xref: /openbmc/linux/fs/btrfs/relocation.c (revision f20c7d91)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "inode-map.h"
22 #include "qgroup.h"
23 #include "print-tree.h"
24 #include "delalloc-space.h"
25 #include "block-group.h"
26 #include "backref.h"
27 #include "misc.h"
28 
29 /*
30  * Relocation overview
31  *
32  * [What does relocation do]
33  *
34  * The objective of relocation is to relocate all extents of the target block
35  * group to other block groups.
36  * This is utilized by resize (shrink only), profile converting, compacting
37  * space, or balance routine to spread chunks over devices.
38  *
39  * 		Before		|		After
40  * ------------------------------------------------------------------
41  *  BG A: 10 data extents	| BG A: deleted
42  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
43  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
44  *
45  * [How does relocation work]
46  *
47  * 1.   Mark the target block group read-only
48  *      New extents won't be allocated from the target block group.
49  *
50  * 2.1  Record each extent in the target block group
51  *      To build a proper map of extents to be relocated.
52  *
53  * 2.2  Build data reloc tree and reloc trees
54  *      Data reloc tree will contain an inode, recording all newly relocated
55  *      data extents.
56  *      There will be only one data reloc tree for one data block group.
57  *
58  *      Reloc tree will be a special snapshot of its source tree, containing
59  *      relocated tree blocks.
60  *      Each tree referring to a tree block in target block group will get its
61  *      reloc tree built.
62  *
63  * 2.3  Swap source tree with its corresponding reloc tree
64  *      Each involved tree only refers to new extents after swap.
65  *
66  * 3.   Cleanup reloc trees and data reloc tree.
67  *      As old extents in the target block group are still referenced by reloc
68  *      trees, we need to clean them up before really freeing the target block
69  *      group.
70  *
71  * The main complexity is in steps 2.2 and 2.3.
72  *
73  * The entry point of relocation is relocate_block_group() function.
74  */
75 
76 #define RELOCATION_RESERVED_NODES	256
77 /*
78  * map address of tree root to tree
79  */
80 struct mapping_node {
81 	struct {
82 		struct rb_node rb_node;
83 		u64 bytenr;
84 	}; /* Use rb_simle_node for search/insert */
85 	void *data;
86 };
87 
88 struct mapping_tree {
89 	struct rb_root rb_root;
90 	spinlock_t lock;
91 };
92 
93 /*
94  * present a tree block to process
95  */
96 struct tree_block {
97 	struct {
98 		struct rb_node rb_node;
99 		u64 bytenr;
100 	}; /* Use rb_simple_node for search/insert */
101 	struct btrfs_key key;
102 	unsigned int level:8;
103 	unsigned int key_ready:1;
104 };
105 
106 #define MAX_EXTENTS 128
107 
108 struct file_extent_cluster {
109 	u64 start;
110 	u64 end;
111 	u64 boundary[MAX_EXTENTS];
112 	unsigned int nr;
113 };
114 
115 struct reloc_control {
116 	/* block group to relocate */
117 	struct btrfs_block_group *block_group;
118 	/* extent tree */
119 	struct btrfs_root *extent_root;
120 	/* inode for moving data */
121 	struct inode *data_inode;
122 
123 	struct btrfs_block_rsv *block_rsv;
124 
125 	struct btrfs_backref_cache backref_cache;
126 
127 	struct file_extent_cluster cluster;
128 	/* tree blocks have been processed */
129 	struct extent_io_tree processed_blocks;
130 	/* map start of tree root to corresponding reloc tree */
131 	struct mapping_tree reloc_root_tree;
132 	/* list of reloc trees */
133 	struct list_head reloc_roots;
134 	/* list of subvolume trees that get relocated */
135 	struct list_head dirty_subvol_roots;
136 	/* size of metadata reservation for merging reloc trees */
137 	u64 merging_rsv_size;
138 	/* size of relocated tree nodes */
139 	u64 nodes_relocated;
140 	/* reserved size for block group relocation*/
141 	u64 reserved_bytes;
142 
143 	u64 search_start;
144 	u64 extents_found;
145 
146 	unsigned int stage:8;
147 	unsigned int create_reloc_tree:1;
148 	unsigned int merge_reloc_tree:1;
149 	unsigned int found_file_extent:1;
150 };
151 
152 /* stages of data relocation */
153 #define MOVE_DATA_EXTENTS	0
154 #define UPDATE_DATA_PTRS	1
155 
156 static void mark_block_processed(struct reloc_control *rc,
157 				 struct btrfs_backref_node *node)
158 {
159 	u32 blocksize;
160 
161 	if (node->level == 0 ||
162 	    in_range(node->bytenr, rc->block_group->start,
163 		     rc->block_group->length)) {
164 		blocksize = rc->extent_root->fs_info->nodesize;
165 		set_extent_bits(&rc->processed_blocks, node->bytenr,
166 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
167 	}
168 	node->processed = 1;
169 }
170 
171 
172 static void mapping_tree_init(struct mapping_tree *tree)
173 {
174 	tree->rb_root = RB_ROOT;
175 	spin_lock_init(&tree->lock);
176 }
177 
178 /*
179  * walk up backref nodes until reach node presents tree root
180  */
181 static struct btrfs_backref_node *walk_up_backref(
182 		struct btrfs_backref_node *node,
183 		struct btrfs_backref_edge *edges[], int *index)
184 {
185 	struct btrfs_backref_edge *edge;
186 	int idx = *index;
187 
188 	while (!list_empty(&node->upper)) {
189 		edge = list_entry(node->upper.next,
190 				  struct btrfs_backref_edge, list[LOWER]);
191 		edges[idx++] = edge;
192 		node = edge->node[UPPER];
193 	}
194 	BUG_ON(node->detached);
195 	*index = idx;
196 	return node;
197 }
198 
199 /*
200  * walk down backref nodes to find start of next reference path
201  */
202 static struct btrfs_backref_node *walk_down_backref(
203 		struct btrfs_backref_edge *edges[], int *index)
204 {
205 	struct btrfs_backref_edge *edge;
206 	struct btrfs_backref_node *lower;
207 	int idx = *index;
208 
209 	while (idx > 0) {
210 		edge = edges[idx - 1];
211 		lower = edge->node[LOWER];
212 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
213 			idx--;
214 			continue;
215 		}
216 		edge = list_entry(edge->list[LOWER].next,
217 				  struct btrfs_backref_edge, list[LOWER]);
218 		edges[idx - 1] = edge;
219 		*index = idx;
220 		return edge->node[UPPER];
221 	}
222 	*index = 0;
223 	return NULL;
224 }
225 
226 static void update_backref_node(struct btrfs_backref_cache *cache,
227 				struct btrfs_backref_node *node, u64 bytenr)
228 {
229 	struct rb_node *rb_node;
230 	rb_erase(&node->rb_node, &cache->rb_root);
231 	node->bytenr = bytenr;
232 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
233 	if (rb_node)
234 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
235 }
236 
237 /*
238  * update backref cache after a transaction commit
239  */
240 static int update_backref_cache(struct btrfs_trans_handle *trans,
241 				struct btrfs_backref_cache *cache)
242 {
243 	struct btrfs_backref_node *node;
244 	int level = 0;
245 
246 	if (cache->last_trans == 0) {
247 		cache->last_trans = trans->transid;
248 		return 0;
249 	}
250 
251 	if (cache->last_trans == trans->transid)
252 		return 0;
253 
254 	/*
255 	 * detached nodes are used to avoid unnecessary backref
256 	 * lookup. transaction commit changes the extent tree.
257 	 * so the detached nodes are no longer useful.
258 	 */
259 	while (!list_empty(&cache->detached)) {
260 		node = list_entry(cache->detached.next,
261 				  struct btrfs_backref_node, list);
262 		btrfs_backref_cleanup_node(cache, node);
263 	}
264 
265 	while (!list_empty(&cache->changed)) {
266 		node = list_entry(cache->changed.next,
267 				  struct btrfs_backref_node, list);
268 		list_del_init(&node->list);
269 		BUG_ON(node->pending);
270 		update_backref_node(cache, node, node->new_bytenr);
271 	}
272 
273 	/*
274 	 * some nodes can be left in the pending list if there were
275 	 * errors during processing the pending nodes.
276 	 */
277 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
278 		list_for_each_entry(node, &cache->pending[level], list) {
279 			BUG_ON(!node->pending);
280 			if (node->bytenr == node->new_bytenr)
281 				continue;
282 			update_backref_node(cache, node, node->new_bytenr);
283 		}
284 	}
285 
286 	cache->last_trans = 0;
287 	return 1;
288 }
289 
290 static bool reloc_root_is_dead(struct btrfs_root *root)
291 {
292 	/*
293 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
294 	 * btrfs_update_reloc_root. We need to see the updated bit before
295 	 * trying to access reloc_root
296 	 */
297 	smp_rmb();
298 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
299 		return true;
300 	return false;
301 }
302 
303 /*
304  * Check if this subvolume tree has valid reloc tree.
305  *
306  * Reloc tree after swap is considered dead, thus not considered as valid.
307  * This is enough for most callers, as they don't distinguish dead reloc root
308  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
309  * special case.
310  */
311 static bool have_reloc_root(struct btrfs_root *root)
312 {
313 	if (reloc_root_is_dead(root))
314 		return false;
315 	if (!root->reloc_root)
316 		return false;
317 	return true;
318 }
319 
320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
321 {
322 	struct btrfs_root *reloc_root;
323 
324 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
325 		return 0;
326 
327 	/* This root has been merged with its reloc tree, we can ignore it */
328 	if (reloc_root_is_dead(root))
329 		return 1;
330 
331 	reloc_root = root->reloc_root;
332 	if (!reloc_root)
333 		return 0;
334 
335 	if (btrfs_header_generation(reloc_root->commit_root) ==
336 	    root->fs_info->running_transaction->transid)
337 		return 0;
338 	/*
339 	 * if there is reloc tree and it was created in previous
340 	 * transaction backref lookup can find the reloc tree,
341 	 * so backref node for the fs tree root is useless for
342 	 * relocation.
343 	 */
344 	return 1;
345 }
346 
347 /*
348  * find reloc tree by address of tree root
349  */
350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
351 {
352 	struct reloc_control *rc = fs_info->reloc_ctl;
353 	struct rb_node *rb_node;
354 	struct mapping_node *node;
355 	struct btrfs_root *root = NULL;
356 
357 	ASSERT(rc);
358 	spin_lock(&rc->reloc_root_tree.lock);
359 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
360 	if (rb_node) {
361 		node = rb_entry(rb_node, struct mapping_node, rb_node);
362 		root = (struct btrfs_root *)node->data;
363 	}
364 	spin_unlock(&rc->reloc_root_tree.lock);
365 	return btrfs_grab_root(root);
366 }
367 
368 /*
369  * For useless nodes, do two major clean ups:
370  *
371  * - Cleanup the children edges and nodes
372  *   If child node is also orphan (no parent) during cleanup, then the child
373  *   node will also be cleaned up.
374  *
375  * - Freeing up leaves (level 0), keeps nodes detached
376  *   For nodes, the node is still cached as "detached"
377  *
378  * Return false if @node is not in the @useless_nodes list.
379  * Return true if @node is in the @useless_nodes list.
380  */
381 static bool handle_useless_nodes(struct reloc_control *rc,
382 				 struct btrfs_backref_node *node)
383 {
384 	struct btrfs_backref_cache *cache = &rc->backref_cache;
385 	struct list_head *useless_node = &cache->useless_node;
386 	bool ret = false;
387 
388 	while (!list_empty(useless_node)) {
389 		struct btrfs_backref_node *cur;
390 
391 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
392 				 list);
393 		list_del_init(&cur->list);
394 
395 		/* Only tree root nodes can be added to @useless_nodes */
396 		ASSERT(list_empty(&cur->upper));
397 
398 		if (cur == node)
399 			ret = true;
400 
401 		/* The node is the lowest node */
402 		if (cur->lowest) {
403 			list_del_init(&cur->lower);
404 			cur->lowest = 0;
405 		}
406 
407 		/* Cleanup the lower edges */
408 		while (!list_empty(&cur->lower)) {
409 			struct btrfs_backref_edge *edge;
410 			struct btrfs_backref_node *lower;
411 
412 			edge = list_entry(cur->lower.next,
413 					struct btrfs_backref_edge, list[UPPER]);
414 			list_del(&edge->list[UPPER]);
415 			list_del(&edge->list[LOWER]);
416 			lower = edge->node[LOWER];
417 			btrfs_backref_free_edge(cache, edge);
418 
419 			/* Child node is also orphan, queue for cleanup */
420 			if (list_empty(&lower->upper))
421 				list_add(&lower->list, useless_node);
422 		}
423 		/* Mark this block processed for relocation */
424 		mark_block_processed(rc, cur);
425 
426 		/*
427 		 * Backref nodes for tree leaves are deleted from the cache.
428 		 * Backref nodes for upper level tree blocks are left in the
429 		 * cache to avoid unnecessary backref lookup.
430 		 */
431 		if (cur->level > 0) {
432 			list_add(&cur->list, &cache->detached);
433 			cur->detached = 1;
434 		} else {
435 			rb_erase(&cur->rb_node, &cache->rb_root);
436 			btrfs_backref_free_node(cache, cur);
437 		}
438 	}
439 	return ret;
440 }
441 
442 /*
443  * Build backref tree for a given tree block. Root of the backref tree
444  * corresponds the tree block, leaves of the backref tree correspond roots of
445  * b-trees that reference the tree block.
446  *
447  * The basic idea of this function is check backrefs of a given block to find
448  * upper level blocks that reference the block, and then check backrefs of
449  * these upper level blocks recursively. The recursion stops when tree root is
450  * reached or backrefs for the block is cached.
451  *
452  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
453  * all upper level blocks that directly/indirectly reference the block are also
454  * cached.
455  */
456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
457 			struct reloc_control *rc, struct btrfs_key *node_key,
458 			int level, u64 bytenr)
459 {
460 	struct btrfs_backref_iter *iter;
461 	struct btrfs_backref_cache *cache = &rc->backref_cache;
462 	/* For searching parent of TREE_BLOCK_REF */
463 	struct btrfs_path *path;
464 	struct btrfs_backref_node *cur;
465 	struct btrfs_backref_node *node = NULL;
466 	struct btrfs_backref_edge *edge;
467 	int ret;
468 	int err = 0;
469 
470 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
471 	if (!iter)
472 		return ERR_PTR(-ENOMEM);
473 	path = btrfs_alloc_path();
474 	if (!path) {
475 		err = -ENOMEM;
476 		goto out;
477 	}
478 
479 	node = btrfs_backref_alloc_node(cache, bytenr, level);
480 	if (!node) {
481 		err = -ENOMEM;
482 		goto out;
483 	}
484 
485 	node->lowest = 1;
486 	cur = node;
487 
488 	/* Breadth-first search to build backref cache */
489 	do {
490 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
491 						  cur);
492 		if (ret < 0) {
493 			err = ret;
494 			goto out;
495 		}
496 		edge = list_first_entry_or_null(&cache->pending_edge,
497 				struct btrfs_backref_edge, list[UPPER]);
498 		/*
499 		 * The pending list isn't empty, take the first block to
500 		 * process
501 		 */
502 		if (edge) {
503 			list_del_init(&edge->list[UPPER]);
504 			cur = edge->node[UPPER];
505 		}
506 	} while (edge);
507 
508 	/* Finish the upper linkage of newly added edges/nodes */
509 	ret = btrfs_backref_finish_upper_links(cache, node);
510 	if (ret < 0) {
511 		err = ret;
512 		goto out;
513 	}
514 
515 	if (handle_useless_nodes(rc, node))
516 		node = NULL;
517 out:
518 	btrfs_backref_iter_free(iter);
519 	btrfs_free_path(path);
520 	if (err) {
521 		btrfs_backref_error_cleanup(cache, node);
522 		return ERR_PTR(err);
523 	}
524 	ASSERT(!node || !node->detached);
525 	ASSERT(list_empty(&cache->useless_node) &&
526 	       list_empty(&cache->pending_edge));
527 	return node;
528 }
529 
530 /*
531  * helper to add backref node for the newly created snapshot.
532  * the backref node is created by cloning backref node that
533  * corresponds to root of source tree
534  */
535 static int clone_backref_node(struct btrfs_trans_handle *trans,
536 			      struct reloc_control *rc,
537 			      struct btrfs_root *src,
538 			      struct btrfs_root *dest)
539 {
540 	struct btrfs_root *reloc_root = src->reloc_root;
541 	struct btrfs_backref_cache *cache = &rc->backref_cache;
542 	struct btrfs_backref_node *node = NULL;
543 	struct btrfs_backref_node *new_node;
544 	struct btrfs_backref_edge *edge;
545 	struct btrfs_backref_edge *new_edge;
546 	struct rb_node *rb_node;
547 
548 	if (cache->last_trans > 0)
549 		update_backref_cache(trans, cache);
550 
551 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
552 	if (rb_node) {
553 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
554 		if (node->detached)
555 			node = NULL;
556 		else
557 			BUG_ON(node->new_bytenr != reloc_root->node->start);
558 	}
559 
560 	if (!node) {
561 		rb_node = rb_simple_search(&cache->rb_root,
562 					   reloc_root->commit_root->start);
563 		if (rb_node) {
564 			node = rb_entry(rb_node, struct btrfs_backref_node,
565 					rb_node);
566 			BUG_ON(node->detached);
567 		}
568 	}
569 
570 	if (!node)
571 		return 0;
572 
573 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
574 					    node->level);
575 	if (!new_node)
576 		return -ENOMEM;
577 
578 	new_node->lowest = node->lowest;
579 	new_node->checked = 1;
580 	new_node->root = btrfs_grab_root(dest);
581 	ASSERT(new_node->root);
582 
583 	if (!node->lowest) {
584 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
585 			new_edge = btrfs_backref_alloc_edge(cache);
586 			if (!new_edge)
587 				goto fail;
588 
589 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
590 						new_node, LINK_UPPER);
591 		}
592 	} else {
593 		list_add_tail(&new_node->lower, &cache->leaves);
594 	}
595 
596 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
597 				   &new_node->rb_node);
598 	if (rb_node)
599 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
600 
601 	if (!new_node->lowest) {
602 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
603 			list_add_tail(&new_edge->list[LOWER],
604 				      &new_edge->node[LOWER]->upper);
605 		}
606 	}
607 	return 0;
608 fail:
609 	while (!list_empty(&new_node->lower)) {
610 		new_edge = list_entry(new_node->lower.next,
611 				      struct btrfs_backref_edge, list[UPPER]);
612 		list_del(&new_edge->list[UPPER]);
613 		btrfs_backref_free_edge(cache, new_edge);
614 	}
615 	btrfs_backref_free_node(cache, new_node);
616 	return -ENOMEM;
617 }
618 
619 /*
620  * helper to add 'address of tree root -> reloc tree' mapping
621  */
622 static int __must_check __add_reloc_root(struct btrfs_root *root)
623 {
624 	struct btrfs_fs_info *fs_info = root->fs_info;
625 	struct rb_node *rb_node;
626 	struct mapping_node *node;
627 	struct reloc_control *rc = fs_info->reloc_ctl;
628 
629 	node = kmalloc(sizeof(*node), GFP_NOFS);
630 	if (!node)
631 		return -ENOMEM;
632 
633 	node->bytenr = root->commit_root->start;
634 	node->data = root;
635 
636 	spin_lock(&rc->reloc_root_tree.lock);
637 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
638 				   node->bytenr, &node->rb_node);
639 	spin_unlock(&rc->reloc_root_tree.lock);
640 	if (rb_node) {
641 		btrfs_panic(fs_info, -EEXIST,
642 			    "Duplicate root found for start=%llu while inserting into relocation tree",
643 			    node->bytenr);
644 	}
645 
646 	list_add_tail(&root->root_list, &rc->reloc_roots);
647 	return 0;
648 }
649 
650 /*
651  * helper to delete the 'address of tree root -> reloc tree'
652  * mapping
653  */
654 static void __del_reloc_root(struct btrfs_root *root)
655 {
656 	struct btrfs_fs_info *fs_info = root->fs_info;
657 	struct rb_node *rb_node;
658 	struct mapping_node *node = NULL;
659 	struct reloc_control *rc = fs_info->reloc_ctl;
660 	bool put_ref = false;
661 
662 	if (rc && root->node) {
663 		spin_lock(&rc->reloc_root_tree.lock);
664 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
665 					   root->commit_root->start);
666 		if (rb_node) {
667 			node = rb_entry(rb_node, struct mapping_node, rb_node);
668 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
669 			RB_CLEAR_NODE(&node->rb_node);
670 		}
671 		spin_unlock(&rc->reloc_root_tree.lock);
672 		if (!node)
673 			return;
674 		BUG_ON((struct btrfs_root *)node->data != root);
675 	}
676 
677 	/*
678 	 * We only put the reloc root here if it's on the list.  There's a lot
679 	 * of places where the pattern is to splice the rc->reloc_roots, process
680 	 * the reloc roots, and then add the reloc root back onto
681 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
682 	 * list we don't want the reference being dropped, because the guy
683 	 * messing with the list is in charge of the reference.
684 	 */
685 	spin_lock(&fs_info->trans_lock);
686 	if (!list_empty(&root->root_list)) {
687 		put_ref = true;
688 		list_del_init(&root->root_list);
689 	}
690 	spin_unlock(&fs_info->trans_lock);
691 	if (put_ref)
692 		btrfs_put_root(root);
693 	kfree(node);
694 }
695 
696 /*
697  * helper to update the 'address of tree root -> reloc tree'
698  * mapping
699  */
700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 	struct btrfs_fs_info *fs_info = root->fs_info;
703 	struct rb_node *rb_node;
704 	struct mapping_node *node = NULL;
705 	struct reloc_control *rc = fs_info->reloc_ctl;
706 
707 	spin_lock(&rc->reloc_root_tree.lock);
708 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 				   root->commit_root->start);
710 	if (rb_node) {
711 		node = rb_entry(rb_node, struct mapping_node, rb_node);
712 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 	}
714 	spin_unlock(&rc->reloc_root_tree.lock);
715 
716 	if (!node)
717 		return 0;
718 	BUG_ON((struct btrfs_root *)node->data != root);
719 
720 	spin_lock(&rc->reloc_root_tree.lock);
721 	node->bytenr = root->node->start;
722 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 				   node->bytenr, &node->rb_node);
724 	spin_unlock(&rc->reloc_root_tree.lock);
725 	if (rb_node)
726 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 	return 0;
728 }
729 
730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 					struct btrfs_root *root, u64 objectid)
732 {
733 	struct btrfs_fs_info *fs_info = root->fs_info;
734 	struct btrfs_root *reloc_root;
735 	struct extent_buffer *eb;
736 	struct btrfs_root_item *root_item;
737 	struct btrfs_key root_key;
738 	int ret;
739 
740 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
741 	BUG_ON(!root_item);
742 
743 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
744 	root_key.type = BTRFS_ROOT_ITEM_KEY;
745 	root_key.offset = objectid;
746 
747 	if (root->root_key.objectid == objectid) {
748 		u64 commit_root_gen;
749 
750 		/* called by btrfs_init_reloc_root */
751 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
752 				      BTRFS_TREE_RELOC_OBJECTID);
753 		BUG_ON(ret);
754 		/*
755 		 * Set the last_snapshot field to the generation of the commit
756 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
757 		 * correctly (returns true) when the relocation root is created
758 		 * either inside the critical section of a transaction commit
759 		 * (through transaction.c:qgroup_account_snapshot()) and when
760 		 * it's created before the transaction commit is started.
761 		 */
762 		commit_root_gen = btrfs_header_generation(root->commit_root);
763 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
764 	} else {
765 		/*
766 		 * called by btrfs_reloc_post_snapshot_hook.
767 		 * the source tree is a reloc tree, all tree blocks
768 		 * modified after it was created have RELOC flag
769 		 * set in their headers. so it's OK to not update
770 		 * the 'last_snapshot'.
771 		 */
772 		ret = btrfs_copy_root(trans, root, root->node, &eb,
773 				      BTRFS_TREE_RELOC_OBJECTID);
774 		BUG_ON(ret);
775 	}
776 
777 	memcpy(root_item, &root->root_item, sizeof(*root_item));
778 	btrfs_set_root_bytenr(root_item, eb->start);
779 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
780 	btrfs_set_root_generation(root_item, trans->transid);
781 
782 	if (root->root_key.objectid == objectid) {
783 		btrfs_set_root_refs(root_item, 0);
784 		memset(&root_item->drop_progress, 0,
785 		       sizeof(struct btrfs_disk_key));
786 		root_item->drop_level = 0;
787 	}
788 
789 	btrfs_tree_unlock(eb);
790 	free_extent_buffer(eb);
791 
792 	ret = btrfs_insert_root(trans, fs_info->tree_root,
793 				&root_key, root_item);
794 	BUG_ON(ret);
795 	kfree(root_item);
796 
797 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
798 	BUG_ON(IS_ERR(reloc_root));
799 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
800 	reloc_root->last_trans = trans->transid;
801 	return reloc_root;
802 }
803 
804 /*
805  * create reloc tree for a given fs tree. reloc tree is just a
806  * snapshot of the fs tree with special root objectid.
807  *
808  * The reloc_root comes out of here with two references, one for
809  * root->reloc_root, and another for being on the rc->reloc_roots list.
810  */
811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
812 			  struct btrfs_root *root)
813 {
814 	struct btrfs_fs_info *fs_info = root->fs_info;
815 	struct btrfs_root *reloc_root;
816 	struct reloc_control *rc = fs_info->reloc_ctl;
817 	struct btrfs_block_rsv *rsv;
818 	int clear_rsv = 0;
819 	int ret;
820 
821 	if (!rc)
822 		return 0;
823 
824 	/*
825 	 * The subvolume has reloc tree but the swap is finished, no need to
826 	 * create/update the dead reloc tree
827 	 */
828 	if (reloc_root_is_dead(root))
829 		return 0;
830 
831 	/*
832 	 * This is subtle but important.  We do not do
833 	 * record_root_in_transaction for reloc roots, instead we record their
834 	 * corresponding fs root, and then here we update the last trans for the
835 	 * reloc root.  This means that we have to do this for the entire life
836 	 * of the reloc root, regardless of which stage of the relocation we are
837 	 * in.
838 	 */
839 	if (root->reloc_root) {
840 		reloc_root = root->reloc_root;
841 		reloc_root->last_trans = trans->transid;
842 		return 0;
843 	}
844 
845 	/*
846 	 * We are merging reloc roots, we do not need new reloc trees.  Also
847 	 * reloc trees never need their own reloc tree.
848 	 */
849 	if (!rc->create_reloc_tree ||
850 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
851 		return 0;
852 
853 	if (!trans->reloc_reserved) {
854 		rsv = trans->block_rsv;
855 		trans->block_rsv = rc->block_rsv;
856 		clear_rsv = 1;
857 	}
858 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
859 	if (clear_rsv)
860 		trans->block_rsv = rsv;
861 
862 	ret = __add_reloc_root(reloc_root);
863 	BUG_ON(ret < 0);
864 	root->reloc_root = btrfs_grab_root(reloc_root);
865 	return 0;
866 }
867 
868 /*
869  * update root item of reloc tree
870  */
871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
872 			    struct btrfs_root *root)
873 {
874 	struct btrfs_fs_info *fs_info = root->fs_info;
875 	struct btrfs_root *reloc_root;
876 	struct btrfs_root_item *root_item;
877 	int ret;
878 
879 	if (!have_reloc_root(root))
880 		goto out;
881 
882 	reloc_root = root->reloc_root;
883 	root_item = &reloc_root->root_item;
884 
885 	/*
886 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
887 	 * the root.  We have the ref for root->reloc_root, but just in case
888 	 * hold it while we update the reloc root.
889 	 */
890 	btrfs_grab_root(reloc_root);
891 
892 	/* root->reloc_root will stay until current relocation finished */
893 	if (fs_info->reloc_ctl->merge_reloc_tree &&
894 	    btrfs_root_refs(root_item) == 0) {
895 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
896 		/*
897 		 * Mark the tree as dead before we change reloc_root so
898 		 * have_reloc_root will not touch it from now on.
899 		 */
900 		smp_wmb();
901 		__del_reloc_root(reloc_root);
902 	}
903 
904 	if (reloc_root->commit_root != reloc_root->node) {
905 		__update_reloc_root(reloc_root);
906 		btrfs_set_root_node(root_item, reloc_root->node);
907 		free_extent_buffer(reloc_root->commit_root);
908 		reloc_root->commit_root = btrfs_root_node(reloc_root);
909 	}
910 
911 	ret = btrfs_update_root(trans, fs_info->tree_root,
912 				&reloc_root->root_key, root_item);
913 	BUG_ON(ret);
914 	btrfs_put_root(reloc_root);
915 out:
916 	return 0;
917 }
918 
919 /*
920  * helper to find first cached inode with inode number >= objectid
921  * in a subvolume
922  */
923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
924 {
925 	struct rb_node *node;
926 	struct rb_node *prev;
927 	struct btrfs_inode *entry;
928 	struct inode *inode;
929 
930 	spin_lock(&root->inode_lock);
931 again:
932 	node = root->inode_tree.rb_node;
933 	prev = NULL;
934 	while (node) {
935 		prev = node;
936 		entry = rb_entry(node, struct btrfs_inode, rb_node);
937 
938 		if (objectid < btrfs_ino(entry))
939 			node = node->rb_left;
940 		else if (objectid > btrfs_ino(entry))
941 			node = node->rb_right;
942 		else
943 			break;
944 	}
945 	if (!node) {
946 		while (prev) {
947 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
948 			if (objectid <= btrfs_ino(entry)) {
949 				node = prev;
950 				break;
951 			}
952 			prev = rb_next(prev);
953 		}
954 	}
955 	while (node) {
956 		entry = rb_entry(node, struct btrfs_inode, rb_node);
957 		inode = igrab(&entry->vfs_inode);
958 		if (inode) {
959 			spin_unlock(&root->inode_lock);
960 			return inode;
961 		}
962 
963 		objectid = btrfs_ino(entry) + 1;
964 		if (cond_resched_lock(&root->inode_lock))
965 			goto again;
966 
967 		node = rb_next(node);
968 	}
969 	spin_unlock(&root->inode_lock);
970 	return NULL;
971 }
972 
973 /*
974  * get new location of data
975  */
976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
977 			    u64 bytenr, u64 num_bytes)
978 {
979 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
980 	struct btrfs_path *path;
981 	struct btrfs_file_extent_item *fi;
982 	struct extent_buffer *leaf;
983 	int ret;
984 
985 	path = btrfs_alloc_path();
986 	if (!path)
987 		return -ENOMEM;
988 
989 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
990 	ret = btrfs_lookup_file_extent(NULL, root, path,
991 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
992 	if (ret < 0)
993 		goto out;
994 	if (ret > 0) {
995 		ret = -ENOENT;
996 		goto out;
997 	}
998 
999 	leaf = path->nodes[0];
1000 	fi = btrfs_item_ptr(leaf, path->slots[0],
1001 			    struct btrfs_file_extent_item);
1002 
1003 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1004 	       btrfs_file_extent_compression(leaf, fi) ||
1005 	       btrfs_file_extent_encryption(leaf, fi) ||
1006 	       btrfs_file_extent_other_encoding(leaf, fi));
1007 
1008 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1009 		ret = -EINVAL;
1010 		goto out;
1011 	}
1012 
1013 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1014 	ret = 0;
1015 out:
1016 	btrfs_free_path(path);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * update file extent items in the tree leaf to point to
1022  * the new locations.
1023  */
1024 static noinline_for_stack
1025 int replace_file_extents(struct btrfs_trans_handle *trans,
1026 			 struct reloc_control *rc,
1027 			 struct btrfs_root *root,
1028 			 struct extent_buffer *leaf)
1029 {
1030 	struct btrfs_fs_info *fs_info = root->fs_info;
1031 	struct btrfs_key key;
1032 	struct btrfs_file_extent_item *fi;
1033 	struct inode *inode = NULL;
1034 	u64 parent;
1035 	u64 bytenr;
1036 	u64 new_bytenr = 0;
1037 	u64 num_bytes;
1038 	u64 end;
1039 	u32 nritems;
1040 	u32 i;
1041 	int ret = 0;
1042 	int first = 1;
1043 	int dirty = 0;
1044 
1045 	if (rc->stage != UPDATE_DATA_PTRS)
1046 		return 0;
1047 
1048 	/* reloc trees always use full backref */
1049 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1050 		parent = leaf->start;
1051 	else
1052 		parent = 0;
1053 
1054 	nritems = btrfs_header_nritems(leaf);
1055 	for (i = 0; i < nritems; i++) {
1056 		struct btrfs_ref ref = { 0 };
1057 
1058 		cond_resched();
1059 		btrfs_item_key_to_cpu(leaf, &key, i);
1060 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1061 			continue;
1062 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1063 		if (btrfs_file_extent_type(leaf, fi) ==
1064 		    BTRFS_FILE_EXTENT_INLINE)
1065 			continue;
1066 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1067 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1068 		if (bytenr == 0)
1069 			continue;
1070 		if (!in_range(bytenr, rc->block_group->start,
1071 			      rc->block_group->length))
1072 			continue;
1073 
1074 		/*
1075 		 * if we are modifying block in fs tree, wait for readpage
1076 		 * to complete and drop the extent cache
1077 		 */
1078 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1079 			if (first) {
1080 				inode = find_next_inode(root, key.objectid);
1081 				first = 0;
1082 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1083 				btrfs_add_delayed_iput(inode);
1084 				inode = find_next_inode(root, key.objectid);
1085 			}
1086 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1087 				end = key.offset +
1088 				      btrfs_file_extent_num_bytes(leaf, fi);
1089 				WARN_ON(!IS_ALIGNED(key.offset,
1090 						    fs_info->sectorsize));
1091 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1092 				end--;
1093 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1094 						      key.offset, end);
1095 				if (!ret)
1096 					continue;
1097 
1098 				btrfs_drop_extent_cache(BTRFS_I(inode),
1099 						key.offset,	end, 1);
1100 				unlock_extent(&BTRFS_I(inode)->io_tree,
1101 					      key.offset, end);
1102 			}
1103 		}
1104 
1105 		ret = get_new_location(rc->data_inode, &new_bytenr,
1106 				       bytenr, num_bytes);
1107 		if (ret) {
1108 			/*
1109 			 * Don't have to abort since we've not changed anything
1110 			 * in the file extent yet.
1111 			 */
1112 			break;
1113 		}
1114 
1115 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1116 		dirty = 1;
1117 
1118 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1119 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1120 				       num_bytes, parent);
1121 		ref.real_root = root->root_key.objectid;
1122 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1123 				    key.objectid, key.offset);
1124 		ret = btrfs_inc_extent_ref(trans, &ref);
1125 		if (ret) {
1126 			btrfs_abort_transaction(trans, ret);
1127 			break;
1128 		}
1129 
1130 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1131 				       num_bytes, parent);
1132 		ref.real_root = root->root_key.objectid;
1133 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1134 				    key.objectid, key.offset);
1135 		ret = btrfs_free_extent(trans, &ref);
1136 		if (ret) {
1137 			btrfs_abort_transaction(trans, ret);
1138 			break;
1139 		}
1140 	}
1141 	if (dirty)
1142 		btrfs_mark_buffer_dirty(leaf);
1143 	if (inode)
1144 		btrfs_add_delayed_iput(inode);
1145 	return ret;
1146 }
1147 
1148 static noinline_for_stack
1149 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1150 		     struct btrfs_path *path, int level)
1151 {
1152 	struct btrfs_disk_key key1;
1153 	struct btrfs_disk_key key2;
1154 	btrfs_node_key(eb, &key1, slot);
1155 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1156 	return memcmp(&key1, &key2, sizeof(key1));
1157 }
1158 
1159 /*
1160  * try to replace tree blocks in fs tree with the new blocks
1161  * in reloc tree. tree blocks haven't been modified since the
1162  * reloc tree was create can be replaced.
1163  *
1164  * if a block was replaced, level of the block + 1 is returned.
1165  * if no block got replaced, 0 is returned. if there are other
1166  * errors, a negative error number is returned.
1167  */
1168 static noinline_for_stack
1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1170 		 struct btrfs_root *dest, struct btrfs_root *src,
1171 		 struct btrfs_path *path, struct btrfs_key *next_key,
1172 		 int lowest_level, int max_level)
1173 {
1174 	struct btrfs_fs_info *fs_info = dest->fs_info;
1175 	struct extent_buffer *eb;
1176 	struct extent_buffer *parent;
1177 	struct btrfs_ref ref = { 0 };
1178 	struct btrfs_key key;
1179 	u64 old_bytenr;
1180 	u64 new_bytenr;
1181 	u64 old_ptr_gen;
1182 	u64 new_ptr_gen;
1183 	u64 last_snapshot;
1184 	u32 blocksize;
1185 	int cow = 0;
1186 	int level;
1187 	int ret;
1188 	int slot;
1189 
1190 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1191 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1192 
1193 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1194 again:
1195 	slot = path->slots[lowest_level];
1196 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1197 
1198 	eb = btrfs_lock_root_node(dest);
1199 	btrfs_set_lock_blocking_write(eb);
1200 	level = btrfs_header_level(eb);
1201 
1202 	if (level < lowest_level) {
1203 		btrfs_tree_unlock(eb);
1204 		free_extent_buffer(eb);
1205 		return 0;
1206 	}
1207 
1208 	if (cow) {
1209 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1210 		BUG_ON(ret);
1211 	}
1212 	btrfs_set_lock_blocking_write(eb);
1213 
1214 	if (next_key) {
1215 		next_key->objectid = (u64)-1;
1216 		next_key->type = (u8)-1;
1217 		next_key->offset = (u64)-1;
1218 	}
1219 
1220 	parent = eb;
1221 	while (1) {
1222 		struct btrfs_key first_key;
1223 
1224 		level = btrfs_header_level(parent);
1225 		BUG_ON(level < lowest_level);
1226 
1227 		ret = btrfs_bin_search(parent, &key, &slot);
1228 		if (ret < 0)
1229 			break;
1230 		if (ret && slot > 0)
1231 			slot--;
1232 
1233 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1234 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1235 
1236 		old_bytenr = btrfs_node_blockptr(parent, slot);
1237 		blocksize = fs_info->nodesize;
1238 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1239 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1240 
1241 		if (level <= max_level) {
1242 			eb = path->nodes[level];
1243 			new_bytenr = btrfs_node_blockptr(eb,
1244 							path->slots[level]);
1245 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1246 							path->slots[level]);
1247 		} else {
1248 			new_bytenr = 0;
1249 			new_ptr_gen = 0;
1250 		}
1251 
1252 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1253 			ret = level;
1254 			break;
1255 		}
1256 
1257 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1258 		    memcmp_node_keys(parent, slot, path, level)) {
1259 			if (level <= lowest_level) {
1260 				ret = 0;
1261 				break;
1262 			}
1263 
1264 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1265 					     level - 1, &first_key);
1266 			if (IS_ERR(eb)) {
1267 				ret = PTR_ERR(eb);
1268 				break;
1269 			} else if (!extent_buffer_uptodate(eb)) {
1270 				ret = -EIO;
1271 				free_extent_buffer(eb);
1272 				break;
1273 			}
1274 			btrfs_tree_lock(eb);
1275 			if (cow) {
1276 				ret = btrfs_cow_block(trans, dest, eb, parent,
1277 						      slot, &eb);
1278 				BUG_ON(ret);
1279 			}
1280 			btrfs_set_lock_blocking_write(eb);
1281 
1282 			btrfs_tree_unlock(parent);
1283 			free_extent_buffer(parent);
1284 
1285 			parent = eb;
1286 			continue;
1287 		}
1288 
1289 		if (!cow) {
1290 			btrfs_tree_unlock(parent);
1291 			free_extent_buffer(parent);
1292 			cow = 1;
1293 			goto again;
1294 		}
1295 
1296 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1297 				      path->slots[level]);
1298 		btrfs_release_path(path);
1299 
1300 		path->lowest_level = level;
1301 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1302 		path->lowest_level = 0;
1303 		BUG_ON(ret);
1304 
1305 		/*
1306 		 * Info qgroup to trace both subtrees.
1307 		 *
1308 		 * We must trace both trees.
1309 		 * 1) Tree reloc subtree
1310 		 *    If not traced, we will leak data numbers
1311 		 * 2) Fs subtree
1312 		 *    If not traced, we will double count old data
1313 		 *
1314 		 * We don't scan the subtree right now, but only record
1315 		 * the swapped tree blocks.
1316 		 * The real subtree rescan is delayed until we have new
1317 		 * CoW on the subtree root node before transaction commit.
1318 		 */
1319 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1320 				rc->block_group, parent, slot,
1321 				path->nodes[level], path->slots[level],
1322 				last_snapshot);
1323 		if (ret < 0)
1324 			break;
1325 		/*
1326 		 * swap blocks in fs tree and reloc tree.
1327 		 */
1328 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1329 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1330 		btrfs_mark_buffer_dirty(parent);
1331 
1332 		btrfs_set_node_blockptr(path->nodes[level],
1333 					path->slots[level], old_bytenr);
1334 		btrfs_set_node_ptr_generation(path->nodes[level],
1335 					      path->slots[level], old_ptr_gen);
1336 		btrfs_mark_buffer_dirty(path->nodes[level]);
1337 
1338 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1339 				       blocksize, path->nodes[level]->start);
1340 		ref.skip_qgroup = true;
1341 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1342 		ret = btrfs_inc_extent_ref(trans, &ref);
1343 		BUG_ON(ret);
1344 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1345 				       blocksize, 0);
1346 		ref.skip_qgroup = true;
1347 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1348 		ret = btrfs_inc_extent_ref(trans, &ref);
1349 		BUG_ON(ret);
1350 
1351 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1352 				       blocksize, path->nodes[level]->start);
1353 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1354 		ref.skip_qgroup = true;
1355 		ret = btrfs_free_extent(trans, &ref);
1356 		BUG_ON(ret);
1357 
1358 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1359 				       blocksize, 0);
1360 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1361 		ref.skip_qgroup = true;
1362 		ret = btrfs_free_extent(trans, &ref);
1363 		BUG_ON(ret);
1364 
1365 		btrfs_unlock_up_safe(path, 0);
1366 
1367 		ret = level;
1368 		break;
1369 	}
1370 	btrfs_tree_unlock(parent);
1371 	free_extent_buffer(parent);
1372 	return ret;
1373 }
1374 
1375 /*
1376  * helper to find next relocated block in reloc tree
1377  */
1378 static noinline_for_stack
1379 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1380 		       int *level)
1381 {
1382 	struct extent_buffer *eb;
1383 	int i;
1384 	u64 last_snapshot;
1385 	u32 nritems;
1386 
1387 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1388 
1389 	for (i = 0; i < *level; i++) {
1390 		free_extent_buffer(path->nodes[i]);
1391 		path->nodes[i] = NULL;
1392 	}
1393 
1394 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1395 		eb = path->nodes[i];
1396 		nritems = btrfs_header_nritems(eb);
1397 		while (path->slots[i] + 1 < nritems) {
1398 			path->slots[i]++;
1399 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1400 			    last_snapshot)
1401 				continue;
1402 
1403 			*level = i;
1404 			return 0;
1405 		}
1406 		free_extent_buffer(path->nodes[i]);
1407 		path->nodes[i] = NULL;
1408 	}
1409 	return 1;
1410 }
1411 
1412 /*
1413  * walk down reloc tree to find relocated block of lowest level
1414  */
1415 static noinline_for_stack
1416 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1417 			 int *level)
1418 {
1419 	struct btrfs_fs_info *fs_info = root->fs_info;
1420 	struct extent_buffer *eb = NULL;
1421 	int i;
1422 	u64 bytenr;
1423 	u64 ptr_gen = 0;
1424 	u64 last_snapshot;
1425 	u32 nritems;
1426 
1427 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1428 
1429 	for (i = *level; i > 0; i--) {
1430 		struct btrfs_key first_key;
1431 
1432 		eb = path->nodes[i];
1433 		nritems = btrfs_header_nritems(eb);
1434 		while (path->slots[i] < nritems) {
1435 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1436 			if (ptr_gen > last_snapshot)
1437 				break;
1438 			path->slots[i]++;
1439 		}
1440 		if (path->slots[i] >= nritems) {
1441 			if (i == *level)
1442 				break;
1443 			*level = i + 1;
1444 			return 0;
1445 		}
1446 		if (i == 1) {
1447 			*level = i;
1448 			return 0;
1449 		}
1450 
1451 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1452 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
1453 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
1454 				     &first_key);
1455 		if (IS_ERR(eb)) {
1456 			return PTR_ERR(eb);
1457 		} else if (!extent_buffer_uptodate(eb)) {
1458 			free_extent_buffer(eb);
1459 			return -EIO;
1460 		}
1461 		BUG_ON(btrfs_header_level(eb) != i - 1);
1462 		path->nodes[i - 1] = eb;
1463 		path->slots[i - 1] = 0;
1464 	}
1465 	return 1;
1466 }
1467 
1468 /*
1469  * invalidate extent cache for file extents whose key in range of
1470  * [min_key, max_key)
1471  */
1472 static int invalidate_extent_cache(struct btrfs_root *root,
1473 				   struct btrfs_key *min_key,
1474 				   struct btrfs_key *max_key)
1475 {
1476 	struct btrfs_fs_info *fs_info = root->fs_info;
1477 	struct inode *inode = NULL;
1478 	u64 objectid;
1479 	u64 start, end;
1480 	u64 ino;
1481 
1482 	objectid = min_key->objectid;
1483 	while (1) {
1484 		cond_resched();
1485 		iput(inode);
1486 
1487 		if (objectid > max_key->objectid)
1488 			break;
1489 
1490 		inode = find_next_inode(root, objectid);
1491 		if (!inode)
1492 			break;
1493 		ino = btrfs_ino(BTRFS_I(inode));
1494 
1495 		if (ino > max_key->objectid) {
1496 			iput(inode);
1497 			break;
1498 		}
1499 
1500 		objectid = ino + 1;
1501 		if (!S_ISREG(inode->i_mode))
1502 			continue;
1503 
1504 		if (unlikely(min_key->objectid == ino)) {
1505 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1506 				continue;
1507 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1508 				start = 0;
1509 			else {
1510 				start = min_key->offset;
1511 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1512 			}
1513 		} else {
1514 			start = 0;
1515 		}
1516 
1517 		if (unlikely(max_key->objectid == ino)) {
1518 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1519 				continue;
1520 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1521 				end = (u64)-1;
1522 			} else {
1523 				if (max_key->offset == 0)
1524 					continue;
1525 				end = max_key->offset;
1526 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1527 				end--;
1528 			}
1529 		} else {
1530 			end = (u64)-1;
1531 		}
1532 
1533 		/* the lock_extent waits for readpage to complete */
1534 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1535 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1536 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1537 	}
1538 	return 0;
1539 }
1540 
1541 static int find_next_key(struct btrfs_path *path, int level,
1542 			 struct btrfs_key *key)
1543 
1544 {
1545 	while (level < BTRFS_MAX_LEVEL) {
1546 		if (!path->nodes[level])
1547 			break;
1548 		if (path->slots[level] + 1 <
1549 		    btrfs_header_nritems(path->nodes[level])) {
1550 			btrfs_node_key_to_cpu(path->nodes[level], key,
1551 					      path->slots[level] + 1);
1552 			return 0;
1553 		}
1554 		level++;
1555 	}
1556 	return 1;
1557 }
1558 
1559 /*
1560  * Insert current subvolume into reloc_control::dirty_subvol_roots
1561  */
1562 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1563 				struct reloc_control *rc,
1564 				struct btrfs_root *root)
1565 {
1566 	struct btrfs_root *reloc_root = root->reloc_root;
1567 	struct btrfs_root_item *reloc_root_item;
1568 
1569 	/* @root must be a subvolume tree root with a valid reloc tree */
1570 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1571 	ASSERT(reloc_root);
1572 
1573 	reloc_root_item = &reloc_root->root_item;
1574 	memset(&reloc_root_item->drop_progress, 0,
1575 		sizeof(reloc_root_item->drop_progress));
1576 	reloc_root_item->drop_level = 0;
1577 	btrfs_set_root_refs(reloc_root_item, 0);
1578 	btrfs_update_reloc_root(trans, root);
1579 
1580 	if (list_empty(&root->reloc_dirty_list)) {
1581 		btrfs_grab_root(root);
1582 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1583 	}
1584 }
1585 
1586 static int clean_dirty_subvols(struct reloc_control *rc)
1587 {
1588 	struct btrfs_root *root;
1589 	struct btrfs_root *next;
1590 	int ret = 0;
1591 	int ret2;
1592 
1593 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1594 				 reloc_dirty_list) {
1595 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1596 			/* Merged subvolume, cleanup its reloc root */
1597 			struct btrfs_root *reloc_root = root->reloc_root;
1598 
1599 			list_del_init(&root->reloc_dirty_list);
1600 			root->reloc_root = NULL;
1601 			/*
1602 			 * Need barrier to ensure clear_bit() only happens after
1603 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1604 			 */
1605 			smp_wmb();
1606 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1607 			if (reloc_root) {
1608 				/*
1609 				 * btrfs_drop_snapshot drops our ref we hold for
1610 				 * ->reloc_root.  If it fails however we must
1611 				 * drop the ref ourselves.
1612 				 */
1613 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1614 				if (ret2 < 0) {
1615 					btrfs_put_root(reloc_root);
1616 					if (!ret)
1617 						ret = ret2;
1618 				}
1619 			}
1620 			btrfs_put_root(root);
1621 		} else {
1622 			/* Orphan reloc tree, just clean it up */
1623 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1624 			if (ret2 < 0) {
1625 				btrfs_put_root(root);
1626 				if (!ret)
1627 					ret = ret2;
1628 			}
1629 		}
1630 	}
1631 	return ret;
1632 }
1633 
1634 /*
1635  * merge the relocated tree blocks in reloc tree with corresponding
1636  * fs tree.
1637  */
1638 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1639 					       struct btrfs_root *root)
1640 {
1641 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1642 	struct btrfs_key key;
1643 	struct btrfs_key next_key;
1644 	struct btrfs_trans_handle *trans = NULL;
1645 	struct btrfs_root *reloc_root;
1646 	struct btrfs_root_item *root_item;
1647 	struct btrfs_path *path;
1648 	struct extent_buffer *leaf;
1649 	int level;
1650 	int max_level;
1651 	int replaced = 0;
1652 	int ret;
1653 	int err = 0;
1654 	u32 min_reserved;
1655 
1656 	path = btrfs_alloc_path();
1657 	if (!path)
1658 		return -ENOMEM;
1659 	path->reada = READA_FORWARD;
1660 
1661 	reloc_root = root->reloc_root;
1662 	root_item = &reloc_root->root_item;
1663 
1664 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1665 		level = btrfs_root_level(root_item);
1666 		atomic_inc(&reloc_root->node->refs);
1667 		path->nodes[level] = reloc_root->node;
1668 		path->slots[level] = 0;
1669 	} else {
1670 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1671 
1672 		level = root_item->drop_level;
1673 		BUG_ON(level == 0);
1674 		path->lowest_level = level;
1675 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1676 		path->lowest_level = 0;
1677 		if (ret < 0) {
1678 			btrfs_free_path(path);
1679 			return ret;
1680 		}
1681 
1682 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1683 				      path->slots[level]);
1684 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1685 
1686 		btrfs_unlock_up_safe(path, 0);
1687 	}
1688 
1689 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1690 	memset(&next_key, 0, sizeof(next_key));
1691 
1692 	while (1) {
1693 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1694 					     BTRFS_RESERVE_FLUSH_ALL);
1695 		if (ret) {
1696 			err = ret;
1697 			goto out;
1698 		}
1699 		trans = btrfs_start_transaction(root, 0);
1700 		if (IS_ERR(trans)) {
1701 			err = PTR_ERR(trans);
1702 			trans = NULL;
1703 			goto out;
1704 		}
1705 
1706 		/*
1707 		 * At this point we no longer have a reloc_control, so we can't
1708 		 * depend on btrfs_init_reloc_root to update our last_trans.
1709 		 *
1710 		 * But that's ok, we started the trans handle on our
1711 		 * corresponding fs_root, which means it's been added to the
1712 		 * dirty list.  At commit time we'll still call
1713 		 * btrfs_update_reloc_root() and update our root item
1714 		 * appropriately.
1715 		 */
1716 		reloc_root->last_trans = trans->transid;
1717 		trans->block_rsv = rc->block_rsv;
1718 
1719 		replaced = 0;
1720 		max_level = level;
1721 
1722 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1723 		if (ret < 0) {
1724 			err = ret;
1725 			goto out;
1726 		}
1727 		if (ret > 0)
1728 			break;
1729 
1730 		if (!find_next_key(path, level, &key) &&
1731 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1732 			ret = 0;
1733 		} else {
1734 			ret = replace_path(trans, rc, root, reloc_root, path,
1735 					   &next_key, level, max_level);
1736 		}
1737 		if (ret < 0) {
1738 			err = ret;
1739 			goto out;
1740 		}
1741 
1742 		if (ret > 0) {
1743 			level = ret;
1744 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1745 					      path->slots[level]);
1746 			replaced = 1;
1747 		}
1748 
1749 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1750 		if (ret > 0)
1751 			break;
1752 
1753 		BUG_ON(level == 0);
1754 		/*
1755 		 * save the merging progress in the drop_progress.
1756 		 * this is OK since root refs == 1 in this case.
1757 		 */
1758 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1759 			       path->slots[level]);
1760 		root_item->drop_level = level;
1761 
1762 		btrfs_end_transaction_throttle(trans);
1763 		trans = NULL;
1764 
1765 		btrfs_btree_balance_dirty(fs_info);
1766 
1767 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1768 			invalidate_extent_cache(root, &key, &next_key);
1769 	}
1770 
1771 	/*
1772 	 * handle the case only one block in the fs tree need to be
1773 	 * relocated and the block is tree root.
1774 	 */
1775 	leaf = btrfs_lock_root_node(root);
1776 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
1777 	btrfs_tree_unlock(leaf);
1778 	free_extent_buffer(leaf);
1779 	if (ret < 0)
1780 		err = ret;
1781 out:
1782 	btrfs_free_path(path);
1783 
1784 	if (err == 0)
1785 		insert_dirty_subvol(trans, rc, root);
1786 
1787 	if (trans)
1788 		btrfs_end_transaction_throttle(trans);
1789 
1790 	btrfs_btree_balance_dirty(fs_info);
1791 
1792 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1793 		invalidate_extent_cache(root, &key, &next_key);
1794 
1795 	return err;
1796 }
1797 
1798 static noinline_for_stack
1799 int prepare_to_merge(struct reloc_control *rc, int err)
1800 {
1801 	struct btrfs_root *root = rc->extent_root;
1802 	struct btrfs_fs_info *fs_info = root->fs_info;
1803 	struct btrfs_root *reloc_root;
1804 	struct btrfs_trans_handle *trans;
1805 	LIST_HEAD(reloc_roots);
1806 	u64 num_bytes = 0;
1807 	int ret;
1808 
1809 	mutex_lock(&fs_info->reloc_mutex);
1810 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1811 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1812 	mutex_unlock(&fs_info->reloc_mutex);
1813 
1814 again:
1815 	if (!err) {
1816 		num_bytes = rc->merging_rsv_size;
1817 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1818 					  BTRFS_RESERVE_FLUSH_ALL);
1819 		if (ret)
1820 			err = ret;
1821 	}
1822 
1823 	trans = btrfs_join_transaction(rc->extent_root);
1824 	if (IS_ERR(trans)) {
1825 		if (!err)
1826 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1827 						num_bytes, NULL);
1828 		return PTR_ERR(trans);
1829 	}
1830 
1831 	if (!err) {
1832 		if (num_bytes != rc->merging_rsv_size) {
1833 			btrfs_end_transaction(trans);
1834 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1835 						num_bytes, NULL);
1836 			goto again;
1837 		}
1838 	}
1839 
1840 	rc->merge_reloc_tree = 1;
1841 
1842 	while (!list_empty(&rc->reloc_roots)) {
1843 		reloc_root = list_entry(rc->reloc_roots.next,
1844 					struct btrfs_root, root_list);
1845 		list_del_init(&reloc_root->root_list);
1846 
1847 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1848 				false);
1849 		BUG_ON(IS_ERR(root));
1850 		BUG_ON(root->reloc_root != reloc_root);
1851 
1852 		/*
1853 		 * set reference count to 1, so btrfs_recover_relocation
1854 		 * knows it should resumes merging
1855 		 */
1856 		if (!err)
1857 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1858 		btrfs_update_reloc_root(trans, root);
1859 
1860 		list_add(&reloc_root->root_list, &reloc_roots);
1861 		btrfs_put_root(root);
1862 	}
1863 
1864 	list_splice(&reloc_roots, &rc->reloc_roots);
1865 
1866 	if (!err)
1867 		btrfs_commit_transaction(trans);
1868 	else
1869 		btrfs_end_transaction(trans);
1870 	return err;
1871 }
1872 
1873 static noinline_for_stack
1874 void free_reloc_roots(struct list_head *list)
1875 {
1876 	struct btrfs_root *reloc_root, *tmp;
1877 
1878 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1879 		__del_reloc_root(reloc_root);
1880 }
1881 
1882 static noinline_for_stack
1883 void merge_reloc_roots(struct reloc_control *rc)
1884 {
1885 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1886 	struct btrfs_root *root;
1887 	struct btrfs_root *reloc_root;
1888 	LIST_HEAD(reloc_roots);
1889 	int found = 0;
1890 	int ret = 0;
1891 again:
1892 	root = rc->extent_root;
1893 
1894 	/*
1895 	 * this serializes us with btrfs_record_root_in_transaction,
1896 	 * we have to make sure nobody is in the middle of
1897 	 * adding their roots to the list while we are
1898 	 * doing this splice
1899 	 */
1900 	mutex_lock(&fs_info->reloc_mutex);
1901 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1902 	mutex_unlock(&fs_info->reloc_mutex);
1903 
1904 	while (!list_empty(&reloc_roots)) {
1905 		found = 1;
1906 		reloc_root = list_entry(reloc_roots.next,
1907 					struct btrfs_root, root_list);
1908 
1909 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1910 					 false);
1911 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1912 			BUG_ON(IS_ERR(root));
1913 			BUG_ON(root->reloc_root != reloc_root);
1914 			ret = merge_reloc_root(rc, root);
1915 			btrfs_put_root(root);
1916 			if (ret) {
1917 				if (list_empty(&reloc_root->root_list))
1918 					list_add_tail(&reloc_root->root_list,
1919 						      &reloc_roots);
1920 				goto out;
1921 			}
1922 		} else {
1923 			if (!IS_ERR(root)) {
1924 				if (root->reloc_root == reloc_root) {
1925 					root->reloc_root = NULL;
1926 					btrfs_put_root(reloc_root);
1927 				}
1928 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1929 					  &root->state);
1930 				btrfs_put_root(root);
1931 			}
1932 
1933 			list_del_init(&reloc_root->root_list);
1934 			/* Don't forget to queue this reloc root for cleanup */
1935 			list_add_tail(&reloc_root->reloc_dirty_list,
1936 				      &rc->dirty_subvol_roots);
1937 		}
1938 	}
1939 
1940 	if (found) {
1941 		found = 0;
1942 		goto again;
1943 	}
1944 out:
1945 	if (ret) {
1946 		btrfs_handle_fs_error(fs_info, ret, NULL);
1947 		free_reloc_roots(&reloc_roots);
1948 
1949 		/* new reloc root may be added */
1950 		mutex_lock(&fs_info->reloc_mutex);
1951 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1952 		mutex_unlock(&fs_info->reloc_mutex);
1953 		free_reloc_roots(&reloc_roots);
1954 	}
1955 
1956 	/*
1957 	 * We used to have
1958 	 *
1959 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1960 	 *
1961 	 * here, but it's wrong.  If we fail to start the transaction in
1962 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1963 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1964 	 * fine because we're bailing here, and we hold a reference on the root
1965 	 * for the list that holds it, so these roots will be cleaned up when we
1966 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1967 	 * will be cleaned up on unmount.
1968 	 *
1969 	 * The remaining nodes will be cleaned up by free_reloc_control.
1970 	 */
1971 }
1972 
1973 static void free_block_list(struct rb_root *blocks)
1974 {
1975 	struct tree_block *block;
1976 	struct rb_node *rb_node;
1977 	while ((rb_node = rb_first(blocks))) {
1978 		block = rb_entry(rb_node, struct tree_block, rb_node);
1979 		rb_erase(rb_node, blocks);
1980 		kfree(block);
1981 	}
1982 }
1983 
1984 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1985 				      struct btrfs_root *reloc_root)
1986 {
1987 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1988 	struct btrfs_root *root;
1989 	int ret;
1990 
1991 	if (reloc_root->last_trans == trans->transid)
1992 		return 0;
1993 
1994 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1995 	BUG_ON(IS_ERR(root));
1996 	BUG_ON(root->reloc_root != reloc_root);
1997 	ret = btrfs_record_root_in_trans(trans, root);
1998 	btrfs_put_root(root);
1999 
2000 	return ret;
2001 }
2002 
2003 static noinline_for_stack
2004 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2005 				     struct reloc_control *rc,
2006 				     struct btrfs_backref_node *node,
2007 				     struct btrfs_backref_edge *edges[])
2008 {
2009 	struct btrfs_backref_node *next;
2010 	struct btrfs_root *root;
2011 	int index = 0;
2012 
2013 	next = node;
2014 	while (1) {
2015 		cond_resched();
2016 		next = walk_up_backref(next, edges, &index);
2017 		root = next->root;
2018 		BUG_ON(!root);
2019 		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2020 
2021 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2022 			record_reloc_root_in_trans(trans, root);
2023 			break;
2024 		}
2025 
2026 		btrfs_record_root_in_trans(trans, root);
2027 		root = root->reloc_root;
2028 
2029 		if (next->new_bytenr != root->node->start) {
2030 			BUG_ON(next->new_bytenr);
2031 			BUG_ON(!list_empty(&next->list));
2032 			next->new_bytenr = root->node->start;
2033 			btrfs_put_root(next->root);
2034 			next->root = btrfs_grab_root(root);
2035 			ASSERT(next->root);
2036 			list_add_tail(&next->list,
2037 				      &rc->backref_cache.changed);
2038 			mark_block_processed(rc, next);
2039 			break;
2040 		}
2041 
2042 		WARN_ON(1);
2043 		root = NULL;
2044 		next = walk_down_backref(edges, &index);
2045 		if (!next || next->level <= node->level)
2046 			break;
2047 	}
2048 	if (!root)
2049 		return NULL;
2050 
2051 	next = node;
2052 	/* setup backref node path for btrfs_reloc_cow_block */
2053 	while (1) {
2054 		rc->backref_cache.path[next->level] = next;
2055 		if (--index < 0)
2056 			break;
2057 		next = edges[index]->node[UPPER];
2058 	}
2059 	return root;
2060 }
2061 
2062 /*
2063  * Select a tree root for relocation.
2064  *
2065  * Return NULL if the block is not shareable. We should use do_relocation() in
2066  * this case.
2067  *
2068  * Return a tree root pointer if the block is shareable.
2069  * Return -ENOENT if the block is root of reloc tree.
2070  */
2071 static noinline_for_stack
2072 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2073 {
2074 	struct btrfs_backref_node *next;
2075 	struct btrfs_root *root;
2076 	struct btrfs_root *fs_root = NULL;
2077 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2078 	int index = 0;
2079 
2080 	next = node;
2081 	while (1) {
2082 		cond_resched();
2083 		next = walk_up_backref(next, edges, &index);
2084 		root = next->root;
2085 		BUG_ON(!root);
2086 
2087 		/* No other choice for non-shareable tree */
2088 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2089 			return root;
2090 
2091 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2092 			fs_root = root;
2093 
2094 		if (next != node)
2095 			return NULL;
2096 
2097 		next = walk_down_backref(edges, &index);
2098 		if (!next || next->level <= node->level)
2099 			break;
2100 	}
2101 
2102 	if (!fs_root)
2103 		return ERR_PTR(-ENOENT);
2104 	return fs_root;
2105 }
2106 
2107 static noinline_for_stack
2108 u64 calcu_metadata_size(struct reloc_control *rc,
2109 			struct btrfs_backref_node *node, int reserve)
2110 {
2111 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2112 	struct btrfs_backref_node *next = node;
2113 	struct btrfs_backref_edge *edge;
2114 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2115 	u64 num_bytes = 0;
2116 	int index = 0;
2117 
2118 	BUG_ON(reserve && node->processed);
2119 
2120 	while (next) {
2121 		cond_resched();
2122 		while (1) {
2123 			if (next->processed && (reserve || next != node))
2124 				break;
2125 
2126 			num_bytes += fs_info->nodesize;
2127 
2128 			if (list_empty(&next->upper))
2129 				break;
2130 
2131 			edge = list_entry(next->upper.next,
2132 					struct btrfs_backref_edge, list[LOWER]);
2133 			edges[index++] = edge;
2134 			next = edge->node[UPPER];
2135 		}
2136 		next = walk_down_backref(edges, &index);
2137 	}
2138 	return num_bytes;
2139 }
2140 
2141 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2142 				  struct reloc_control *rc,
2143 				  struct btrfs_backref_node *node)
2144 {
2145 	struct btrfs_root *root = rc->extent_root;
2146 	struct btrfs_fs_info *fs_info = root->fs_info;
2147 	u64 num_bytes;
2148 	int ret;
2149 	u64 tmp;
2150 
2151 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2152 
2153 	trans->block_rsv = rc->block_rsv;
2154 	rc->reserved_bytes += num_bytes;
2155 
2156 	/*
2157 	 * We are under a transaction here so we can only do limited flushing.
2158 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2159 	 * transaction and try to refill when we can flush all the things.
2160 	 */
2161 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2162 				BTRFS_RESERVE_FLUSH_LIMIT);
2163 	if (ret) {
2164 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2165 		while (tmp <= rc->reserved_bytes)
2166 			tmp <<= 1;
2167 		/*
2168 		 * only one thread can access block_rsv at this point,
2169 		 * so we don't need hold lock to protect block_rsv.
2170 		 * we expand more reservation size here to allow enough
2171 		 * space for relocation and we will return earlier in
2172 		 * enospc case.
2173 		 */
2174 		rc->block_rsv->size = tmp + fs_info->nodesize *
2175 				      RELOCATION_RESERVED_NODES;
2176 		return -EAGAIN;
2177 	}
2178 
2179 	return 0;
2180 }
2181 
2182 /*
2183  * relocate a block tree, and then update pointers in upper level
2184  * blocks that reference the block to point to the new location.
2185  *
2186  * if called by link_to_upper, the block has already been relocated.
2187  * in that case this function just updates pointers.
2188  */
2189 static int do_relocation(struct btrfs_trans_handle *trans,
2190 			 struct reloc_control *rc,
2191 			 struct btrfs_backref_node *node,
2192 			 struct btrfs_key *key,
2193 			 struct btrfs_path *path, int lowest)
2194 {
2195 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2196 	struct btrfs_backref_node *upper;
2197 	struct btrfs_backref_edge *edge;
2198 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2199 	struct btrfs_root *root;
2200 	struct extent_buffer *eb;
2201 	u32 blocksize;
2202 	u64 bytenr;
2203 	u64 generation;
2204 	int slot;
2205 	int ret;
2206 	int err = 0;
2207 
2208 	BUG_ON(lowest && node->eb);
2209 
2210 	path->lowest_level = node->level + 1;
2211 	rc->backref_cache.path[node->level] = node;
2212 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2213 		struct btrfs_key first_key;
2214 		struct btrfs_ref ref = { 0 };
2215 
2216 		cond_resched();
2217 
2218 		upper = edge->node[UPPER];
2219 		root = select_reloc_root(trans, rc, upper, edges);
2220 		BUG_ON(!root);
2221 
2222 		if (upper->eb && !upper->locked) {
2223 			if (!lowest) {
2224 				ret = btrfs_bin_search(upper->eb, key, &slot);
2225 				if (ret < 0) {
2226 					err = ret;
2227 					goto next;
2228 				}
2229 				BUG_ON(ret);
2230 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2231 				if (node->eb->start == bytenr)
2232 					goto next;
2233 			}
2234 			btrfs_backref_drop_node_buffer(upper);
2235 		}
2236 
2237 		if (!upper->eb) {
2238 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2239 			if (ret) {
2240 				if (ret < 0)
2241 					err = ret;
2242 				else
2243 					err = -ENOENT;
2244 
2245 				btrfs_release_path(path);
2246 				break;
2247 			}
2248 
2249 			if (!upper->eb) {
2250 				upper->eb = path->nodes[upper->level];
2251 				path->nodes[upper->level] = NULL;
2252 			} else {
2253 				BUG_ON(upper->eb != path->nodes[upper->level]);
2254 			}
2255 
2256 			upper->locked = 1;
2257 			path->locks[upper->level] = 0;
2258 
2259 			slot = path->slots[upper->level];
2260 			btrfs_release_path(path);
2261 		} else {
2262 			ret = btrfs_bin_search(upper->eb, key, &slot);
2263 			if (ret < 0) {
2264 				err = ret;
2265 				goto next;
2266 			}
2267 			BUG_ON(ret);
2268 		}
2269 
2270 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2271 		if (lowest) {
2272 			if (bytenr != node->bytenr) {
2273 				btrfs_err(root->fs_info,
2274 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2275 					  bytenr, node->bytenr, slot,
2276 					  upper->eb->start);
2277 				err = -EIO;
2278 				goto next;
2279 			}
2280 		} else {
2281 			if (node->eb->start == bytenr)
2282 				goto next;
2283 		}
2284 
2285 		blocksize = root->fs_info->nodesize;
2286 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2287 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2288 		eb = read_tree_block(fs_info, bytenr, generation,
2289 				     upper->level - 1, &first_key);
2290 		if (IS_ERR(eb)) {
2291 			err = PTR_ERR(eb);
2292 			goto next;
2293 		} else if (!extent_buffer_uptodate(eb)) {
2294 			free_extent_buffer(eb);
2295 			err = -EIO;
2296 			goto next;
2297 		}
2298 		btrfs_tree_lock(eb);
2299 		btrfs_set_lock_blocking_write(eb);
2300 
2301 		if (!node->eb) {
2302 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2303 					      slot, &eb);
2304 			btrfs_tree_unlock(eb);
2305 			free_extent_buffer(eb);
2306 			if (ret < 0) {
2307 				err = ret;
2308 				goto next;
2309 			}
2310 			BUG_ON(node->eb != eb);
2311 		} else {
2312 			btrfs_set_node_blockptr(upper->eb, slot,
2313 						node->eb->start);
2314 			btrfs_set_node_ptr_generation(upper->eb, slot,
2315 						      trans->transid);
2316 			btrfs_mark_buffer_dirty(upper->eb);
2317 
2318 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2319 					       node->eb->start, blocksize,
2320 					       upper->eb->start);
2321 			ref.real_root = root->root_key.objectid;
2322 			btrfs_init_tree_ref(&ref, node->level,
2323 					    btrfs_header_owner(upper->eb));
2324 			ret = btrfs_inc_extent_ref(trans, &ref);
2325 			BUG_ON(ret);
2326 
2327 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2328 			BUG_ON(ret);
2329 		}
2330 next:
2331 		if (!upper->pending)
2332 			btrfs_backref_drop_node_buffer(upper);
2333 		else
2334 			btrfs_backref_unlock_node_buffer(upper);
2335 		if (err)
2336 			break;
2337 	}
2338 
2339 	if (!err && node->pending) {
2340 		btrfs_backref_drop_node_buffer(node);
2341 		list_move_tail(&node->list, &rc->backref_cache.changed);
2342 		node->pending = 0;
2343 	}
2344 
2345 	path->lowest_level = 0;
2346 	BUG_ON(err == -ENOSPC);
2347 	return err;
2348 }
2349 
2350 static int link_to_upper(struct btrfs_trans_handle *trans,
2351 			 struct reloc_control *rc,
2352 			 struct btrfs_backref_node *node,
2353 			 struct btrfs_path *path)
2354 {
2355 	struct btrfs_key key;
2356 
2357 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2358 	return do_relocation(trans, rc, node, &key, path, 0);
2359 }
2360 
2361 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2362 				struct reloc_control *rc,
2363 				struct btrfs_path *path, int err)
2364 {
2365 	LIST_HEAD(list);
2366 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2367 	struct btrfs_backref_node *node;
2368 	int level;
2369 	int ret;
2370 
2371 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2372 		while (!list_empty(&cache->pending[level])) {
2373 			node = list_entry(cache->pending[level].next,
2374 					  struct btrfs_backref_node, list);
2375 			list_move_tail(&node->list, &list);
2376 			BUG_ON(!node->pending);
2377 
2378 			if (!err) {
2379 				ret = link_to_upper(trans, rc, node, path);
2380 				if (ret < 0)
2381 					err = ret;
2382 			}
2383 		}
2384 		list_splice_init(&list, &cache->pending[level]);
2385 	}
2386 	return err;
2387 }
2388 
2389 /*
2390  * mark a block and all blocks directly/indirectly reference the block
2391  * as processed.
2392  */
2393 static void update_processed_blocks(struct reloc_control *rc,
2394 				    struct btrfs_backref_node *node)
2395 {
2396 	struct btrfs_backref_node *next = node;
2397 	struct btrfs_backref_edge *edge;
2398 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2399 	int index = 0;
2400 
2401 	while (next) {
2402 		cond_resched();
2403 		while (1) {
2404 			if (next->processed)
2405 				break;
2406 
2407 			mark_block_processed(rc, next);
2408 
2409 			if (list_empty(&next->upper))
2410 				break;
2411 
2412 			edge = list_entry(next->upper.next,
2413 					struct btrfs_backref_edge, list[LOWER]);
2414 			edges[index++] = edge;
2415 			next = edge->node[UPPER];
2416 		}
2417 		next = walk_down_backref(edges, &index);
2418 	}
2419 }
2420 
2421 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2422 {
2423 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2424 
2425 	if (test_range_bit(&rc->processed_blocks, bytenr,
2426 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2427 		return 1;
2428 	return 0;
2429 }
2430 
2431 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2432 			      struct tree_block *block)
2433 {
2434 	struct extent_buffer *eb;
2435 
2436 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2437 			     block->level, NULL);
2438 	if (IS_ERR(eb)) {
2439 		return PTR_ERR(eb);
2440 	} else if (!extent_buffer_uptodate(eb)) {
2441 		free_extent_buffer(eb);
2442 		return -EIO;
2443 	}
2444 	if (block->level == 0)
2445 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2446 	else
2447 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2448 	free_extent_buffer(eb);
2449 	block->key_ready = 1;
2450 	return 0;
2451 }
2452 
2453 /*
2454  * helper function to relocate a tree block
2455  */
2456 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2457 				struct reloc_control *rc,
2458 				struct btrfs_backref_node *node,
2459 				struct btrfs_key *key,
2460 				struct btrfs_path *path)
2461 {
2462 	struct btrfs_root *root;
2463 	int ret = 0;
2464 
2465 	if (!node)
2466 		return 0;
2467 
2468 	/*
2469 	 * If we fail here we want to drop our backref_node because we are going
2470 	 * to start over and regenerate the tree for it.
2471 	 */
2472 	ret = reserve_metadata_space(trans, rc, node);
2473 	if (ret)
2474 		goto out;
2475 
2476 	BUG_ON(node->processed);
2477 	root = select_one_root(node);
2478 	if (root == ERR_PTR(-ENOENT)) {
2479 		update_processed_blocks(rc, node);
2480 		goto out;
2481 	}
2482 
2483 	if (root) {
2484 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2485 			BUG_ON(node->new_bytenr);
2486 			BUG_ON(!list_empty(&node->list));
2487 			btrfs_record_root_in_trans(trans, root);
2488 			root = root->reloc_root;
2489 			node->new_bytenr = root->node->start;
2490 			btrfs_put_root(node->root);
2491 			node->root = btrfs_grab_root(root);
2492 			ASSERT(node->root);
2493 			list_add_tail(&node->list, &rc->backref_cache.changed);
2494 		} else {
2495 			path->lowest_level = node->level;
2496 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2497 			btrfs_release_path(path);
2498 			if (ret > 0)
2499 				ret = 0;
2500 		}
2501 		if (!ret)
2502 			update_processed_blocks(rc, node);
2503 	} else {
2504 		ret = do_relocation(trans, rc, node, key, path, 1);
2505 	}
2506 out:
2507 	if (ret || node->level == 0 || node->cowonly)
2508 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2509 	return ret;
2510 }
2511 
2512 /*
2513  * relocate a list of blocks
2514  */
2515 static noinline_for_stack
2516 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2517 			 struct reloc_control *rc, struct rb_root *blocks)
2518 {
2519 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2520 	struct btrfs_backref_node *node;
2521 	struct btrfs_path *path;
2522 	struct tree_block *block;
2523 	struct tree_block *next;
2524 	int ret;
2525 	int err = 0;
2526 
2527 	path = btrfs_alloc_path();
2528 	if (!path) {
2529 		err = -ENOMEM;
2530 		goto out_free_blocks;
2531 	}
2532 
2533 	/* Kick in readahead for tree blocks with missing keys */
2534 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2535 		if (!block->key_ready)
2536 			readahead_tree_block(fs_info, block->bytenr);
2537 	}
2538 
2539 	/* Get first keys */
2540 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2541 		if (!block->key_ready) {
2542 			err = get_tree_block_key(fs_info, block);
2543 			if (err)
2544 				goto out_free_path;
2545 		}
2546 	}
2547 
2548 	/* Do tree relocation */
2549 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2550 		node = build_backref_tree(rc, &block->key,
2551 					  block->level, block->bytenr);
2552 		if (IS_ERR(node)) {
2553 			err = PTR_ERR(node);
2554 			goto out;
2555 		}
2556 
2557 		ret = relocate_tree_block(trans, rc, node, &block->key,
2558 					  path);
2559 		if (ret < 0) {
2560 			err = ret;
2561 			break;
2562 		}
2563 	}
2564 out:
2565 	err = finish_pending_nodes(trans, rc, path, err);
2566 
2567 out_free_path:
2568 	btrfs_free_path(path);
2569 out_free_blocks:
2570 	free_block_list(blocks);
2571 	return err;
2572 }
2573 
2574 static noinline_for_stack
2575 int prealloc_file_extent_cluster(struct inode *inode,
2576 				 struct file_extent_cluster *cluster)
2577 {
2578 	u64 alloc_hint = 0;
2579 	u64 start;
2580 	u64 end;
2581 	u64 offset = BTRFS_I(inode)->index_cnt;
2582 	u64 num_bytes;
2583 	int nr = 0;
2584 	int ret = 0;
2585 	u64 prealloc_start = cluster->start - offset;
2586 	u64 prealloc_end = cluster->end - offset;
2587 	u64 cur_offset;
2588 	struct extent_changeset *data_reserved = NULL;
2589 
2590 	BUG_ON(cluster->start != cluster->boundary[0]);
2591 	inode_lock(inode);
2592 
2593 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
2594 					  prealloc_end + 1 - prealloc_start);
2595 	if (ret)
2596 		goto out;
2597 
2598 	cur_offset = prealloc_start;
2599 	while (nr < cluster->nr) {
2600 		start = cluster->boundary[nr] - offset;
2601 		if (nr + 1 < cluster->nr)
2602 			end = cluster->boundary[nr + 1] - 1 - offset;
2603 		else
2604 			end = cluster->end - offset;
2605 
2606 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2607 		num_bytes = end + 1 - start;
2608 		if (cur_offset < start)
2609 			btrfs_free_reserved_data_space(inode, data_reserved,
2610 					cur_offset, start - cur_offset);
2611 		ret = btrfs_prealloc_file_range(inode, 0, start,
2612 						num_bytes, num_bytes,
2613 						end + 1, &alloc_hint);
2614 		cur_offset = end + 1;
2615 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2616 		if (ret)
2617 			break;
2618 		nr++;
2619 	}
2620 	if (cur_offset < prealloc_end)
2621 		btrfs_free_reserved_data_space(inode, data_reserved,
2622 				cur_offset, prealloc_end + 1 - cur_offset);
2623 out:
2624 	inode_unlock(inode);
2625 	extent_changeset_free(data_reserved);
2626 	return ret;
2627 }
2628 
2629 static noinline_for_stack
2630 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2631 			 u64 block_start)
2632 {
2633 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2634 	struct extent_map *em;
2635 	int ret = 0;
2636 
2637 	em = alloc_extent_map();
2638 	if (!em)
2639 		return -ENOMEM;
2640 
2641 	em->start = start;
2642 	em->len = end + 1 - start;
2643 	em->block_len = em->len;
2644 	em->block_start = block_start;
2645 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2646 
2647 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2648 	while (1) {
2649 		write_lock(&em_tree->lock);
2650 		ret = add_extent_mapping(em_tree, em, 0);
2651 		write_unlock(&em_tree->lock);
2652 		if (ret != -EEXIST) {
2653 			free_extent_map(em);
2654 			break;
2655 		}
2656 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2657 	}
2658 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2659 	return ret;
2660 }
2661 
2662 /*
2663  * Allow error injection to test balance cancellation
2664  */
2665 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2666 {
2667 	return atomic_read(&fs_info->balance_cancel_req);
2668 }
2669 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2670 
2671 static int relocate_file_extent_cluster(struct inode *inode,
2672 					struct file_extent_cluster *cluster)
2673 {
2674 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2675 	u64 page_start;
2676 	u64 page_end;
2677 	u64 offset = BTRFS_I(inode)->index_cnt;
2678 	unsigned long index;
2679 	unsigned long last_index;
2680 	struct page *page;
2681 	struct file_ra_state *ra;
2682 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2683 	int nr = 0;
2684 	int ret = 0;
2685 
2686 	if (!cluster->nr)
2687 		return 0;
2688 
2689 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2690 	if (!ra)
2691 		return -ENOMEM;
2692 
2693 	ret = prealloc_file_extent_cluster(inode, cluster);
2694 	if (ret)
2695 		goto out;
2696 
2697 	file_ra_state_init(ra, inode->i_mapping);
2698 
2699 	ret = setup_extent_mapping(inode, cluster->start - offset,
2700 				   cluster->end - offset, cluster->start);
2701 	if (ret)
2702 		goto out;
2703 
2704 	index = (cluster->start - offset) >> PAGE_SHIFT;
2705 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2706 	while (index <= last_index) {
2707 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2708 				PAGE_SIZE);
2709 		if (ret)
2710 			goto out;
2711 
2712 		page = find_lock_page(inode->i_mapping, index);
2713 		if (!page) {
2714 			page_cache_sync_readahead(inode->i_mapping,
2715 						  ra, NULL, index,
2716 						  last_index + 1 - index);
2717 			page = find_or_create_page(inode->i_mapping, index,
2718 						   mask);
2719 			if (!page) {
2720 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2721 							PAGE_SIZE, true);
2722 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2723 							PAGE_SIZE);
2724 				ret = -ENOMEM;
2725 				goto out;
2726 			}
2727 		}
2728 
2729 		if (PageReadahead(page)) {
2730 			page_cache_async_readahead(inode->i_mapping,
2731 						   ra, NULL, page, index,
2732 						   last_index + 1 - index);
2733 		}
2734 
2735 		if (!PageUptodate(page)) {
2736 			btrfs_readpage(NULL, page);
2737 			lock_page(page);
2738 			if (!PageUptodate(page)) {
2739 				unlock_page(page);
2740 				put_page(page);
2741 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2742 							PAGE_SIZE, true);
2743 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2744 							       PAGE_SIZE);
2745 				ret = -EIO;
2746 				goto out;
2747 			}
2748 		}
2749 
2750 		page_start = page_offset(page);
2751 		page_end = page_start + PAGE_SIZE - 1;
2752 
2753 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2754 
2755 		set_page_extent_mapped(page);
2756 
2757 		if (nr < cluster->nr &&
2758 		    page_start + offset == cluster->boundary[nr]) {
2759 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2760 					page_start, page_end,
2761 					EXTENT_BOUNDARY);
2762 			nr++;
2763 		}
2764 
2765 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
2766 						NULL);
2767 		if (ret) {
2768 			unlock_page(page);
2769 			put_page(page);
2770 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2771 							 PAGE_SIZE, true);
2772 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2773 			                               PAGE_SIZE);
2774 
2775 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2776 					  page_start, page_end,
2777 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2778 			goto out;
2779 
2780 		}
2781 		set_page_dirty(page);
2782 
2783 		unlock_extent(&BTRFS_I(inode)->io_tree,
2784 			      page_start, page_end);
2785 		unlock_page(page);
2786 		put_page(page);
2787 
2788 		index++;
2789 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2790 		balance_dirty_pages_ratelimited(inode->i_mapping);
2791 		btrfs_throttle(fs_info);
2792 		if (btrfs_should_cancel_balance(fs_info)) {
2793 			ret = -ECANCELED;
2794 			goto out;
2795 		}
2796 	}
2797 	WARN_ON(nr != cluster->nr);
2798 out:
2799 	kfree(ra);
2800 	return ret;
2801 }
2802 
2803 static noinline_for_stack
2804 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2805 			 struct file_extent_cluster *cluster)
2806 {
2807 	int ret;
2808 
2809 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2810 		ret = relocate_file_extent_cluster(inode, cluster);
2811 		if (ret)
2812 			return ret;
2813 		cluster->nr = 0;
2814 	}
2815 
2816 	if (!cluster->nr)
2817 		cluster->start = extent_key->objectid;
2818 	else
2819 		BUG_ON(cluster->nr >= MAX_EXTENTS);
2820 	cluster->end = extent_key->objectid + extent_key->offset - 1;
2821 	cluster->boundary[cluster->nr] = extent_key->objectid;
2822 	cluster->nr++;
2823 
2824 	if (cluster->nr >= MAX_EXTENTS) {
2825 		ret = relocate_file_extent_cluster(inode, cluster);
2826 		if (ret)
2827 			return ret;
2828 		cluster->nr = 0;
2829 	}
2830 	return 0;
2831 }
2832 
2833 /*
2834  * helper to add a tree block to the list.
2835  * the major work is getting the generation and level of the block
2836  */
2837 static int add_tree_block(struct reloc_control *rc,
2838 			  struct btrfs_key *extent_key,
2839 			  struct btrfs_path *path,
2840 			  struct rb_root *blocks)
2841 {
2842 	struct extent_buffer *eb;
2843 	struct btrfs_extent_item *ei;
2844 	struct btrfs_tree_block_info *bi;
2845 	struct tree_block *block;
2846 	struct rb_node *rb_node;
2847 	u32 item_size;
2848 	int level = -1;
2849 	u64 generation;
2850 
2851 	eb =  path->nodes[0];
2852 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2853 
2854 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2855 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2856 		ei = btrfs_item_ptr(eb, path->slots[0],
2857 				struct btrfs_extent_item);
2858 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2859 			bi = (struct btrfs_tree_block_info *)(ei + 1);
2860 			level = btrfs_tree_block_level(eb, bi);
2861 		} else {
2862 			level = (int)extent_key->offset;
2863 		}
2864 		generation = btrfs_extent_generation(eb, ei);
2865 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2866 		btrfs_print_v0_err(eb->fs_info);
2867 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2868 		return -EINVAL;
2869 	} else {
2870 		BUG();
2871 	}
2872 
2873 	btrfs_release_path(path);
2874 
2875 	BUG_ON(level == -1);
2876 
2877 	block = kmalloc(sizeof(*block), GFP_NOFS);
2878 	if (!block)
2879 		return -ENOMEM;
2880 
2881 	block->bytenr = extent_key->objectid;
2882 	block->key.objectid = rc->extent_root->fs_info->nodesize;
2883 	block->key.offset = generation;
2884 	block->level = level;
2885 	block->key_ready = 0;
2886 
2887 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2888 	if (rb_node)
2889 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2890 				    -EEXIST);
2891 
2892 	return 0;
2893 }
2894 
2895 /*
2896  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2897  */
2898 static int __add_tree_block(struct reloc_control *rc,
2899 			    u64 bytenr, u32 blocksize,
2900 			    struct rb_root *blocks)
2901 {
2902 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2903 	struct btrfs_path *path;
2904 	struct btrfs_key key;
2905 	int ret;
2906 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2907 
2908 	if (tree_block_processed(bytenr, rc))
2909 		return 0;
2910 
2911 	if (rb_simple_search(blocks, bytenr))
2912 		return 0;
2913 
2914 	path = btrfs_alloc_path();
2915 	if (!path)
2916 		return -ENOMEM;
2917 again:
2918 	key.objectid = bytenr;
2919 	if (skinny) {
2920 		key.type = BTRFS_METADATA_ITEM_KEY;
2921 		key.offset = (u64)-1;
2922 	} else {
2923 		key.type = BTRFS_EXTENT_ITEM_KEY;
2924 		key.offset = blocksize;
2925 	}
2926 
2927 	path->search_commit_root = 1;
2928 	path->skip_locking = 1;
2929 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2930 	if (ret < 0)
2931 		goto out;
2932 
2933 	if (ret > 0 && skinny) {
2934 		if (path->slots[0]) {
2935 			path->slots[0]--;
2936 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2937 					      path->slots[0]);
2938 			if (key.objectid == bytenr &&
2939 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2940 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2941 			      key.offset == blocksize)))
2942 				ret = 0;
2943 		}
2944 
2945 		if (ret) {
2946 			skinny = false;
2947 			btrfs_release_path(path);
2948 			goto again;
2949 		}
2950 	}
2951 	if (ret) {
2952 		ASSERT(ret == 1);
2953 		btrfs_print_leaf(path->nodes[0]);
2954 		btrfs_err(fs_info,
2955 	     "tree block extent item (%llu) is not found in extent tree",
2956 		     bytenr);
2957 		WARN_ON(1);
2958 		ret = -EINVAL;
2959 		goto out;
2960 	}
2961 
2962 	ret = add_tree_block(rc, &key, path, blocks);
2963 out:
2964 	btrfs_free_path(path);
2965 	return ret;
2966 }
2967 
2968 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2969 				    struct btrfs_block_group *block_group,
2970 				    struct inode *inode,
2971 				    u64 ino)
2972 {
2973 	struct btrfs_root *root = fs_info->tree_root;
2974 	struct btrfs_trans_handle *trans;
2975 	int ret = 0;
2976 
2977 	if (inode)
2978 		goto truncate;
2979 
2980 	inode = btrfs_iget(fs_info->sb, ino, root);
2981 	if (IS_ERR(inode))
2982 		return -ENOENT;
2983 
2984 truncate:
2985 	ret = btrfs_check_trunc_cache_free_space(fs_info,
2986 						 &fs_info->global_block_rsv);
2987 	if (ret)
2988 		goto out;
2989 
2990 	trans = btrfs_join_transaction(root);
2991 	if (IS_ERR(trans)) {
2992 		ret = PTR_ERR(trans);
2993 		goto out;
2994 	}
2995 
2996 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2997 
2998 	btrfs_end_transaction(trans);
2999 	btrfs_btree_balance_dirty(fs_info);
3000 out:
3001 	iput(inode);
3002 	return ret;
3003 }
3004 
3005 /*
3006  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3007  * cache inode, to avoid free space cache data extent blocking data relocation.
3008  */
3009 static int delete_v1_space_cache(struct extent_buffer *leaf,
3010 				 struct btrfs_block_group *block_group,
3011 				 u64 data_bytenr)
3012 {
3013 	u64 space_cache_ino;
3014 	struct btrfs_file_extent_item *ei;
3015 	struct btrfs_key key;
3016 	bool found = false;
3017 	int i;
3018 	int ret;
3019 
3020 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3021 		return 0;
3022 
3023 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3024 		btrfs_item_key_to_cpu(leaf, &key, i);
3025 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3026 			continue;
3027 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3028 		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
3029 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3030 			found = true;
3031 			space_cache_ino = key.objectid;
3032 			break;
3033 		}
3034 	}
3035 	if (!found)
3036 		return -ENOENT;
3037 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3038 					space_cache_ino);
3039 	return ret;
3040 }
3041 
3042 /*
3043  * helper to find all tree blocks that reference a given data extent
3044  */
3045 static noinline_for_stack
3046 int add_data_references(struct reloc_control *rc,
3047 			struct btrfs_key *extent_key,
3048 			struct btrfs_path *path,
3049 			struct rb_root *blocks)
3050 {
3051 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3052 	struct ulist *leaves = NULL;
3053 	struct ulist_iterator leaf_uiter;
3054 	struct ulist_node *ref_node = NULL;
3055 	const u32 blocksize = fs_info->nodesize;
3056 	int ret = 0;
3057 
3058 	btrfs_release_path(path);
3059 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3060 				   0, &leaves, NULL, true);
3061 	if (ret < 0)
3062 		return ret;
3063 
3064 	ULIST_ITER_INIT(&leaf_uiter);
3065 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3066 		struct extent_buffer *eb;
3067 
3068 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL);
3069 		if (IS_ERR(eb)) {
3070 			ret = PTR_ERR(eb);
3071 			break;
3072 		}
3073 		ret = delete_v1_space_cache(eb, rc->block_group,
3074 					    extent_key->objectid);
3075 		free_extent_buffer(eb);
3076 		if (ret < 0)
3077 			break;
3078 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3079 		if (ret < 0)
3080 			break;
3081 	}
3082 	if (ret < 0)
3083 		free_block_list(blocks);
3084 	ulist_free(leaves);
3085 	return ret;
3086 }
3087 
3088 /*
3089  * helper to find next unprocessed extent
3090  */
3091 static noinline_for_stack
3092 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3093 		     struct btrfs_key *extent_key)
3094 {
3095 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3096 	struct btrfs_key key;
3097 	struct extent_buffer *leaf;
3098 	u64 start, end, last;
3099 	int ret;
3100 
3101 	last = rc->block_group->start + rc->block_group->length;
3102 	while (1) {
3103 		cond_resched();
3104 		if (rc->search_start >= last) {
3105 			ret = 1;
3106 			break;
3107 		}
3108 
3109 		key.objectid = rc->search_start;
3110 		key.type = BTRFS_EXTENT_ITEM_KEY;
3111 		key.offset = 0;
3112 
3113 		path->search_commit_root = 1;
3114 		path->skip_locking = 1;
3115 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3116 					0, 0);
3117 		if (ret < 0)
3118 			break;
3119 next:
3120 		leaf = path->nodes[0];
3121 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3122 			ret = btrfs_next_leaf(rc->extent_root, path);
3123 			if (ret != 0)
3124 				break;
3125 			leaf = path->nodes[0];
3126 		}
3127 
3128 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3129 		if (key.objectid >= last) {
3130 			ret = 1;
3131 			break;
3132 		}
3133 
3134 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3135 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3136 			path->slots[0]++;
3137 			goto next;
3138 		}
3139 
3140 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3141 		    key.objectid + key.offset <= rc->search_start) {
3142 			path->slots[0]++;
3143 			goto next;
3144 		}
3145 
3146 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3147 		    key.objectid + fs_info->nodesize <=
3148 		    rc->search_start) {
3149 			path->slots[0]++;
3150 			goto next;
3151 		}
3152 
3153 		ret = find_first_extent_bit(&rc->processed_blocks,
3154 					    key.objectid, &start, &end,
3155 					    EXTENT_DIRTY, NULL);
3156 
3157 		if (ret == 0 && start <= key.objectid) {
3158 			btrfs_release_path(path);
3159 			rc->search_start = end + 1;
3160 		} else {
3161 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3162 				rc->search_start = key.objectid + key.offset;
3163 			else
3164 				rc->search_start = key.objectid +
3165 					fs_info->nodesize;
3166 			memcpy(extent_key, &key, sizeof(key));
3167 			return 0;
3168 		}
3169 	}
3170 	btrfs_release_path(path);
3171 	return ret;
3172 }
3173 
3174 static void set_reloc_control(struct reloc_control *rc)
3175 {
3176 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3177 
3178 	mutex_lock(&fs_info->reloc_mutex);
3179 	fs_info->reloc_ctl = rc;
3180 	mutex_unlock(&fs_info->reloc_mutex);
3181 }
3182 
3183 static void unset_reloc_control(struct reloc_control *rc)
3184 {
3185 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3186 
3187 	mutex_lock(&fs_info->reloc_mutex);
3188 	fs_info->reloc_ctl = NULL;
3189 	mutex_unlock(&fs_info->reloc_mutex);
3190 }
3191 
3192 static int check_extent_flags(u64 flags)
3193 {
3194 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3195 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3196 		return 1;
3197 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3198 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3199 		return 1;
3200 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3201 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3202 		return 1;
3203 	return 0;
3204 }
3205 
3206 static noinline_for_stack
3207 int prepare_to_relocate(struct reloc_control *rc)
3208 {
3209 	struct btrfs_trans_handle *trans;
3210 	int ret;
3211 
3212 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3213 					      BTRFS_BLOCK_RSV_TEMP);
3214 	if (!rc->block_rsv)
3215 		return -ENOMEM;
3216 
3217 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3218 	rc->search_start = rc->block_group->start;
3219 	rc->extents_found = 0;
3220 	rc->nodes_relocated = 0;
3221 	rc->merging_rsv_size = 0;
3222 	rc->reserved_bytes = 0;
3223 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3224 			      RELOCATION_RESERVED_NODES;
3225 	ret = btrfs_block_rsv_refill(rc->extent_root,
3226 				     rc->block_rsv, rc->block_rsv->size,
3227 				     BTRFS_RESERVE_FLUSH_ALL);
3228 	if (ret)
3229 		return ret;
3230 
3231 	rc->create_reloc_tree = 1;
3232 	set_reloc_control(rc);
3233 
3234 	trans = btrfs_join_transaction(rc->extent_root);
3235 	if (IS_ERR(trans)) {
3236 		unset_reloc_control(rc);
3237 		/*
3238 		 * extent tree is not a ref_cow tree and has no reloc_root to
3239 		 * cleanup.  And callers are responsible to free the above
3240 		 * block rsv.
3241 		 */
3242 		return PTR_ERR(trans);
3243 	}
3244 	btrfs_commit_transaction(trans);
3245 	return 0;
3246 }
3247 
3248 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3249 {
3250 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3251 	struct rb_root blocks = RB_ROOT;
3252 	struct btrfs_key key;
3253 	struct btrfs_trans_handle *trans = NULL;
3254 	struct btrfs_path *path;
3255 	struct btrfs_extent_item *ei;
3256 	u64 flags;
3257 	u32 item_size;
3258 	int ret;
3259 	int err = 0;
3260 	int progress = 0;
3261 
3262 	path = btrfs_alloc_path();
3263 	if (!path)
3264 		return -ENOMEM;
3265 	path->reada = READA_FORWARD;
3266 
3267 	ret = prepare_to_relocate(rc);
3268 	if (ret) {
3269 		err = ret;
3270 		goto out_free;
3271 	}
3272 
3273 	while (1) {
3274 		rc->reserved_bytes = 0;
3275 		ret = btrfs_block_rsv_refill(rc->extent_root,
3276 					rc->block_rsv, rc->block_rsv->size,
3277 					BTRFS_RESERVE_FLUSH_ALL);
3278 		if (ret) {
3279 			err = ret;
3280 			break;
3281 		}
3282 		progress++;
3283 		trans = btrfs_start_transaction(rc->extent_root, 0);
3284 		if (IS_ERR(trans)) {
3285 			err = PTR_ERR(trans);
3286 			trans = NULL;
3287 			break;
3288 		}
3289 restart:
3290 		if (update_backref_cache(trans, &rc->backref_cache)) {
3291 			btrfs_end_transaction(trans);
3292 			trans = NULL;
3293 			continue;
3294 		}
3295 
3296 		ret = find_next_extent(rc, path, &key);
3297 		if (ret < 0)
3298 			err = ret;
3299 		if (ret != 0)
3300 			break;
3301 
3302 		rc->extents_found++;
3303 
3304 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3305 				    struct btrfs_extent_item);
3306 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3307 		if (item_size >= sizeof(*ei)) {
3308 			flags = btrfs_extent_flags(path->nodes[0], ei);
3309 			ret = check_extent_flags(flags);
3310 			BUG_ON(ret);
3311 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3312 			err = -EINVAL;
3313 			btrfs_print_v0_err(trans->fs_info);
3314 			btrfs_abort_transaction(trans, err);
3315 			break;
3316 		} else {
3317 			BUG();
3318 		}
3319 
3320 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3321 			ret = add_tree_block(rc, &key, path, &blocks);
3322 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3323 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3324 			ret = add_data_references(rc, &key, path, &blocks);
3325 		} else {
3326 			btrfs_release_path(path);
3327 			ret = 0;
3328 		}
3329 		if (ret < 0) {
3330 			err = ret;
3331 			break;
3332 		}
3333 
3334 		if (!RB_EMPTY_ROOT(&blocks)) {
3335 			ret = relocate_tree_blocks(trans, rc, &blocks);
3336 			if (ret < 0) {
3337 				if (ret != -EAGAIN) {
3338 					err = ret;
3339 					break;
3340 				}
3341 				rc->extents_found--;
3342 				rc->search_start = key.objectid;
3343 			}
3344 		}
3345 
3346 		btrfs_end_transaction_throttle(trans);
3347 		btrfs_btree_balance_dirty(fs_info);
3348 		trans = NULL;
3349 
3350 		if (rc->stage == MOVE_DATA_EXTENTS &&
3351 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3352 			rc->found_file_extent = 1;
3353 			ret = relocate_data_extent(rc->data_inode,
3354 						   &key, &rc->cluster);
3355 			if (ret < 0) {
3356 				err = ret;
3357 				break;
3358 			}
3359 		}
3360 		if (btrfs_should_cancel_balance(fs_info)) {
3361 			err = -ECANCELED;
3362 			break;
3363 		}
3364 	}
3365 	if (trans && progress && err == -ENOSPC) {
3366 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3367 		if (ret == 1) {
3368 			err = 0;
3369 			progress = 0;
3370 			goto restart;
3371 		}
3372 	}
3373 
3374 	btrfs_release_path(path);
3375 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3376 
3377 	if (trans) {
3378 		btrfs_end_transaction_throttle(trans);
3379 		btrfs_btree_balance_dirty(fs_info);
3380 	}
3381 
3382 	if (!err) {
3383 		ret = relocate_file_extent_cluster(rc->data_inode,
3384 						   &rc->cluster);
3385 		if (ret < 0)
3386 			err = ret;
3387 	}
3388 
3389 	rc->create_reloc_tree = 0;
3390 	set_reloc_control(rc);
3391 
3392 	btrfs_backref_release_cache(&rc->backref_cache);
3393 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3394 
3395 	/*
3396 	 * Even in the case when the relocation is cancelled, we should all go
3397 	 * through prepare_to_merge() and merge_reloc_roots().
3398 	 *
3399 	 * For error (including cancelled balance), prepare_to_merge() will
3400 	 * mark all reloc trees orphan, then queue them for cleanup in
3401 	 * merge_reloc_roots()
3402 	 */
3403 	err = prepare_to_merge(rc, err);
3404 
3405 	merge_reloc_roots(rc);
3406 
3407 	rc->merge_reloc_tree = 0;
3408 	unset_reloc_control(rc);
3409 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3410 
3411 	/* get rid of pinned extents */
3412 	trans = btrfs_join_transaction(rc->extent_root);
3413 	if (IS_ERR(trans)) {
3414 		err = PTR_ERR(trans);
3415 		goto out_free;
3416 	}
3417 	btrfs_commit_transaction(trans);
3418 out_free:
3419 	ret = clean_dirty_subvols(rc);
3420 	if (ret < 0 && !err)
3421 		err = ret;
3422 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3423 	btrfs_free_path(path);
3424 	return err;
3425 }
3426 
3427 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3428 				 struct btrfs_root *root, u64 objectid)
3429 {
3430 	struct btrfs_path *path;
3431 	struct btrfs_inode_item *item;
3432 	struct extent_buffer *leaf;
3433 	int ret;
3434 
3435 	path = btrfs_alloc_path();
3436 	if (!path)
3437 		return -ENOMEM;
3438 
3439 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3440 	if (ret)
3441 		goto out;
3442 
3443 	leaf = path->nodes[0];
3444 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3445 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3446 	btrfs_set_inode_generation(leaf, item, 1);
3447 	btrfs_set_inode_size(leaf, item, 0);
3448 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3449 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3450 					  BTRFS_INODE_PREALLOC);
3451 	btrfs_mark_buffer_dirty(leaf);
3452 out:
3453 	btrfs_free_path(path);
3454 	return ret;
3455 }
3456 
3457 /*
3458  * helper to create inode for data relocation.
3459  * the inode is in data relocation tree and its link count is 0
3460  */
3461 static noinline_for_stack
3462 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3463 				 struct btrfs_block_group *group)
3464 {
3465 	struct inode *inode = NULL;
3466 	struct btrfs_trans_handle *trans;
3467 	struct btrfs_root *root;
3468 	u64 objectid;
3469 	int err = 0;
3470 
3471 	root = btrfs_grab_root(fs_info->data_reloc_root);
3472 	trans = btrfs_start_transaction(root, 6);
3473 	if (IS_ERR(trans)) {
3474 		btrfs_put_root(root);
3475 		return ERR_CAST(trans);
3476 	}
3477 
3478 	err = btrfs_find_free_objectid(root, &objectid);
3479 	if (err)
3480 		goto out;
3481 
3482 	err = __insert_orphan_inode(trans, root, objectid);
3483 	BUG_ON(err);
3484 
3485 	inode = btrfs_iget(fs_info->sb, objectid, root);
3486 	BUG_ON(IS_ERR(inode));
3487 	BTRFS_I(inode)->index_cnt = group->start;
3488 
3489 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3490 out:
3491 	btrfs_put_root(root);
3492 	btrfs_end_transaction(trans);
3493 	btrfs_btree_balance_dirty(fs_info);
3494 	if (err) {
3495 		if (inode)
3496 			iput(inode);
3497 		inode = ERR_PTR(err);
3498 	}
3499 	return inode;
3500 }
3501 
3502 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3503 {
3504 	struct reloc_control *rc;
3505 
3506 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3507 	if (!rc)
3508 		return NULL;
3509 
3510 	INIT_LIST_HEAD(&rc->reloc_roots);
3511 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3512 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3513 	mapping_tree_init(&rc->reloc_root_tree);
3514 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3515 			    IO_TREE_RELOC_BLOCKS, NULL);
3516 	return rc;
3517 }
3518 
3519 static void free_reloc_control(struct reloc_control *rc)
3520 {
3521 	struct mapping_node *node, *tmp;
3522 
3523 	free_reloc_roots(&rc->reloc_roots);
3524 	rbtree_postorder_for_each_entry_safe(node, tmp,
3525 			&rc->reloc_root_tree.rb_root, rb_node)
3526 		kfree(node);
3527 
3528 	kfree(rc);
3529 }
3530 
3531 /*
3532  * Print the block group being relocated
3533  */
3534 static void describe_relocation(struct btrfs_fs_info *fs_info,
3535 				struct btrfs_block_group *block_group)
3536 {
3537 	char buf[128] = {'\0'};
3538 
3539 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3540 
3541 	btrfs_info(fs_info,
3542 		   "relocating block group %llu flags %s",
3543 		   block_group->start, buf);
3544 }
3545 
3546 static const char *stage_to_string(int stage)
3547 {
3548 	if (stage == MOVE_DATA_EXTENTS)
3549 		return "move data extents";
3550 	if (stage == UPDATE_DATA_PTRS)
3551 		return "update data pointers";
3552 	return "unknown";
3553 }
3554 
3555 /*
3556  * function to relocate all extents in a block group.
3557  */
3558 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3559 {
3560 	struct btrfs_block_group *bg;
3561 	struct btrfs_root *extent_root = fs_info->extent_root;
3562 	struct reloc_control *rc;
3563 	struct inode *inode;
3564 	struct btrfs_path *path;
3565 	int ret;
3566 	int rw = 0;
3567 	int err = 0;
3568 
3569 	bg = btrfs_lookup_block_group(fs_info, group_start);
3570 	if (!bg)
3571 		return -ENOENT;
3572 
3573 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3574 		btrfs_put_block_group(bg);
3575 		return -ETXTBSY;
3576 	}
3577 
3578 	rc = alloc_reloc_control(fs_info);
3579 	if (!rc) {
3580 		btrfs_put_block_group(bg);
3581 		return -ENOMEM;
3582 	}
3583 
3584 	rc->extent_root = extent_root;
3585 	rc->block_group = bg;
3586 
3587 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3588 	if (ret) {
3589 		err = ret;
3590 		goto out;
3591 	}
3592 	rw = 1;
3593 
3594 	path = btrfs_alloc_path();
3595 	if (!path) {
3596 		err = -ENOMEM;
3597 		goto out;
3598 	}
3599 
3600 	inode = lookup_free_space_inode(rc->block_group, path);
3601 	btrfs_free_path(path);
3602 
3603 	if (!IS_ERR(inode))
3604 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3605 	else
3606 		ret = PTR_ERR(inode);
3607 
3608 	if (ret && ret != -ENOENT) {
3609 		err = ret;
3610 		goto out;
3611 	}
3612 
3613 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3614 	if (IS_ERR(rc->data_inode)) {
3615 		err = PTR_ERR(rc->data_inode);
3616 		rc->data_inode = NULL;
3617 		goto out;
3618 	}
3619 
3620 	describe_relocation(fs_info, rc->block_group);
3621 
3622 	btrfs_wait_block_group_reservations(rc->block_group);
3623 	btrfs_wait_nocow_writers(rc->block_group);
3624 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3625 				 rc->block_group->start,
3626 				 rc->block_group->length);
3627 
3628 	while (1) {
3629 		int finishes_stage;
3630 
3631 		mutex_lock(&fs_info->cleaner_mutex);
3632 		ret = relocate_block_group(rc);
3633 		mutex_unlock(&fs_info->cleaner_mutex);
3634 		if (ret < 0)
3635 			err = ret;
3636 
3637 		finishes_stage = rc->stage;
3638 		/*
3639 		 * We may have gotten ENOSPC after we already dirtied some
3640 		 * extents.  If writeout happens while we're relocating a
3641 		 * different block group we could end up hitting the
3642 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3643 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3644 		 * properly so we don't trip over this problem, and then break
3645 		 * out of the loop if we hit an error.
3646 		 */
3647 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3648 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3649 						       (u64)-1);
3650 			if (ret)
3651 				err = ret;
3652 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3653 						 0, -1);
3654 			rc->stage = UPDATE_DATA_PTRS;
3655 		}
3656 
3657 		if (err < 0)
3658 			goto out;
3659 
3660 		if (rc->extents_found == 0)
3661 			break;
3662 
3663 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3664 			   rc->extents_found, stage_to_string(finishes_stage));
3665 	}
3666 
3667 	WARN_ON(rc->block_group->pinned > 0);
3668 	WARN_ON(rc->block_group->reserved > 0);
3669 	WARN_ON(rc->block_group->used > 0);
3670 out:
3671 	if (err && rw)
3672 		btrfs_dec_block_group_ro(rc->block_group);
3673 	iput(rc->data_inode);
3674 	btrfs_put_block_group(rc->block_group);
3675 	free_reloc_control(rc);
3676 	return err;
3677 }
3678 
3679 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3680 {
3681 	struct btrfs_fs_info *fs_info = root->fs_info;
3682 	struct btrfs_trans_handle *trans;
3683 	int ret, err;
3684 
3685 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3686 	if (IS_ERR(trans))
3687 		return PTR_ERR(trans);
3688 
3689 	memset(&root->root_item.drop_progress, 0,
3690 		sizeof(root->root_item.drop_progress));
3691 	root->root_item.drop_level = 0;
3692 	btrfs_set_root_refs(&root->root_item, 0);
3693 	ret = btrfs_update_root(trans, fs_info->tree_root,
3694 				&root->root_key, &root->root_item);
3695 
3696 	err = btrfs_end_transaction(trans);
3697 	if (err)
3698 		return err;
3699 	return ret;
3700 }
3701 
3702 /*
3703  * recover relocation interrupted by system crash.
3704  *
3705  * this function resumes merging reloc trees with corresponding fs trees.
3706  * this is important for keeping the sharing of tree blocks
3707  */
3708 int btrfs_recover_relocation(struct btrfs_root *root)
3709 {
3710 	struct btrfs_fs_info *fs_info = root->fs_info;
3711 	LIST_HEAD(reloc_roots);
3712 	struct btrfs_key key;
3713 	struct btrfs_root *fs_root;
3714 	struct btrfs_root *reloc_root;
3715 	struct btrfs_path *path;
3716 	struct extent_buffer *leaf;
3717 	struct reloc_control *rc = NULL;
3718 	struct btrfs_trans_handle *trans;
3719 	int ret;
3720 	int err = 0;
3721 
3722 	path = btrfs_alloc_path();
3723 	if (!path)
3724 		return -ENOMEM;
3725 	path->reada = READA_BACK;
3726 
3727 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3728 	key.type = BTRFS_ROOT_ITEM_KEY;
3729 	key.offset = (u64)-1;
3730 
3731 	while (1) {
3732 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3733 					path, 0, 0);
3734 		if (ret < 0) {
3735 			err = ret;
3736 			goto out;
3737 		}
3738 		if (ret > 0) {
3739 			if (path->slots[0] == 0)
3740 				break;
3741 			path->slots[0]--;
3742 		}
3743 		leaf = path->nodes[0];
3744 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3745 		btrfs_release_path(path);
3746 
3747 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3748 		    key.type != BTRFS_ROOT_ITEM_KEY)
3749 			break;
3750 
3751 		reloc_root = btrfs_read_tree_root(root, &key);
3752 		if (IS_ERR(reloc_root)) {
3753 			err = PTR_ERR(reloc_root);
3754 			goto out;
3755 		}
3756 
3757 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3758 		list_add(&reloc_root->root_list, &reloc_roots);
3759 
3760 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3761 			fs_root = btrfs_get_fs_root(fs_info,
3762 					reloc_root->root_key.offset, false);
3763 			if (IS_ERR(fs_root)) {
3764 				ret = PTR_ERR(fs_root);
3765 				if (ret != -ENOENT) {
3766 					err = ret;
3767 					goto out;
3768 				}
3769 				ret = mark_garbage_root(reloc_root);
3770 				if (ret < 0) {
3771 					err = ret;
3772 					goto out;
3773 				}
3774 			} else {
3775 				btrfs_put_root(fs_root);
3776 			}
3777 		}
3778 
3779 		if (key.offset == 0)
3780 			break;
3781 
3782 		key.offset--;
3783 	}
3784 	btrfs_release_path(path);
3785 
3786 	if (list_empty(&reloc_roots))
3787 		goto out;
3788 
3789 	rc = alloc_reloc_control(fs_info);
3790 	if (!rc) {
3791 		err = -ENOMEM;
3792 		goto out;
3793 	}
3794 
3795 	rc->extent_root = fs_info->extent_root;
3796 
3797 	set_reloc_control(rc);
3798 
3799 	trans = btrfs_join_transaction(rc->extent_root);
3800 	if (IS_ERR(trans)) {
3801 		err = PTR_ERR(trans);
3802 		goto out_unset;
3803 	}
3804 
3805 	rc->merge_reloc_tree = 1;
3806 
3807 	while (!list_empty(&reloc_roots)) {
3808 		reloc_root = list_entry(reloc_roots.next,
3809 					struct btrfs_root, root_list);
3810 		list_del(&reloc_root->root_list);
3811 
3812 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3813 			list_add_tail(&reloc_root->root_list,
3814 				      &rc->reloc_roots);
3815 			continue;
3816 		}
3817 
3818 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3819 					    false);
3820 		if (IS_ERR(fs_root)) {
3821 			err = PTR_ERR(fs_root);
3822 			list_add_tail(&reloc_root->root_list, &reloc_roots);
3823 			btrfs_end_transaction(trans);
3824 			goto out_unset;
3825 		}
3826 
3827 		err = __add_reloc_root(reloc_root);
3828 		BUG_ON(err < 0); /* -ENOMEM or logic error */
3829 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3830 		btrfs_put_root(fs_root);
3831 	}
3832 
3833 	err = btrfs_commit_transaction(trans);
3834 	if (err)
3835 		goto out_unset;
3836 
3837 	merge_reloc_roots(rc);
3838 
3839 	unset_reloc_control(rc);
3840 
3841 	trans = btrfs_join_transaction(rc->extent_root);
3842 	if (IS_ERR(trans)) {
3843 		err = PTR_ERR(trans);
3844 		goto out_clean;
3845 	}
3846 	err = btrfs_commit_transaction(trans);
3847 out_clean:
3848 	ret = clean_dirty_subvols(rc);
3849 	if (ret < 0 && !err)
3850 		err = ret;
3851 out_unset:
3852 	unset_reloc_control(rc);
3853 	free_reloc_control(rc);
3854 out:
3855 	free_reloc_roots(&reloc_roots);
3856 
3857 	btrfs_free_path(path);
3858 
3859 	if (err == 0) {
3860 		/* cleanup orphan inode in data relocation tree */
3861 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3862 		ASSERT(fs_root);
3863 		err = btrfs_orphan_cleanup(fs_root);
3864 		btrfs_put_root(fs_root);
3865 	}
3866 	return err;
3867 }
3868 
3869 /*
3870  * helper to add ordered checksum for data relocation.
3871  *
3872  * cloning checksum properly handles the nodatasum extents.
3873  * it also saves CPU time to re-calculate the checksum.
3874  */
3875 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
3876 {
3877 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3878 	struct btrfs_ordered_sum *sums;
3879 	struct btrfs_ordered_extent *ordered;
3880 	int ret;
3881 	u64 disk_bytenr;
3882 	u64 new_bytenr;
3883 	LIST_HEAD(list);
3884 
3885 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3886 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3887 
3888 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
3889 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3890 				       disk_bytenr + len - 1, &list, 0);
3891 	if (ret)
3892 		goto out;
3893 
3894 	while (!list_empty(&list)) {
3895 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3896 		list_del_init(&sums->list);
3897 
3898 		/*
3899 		 * We need to offset the new_bytenr based on where the csum is.
3900 		 * We need to do this because we will read in entire prealloc
3901 		 * extents but we may have written to say the middle of the
3902 		 * prealloc extent, so we need to make sure the csum goes with
3903 		 * the right disk offset.
3904 		 *
3905 		 * We can do this because the data reloc inode refers strictly
3906 		 * to the on disk bytes, so we don't have to worry about
3907 		 * disk_len vs real len like with real inodes since it's all
3908 		 * disk length.
3909 		 */
3910 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3911 		sums->bytenr = new_bytenr;
3912 
3913 		btrfs_add_ordered_sum(ordered, sums);
3914 	}
3915 out:
3916 	btrfs_put_ordered_extent(ordered);
3917 	return ret;
3918 }
3919 
3920 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3921 			  struct btrfs_root *root, struct extent_buffer *buf,
3922 			  struct extent_buffer *cow)
3923 {
3924 	struct btrfs_fs_info *fs_info = root->fs_info;
3925 	struct reloc_control *rc;
3926 	struct btrfs_backref_node *node;
3927 	int first_cow = 0;
3928 	int level;
3929 	int ret = 0;
3930 
3931 	rc = fs_info->reloc_ctl;
3932 	if (!rc)
3933 		return 0;
3934 
3935 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3936 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3937 
3938 	level = btrfs_header_level(buf);
3939 	if (btrfs_header_generation(buf) <=
3940 	    btrfs_root_last_snapshot(&root->root_item))
3941 		first_cow = 1;
3942 
3943 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3944 	    rc->create_reloc_tree) {
3945 		WARN_ON(!first_cow && level == 0);
3946 
3947 		node = rc->backref_cache.path[level];
3948 		BUG_ON(node->bytenr != buf->start &&
3949 		       node->new_bytenr != buf->start);
3950 
3951 		btrfs_backref_drop_node_buffer(node);
3952 		atomic_inc(&cow->refs);
3953 		node->eb = cow;
3954 		node->new_bytenr = cow->start;
3955 
3956 		if (!node->pending) {
3957 			list_move_tail(&node->list,
3958 				       &rc->backref_cache.pending[level]);
3959 			node->pending = 1;
3960 		}
3961 
3962 		if (first_cow)
3963 			mark_block_processed(rc, node);
3964 
3965 		if (first_cow && level > 0)
3966 			rc->nodes_relocated += buf->len;
3967 	}
3968 
3969 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3970 		ret = replace_file_extents(trans, rc, root, cow);
3971 	return ret;
3972 }
3973 
3974 /*
3975  * called before creating snapshot. it calculates metadata reservation
3976  * required for relocating tree blocks in the snapshot
3977  */
3978 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3979 			      u64 *bytes_to_reserve)
3980 {
3981 	struct btrfs_root *root = pending->root;
3982 	struct reloc_control *rc = root->fs_info->reloc_ctl;
3983 
3984 	if (!rc || !have_reloc_root(root))
3985 		return;
3986 
3987 	if (!rc->merge_reloc_tree)
3988 		return;
3989 
3990 	root = root->reloc_root;
3991 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3992 	/*
3993 	 * relocation is in the stage of merging trees. the space
3994 	 * used by merging a reloc tree is twice the size of
3995 	 * relocated tree nodes in the worst case. half for cowing
3996 	 * the reloc tree, half for cowing the fs tree. the space
3997 	 * used by cowing the reloc tree will be freed after the
3998 	 * tree is dropped. if we create snapshot, cowing the fs
3999 	 * tree may use more space than it frees. so we need
4000 	 * reserve extra space.
4001 	 */
4002 	*bytes_to_reserve += rc->nodes_relocated;
4003 }
4004 
4005 /*
4006  * called after snapshot is created. migrate block reservation
4007  * and create reloc root for the newly created snapshot
4008  *
4009  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4010  * references held on the reloc_root, one for root->reloc_root and one for
4011  * rc->reloc_roots.
4012  */
4013 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4014 			       struct btrfs_pending_snapshot *pending)
4015 {
4016 	struct btrfs_root *root = pending->root;
4017 	struct btrfs_root *reloc_root;
4018 	struct btrfs_root *new_root;
4019 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4020 	int ret;
4021 
4022 	if (!rc || !have_reloc_root(root))
4023 		return 0;
4024 
4025 	rc = root->fs_info->reloc_ctl;
4026 	rc->merging_rsv_size += rc->nodes_relocated;
4027 
4028 	if (rc->merge_reloc_tree) {
4029 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4030 					      rc->block_rsv,
4031 					      rc->nodes_relocated, true);
4032 		if (ret)
4033 			return ret;
4034 	}
4035 
4036 	new_root = pending->snap;
4037 	reloc_root = create_reloc_root(trans, root->reloc_root,
4038 				       new_root->root_key.objectid);
4039 	if (IS_ERR(reloc_root))
4040 		return PTR_ERR(reloc_root);
4041 
4042 	ret = __add_reloc_root(reloc_root);
4043 	BUG_ON(ret < 0);
4044 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4045 
4046 	if (rc->create_reloc_tree)
4047 		ret = clone_backref_node(trans, rc, root, reloc_root);
4048 	return ret;
4049 }
4050