1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "inode-map.h" 22 #include "qgroup.h" 23 #include "print-tree.h" 24 #include "delalloc-space.h" 25 #include "block-group.h" 26 #include "backref.h" 27 #include "misc.h" 28 29 /* 30 * Relocation overview 31 * 32 * [What does relocation do] 33 * 34 * The objective of relocation is to relocate all extents of the target block 35 * group to other block groups. 36 * This is utilized by resize (shrink only), profile converting, compacting 37 * space, or balance routine to spread chunks over devices. 38 * 39 * Before | After 40 * ------------------------------------------------------------------ 41 * BG A: 10 data extents | BG A: deleted 42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 44 * 45 * [How does relocation work] 46 * 47 * 1. Mark the target block group read-only 48 * New extents won't be allocated from the target block group. 49 * 50 * 2.1 Record each extent in the target block group 51 * To build a proper map of extents to be relocated. 52 * 53 * 2.2 Build data reloc tree and reloc trees 54 * Data reloc tree will contain an inode, recording all newly relocated 55 * data extents. 56 * There will be only one data reloc tree for one data block group. 57 * 58 * Reloc tree will be a special snapshot of its source tree, containing 59 * relocated tree blocks. 60 * Each tree referring to a tree block in target block group will get its 61 * reloc tree built. 62 * 63 * 2.3 Swap source tree with its corresponding reloc tree 64 * Each involved tree only refers to new extents after swap. 65 * 66 * 3. Cleanup reloc trees and data reloc tree. 67 * As old extents in the target block group are still referenced by reloc 68 * trees, we need to clean them up before really freeing the target block 69 * group. 70 * 71 * The main complexity is in steps 2.2 and 2.3. 72 * 73 * The entry point of relocation is relocate_block_group() function. 74 */ 75 76 #define RELOCATION_RESERVED_NODES 256 77 /* 78 * map address of tree root to tree 79 */ 80 struct mapping_node { 81 struct { 82 struct rb_node rb_node; 83 u64 bytenr; 84 }; /* Use rb_simle_node for search/insert */ 85 void *data; 86 }; 87 88 struct mapping_tree { 89 struct rb_root rb_root; 90 spinlock_t lock; 91 }; 92 93 /* 94 * present a tree block to process 95 */ 96 struct tree_block { 97 struct { 98 struct rb_node rb_node; 99 u64 bytenr; 100 }; /* Use rb_simple_node for search/insert */ 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104 }; 105 106 #define MAX_EXTENTS 128 107 108 struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113 }; 114 115 struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150 }; 151 152 /* stages of data relocation */ 153 #define MOVE_DATA_EXTENTS 0 154 #define UPDATE_DATA_PTRS 1 155 156 static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158 { 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169 } 170 171 172 static void mapping_tree_init(struct mapping_tree *tree) 173 { 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176 } 177 178 /* 179 * walk up backref nodes until reach node presents tree root 180 */ 181 static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184 { 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197 } 198 199 /* 200 * walk down backref nodes to find start of next reference path 201 */ 202 static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204 { 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224 } 225 226 static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228 { 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235 } 236 237 /* 238 * update backref cache after a transaction commit 239 */ 240 static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242 { 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288 } 289 290 static bool reloc_root_is_dead(struct btrfs_root *root) 291 { 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301 } 302 303 /* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311 static bool have_reloc_root(struct btrfs_root *root) 312 { 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318 } 319 320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321 { 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345 } 346 347 /* 348 * find reloc tree by address of tree root 349 */ 350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351 { 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366 } 367 368 /* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381 static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383 { 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440 } 441 442 /* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459 { 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517 out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528 } 529 530 /* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535 static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539 { 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608 fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617 } 618 619 /* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622 static int __must_check __add_reloc_root(struct btrfs_root *root) 623 { 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_panic(fs_info, -EEXIST, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 } 645 646 list_add_tail(&root->root_list, &rc->reloc_roots); 647 return 0; 648 } 649 650 /* 651 * helper to delete the 'address of tree root -> reloc tree' 652 * mapping 653 */ 654 static void __del_reloc_root(struct btrfs_root *root) 655 { 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct rb_node *rb_node; 658 struct mapping_node *node = NULL; 659 struct reloc_control *rc = fs_info->reloc_ctl; 660 bool put_ref = false; 661 662 if (rc && root->node) { 663 spin_lock(&rc->reloc_root_tree.lock); 664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 665 root->commit_root->start); 666 if (rb_node) { 667 node = rb_entry(rb_node, struct mapping_node, rb_node); 668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 669 RB_CLEAR_NODE(&node->rb_node); 670 } 671 spin_unlock(&rc->reloc_root_tree.lock); 672 if (!node) 673 return; 674 BUG_ON((struct btrfs_root *)node->data != root); 675 } 676 677 /* 678 * We only put the reloc root here if it's on the list. There's a lot 679 * of places where the pattern is to splice the rc->reloc_roots, process 680 * the reloc roots, and then add the reloc root back onto 681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 682 * list we don't want the reference being dropped, because the guy 683 * messing with the list is in charge of the reference. 684 */ 685 spin_lock(&fs_info->trans_lock); 686 if (!list_empty(&root->root_list)) { 687 put_ref = true; 688 list_del_init(&root->root_list); 689 } 690 spin_unlock(&fs_info->trans_lock); 691 if (put_ref) 692 btrfs_put_root(root); 693 kfree(node); 694 } 695 696 /* 697 * helper to update the 'address of tree root -> reloc tree' 698 * mapping 699 */ 700 static int __update_reloc_root(struct btrfs_root *root) 701 { 702 struct btrfs_fs_info *fs_info = root->fs_info; 703 struct rb_node *rb_node; 704 struct mapping_node *node = NULL; 705 struct reloc_control *rc = fs_info->reloc_ctl; 706 707 spin_lock(&rc->reloc_root_tree.lock); 708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 709 root->commit_root->start); 710 if (rb_node) { 711 node = rb_entry(rb_node, struct mapping_node, rb_node); 712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 713 } 714 spin_unlock(&rc->reloc_root_tree.lock); 715 716 if (!node) 717 return 0; 718 BUG_ON((struct btrfs_root *)node->data != root); 719 720 spin_lock(&rc->reloc_root_tree.lock); 721 node->bytenr = root->node->start; 722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 723 node->bytenr, &node->rb_node); 724 spin_unlock(&rc->reloc_root_tree.lock); 725 if (rb_node) 726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 727 return 0; 728 } 729 730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 731 struct btrfs_root *root, u64 objectid) 732 { 733 struct btrfs_fs_info *fs_info = root->fs_info; 734 struct btrfs_root *reloc_root; 735 struct extent_buffer *eb; 736 struct btrfs_root_item *root_item; 737 struct btrfs_key root_key; 738 int ret; 739 740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 741 BUG_ON(!root_item); 742 743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 744 root_key.type = BTRFS_ROOT_ITEM_KEY; 745 root_key.offset = objectid; 746 747 if (root->root_key.objectid == objectid) { 748 u64 commit_root_gen; 749 750 /* called by btrfs_init_reloc_root */ 751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 752 BTRFS_TREE_RELOC_OBJECTID); 753 BUG_ON(ret); 754 /* 755 * Set the last_snapshot field to the generation of the commit 756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 757 * correctly (returns true) when the relocation root is created 758 * either inside the critical section of a transaction commit 759 * (through transaction.c:qgroup_account_snapshot()) and when 760 * it's created before the transaction commit is started. 761 */ 762 commit_root_gen = btrfs_header_generation(root->commit_root); 763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 764 } else { 765 /* 766 * called by btrfs_reloc_post_snapshot_hook. 767 * the source tree is a reloc tree, all tree blocks 768 * modified after it was created have RELOC flag 769 * set in their headers. so it's OK to not update 770 * the 'last_snapshot'. 771 */ 772 ret = btrfs_copy_root(trans, root, root->node, &eb, 773 BTRFS_TREE_RELOC_OBJECTID); 774 BUG_ON(ret); 775 } 776 777 memcpy(root_item, &root->root_item, sizeof(*root_item)); 778 btrfs_set_root_bytenr(root_item, eb->start); 779 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 780 btrfs_set_root_generation(root_item, trans->transid); 781 782 if (root->root_key.objectid == objectid) { 783 btrfs_set_root_refs(root_item, 0); 784 memset(&root_item->drop_progress, 0, 785 sizeof(struct btrfs_disk_key)); 786 root_item->drop_level = 0; 787 } 788 789 btrfs_tree_unlock(eb); 790 free_extent_buffer(eb); 791 792 ret = btrfs_insert_root(trans, fs_info->tree_root, 793 &root_key, root_item); 794 BUG_ON(ret); 795 kfree(root_item); 796 797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 798 BUG_ON(IS_ERR(reloc_root)); 799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 800 reloc_root->last_trans = trans->transid; 801 return reloc_root; 802 } 803 804 /* 805 * create reloc tree for a given fs tree. reloc tree is just a 806 * snapshot of the fs tree with special root objectid. 807 * 808 * The reloc_root comes out of here with two references, one for 809 * root->reloc_root, and another for being on the rc->reloc_roots list. 810 */ 811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 812 struct btrfs_root *root) 813 { 814 struct btrfs_fs_info *fs_info = root->fs_info; 815 struct btrfs_root *reloc_root; 816 struct reloc_control *rc = fs_info->reloc_ctl; 817 struct btrfs_block_rsv *rsv; 818 int clear_rsv = 0; 819 int ret; 820 821 if (!rc) 822 return 0; 823 824 /* 825 * The subvolume has reloc tree but the swap is finished, no need to 826 * create/update the dead reloc tree 827 */ 828 if (reloc_root_is_dead(root)) 829 return 0; 830 831 /* 832 * This is subtle but important. We do not do 833 * record_root_in_transaction for reloc roots, instead we record their 834 * corresponding fs root, and then here we update the last trans for the 835 * reloc root. This means that we have to do this for the entire life 836 * of the reloc root, regardless of which stage of the relocation we are 837 * in. 838 */ 839 if (root->reloc_root) { 840 reloc_root = root->reloc_root; 841 reloc_root->last_trans = trans->transid; 842 return 0; 843 } 844 845 /* 846 * We are merging reloc roots, we do not need new reloc trees. Also 847 * reloc trees never need their own reloc tree. 848 */ 849 if (!rc->create_reloc_tree || 850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 851 return 0; 852 853 if (!trans->reloc_reserved) { 854 rsv = trans->block_rsv; 855 trans->block_rsv = rc->block_rsv; 856 clear_rsv = 1; 857 } 858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 859 if (clear_rsv) 860 trans->block_rsv = rsv; 861 862 ret = __add_reloc_root(reloc_root); 863 BUG_ON(ret < 0); 864 root->reloc_root = btrfs_grab_root(reloc_root); 865 return 0; 866 } 867 868 /* 869 * update root item of reloc tree 870 */ 871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root) 873 { 874 struct btrfs_fs_info *fs_info = root->fs_info; 875 struct btrfs_root *reloc_root; 876 struct btrfs_root_item *root_item; 877 int ret; 878 879 if (!have_reloc_root(root)) 880 goto out; 881 882 reloc_root = root->reloc_root; 883 root_item = &reloc_root->root_item; 884 885 /* 886 * We are probably ok here, but __del_reloc_root() will drop its ref of 887 * the root. We have the ref for root->reloc_root, but just in case 888 * hold it while we update the reloc root. 889 */ 890 btrfs_grab_root(reloc_root); 891 892 /* root->reloc_root will stay until current relocation finished */ 893 if (fs_info->reloc_ctl->merge_reloc_tree && 894 btrfs_root_refs(root_item) == 0) { 895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 896 /* 897 * Mark the tree as dead before we change reloc_root so 898 * have_reloc_root will not touch it from now on. 899 */ 900 smp_wmb(); 901 __del_reloc_root(reloc_root); 902 } 903 904 if (reloc_root->commit_root != reloc_root->node) { 905 __update_reloc_root(reloc_root); 906 btrfs_set_root_node(root_item, reloc_root->node); 907 free_extent_buffer(reloc_root->commit_root); 908 reloc_root->commit_root = btrfs_root_node(reloc_root); 909 } 910 911 ret = btrfs_update_root(trans, fs_info->tree_root, 912 &reloc_root->root_key, root_item); 913 BUG_ON(ret); 914 btrfs_put_root(reloc_root); 915 out: 916 return 0; 917 } 918 919 /* 920 * helper to find first cached inode with inode number >= objectid 921 * in a subvolume 922 */ 923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 924 { 925 struct rb_node *node; 926 struct rb_node *prev; 927 struct btrfs_inode *entry; 928 struct inode *inode; 929 930 spin_lock(&root->inode_lock); 931 again: 932 node = root->inode_tree.rb_node; 933 prev = NULL; 934 while (node) { 935 prev = node; 936 entry = rb_entry(node, struct btrfs_inode, rb_node); 937 938 if (objectid < btrfs_ino(entry)) 939 node = node->rb_left; 940 else if (objectid > btrfs_ino(entry)) 941 node = node->rb_right; 942 else 943 break; 944 } 945 if (!node) { 946 while (prev) { 947 entry = rb_entry(prev, struct btrfs_inode, rb_node); 948 if (objectid <= btrfs_ino(entry)) { 949 node = prev; 950 break; 951 } 952 prev = rb_next(prev); 953 } 954 } 955 while (node) { 956 entry = rb_entry(node, struct btrfs_inode, rb_node); 957 inode = igrab(&entry->vfs_inode); 958 if (inode) { 959 spin_unlock(&root->inode_lock); 960 return inode; 961 } 962 963 objectid = btrfs_ino(entry) + 1; 964 if (cond_resched_lock(&root->inode_lock)) 965 goto again; 966 967 node = rb_next(node); 968 } 969 spin_unlock(&root->inode_lock); 970 return NULL; 971 } 972 973 /* 974 * get new location of data 975 */ 976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 977 u64 bytenr, u64 num_bytes) 978 { 979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 980 struct btrfs_path *path; 981 struct btrfs_file_extent_item *fi; 982 struct extent_buffer *leaf; 983 int ret; 984 985 path = btrfs_alloc_path(); 986 if (!path) 987 return -ENOMEM; 988 989 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 990 ret = btrfs_lookup_file_extent(NULL, root, path, 991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 992 if (ret < 0) 993 goto out; 994 if (ret > 0) { 995 ret = -ENOENT; 996 goto out; 997 } 998 999 leaf = path->nodes[0]; 1000 fi = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_file_extent_item); 1002 1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1004 btrfs_file_extent_compression(leaf, fi) || 1005 btrfs_file_extent_encryption(leaf, fi) || 1006 btrfs_file_extent_other_encoding(leaf, fi)); 1007 1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1009 ret = -EINVAL; 1010 goto out; 1011 } 1012 1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1014 ret = 0; 1015 out: 1016 btrfs_free_path(path); 1017 return ret; 1018 } 1019 1020 /* 1021 * update file extent items in the tree leaf to point to 1022 * the new locations. 1023 */ 1024 static noinline_for_stack 1025 int replace_file_extents(struct btrfs_trans_handle *trans, 1026 struct reloc_control *rc, 1027 struct btrfs_root *root, 1028 struct extent_buffer *leaf) 1029 { 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 struct btrfs_key key; 1032 struct btrfs_file_extent_item *fi; 1033 struct inode *inode = NULL; 1034 u64 parent; 1035 u64 bytenr; 1036 u64 new_bytenr = 0; 1037 u64 num_bytes; 1038 u64 end; 1039 u32 nritems; 1040 u32 i; 1041 int ret = 0; 1042 int first = 1; 1043 int dirty = 0; 1044 1045 if (rc->stage != UPDATE_DATA_PTRS) 1046 return 0; 1047 1048 /* reloc trees always use full backref */ 1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1050 parent = leaf->start; 1051 else 1052 parent = 0; 1053 1054 nritems = btrfs_header_nritems(leaf); 1055 for (i = 0; i < nritems; i++) { 1056 struct btrfs_ref ref = { 0 }; 1057 1058 cond_resched(); 1059 btrfs_item_key_to_cpu(leaf, &key, i); 1060 if (key.type != BTRFS_EXTENT_DATA_KEY) 1061 continue; 1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1063 if (btrfs_file_extent_type(leaf, fi) == 1064 BTRFS_FILE_EXTENT_INLINE) 1065 continue; 1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1068 if (bytenr == 0) 1069 continue; 1070 if (!in_range(bytenr, rc->block_group->start, 1071 rc->block_group->length)) 1072 continue; 1073 1074 /* 1075 * if we are modifying block in fs tree, wait for readpage 1076 * to complete and drop the extent cache 1077 */ 1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1079 if (first) { 1080 inode = find_next_inode(root, key.objectid); 1081 first = 0; 1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1083 btrfs_add_delayed_iput(inode); 1084 inode = find_next_inode(root, key.objectid); 1085 } 1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1087 end = key.offset + 1088 btrfs_file_extent_num_bytes(leaf, fi); 1089 WARN_ON(!IS_ALIGNED(key.offset, 1090 fs_info->sectorsize)); 1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1092 end--; 1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1094 key.offset, end); 1095 if (!ret) 1096 continue; 1097 1098 btrfs_drop_extent_cache(BTRFS_I(inode), 1099 key.offset, end, 1); 1100 unlock_extent(&BTRFS_I(inode)->io_tree, 1101 key.offset, end); 1102 } 1103 } 1104 1105 ret = get_new_location(rc->data_inode, &new_bytenr, 1106 bytenr, num_bytes); 1107 if (ret) { 1108 /* 1109 * Don't have to abort since we've not changed anything 1110 * in the file extent yet. 1111 */ 1112 break; 1113 } 1114 1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1116 dirty = 1; 1117 1118 key.offset -= btrfs_file_extent_offset(leaf, fi); 1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1120 num_bytes, parent); 1121 ref.real_root = root->root_key.objectid; 1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1123 key.objectid, key.offset); 1124 ret = btrfs_inc_extent_ref(trans, &ref); 1125 if (ret) { 1126 btrfs_abort_transaction(trans, ret); 1127 break; 1128 } 1129 1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1131 num_bytes, parent); 1132 ref.real_root = root->root_key.objectid; 1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1134 key.objectid, key.offset); 1135 ret = btrfs_free_extent(trans, &ref); 1136 if (ret) { 1137 btrfs_abort_transaction(trans, ret); 1138 break; 1139 } 1140 } 1141 if (dirty) 1142 btrfs_mark_buffer_dirty(leaf); 1143 if (inode) 1144 btrfs_add_delayed_iput(inode); 1145 return ret; 1146 } 1147 1148 static noinline_for_stack 1149 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1150 struct btrfs_path *path, int level) 1151 { 1152 struct btrfs_disk_key key1; 1153 struct btrfs_disk_key key2; 1154 btrfs_node_key(eb, &key1, slot); 1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1156 return memcmp(&key1, &key2, sizeof(key1)); 1157 } 1158 1159 /* 1160 * try to replace tree blocks in fs tree with the new blocks 1161 * in reloc tree. tree blocks haven't been modified since the 1162 * reloc tree was create can be replaced. 1163 * 1164 * if a block was replaced, level of the block + 1 is returned. 1165 * if no block got replaced, 0 is returned. if there are other 1166 * errors, a negative error number is returned. 1167 */ 1168 static noinline_for_stack 1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1170 struct btrfs_root *dest, struct btrfs_root *src, 1171 struct btrfs_path *path, struct btrfs_key *next_key, 1172 int lowest_level, int max_level) 1173 { 1174 struct btrfs_fs_info *fs_info = dest->fs_info; 1175 struct extent_buffer *eb; 1176 struct extent_buffer *parent; 1177 struct btrfs_ref ref = { 0 }; 1178 struct btrfs_key key; 1179 u64 old_bytenr; 1180 u64 new_bytenr; 1181 u64 old_ptr_gen; 1182 u64 new_ptr_gen; 1183 u64 last_snapshot; 1184 u32 blocksize; 1185 int cow = 0; 1186 int level; 1187 int ret; 1188 int slot; 1189 1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1192 1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1194 again: 1195 slot = path->slots[lowest_level]; 1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1197 1198 eb = btrfs_lock_root_node(dest); 1199 btrfs_set_lock_blocking_write(eb); 1200 level = btrfs_header_level(eb); 1201 1202 if (level < lowest_level) { 1203 btrfs_tree_unlock(eb); 1204 free_extent_buffer(eb); 1205 return 0; 1206 } 1207 1208 if (cow) { 1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1210 BUG_ON(ret); 1211 } 1212 btrfs_set_lock_blocking_write(eb); 1213 1214 if (next_key) { 1215 next_key->objectid = (u64)-1; 1216 next_key->type = (u8)-1; 1217 next_key->offset = (u64)-1; 1218 } 1219 1220 parent = eb; 1221 while (1) { 1222 struct btrfs_key first_key; 1223 1224 level = btrfs_header_level(parent); 1225 BUG_ON(level < lowest_level); 1226 1227 ret = btrfs_bin_search(parent, &key, &slot); 1228 if (ret < 0) 1229 break; 1230 if (ret && slot > 0) 1231 slot--; 1232 1233 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1234 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1235 1236 old_bytenr = btrfs_node_blockptr(parent, slot); 1237 blocksize = fs_info->nodesize; 1238 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1239 btrfs_node_key_to_cpu(parent, &first_key, slot); 1240 1241 if (level <= max_level) { 1242 eb = path->nodes[level]; 1243 new_bytenr = btrfs_node_blockptr(eb, 1244 path->slots[level]); 1245 new_ptr_gen = btrfs_node_ptr_generation(eb, 1246 path->slots[level]); 1247 } else { 1248 new_bytenr = 0; 1249 new_ptr_gen = 0; 1250 } 1251 1252 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1253 ret = level; 1254 break; 1255 } 1256 1257 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1258 memcmp_node_keys(parent, slot, path, level)) { 1259 if (level <= lowest_level) { 1260 ret = 0; 1261 break; 1262 } 1263 1264 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1265 level - 1, &first_key); 1266 if (IS_ERR(eb)) { 1267 ret = PTR_ERR(eb); 1268 break; 1269 } else if (!extent_buffer_uptodate(eb)) { 1270 ret = -EIO; 1271 free_extent_buffer(eb); 1272 break; 1273 } 1274 btrfs_tree_lock(eb); 1275 if (cow) { 1276 ret = btrfs_cow_block(trans, dest, eb, parent, 1277 slot, &eb); 1278 BUG_ON(ret); 1279 } 1280 btrfs_set_lock_blocking_write(eb); 1281 1282 btrfs_tree_unlock(parent); 1283 free_extent_buffer(parent); 1284 1285 parent = eb; 1286 continue; 1287 } 1288 1289 if (!cow) { 1290 btrfs_tree_unlock(parent); 1291 free_extent_buffer(parent); 1292 cow = 1; 1293 goto again; 1294 } 1295 1296 btrfs_node_key_to_cpu(path->nodes[level], &key, 1297 path->slots[level]); 1298 btrfs_release_path(path); 1299 1300 path->lowest_level = level; 1301 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1302 path->lowest_level = 0; 1303 BUG_ON(ret); 1304 1305 /* 1306 * Info qgroup to trace both subtrees. 1307 * 1308 * We must trace both trees. 1309 * 1) Tree reloc subtree 1310 * If not traced, we will leak data numbers 1311 * 2) Fs subtree 1312 * If not traced, we will double count old data 1313 * 1314 * We don't scan the subtree right now, but only record 1315 * the swapped tree blocks. 1316 * The real subtree rescan is delayed until we have new 1317 * CoW on the subtree root node before transaction commit. 1318 */ 1319 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1320 rc->block_group, parent, slot, 1321 path->nodes[level], path->slots[level], 1322 last_snapshot); 1323 if (ret < 0) 1324 break; 1325 /* 1326 * swap blocks in fs tree and reloc tree. 1327 */ 1328 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1329 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1330 btrfs_mark_buffer_dirty(parent); 1331 1332 btrfs_set_node_blockptr(path->nodes[level], 1333 path->slots[level], old_bytenr); 1334 btrfs_set_node_ptr_generation(path->nodes[level], 1335 path->slots[level], old_ptr_gen); 1336 btrfs_mark_buffer_dirty(path->nodes[level]); 1337 1338 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1339 blocksize, path->nodes[level]->start); 1340 ref.skip_qgroup = true; 1341 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1342 ret = btrfs_inc_extent_ref(trans, &ref); 1343 BUG_ON(ret); 1344 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1345 blocksize, 0); 1346 ref.skip_qgroup = true; 1347 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1348 ret = btrfs_inc_extent_ref(trans, &ref); 1349 BUG_ON(ret); 1350 1351 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1352 blocksize, path->nodes[level]->start); 1353 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1354 ref.skip_qgroup = true; 1355 ret = btrfs_free_extent(trans, &ref); 1356 BUG_ON(ret); 1357 1358 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1359 blocksize, 0); 1360 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1361 ref.skip_qgroup = true; 1362 ret = btrfs_free_extent(trans, &ref); 1363 BUG_ON(ret); 1364 1365 btrfs_unlock_up_safe(path, 0); 1366 1367 ret = level; 1368 break; 1369 } 1370 btrfs_tree_unlock(parent); 1371 free_extent_buffer(parent); 1372 return ret; 1373 } 1374 1375 /* 1376 * helper to find next relocated block in reloc tree 1377 */ 1378 static noinline_for_stack 1379 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1380 int *level) 1381 { 1382 struct extent_buffer *eb; 1383 int i; 1384 u64 last_snapshot; 1385 u32 nritems; 1386 1387 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1388 1389 for (i = 0; i < *level; i++) { 1390 free_extent_buffer(path->nodes[i]); 1391 path->nodes[i] = NULL; 1392 } 1393 1394 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1395 eb = path->nodes[i]; 1396 nritems = btrfs_header_nritems(eb); 1397 while (path->slots[i] + 1 < nritems) { 1398 path->slots[i]++; 1399 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1400 last_snapshot) 1401 continue; 1402 1403 *level = i; 1404 return 0; 1405 } 1406 free_extent_buffer(path->nodes[i]); 1407 path->nodes[i] = NULL; 1408 } 1409 return 1; 1410 } 1411 1412 /* 1413 * walk down reloc tree to find relocated block of lowest level 1414 */ 1415 static noinline_for_stack 1416 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1417 int *level) 1418 { 1419 struct btrfs_fs_info *fs_info = root->fs_info; 1420 struct extent_buffer *eb = NULL; 1421 int i; 1422 u64 bytenr; 1423 u64 ptr_gen = 0; 1424 u64 last_snapshot; 1425 u32 nritems; 1426 1427 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1428 1429 for (i = *level; i > 0; i--) { 1430 struct btrfs_key first_key; 1431 1432 eb = path->nodes[i]; 1433 nritems = btrfs_header_nritems(eb); 1434 while (path->slots[i] < nritems) { 1435 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1436 if (ptr_gen > last_snapshot) 1437 break; 1438 path->slots[i]++; 1439 } 1440 if (path->slots[i] >= nritems) { 1441 if (i == *level) 1442 break; 1443 *level = i + 1; 1444 return 0; 1445 } 1446 if (i == 1) { 1447 *level = i; 1448 return 0; 1449 } 1450 1451 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1452 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 1453 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 1454 &first_key); 1455 if (IS_ERR(eb)) { 1456 return PTR_ERR(eb); 1457 } else if (!extent_buffer_uptodate(eb)) { 1458 free_extent_buffer(eb); 1459 return -EIO; 1460 } 1461 BUG_ON(btrfs_header_level(eb) != i - 1); 1462 path->nodes[i - 1] = eb; 1463 path->slots[i - 1] = 0; 1464 } 1465 return 1; 1466 } 1467 1468 /* 1469 * invalidate extent cache for file extents whose key in range of 1470 * [min_key, max_key) 1471 */ 1472 static int invalidate_extent_cache(struct btrfs_root *root, 1473 struct btrfs_key *min_key, 1474 struct btrfs_key *max_key) 1475 { 1476 struct btrfs_fs_info *fs_info = root->fs_info; 1477 struct inode *inode = NULL; 1478 u64 objectid; 1479 u64 start, end; 1480 u64 ino; 1481 1482 objectid = min_key->objectid; 1483 while (1) { 1484 cond_resched(); 1485 iput(inode); 1486 1487 if (objectid > max_key->objectid) 1488 break; 1489 1490 inode = find_next_inode(root, objectid); 1491 if (!inode) 1492 break; 1493 ino = btrfs_ino(BTRFS_I(inode)); 1494 1495 if (ino > max_key->objectid) { 1496 iput(inode); 1497 break; 1498 } 1499 1500 objectid = ino + 1; 1501 if (!S_ISREG(inode->i_mode)) 1502 continue; 1503 1504 if (unlikely(min_key->objectid == ino)) { 1505 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1506 continue; 1507 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1508 start = 0; 1509 else { 1510 start = min_key->offset; 1511 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1512 } 1513 } else { 1514 start = 0; 1515 } 1516 1517 if (unlikely(max_key->objectid == ino)) { 1518 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1519 continue; 1520 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1521 end = (u64)-1; 1522 } else { 1523 if (max_key->offset == 0) 1524 continue; 1525 end = max_key->offset; 1526 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1527 end--; 1528 } 1529 } else { 1530 end = (u64)-1; 1531 } 1532 1533 /* the lock_extent waits for readpage to complete */ 1534 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1535 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1536 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1537 } 1538 return 0; 1539 } 1540 1541 static int find_next_key(struct btrfs_path *path, int level, 1542 struct btrfs_key *key) 1543 1544 { 1545 while (level < BTRFS_MAX_LEVEL) { 1546 if (!path->nodes[level]) 1547 break; 1548 if (path->slots[level] + 1 < 1549 btrfs_header_nritems(path->nodes[level])) { 1550 btrfs_node_key_to_cpu(path->nodes[level], key, 1551 path->slots[level] + 1); 1552 return 0; 1553 } 1554 level++; 1555 } 1556 return 1; 1557 } 1558 1559 /* 1560 * Insert current subvolume into reloc_control::dirty_subvol_roots 1561 */ 1562 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1563 struct reloc_control *rc, 1564 struct btrfs_root *root) 1565 { 1566 struct btrfs_root *reloc_root = root->reloc_root; 1567 struct btrfs_root_item *reloc_root_item; 1568 1569 /* @root must be a subvolume tree root with a valid reloc tree */ 1570 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1571 ASSERT(reloc_root); 1572 1573 reloc_root_item = &reloc_root->root_item; 1574 memset(&reloc_root_item->drop_progress, 0, 1575 sizeof(reloc_root_item->drop_progress)); 1576 reloc_root_item->drop_level = 0; 1577 btrfs_set_root_refs(reloc_root_item, 0); 1578 btrfs_update_reloc_root(trans, root); 1579 1580 if (list_empty(&root->reloc_dirty_list)) { 1581 btrfs_grab_root(root); 1582 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1583 } 1584 } 1585 1586 static int clean_dirty_subvols(struct reloc_control *rc) 1587 { 1588 struct btrfs_root *root; 1589 struct btrfs_root *next; 1590 int ret = 0; 1591 int ret2; 1592 1593 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1594 reloc_dirty_list) { 1595 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1596 /* Merged subvolume, cleanup its reloc root */ 1597 struct btrfs_root *reloc_root = root->reloc_root; 1598 1599 list_del_init(&root->reloc_dirty_list); 1600 root->reloc_root = NULL; 1601 /* 1602 * Need barrier to ensure clear_bit() only happens after 1603 * root->reloc_root = NULL. Pairs with have_reloc_root. 1604 */ 1605 smp_wmb(); 1606 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1607 if (reloc_root) { 1608 /* 1609 * btrfs_drop_snapshot drops our ref we hold for 1610 * ->reloc_root. If it fails however we must 1611 * drop the ref ourselves. 1612 */ 1613 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1614 if (ret2 < 0) { 1615 btrfs_put_root(reloc_root); 1616 if (!ret) 1617 ret = ret2; 1618 } 1619 } 1620 btrfs_put_root(root); 1621 } else { 1622 /* Orphan reloc tree, just clean it up */ 1623 ret2 = btrfs_drop_snapshot(root, 0, 1); 1624 if (ret2 < 0) { 1625 btrfs_put_root(root); 1626 if (!ret) 1627 ret = ret2; 1628 } 1629 } 1630 } 1631 return ret; 1632 } 1633 1634 /* 1635 * merge the relocated tree blocks in reloc tree with corresponding 1636 * fs tree. 1637 */ 1638 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1639 struct btrfs_root *root) 1640 { 1641 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1642 struct btrfs_key key; 1643 struct btrfs_key next_key; 1644 struct btrfs_trans_handle *trans = NULL; 1645 struct btrfs_root *reloc_root; 1646 struct btrfs_root_item *root_item; 1647 struct btrfs_path *path; 1648 struct extent_buffer *leaf; 1649 int level; 1650 int max_level; 1651 int replaced = 0; 1652 int ret; 1653 int err = 0; 1654 u32 min_reserved; 1655 1656 path = btrfs_alloc_path(); 1657 if (!path) 1658 return -ENOMEM; 1659 path->reada = READA_FORWARD; 1660 1661 reloc_root = root->reloc_root; 1662 root_item = &reloc_root->root_item; 1663 1664 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1665 level = btrfs_root_level(root_item); 1666 atomic_inc(&reloc_root->node->refs); 1667 path->nodes[level] = reloc_root->node; 1668 path->slots[level] = 0; 1669 } else { 1670 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1671 1672 level = root_item->drop_level; 1673 BUG_ON(level == 0); 1674 path->lowest_level = level; 1675 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1676 path->lowest_level = 0; 1677 if (ret < 0) { 1678 btrfs_free_path(path); 1679 return ret; 1680 } 1681 1682 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1683 path->slots[level]); 1684 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1685 1686 btrfs_unlock_up_safe(path, 0); 1687 } 1688 1689 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1690 memset(&next_key, 0, sizeof(next_key)); 1691 1692 while (1) { 1693 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1694 BTRFS_RESERVE_FLUSH_ALL); 1695 if (ret) { 1696 err = ret; 1697 goto out; 1698 } 1699 trans = btrfs_start_transaction(root, 0); 1700 if (IS_ERR(trans)) { 1701 err = PTR_ERR(trans); 1702 trans = NULL; 1703 goto out; 1704 } 1705 1706 /* 1707 * At this point we no longer have a reloc_control, so we can't 1708 * depend on btrfs_init_reloc_root to update our last_trans. 1709 * 1710 * But that's ok, we started the trans handle on our 1711 * corresponding fs_root, which means it's been added to the 1712 * dirty list. At commit time we'll still call 1713 * btrfs_update_reloc_root() and update our root item 1714 * appropriately. 1715 */ 1716 reloc_root->last_trans = trans->transid; 1717 trans->block_rsv = rc->block_rsv; 1718 1719 replaced = 0; 1720 max_level = level; 1721 1722 ret = walk_down_reloc_tree(reloc_root, path, &level); 1723 if (ret < 0) { 1724 err = ret; 1725 goto out; 1726 } 1727 if (ret > 0) 1728 break; 1729 1730 if (!find_next_key(path, level, &key) && 1731 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1732 ret = 0; 1733 } else { 1734 ret = replace_path(trans, rc, root, reloc_root, path, 1735 &next_key, level, max_level); 1736 } 1737 if (ret < 0) { 1738 err = ret; 1739 goto out; 1740 } 1741 1742 if (ret > 0) { 1743 level = ret; 1744 btrfs_node_key_to_cpu(path->nodes[level], &key, 1745 path->slots[level]); 1746 replaced = 1; 1747 } 1748 1749 ret = walk_up_reloc_tree(reloc_root, path, &level); 1750 if (ret > 0) 1751 break; 1752 1753 BUG_ON(level == 0); 1754 /* 1755 * save the merging progress in the drop_progress. 1756 * this is OK since root refs == 1 in this case. 1757 */ 1758 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1759 path->slots[level]); 1760 root_item->drop_level = level; 1761 1762 btrfs_end_transaction_throttle(trans); 1763 trans = NULL; 1764 1765 btrfs_btree_balance_dirty(fs_info); 1766 1767 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1768 invalidate_extent_cache(root, &key, &next_key); 1769 } 1770 1771 /* 1772 * handle the case only one block in the fs tree need to be 1773 * relocated and the block is tree root. 1774 */ 1775 leaf = btrfs_lock_root_node(root); 1776 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 1777 btrfs_tree_unlock(leaf); 1778 free_extent_buffer(leaf); 1779 if (ret < 0) 1780 err = ret; 1781 out: 1782 btrfs_free_path(path); 1783 1784 if (err == 0) 1785 insert_dirty_subvol(trans, rc, root); 1786 1787 if (trans) 1788 btrfs_end_transaction_throttle(trans); 1789 1790 btrfs_btree_balance_dirty(fs_info); 1791 1792 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1793 invalidate_extent_cache(root, &key, &next_key); 1794 1795 return err; 1796 } 1797 1798 static noinline_for_stack 1799 int prepare_to_merge(struct reloc_control *rc, int err) 1800 { 1801 struct btrfs_root *root = rc->extent_root; 1802 struct btrfs_fs_info *fs_info = root->fs_info; 1803 struct btrfs_root *reloc_root; 1804 struct btrfs_trans_handle *trans; 1805 LIST_HEAD(reloc_roots); 1806 u64 num_bytes = 0; 1807 int ret; 1808 1809 mutex_lock(&fs_info->reloc_mutex); 1810 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1811 rc->merging_rsv_size += rc->nodes_relocated * 2; 1812 mutex_unlock(&fs_info->reloc_mutex); 1813 1814 again: 1815 if (!err) { 1816 num_bytes = rc->merging_rsv_size; 1817 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1818 BTRFS_RESERVE_FLUSH_ALL); 1819 if (ret) 1820 err = ret; 1821 } 1822 1823 trans = btrfs_join_transaction(rc->extent_root); 1824 if (IS_ERR(trans)) { 1825 if (!err) 1826 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1827 num_bytes, NULL); 1828 return PTR_ERR(trans); 1829 } 1830 1831 if (!err) { 1832 if (num_bytes != rc->merging_rsv_size) { 1833 btrfs_end_transaction(trans); 1834 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1835 num_bytes, NULL); 1836 goto again; 1837 } 1838 } 1839 1840 rc->merge_reloc_tree = 1; 1841 1842 while (!list_empty(&rc->reloc_roots)) { 1843 reloc_root = list_entry(rc->reloc_roots.next, 1844 struct btrfs_root, root_list); 1845 list_del_init(&reloc_root->root_list); 1846 1847 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1848 false); 1849 BUG_ON(IS_ERR(root)); 1850 BUG_ON(root->reloc_root != reloc_root); 1851 1852 /* 1853 * set reference count to 1, so btrfs_recover_relocation 1854 * knows it should resumes merging 1855 */ 1856 if (!err) 1857 btrfs_set_root_refs(&reloc_root->root_item, 1); 1858 btrfs_update_reloc_root(trans, root); 1859 1860 list_add(&reloc_root->root_list, &reloc_roots); 1861 btrfs_put_root(root); 1862 } 1863 1864 list_splice(&reloc_roots, &rc->reloc_roots); 1865 1866 if (!err) 1867 btrfs_commit_transaction(trans); 1868 else 1869 btrfs_end_transaction(trans); 1870 return err; 1871 } 1872 1873 static noinline_for_stack 1874 void free_reloc_roots(struct list_head *list) 1875 { 1876 struct btrfs_root *reloc_root, *tmp; 1877 1878 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1879 __del_reloc_root(reloc_root); 1880 } 1881 1882 static noinline_for_stack 1883 void merge_reloc_roots(struct reloc_control *rc) 1884 { 1885 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1886 struct btrfs_root *root; 1887 struct btrfs_root *reloc_root; 1888 LIST_HEAD(reloc_roots); 1889 int found = 0; 1890 int ret = 0; 1891 again: 1892 root = rc->extent_root; 1893 1894 /* 1895 * this serializes us with btrfs_record_root_in_transaction, 1896 * we have to make sure nobody is in the middle of 1897 * adding their roots to the list while we are 1898 * doing this splice 1899 */ 1900 mutex_lock(&fs_info->reloc_mutex); 1901 list_splice_init(&rc->reloc_roots, &reloc_roots); 1902 mutex_unlock(&fs_info->reloc_mutex); 1903 1904 while (!list_empty(&reloc_roots)) { 1905 found = 1; 1906 reloc_root = list_entry(reloc_roots.next, 1907 struct btrfs_root, root_list); 1908 1909 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1910 false); 1911 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1912 BUG_ON(IS_ERR(root)); 1913 BUG_ON(root->reloc_root != reloc_root); 1914 ret = merge_reloc_root(rc, root); 1915 btrfs_put_root(root); 1916 if (ret) { 1917 if (list_empty(&reloc_root->root_list)) 1918 list_add_tail(&reloc_root->root_list, 1919 &reloc_roots); 1920 goto out; 1921 } 1922 } else { 1923 if (!IS_ERR(root)) { 1924 if (root->reloc_root == reloc_root) { 1925 root->reloc_root = NULL; 1926 btrfs_put_root(reloc_root); 1927 } 1928 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1929 &root->state); 1930 btrfs_put_root(root); 1931 } 1932 1933 list_del_init(&reloc_root->root_list); 1934 /* Don't forget to queue this reloc root for cleanup */ 1935 list_add_tail(&reloc_root->reloc_dirty_list, 1936 &rc->dirty_subvol_roots); 1937 } 1938 } 1939 1940 if (found) { 1941 found = 0; 1942 goto again; 1943 } 1944 out: 1945 if (ret) { 1946 btrfs_handle_fs_error(fs_info, ret, NULL); 1947 free_reloc_roots(&reloc_roots); 1948 1949 /* new reloc root may be added */ 1950 mutex_lock(&fs_info->reloc_mutex); 1951 list_splice_init(&rc->reloc_roots, &reloc_roots); 1952 mutex_unlock(&fs_info->reloc_mutex); 1953 free_reloc_roots(&reloc_roots); 1954 } 1955 1956 /* 1957 * We used to have 1958 * 1959 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1960 * 1961 * here, but it's wrong. If we fail to start the transaction in 1962 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1963 * have actually been removed from the reloc_root_tree rb tree. This is 1964 * fine because we're bailing here, and we hold a reference on the root 1965 * for the list that holds it, so these roots will be cleaned up when we 1966 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1967 * will be cleaned up on unmount. 1968 * 1969 * The remaining nodes will be cleaned up by free_reloc_control. 1970 */ 1971 } 1972 1973 static void free_block_list(struct rb_root *blocks) 1974 { 1975 struct tree_block *block; 1976 struct rb_node *rb_node; 1977 while ((rb_node = rb_first(blocks))) { 1978 block = rb_entry(rb_node, struct tree_block, rb_node); 1979 rb_erase(rb_node, blocks); 1980 kfree(block); 1981 } 1982 } 1983 1984 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1985 struct btrfs_root *reloc_root) 1986 { 1987 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 1988 struct btrfs_root *root; 1989 int ret; 1990 1991 if (reloc_root->last_trans == trans->transid) 1992 return 0; 1993 1994 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 1995 BUG_ON(IS_ERR(root)); 1996 BUG_ON(root->reloc_root != reloc_root); 1997 ret = btrfs_record_root_in_trans(trans, root); 1998 btrfs_put_root(root); 1999 2000 return ret; 2001 } 2002 2003 static noinline_for_stack 2004 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2005 struct reloc_control *rc, 2006 struct btrfs_backref_node *node, 2007 struct btrfs_backref_edge *edges[]) 2008 { 2009 struct btrfs_backref_node *next; 2010 struct btrfs_root *root; 2011 int index = 0; 2012 2013 next = node; 2014 while (1) { 2015 cond_resched(); 2016 next = walk_up_backref(next, edges, &index); 2017 root = next->root; 2018 BUG_ON(!root); 2019 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 2020 2021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2022 record_reloc_root_in_trans(trans, root); 2023 break; 2024 } 2025 2026 btrfs_record_root_in_trans(trans, root); 2027 root = root->reloc_root; 2028 2029 if (next->new_bytenr != root->node->start) { 2030 BUG_ON(next->new_bytenr); 2031 BUG_ON(!list_empty(&next->list)); 2032 next->new_bytenr = root->node->start; 2033 btrfs_put_root(next->root); 2034 next->root = btrfs_grab_root(root); 2035 ASSERT(next->root); 2036 list_add_tail(&next->list, 2037 &rc->backref_cache.changed); 2038 mark_block_processed(rc, next); 2039 break; 2040 } 2041 2042 WARN_ON(1); 2043 root = NULL; 2044 next = walk_down_backref(edges, &index); 2045 if (!next || next->level <= node->level) 2046 break; 2047 } 2048 if (!root) 2049 return NULL; 2050 2051 next = node; 2052 /* setup backref node path for btrfs_reloc_cow_block */ 2053 while (1) { 2054 rc->backref_cache.path[next->level] = next; 2055 if (--index < 0) 2056 break; 2057 next = edges[index]->node[UPPER]; 2058 } 2059 return root; 2060 } 2061 2062 /* 2063 * Select a tree root for relocation. 2064 * 2065 * Return NULL if the block is not shareable. We should use do_relocation() in 2066 * this case. 2067 * 2068 * Return a tree root pointer if the block is shareable. 2069 * Return -ENOENT if the block is root of reloc tree. 2070 */ 2071 static noinline_for_stack 2072 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2073 { 2074 struct btrfs_backref_node *next; 2075 struct btrfs_root *root; 2076 struct btrfs_root *fs_root = NULL; 2077 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2078 int index = 0; 2079 2080 next = node; 2081 while (1) { 2082 cond_resched(); 2083 next = walk_up_backref(next, edges, &index); 2084 root = next->root; 2085 BUG_ON(!root); 2086 2087 /* No other choice for non-shareable tree */ 2088 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2089 return root; 2090 2091 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2092 fs_root = root; 2093 2094 if (next != node) 2095 return NULL; 2096 2097 next = walk_down_backref(edges, &index); 2098 if (!next || next->level <= node->level) 2099 break; 2100 } 2101 2102 if (!fs_root) 2103 return ERR_PTR(-ENOENT); 2104 return fs_root; 2105 } 2106 2107 static noinline_for_stack 2108 u64 calcu_metadata_size(struct reloc_control *rc, 2109 struct btrfs_backref_node *node, int reserve) 2110 { 2111 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2112 struct btrfs_backref_node *next = node; 2113 struct btrfs_backref_edge *edge; 2114 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2115 u64 num_bytes = 0; 2116 int index = 0; 2117 2118 BUG_ON(reserve && node->processed); 2119 2120 while (next) { 2121 cond_resched(); 2122 while (1) { 2123 if (next->processed && (reserve || next != node)) 2124 break; 2125 2126 num_bytes += fs_info->nodesize; 2127 2128 if (list_empty(&next->upper)) 2129 break; 2130 2131 edge = list_entry(next->upper.next, 2132 struct btrfs_backref_edge, list[LOWER]); 2133 edges[index++] = edge; 2134 next = edge->node[UPPER]; 2135 } 2136 next = walk_down_backref(edges, &index); 2137 } 2138 return num_bytes; 2139 } 2140 2141 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2142 struct reloc_control *rc, 2143 struct btrfs_backref_node *node) 2144 { 2145 struct btrfs_root *root = rc->extent_root; 2146 struct btrfs_fs_info *fs_info = root->fs_info; 2147 u64 num_bytes; 2148 int ret; 2149 u64 tmp; 2150 2151 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2152 2153 trans->block_rsv = rc->block_rsv; 2154 rc->reserved_bytes += num_bytes; 2155 2156 /* 2157 * We are under a transaction here so we can only do limited flushing. 2158 * If we get an enospc just kick back -EAGAIN so we know to drop the 2159 * transaction and try to refill when we can flush all the things. 2160 */ 2161 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2162 BTRFS_RESERVE_FLUSH_LIMIT); 2163 if (ret) { 2164 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2165 while (tmp <= rc->reserved_bytes) 2166 tmp <<= 1; 2167 /* 2168 * only one thread can access block_rsv at this point, 2169 * so we don't need hold lock to protect block_rsv. 2170 * we expand more reservation size here to allow enough 2171 * space for relocation and we will return earlier in 2172 * enospc case. 2173 */ 2174 rc->block_rsv->size = tmp + fs_info->nodesize * 2175 RELOCATION_RESERVED_NODES; 2176 return -EAGAIN; 2177 } 2178 2179 return 0; 2180 } 2181 2182 /* 2183 * relocate a block tree, and then update pointers in upper level 2184 * blocks that reference the block to point to the new location. 2185 * 2186 * if called by link_to_upper, the block has already been relocated. 2187 * in that case this function just updates pointers. 2188 */ 2189 static int do_relocation(struct btrfs_trans_handle *trans, 2190 struct reloc_control *rc, 2191 struct btrfs_backref_node *node, 2192 struct btrfs_key *key, 2193 struct btrfs_path *path, int lowest) 2194 { 2195 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2196 struct btrfs_backref_node *upper; 2197 struct btrfs_backref_edge *edge; 2198 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2199 struct btrfs_root *root; 2200 struct extent_buffer *eb; 2201 u32 blocksize; 2202 u64 bytenr; 2203 u64 generation; 2204 int slot; 2205 int ret; 2206 int err = 0; 2207 2208 BUG_ON(lowest && node->eb); 2209 2210 path->lowest_level = node->level + 1; 2211 rc->backref_cache.path[node->level] = node; 2212 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2213 struct btrfs_key first_key; 2214 struct btrfs_ref ref = { 0 }; 2215 2216 cond_resched(); 2217 2218 upper = edge->node[UPPER]; 2219 root = select_reloc_root(trans, rc, upper, edges); 2220 BUG_ON(!root); 2221 2222 if (upper->eb && !upper->locked) { 2223 if (!lowest) { 2224 ret = btrfs_bin_search(upper->eb, key, &slot); 2225 if (ret < 0) { 2226 err = ret; 2227 goto next; 2228 } 2229 BUG_ON(ret); 2230 bytenr = btrfs_node_blockptr(upper->eb, slot); 2231 if (node->eb->start == bytenr) 2232 goto next; 2233 } 2234 btrfs_backref_drop_node_buffer(upper); 2235 } 2236 2237 if (!upper->eb) { 2238 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2239 if (ret) { 2240 if (ret < 0) 2241 err = ret; 2242 else 2243 err = -ENOENT; 2244 2245 btrfs_release_path(path); 2246 break; 2247 } 2248 2249 if (!upper->eb) { 2250 upper->eb = path->nodes[upper->level]; 2251 path->nodes[upper->level] = NULL; 2252 } else { 2253 BUG_ON(upper->eb != path->nodes[upper->level]); 2254 } 2255 2256 upper->locked = 1; 2257 path->locks[upper->level] = 0; 2258 2259 slot = path->slots[upper->level]; 2260 btrfs_release_path(path); 2261 } else { 2262 ret = btrfs_bin_search(upper->eb, key, &slot); 2263 if (ret < 0) { 2264 err = ret; 2265 goto next; 2266 } 2267 BUG_ON(ret); 2268 } 2269 2270 bytenr = btrfs_node_blockptr(upper->eb, slot); 2271 if (lowest) { 2272 if (bytenr != node->bytenr) { 2273 btrfs_err(root->fs_info, 2274 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2275 bytenr, node->bytenr, slot, 2276 upper->eb->start); 2277 err = -EIO; 2278 goto next; 2279 } 2280 } else { 2281 if (node->eb->start == bytenr) 2282 goto next; 2283 } 2284 2285 blocksize = root->fs_info->nodesize; 2286 generation = btrfs_node_ptr_generation(upper->eb, slot); 2287 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2288 eb = read_tree_block(fs_info, bytenr, generation, 2289 upper->level - 1, &first_key); 2290 if (IS_ERR(eb)) { 2291 err = PTR_ERR(eb); 2292 goto next; 2293 } else if (!extent_buffer_uptodate(eb)) { 2294 free_extent_buffer(eb); 2295 err = -EIO; 2296 goto next; 2297 } 2298 btrfs_tree_lock(eb); 2299 btrfs_set_lock_blocking_write(eb); 2300 2301 if (!node->eb) { 2302 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2303 slot, &eb); 2304 btrfs_tree_unlock(eb); 2305 free_extent_buffer(eb); 2306 if (ret < 0) { 2307 err = ret; 2308 goto next; 2309 } 2310 BUG_ON(node->eb != eb); 2311 } else { 2312 btrfs_set_node_blockptr(upper->eb, slot, 2313 node->eb->start); 2314 btrfs_set_node_ptr_generation(upper->eb, slot, 2315 trans->transid); 2316 btrfs_mark_buffer_dirty(upper->eb); 2317 2318 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2319 node->eb->start, blocksize, 2320 upper->eb->start); 2321 ref.real_root = root->root_key.objectid; 2322 btrfs_init_tree_ref(&ref, node->level, 2323 btrfs_header_owner(upper->eb)); 2324 ret = btrfs_inc_extent_ref(trans, &ref); 2325 BUG_ON(ret); 2326 2327 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2328 BUG_ON(ret); 2329 } 2330 next: 2331 if (!upper->pending) 2332 btrfs_backref_drop_node_buffer(upper); 2333 else 2334 btrfs_backref_unlock_node_buffer(upper); 2335 if (err) 2336 break; 2337 } 2338 2339 if (!err && node->pending) { 2340 btrfs_backref_drop_node_buffer(node); 2341 list_move_tail(&node->list, &rc->backref_cache.changed); 2342 node->pending = 0; 2343 } 2344 2345 path->lowest_level = 0; 2346 BUG_ON(err == -ENOSPC); 2347 return err; 2348 } 2349 2350 static int link_to_upper(struct btrfs_trans_handle *trans, 2351 struct reloc_control *rc, 2352 struct btrfs_backref_node *node, 2353 struct btrfs_path *path) 2354 { 2355 struct btrfs_key key; 2356 2357 btrfs_node_key_to_cpu(node->eb, &key, 0); 2358 return do_relocation(trans, rc, node, &key, path, 0); 2359 } 2360 2361 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2362 struct reloc_control *rc, 2363 struct btrfs_path *path, int err) 2364 { 2365 LIST_HEAD(list); 2366 struct btrfs_backref_cache *cache = &rc->backref_cache; 2367 struct btrfs_backref_node *node; 2368 int level; 2369 int ret; 2370 2371 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2372 while (!list_empty(&cache->pending[level])) { 2373 node = list_entry(cache->pending[level].next, 2374 struct btrfs_backref_node, list); 2375 list_move_tail(&node->list, &list); 2376 BUG_ON(!node->pending); 2377 2378 if (!err) { 2379 ret = link_to_upper(trans, rc, node, path); 2380 if (ret < 0) 2381 err = ret; 2382 } 2383 } 2384 list_splice_init(&list, &cache->pending[level]); 2385 } 2386 return err; 2387 } 2388 2389 /* 2390 * mark a block and all blocks directly/indirectly reference the block 2391 * as processed. 2392 */ 2393 static void update_processed_blocks(struct reloc_control *rc, 2394 struct btrfs_backref_node *node) 2395 { 2396 struct btrfs_backref_node *next = node; 2397 struct btrfs_backref_edge *edge; 2398 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2399 int index = 0; 2400 2401 while (next) { 2402 cond_resched(); 2403 while (1) { 2404 if (next->processed) 2405 break; 2406 2407 mark_block_processed(rc, next); 2408 2409 if (list_empty(&next->upper)) 2410 break; 2411 2412 edge = list_entry(next->upper.next, 2413 struct btrfs_backref_edge, list[LOWER]); 2414 edges[index++] = edge; 2415 next = edge->node[UPPER]; 2416 } 2417 next = walk_down_backref(edges, &index); 2418 } 2419 } 2420 2421 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2422 { 2423 u32 blocksize = rc->extent_root->fs_info->nodesize; 2424 2425 if (test_range_bit(&rc->processed_blocks, bytenr, 2426 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2427 return 1; 2428 return 0; 2429 } 2430 2431 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2432 struct tree_block *block) 2433 { 2434 struct extent_buffer *eb; 2435 2436 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2437 block->level, NULL); 2438 if (IS_ERR(eb)) { 2439 return PTR_ERR(eb); 2440 } else if (!extent_buffer_uptodate(eb)) { 2441 free_extent_buffer(eb); 2442 return -EIO; 2443 } 2444 if (block->level == 0) 2445 btrfs_item_key_to_cpu(eb, &block->key, 0); 2446 else 2447 btrfs_node_key_to_cpu(eb, &block->key, 0); 2448 free_extent_buffer(eb); 2449 block->key_ready = 1; 2450 return 0; 2451 } 2452 2453 /* 2454 * helper function to relocate a tree block 2455 */ 2456 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2457 struct reloc_control *rc, 2458 struct btrfs_backref_node *node, 2459 struct btrfs_key *key, 2460 struct btrfs_path *path) 2461 { 2462 struct btrfs_root *root; 2463 int ret = 0; 2464 2465 if (!node) 2466 return 0; 2467 2468 /* 2469 * If we fail here we want to drop our backref_node because we are going 2470 * to start over and regenerate the tree for it. 2471 */ 2472 ret = reserve_metadata_space(trans, rc, node); 2473 if (ret) 2474 goto out; 2475 2476 BUG_ON(node->processed); 2477 root = select_one_root(node); 2478 if (root == ERR_PTR(-ENOENT)) { 2479 update_processed_blocks(rc, node); 2480 goto out; 2481 } 2482 2483 if (root) { 2484 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2485 BUG_ON(node->new_bytenr); 2486 BUG_ON(!list_empty(&node->list)); 2487 btrfs_record_root_in_trans(trans, root); 2488 root = root->reloc_root; 2489 node->new_bytenr = root->node->start; 2490 btrfs_put_root(node->root); 2491 node->root = btrfs_grab_root(root); 2492 ASSERT(node->root); 2493 list_add_tail(&node->list, &rc->backref_cache.changed); 2494 } else { 2495 path->lowest_level = node->level; 2496 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2497 btrfs_release_path(path); 2498 if (ret > 0) 2499 ret = 0; 2500 } 2501 if (!ret) 2502 update_processed_blocks(rc, node); 2503 } else { 2504 ret = do_relocation(trans, rc, node, key, path, 1); 2505 } 2506 out: 2507 if (ret || node->level == 0 || node->cowonly) 2508 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2509 return ret; 2510 } 2511 2512 /* 2513 * relocate a list of blocks 2514 */ 2515 static noinline_for_stack 2516 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2517 struct reloc_control *rc, struct rb_root *blocks) 2518 { 2519 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2520 struct btrfs_backref_node *node; 2521 struct btrfs_path *path; 2522 struct tree_block *block; 2523 struct tree_block *next; 2524 int ret; 2525 int err = 0; 2526 2527 path = btrfs_alloc_path(); 2528 if (!path) { 2529 err = -ENOMEM; 2530 goto out_free_blocks; 2531 } 2532 2533 /* Kick in readahead for tree blocks with missing keys */ 2534 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2535 if (!block->key_ready) 2536 readahead_tree_block(fs_info, block->bytenr); 2537 } 2538 2539 /* Get first keys */ 2540 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2541 if (!block->key_ready) { 2542 err = get_tree_block_key(fs_info, block); 2543 if (err) 2544 goto out_free_path; 2545 } 2546 } 2547 2548 /* Do tree relocation */ 2549 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2550 node = build_backref_tree(rc, &block->key, 2551 block->level, block->bytenr); 2552 if (IS_ERR(node)) { 2553 err = PTR_ERR(node); 2554 goto out; 2555 } 2556 2557 ret = relocate_tree_block(trans, rc, node, &block->key, 2558 path); 2559 if (ret < 0) { 2560 err = ret; 2561 break; 2562 } 2563 } 2564 out: 2565 err = finish_pending_nodes(trans, rc, path, err); 2566 2567 out_free_path: 2568 btrfs_free_path(path); 2569 out_free_blocks: 2570 free_block_list(blocks); 2571 return err; 2572 } 2573 2574 static noinline_for_stack 2575 int prealloc_file_extent_cluster(struct inode *inode, 2576 struct file_extent_cluster *cluster) 2577 { 2578 u64 alloc_hint = 0; 2579 u64 start; 2580 u64 end; 2581 u64 offset = BTRFS_I(inode)->index_cnt; 2582 u64 num_bytes; 2583 int nr = 0; 2584 int ret = 0; 2585 u64 prealloc_start = cluster->start - offset; 2586 u64 prealloc_end = cluster->end - offset; 2587 u64 cur_offset; 2588 struct extent_changeset *data_reserved = NULL; 2589 2590 BUG_ON(cluster->start != cluster->boundary[0]); 2591 inode_lock(inode); 2592 2593 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 2594 prealloc_end + 1 - prealloc_start); 2595 if (ret) 2596 goto out; 2597 2598 cur_offset = prealloc_start; 2599 while (nr < cluster->nr) { 2600 start = cluster->boundary[nr] - offset; 2601 if (nr + 1 < cluster->nr) 2602 end = cluster->boundary[nr + 1] - 1 - offset; 2603 else 2604 end = cluster->end - offset; 2605 2606 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2607 num_bytes = end + 1 - start; 2608 if (cur_offset < start) 2609 btrfs_free_reserved_data_space(inode, data_reserved, 2610 cur_offset, start - cur_offset); 2611 ret = btrfs_prealloc_file_range(inode, 0, start, 2612 num_bytes, num_bytes, 2613 end + 1, &alloc_hint); 2614 cur_offset = end + 1; 2615 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2616 if (ret) 2617 break; 2618 nr++; 2619 } 2620 if (cur_offset < prealloc_end) 2621 btrfs_free_reserved_data_space(inode, data_reserved, 2622 cur_offset, prealloc_end + 1 - cur_offset); 2623 out: 2624 inode_unlock(inode); 2625 extent_changeset_free(data_reserved); 2626 return ret; 2627 } 2628 2629 static noinline_for_stack 2630 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2631 u64 block_start) 2632 { 2633 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2634 struct extent_map *em; 2635 int ret = 0; 2636 2637 em = alloc_extent_map(); 2638 if (!em) 2639 return -ENOMEM; 2640 2641 em->start = start; 2642 em->len = end + 1 - start; 2643 em->block_len = em->len; 2644 em->block_start = block_start; 2645 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2646 2647 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2648 while (1) { 2649 write_lock(&em_tree->lock); 2650 ret = add_extent_mapping(em_tree, em, 0); 2651 write_unlock(&em_tree->lock); 2652 if (ret != -EEXIST) { 2653 free_extent_map(em); 2654 break; 2655 } 2656 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2657 } 2658 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2659 return ret; 2660 } 2661 2662 /* 2663 * Allow error injection to test balance cancellation 2664 */ 2665 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2666 { 2667 return atomic_read(&fs_info->balance_cancel_req); 2668 } 2669 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2670 2671 static int relocate_file_extent_cluster(struct inode *inode, 2672 struct file_extent_cluster *cluster) 2673 { 2674 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2675 u64 page_start; 2676 u64 page_end; 2677 u64 offset = BTRFS_I(inode)->index_cnt; 2678 unsigned long index; 2679 unsigned long last_index; 2680 struct page *page; 2681 struct file_ra_state *ra; 2682 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2683 int nr = 0; 2684 int ret = 0; 2685 2686 if (!cluster->nr) 2687 return 0; 2688 2689 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2690 if (!ra) 2691 return -ENOMEM; 2692 2693 ret = prealloc_file_extent_cluster(inode, cluster); 2694 if (ret) 2695 goto out; 2696 2697 file_ra_state_init(ra, inode->i_mapping); 2698 2699 ret = setup_extent_mapping(inode, cluster->start - offset, 2700 cluster->end - offset, cluster->start); 2701 if (ret) 2702 goto out; 2703 2704 index = (cluster->start - offset) >> PAGE_SHIFT; 2705 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2706 while (index <= last_index) { 2707 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2708 PAGE_SIZE); 2709 if (ret) 2710 goto out; 2711 2712 page = find_lock_page(inode->i_mapping, index); 2713 if (!page) { 2714 page_cache_sync_readahead(inode->i_mapping, 2715 ra, NULL, index, 2716 last_index + 1 - index); 2717 page = find_or_create_page(inode->i_mapping, index, 2718 mask); 2719 if (!page) { 2720 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2721 PAGE_SIZE, true); 2722 btrfs_delalloc_release_extents(BTRFS_I(inode), 2723 PAGE_SIZE); 2724 ret = -ENOMEM; 2725 goto out; 2726 } 2727 } 2728 2729 if (PageReadahead(page)) { 2730 page_cache_async_readahead(inode->i_mapping, 2731 ra, NULL, page, index, 2732 last_index + 1 - index); 2733 } 2734 2735 if (!PageUptodate(page)) { 2736 btrfs_readpage(NULL, page); 2737 lock_page(page); 2738 if (!PageUptodate(page)) { 2739 unlock_page(page); 2740 put_page(page); 2741 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2742 PAGE_SIZE, true); 2743 btrfs_delalloc_release_extents(BTRFS_I(inode), 2744 PAGE_SIZE); 2745 ret = -EIO; 2746 goto out; 2747 } 2748 } 2749 2750 page_start = page_offset(page); 2751 page_end = page_start + PAGE_SIZE - 1; 2752 2753 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2754 2755 set_page_extent_mapped(page); 2756 2757 if (nr < cluster->nr && 2758 page_start + offset == cluster->boundary[nr]) { 2759 set_extent_bits(&BTRFS_I(inode)->io_tree, 2760 page_start, page_end, 2761 EXTENT_BOUNDARY); 2762 nr++; 2763 } 2764 2765 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 2766 NULL); 2767 if (ret) { 2768 unlock_page(page); 2769 put_page(page); 2770 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2771 PAGE_SIZE, true); 2772 btrfs_delalloc_release_extents(BTRFS_I(inode), 2773 PAGE_SIZE); 2774 2775 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2776 page_start, page_end, 2777 EXTENT_LOCKED | EXTENT_BOUNDARY); 2778 goto out; 2779 2780 } 2781 set_page_dirty(page); 2782 2783 unlock_extent(&BTRFS_I(inode)->io_tree, 2784 page_start, page_end); 2785 unlock_page(page); 2786 put_page(page); 2787 2788 index++; 2789 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2790 balance_dirty_pages_ratelimited(inode->i_mapping); 2791 btrfs_throttle(fs_info); 2792 if (btrfs_should_cancel_balance(fs_info)) { 2793 ret = -ECANCELED; 2794 goto out; 2795 } 2796 } 2797 WARN_ON(nr != cluster->nr); 2798 out: 2799 kfree(ra); 2800 return ret; 2801 } 2802 2803 static noinline_for_stack 2804 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2805 struct file_extent_cluster *cluster) 2806 { 2807 int ret; 2808 2809 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2810 ret = relocate_file_extent_cluster(inode, cluster); 2811 if (ret) 2812 return ret; 2813 cluster->nr = 0; 2814 } 2815 2816 if (!cluster->nr) 2817 cluster->start = extent_key->objectid; 2818 else 2819 BUG_ON(cluster->nr >= MAX_EXTENTS); 2820 cluster->end = extent_key->objectid + extent_key->offset - 1; 2821 cluster->boundary[cluster->nr] = extent_key->objectid; 2822 cluster->nr++; 2823 2824 if (cluster->nr >= MAX_EXTENTS) { 2825 ret = relocate_file_extent_cluster(inode, cluster); 2826 if (ret) 2827 return ret; 2828 cluster->nr = 0; 2829 } 2830 return 0; 2831 } 2832 2833 /* 2834 * helper to add a tree block to the list. 2835 * the major work is getting the generation and level of the block 2836 */ 2837 static int add_tree_block(struct reloc_control *rc, 2838 struct btrfs_key *extent_key, 2839 struct btrfs_path *path, 2840 struct rb_root *blocks) 2841 { 2842 struct extent_buffer *eb; 2843 struct btrfs_extent_item *ei; 2844 struct btrfs_tree_block_info *bi; 2845 struct tree_block *block; 2846 struct rb_node *rb_node; 2847 u32 item_size; 2848 int level = -1; 2849 u64 generation; 2850 2851 eb = path->nodes[0]; 2852 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2853 2854 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2855 item_size >= sizeof(*ei) + sizeof(*bi)) { 2856 ei = btrfs_item_ptr(eb, path->slots[0], 2857 struct btrfs_extent_item); 2858 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2859 bi = (struct btrfs_tree_block_info *)(ei + 1); 2860 level = btrfs_tree_block_level(eb, bi); 2861 } else { 2862 level = (int)extent_key->offset; 2863 } 2864 generation = btrfs_extent_generation(eb, ei); 2865 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2866 btrfs_print_v0_err(eb->fs_info); 2867 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2868 return -EINVAL; 2869 } else { 2870 BUG(); 2871 } 2872 2873 btrfs_release_path(path); 2874 2875 BUG_ON(level == -1); 2876 2877 block = kmalloc(sizeof(*block), GFP_NOFS); 2878 if (!block) 2879 return -ENOMEM; 2880 2881 block->bytenr = extent_key->objectid; 2882 block->key.objectid = rc->extent_root->fs_info->nodesize; 2883 block->key.offset = generation; 2884 block->level = level; 2885 block->key_ready = 0; 2886 2887 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2888 if (rb_node) 2889 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2890 -EEXIST); 2891 2892 return 0; 2893 } 2894 2895 /* 2896 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2897 */ 2898 static int __add_tree_block(struct reloc_control *rc, 2899 u64 bytenr, u32 blocksize, 2900 struct rb_root *blocks) 2901 { 2902 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2903 struct btrfs_path *path; 2904 struct btrfs_key key; 2905 int ret; 2906 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2907 2908 if (tree_block_processed(bytenr, rc)) 2909 return 0; 2910 2911 if (rb_simple_search(blocks, bytenr)) 2912 return 0; 2913 2914 path = btrfs_alloc_path(); 2915 if (!path) 2916 return -ENOMEM; 2917 again: 2918 key.objectid = bytenr; 2919 if (skinny) { 2920 key.type = BTRFS_METADATA_ITEM_KEY; 2921 key.offset = (u64)-1; 2922 } else { 2923 key.type = BTRFS_EXTENT_ITEM_KEY; 2924 key.offset = blocksize; 2925 } 2926 2927 path->search_commit_root = 1; 2928 path->skip_locking = 1; 2929 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2930 if (ret < 0) 2931 goto out; 2932 2933 if (ret > 0 && skinny) { 2934 if (path->slots[0]) { 2935 path->slots[0]--; 2936 btrfs_item_key_to_cpu(path->nodes[0], &key, 2937 path->slots[0]); 2938 if (key.objectid == bytenr && 2939 (key.type == BTRFS_METADATA_ITEM_KEY || 2940 (key.type == BTRFS_EXTENT_ITEM_KEY && 2941 key.offset == blocksize))) 2942 ret = 0; 2943 } 2944 2945 if (ret) { 2946 skinny = false; 2947 btrfs_release_path(path); 2948 goto again; 2949 } 2950 } 2951 if (ret) { 2952 ASSERT(ret == 1); 2953 btrfs_print_leaf(path->nodes[0]); 2954 btrfs_err(fs_info, 2955 "tree block extent item (%llu) is not found in extent tree", 2956 bytenr); 2957 WARN_ON(1); 2958 ret = -EINVAL; 2959 goto out; 2960 } 2961 2962 ret = add_tree_block(rc, &key, path, blocks); 2963 out: 2964 btrfs_free_path(path); 2965 return ret; 2966 } 2967 2968 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2969 struct btrfs_block_group *block_group, 2970 struct inode *inode, 2971 u64 ino) 2972 { 2973 struct btrfs_root *root = fs_info->tree_root; 2974 struct btrfs_trans_handle *trans; 2975 int ret = 0; 2976 2977 if (inode) 2978 goto truncate; 2979 2980 inode = btrfs_iget(fs_info->sb, ino, root); 2981 if (IS_ERR(inode)) 2982 return -ENOENT; 2983 2984 truncate: 2985 ret = btrfs_check_trunc_cache_free_space(fs_info, 2986 &fs_info->global_block_rsv); 2987 if (ret) 2988 goto out; 2989 2990 trans = btrfs_join_transaction(root); 2991 if (IS_ERR(trans)) { 2992 ret = PTR_ERR(trans); 2993 goto out; 2994 } 2995 2996 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 2997 2998 btrfs_end_transaction(trans); 2999 btrfs_btree_balance_dirty(fs_info); 3000 out: 3001 iput(inode); 3002 return ret; 3003 } 3004 3005 /* 3006 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3007 * cache inode, to avoid free space cache data extent blocking data relocation. 3008 */ 3009 static int delete_v1_space_cache(struct extent_buffer *leaf, 3010 struct btrfs_block_group *block_group, 3011 u64 data_bytenr) 3012 { 3013 u64 space_cache_ino; 3014 struct btrfs_file_extent_item *ei; 3015 struct btrfs_key key; 3016 bool found = false; 3017 int i; 3018 int ret; 3019 3020 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3021 return 0; 3022 3023 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3024 btrfs_item_key_to_cpu(leaf, &key, i); 3025 if (key.type != BTRFS_EXTENT_DATA_KEY) 3026 continue; 3027 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3028 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG && 3029 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3030 found = true; 3031 space_cache_ino = key.objectid; 3032 break; 3033 } 3034 } 3035 if (!found) 3036 return -ENOENT; 3037 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3038 space_cache_ino); 3039 return ret; 3040 } 3041 3042 /* 3043 * helper to find all tree blocks that reference a given data extent 3044 */ 3045 static noinline_for_stack 3046 int add_data_references(struct reloc_control *rc, 3047 struct btrfs_key *extent_key, 3048 struct btrfs_path *path, 3049 struct rb_root *blocks) 3050 { 3051 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3052 struct ulist *leaves = NULL; 3053 struct ulist_iterator leaf_uiter; 3054 struct ulist_node *ref_node = NULL; 3055 const u32 blocksize = fs_info->nodesize; 3056 int ret = 0; 3057 3058 btrfs_release_path(path); 3059 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3060 0, &leaves, NULL, true); 3061 if (ret < 0) 3062 return ret; 3063 3064 ULIST_ITER_INIT(&leaf_uiter); 3065 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3066 struct extent_buffer *eb; 3067 3068 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL); 3069 if (IS_ERR(eb)) { 3070 ret = PTR_ERR(eb); 3071 break; 3072 } 3073 ret = delete_v1_space_cache(eb, rc->block_group, 3074 extent_key->objectid); 3075 free_extent_buffer(eb); 3076 if (ret < 0) 3077 break; 3078 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3079 if (ret < 0) 3080 break; 3081 } 3082 if (ret < 0) 3083 free_block_list(blocks); 3084 ulist_free(leaves); 3085 return ret; 3086 } 3087 3088 /* 3089 * helper to find next unprocessed extent 3090 */ 3091 static noinline_for_stack 3092 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3093 struct btrfs_key *extent_key) 3094 { 3095 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3096 struct btrfs_key key; 3097 struct extent_buffer *leaf; 3098 u64 start, end, last; 3099 int ret; 3100 3101 last = rc->block_group->start + rc->block_group->length; 3102 while (1) { 3103 cond_resched(); 3104 if (rc->search_start >= last) { 3105 ret = 1; 3106 break; 3107 } 3108 3109 key.objectid = rc->search_start; 3110 key.type = BTRFS_EXTENT_ITEM_KEY; 3111 key.offset = 0; 3112 3113 path->search_commit_root = 1; 3114 path->skip_locking = 1; 3115 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3116 0, 0); 3117 if (ret < 0) 3118 break; 3119 next: 3120 leaf = path->nodes[0]; 3121 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3122 ret = btrfs_next_leaf(rc->extent_root, path); 3123 if (ret != 0) 3124 break; 3125 leaf = path->nodes[0]; 3126 } 3127 3128 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3129 if (key.objectid >= last) { 3130 ret = 1; 3131 break; 3132 } 3133 3134 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3135 key.type != BTRFS_METADATA_ITEM_KEY) { 3136 path->slots[0]++; 3137 goto next; 3138 } 3139 3140 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3141 key.objectid + key.offset <= rc->search_start) { 3142 path->slots[0]++; 3143 goto next; 3144 } 3145 3146 if (key.type == BTRFS_METADATA_ITEM_KEY && 3147 key.objectid + fs_info->nodesize <= 3148 rc->search_start) { 3149 path->slots[0]++; 3150 goto next; 3151 } 3152 3153 ret = find_first_extent_bit(&rc->processed_blocks, 3154 key.objectid, &start, &end, 3155 EXTENT_DIRTY, NULL); 3156 3157 if (ret == 0 && start <= key.objectid) { 3158 btrfs_release_path(path); 3159 rc->search_start = end + 1; 3160 } else { 3161 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3162 rc->search_start = key.objectid + key.offset; 3163 else 3164 rc->search_start = key.objectid + 3165 fs_info->nodesize; 3166 memcpy(extent_key, &key, sizeof(key)); 3167 return 0; 3168 } 3169 } 3170 btrfs_release_path(path); 3171 return ret; 3172 } 3173 3174 static void set_reloc_control(struct reloc_control *rc) 3175 { 3176 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3177 3178 mutex_lock(&fs_info->reloc_mutex); 3179 fs_info->reloc_ctl = rc; 3180 mutex_unlock(&fs_info->reloc_mutex); 3181 } 3182 3183 static void unset_reloc_control(struct reloc_control *rc) 3184 { 3185 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3186 3187 mutex_lock(&fs_info->reloc_mutex); 3188 fs_info->reloc_ctl = NULL; 3189 mutex_unlock(&fs_info->reloc_mutex); 3190 } 3191 3192 static int check_extent_flags(u64 flags) 3193 { 3194 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3195 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3196 return 1; 3197 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3198 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3199 return 1; 3200 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3201 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3202 return 1; 3203 return 0; 3204 } 3205 3206 static noinline_for_stack 3207 int prepare_to_relocate(struct reloc_control *rc) 3208 { 3209 struct btrfs_trans_handle *trans; 3210 int ret; 3211 3212 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3213 BTRFS_BLOCK_RSV_TEMP); 3214 if (!rc->block_rsv) 3215 return -ENOMEM; 3216 3217 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3218 rc->search_start = rc->block_group->start; 3219 rc->extents_found = 0; 3220 rc->nodes_relocated = 0; 3221 rc->merging_rsv_size = 0; 3222 rc->reserved_bytes = 0; 3223 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3224 RELOCATION_RESERVED_NODES; 3225 ret = btrfs_block_rsv_refill(rc->extent_root, 3226 rc->block_rsv, rc->block_rsv->size, 3227 BTRFS_RESERVE_FLUSH_ALL); 3228 if (ret) 3229 return ret; 3230 3231 rc->create_reloc_tree = 1; 3232 set_reloc_control(rc); 3233 3234 trans = btrfs_join_transaction(rc->extent_root); 3235 if (IS_ERR(trans)) { 3236 unset_reloc_control(rc); 3237 /* 3238 * extent tree is not a ref_cow tree and has no reloc_root to 3239 * cleanup. And callers are responsible to free the above 3240 * block rsv. 3241 */ 3242 return PTR_ERR(trans); 3243 } 3244 btrfs_commit_transaction(trans); 3245 return 0; 3246 } 3247 3248 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3249 { 3250 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3251 struct rb_root blocks = RB_ROOT; 3252 struct btrfs_key key; 3253 struct btrfs_trans_handle *trans = NULL; 3254 struct btrfs_path *path; 3255 struct btrfs_extent_item *ei; 3256 u64 flags; 3257 u32 item_size; 3258 int ret; 3259 int err = 0; 3260 int progress = 0; 3261 3262 path = btrfs_alloc_path(); 3263 if (!path) 3264 return -ENOMEM; 3265 path->reada = READA_FORWARD; 3266 3267 ret = prepare_to_relocate(rc); 3268 if (ret) { 3269 err = ret; 3270 goto out_free; 3271 } 3272 3273 while (1) { 3274 rc->reserved_bytes = 0; 3275 ret = btrfs_block_rsv_refill(rc->extent_root, 3276 rc->block_rsv, rc->block_rsv->size, 3277 BTRFS_RESERVE_FLUSH_ALL); 3278 if (ret) { 3279 err = ret; 3280 break; 3281 } 3282 progress++; 3283 trans = btrfs_start_transaction(rc->extent_root, 0); 3284 if (IS_ERR(trans)) { 3285 err = PTR_ERR(trans); 3286 trans = NULL; 3287 break; 3288 } 3289 restart: 3290 if (update_backref_cache(trans, &rc->backref_cache)) { 3291 btrfs_end_transaction(trans); 3292 trans = NULL; 3293 continue; 3294 } 3295 3296 ret = find_next_extent(rc, path, &key); 3297 if (ret < 0) 3298 err = ret; 3299 if (ret != 0) 3300 break; 3301 3302 rc->extents_found++; 3303 3304 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3305 struct btrfs_extent_item); 3306 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3307 if (item_size >= sizeof(*ei)) { 3308 flags = btrfs_extent_flags(path->nodes[0], ei); 3309 ret = check_extent_flags(flags); 3310 BUG_ON(ret); 3311 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3312 err = -EINVAL; 3313 btrfs_print_v0_err(trans->fs_info); 3314 btrfs_abort_transaction(trans, err); 3315 break; 3316 } else { 3317 BUG(); 3318 } 3319 3320 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3321 ret = add_tree_block(rc, &key, path, &blocks); 3322 } else if (rc->stage == UPDATE_DATA_PTRS && 3323 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3324 ret = add_data_references(rc, &key, path, &blocks); 3325 } else { 3326 btrfs_release_path(path); 3327 ret = 0; 3328 } 3329 if (ret < 0) { 3330 err = ret; 3331 break; 3332 } 3333 3334 if (!RB_EMPTY_ROOT(&blocks)) { 3335 ret = relocate_tree_blocks(trans, rc, &blocks); 3336 if (ret < 0) { 3337 if (ret != -EAGAIN) { 3338 err = ret; 3339 break; 3340 } 3341 rc->extents_found--; 3342 rc->search_start = key.objectid; 3343 } 3344 } 3345 3346 btrfs_end_transaction_throttle(trans); 3347 btrfs_btree_balance_dirty(fs_info); 3348 trans = NULL; 3349 3350 if (rc->stage == MOVE_DATA_EXTENTS && 3351 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3352 rc->found_file_extent = 1; 3353 ret = relocate_data_extent(rc->data_inode, 3354 &key, &rc->cluster); 3355 if (ret < 0) { 3356 err = ret; 3357 break; 3358 } 3359 } 3360 if (btrfs_should_cancel_balance(fs_info)) { 3361 err = -ECANCELED; 3362 break; 3363 } 3364 } 3365 if (trans && progress && err == -ENOSPC) { 3366 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3367 if (ret == 1) { 3368 err = 0; 3369 progress = 0; 3370 goto restart; 3371 } 3372 } 3373 3374 btrfs_release_path(path); 3375 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3376 3377 if (trans) { 3378 btrfs_end_transaction_throttle(trans); 3379 btrfs_btree_balance_dirty(fs_info); 3380 } 3381 3382 if (!err) { 3383 ret = relocate_file_extent_cluster(rc->data_inode, 3384 &rc->cluster); 3385 if (ret < 0) 3386 err = ret; 3387 } 3388 3389 rc->create_reloc_tree = 0; 3390 set_reloc_control(rc); 3391 3392 btrfs_backref_release_cache(&rc->backref_cache); 3393 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3394 3395 /* 3396 * Even in the case when the relocation is cancelled, we should all go 3397 * through prepare_to_merge() and merge_reloc_roots(). 3398 * 3399 * For error (including cancelled balance), prepare_to_merge() will 3400 * mark all reloc trees orphan, then queue them for cleanup in 3401 * merge_reloc_roots() 3402 */ 3403 err = prepare_to_merge(rc, err); 3404 3405 merge_reloc_roots(rc); 3406 3407 rc->merge_reloc_tree = 0; 3408 unset_reloc_control(rc); 3409 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3410 3411 /* get rid of pinned extents */ 3412 trans = btrfs_join_transaction(rc->extent_root); 3413 if (IS_ERR(trans)) { 3414 err = PTR_ERR(trans); 3415 goto out_free; 3416 } 3417 btrfs_commit_transaction(trans); 3418 out_free: 3419 ret = clean_dirty_subvols(rc); 3420 if (ret < 0 && !err) 3421 err = ret; 3422 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3423 btrfs_free_path(path); 3424 return err; 3425 } 3426 3427 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3428 struct btrfs_root *root, u64 objectid) 3429 { 3430 struct btrfs_path *path; 3431 struct btrfs_inode_item *item; 3432 struct extent_buffer *leaf; 3433 int ret; 3434 3435 path = btrfs_alloc_path(); 3436 if (!path) 3437 return -ENOMEM; 3438 3439 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3440 if (ret) 3441 goto out; 3442 3443 leaf = path->nodes[0]; 3444 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3445 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3446 btrfs_set_inode_generation(leaf, item, 1); 3447 btrfs_set_inode_size(leaf, item, 0); 3448 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3449 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3450 BTRFS_INODE_PREALLOC); 3451 btrfs_mark_buffer_dirty(leaf); 3452 out: 3453 btrfs_free_path(path); 3454 return ret; 3455 } 3456 3457 /* 3458 * helper to create inode for data relocation. 3459 * the inode is in data relocation tree and its link count is 0 3460 */ 3461 static noinline_for_stack 3462 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3463 struct btrfs_block_group *group) 3464 { 3465 struct inode *inode = NULL; 3466 struct btrfs_trans_handle *trans; 3467 struct btrfs_root *root; 3468 u64 objectid; 3469 int err = 0; 3470 3471 root = btrfs_grab_root(fs_info->data_reloc_root); 3472 trans = btrfs_start_transaction(root, 6); 3473 if (IS_ERR(trans)) { 3474 btrfs_put_root(root); 3475 return ERR_CAST(trans); 3476 } 3477 3478 err = btrfs_find_free_objectid(root, &objectid); 3479 if (err) 3480 goto out; 3481 3482 err = __insert_orphan_inode(trans, root, objectid); 3483 BUG_ON(err); 3484 3485 inode = btrfs_iget(fs_info->sb, objectid, root); 3486 BUG_ON(IS_ERR(inode)); 3487 BTRFS_I(inode)->index_cnt = group->start; 3488 3489 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3490 out: 3491 btrfs_put_root(root); 3492 btrfs_end_transaction(trans); 3493 btrfs_btree_balance_dirty(fs_info); 3494 if (err) { 3495 if (inode) 3496 iput(inode); 3497 inode = ERR_PTR(err); 3498 } 3499 return inode; 3500 } 3501 3502 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3503 { 3504 struct reloc_control *rc; 3505 3506 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3507 if (!rc) 3508 return NULL; 3509 3510 INIT_LIST_HEAD(&rc->reloc_roots); 3511 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3512 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3513 mapping_tree_init(&rc->reloc_root_tree); 3514 extent_io_tree_init(fs_info, &rc->processed_blocks, 3515 IO_TREE_RELOC_BLOCKS, NULL); 3516 return rc; 3517 } 3518 3519 static void free_reloc_control(struct reloc_control *rc) 3520 { 3521 struct mapping_node *node, *tmp; 3522 3523 free_reloc_roots(&rc->reloc_roots); 3524 rbtree_postorder_for_each_entry_safe(node, tmp, 3525 &rc->reloc_root_tree.rb_root, rb_node) 3526 kfree(node); 3527 3528 kfree(rc); 3529 } 3530 3531 /* 3532 * Print the block group being relocated 3533 */ 3534 static void describe_relocation(struct btrfs_fs_info *fs_info, 3535 struct btrfs_block_group *block_group) 3536 { 3537 char buf[128] = {'\0'}; 3538 3539 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3540 3541 btrfs_info(fs_info, 3542 "relocating block group %llu flags %s", 3543 block_group->start, buf); 3544 } 3545 3546 static const char *stage_to_string(int stage) 3547 { 3548 if (stage == MOVE_DATA_EXTENTS) 3549 return "move data extents"; 3550 if (stage == UPDATE_DATA_PTRS) 3551 return "update data pointers"; 3552 return "unknown"; 3553 } 3554 3555 /* 3556 * function to relocate all extents in a block group. 3557 */ 3558 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3559 { 3560 struct btrfs_block_group *bg; 3561 struct btrfs_root *extent_root = fs_info->extent_root; 3562 struct reloc_control *rc; 3563 struct inode *inode; 3564 struct btrfs_path *path; 3565 int ret; 3566 int rw = 0; 3567 int err = 0; 3568 3569 bg = btrfs_lookup_block_group(fs_info, group_start); 3570 if (!bg) 3571 return -ENOENT; 3572 3573 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3574 btrfs_put_block_group(bg); 3575 return -ETXTBSY; 3576 } 3577 3578 rc = alloc_reloc_control(fs_info); 3579 if (!rc) { 3580 btrfs_put_block_group(bg); 3581 return -ENOMEM; 3582 } 3583 3584 rc->extent_root = extent_root; 3585 rc->block_group = bg; 3586 3587 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3588 if (ret) { 3589 err = ret; 3590 goto out; 3591 } 3592 rw = 1; 3593 3594 path = btrfs_alloc_path(); 3595 if (!path) { 3596 err = -ENOMEM; 3597 goto out; 3598 } 3599 3600 inode = lookup_free_space_inode(rc->block_group, path); 3601 btrfs_free_path(path); 3602 3603 if (!IS_ERR(inode)) 3604 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3605 else 3606 ret = PTR_ERR(inode); 3607 3608 if (ret && ret != -ENOENT) { 3609 err = ret; 3610 goto out; 3611 } 3612 3613 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3614 if (IS_ERR(rc->data_inode)) { 3615 err = PTR_ERR(rc->data_inode); 3616 rc->data_inode = NULL; 3617 goto out; 3618 } 3619 3620 describe_relocation(fs_info, rc->block_group); 3621 3622 btrfs_wait_block_group_reservations(rc->block_group); 3623 btrfs_wait_nocow_writers(rc->block_group); 3624 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3625 rc->block_group->start, 3626 rc->block_group->length); 3627 3628 while (1) { 3629 int finishes_stage; 3630 3631 mutex_lock(&fs_info->cleaner_mutex); 3632 ret = relocate_block_group(rc); 3633 mutex_unlock(&fs_info->cleaner_mutex); 3634 if (ret < 0) 3635 err = ret; 3636 3637 finishes_stage = rc->stage; 3638 /* 3639 * We may have gotten ENOSPC after we already dirtied some 3640 * extents. If writeout happens while we're relocating a 3641 * different block group we could end up hitting the 3642 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3643 * btrfs_reloc_cow_block. Make sure we write everything out 3644 * properly so we don't trip over this problem, and then break 3645 * out of the loop if we hit an error. 3646 */ 3647 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3648 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3649 (u64)-1); 3650 if (ret) 3651 err = ret; 3652 invalidate_mapping_pages(rc->data_inode->i_mapping, 3653 0, -1); 3654 rc->stage = UPDATE_DATA_PTRS; 3655 } 3656 3657 if (err < 0) 3658 goto out; 3659 3660 if (rc->extents_found == 0) 3661 break; 3662 3663 btrfs_info(fs_info, "found %llu extents, stage: %s", 3664 rc->extents_found, stage_to_string(finishes_stage)); 3665 } 3666 3667 WARN_ON(rc->block_group->pinned > 0); 3668 WARN_ON(rc->block_group->reserved > 0); 3669 WARN_ON(rc->block_group->used > 0); 3670 out: 3671 if (err && rw) 3672 btrfs_dec_block_group_ro(rc->block_group); 3673 iput(rc->data_inode); 3674 btrfs_put_block_group(rc->block_group); 3675 free_reloc_control(rc); 3676 return err; 3677 } 3678 3679 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3680 { 3681 struct btrfs_fs_info *fs_info = root->fs_info; 3682 struct btrfs_trans_handle *trans; 3683 int ret, err; 3684 3685 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3686 if (IS_ERR(trans)) 3687 return PTR_ERR(trans); 3688 3689 memset(&root->root_item.drop_progress, 0, 3690 sizeof(root->root_item.drop_progress)); 3691 root->root_item.drop_level = 0; 3692 btrfs_set_root_refs(&root->root_item, 0); 3693 ret = btrfs_update_root(trans, fs_info->tree_root, 3694 &root->root_key, &root->root_item); 3695 3696 err = btrfs_end_transaction(trans); 3697 if (err) 3698 return err; 3699 return ret; 3700 } 3701 3702 /* 3703 * recover relocation interrupted by system crash. 3704 * 3705 * this function resumes merging reloc trees with corresponding fs trees. 3706 * this is important for keeping the sharing of tree blocks 3707 */ 3708 int btrfs_recover_relocation(struct btrfs_root *root) 3709 { 3710 struct btrfs_fs_info *fs_info = root->fs_info; 3711 LIST_HEAD(reloc_roots); 3712 struct btrfs_key key; 3713 struct btrfs_root *fs_root; 3714 struct btrfs_root *reloc_root; 3715 struct btrfs_path *path; 3716 struct extent_buffer *leaf; 3717 struct reloc_control *rc = NULL; 3718 struct btrfs_trans_handle *trans; 3719 int ret; 3720 int err = 0; 3721 3722 path = btrfs_alloc_path(); 3723 if (!path) 3724 return -ENOMEM; 3725 path->reada = READA_BACK; 3726 3727 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3728 key.type = BTRFS_ROOT_ITEM_KEY; 3729 key.offset = (u64)-1; 3730 3731 while (1) { 3732 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3733 path, 0, 0); 3734 if (ret < 0) { 3735 err = ret; 3736 goto out; 3737 } 3738 if (ret > 0) { 3739 if (path->slots[0] == 0) 3740 break; 3741 path->slots[0]--; 3742 } 3743 leaf = path->nodes[0]; 3744 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3745 btrfs_release_path(path); 3746 3747 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3748 key.type != BTRFS_ROOT_ITEM_KEY) 3749 break; 3750 3751 reloc_root = btrfs_read_tree_root(root, &key); 3752 if (IS_ERR(reloc_root)) { 3753 err = PTR_ERR(reloc_root); 3754 goto out; 3755 } 3756 3757 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3758 list_add(&reloc_root->root_list, &reloc_roots); 3759 3760 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3761 fs_root = btrfs_get_fs_root(fs_info, 3762 reloc_root->root_key.offset, false); 3763 if (IS_ERR(fs_root)) { 3764 ret = PTR_ERR(fs_root); 3765 if (ret != -ENOENT) { 3766 err = ret; 3767 goto out; 3768 } 3769 ret = mark_garbage_root(reloc_root); 3770 if (ret < 0) { 3771 err = ret; 3772 goto out; 3773 } 3774 } else { 3775 btrfs_put_root(fs_root); 3776 } 3777 } 3778 3779 if (key.offset == 0) 3780 break; 3781 3782 key.offset--; 3783 } 3784 btrfs_release_path(path); 3785 3786 if (list_empty(&reloc_roots)) 3787 goto out; 3788 3789 rc = alloc_reloc_control(fs_info); 3790 if (!rc) { 3791 err = -ENOMEM; 3792 goto out; 3793 } 3794 3795 rc->extent_root = fs_info->extent_root; 3796 3797 set_reloc_control(rc); 3798 3799 trans = btrfs_join_transaction(rc->extent_root); 3800 if (IS_ERR(trans)) { 3801 err = PTR_ERR(trans); 3802 goto out_unset; 3803 } 3804 3805 rc->merge_reloc_tree = 1; 3806 3807 while (!list_empty(&reloc_roots)) { 3808 reloc_root = list_entry(reloc_roots.next, 3809 struct btrfs_root, root_list); 3810 list_del(&reloc_root->root_list); 3811 3812 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3813 list_add_tail(&reloc_root->root_list, 3814 &rc->reloc_roots); 3815 continue; 3816 } 3817 3818 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3819 false); 3820 if (IS_ERR(fs_root)) { 3821 err = PTR_ERR(fs_root); 3822 list_add_tail(&reloc_root->root_list, &reloc_roots); 3823 btrfs_end_transaction(trans); 3824 goto out_unset; 3825 } 3826 3827 err = __add_reloc_root(reloc_root); 3828 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3829 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3830 btrfs_put_root(fs_root); 3831 } 3832 3833 err = btrfs_commit_transaction(trans); 3834 if (err) 3835 goto out_unset; 3836 3837 merge_reloc_roots(rc); 3838 3839 unset_reloc_control(rc); 3840 3841 trans = btrfs_join_transaction(rc->extent_root); 3842 if (IS_ERR(trans)) { 3843 err = PTR_ERR(trans); 3844 goto out_clean; 3845 } 3846 err = btrfs_commit_transaction(trans); 3847 out_clean: 3848 ret = clean_dirty_subvols(rc); 3849 if (ret < 0 && !err) 3850 err = ret; 3851 out_unset: 3852 unset_reloc_control(rc); 3853 free_reloc_control(rc); 3854 out: 3855 free_reloc_roots(&reloc_roots); 3856 3857 btrfs_free_path(path); 3858 3859 if (err == 0) { 3860 /* cleanup orphan inode in data relocation tree */ 3861 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3862 ASSERT(fs_root); 3863 err = btrfs_orphan_cleanup(fs_root); 3864 btrfs_put_root(fs_root); 3865 } 3866 return err; 3867 } 3868 3869 /* 3870 * helper to add ordered checksum for data relocation. 3871 * 3872 * cloning checksum properly handles the nodatasum extents. 3873 * it also saves CPU time to re-calculate the checksum. 3874 */ 3875 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 3876 { 3877 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3878 struct btrfs_ordered_sum *sums; 3879 struct btrfs_ordered_extent *ordered; 3880 int ret; 3881 u64 disk_bytenr; 3882 u64 new_bytenr; 3883 LIST_HEAD(list); 3884 3885 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3886 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3887 3888 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 3889 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3890 disk_bytenr + len - 1, &list, 0); 3891 if (ret) 3892 goto out; 3893 3894 while (!list_empty(&list)) { 3895 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3896 list_del_init(&sums->list); 3897 3898 /* 3899 * We need to offset the new_bytenr based on where the csum is. 3900 * We need to do this because we will read in entire prealloc 3901 * extents but we may have written to say the middle of the 3902 * prealloc extent, so we need to make sure the csum goes with 3903 * the right disk offset. 3904 * 3905 * We can do this because the data reloc inode refers strictly 3906 * to the on disk bytes, so we don't have to worry about 3907 * disk_len vs real len like with real inodes since it's all 3908 * disk length. 3909 */ 3910 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3911 sums->bytenr = new_bytenr; 3912 3913 btrfs_add_ordered_sum(ordered, sums); 3914 } 3915 out: 3916 btrfs_put_ordered_extent(ordered); 3917 return ret; 3918 } 3919 3920 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3921 struct btrfs_root *root, struct extent_buffer *buf, 3922 struct extent_buffer *cow) 3923 { 3924 struct btrfs_fs_info *fs_info = root->fs_info; 3925 struct reloc_control *rc; 3926 struct btrfs_backref_node *node; 3927 int first_cow = 0; 3928 int level; 3929 int ret = 0; 3930 3931 rc = fs_info->reloc_ctl; 3932 if (!rc) 3933 return 0; 3934 3935 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3936 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3937 3938 level = btrfs_header_level(buf); 3939 if (btrfs_header_generation(buf) <= 3940 btrfs_root_last_snapshot(&root->root_item)) 3941 first_cow = 1; 3942 3943 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3944 rc->create_reloc_tree) { 3945 WARN_ON(!first_cow && level == 0); 3946 3947 node = rc->backref_cache.path[level]; 3948 BUG_ON(node->bytenr != buf->start && 3949 node->new_bytenr != buf->start); 3950 3951 btrfs_backref_drop_node_buffer(node); 3952 atomic_inc(&cow->refs); 3953 node->eb = cow; 3954 node->new_bytenr = cow->start; 3955 3956 if (!node->pending) { 3957 list_move_tail(&node->list, 3958 &rc->backref_cache.pending[level]); 3959 node->pending = 1; 3960 } 3961 3962 if (first_cow) 3963 mark_block_processed(rc, node); 3964 3965 if (first_cow && level > 0) 3966 rc->nodes_relocated += buf->len; 3967 } 3968 3969 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 3970 ret = replace_file_extents(trans, rc, root, cow); 3971 return ret; 3972 } 3973 3974 /* 3975 * called before creating snapshot. it calculates metadata reservation 3976 * required for relocating tree blocks in the snapshot 3977 */ 3978 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3979 u64 *bytes_to_reserve) 3980 { 3981 struct btrfs_root *root = pending->root; 3982 struct reloc_control *rc = root->fs_info->reloc_ctl; 3983 3984 if (!rc || !have_reloc_root(root)) 3985 return; 3986 3987 if (!rc->merge_reloc_tree) 3988 return; 3989 3990 root = root->reloc_root; 3991 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 3992 /* 3993 * relocation is in the stage of merging trees. the space 3994 * used by merging a reloc tree is twice the size of 3995 * relocated tree nodes in the worst case. half for cowing 3996 * the reloc tree, half for cowing the fs tree. the space 3997 * used by cowing the reloc tree will be freed after the 3998 * tree is dropped. if we create snapshot, cowing the fs 3999 * tree may use more space than it frees. so we need 4000 * reserve extra space. 4001 */ 4002 *bytes_to_reserve += rc->nodes_relocated; 4003 } 4004 4005 /* 4006 * called after snapshot is created. migrate block reservation 4007 * and create reloc root for the newly created snapshot 4008 * 4009 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4010 * references held on the reloc_root, one for root->reloc_root and one for 4011 * rc->reloc_roots. 4012 */ 4013 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4014 struct btrfs_pending_snapshot *pending) 4015 { 4016 struct btrfs_root *root = pending->root; 4017 struct btrfs_root *reloc_root; 4018 struct btrfs_root *new_root; 4019 struct reloc_control *rc = root->fs_info->reloc_ctl; 4020 int ret; 4021 4022 if (!rc || !have_reloc_root(root)) 4023 return 0; 4024 4025 rc = root->fs_info->reloc_ctl; 4026 rc->merging_rsv_size += rc->nodes_relocated; 4027 4028 if (rc->merge_reloc_tree) { 4029 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4030 rc->block_rsv, 4031 rc->nodes_relocated, true); 4032 if (ret) 4033 return ret; 4034 } 4035 4036 new_root = pending->snap; 4037 reloc_root = create_reloc_root(trans, root->reloc_root, 4038 new_root->root_key.objectid); 4039 if (IS_ERR(reloc_root)) 4040 return PTR_ERR(reloc_root); 4041 4042 ret = __add_reloc_root(reloc_root); 4043 BUG_ON(ret < 0); 4044 new_root->reloc_root = btrfs_grab_root(reloc_root); 4045 4046 if (rc->create_reloc_tree) 4047 ret = clone_backref_node(trans, rc, root, reloc_root); 4048 return ret; 4049 } 4050