1775 				free_extent_buffer(eb);
1776 				return ret;
1777 			}
1778 			btrfs_tree_lock(eb);
1779 			if (cow) {
1780 				ret = btrfs_cow_block(trans, dest, eb, parent,
1781 						      slot, &eb);
1782 				BUG_ON(ret);
1783 			}
1784 			btrfs_set_lock_blocking(eb);
1785 
1786 			btrfs_tree_unlock(parent);
1787 			free_extent_buffer(parent);
1788 
1789 			parent = eb;
1790 			continue;
1791 		}
1792 
1793 		if (!cow) {
1794 			btrfs_tree_unlock(parent);
1795 			free_extent_buffer(parent);
1796 			cow = 1;
1797 			goto again;
1798 		}
1799 
1800 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1801 				      path->slots[level]);
1802 		btrfs_release_path(path);
1803 
1804 		path->lowest_level = level;
1805 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1806 		path->lowest_level = 0;
1807 		BUG_ON(ret);
1808 
1809 		/*
1810 		 * swap blocks in fs tree and reloc tree.
1811 		 */
1812 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1813 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1814 		btrfs_mark_buffer_dirty(parent);
1815 
1816 		btrfs_set_node_blockptr(path->nodes[level],
1817 					path->slots[level], old_bytenr);
1818 		btrfs_set_node_ptr_generation(path->nodes[level],
1819 					      path->slots[level], old_ptr_gen);
1820 		btrfs_mark_buffer_dirty(path->nodes[level]);
1821 
1822 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1823 					path->nodes[level]->start,
1824 					src->root_key.objectid, level - 1, 0,
1825 					1);
1826 		BUG_ON(ret);
1827 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1828 					0, dest->root_key.objectid, level - 1,
1829 					0, 1);
1830 		BUG_ON(ret);
1831 
1832 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1833 					path->nodes[level]->start,
1834 					src->root_key.objectid, level - 1, 0,
1835 					1);
1836 		BUG_ON(ret);
1837 
1838 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1839 					0, dest->root_key.objectid, level - 1,
1840 					0, 1);
1841 		BUG_ON(ret);
1842 
1843 		btrfs_unlock_up_safe(path, 0);
1844 
1845 		ret = level;
1846 		break;
1847 	}
1848 	btrfs_tree_unlock(parent);
1849 	free_extent_buffer(parent);
1850 	return ret;
1851 }
1852 
1853 /*
1854  * helper to find next relocated block in reloc tree
1855  */
1856 static noinline_for_stack
1857 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1858 		       int *level)
1859 {
1860 	struct extent_buffer *eb;
1861 	int i;
1862 	u64 last_snapshot;
1863 	u32 nritems;
1864 
1865 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1866 
1867 	for (i = 0; i < *level; i++) {
1868 		free_extent_buffer(path->nodes[i]);
1869 		path->nodes[i] = NULL;
1870 	}
1871 
1872 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1873 		eb = path->nodes[i];
1874 		nritems = btrfs_header_nritems(eb);
1875 		while (path->slots[i] + 1 < nritems) {
1876 			path->slots[i]++;
1877 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1878 			    last_snapshot)
1879 				continue;
1880 
1881 			*level = i;
1882 			return 0;
1883 		}
1884 		free_extent_buffer(path->nodes[i]);
1885 		path->nodes[i] = NULL;
1886 	}
1887 	return 1;
1888 }
1889 
1890 /*
1891  * walk down reloc tree to find relocated block of lowest level
1892  */
1893 static noinline_for_stack
1894 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1895 			 int *level)
1896 {
1897 	struct extent_buffer *eb = NULL;
1898 	int i;
1899 	u64 bytenr;
1900 	u64 ptr_gen = 0;
1901 	u64 last_snapshot;
1902 	u32 blocksize;
1903 	u32 nritems;
1904 
1905 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1906 
1907 	for (i = *level; i > 0; i--) {
1908 		eb = path->nodes[i];
1909 		nritems = btrfs_header_nritems(eb);
1910 		while (path->slots[i] < nritems) {
1911 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1912 			if (ptr_gen > last_snapshot)
1913 				break;
1914 			path->slots[i]++;
1915 		}
1916 		if (path->slots[i] >= nritems) {
1917 			if (i == *level)
1918 				break;
1919 			*level = i + 1;
1920 			return 0;
1921 		}
1922 		if (i == 1) {
1923 			*level = i;
1924 			return 0;
1925 		}
1926 
1927 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1928 		blocksize = btrfs_level_size(root, i - 1);
1929 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1930 		if (!eb || !extent_buffer_uptodate(eb)) {
1931 			free_extent_buffer(eb);
1932 			return -EIO;
1933 		}
1934 		BUG_ON(btrfs_header_level(eb) != i - 1);
1935 		path->nodes[i - 1] = eb;
1936 		path->slots[i - 1] = 0;
1937 	}
1938 	return 1;
1939 }
1940 
1941 /*
1942  * invalidate extent cache for file extents whose key in range of
1943  * [min_key, max_key)
1944  */
1945 static int invalidate_extent_cache(struct btrfs_root *root,
1946 				   struct btrfs_key *min_key,
1947 				   struct btrfs_key *max_key)
1948 {
1949 	struct inode *inode = NULL;
1950 	u64 objectid;
1951 	u64 start, end;
1952 	u64 ino;
1953 
1954 	objectid = min_key->objectid;
1955 	while (1) {
1956 		cond_resched();
1957 		iput(inode);
1958 
1959 		if (objectid > max_key->objectid)
1960 			break;
1961 
1962 		inode = find_next_inode(root, objectid);
1963 		if (!inode)
1964 			break;
1965 		ino = btrfs_ino(inode);
1966 
1967 		if (ino > max_key->objectid) {
1968 			iput(inode);
1969 			break;
1970 		}
1971 
1972 		objectid = ino + 1;
1973 		if (!S_ISREG(inode->i_mode))
1974 			continue;
1975 
1976 		if (unlikely(min_key->objectid == ino)) {
1977 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1978 				continue;
1979 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1980 				start = 0;
1981 			else {
1982 				start = min_key->offset;
1983 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1984 			}
1985 		} else {
1986 			start = 0;
1987 		}
1988 
1989 		if (unlikely(max_key->objectid == ino)) {
1990 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1991 				continue;
1992 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1993 				end = (u64)-1;
1994 			} else {
1995 				if (max_key->offset == 0)
1996 					continue;
1997 				end = max_key->offset;
1998 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1999 				end--;
2000 			}
2001 		} else {
2002 			end = (u64)-1;
2003 		}
2004 
2005 		/* the lock_extent waits for readpage to complete */
2006 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2007 		btrfs_drop_extent_cache(inode, start, end, 1);
2008 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2009 	}
2010 	return 0;
2011 }
2012 
2013 static int find_next_key(struct btrfs_path *path, int level,
2014 			 struct btrfs_key *key)
2015 
2016 {
2017 	while (level < BTRFS_MAX_LEVEL) {
2018 		if (!path->nodes[level])
2019 			break;
2020 		if (path->slots[level] + 1 <
2021 		    btrfs_header_nritems(path->nodes[level])) {
2022 			btrfs_node_key_to_cpu(path->nodes[level], key,
2023 					      path->slots[level] + 1);
2024 			return 0;
2025 		}
2026 		level++;
2027 	}
2028 	return 1;
2029 }
2030 
2031 /*
2032  * merge the relocated tree blocks in reloc tree with corresponding
2033  * fs tree.
2034  */
2035 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2036 					       struct btrfs_root *root)
2037 {
2038 	LIST_HEAD(inode_list);
2039 	struct btrfs_key key;
2040 	struct btrfs_key next_key;
2041 	struct btrfs_trans_handle *trans;
2042 	struct btrfs_root *reloc_root;
2043 	struct btrfs_root_item *root_item;
2044 	struct btrfs_path *path;
2045 	struct extent_buffer *leaf;
2046 	int level;
2047 	int max_level;
2048 	int replaced = 0;
2049 	int ret;
2050 	int err = 0;
2051 	u32 min_reserved;
2052 
2053 	path = btrfs_alloc_path();
2054 	if (!path)
2055 		return -ENOMEM;
2056 	path->reada = 1;
2057 
2058 	reloc_root = root->reloc_root;
2059 	root_item = &reloc_root->root_item;
2060 
2061 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2062 		level = btrfs_root_level(root_item);
2063 		extent_buffer_get(reloc_root->node);
2064 		path->nodes[level] = reloc_root->node;
2065 		path->slots[level] = 0;
2066 	} else {
2067 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2068 
2069 		level = root_item->drop_level;
2070 		BUG_ON(level == 0);
2071 		path->lowest_level = level;
2072 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2073 		path->lowest_level = 0;
2074 		if (ret < 0) {
2075 			btrfs_free_path(path);
2076 			return ret;
2077 		}
2078 
2079 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2080 				      path->slots[level]);
2081 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2082 
2083 		btrfs_unlock_up_safe(path, 0);
2084 	}
2085 
2086 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2087 	memset(&next_key, 0, sizeof(next_key));
2088 
2089 	while (1) {
2090 		trans = btrfs_start_transaction(root, 0);
2091 		BUG_ON(IS_ERR(trans));
2092 		trans->block_rsv = rc->block_rsv;
2093 
2094 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2095 					     BTRFS_RESERVE_FLUSH_ALL);
2096 		if (ret) {
2097 			BUG_ON(ret != -EAGAIN);
2098 			ret = btrfs_commit_transaction(trans, root);
2099 			BUG_ON(ret);
2100 			continue;
2101 		}
2102 
2103 		replaced = 0;
2104 		max_level = level;
2105 
2106 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2107 		if (ret < 0) {
2108 			err = ret;
2109 			goto out;
2110 		}
2111 		if (ret > 0)
2112 			break;
2113 
2114 		if (!find_next_key(path, level, &key) &&
2115 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2116 			ret = 0;
2117 		} else {
2118 			ret = replace_path(trans, root, reloc_root, path,
2119 					   &next_key, level, max_level);
2120 		}
2121 		if (ret < 0) {
2122 			err = ret;
2123 			goto out;
2124 		}
2125 
2126 		if (ret > 0) {
2127 			level = ret;
2128 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2129 					      path->slots[level]);
2130 			replaced = 1;
2131 		}
2132 
2133 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2134 		if (ret > 0)
2135 			break;
2136 
2137 		BUG_ON(level == 0);
2138 		/*
2139 		 * save the merging progress in the drop_progress.
2140 		 * this is OK since root refs == 1 in this case.
2141 		 */
2142 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2143 			       path->slots[level]);
2144 		root_item->drop_level = level;
2145 
2146 		btrfs_end_transaction_throttle(trans, root);
2147 
2148 		btrfs_btree_balance_dirty(root);
2149 
2150 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2151 			invalidate_extent_cache(root, &key, &next_key);
2152 	}
2153 
2154 	/*
2155 	 * handle the case only one block in the fs tree need to be
2156 	 * relocated and the block is tree root.
2157 	 */
2158 	leaf = btrfs_lock_root_node(root);
2159 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2160 	btrfs_tree_unlock(leaf);
2161 	free_extent_buffer(leaf);
2162 	if (ret < 0)
2163 		err = ret;
2164 out:
2165 	btrfs_free_path(path);
2166 
2167 	if (err == 0) {
2168 		memset(&root_item->drop_progress, 0,
2169 		       sizeof(root_item->drop_progress));
2170 		root_item->drop_level = 0;
2171 		btrfs_set_root_refs(root_item, 0);
2172 		btrfs_update_reloc_root(trans, root);
2173 	}
2174 
2175 	btrfs_end_transaction_throttle(trans, root);
2176 
2177 	btrfs_btree_balance_dirty(root);
2178 
2179 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2180 		invalidate_extent_cache(root, &key, &next_key);
2181 
2182 	return err;
2183 }
2184 
2185 static noinline_for_stack
2186 int prepare_to_merge(struct reloc_control *rc, int err)
2187 {
2188 	struct btrfs_root *root = rc->extent_root;
2189 	struct btrfs_root *reloc_root;
2190 	struct btrfs_trans_handle *trans;
2191 	LIST_HEAD(reloc_roots);
2192 	u64 num_bytes = 0;
2193 	int ret;
2194 
2195 	mutex_lock(&root->fs_info->reloc_mutex);
2196 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2197 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2198 	mutex_unlock(&root->fs_info->reloc_mutex);
2199 
2200 again:
2201 	if (!err) {
2202 		num_bytes = rc->merging_rsv_size;
2203 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2204 					  BTRFS_RESERVE_FLUSH_ALL);
2205 		if (ret)
2206 			err = ret;
2207 	}
2208 
2209 	trans = btrfs_join_transaction(rc->extent_root);
2210 	if (IS_ERR(trans)) {
2211 		if (!err)
2212 			btrfs_block_rsv_release(rc->extent_root,
2213 						rc->block_rsv, num_bytes);
2214 		return PTR_ERR(trans);
2215 	}
2216 
2217 	if (!err) {
2218 		if (num_bytes != rc->merging_rsv_size) {
2219 			btrfs_end_transaction(trans, rc->extent_root);
2220 			btrfs_block_rsv_release(rc->extent_root,
2221 						rc->block_rsv, num_bytes);
2222 			goto again;
2223 		}
2224 	}
2225 
2226 	rc->merge_reloc_tree = 1;
2227 
2228 	while (!list_empty(&rc->reloc_roots)) {
2229 		reloc_root = list_entry(rc->reloc_roots.next,
2230 					struct btrfs_root, root_list);
2231 		list_del_init(&reloc_root->root_list);
2232 
2233 		root = read_fs_root(reloc_root->fs_info,
2234 				    reloc_root->root_key.offset);
2235 		BUG_ON(IS_ERR(root));
2236 		BUG_ON(root->reloc_root != reloc_root);
2237 
2238 		/*
2239 		 * set reference count to 1, so btrfs_recover_relocation
2240 		 * knows it should resumes merging
2241 		 */
2242 		if (!err)
2243 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2244 		btrfs_update_reloc_root(trans, root);
2245 
2246 		list_add(&reloc_root->root_list, &reloc_roots);
2247 	}
2248 
2249 	list_splice(&reloc_roots, &rc->reloc_roots);
2250 
2251 	if (!err)
2252 		btrfs_commit_transaction(trans, rc->extent_root);
2253 	else
2254 		btrfs_end_transaction(trans, rc->extent_root);
2255 	return err;
2256 }
2257 
2258 static noinline_for_stack
2259 void free_reloc_roots(struct list_head *list)
2260 {
2261 	struct btrfs_root *reloc_root;
2262 
2263 	while (!list_empty(list)) {
2264 		reloc_root = list_entry(list->next, struct btrfs_root,
2265 					root_list);
2266 		__update_reloc_root(reloc_root, 1);
2267 		free_extent_buffer(reloc_root->node);
2268 		free_extent_buffer(reloc_root->commit_root);
2269 		kfree(reloc_root);
2270 	}
2271 }
2272 
2273 static noinline_for_stack
2274 int merge_reloc_roots(struct reloc_control *rc)
2275 {
2276 	struct btrfs_root *root;
2277 	struct btrfs_root *reloc_root;
2278 	LIST_HEAD(reloc_roots);
2279 	int found = 0;
2280 	int ret = 0;
2281 again:
2282 	root = rc->extent_root;
2283 
2284 	/*
2285 	 * this serializes us with btrfs_record_root_in_transaction,
2286 	 * we have to make sure nobody is in the middle of
2287 	 * adding their roots to the list while we are
2288 	 * doing this splice
2289 	 */
2290 	mutex_lock(&root->fs_info->reloc_mutex);
2291 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2292 	mutex_unlock(&root->fs_info->reloc_mutex);
2293 
2294 	while (!list_empty(&reloc_roots)) {
2295 		found = 1;
2296 		reloc_root = list_entry(reloc_roots.next,
2297 					struct btrfs_root, root_list);
2298 
2299 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2300 			root = read_fs_root(reloc_root->fs_info,
2301 					    reloc_root->root_key.offset);
2302 			BUG_ON(IS_ERR(root));
2303 			BUG_ON(root->reloc_root != reloc_root);
2304 
2305 			ret = merge_reloc_root(rc, root);
2306 			if (ret)
2307 				goto out;
2308 		} else {
2309 			list_del_init(&reloc_root->root_list);
2310 		}
2311 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2312 		if (ret < 0) {
2313 			if (list_empty(&reloc_root->root_list))
2314 				list_add_tail(&reloc_root->root_list,
2315 					      &reloc_roots);
2316 			goto out;
2317 		}
2318 	}
2319 
2320 	if (found) {
2321 		found = 0;
2322 		goto again;
2323 	}
2324 out:
2325 	if (ret) {
2326 		btrfs_std_error(root->fs_info, ret);
2327 		if (!list_empty(&reloc_roots))
2328 			free_reloc_roots(&reloc_roots);
2329 	}
2330 
2331 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2332 	return ret;
2333 }
2334 
2335 static void free_block_list(struct rb_root *blocks)
2336 {
2337 	struct tree_block *block;
2338 	struct rb_node *rb_node;
2339 	while ((rb_node = rb_first(blocks))) {
2340 		block = rb_entry(rb_node, struct tree_block, rb_node);
2341 		rb_erase(rb_node, blocks);
2342 		kfree(block);
2343 	}
2344 }
2345 
2346 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2347 				      struct btrfs_root *reloc_root)
2348 {
2349 	struct btrfs_root *root;
2350 
2351 	if (reloc_root->last_trans == trans->transid)
2352 		return 0;
2353 
2354 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2355 	BUG_ON(IS_ERR(root));
2356 	BUG_ON(root->reloc_root != reloc_root);
2357 
2358 	return btrfs_record_root_in_trans(trans, root);
2359 }
2360 
2361 static noinline_for_stack
2362 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2363 				     struct reloc_control *rc,
2364 				     struct backref_node *node,
2365 				     struct backref_edge *edges[], int *nr)
2366 {
2367 	struct backref_node *next;
2368 	struct btrfs_root *root;
2369 	int index = 0;
2370 
2371 	next = node;
2372 	while (1) {
2373 		cond_resched();
2374 		next = walk_up_backref(next, edges, &index);
2375 		root = next->root;
2376 		BUG_ON(!root);
2377 		BUG_ON(!root->ref_cows);
2378 
2379 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2380 			record_reloc_root_in_trans(trans, root);
2381 			break;
2382 		}
2383 
2384 		btrfs_record_root_in_trans(trans, root);
2385 		root = root->reloc_root;
2386 
2387 		if (next->new_bytenr != root->node->start) {
2388 			BUG_ON(next->new_bytenr);
2389 			BUG_ON(!list_empty(&next->list));
2390 			next->new_bytenr = root->node->start;
2391 			next->root = root;
2392 			list_add_tail(&next->list,
2393 				      &rc->backref_cache.changed);
2394 			__mark_block_processed(rc, next);
2395 			break;
2396 		}
2397 
2398 		WARN_ON(1);
2399 		root = NULL;
2400 		next = walk_down_backref(edges, &index);
2401 		if (!next || next->level <= node->level)
2402 			break;
2403 	}
2404 	if (!root)
2405 		return NULL;
2406 
2407 	*nr = index;
2408 	next = node;
2409 	/* setup backref node path for btrfs_reloc_cow_block */
2410 	while (1) {
2411 		rc->backref_cache.path[next->level] = next;
2412 		if (--index < 0)
2413 			break;
2414 		next = edges[index]->node[UPPER];
2415 	}
2416 	return root;
2417 }
2418 
2419 /*
2420  * select a tree root for relocation. return NULL if the block
2421  * is reference counted. we should use do_relocation() in this
2422  * case. return a tree root pointer if the block isn't reference
2423  * counted. return -ENOENT if the block is root of reloc tree.
2424  */
2425 static noinline_for_stack
2426 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2427 				   struct backref_node *node)
2428 {
2429 	struct backref_node *next;
2430 	struct btrfs_root *root;
2431 	struct btrfs_root *fs_root = NULL;
2432 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2433 	int index = 0;
2434 
2435 	next = node;
2436 	while (1) {
2437 		cond_resched();
2438 		next = walk_up_backref(next, edges, &index);
2439 		root = next->root;
2440 		BUG_ON(!root);
2441 
2442 		/* no other choice for non-references counted tree */
2443 		if (!root->ref_cows)
2444 			return root;
2445 
2446 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2447 			fs_root = root;
2448 
2449 		if (next != node)
2450 			return NULL;
2451 
2452 		next = walk_down_backref(edges, &index);
2453 		if (!next || next->level <= node->level)
2454 			break;
2455 	}
2456 
2457 	if (!fs_root)
2458 		return ERR_PTR(-ENOENT);
2459 	return fs_root;
2460 }
2461 
2462 static noinline_for_stack
2463 u64 calcu_metadata_size(struct reloc_control *rc,
2464 			struct backref_node *node, int reserve)
2465 {
2466 	struct backref_node *next = node;
2467 	struct backref_edge *edge;
2468 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2469 	u64 num_bytes = 0;
2470 	int index = 0;
2471 
2472 	BUG_ON(reserve && node->processed);
2473 
2474 	while (next) {
2475 		cond_resched();
2476 		while (1) {
2477 			if (next->processed && (reserve || next != node))
2478 				break;
2479 
2480 			num_bytes += btrfs_level_size(rc->extent_root,
2481 						      next->level);
2482 
2483 			if (list_empty(&next->upper))
2484 				break;
2485 
2486 			edge = list_entry(next->upper.next,
2487 					  struct backref_edge, list[LOWER]);
2488 			edges[index++] = edge;
2489 			next = edge->node[UPPER];
2490 		}
2491 		next = walk_down_backref(edges, &index);
2492 	}
2493 	return num_bytes;
2494 }
2495 
2496 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2497 				  struct reloc_control *rc,
2498 				  struct backref_node *node)
2499 {
2500 	struct btrfs_root *root = rc->extent_root;
2501 	u64 num_bytes;
2502 	int ret;
2503 
2504 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2505 
2506 	trans->block_rsv = rc->block_rsv;
2507 	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2508 				  BTRFS_RESERVE_FLUSH_ALL);
2509 	if (ret) {
2510 		if (ret == -EAGAIN)
2511 			rc->commit_transaction = 1;
2512 		return ret;
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 static void release_metadata_space(struct reloc_control *rc,
2519 				   struct backref_node *node)
2520 {
2521 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2522 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2523 }
2524 
2525 /*
2526  * relocate a block tree, and then update pointers in upper level
2527  * blocks that reference the block to point to the new location.
2528  *
2529  * if called by link_to_upper, the block has already been relocated.
2530  * in that case this function just updates pointers.
2531  */
2532 static int do_relocation(struct btrfs_trans_handle *trans,
2533 			 struct reloc_control *rc,
2534 			 struct backref_node *node,
2535 			 struct btrfs_key *key,
2536 			 struct btrfs_path *path, int lowest)
2537 {
2538 	struct backref_node *upper;
2539 	struct backref_edge *edge;
2540 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2541 	struct btrfs_root *root;
2542 	struct extent_buffer *eb;
2543 	u32 blocksize;
2544 	u64 bytenr;
2545 	u64 generation;
2546 	int nr;
2547 	int slot;
2548 	int ret;
2549 	int err = 0;
2550 
2551 	BUG_ON(lowest && node->eb);
2552 
2553 	path->lowest_level = node->level + 1;
2554 	rc->backref_cache.path[node->level] = node;
2555 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2556 		cond_resched();
2557 
2558 		upper = edge->node[UPPER];
2559 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2560 		BUG_ON(!root);
2561 
2562 		if (upper->eb && !upper->locked) {
2563 			if (!lowest) {
2564 				ret = btrfs_bin_search(upper->eb, key,
2565 						       upper->level, &slot);
2566 				BUG_ON(ret);
2567 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2568 				if (node->eb->start == bytenr)
2569 					goto next;
2570 			}
2571 			drop_node_buffer(upper);
2572 		}
2573 
2574 		if (!upper->eb) {
2575 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2576 			if (ret < 0) {
2577 				err = ret;
2578 				break;
2579 			}
2580 			BUG_ON(ret > 0);
2581 
2582 			if (!upper->eb) {
2583 				upper->eb = path->nodes[upper->level];
2584 				path->nodes[upper->level] = NULL;
2585 			} else {
2586 				BUG_ON(upper->eb != path->nodes[upper->level]);
2587 			}
2588 
2589 			upper->locked = 1;
2590 			path->locks[upper->level] = 0;
2591 
2592 			slot = path->slots[upper->level];
2593 			btrfs_release_path(path);
2594 		} else {
2595 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2596 					       &slot);
2597 			BUG_ON(ret);
2598 		}
2599 
2600 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2601 		if (lowest) {
2602 			BUG_ON(bytenr != node->bytenr);
2603 		} else {
2604 			if (node->eb->start == bytenr)
2605 				goto next;
2606 		}
2607 
2608 		blocksize = btrfs_level_size(root, node->level);
2609 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2610 		eb = read_tree_block(root, bytenr, blocksize, generation);
2611 		if (!eb || !extent_buffer_uptodate(eb)) {
2612 			free_extent_buffer(eb);
2613 			err = -EIO;
2614 			goto next;
2615 		}
2616 		btrfs_tree_lock(eb);
2617 		btrfs_set_lock_blocking(eb);
2618 
2619 		if (!node->eb) {
2620 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2621 					      slot, &eb);
2622 			btrfs_tree_unlock(eb);
2623 			free_extent_buffer(eb);
2624 			if (ret < 0) {
2625 				err = ret;
2626 				goto next;
2627 			}
2628 			BUG_ON(node->eb != eb);
2629 		} else {
2630 			btrfs_set_node_blockptr(upper->eb, slot,
2631 						node->eb->start);
2632 			btrfs_set_node_ptr_generation(upper->eb, slot,
2633 						      trans->transid);
2634 			btrfs_mark_buffer_dirty(upper->eb);
2635 
2636 			ret = btrfs_inc_extent_ref(trans, root,
2637 						node->eb->start, blocksize,
2638 						upper->eb->start,
2639 						btrfs_header_owner(upper->eb),
2640 						node->level, 0, 1);
2641 			BUG_ON(ret);
2642 
2643 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2644 			BUG_ON(ret);
2645 		}
2646 next:
2647 		if (!upper->pending)
2648 			drop_node_buffer(upper);
2649 		else
2650 			unlock_node_buffer(upper);
2651 		if (err)
2652 			break;
2653 	}
2654 
2655 	if (!err && node->pending) {
2656 		drop_node_buffer(node);
2657 		list_move_tail(&node->list, &rc->backref_cache.changed);
2658 		node->pending = 0;
2659 	}
2660 
2661 	path->lowest_level = 0;
2662 	BUG_ON(err == -ENOSPC);
2663 	return err;
2664 }
2665 
2666 static int link_to_upper(struct btrfs_trans_handle *trans,
2667 			 struct reloc_control *rc,
2668 			 struct backref_node *node,
2669 			 struct btrfs_path *path)
2670 {
2671 	struct btrfs_key key;
2672 
2673 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2674 	return do_relocation(trans, rc, node, &key, path, 0);
2675 }
2676 
2677 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2678 				struct reloc_control *rc,
2679 				struct btrfs_path *path, int err)
2680 {
2681 	LIST_HEAD(list);
2682 	struct backref_cache *cache = &rc->backref_cache;
2683 	struct backref_node *node;
2684 	int level;
2685 	int ret;
2686 
2687 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2688 		while (!list_empty(&cache->pending[level])) {
2689 			node = list_entry(cache->pending[level].next,
2690 					  struct backref_node, list);
2691 			list_move_tail(&node->list, &list);
2692 			BUG_ON(!node->pending);
2693 
2694 			if (!err) {
2695 				ret = link_to_upper(trans, rc, node, path);
2696 				if (ret < 0)
2697 					err = ret;
2698 			}
2699 		}
2700 		list_splice_init(&list, &cache->pending[level]);
2701 	}
2702 	return err;
2703 }
2704 
2705 static void mark_block_processed(struct reloc_control *rc,
2706 				 u64 bytenr, u32 blocksize)
2707 {
2708 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2709 			EXTENT_DIRTY, GFP_NOFS);
2710 }
2711 
2712 static void __mark_block_processed(struct reloc_control *rc,
2713 				   struct backref_node *node)
2714 {
2715 	u32 blocksize;
2716 	if (node->level == 0 ||
2717 	    in_block_group(node->bytenr, rc->block_group)) {
2718 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2719 		mark_block_processed(rc, node->bytenr, blocksize);
2720 	}
2721 	node->processed = 1;
2722 }
2723 
2724 /*
2725  * mark a block and all blocks directly/indirectly reference the block
2726  * as processed.
2727  */
2728 static void update_processed_blocks(struct reloc_control *rc,
2729 				    struct backref_node *node)
2730 {
2731 	struct backref_node *next = node;
2732 	struct backref_edge *edge;
2733 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2734 	int index = 0;
2735 
2736 	while (next) {
2737 		cond_resched();
2738 		while (1) {
2739 			if (next->processed)
2740 				break;
2741 
2742 			__mark_block_processed(rc, next);
2743 
2744 			if (list_empty(&next->upper))
2745 				break;
2746 
2747 			edge = list_entry(next->upper.next,
2748 					  struct backref_edge, list[LOWER]);
2749 			edges[index++] = edge;
2750 			next = edge->node[UPPER];
2751 		}
2752 		next = walk_down_backref(edges, &index);
2753 	}
2754 }
2755 
2756 static int tree_block_processed(u64 bytenr, u32 blocksize,
2757 				struct reloc_control *rc)
2758 {
2759 	if (test_range_bit(&rc->processed_blocks, bytenr,
2760 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2761 		return 1;
2762 	return 0;
2763 }
2764 
2765 static int get_tree_block_key(struct reloc_control *rc,
2766 			      struct tree_block *block)
2767 {
2768 	struct extent_buffer *eb;
2769 
2770 	BUG_ON(block->key_ready);
2771 	eb = read_tree_block(rc->extent_root, block->bytenr,
2772 			     block->key.objectid, block->key.offset);
2773 	if (!eb || !extent_buffer_uptodate(eb)) {
2774 		free_extent_buffer(eb);
2775 		return -EIO;
2776 	}
2777 	WARN_ON(btrfs_header_level(eb) != block->level);
2778 	if (block->level == 0)
2779 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2780 	else
2781 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2782 	free_extent_buffer(eb);
2783 	block->key_ready = 1;
2784 	return 0;
2785 }
2786 
2787 static int reada_tree_block(struct reloc_control *rc,
2788 			    struct tree_block *block)
2789 {
2790 	BUG_ON(block->key_ready);
2791 	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2792 		readahead_tree_block(rc->extent_root, block->bytenr,
2793 				     block->key.objectid,
2794 				     rc->extent_root->leafsize);
2795 	else
2796 		readahead_tree_block(rc->extent_root, block->bytenr,
2797 				     block->key.objectid, block->key.offset);
2798 	return 0;
2799 }
2800 
2801 /*
2802  * helper function to relocate a tree block
2803  */
2804 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2805 				struct reloc_control *rc,
2806 				struct backref_node *node,
2807 				struct btrfs_key *key,
2808 				struct btrfs_path *path)
2809 {
2810 	struct btrfs_root *root;
2811 	int release = 0;
2812 	int ret = 0;
2813 
2814 	if (!node)
2815 		return 0;
2816 
2817 	BUG_ON(node->processed);
2818 	root = select_one_root(trans, node);
2819 	if (root == ERR_PTR(-ENOENT)) {
2820 		update_processed_blocks(rc, node);
2821 		goto out;
2822 	}
2823 
2824 	if (!root || root->ref_cows) {
2825 		ret = reserve_metadata_space(trans, rc, node);
2826 		if (ret)
2827 			goto out;
2828 		release = 1;
2829 	}
2830 
2831 	if (root) {
2832 		if (root->ref_cows) {
2833 			BUG_ON(node->new_bytenr);
2834 			BUG_ON(!list_empty(&node->list));
2835 			btrfs_record_root_in_trans(trans, root);
2836 			root = root->reloc_root;
2837 			node->new_bytenr = root->node->start;
2838 			node->root = root;
2839 			list_add_tail(&node->list, &rc->backref_cache.changed);
2840 		} else {
2841 			path->lowest_level = node->level;
2842 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2843 			btrfs_release_path(path);
2844 			if (ret > 0)
2845 				ret = 0;
2846 		}
2847 		if (!ret)
2848 			update_processed_blocks(rc, node);
2849 	} else {
2850 		ret = do_relocation(trans, rc, node, key, path, 1);
2851 	}
2852 out:
2853 	if (ret || node->level == 0 || node->cowonly) {
2854 		if (release)
2855 			release_metadata_space(rc, node);
2856 		remove_backref_node(&rc->backref_cache, node);
2857 	}
2858 	return ret;
2859 }
2860 
2861 /*
2862  * relocate a list of blocks
2863  */
2864 static noinline_for_stack
2865 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2866 			 struct reloc_control *rc, struct rb_root *blocks)
2867 {
2868 	struct backref_node *node;
2869 	struct btrfs_path *path;
2870 	struct tree_block *block;
2871 	struct rb_node *rb_node;
2872 	int ret;
2873 	int err = 0;
2874 
2875 	path = btrfs_alloc_path();
2876 	if (!path) {
2877 		err = -ENOMEM;
2878 		goto out_free_blocks;
2879 	}
2880 
2881 	rb_node = rb_first(blocks);
2882 	while (rb_node) {
2883 		block = rb_entry(rb_node, struct tree_block, rb_node);
2884 		if (!block->key_ready)
2885 			reada_tree_block(rc, block);
2886 		rb_node = rb_next(rb_node);
2887 	}
2888 
2889 	rb_node = rb_first(blocks);
2890 	while (rb_node) {
2891 		block = rb_entry(rb_node, struct tree_block, rb_node);
2892 		if (!block->key_ready) {
2893 			err = get_tree_block_key(rc, block);
2894 			if (err)
2895 				goto out_free_path;
2896 		}
2897 		rb_node = rb_next(rb_node);
2898 	}
2899 
2900 	rb_node = rb_first(blocks);
2901 	while (rb_node) {
2902 		block = rb_entry(rb_node, struct tree_block, rb_node);
2903 
2904 		node = build_backref_tree(rc, &block->key,
2905 					  block->level, block->bytenr);
2906 		if (IS_ERR(node)) {
2907 			err = PTR_ERR(node);
2908 			goto out;
2909 		}
2910 
2911 		ret = relocate_tree_block(trans, rc, node, &block->key,
2912 					  path);
2913 		if (ret < 0) {
2914 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2915 				err = ret;
2916 			goto out;
2917 		}
2918 		rb_node = rb_next(rb_node);
2919 	}
2920 out:
2921 	err = finish_pending_nodes(trans, rc, path, err);
2922 
2923 out_free_path:
2924 	btrfs_free_path(path);
2925 out_free_blocks:
2926 	free_block_list(blocks);
2927 	return err;
2928 }
2929 
2930 static noinline_for_stack
2931 int prealloc_file_extent_cluster(struct inode *inode,
2932 				 struct file_extent_cluster *cluster)
2933 {
2934 	u64 alloc_hint = 0;
2935 	u64 start;
2936 	u64 end;
2937 	u64 offset = BTRFS_I(inode)->index_cnt;
2938 	u64 num_bytes;
2939 	int nr = 0;
2940 	int ret = 0;
2941 
2942 	BUG_ON(cluster->start != cluster->boundary[0]);
2943 	mutex_lock(&inode->i_mutex);
2944 
2945 	ret = btrfs_check_data_free_space(inode, cluster->end +
2946 					  1 - cluster->start);
2947 	if (ret)
2948 		goto out;
2949 
2950 	while (nr < cluster->nr) {
2951 		start = cluster->boundary[nr] - offset;
2952 		if (nr + 1 < cluster->nr)
2953 			end = cluster->boundary[nr + 1] - 1 - offset;
2954 		else
2955 			end = cluster->end - offset;
2956 
2957 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2958 		num_bytes = end + 1 - start;
2959 		ret = btrfs_prealloc_file_range(inode, 0, start,
2960 						num_bytes, num_bytes,
2961 						end + 1, &alloc_hint);
2962 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2963 		if (ret)
2964 			break;
2965 		nr++;
2966 	}
2967 	btrfs_free_reserved_data_space(inode, cluster->end +
2968 				       1 - cluster->start);
2969 out:
2970 	mutex_unlock(&inode->i_mutex);
2971 	return ret;
2972 }
2973 
2974 static noinline_for_stack
2975 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2976 			 u64 block_start)
2977 {
2978 	struct btrfs_root *root = BTRFS_I(inode)->root;
2979 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2980 	struct extent_map *em;
2981 	int ret = 0;
2982 
2983 	em = alloc_extent_map();
2984 	if (!em)
2985 		return -ENOMEM;
2986 
2987 	em->start = start;
2988 	em->len = end + 1 - start;
2989 	em->block_len = em->len;
2990 	em->block_start = block_start;
2991 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2992 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2993 
2994 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2995 	while (1) {
2996 		write_lock(&em_tree->lock);
2997 		ret = add_extent_mapping(em_tree, em, 0);
2998 		write_unlock(&em_tree->lock);
2999 		if (ret != -EEXIST) {
3000 			free_extent_map(em);
3001 			break;
3002 		}
3003 		btrfs_drop_extent_cache(inode, start, end, 0);
3004 	}
3005 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3006 	return ret;
3007 }
3008 
3009 static int relocate_file_extent_cluster(struct inode *inode,
3010 					struct file_extent_cluster *cluster)
3011 {
3012 	u64 page_start;
3013 	u64 page_end;
3014 	u64 offset = BTRFS_I(inode)->index_cnt;
3015 	unsigned long index;
3016 	unsigned long last_index;
3017 	struct page *page;
3018 	struct file_ra_state *ra;
3019 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3020 	int nr = 0;
3021 	int ret = 0;
3022 
3023 	if (!cluster->nr)
3024 		return 0;
3025 
3026 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3027 	if (!ra)
3028 		return -ENOMEM;
3029 
3030 	ret = prealloc_file_extent_cluster(inode, cluster);
3031 	if (ret)
3032 		goto out;
3033 
3034 	file_ra_state_init(ra, inode->i_mapping);
3035 
3036 	ret = setup_extent_mapping(inode, cluster->start - offset,
3037 				   cluster->end - offset, cluster->start);
3038 	if (ret)
3039 		goto out;
3040 
3041 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3042 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3043 	while (index <= last_index) {
3044 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3045 		if (ret)
3046 			goto out;
3047 
3048 		page = find_lock_page(inode->i_mapping, index);
3049 		if (!page) {
3050 			page_cache_sync_readahead(inode->i_mapping,
3051 						  ra, NULL, index,
3052 						  last_index + 1 - index);
3053 			page = find_or_create_page(inode->i_mapping, index,
3054 						   mask);
3055 			if (!page) {
3056 				btrfs_delalloc_release_metadata(inode,
3057 							PAGE_CACHE_SIZE);
3058 				ret = -ENOMEM;
3059 				goto out;
3060 			}
3061 		}
3062 
3063 		if (PageReadahead(page)) {
3064 			page_cache_async_readahead(inode->i_mapping,
3065 						   ra, NULL, page, index,
3066 						   last_index + 1 - index);
3067 		}
3068 
3069 		if (!PageUptodate(page)) {
3070 			btrfs_readpage(NULL, page);
3071 			lock_page(page);
3072 			if (!PageUptodate(page)) {
3073 				unlock_page(page);
3074 				page_cache_release(page);
3075 				btrfs_delalloc_release_metadata(inode,
3076 							PAGE_CACHE_SIZE);
3077 				ret = -EIO;
3078 				goto out;
3079 			}
3080 		}
3081 
3082 		page_start = page_offset(page);
3083 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3084 
3085 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3086 
3087 		set_page_extent_mapped(page);
3088 
3089 		if (nr < cluster->nr &&
3090 		    page_start + offset == cluster->boundary[nr]) {
3091 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3092 					page_start, page_end,
3093 					EXTENT_BOUNDARY, GFP_NOFS);
3094 			nr++;
3095 		}
3096 
3097 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3098 		set_page_dirty(page);
3099 
3100 		unlock_extent(&BTRFS_I(inode)->io_tree,
3101 			      page_start, page_end);
3102 		unlock_page(page);
3103 		page_cache_release(page);
3104 
3105 		index++;
3106 		balance_dirty_pages_ratelimited(inode->i_mapping);
3107 		btrfs_throttle(BTRFS_I(inode)->root);
3108 	}
3109 	WARN_ON(nr != cluster->nr);
3110 out:
3111 	kfree(ra);
3112 	return ret;
3113 }
3114 
3115 static noinline_for_stack
3116 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3117 			 struct file_extent_cluster *cluster)
3118 {
3119 	int ret;
3120 
3121 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3122 		ret = relocate_file_extent_cluster(inode, cluster);
3123 		if (ret)
3124 			return ret;
3125 		cluster->nr = 0;
3126 	}
3127 
3128 	if (!cluster->nr)
3129 		cluster->start = extent_key->objectid;
3130 	else
3131 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3132 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3133 	cluster->boundary[cluster->nr] = extent_key->objectid;
3134 	cluster->nr++;
3135 
3136 	if (cluster->nr >= MAX_EXTENTS) {
3137 		ret = relocate_file_extent_cluster(inode, cluster);
3138 		if (ret)
3139 			return ret;
3140 		cluster->nr = 0;
3141 	}
3142 	return 0;
3143 }
3144 
3145 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3146 static int get_ref_objectid_v0(struct reloc_control *rc,
3147 			       struct btrfs_path *path,
3148 			       struct btrfs_key *extent_key,
3149 			       u64 *ref_objectid, int *path_change)
3150 {
3151 	struct btrfs_key key;
3152 	struct extent_buffer *leaf;
3153 	struct btrfs_extent_ref_v0 *ref0;
3154 	int ret;
3155 	int slot;
3156 
3157 	leaf = path->nodes[0];
3158 	slot = path->slots[0];
3159 	while (1) {
3160 		if (slot >= btrfs_header_nritems(leaf)) {
3161 			ret = btrfs_next_leaf(rc->extent_root, path);
3162 			if (ret < 0)
3163 				return ret;
3164 			BUG_ON(ret > 0);
3165 			leaf = path->nodes[0];
3166 			slot = path->slots[0];
3167 			if (path_change)
3168 				*path_change = 1;
3169 		}
3170 		btrfs_item_key_to_cpu(leaf, &key, slot);
3171 		if (key.objectid != extent_key->objectid)
3172 			return -ENOENT;
3173 
3174 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3175 			slot++;
3176 			continue;
3177 		}
3178 		ref0 = btrfs_item_ptr(leaf, slot,
3179 				struct btrfs_extent_ref_v0);
3180 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3181 		break;
3182 	}
3183 	return 0;
3184 }
3185 #endif
3186 
3187 /*
3188  * helper to add a tree block to the list.
3189  * the major work is getting the generation and level of the block
3190  */
3191 static int add_tree_block(struct reloc_control *rc,
3192 			  struct btrfs_key *extent_key,
3193 			  struct btrfs_path *path,
3194 			  struct rb_root *blocks)
3195 {
3196 	struct extent_buffer *eb;
3197 	struct btrfs_extent_item *ei;
3198 	struct btrfs_tree_block_info *bi;
3199 	struct tree_block *block;
3200 	struct rb_node *rb_node;
3201 	u32 item_size;
3202 	int level = -1;
3203 	int generation;
3204 
3205 	eb =  path->nodes[0];
3206 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3207 
3208 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3209 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3210 		ei = btrfs_item_ptr(eb, path->slots[0],
3211 				struct btrfs_extent_item);
3212 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3213 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3214 			level = btrfs_tree_block_level(eb, bi);
3215 		} else {
3216 			level = (int)extent_key->offset;
3217 		}
3218 		generation = btrfs_extent_generation(eb, ei);
3219 	} else {
3220 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3221 		u64 ref_owner;
3222 		int ret;
3223 
3224 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3225 		ret = get_ref_objectid_v0(rc, path, extent_key,
3226 					  &ref_owner, NULL);
3227 		if (ret < 0)
3228 			return ret;
3229 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3230 		level = (int)ref_owner;
3231 		/* FIXME: get real generation */
3232 		generation = 0;
3233 #else
3234 		BUG();
3235 #endif
3236 	}
3237 
3238 	btrfs_release_path(path);
3239 
3240 	BUG_ON(level == -1);
3241 
3242 	block = kmalloc(sizeof(*block), GFP_NOFS);
3243 	if (!block)
3244 		return -ENOMEM;
3245 
3246 	block->bytenr = extent_key->objectid;
3247 	block->key.objectid = rc->extent_root->leafsize;
3248 	block->key.offset = generation;
3249 	block->level = level;
3250 	block->key_ready = 0;
3251 
3252 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3253 	if (rb_node)
3254 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3255 
3256 	return 0;
3257 }
3258 
3259 /*
3260  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3261  */
3262 static int __add_tree_block(struct reloc_control *rc,
3263 			    u64 bytenr, u32 blocksize,
3264 			    struct rb_root *blocks)
3265 {
3266 	struct btrfs_path *path;
3267 	struct btrfs_key key;
3268 	int ret;
3269 
3270 	if (tree_block_processed(bytenr, blocksize, rc))
3271 		return 0;
3272 
3273 	if (tree_search(blocks, bytenr))
3274 		return 0;
3275 
3276 	path = btrfs_alloc_path();
3277 	if (!path)
3278 		return -ENOMEM;
3279 
3280 	key.objectid = bytenr;
3281 	key.type = BTRFS_EXTENT_ITEM_KEY;
3282 	key.offset = blocksize;
3283 
3284 	path->search_commit_root = 1;
3285 	path->skip_locking = 1;
3286 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3287 	if (ret < 0)
3288 		goto out;
3289 
3290 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3291 	if (ret > 0) {
3292 		if (key.objectid == bytenr &&
3293 		    key.type == BTRFS_METADATA_ITEM_KEY)
3294 			ret = 0;
3295 	}
3296 	BUG_ON(ret);
3297 
3298 	ret = add_tree_block(rc, &key, path, blocks);
3299 out:
3300 	btrfs_free_path(path);
3301 	return ret;
3302 }
3303 
3304 /*
3305  * helper to check if the block use full backrefs for pointers in it
3306  */
3307 static int block_use_full_backref(struct reloc_control *rc,
3308 				  struct extent_buffer *eb)
3309 {
3310 	u64 flags;
3311 	int ret;
3312 
3313 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3314 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3315 		return 1;
3316 
3317 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3318 				       eb->start, btrfs_header_level(eb), 1,
3319 				       NULL, &flags);
3320 	BUG_ON(ret);
3321 
3322 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3323 		ret = 1;
3324 	else
3325 		ret = 0;
3326 	return ret;
3327 }
3328 
3329 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3330 				    struct inode *inode, u64 ino)
3331 {
3332 	struct btrfs_key key;
3333 	struct btrfs_path *path;
3334 	struct btrfs_root *root = fs_info->tree_root;
3335 	struct btrfs_trans_handle *trans;
3336 	int ret = 0;
3337 
3338 	if (inode)
3339 		goto truncate;
3340 
3341 	key.objectid = ino;
3342 	key.type = BTRFS_INODE_ITEM_KEY;
3343 	key.offset = 0;
3344 
3345 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3346 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3347 		if (!IS_ERR(inode))
3348 			iput(inode);
3349 		return -ENOENT;
3350 	}
3351 
3352 truncate:
3353 	path = btrfs_alloc_path();
3354 	if (!path) {
3355 		ret = -ENOMEM;
3356 		goto out;
3357 	}
3358 
3359 	trans = btrfs_join_transaction(root);
3360 	if (IS_ERR(trans)) {
3361 		btrfs_free_path(path);
3362 		ret = PTR_ERR(trans);
3363 		goto out;
3364 	}
3365 
3366 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3367 
3368 	btrfs_free_path(path);
3369 	btrfs_end_transaction(trans, root);
3370 	btrfs_btree_balance_dirty(root);
3371 out:
3372 	iput(inode);
3373 	return ret;
3374 }
3375 
3376 /*
3377  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3378  * this function scans fs tree to find blocks reference the data extent
3379  */
3380 static int find_data_references(struct reloc_control *rc,
3381 				struct btrfs_key *extent_key,
3382 				struct extent_buffer *leaf,
3383 				struct btrfs_extent_data_ref *ref,
3384 				struct rb_root *blocks)
3385 {
3386 	struct btrfs_path *path;
3387 	struct tree_block *block;
3388 	struct btrfs_root *root;
3389 	struct btrfs_file_extent_item *fi;
3390 	struct rb_node *rb_node;
3391 	struct btrfs_key key;
3392 	u64 ref_root;
3393 	u64 ref_objectid;
3394 	u64 ref_offset;
3395 	u32 ref_count;
3396 	u32 nritems;
3397 	int err = 0;
3398 	int added = 0;
3399 	int counted;
3400 	int ret;
3401 
3402 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3403 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3404 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3405 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3406 
3407 	/*
3408 	 * This is an extent belonging to the free space cache, lets just delete
3409 	 * it and redo the search.
3410 	 */
3411 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3412 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3413 					       NULL, ref_objectid);
3414 		if (ret != -ENOENT)
3415 			return ret;
3416 		ret = 0;
3417 	}
3418 
3419 	path = btrfs_alloc_path();
3420 	if (!path)
3421 		return -ENOMEM;
3422 	path->reada = 1;
3423 
3424 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3425 	if (IS_ERR(root)) {
3426 		err = PTR_ERR(root);
3427 		goto out;
3428 	}
3429 
3430 	key.objectid = ref_objectid;
3431 	key.type = BTRFS_EXTENT_DATA_KEY;
3432 	if (ref_offset > ((u64)-1 << 32))
3433 		key.offset = 0;
3434 	else
3435 		key.offset = ref_offset;
3436 
3437 	path->search_commit_root = 1;
3438 	path->skip_locking = 1;
3439 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3440 	if (ret < 0) {
3441 		err = ret;
3442 		goto out;
3443 	}
3444 
3445 	leaf = path->nodes[0];
3446 	nritems = btrfs_header_nritems(leaf);
3447 	/*
3448 	 * the references in tree blocks that use full backrefs
3449 	 * are not counted in
3450 	 */
3451 	if (block_use_full_backref(rc, leaf))
3452 		counted = 0;
3453 	else
3454 		counted = 1;
3455 	rb_node = tree_search(blocks, leaf->start);
3456 	if (rb_node) {
3457 		if (counted)
3458 			added = 1;
3459 		else
3460 			path->slots[0] = nritems;
3461 	}
3462 
3463 	while (ref_count > 0) {
3464 		while (path->slots[0] >= nritems) {
3465 			ret = btrfs_next_leaf(root, path);
3466 			if (ret < 0) {
3467 				err = ret;
3468 				goto out;
3469 			}
3470 			if (ret > 0) {
3471 				WARN_ON(1);
3472 				goto out;
3473 			}
3474 
3475 			leaf = path->nodes[0];
3476 			nritems = btrfs_header_nritems(leaf);
3477 			added = 0;
3478 
3479 			if (block_use_full_backref(rc, leaf))
3480 				counted = 0;
3481 			else
3482 				counted = 1;
3483 			rb_node = tree_search(blocks, leaf->start);
3484 			if (rb_node) {
3485 				if (counted)
3486 					added = 1;
3487 				else
3488 					path->slots[0] = nritems;
3489 			}
3490 		}
3491 
3492 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3493 		if (key.objectid != ref_objectid ||
3494 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3495 			WARN_ON(1);
3496 			break;
3497 		}
3498 
3499 		fi = btrfs_item_ptr(leaf, path->slots[0],
3500 				    struct btrfs_file_extent_item);
3501 
3502 		if (btrfs_file_extent_type(leaf, fi) ==
3503 		    BTRFS_FILE_EXTENT_INLINE)
3504 			goto next;
3505 
3506 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3507 		    extent_key->objectid)
3508 			goto next;
3509 
3510 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3511 		if (key.offset != ref_offset)
3512 			goto next;
3513 
3514 		if (counted)
3515 			ref_count--;
3516 		if (added)
3517 			goto next;
3518 
3519 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3520 			block = kmalloc(sizeof(*block), GFP_NOFS);
3521 			if (!block) {
3522 				err = -ENOMEM;
3523 				break;
3524 			}
3525 			block->bytenr = leaf->start;
3526 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3527 			block->level = 0;
3528 			block->key_ready = 1;
3529 			rb_node = tree_insert(blocks, block->bytenr,
3530 					      &block->rb_node);
3531 			if (rb_node)
3532 				backref_tree_panic(rb_node, -EEXIST,
3533 						   block->bytenr);
3534 		}
3535 		if (counted)
3536 			added = 1;
3537 		else
3538 			path->slots[0] = nritems;
3539 next:
3540 		path->slots[0]++;
3541 
3542 	}
3543 out:
3544 	btrfs_free_path(path);
3545 	return err;
3546 }
3547 
3548 /*
3549  * helper to find all tree blocks that reference a given data extent
3550  */
3551 static noinline_for_stack
3552 int add_data_references(struct reloc_control *rc,
3553 			struct btrfs_key *extent_key,
3554 			struct btrfs_path *path,
3555 			struct rb_root *blocks)
3556 {
3557 	struct btrfs_key key;
3558 	struct extent_buffer *eb;
3559 	struct btrfs_extent_data_ref *dref;
3560 	struct btrfs_extent_inline_ref *iref;
3561 	unsigned long ptr;
3562 	unsigned long end;
3563 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3564 	int ret;
3565 	int err = 0;
3566 
3567 	eb = path->nodes[0];
3568 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3569 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3570 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3571 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3572 		ptr = end;
3573 	else
3574 #endif
3575 		ptr += sizeof(struct btrfs_extent_item);
3576 
3577 	while (ptr < end) {
3578 		iref = (struct btrfs_extent_inline_ref *)ptr;
3579 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3580 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3581 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3582 			ret = __add_tree_block(rc, key.offset, blocksize,
3583 					       blocks);
3584 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3585 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3586 			ret = find_data_references(rc, extent_key,
3587 						   eb, dref, blocks);
3588 		} else {
3589 			BUG();
3590 		}
3591 		ptr += btrfs_extent_inline_ref_size(key.type);
3592 	}
3593 	WARN_ON(ptr > end);
3594 
3595 	while (1) {
3596 		cond_resched();
3597 		eb = path->nodes[0];
3598 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3599 			ret = btrfs_next_leaf(rc->extent_root, path);
3600 			if (ret < 0) {
3601 				err = ret;
3602 				break;
3603 			}
3604 			if (ret > 0)
3605 				break;
3606 			eb = path->nodes[0];
3607 		}
3608 
3609 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3610 		if (key.objectid != extent_key->objectid)
3611 			break;
3612 
3613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3614 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3615 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3616 #else
3617 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3618 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3619 #endif
3620 			ret = __add_tree_block(rc, key.offset, blocksize,
3621 					       blocks);
3622 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3623 			dref = btrfs_item_ptr(eb, path->slots[0],
3624 					      struct btrfs_extent_data_ref);
3625 			ret = find_data_references(rc, extent_key,
3626 						   eb, dref, blocks);
3627 		} else {
3628 			ret = 0;
3629 		}
3630 		if (ret) {
3631 			err = ret;
3632 			break;
3633 		}
3634 		path->slots[0]++;
3635 	}
3636 	btrfs_release_path(path);
3637 	if (err)
3638 		free_block_list(blocks);
3639 	return err;
3640 }
3641 
3642 /*
3643  * helper to find next unprocessed extent
3644  */
3645 static noinline_for_stack
3646 int find_next_extent(struct btrfs_trans_handle *trans,
3647 		     struct reloc_control *rc, struct btrfs_path *path,
3648 		     struct btrfs_key *extent_key)
3649 {
3650 	struct btrfs_key key;
3651 	struct extent_buffer *leaf;
3652 	u64 start, end, last;
3653 	int ret;
3654 
3655 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3656 	while (1) {
3657 		cond_resched();
3658 		if (rc->search_start >= last) {
3659 			ret = 1;
3660 			break;
3661 		}
3662 
3663 		key.objectid = rc->search_start;
3664 		key.type = BTRFS_EXTENT_ITEM_KEY;
3665 		key.offset = 0;
3666 
3667 		path->search_commit_root = 1;
3668 		path->skip_locking = 1;
3669 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3670 					0, 0);
3671 		if (ret < 0)
3672 			break;
3673 next:
3674 		leaf = path->nodes[0];
3675 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3676 			ret = btrfs_next_leaf(rc->extent_root, path);
3677 			if (ret != 0)
3678 				break;
3679 			leaf = path->nodes[0];
3680 		}
3681 
3682 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3683 		if (key.objectid >= last) {
3684 			ret = 1;
3685 			break;
3686 		}
3687 
3688 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3689 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3690 			path->slots[0]++;
3691 			goto next;
3692 		}
3693 
3694 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3695 		    key.objectid + key.offset <= rc->search_start) {
3696 			path->slots[0]++;
3697 			goto next;
3698 		}
3699 
3700 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3701 		    key.objectid + rc->extent_root->leafsize <=
3702 		    rc->search_start) {
3703 			path->slots[0]++;
3704 			goto next;
3705 		}
3706 
3707 		ret = find_first_extent_bit(&rc->processed_blocks,
3708 					    key.objectid, &start, &end,
3709 					    EXTENT_DIRTY, NULL);
3710 
3711 		if (ret == 0 && start <= key.objectid) {
3712 			btrfs_release_path(path);
3713 			rc->search_start = end + 1;
3714 		} else {
3715 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3716 				rc->search_start = key.objectid + key.offset;
3717 			else
3718 				rc->search_start = key.objectid +
3719 					rc->extent_root->leafsize;
3720 			memcpy(extent_key, &key, sizeof(key));
3721 			return 0;
3722 		}
3723 	}
3724 	btrfs_release_path(path);
3725 	return ret;
3726 }
3727 
3728 static void set_reloc_control(struct reloc_control *rc)
3729 {
3730 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3731 
3732 	mutex_lock(&fs_info->reloc_mutex);
3733 	fs_info->reloc_ctl = rc;
3734 	mutex_unlock(&fs_info->reloc_mutex);
3735 }
3736 
3737 static void unset_reloc_control(struct reloc_control *rc)
3738 {
3739 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3740 
3741 	mutex_lock(&fs_info->reloc_mutex);
3742 	fs_info->reloc_ctl = NULL;
3743 	mutex_unlock(&fs_info->reloc_mutex);
3744 }
3745 
3746 static int check_extent_flags(u64 flags)
3747 {
3748 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3749 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3750 		return 1;
3751 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3752 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3753 		return 1;
3754 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3755 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3756 		return 1;
3757 	return 0;
3758 }
3759 
3760 static noinline_for_stack
3761 int prepare_to_relocate(struct reloc_control *rc)
3762 {
3763 	struct btrfs_trans_handle *trans;
3764 	int ret;
3765 
3766 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3767 					      BTRFS_BLOCK_RSV_TEMP);
3768 	if (!rc->block_rsv)
3769 		return -ENOMEM;
3770 
3771 	/*
3772 	 * reserve some space for creating reloc trees.
3773 	 * btrfs_init_reloc_root will use them when there
3774 	 * is no reservation in transaction handle.
3775 	 */
3776 	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3777 				  rc->extent_root->nodesize * 256,
3778 				  BTRFS_RESERVE_FLUSH_ALL);
3779 	if (ret)
3780 		return ret;
3781 
3782 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3783 	rc->search_start = rc->block_group->key.objectid;
3784 	rc->extents_found = 0;
3785 	rc->nodes_relocated = 0;
3786 	rc->merging_rsv_size = 0;
3787 
3788 	rc->create_reloc_tree = 1;
3789 	set_reloc_control(rc);
3790 
3791 	trans = btrfs_join_transaction(rc->extent_root);
3792 	if (IS_ERR(trans)) {
3793 		unset_reloc_control(rc);
3794 		/*
3795 		 * extent tree is not a ref_cow tree and has no reloc_root to
3796 		 * cleanup.  And callers are responsible to free the above
3797 		 * block rsv.
3798 		 */
3799 		return PTR_ERR(trans);
3800 	}
3801 	btrfs_commit_transaction(trans, rc->extent_root);
3802 	return 0;
3803 }
3804 
3805 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3806 {
3807 	struct rb_root blocks = RB_ROOT;
3808 	struct btrfs_key key;
3809 	struct btrfs_trans_handle *trans = NULL;
3810 	struct btrfs_path *path;
3811 	struct btrfs_extent_item *ei;
3812 	u64 flags;
3813 	u32 item_size;
3814 	int ret;
3815 	int err = 0;
3816 	int progress = 0;
3817 
3818 	path = btrfs_alloc_path();
3819 	if (!path)
3820 		return -ENOMEM;
3821 	path->reada = 1;
3822 
3823 	ret = prepare_to_relocate(rc);
3824 	if (ret) {
3825 		err = ret;
3826 		goto out_free;
3827 	}
3828 
3829 	while (1) {
3830 		progress++;
3831 		trans = btrfs_start_transaction(rc->extent_root, 0);
3832 		if (IS_ERR(trans)) {
3833 			err = PTR_ERR(trans);
3834 			trans = NULL;
3835 			break;
3836 		}
3837 restart:
3838 		if (update_backref_cache(trans, &rc->backref_cache)) {
3839 			btrfs_end_transaction(trans, rc->extent_root);
3840 			continue;
3841 		}
3842 
3843 		ret = find_next_extent(trans, rc, path, &key);
3844 		if (ret < 0)
3845 			err = ret;
3846 		if (ret != 0)
3847 			break;
3848 
3849 		rc->extents_found++;
3850 
3851 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3852 				    struct btrfs_extent_item);
3853 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3854 		if (item_size >= sizeof(*ei)) {
3855 			flags = btrfs_extent_flags(path->nodes[0], ei);
3856 			ret = check_extent_flags(flags);
3857 			BUG_ON(ret);
3858 
3859 		} else {
3860 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3861 			u64 ref_owner;
3862 			int path_change = 0;
3863 
3864 			BUG_ON(item_size !=
3865 			       sizeof(struct btrfs_extent_item_v0));
3866 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3867 						  &path_change);
3868 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3869 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3870 			else
3871 				flags = BTRFS_EXTENT_FLAG_DATA;
3872 
3873 			if (path_change) {
3874 				btrfs_release_path(path);
3875 
3876 				path->search_commit_root = 1;
3877 				path->skip_locking = 1;
3878 				ret = btrfs_search_slot(NULL, rc->extent_root,
3879 							&key, path, 0, 0);
3880 				if (ret < 0) {
3881 					err = ret;
3882 					break;
3883 				}
3884 				BUG_ON(ret > 0);
3885 			}
3886 #else
3887 			BUG();
3888 #endif
3889 		}
3890 
3891 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3892 			ret = add_tree_block(rc, &key, path, &blocks);
3893 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3894 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3895 			ret = add_data_references(rc, &key, path, &blocks);
3896 		} else {
3897 			btrfs_release_path(path);
3898 			ret = 0;
3899 		}
3900 		if (ret < 0) {
3901 			err = ret;
3902 			break;
3903 		}
3904 
3905 		if (!RB_EMPTY_ROOT(&blocks)) {
3906 			ret = relocate_tree_blocks(trans, rc, &blocks);
3907 			if (ret < 0) {
3908 				if (ret != -EAGAIN) {
3909 					err = ret;
3910 					break;
3911 				}
3912 				rc->extents_found--;
3913 				rc->search_start = key.objectid;
3914 			}
3915 		}
3916 
3917 		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
3918 		if (ret < 0) {
3919 			if (ret != -ENOSPC) {
3920 				err = ret;
3921 				WARN_ON(1);
3922 				break;
3923 			}
3924 			rc->commit_transaction = 1;
3925 		}
3926 
3927 		if (rc->commit_transaction) {
3928 			rc->commit_transaction = 0;
3929 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3930 			BUG_ON(ret);
3931 		} else {
3932 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3933 			btrfs_btree_balance_dirty(rc->extent_root);
3934 		}
3935 		trans = NULL;
3936 
3937 		if (rc->stage == MOVE_DATA_EXTENTS &&
3938 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3939 			rc->found_file_extent = 1;
3940 			ret = relocate_data_extent(rc->data_inode,
3941 						   &key, &rc->cluster);
3942 			if (ret < 0) {
3943 				err = ret;
3944 				break;
3945 			}
3946 		}
3947 	}
3948 	if (trans && progress && err == -ENOSPC) {
3949 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
3950 					      rc->block_group->flags);
3951 		if (ret == 0) {
3952 			err = 0;
3953 			progress = 0;
3954 			goto restart;
3955 		}
3956 	}
3957 
3958 	btrfs_release_path(path);
3959 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3960 			  GFP_NOFS);
3961 
3962 	if (trans) {
3963 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3964 		btrfs_btree_balance_dirty(rc->extent_root);
3965 	}
3966 
3967 	if (!err) {
3968 		ret = relocate_file_extent_cluster(rc->data_inode,
3969 						   &rc->cluster);
3970 		if (ret < 0)
3971 			err = ret;
3972 	}
3973 
3974 	rc->create_reloc_tree = 0;
3975 	set_reloc_control(rc);
3976 
3977 	backref_cache_cleanup(&rc->backref_cache);
3978 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3979 
3980 	err = prepare_to_merge(rc, err);
3981 
3982 	merge_reloc_roots(rc);
3983 
3984 	rc->merge_reloc_tree = 0;
3985 	unset_reloc_control(rc);
3986 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3987 
3988 	/* get rid of pinned extents */
3989 	trans = btrfs_join_transaction(rc->extent_root);
3990 	if (IS_ERR(trans))
3991 		err = PTR_ERR(trans);
3992 	else
3993 		btrfs_commit_transaction(trans, rc->extent_root);
3994 out_free:
3995 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3996 	btrfs_free_path(path);
3997 	return err;
3998 }
3999 
4000 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4001 				 struct btrfs_root *root, u64 objectid)
4002 {
4003 	struct btrfs_path *path;
4004 	struct btrfs_inode_item *item;
4005 	struct extent_buffer *leaf;
4006 	int ret;
4007 
4008 	path = btrfs_alloc_path();
4009 	if (!path)
4010 		return -ENOMEM;
4011 
4012 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4013 	if (ret)
4014 		goto out;
4015 
4016 	leaf = path->nodes[0];
4017 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4018 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4019 	btrfs_set_inode_generation(leaf, item, 1);
4020 	btrfs_set_inode_size(leaf, item, 0);
4021 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4022 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4023 					  BTRFS_INODE_PREALLOC);
4024 	btrfs_mark_buffer_dirty(leaf);
4025 	btrfs_release_path(path);
4026 out:
4027 	btrfs_free_path(path);
4028 	return ret;
4029 }
4030 
4031 /*
4032  * helper to create inode for data relocation.
4033  * the inode is in data relocation tree and its link count is 0
4034  */
4035 static noinline_for_stack
4036 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4037 				 struct btrfs_block_group_cache *group)
4038 {
4039 	struct inode *inode = NULL;
4040 	struct btrfs_trans_handle *trans;
4041 	struct btrfs_root *root;
4042 	struct btrfs_key key;
4043 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4044 	int err = 0;
4045 
4046 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4047 	if (IS_ERR(root))
4048 		return ERR_CAST(root);
4049 
4050 	trans = btrfs_start_transaction(root, 6);
4051 	if (IS_ERR(trans))
4052 		return ERR_CAST(trans);
4053 
4054 	err = btrfs_find_free_objectid(root, &objectid);
4055 	if (err)
4056 		goto out;
4057 
4058 	err = __insert_orphan_inode(trans, root, objectid);
4059 	BUG_ON(err);
4060 
4061 	key.objectid = objectid;
4062 	key.type = BTRFS_INODE_ITEM_KEY;
4063 	key.offset = 0;
4064 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4065 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4066 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4067 
4068 	err = btrfs_orphan_add(trans, inode);
4069 out:
4070 	btrfs_end_transaction(trans, root);
4071 	btrfs_btree_balance_dirty(root);
4072 	if (err) {
4073 		if (inode)
4074 			iput(inode);
4075 		inode = ERR_PTR(err);
4076 	}
4077 	return inode;
4078 }
4079 
4080 static struct reloc_control *alloc_reloc_control(void)
4081 {
4082 	struct reloc_control *rc;
4083 
4084 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4085 	if (!rc)
4086 		return NULL;
4087 
4088 	INIT_LIST_HEAD(&rc->reloc_roots);
4089 	backref_cache_init(&rc->backref_cache);
4090 	mapping_tree_init(&rc->reloc_root_tree);
4091 	extent_io_tree_init(&rc->processed_blocks, NULL);
4092 	return rc;
4093 }
4094 
4095 /*
4096  * function to relocate all extents in a block group.
4097  */
4098 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4099 {
4100 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4101 	struct reloc_control *rc;
4102 	struct inode *inode;
4103 	struct btrfs_path *path;
4104 	int ret;
4105 	int rw = 0;
4106 	int err = 0;
4107 
4108 	rc = alloc_reloc_control();
4109 	if (!rc)
4110 		return -ENOMEM;
4111 
4112 	rc->extent_root = extent_root;
4113 
4114 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4115 	BUG_ON(!rc->block_group);
4116 
4117 	if (!rc->block_group->ro) {
4118 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4119 		if (ret) {
4120 			err = ret;
4121 			goto out;
4122 		}
4123 		rw = 1;
4124 	}
4125 
4126 	path = btrfs_alloc_path();
4127 	if (!path) {
4128 		err = -ENOMEM;
4129 		goto out;
4130 	}
4131 
4132 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4133 					path);
4134 	btrfs_free_path(path);
4135 
4136 	if (!IS_ERR(inode))
4137 		ret = delete_block_group_cache(fs_info, inode, 0);
4138 	else
4139 		ret = PTR_ERR(inode);
4140 
4141 	if (ret && ret != -ENOENT) {
4142 		err = ret;
4143 		goto out;
4144 	}
4145 
4146 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4147 	if (IS_ERR(rc->data_inode)) {
4148 		err = PTR_ERR(rc->data_inode);
4149 		rc->data_inode = NULL;
4150 		goto out;
4151 	}
4152 
4153 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4154 	       (unsigned long long)rc->block_group->key.objectid,
4155 	       (unsigned long long)rc->block_group->flags);
4156 
4157 	ret = btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
4158 	if (ret < 0) {
4159 		err = ret;
4160 		goto out;
4161 	}
4162 	btrfs_wait_ordered_extents(fs_info->tree_root, 0);
4163 
4164 	while (1) {
4165 		mutex_lock(&fs_info->cleaner_mutex);
4166 		ret = relocate_block_group(rc);
4167 		mutex_unlock(&fs_info->cleaner_mutex);
4168 		if (ret < 0) {
4169 			err = ret;
4170 			goto out;
4171 		}
4172 
4173 		if (rc->extents_found == 0)
4174 			break;
4175 
4176 		printk(KERN_INFO "btrfs: found %llu extents\n",
4177 			(unsigned long long)rc->extents_found);
4178 
4179 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4180 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4181 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4182 						 0, -1);
4183 			rc->stage = UPDATE_DATA_PTRS;
4184 		}
4185 	}
4186 
4187 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4188 				     rc->block_group->key.objectid,
4189 				     rc->block_group->key.objectid +
4190 				     rc->block_group->key.offset - 1);
4191 
4192 	WARN_ON(rc->block_group->pinned > 0);
4193 	WARN_ON(rc->block_group->reserved > 0);
4194 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4195 out:
4196 	if (err && rw)
4197 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4198 	iput(rc->data_inode);
4199 	btrfs_put_block_group(rc->block_group);
4200 	kfree(rc);
4201 	return err;
4202 }
4203 
4204 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4205 {
4206 	struct btrfs_trans_handle *trans;
4207 	int ret, err;
4208 
4209 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4210 	if (IS_ERR(trans))
4211 		return PTR_ERR(trans);
4212 
4213 	memset(&root->root_item.drop_progress, 0,
4214 		sizeof(root->root_item.drop_progress));
4215 	root->root_item.drop_level = 0;
4216 	btrfs_set_root_refs(&root->root_item, 0);
4217 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4218 				&root->root_key, &root->root_item);
4219 
4220 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4221 	if (err)
4222 		return err;
4223 	return ret;
4224 }
4225 
4226 /*
4227  * recover relocation interrupted by system crash.
4228  *
4229  * this function resumes merging reloc trees with corresponding fs trees.
4230  * this is important for keeping the sharing of tree blocks
4231  */
4232 int btrfs_recover_relocation(struct btrfs_root *root)
4233 {
4234 	LIST_HEAD(reloc_roots);
4235 	struct btrfs_key key;
4236 	struct btrfs_root *fs_root;
4237 	struct btrfs_root *reloc_root;
4238 	struct btrfs_path *path;
4239 	struct extent_buffer *leaf;
4240 	struct reloc_control *rc = NULL;
4241 	struct btrfs_trans_handle *trans;
4242 	int ret;
4243 	int err = 0;
4244 
4245 	path = btrfs_alloc_path();
4246 	if (!path)
4247 		return -ENOMEM;
4248 	path->reada = -1;
4249 
4250 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4251 	key.type = BTRFS_ROOT_ITEM_KEY;
4252 	key.offset = (u64)-1;
4253 
4254 	while (1) {
4255 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4256 					path, 0, 0);
4257 		if (ret < 0) {
4258 			err = ret;
4259 			goto out;
4260 		}
4261 		if (ret > 0) {
4262 			if (path->slots[0] == 0)
4263 				break;
4264 			path->slots[0]--;
4265 		}
4266 		leaf = path->nodes[0];
4267 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4268 		btrfs_release_path(path);
4269 
4270 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4271 		    key.type != BTRFS_ROOT_ITEM_KEY)
4272 			break;
4273 
4274 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4275 		if (IS_ERR(reloc_root)) {
4276 			err = PTR_ERR(reloc_root);
4277 			goto out;
4278 		}
4279 
4280 		list_add(&reloc_root->root_list, &reloc_roots);
4281 
4282 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4283 			fs_root = read_fs_root(root->fs_info,
4284 					       reloc_root->root_key.offset);
4285 			if (IS_ERR(fs_root)) {
4286 				ret = PTR_ERR(fs_root);
4287 				if (ret != -ENOENT) {
4288 					err = ret;
4289 					goto out;
4290 				}
4291 				ret = mark_garbage_root(reloc_root);
4292 				if (ret < 0) {
4293 					err = ret;
4294 					goto out;
4295 				}
4296 			}
4297 		}
4298 
4299 		if (key.offset == 0)
4300 			break;
4301 
4302 		key.offset--;
4303 	}
4304 	btrfs_release_path(path);
4305 
4306 	if (list_empty(&reloc_roots))
4307 		goto out;
4308 
4309 	rc = alloc_reloc_control();
4310 	if (!rc) {
4311 		err = -ENOMEM;
4312 		goto out;
4313 	}
4314 
4315 	rc->extent_root = root->fs_info->extent_root;
4316 
4317 	set_reloc_control(rc);
4318 
4319 	trans = btrfs_join_transaction(rc->extent_root);
4320 	if (IS_ERR(trans)) {
4321 		unset_reloc_control(rc);
4322 		err = PTR_ERR(trans);
4323 		goto out_free;
4324 	}
4325 
4326 	rc->merge_reloc_tree = 1;
4327 
4328 	while (!list_empty(&reloc_roots)) {
4329 		reloc_root = list_entry(reloc_roots.next,
4330 					struct btrfs_root, root_list);
4331 		list_del(&reloc_root->root_list);
4332 
4333 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4334 			list_add_tail(&reloc_root->root_list,
4335 				      &rc->reloc_roots);
4336 			continue;
4337 		}
4338 
4339 		fs_root = read_fs_root(root->fs_info,
4340 				       reloc_root->root_key.offset);
4341 		if (IS_ERR(fs_root)) {
4342 			err = PTR_ERR(fs_root);
4343 			goto out_free;
4344 		}
4345 
4346 		err = __add_reloc_root(reloc_root);
4347 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4348 		fs_root->reloc_root = reloc_root;
4349 	}
4350 
4351 	err = btrfs_commit_transaction(trans, rc->extent_root);
4352 	if (err)
4353 		goto out_free;
4354 
4355 	merge_reloc_roots(rc);
4356 
4357 	unset_reloc_control(rc);
4358 
4359 	trans = btrfs_join_transaction(rc->extent_root);
4360 	if (IS_ERR(trans))
4361 		err = PTR_ERR(trans);
4362 	else
4363 		err = btrfs_commit_transaction(trans, rc->extent_root);
4364 out_free:
4365 	kfree(rc);
4366 out:
4367 	if (!list_empty(&reloc_roots))
4368 		free_reloc_roots(&reloc_roots);
4369 
4370 	btrfs_free_path(path);
4371 
4372 	if (err == 0) {
4373 		/* cleanup orphan inode in data relocation tree */
4374 		fs_root = read_fs_root(root->fs_info,
4375 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4376 		if (IS_ERR(fs_root))
4377 			err = PTR_ERR(fs_root);
4378 		else
4379 			err = btrfs_orphan_cleanup(fs_root);
4380 	}
4381 	return err;
4382 }
4383 
4384 /*
4385  * helper to add ordered checksum for data relocation.
4386  *
4387  * cloning checksum properly handles the nodatasum extents.
4388  * it also saves CPU time to re-calculate the checksum.
4389  */
4390 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4391 {
4392 	struct btrfs_ordered_sum *sums;
4393 	struct btrfs_sector_sum *sector_sum;
4394 	struct btrfs_ordered_extent *ordered;
4395 	struct btrfs_root *root = BTRFS_I(inode)->root;
4396 	size_t offset;
4397 	int ret;
4398 	u64 disk_bytenr;
4399 	LIST_HEAD(list);
4400 
4401 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4402 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4403 
4404 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4405 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4406 				       disk_bytenr + len - 1, &list, 0);
4407 	if (ret)
4408 		goto out;
4409 
4410 	while (!list_empty(&list)) {
4411 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4412 		list_del_init(&sums->list);
4413 
4414 		sector_sum = sums->sums;
4415 		sums->bytenr = ordered->start;
4416 
4417 		offset = 0;
4418 		while (offset < sums->len) {
4419 			sector_sum->bytenr += ordered->start - disk_bytenr;
4420 			sector_sum++;
4421 			offset += root->sectorsize;
4422 		}
4423 
4424 		btrfs_add_ordered_sum(inode, ordered, sums);
4425 	}
4426 out:
4427 	btrfs_put_ordered_extent(ordered);
4428 	return ret;
4429 }
4430 
4431 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4432 			   struct btrfs_root *root, struct extent_buffer *buf,
4433 			   struct extent_buffer *cow)
4434 {
4435 	struct reloc_control *rc;
4436 	struct backref_node *node;
4437 	int first_cow = 0;
4438 	int level;
4439 	int ret;
4440 
4441 	rc = root->fs_info->reloc_ctl;
4442 	if (!rc)
4443 		return;
4444 
4445 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4446 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4447 
4448 	level = btrfs_header_level(buf);
4449 	if (btrfs_header_generation(buf) <=
4450 	    btrfs_root_last_snapshot(&root->root_item))
4451 		first_cow = 1;
4452 
4453 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4454 	    rc->create_reloc_tree) {
4455 		WARN_ON(!first_cow && level == 0);
4456 
4457 		node = rc->backref_cache.path[level];
4458 		BUG_ON(node->bytenr != buf->start &&
4459 		       node->new_bytenr != buf->start);
4460 
4461 		drop_node_buffer(node);
4462 		extent_buffer_get(cow);
4463 		node->eb = cow;
4464 		node->new_bytenr = cow->start;
4465 
4466 		if (!node->pending) {
4467 			list_move_tail(&node->list,
4468 				       &rc->backref_cache.pending[level]);
4469 			node->pending = 1;
4470 		}
4471 
4472 		if (first_cow)
4473 			__mark_block_processed(rc, node);
4474 
4475 		if (first_cow && level > 0)
4476 			rc->nodes_relocated += buf->len;
4477 	}
4478 
4479 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4480 		ret = replace_file_extents(trans, rc, root, cow);
4481 		BUG_ON(ret);
4482 	}
4483 }
4484 
4485 /*
4486  * called before creating snapshot. it calculates metadata reservation
4487  * requried for relocating tree blocks in the snapshot
4488  */
4489 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4490 			      struct btrfs_pending_snapshot *pending,
4491 			      u64 *bytes_to_reserve)
4492 {
4493 	struct btrfs_root *root;
4494 	struct reloc_control *rc;
4495 
4496 	root = pending->root;
4497 	if (!root->reloc_root)
4498 		return;
4499 
4500 	rc = root->fs_info->reloc_ctl;
4501 	if (!rc->merge_reloc_tree)
4502 		return;
4503 
4504 	root = root->reloc_root;
4505 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4506 	/*
4507 	 * relocation is in the stage of merging trees. the space
4508 	 * used by merging a reloc tree is twice the size of
4509 	 * relocated tree nodes in the worst case. half for cowing
4510 	 * the reloc tree, half for cowing the fs tree. the space
4511 	 * used by cowing the reloc tree will be freed after the
4512 	 * tree is dropped. if we create snapshot, cowing the fs
4513 	 * tree may use more space than it frees. so we need
4514 	 * reserve extra space.
4515 	 */
4516 	*bytes_to_reserve += rc->nodes_relocated;
4517 }
4518 
4519 /*
4520  * called after snapshot is created. migrate block reservation
4521  * and create reloc root for the newly created snapshot
4522  */
4523 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4524 			       struct btrfs_pending_snapshot *pending)
4525 {
4526 	struct btrfs_root *root = pending->root;
4527 	struct btrfs_root *reloc_root;
4528 	struct btrfs_root *new_root;
4529 	struct reloc_control *rc;
4530 	int ret;
4531 
4532 	if (!root->reloc_root)
4533 		return 0;
4534 
4535 	rc = root->fs_info->reloc_ctl;
4536 	rc->merging_rsv_size += rc->nodes_relocated;
4537 
4538 	if (rc->merge_reloc_tree) {
4539 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4540 					      rc->block_rsv,
4541 					      rc->nodes_relocated);
4542 		if (ret)
4543 			return ret;
4544 	}
4545 
4546 	new_root = pending->snap;
4547 	reloc_root = create_reloc_root(trans, root->reloc_root,
4548 				       new_root->root_key.objectid);
4549 	if (IS_ERR(reloc_root))
4550 		return PTR_ERR(reloc_root);
4551 
4552 	ret = __add_reloc_root(reloc_root);
4553 	BUG_ON(ret < 0);
4554 	new_root->reloc_root = reloc_root;
4555 
4556 	if (rc->create_reloc_tree)
4557 		ret = clone_backref_node(trans, rc, root, reloc_root);
4558 	return ret;
4559 }
4560