1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "locking.h" 17 #include "btrfs_inode.h" 18 #include "async-thread.h" 19 #include "free-space-cache.h" 20 #include "inode-map.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 24 /* 25 * backref_node, mapping_node and tree_block start with this 26 */ 27 struct tree_entry { 28 struct rb_node rb_node; 29 u64 bytenr; 30 }; 31 32 /* 33 * present a tree block in the backref cache 34 */ 35 struct backref_node { 36 struct rb_node rb_node; 37 u64 bytenr; 38 39 u64 new_bytenr; 40 /* objectid of tree block owner, can be not uptodate */ 41 u64 owner; 42 /* link to pending, changed or detached list */ 43 struct list_head list; 44 /* list of upper level blocks reference this block */ 45 struct list_head upper; 46 /* list of child blocks in the cache */ 47 struct list_head lower; 48 /* NULL if this node is not tree root */ 49 struct btrfs_root *root; 50 /* extent buffer got by COW the block */ 51 struct extent_buffer *eb; 52 /* level of tree block */ 53 unsigned int level:8; 54 /* is the block in non-reference counted tree */ 55 unsigned int cowonly:1; 56 /* 1 if no child node in the cache */ 57 unsigned int lowest:1; 58 /* is the extent buffer locked */ 59 unsigned int locked:1; 60 /* has the block been processed */ 61 unsigned int processed:1; 62 /* have backrefs of this block been checked */ 63 unsigned int checked:1; 64 /* 65 * 1 if corresponding block has been cowed but some upper 66 * level block pointers may not point to the new location 67 */ 68 unsigned int pending:1; 69 /* 70 * 1 if the backref node isn't connected to any other 71 * backref node. 72 */ 73 unsigned int detached:1; 74 }; 75 76 /* 77 * present a block pointer in the backref cache 78 */ 79 struct backref_edge { 80 struct list_head list[2]; 81 struct backref_node *node[2]; 82 }; 83 84 #define LOWER 0 85 #define UPPER 1 86 #define RELOCATION_RESERVED_NODES 256 87 88 struct backref_cache { 89 /* red black tree of all backref nodes in the cache */ 90 struct rb_root rb_root; 91 /* for passing backref nodes to btrfs_reloc_cow_block */ 92 struct backref_node *path[BTRFS_MAX_LEVEL]; 93 /* 94 * list of blocks that have been cowed but some block 95 * pointers in upper level blocks may not reflect the 96 * new location 97 */ 98 struct list_head pending[BTRFS_MAX_LEVEL]; 99 /* list of backref nodes with no child node */ 100 struct list_head leaves; 101 /* list of blocks that have been cowed in current transaction */ 102 struct list_head changed; 103 /* list of detached backref node. */ 104 struct list_head detached; 105 106 u64 last_trans; 107 108 int nr_nodes; 109 int nr_edges; 110 }; 111 112 /* 113 * map address of tree root to tree 114 */ 115 struct mapping_node { 116 struct rb_node rb_node; 117 u64 bytenr; 118 void *data; 119 }; 120 121 struct mapping_tree { 122 struct rb_root rb_root; 123 spinlock_t lock; 124 }; 125 126 /* 127 * present a tree block to process 128 */ 129 struct tree_block { 130 struct rb_node rb_node; 131 u64 bytenr; 132 struct btrfs_key key; 133 unsigned int level:8; 134 unsigned int key_ready:1; 135 }; 136 137 #define MAX_EXTENTS 128 138 139 struct file_extent_cluster { 140 u64 start; 141 u64 end; 142 u64 boundary[MAX_EXTENTS]; 143 unsigned int nr; 144 }; 145 146 struct reloc_control { 147 /* block group to relocate */ 148 struct btrfs_block_group_cache *block_group; 149 /* extent tree */ 150 struct btrfs_root *extent_root; 151 /* inode for moving data */ 152 struct inode *data_inode; 153 154 struct btrfs_block_rsv *block_rsv; 155 156 struct backref_cache backref_cache; 157 158 struct file_extent_cluster cluster; 159 /* tree blocks have been processed */ 160 struct extent_io_tree processed_blocks; 161 /* map start of tree root to corresponding reloc tree */ 162 struct mapping_tree reloc_root_tree; 163 /* list of reloc trees */ 164 struct list_head reloc_roots; 165 /* size of metadata reservation for merging reloc trees */ 166 u64 merging_rsv_size; 167 /* size of relocated tree nodes */ 168 u64 nodes_relocated; 169 /* reserved size for block group relocation*/ 170 u64 reserved_bytes; 171 172 u64 search_start; 173 u64 extents_found; 174 175 unsigned int stage:8; 176 unsigned int create_reloc_tree:1; 177 unsigned int merge_reloc_tree:1; 178 unsigned int found_file_extent:1; 179 }; 180 181 /* stages of data relocation */ 182 #define MOVE_DATA_EXTENTS 0 183 #define UPDATE_DATA_PTRS 1 184 185 static void remove_backref_node(struct backref_cache *cache, 186 struct backref_node *node); 187 static void __mark_block_processed(struct reloc_control *rc, 188 struct backref_node *node); 189 190 static void mapping_tree_init(struct mapping_tree *tree) 191 { 192 tree->rb_root = RB_ROOT; 193 spin_lock_init(&tree->lock); 194 } 195 196 static void backref_cache_init(struct backref_cache *cache) 197 { 198 int i; 199 cache->rb_root = RB_ROOT; 200 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 201 INIT_LIST_HEAD(&cache->pending[i]); 202 INIT_LIST_HEAD(&cache->changed); 203 INIT_LIST_HEAD(&cache->detached); 204 INIT_LIST_HEAD(&cache->leaves); 205 } 206 207 static void backref_cache_cleanup(struct backref_cache *cache) 208 { 209 struct backref_node *node; 210 int i; 211 212 while (!list_empty(&cache->detached)) { 213 node = list_entry(cache->detached.next, 214 struct backref_node, list); 215 remove_backref_node(cache, node); 216 } 217 218 while (!list_empty(&cache->leaves)) { 219 node = list_entry(cache->leaves.next, 220 struct backref_node, lower); 221 remove_backref_node(cache, node); 222 } 223 224 cache->last_trans = 0; 225 226 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 227 ASSERT(list_empty(&cache->pending[i])); 228 ASSERT(list_empty(&cache->changed)); 229 ASSERT(list_empty(&cache->detached)); 230 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 231 ASSERT(!cache->nr_nodes); 232 ASSERT(!cache->nr_edges); 233 } 234 235 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 236 { 237 struct backref_node *node; 238 239 node = kzalloc(sizeof(*node), GFP_NOFS); 240 if (node) { 241 INIT_LIST_HEAD(&node->list); 242 INIT_LIST_HEAD(&node->upper); 243 INIT_LIST_HEAD(&node->lower); 244 RB_CLEAR_NODE(&node->rb_node); 245 cache->nr_nodes++; 246 } 247 return node; 248 } 249 250 static void free_backref_node(struct backref_cache *cache, 251 struct backref_node *node) 252 { 253 if (node) { 254 cache->nr_nodes--; 255 kfree(node); 256 } 257 } 258 259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 260 { 261 struct backref_edge *edge; 262 263 edge = kzalloc(sizeof(*edge), GFP_NOFS); 264 if (edge) 265 cache->nr_edges++; 266 return edge; 267 } 268 269 static void free_backref_edge(struct backref_cache *cache, 270 struct backref_edge *edge) 271 { 272 if (edge) { 273 cache->nr_edges--; 274 kfree(edge); 275 } 276 } 277 278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 279 struct rb_node *node) 280 { 281 struct rb_node **p = &root->rb_node; 282 struct rb_node *parent = NULL; 283 struct tree_entry *entry; 284 285 while (*p) { 286 parent = *p; 287 entry = rb_entry(parent, struct tree_entry, rb_node); 288 289 if (bytenr < entry->bytenr) 290 p = &(*p)->rb_left; 291 else if (bytenr > entry->bytenr) 292 p = &(*p)->rb_right; 293 else 294 return parent; 295 } 296 297 rb_link_node(node, parent, p); 298 rb_insert_color(node, root); 299 return NULL; 300 } 301 302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 303 { 304 struct rb_node *n = root->rb_node; 305 struct tree_entry *entry; 306 307 while (n) { 308 entry = rb_entry(n, struct tree_entry, rb_node); 309 310 if (bytenr < entry->bytenr) 311 n = n->rb_left; 312 else if (bytenr > entry->bytenr) 313 n = n->rb_right; 314 else 315 return n; 316 } 317 return NULL; 318 } 319 320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 321 { 322 323 struct btrfs_fs_info *fs_info = NULL; 324 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 325 rb_node); 326 if (bnode->root) 327 fs_info = bnode->root->fs_info; 328 btrfs_panic(fs_info, errno, 329 "Inconsistency in backref cache found at offset %llu", 330 bytenr); 331 } 332 333 /* 334 * walk up backref nodes until reach node presents tree root 335 */ 336 static struct backref_node *walk_up_backref(struct backref_node *node, 337 struct backref_edge *edges[], 338 int *index) 339 { 340 struct backref_edge *edge; 341 int idx = *index; 342 343 while (!list_empty(&node->upper)) { 344 edge = list_entry(node->upper.next, 345 struct backref_edge, list[LOWER]); 346 edges[idx++] = edge; 347 node = edge->node[UPPER]; 348 } 349 BUG_ON(node->detached); 350 *index = idx; 351 return node; 352 } 353 354 /* 355 * walk down backref nodes to find start of next reference path 356 */ 357 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 358 int *index) 359 { 360 struct backref_edge *edge; 361 struct backref_node *lower; 362 int idx = *index; 363 364 while (idx > 0) { 365 edge = edges[idx - 1]; 366 lower = edge->node[LOWER]; 367 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 368 idx--; 369 continue; 370 } 371 edge = list_entry(edge->list[LOWER].next, 372 struct backref_edge, list[LOWER]); 373 edges[idx - 1] = edge; 374 *index = idx; 375 return edge->node[UPPER]; 376 } 377 *index = 0; 378 return NULL; 379 } 380 381 static void unlock_node_buffer(struct backref_node *node) 382 { 383 if (node->locked) { 384 btrfs_tree_unlock(node->eb); 385 node->locked = 0; 386 } 387 } 388 389 static void drop_node_buffer(struct backref_node *node) 390 { 391 if (node->eb) { 392 unlock_node_buffer(node); 393 free_extent_buffer(node->eb); 394 node->eb = NULL; 395 } 396 } 397 398 static void drop_backref_node(struct backref_cache *tree, 399 struct backref_node *node) 400 { 401 BUG_ON(!list_empty(&node->upper)); 402 403 drop_node_buffer(node); 404 list_del(&node->list); 405 list_del(&node->lower); 406 if (!RB_EMPTY_NODE(&node->rb_node)) 407 rb_erase(&node->rb_node, &tree->rb_root); 408 free_backref_node(tree, node); 409 } 410 411 /* 412 * remove a backref node from the backref cache 413 */ 414 static void remove_backref_node(struct backref_cache *cache, 415 struct backref_node *node) 416 { 417 struct backref_node *upper; 418 struct backref_edge *edge; 419 420 if (!node) 421 return; 422 423 BUG_ON(!node->lowest && !node->detached); 424 while (!list_empty(&node->upper)) { 425 edge = list_entry(node->upper.next, struct backref_edge, 426 list[LOWER]); 427 upper = edge->node[UPPER]; 428 list_del(&edge->list[LOWER]); 429 list_del(&edge->list[UPPER]); 430 free_backref_edge(cache, edge); 431 432 if (RB_EMPTY_NODE(&upper->rb_node)) { 433 BUG_ON(!list_empty(&node->upper)); 434 drop_backref_node(cache, node); 435 node = upper; 436 node->lowest = 1; 437 continue; 438 } 439 /* 440 * add the node to leaf node list if no other 441 * child block cached. 442 */ 443 if (list_empty(&upper->lower)) { 444 list_add_tail(&upper->lower, &cache->leaves); 445 upper->lowest = 1; 446 } 447 } 448 449 drop_backref_node(cache, node); 450 } 451 452 static void update_backref_node(struct backref_cache *cache, 453 struct backref_node *node, u64 bytenr) 454 { 455 struct rb_node *rb_node; 456 rb_erase(&node->rb_node, &cache->rb_root); 457 node->bytenr = bytenr; 458 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 459 if (rb_node) 460 backref_tree_panic(rb_node, -EEXIST, bytenr); 461 } 462 463 /* 464 * update backref cache after a transaction commit 465 */ 466 static int update_backref_cache(struct btrfs_trans_handle *trans, 467 struct backref_cache *cache) 468 { 469 struct backref_node *node; 470 int level = 0; 471 472 if (cache->last_trans == 0) { 473 cache->last_trans = trans->transid; 474 return 0; 475 } 476 477 if (cache->last_trans == trans->transid) 478 return 0; 479 480 /* 481 * detached nodes are used to avoid unnecessary backref 482 * lookup. transaction commit changes the extent tree. 483 * so the detached nodes are no longer useful. 484 */ 485 while (!list_empty(&cache->detached)) { 486 node = list_entry(cache->detached.next, 487 struct backref_node, list); 488 remove_backref_node(cache, node); 489 } 490 491 while (!list_empty(&cache->changed)) { 492 node = list_entry(cache->changed.next, 493 struct backref_node, list); 494 list_del_init(&node->list); 495 BUG_ON(node->pending); 496 update_backref_node(cache, node, node->new_bytenr); 497 } 498 499 /* 500 * some nodes can be left in the pending list if there were 501 * errors during processing the pending nodes. 502 */ 503 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 504 list_for_each_entry(node, &cache->pending[level], list) { 505 BUG_ON(!node->pending); 506 if (node->bytenr == node->new_bytenr) 507 continue; 508 update_backref_node(cache, node, node->new_bytenr); 509 } 510 } 511 512 cache->last_trans = 0; 513 return 1; 514 } 515 516 517 static int should_ignore_root(struct btrfs_root *root) 518 { 519 struct btrfs_root *reloc_root; 520 521 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 522 return 0; 523 524 reloc_root = root->reloc_root; 525 if (!reloc_root) 526 return 0; 527 528 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 529 root->fs_info->running_transaction->transid - 1) 530 return 0; 531 /* 532 * if there is reloc tree and it was created in previous 533 * transaction backref lookup can find the reloc tree, 534 * so backref node for the fs tree root is useless for 535 * relocation. 536 */ 537 return 1; 538 } 539 /* 540 * find reloc tree by address of tree root 541 */ 542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 543 u64 bytenr) 544 { 545 struct rb_node *rb_node; 546 struct mapping_node *node; 547 struct btrfs_root *root = NULL; 548 549 spin_lock(&rc->reloc_root_tree.lock); 550 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 551 if (rb_node) { 552 node = rb_entry(rb_node, struct mapping_node, rb_node); 553 root = (struct btrfs_root *)node->data; 554 } 555 spin_unlock(&rc->reloc_root_tree.lock); 556 return root; 557 } 558 559 static int is_cowonly_root(u64 root_objectid) 560 { 561 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 562 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 563 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 564 root_objectid == BTRFS_DEV_TREE_OBJECTID || 565 root_objectid == BTRFS_TREE_LOG_OBJECTID || 566 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 567 root_objectid == BTRFS_UUID_TREE_OBJECTID || 568 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 569 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 570 return 1; 571 return 0; 572 } 573 574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 575 u64 root_objectid) 576 { 577 struct btrfs_key key; 578 579 key.objectid = root_objectid; 580 key.type = BTRFS_ROOT_ITEM_KEY; 581 if (is_cowonly_root(root_objectid)) 582 key.offset = 0; 583 else 584 key.offset = (u64)-1; 585 586 return btrfs_get_fs_root(fs_info, &key, false); 587 } 588 589 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 590 static noinline_for_stack 591 struct btrfs_root *find_tree_root(struct reloc_control *rc, 592 struct extent_buffer *leaf, 593 struct btrfs_extent_ref_v0 *ref0) 594 { 595 struct btrfs_root *root; 596 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 597 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 598 599 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 600 601 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 602 BUG_ON(IS_ERR(root)); 603 604 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 605 generation != btrfs_root_generation(&root->root_item)) 606 return NULL; 607 608 return root; 609 } 610 #endif 611 612 static noinline_for_stack 613 int find_inline_backref(struct extent_buffer *leaf, int slot, 614 unsigned long *ptr, unsigned long *end) 615 { 616 struct btrfs_key key; 617 struct btrfs_extent_item *ei; 618 struct btrfs_tree_block_info *bi; 619 u32 item_size; 620 621 btrfs_item_key_to_cpu(leaf, &key, slot); 622 623 item_size = btrfs_item_size_nr(leaf, slot); 624 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 625 if (item_size < sizeof(*ei)) { 626 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 627 return 1; 628 } 629 #endif 630 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 631 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 632 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 633 634 if (key.type == BTRFS_EXTENT_ITEM_KEY && 635 item_size <= sizeof(*ei) + sizeof(*bi)) { 636 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 637 return 1; 638 } 639 if (key.type == BTRFS_METADATA_ITEM_KEY && 640 item_size <= sizeof(*ei)) { 641 WARN_ON(item_size < sizeof(*ei)); 642 return 1; 643 } 644 645 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 646 bi = (struct btrfs_tree_block_info *)(ei + 1); 647 *ptr = (unsigned long)(bi + 1); 648 } else { 649 *ptr = (unsigned long)(ei + 1); 650 } 651 *end = (unsigned long)ei + item_size; 652 return 0; 653 } 654 655 /* 656 * build backref tree for a given tree block. root of the backref tree 657 * corresponds the tree block, leaves of the backref tree correspond 658 * roots of b-trees that reference the tree block. 659 * 660 * the basic idea of this function is check backrefs of a given block 661 * to find upper level blocks that reference the block, and then check 662 * backrefs of these upper level blocks recursively. the recursion stop 663 * when tree root is reached or backrefs for the block is cached. 664 * 665 * NOTE: if we find backrefs for a block are cached, we know backrefs 666 * for all upper level blocks that directly/indirectly reference the 667 * block are also cached. 668 */ 669 static noinline_for_stack 670 struct backref_node *build_backref_tree(struct reloc_control *rc, 671 struct btrfs_key *node_key, 672 int level, u64 bytenr) 673 { 674 struct backref_cache *cache = &rc->backref_cache; 675 struct btrfs_path *path1; 676 struct btrfs_path *path2; 677 struct extent_buffer *eb; 678 struct btrfs_root *root; 679 struct backref_node *cur; 680 struct backref_node *upper; 681 struct backref_node *lower; 682 struct backref_node *node = NULL; 683 struct backref_node *exist = NULL; 684 struct backref_edge *edge; 685 struct rb_node *rb_node; 686 struct btrfs_key key; 687 unsigned long end; 688 unsigned long ptr; 689 LIST_HEAD(list); 690 LIST_HEAD(useless); 691 int cowonly; 692 int ret; 693 int err = 0; 694 bool need_check = true; 695 696 path1 = btrfs_alloc_path(); 697 path2 = btrfs_alloc_path(); 698 if (!path1 || !path2) { 699 err = -ENOMEM; 700 goto out; 701 } 702 path1->reada = READA_FORWARD; 703 path2->reada = READA_FORWARD; 704 705 node = alloc_backref_node(cache); 706 if (!node) { 707 err = -ENOMEM; 708 goto out; 709 } 710 711 node->bytenr = bytenr; 712 node->level = level; 713 node->lowest = 1; 714 cur = node; 715 again: 716 end = 0; 717 ptr = 0; 718 key.objectid = cur->bytenr; 719 key.type = BTRFS_METADATA_ITEM_KEY; 720 key.offset = (u64)-1; 721 722 path1->search_commit_root = 1; 723 path1->skip_locking = 1; 724 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 725 0, 0); 726 if (ret < 0) { 727 err = ret; 728 goto out; 729 } 730 ASSERT(ret); 731 ASSERT(path1->slots[0]); 732 733 path1->slots[0]--; 734 735 WARN_ON(cur->checked); 736 if (!list_empty(&cur->upper)) { 737 /* 738 * the backref was added previously when processing 739 * backref of type BTRFS_TREE_BLOCK_REF_KEY 740 */ 741 ASSERT(list_is_singular(&cur->upper)); 742 edge = list_entry(cur->upper.next, struct backref_edge, 743 list[LOWER]); 744 ASSERT(list_empty(&edge->list[UPPER])); 745 exist = edge->node[UPPER]; 746 /* 747 * add the upper level block to pending list if we need 748 * check its backrefs 749 */ 750 if (!exist->checked) 751 list_add_tail(&edge->list[UPPER], &list); 752 } else { 753 exist = NULL; 754 } 755 756 while (1) { 757 cond_resched(); 758 eb = path1->nodes[0]; 759 760 if (ptr >= end) { 761 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 762 ret = btrfs_next_leaf(rc->extent_root, path1); 763 if (ret < 0) { 764 err = ret; 765 goto out; 766 } 767 if (ret > 0) 768 break; 769 eb = path1->nodes[0]; 770 } 771 772 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 773 if (key.objectid != cur->bytenr) { 774 WARN_ON(exist); 775 break; 776 } 777 778 if (key.type == BTRFS_EXTENT_ITEM_KEY || 779 key.type == BTRFS_METADATA_ITEM_KEY) { 780 ret = find_inline_backref(eb, path1->slots[0], 781 &ptr, &end); 782 if (ret) 783 goto next; 784 } 785 } 786 787 if (ptr < end) { 788 /* update key for inline back ref */ 789 struct btrfs_extent_inline_ref *iref; 790 int type; 791 iref = (struct btrfs_extent_inline_ref *)ptr; 792 type = btrfs_get_extent_inline_ref_type(eb, iref, 793 BTRFS_REF_TYPE_BLOCK); 794 if (type == BTRFS_REF_TYPE_INVALID) { 795 err = -EINVAL; 796 goto out; 797 } 798 key.type = type; 799 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 800 801 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 802 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 803 } 804 805 if (exist && 806 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 807 exist->owner == key.offset) || 808 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 809 exist->bytenr == key.offset))) { 810 exist = NULL; 811 goto next; 812 } 813 814 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 815 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 816 key.type == BTRFS_EXTENT_REF_V0_KEY) { 817 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 818 struct btrfs_extent_ref_v0 *ref0; 819 ref0 = btrfs_item_ptr(eb, path1->slots[0], 820 struct btrfs_extent_ref_v0); 821 if (key.objectid == key.offset) { 822 root = find_tree_root(rc, eb, ref0); 823 if (root && !should_ignore_root(root)) 824 cur->root = root; 825 else 826 list_add(&cur->list, &useless); 827 break; 828 } 829 if (is_cowonly_root(btrfs_ref_root_v0(eb, 830 ref0))) 831 cur->cowonly = 1; 832 } 833 #else 834 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 835 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 836 #endif 837 if (key.objectid == key.offset) { 838 /* 839 * only root blocks of reloc trees use 840 * backref of this type. 841 */ 842 root = find_reloc_root(rc, cur->bytenr); 843 ASSERT(root); 844 cur->root = root; 845 break; 846 } 847 848 edge = alloc_backref_edge(cache); 849 if (!edge) { 850 err = -ENOMEM; 851 goto out; 852 } 853 rb_node = tree_search(&cache->rb_root, key.offset); 854 if (!rb_node) { 855 upper = alloc_backref_node(cache); 856 if (!upper) { 857 free_backref_edge(cache, edge); 858 err = -ENOMEM; 859 goto out; 860 } 861 upper->bytenr = key.offset; 862 upper->level = cur->level + 1; 863 /* 864 * backrefs for the upper level block isn't 865 * cached, add the block to pending list 866 */ 867 list_add_tail(&edge->list[UPPER], &list); 868 } else { 869 upper = rb_entry(rb_node, struct backref_node, 870 rb_node); 871 ASSERT(upper->checked); 872 INIT_LIST_HEAD(&edge->list[UPPER]); 873 } 874 list_add_tail(&edge->list[LOWER], &cur->upper); 875 edge->node[LOWER] = cur; 876 edge->node[UPPER] = upper; 877 878 goto next; 879 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 880 goto next; 881 } 882 883 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 884 root = read_fs_root(rc->extent_root->fs_info, key.offset); 885 if (IS_ERR(root)) { 886 err = PTR_ERR(root); 887 goto out; 888 } 889 890 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 891 cur->cowonly = 1; 892 893 if (btrfs_root_level(&root->root_item) == cur->level) { 894 /* tree root */ 895 ASSERT(btrfs_root_bytenr(&root->root_item) == 896 cur->bytenr); 897 if (should_ignore_root(root)) 898 list_add(&cur->list, &useless); 899 else 900 cur->root = root; 901 break; 902 } 903 904 level = cur->level + 1; 905 906 /* 907 * searching the tree to find upper level blocks 908 * reference the block. 909 */ 910 path2->search_commit_root = 1; 911 path2->skip_locking = 1; 912 path2->lowest_level = level; 913 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 914 path2->lowest_level = 0; 915 if (ret < 0) { 916 err = ret; 917 goto out; 918 } 919 if (ret > 0 && path2->slots[level] > 0) 920 path2->slots[level]--; 921 922 eb = path2->nodes[level]; 923 if (btrfs_node_blockptr(eb, path2->slots[level]) != 924 cur->bytenr) { 925 btrfs_err(root->fs_info, 926 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 927 cur->bytenr, level - 1, root->objectid, 928 node_key->objectid, node_key->type, 929 node_key->offset); 930 err = -ENOENT; 931 goto out; 932 } 933 lower = cur; 934 need_check = true; 935 for (; level < BTRFS_MAX_LEVEL; level++) { 936 if (!path2->nodes[level]) { 937 ASSERT(btrfs_root_bytenr(&root->root_item) == 938 lower->bytenr); 939 if (should_ignore_root(root)) 940 list_add(&lower->list, &useless); 941 else 942 lower->root = root; 943 break; 944 } 945 946 edge = alloc_backref_edge(cache); 947 if (!edge) { 948 err = -ENOMEM; 949 goto out; 950 } 951 952 eb = path2->nodes[level]; 953 rb_node = tree_search(&cache->rb_root, eb->start); 954 if (!rb_node) { 955 upper = alloc_backref_node(cache); 956 if (!upper) { 957 free_backref_edge(cache, edge); 958 err = -ENOMEM; 959 goto out; 960 } 961 upper->bytenr = eb->start; 962 upper->owner = btrfs_header_owner(eb); 963 upper->level = lower->level + 1; 964 if (!test_bit(BTRFS_ROOT_REF_COWS, 965 &root->state)) 966 upper->cowonly = 1; 967 968 /* 969 * if we know the block isn't shared 970 * we can void checking its backrefs. 971 */ 972 if (btrfs_block_can_be_shared(root, eb)) 973 upper->checked = 0; 974 else 975 upper->checked = 1; 976 977 /* 978 * add the block to pending list if we 979 * need check its backrefs, we only do this once 980 * while walking up a tree as we will catch 981 * anything else later on. 982 */ 983 if (!upper->checked && need_check) { 984 need_check = false; 985 list_add_tail(&edge->list[UPPER], 986 &list); 987 } else { 988 if (upper->checked) 989 need_check = true; 990 INIT_LIST_HEAD(&edge->list[UPPER]); 991 } 992 } else { 993 upper = rb_entry(rb_node, struct backref_node, 994 rb_node); 995 ASSERT(upper->checked); 996 INIT_LIST_HEAD(&edge->list[UPPER]); 997 if (!upper->owner) 998 upper->owner = btrfs_header_owner(eb); 999 } 1000 list_add_tail(&edge->list[LOWER], &lower->upper); 1001 edge->node[LOWER] = lower; 1002 edge->node[UPPER] = upper; 1003 1004 if (rb_node) 1005 break; 1006 lower = upper; 1007 upper = NULL; 1008 } 1009 btrfs_release_path(path2); 1010 next: 1011 if (ptr < end) { 1012 ptr += btrfs_extent_inline_ref_size(key.type); 1013 if (ptr >= end) { 1014 WARN_ON(ptr > end); 1015 ptr = 0; 1016 end = 0; 1017 } 1018 } 1019 if (ptr >= end) 1020 path1->slots[0]++; 1021 } 1022 btrfs_release_path(path1); 1023 1024 cur->checked = 1; 1025 WARN_ON(exist); 1026 1027 /* the pending list isn't empty, take the first block to process */ 1028 if (!list_empty(&list)) { 1029 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1030 list_del_init(&edge->list[UPPER]); 1031 cur = edge->node[UPPER]; 1032 goto again; 1033 } 1034 1035 /* 1036 * everything goes well, connect backref nodes and insert backref nodes 1037 * into the cache. 1038 */ 1039 ASSERT(node->checked); 1040 cowonly = node->cowonly; 1041 if (!cowonly) { 1042 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1043 &node->rb_node); 1044 if (rb_node) 1045 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1046 list_add_tail(&node->lower, &cache->leaves); 1047 } 1048 1049 list_for_each_entry(edge, &node->upper, list[LOWER]) 1050 list_add_tail(&edge->list[UPPER], &list); 1051 1052 while (!list_empty(&list)) { 1053 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1054 list_del_init(&edge->list[UPPER]); 1055 upper = edge->node[UPPER]; 1056 if (upper->detached) { 1057 list_del(&edge->list[LOWER]); 1058 lower = edge->node[LOWER]; 1059 free_backref_edge(cache, edge); 1060 if (list_empty(&lower->upper)) 1061 list_add(&lower->list, &useless); 1062 continue; 1063 } 1064 1065 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1066 if (upper->lowest) { 1067 list_del_init(&upper->lower); 1068 upper->lowest = 0; 1069 } 1070 1071 list_add_tail(&edge->list[UPPER], &upper->lower); 1072 continue; 1073 } 1074 1075 if (!upper->checked) { 1076 /* 1077 * Still want to blow up for developers since this is a 1078 * logic bug. 1079 */ 1080 ASSERT(0); 1081 err = -EINVAL; 1082 goto out; 1083 } 1084 if (cowonly != upper->cowonly) { 1085 ASSERT(0); 1086 err = -EINVAL; 1087 goto out; 1088 } 1089 1090 if (!cowonly) { 1091 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1092 &upper->rb_node); 1093 if (rb_node) 1094 backref_tree_panic(rb_node, -EEXIST, 1095 upper->bytenr); 1096 } 1097 1098 list_add_tail(&edge->list[UPPER], &upper->lower); 1099 1100 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1101 list_add_tail(&edge->list[UPPER], &list); 1102 } 1103 /* 1104 * process useless backref nodes. backref nodes for tree leaves 1105 * are deleted from the cache. backref nodes for upper level 1106 * tree blocks are left in the cache to avoid unnecessary backref 1107 * lookup. 1108 */ 1109 while (!list_empty(&useless)) { 1110 upper = list_entry(useless.next, struct backref_node, list); 1111 list_del_init(&upper->list); 1112 ASSERT(list_empty(&upper->upper)); 1113 if (upper == node) 1114 node = NULL; 1115 if (upper->lowest) { 1116 list_del_init(&upper->lower); 1117 upper->lowest = 0; 1118 } 1119 while (!list_empty(&upper->lower)) { 1120 edge = list_entry(upper->lower.next, 1121 struct backref_edge, list[UPPER]); 1122 list_del(&edge->list[UPPER]); 1123 list_del(&edge->list[LOWER]); 1124 lower = edge->node[LOWER]; 1125 free_backref_edge(cache, edge); 1126 1127 if (list_empty(&lower->upper)) 1128 list_add(&lower->list, &useless); 1129 } 1130 __mark_block_processed(rc, upper); 1131 if (upper->level > 0) { 1132 list_add(&upper->list, &cache->detached); 1133 upper->detached = 1; 1134 } else { 1135 rb_erase(&upper->rb_node, &cache->rb_root); 1136 free_backref_node(cache, upper); 1137 } 1138 } 1139 out: 1140 btrfs_free_path(path1); 1141 btrfs_free_path(path2); 1142 if (err) { 1143 while (!list_empty(&useless)) { 1144 lower = list_entry(useless.next, 1145 struct backref_node, list); 1146 list_del_init(&lower->list); 1147 } 1148 while (!list_empty(&list)) { 1149 edge = list_first_entry(&list, struct backref_edge, 1150 list[UPPER]); 1151 list_del(&edge->list[UPPER]); 1152 list_del(&edge->list[LOWER]); 1153 lower = edge->node[LOWER]; 1154 upper = edge->node[UPPER]; 1155 free_backref_edge(cache, edge); 1156 1157 /* 1158 * Lower is no longer linked to any upper backref nodes 1159 * and isn't in the cache, we can free it ourselves. 1160 */ 1161 if (list_empty(&lower->upper) && 1162 RB_EMPTY_NODE(&lower->rb_node)) 1163 list_add(&lower->list, &useless); 1164 1165 if (!RB_EMPTY_NODE(&upper->rb_node)) 1166 continue; 1167 1168 /* Add this guy's upper edges to the list to process */ 1169 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1170 list_add_tail(&edge->list[UPPER], &list); 1171 if (list_empty(&upper->upper)) 1172 list_add(&upper->list, &useless); 1173 } 1174 1175 while (!list_empty(&useless)) { 1176 lower = list_entry(useless.next, 1177 struct backref_node, list); 1178 list_del_init(&lower->list); 1179 if (lower == node) 1180 node = NULL; 1181 free_backref_node(cache, lower); 1182 } 1183 1184 free_backref_node(cache, node); 1185 return ERR_PTR(err); 1186 } 1187 ASSERT(!node || !node->detached); 1188 return node; 1189 } 1190 1191 /* 1192 * helper to add backref node for the newly created snapshot. 1193 * the backref node is created by cloning backref node that 1194 * corresponds to root of source tree 1195 */ 1196 static int clone_backref_node(struct btrfs_trans_handle *trans, 1197 struct reloc_control *rc, 1198 struct btrfs_root *src, 1199 struct btrfs_root *dest) 1200 { 1201 struct btrfs_root *reloc_root = src->reloc_root; 1202 struct backref_cache *cache = &rc->backref_cache; 1203 struct backref_node *node = NULL; 1204 struct backref_node *new_node; 1205 struct backref_edge *edge; 1206 struct backref_edge *new_edge; 1207 struct rb_node *rb_node; 1208 1209 if (cache->last_trans > 0) 1210 update_backref_cache(trans, cache); 1211 1212 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1213 if (rb_node) { 1214 node = rb_entry(rb_node, struct backref_node, rb_node); 1215 if (node->detached) 1216 node = NULL; 1217 else 1218 BUG_ON(node->new_bytenr != reloc_root->node->start); 1219 } 1220 1221 if (!node) { 1222 rb_node = tree_search(&cache->rb_root, 1223 reloc_root->commit_root->start); 1224 if (rb_node) { 1225 node = rb_entry(rb_node, struct backref_node, 1226 rb_node); 1227 BUG_ON(node->detached); 1228 } 1229 } 1230 1231 if (!node) 1232 return 0; 1233 1234 new_node = alloc_backref_node(cache); 1235 if (!new_node) 1236 return -ENOMEM; 1237 1238 new_node->bytenr = dest->node->start; 1239 new_node->level = node->level; 1240 new_node->lowest = node->lowest; 1241 new_node->checked = 1; 1242 new_node->root = dest; 1243 1244 if (!node->lowest) { 1245 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1246 new_edge = alloc_backref_edge(cache); 1247 if (!new_edge) 1248 goto fail; 1249 1250 new_edge->node[UPPER] = new_node; 1251 new_edge->node[LOWER] = edge->node[LOWER]; 1252 list_add_tail(&new_edge->list[UPPER], 1253 &new_node->lower); 1254 } 1255 } else { 1256 list_add_tail(&new_node->lower, &cache->leaves); 1257 } 1258 1259 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1260 &new_node->rb_node); 1261 if (rb_node) 1262 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1263 1264 if (!new_node->lowest) { 1265 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1266 list_add_tail(&new_edge->list[LOWER], 1267 &new_edge->node[LOWER]->upper); 1268 } 1269 } 1270 return 0; 1271 fail: 1272 while (!list_empty(&new_node->lower)) { 1273 new_edge = list_entry(new_node->lower.next, 1274 struct backref_edge, list[UPPER]); 1275 list_del(&new_edge->list[UPPER]); 1276 free_backref_edge(cache, new_edge); 1277 } 1278 free_backref_node(cache, new_node); 1279 return -ENOMEM; 1280 } 1281 1282 /* 1283 * helper to add 'address of tree root -> reloc tree' mapping 1284 */ 1285 static int __must_check __add_reloc_root(struct btrfs_root *root) 1286 { 1287 struct btrfs_fs_info *fs_info = root->fs_info; 1288 struct rb_node *rb_node; 1289 struct mapping_node *node; 1290 struct reloc_control *rc = fs_info->reloc_ctl; 1291 1292 node = kmalloc(sizeof(*node), GFP_NOFS); 1293 if (!node) 1294 return -ENOMEM; 1295 1296 node->bytenr = root->node->start; 1297 node->data = root; 1298 1299 spin_lock(&rc->reloc_root_tree.lock); 1300 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1301 node->bytenr, &node->rb_node); 1302 spin_unlock(&rc->reloc_root_tree.lock); 1303 if (rb_node) { 1304 btrfs_panic(fs_info, -EEXIST, 1305 "Duplicate root found for start=%llu while inserting into relocation tree", 1306 node->bytenr); 1307 } 1308 1309 list_add_tail(&root->root_list, &rc->reloc_roots); 1310 return 0; 1311 } 1312 1313 /* 1314 * helper to delete the 'address of tree root -> reloc tree' 1315 * mapping 1316 */ 1317 static void __del_reloc_root(struct btrfs_root *root) 1318 { 1319 struct btrfs_fs_info *fs_info = root->fs_info; 1320 struct rb_node *rb_node; 1321 struct mapping_node *node = NULL; 1322 struct reloc_control *rc = fs_info->reloc_ctl; 1323 1324 spin_lock(&rc->reloc_root_tree.lock); 1325 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1326 root->node->start); 1327 if (rb_node) { 1328 node = rb_entry(rb_node, struct mapping_node, rb_node); 1329 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1330 } 1331 spin_unlock(&rc->reloc_root_tree.lock); 1332 1333 if (!node) 1334 return; 1335 BUG_ON((struct btrfs_root *)node->data != root); 1336 1337 spin_lock(&fs_info->trans_lock); 1338 list_del_init(&root->root_list); 1339 spin_unlock(&fs_info->trans_lock); 1340 kfree(node); 1341 } 1342 1343 /* 1344 * helper to update the 'address of tree root -> reloc tree' 1345 * mapping 1346 */ 1347 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1348 { 1349 struct btrfs_fs_info *fs_info = root->fs_info; 1350 struct rb_node *rb_node; 1351 struct mapping_node *node = NULL; 1352 struct reloc_control *rc = fs_info->reloc_ctl; 1353 1354 spin_lock(&rc->reloc_root_tree.lock); 1355 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1356 root->node->start); 1357 if (rb_node) { 1358 node = rb_entry(rb_node, struct mapping_node, rb_node); 1359 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1360 } 1361 spin_unlock(&rc->reloc_root_tree.lock); 1362 1363 if (!node) 1364 return 0; 1365 BUG_ON((struct btrfs_root *)node->data != root); 1366 1367 spin_lock(&rc->reloc_root_tree.lock); 1368 node->bytenr = new_bytenr; 1369 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1370 node->bytenr, &node->rb_node); 1371 spin_unlock(&rc->reloc_root_tree.lock); 1372 if (rb_node) 1373 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1374 return 0; 1375 } 1376 1377 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1378 struct btrfs_root *root, u64 objectid) 1379 { 1380 struct btrfs_fs_info *fs_info = root->fs_info; 1381 struct btrfs_root *reloc_root; 1382 struct extent_buffer *eb; 1383 struct btrfs_root_item *root_item; 1384 struct btrfs_key root_key; 1385 int ret; 1386 1387 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1388 BUG_ON(!root_item); 1389 1390 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1391 root_key.type = BTRFS_ROOT_ITEM_KEY; 1392 root_key.offset = objectid; 1393 1394 if (root->root_key.objectid == objectid) { 1395 u64 commit_root_gen; 1396 1397 /* called by btrfs_init_reloc_root */ 1398 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1399 BTRFS_TREE_RELOC_OBJECTID); 1400 BUG_ON(ret); 1401 /* 1402 * Set the last_snapshot field to the generation of the commit 1403 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1404 * correctly (returns true) when the relocation root is created 1405 * either inside the critical section of a transaction commit 1406 * (through transaction.c:qgroup_account_snapshot()) and when 1407 * it's created before the transaction commit is started. 1408 */ 1409 commit_root_gen = btrfs_header_generation(root->commit_root); 1410 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1411 } else { 1412 /* 1413 * called by btrfs_reloc_post_snapshot_hook. 1414 * the source tree is a reloc tree, all tree blocks 1415 * modified after it was created have RELOC flag 1416 * set in their headers. so it's OK to not update 1417 * the 'last_snapshot'. 1418 */ 1419 ret = btrfs_copy_root(trans, root, root->node, &eb, 1420 BTRFS_TREE_RELOC_OBJECTID); 1421 BUG_ON(ret); 1422 } 1423 1424 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1425 btrfs_set_root_bytenr(root_item, eb->start); 1426 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1427 btrfs_set_root_generation(root_item, trans->transid); 1428 1429 if (root->root_key.objectid == objectid) { 1430 btrfs_set_root_refs(root_item, 0); 1431 memset(&root_item->drop_progress, 0, 1432 sizeof(struct btrfs_disk_key)); 1433 root_item->drop_level = 0; 1434 } 1435 1436 btrfs_tree_unlock(eb); 1437 free_extent_buffer(eb); 1438 1439 ret = btrfs_insert_root(trans, fs_info->tree_root, 1440 &root_key, root_item); 1441 BUG_ON(ret); 1442 kfree(root_item); 1443 1444 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1445 BUG_ON(IS_ERR(reloc_root)); 1446 reloc_root->last_trans = trans->transid; 1447 return reloc_root; 1448 } 1449 1450 /* 1451 * create reloc tree for a given fs tree. reloc tree is just a 1452 * snapshot of the fs tree with special root objectid. 1453 */ 1454 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1455 struct btrfs_root *root) 1456 { 1457 struct btrfs_fs_info *fs_info = root->fs_info; 1458 struct btrfs_root *reloc_root; 1459 struct reloc_control *rc = fs_info->reloc_ctl; 1460 struct btrfs_block_rsv *rsv; 1461 int clear_rsv = 0; 1462 int ret; 1463 1464 if (root->reloc_root) { 1465 reloc_root = root->reloc_root; 1466 reloc_root->last_trans = trans->transid; 1467 return 0; 1468 } 1469 1470 if (!rc || !rc->create_reloc_tree || 1471 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1472 return 0; 1473 1474 if (!trans->reloc_reserved) { 1475 rsv = trans->block_rsv; 1476 trans->block_rsv = rc->block_rsv; 1477 clear_rsv = 1; 1478 } 1479 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1480 if (clear_rsv) 1481 trans->block_rsv = rsv; 1482 1483 ret = __add_reloc_root(reloc_root); 1484 BUG_ON(ret < 0); 1485 root->reloc_root = reloc_root; 1486 return 0; 1487 } 1488 1489 /* 1490 * update root item of reloc tree 1491 */ 1492 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1493 struct btrfs_root *root) 1494 { 1495 struct btrfs_fs_info *fs_info = root->fs_info; 1496 struct btrfs_root *reloc_root; 1497 struct btrfs_root_item *root_item; 1498 int ret; 1499 1500 if (!root->reloc_root) 1501 goto out; 1502 1503 reloc_root = root->reloc_root; 1504 root_item = &reloc_root->root_item; 1505 1506 if (fs_info->reloc_ctl->merge_reloc_tree && 1507 btrfs_root_refs(root_item) == 0) { 1508 root->reloc_root = NULL; 1509 __del_reloc_root(reloc_root); 1510 } 1511 1512 if (reloc_root->commit_root != reloc_root->node) { 1513 btrfs_set_root_node(root_item, reloc_root->node); 1514 free_extent_buffer(reloc_root->commit_root); 1515 reloc_root->commit_root = btrfs_root_node(reloc_root); 1516 } 1517 1518 ret = btrfs_update_root(trans, fs_info->tree_root, 1519 &reloc_root->root_key, root_item); 1520 BUG_ON(ret); 1521 1522 out: 1523 return 0; 1524 } 1525 1526 /* 1527 * helper to find first cached inode with inode number >= objectid 1528 * in a subvolume 1529 */ 1530 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1531 { 1532 struct rb_node *node; 1533 struct rb_node *prev; 1534 struct btrfs_inode *entry; 1535 struct inode *inode; 1536 1537 spin_lock(&root->inode_lock); 1538 again: 1539 node = root->inode_tree.rb_node; 1540 prev = NULL; 1541 while (node) { 1542 prev = node; 1543 entry = rb_entry(node, struct btrfs_inode, rb_node); 1544 1545 if (objectid < btrfs_ino(entry)) 1546 node = node->rb_left; 1547 else if (objectid > btrfs_ino(entry)) 1548 node = node->rb_right; 1549 else 1550 break; 1551 } 1552 if (!node) { 1553 while (prev) { 1554 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1555 if (objectid <= btrfs_ino(entry)) { 1556 node = prev; 1557 break; 1558 } 1559 prev = rb_next(prev); 1560 } 1561 } 1562 while (node) { 1563 entry = rb_entry(node, struct btrfs_inode, rb_node); 1564 inode = igrab(&entry->vfs_inode); 1565 if (inode) { 1566 spin_unlock(&root->inode_lock); 1567 return inode; 1568 } 1569 1570 objectid = btrfs_ino(entry) + 1; 1571 if (cond_resched_lock(&root->inode_lock)) 1572 goto again; 1573 1574 node = rb_next(node); 1575 } 1576 spin_unlock(&root->inode_lock); 1577 return NULL; 1578 } 1579 1580 static int in_block_group(u64 bytenr, 1581 struct btrfs_block_group_cache *block_group) 1582 { 1583 if (bytenr >= block_group->key.objectid && 1584 bytenr < block_group->key.objectid + block_group->key.offset) 1585 return 1; 1586 return 0; 1587 } 1588 1589 /* 1590 * get new location of data 1591 */ 1592 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1593 u64 bytenr, u64 num_bytes) 1594 { 1595 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1596 struct btrfs_path *path; 1597 struct btrfs_file_extent_item *fi; 1598 struct extent_buffer *leaf; 1599 int ret; 1600 1601 path = btrfs_alloc_path(); 1602 if (!path) 1603 return -ENOMEM; 1604 1605 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1606 ret = btrfs_lookup_file_extent(NULL, root, path, 1607 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1608 if (ret < 0) 1609 goto out; 1610 if (ret > 0) { 1611 ret = -ENOENT; 1612 goto out; 1613 } 1614 1615 leaf = path->nodes[0]; 1616 fi = btrfs_item_ptr(leaf, path->slots[0], 1617 struct btrfs_file_extent_item); 1618 1619 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1620 btrfs_file_extent_compression(leaf, fi) || 1621 btrfs_file_extent_encryption(leaf, fi) || 1622 btrfs_file_extent_other_encoding(leaf, fi)); 1623 1624 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1625 ret = -EINVAL; 1626 goto out; 1627 } 1628 1629 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1630 ret = 0; 1631 out: 1632 btrfs_free_path(path); 1633 return ret; 1634 } 1635 1636 /* 1637 * update file extent items in the tree leaf to point to 1638 * the new locations. 1639 */ 1640 static noinline_for_stack 1641 int replace_file_extents(struct btrfs_trans_handle *trans, 1642 struct reloc_control *rc, 1643 struct btrfs_root *root, 1644 struct extent_buffer *leaf) 1645 { 1646 struct btrfs_fs_info *fs_info = root->fs_info; 1647 struct btrfs_key key; 1648 struct btrfs_file_extent_item *fi; 1649 struct inode *inode = NULL; 1650 u64 parent; 1651 u64 bytenr; 1652 u64 new_bytenr = 0; 1653 u64 num_bytes; 1654 u64 end; 1655 u32 nritems; 1656 u32 i; 1657 int ret = 0; 1658 int first = 1; 1659 int dirty = 0; 1660 1661 if (rc->stage != UPDATE_DATA_PTRS) 1662 return 0; 1663 1664 /* reloc trees always use full backref */ 1665 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1666 parent = leaf->start; 1667 else 1668 parent = 0; 1669 1670 nritems = btrfs_header_nritems(leaf); 1671 for (i = 0; i < nritems; i++) { 1672 cond_resched(); 1673 btrfs_item_key_to_cpu(leaf, &key, i); 1674 if (key.type != BTRFS_EXTENT_DATA_KEY) 1675 continue; 1676 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1677 if (btrfs_file_extent_type(leaf, fi) == 1678 BTRFS_FILE_EXTENT_INLINE) 1679 continue; 1680 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1681 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1682 if (bytenr == 0) 1683 continue; 1684 if (!in_block_group(bytenr, rc->block_group)) 1685 continue; 1686 1687 /* 1688 * if we are modifying block in fs tree, wait for readpage 1689 * to complete and drop the extent cache 1690 */ 1691 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1692 if (first) { 1693 inode = find_next_inode(root, key.objectid); 1694 first = 0; 1695 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1696 btrfs_add_delayed_iput(inode); 1697 inode = find_next_inode(root, key.objectid); 1698 } 1699 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1700 end = key.offset + 1701 btrfs_file_extent_num_bytes(leaf, fi); 1702 WARN_ON(!IS_ALIGNED(key.offset, 1703 fs_info->sectorsize)); 1704 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1705 end--; 1706 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1707 key.offset, end); 1708 if (!ret) 1709 continue; 1710 1711 btrfs_drop_extent_cache(BTRFS_I(inode), 1712 key.offset, end, 1); 1713 unlock_extent(&BTRFS_I(inode)->io_tree, 1714 key.offset, end); 1715 } 1716 } 1717 1718 ret = get_new_location(rc->data_inode, &new_bytenr, 1719 bytenr, num_bytes); 1720 if (ret) { 1721 /* 1722 * Don't have to abort since we've not changed anything 1723 * in the file extent yet. 1724 */ 1725 break; 1726 } 1727 1728 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1729 dirty = 1; 1730 1731 key.offset -= btrfs_file_extent_offset(leaf, fi); 1732 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1733 num_bytes, parent, 1734 btrfs_header_owner(leaf), 1735 key.objectid, key.offset); 1736 if (ret) { 1737 btrfs_abort_transaction(trans, ret); 1738 break; 1739 } 1740 1741 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1742 parent, btrfs_header_owner(leaf), 1743 key.objectid, key.offset); 1744 if (ret) { 1745 btrfs_abort_transaction(trans, ret); 1746 break; 1747 } 1748 } 1749 if (dirty) 1750 btrfs_mark_buffer_dirty(leaf); 1751 if (inode) 1752 btrfs_add_delayed_iput(inode); 1753 return ret; 1754 } 1755 1756 static noinline_for_stack 1757 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1758 struct btrfs_path *path, int level) 1759 { 1760 struct btrfs_disk_key key1; 1761 struct btrfs_disk_key key2; 1762 btrfs_node_key(eb, &key1, slot); 1763 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1764 return memcmp(&key1, &key2, sizeof(key1)); 1765 } 1766 1767 /* 1768 * try to replace tree blocks in fs tree with the new blocks 1769 * in reloc tree. tree blocks haven't been modified since the 1770 * reloc tree was create can be replaced. 1771 * 1772 * if a block was replaced, level of the block + 1 is returned. 1773 * if no block got replaced, 0 is returned. if there are other 1774 * errors, a negative error number is returned. 1775 */ 1776 static noinline_for_stack 1777 int replace_path(struct btrfs_trans_handle *trans, 1778 struct btrfs_root *dest, struct btrfs_root *src, 1779 struct btrfs_path *path, struct btrfs_key *next_key, 1780 int lowest_level, int max_level) 1781 { 1782 struct btrfs_fs_info *fs_info = dest->fs_info; 1783 struct extent_buffer *eb; 1784 struct extent_buffer *parent; 1785 struct btrfs_key key; 1786 u64 old_bytenr; 1787 u64 new_bytenr; 1788 u64 old_ptr_gen; 1789 u64 new_ptr_gen; 1790 u64 last_snapshot; 1791 u32 blocksize; 1792 int cow = 0; 1793 int level; 1794 int ret; 1795 int slot; 1796 1797 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1798 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1799 1800 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1801 again: 1802 slot = path->slots[lowest_level]; 1803 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1804 1805 eb = btrfs_lock_root_node(dest); 1806 btrfs_set_lock_blocking(eb); 1807 level = btrfs_header_level(eb); 1808 1809 if (level < lowest_level) { 1810 btrfs_tree_unlock(eb); 1811 free_extent_buffer(eb); 1812 return 0; 1813 } 1814 1815 if (cow) { 1816 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1817 BUG_ON(ret); 1818 } 1819 btrfs_set_lock_blocking(eb); 1820 1821 if (next_key) { 1822 next_key->objectid = (u64)-1; 1823 next_key->type = (u8)-1; 1824 next_key->offset = (u64)-1; 1825 } 1826 1827 parent = eb; 1828 while (1) { 1829 struct btrfs_key first_key; 1830 1831 level = btrfs_header_level(parent); 1832 BUG_ON(level < lowest_level); 1833 1834 ret = btrfs_bin_search(parent, &key, level, &slot); 1835 if (ret && slot > 0) 1836 slot--; 1837 1838 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1839 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1840 1841 old_bytenr = btrfs_node_blockptr(parent, slot); 1842 blocksize = fs_info->nodesize; 1843 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1844 btrfs_node_key_to_cpu(parent, &first_key, slot); 1845 1846 if (level <= max_level) { 1847 eb = path->nodes[level]; 1848 new_bytenr = btrfs_node_blockptr(eb, 1849 path->slots[level]); 1850 new_ptr_gen = btrfs_node_ptr_generation(eb, 1851 path->slots[level]); 1852 } else { 1853 new_bytenr = 0; 1854 new_ptr_gen = 0; 1855 } 1856 1857 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1858 ret = level; 1859 break; 1860 } 1861 1862 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1863 memcmp_node_keys(parent, slot, path, level)) { 1864 if (level <= lowest_level) { 1865 ret = 0; 1866 break; 1867 } 1868 1869 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1870 level - 1, &first_key); 1871 if (IS_ERR(eb)) { 1872 ret = PTR_ERR(eb); 1873 break; 1874 } else if (!extent_buffer_uptodate(eb)) { 1875 ret = -EIO; 1876 free_extent_buffer(eb); 1877 break; 1878 } 1879 btrfs_tree_lock(eb); 1880 if (cow) { 1881 ret = btrfs_cow_block(trans, dest, eb, parent, 1882 slot, &eb); 1883 BUG_ON(ret); 1884 } 1885 btrfs_set_lock_blocking(eb); 1886 1887 btrfs_tree_unlock(parent); 1888 free_extent_buffer(parent); 1889 1890 parent = eb; 1891 continue; 1892 } 1893 1894 if (!cow) { 1895 btrfs_tree_unlock(parent); 1896 free_extent_buffer(parent); 1897 cow = 1; 1898 goto again; 1899 } 1900 1901 btrfs_node_key_to_cpu(path->nodes[level], &key, 1902 path->slots[level]); 1903 btrfs_release_path(path); 1904 1905 path->lowest_level = level; 1906 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1907 path->lowest_level = 0; 1908 BUG_ON(ret); 1909 1910 /* 1911 * Info qgroup to trace both subtrees. 1912 * 1913 * We must trace both trees. 1914 * 1) Tree reloc subtree 1915 * If not traced, we will leak data numbers 1916 * 2) Fs subtree 1917 * If not traced, we will double count old data 1918 * and tree block numbers, if current trans doesn't free 1919 * data reloc tree inode. 1920 */ 1921 ret = btrfs_qgroup_trace_subtree(trans, src, parent, 1922 btrfs_header_generation(parent), 1923 btrfs_header_level(parent)); 1924 if (ret < 0) 1925 break; 1926 ret = btrfs_qgroup_trace_subtree(trans, dest, 1927 path->nodes[level], 1928 btrfs_header_generation(path->nodes[level]), 1929 btrfs_header_level(path->nodes[level])); 1930 if (ret < 0) 1931 break; 1932 1933 /* 1934 * swap blocks in fs tree and reloc tree. 1935 */ 1936 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1937 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1938 btrfs_mark_buffer_dirty(parent); 1939 1940 btrfs_set_node_blockptr(path->nodes[level], 1941 path->slots[level], old_bytenr); 1942 btrfs_set_node_ptr_generation(path->nodes[level], 1943 path->slots[level], old_ptr_gen); 1944 btrfs_mark_buffer_dirty(path->nodes[level]); 1945 1946 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, 1947 blocksize, path->nodes[level]->start, 1948 src->root_key.objectid, level - 1, 0); 1949 BUG_ON(ret); 1950 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, 1951 blocksize, 0, dest->root_key.objectid, 1952 level - 1, 0); 1953 BUG_ON(ret); 1954 1955 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1956 path->nodes[level]->start, 1957 src->root_key.objectid, level - 1, 0); 1958 BUG_ON(ret); 1959 1960 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1961 0, dest->root_key.objectid, level - 1, 1962 0); 1963 BUG_ON(ret); 1964 1965 btrfs_unlock_up_safe(path, 0); 1966 1967 ret = level; 1968 break; 1969 } 1970 btrfs_tree_unlock(parent); 1971 free_extent_buffer(parent); 1972 return ret; 1973 } 1974 1975 /* 1976 * helper to find next relocated block in reloc tree 1977 */ 1978 static noinline_for_stack 1979 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1980 int *level) 1981 { 1982 struct extent_buffer *eb; 1983 int i; 1984 u64 last_snapshot; 1985 u32 nritems; 1986 1987 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1988 1989 for (i = 0; i < *level; i++) { 1990 free_extent_buffer(path->nodes[i]); 1991 path->nodes[i] = NULL; 1992 } 1993 1994 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1995 eb = path->nodes[i]; 1996 nritems = btrfs_header_nritems(eb); 1997 while (path->slots[i] + 1 < nritems) { 1998 path->slots[i]++; 1999 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 2000 last_snapshot) 2001 continue; 2002 2003 *level = i; 2004 return 0; 2005 } 2006 free_extent_buffer(path->nodes[i]); 2007 path->nodes[i] = NULL; 2008 } 2009 return 1; 2010 } 2011 2012 /* 2013 * walk down reloc tree to find relocated block of lowest level 2014 */ 2015 static noinline_for_stack 2016 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2017 int *level) 2018 { 2019 struct btrfs_fs_info *fs_info = root->fs_info; 2020 struct extent_buffer *eb = NULL; 2021 int i; 2022 u64 bytenr; 2023 u64 ptr_gen = 0; 2024 u64 last_snapshot; 2025 u32 nritems; 2026 2027 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2028 2029 for (i = *level; i > 0; i--) { 2030 struct btrfs_key first_key; 2031 2032 eb = path->nodes[i]; 2033 nritems = btrfs_header_nritems(eb); 2034 while (path->slots[i] < nritems) { 2035 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2036 if (ptr_gen > last_snapshot) 2037 break; 2038 path->slots[i]++; 2039 } 2040 if (path->slots[i] >= nritems) { 2041 if (i == *level) 2042 break; 2043 *level = i + 1; 2044 return 0; 2045 } 2046 if (i == 1) { 2047 *level = i; 2048 return 0; 2049 } 2050 2051 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2052 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2053 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2054 &first_key); 2055 if (IS_ERR(eb)) { 2056 return PTR_ERR(eb); 2057 } else if (!extent_buffer_uptodate(eb)) { 2058 free_extent_buffer(eb); 2059 return -EIO; 2060 } 2061 BUG_ON(btrfs_header_level(eb) != i - 1); 2062 path->nodes[i - 1] = eb; 2063 path->slots[i - 1] = 0; 2064 } 2065 return 1; 2066 } 2067 2068 /* 2069 * invalidate extent cache for file extents whose key in range of 2070 * [min_key, max_key) 2071 */ 2072 static int invalidate_extent_cache(struct btrfs_root *root, 2073 struct btrfs_key *min_key, 2074 struct btrfs_key *max_key) 2075 { 2076 struct btrfs_fs_info *fs_info = root->fs_info; 2077 struct inode *inode = NULL; 2078 u64 objectid; 2079 u64 start, end; 2080 u64 ino; 2081 2082 objectid = min_key->objectid; 2083 while (1) { 2084 cond_resched(); 2085 iput(inode); 2086 2087 if (objectid > max_key->objectid) 2088 break; 2089 2090 inode = find_next_inode(root, objectid); 2091 if (!inode) 2092 break; 2093 ino = btrfs_ino(BTRFS_I(inode)); 2094 2095 if (ino > max_key->objectid) { 2096 iput(inode); 2097 break; 2098 } 2099 2100 objectid = ino + 1; 2101 if (!S_ISREG(inode->i_mode)) 2102 continue; 2103 2104 if (unlikely(min_key->objectid == ino)) { 2105 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2106 continue; 2107 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2108 start = 0; 2109 else { 2110 start = min_key->offset; 2111 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2112 } 2113 } else { 2114 start = 0; 2115 } 2116 2117 if (unlikely(max_key->objectid == ino)) { 2118 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2119 continue; 2120 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2121 end = (u64)-1; 2122 } else { 2123 if (max_key->offset == 0) 2124 continue; 2125 end = max_key->offset; 2126 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2127 end--; 2128 } 2129 } else { 2130 end = (u64)-1; 2131 } 2132 2133 /* the lock_extent waits for readpage to complete */ 2134 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2135 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2136 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2137 } 2138 return 0; 2139 } 2140 2141 static int find_next_key(struct btrfs_path *path, int level, 2142 struct btrfs_key *key) 2143 2144 { 2145 while (level < BTRFS_MAX_LEVEL) { 2146 if (!path->nodes[level]) 2147 break; 2148 if (path->slots[level] + 1 < 2149 btrfs_header_nritems(path->nodes[level])) { 2150 btrfs_node_key_to_cpu(path->nodes[level], key, 2151 path->slots[level] + 1); 2152 return 0; 2153 } 2154 level++; 2155 } 2156 return 1; 2157 } 2158 2159 /* 2160 * merge the relocated tree blocks in reloc tree with corresponding 2161 * fs tree. 2162 */ 2163 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2164 struct btrfs_root *root) 2165 { 2166 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2167 LIST_HEAD(inode_list); 2168 struct btrfs_key key; 2169 struct btrfs_key next_key; 2170 struct btrfs_trans_handle *trans = NULL; 2171 struct btrfs_root *reloc_root; 2172 struct btrfs_root_item *root_item; 2173 struct btrfs_path *path; 2174 struct extent_buffer *leaf; 2175 int level; 2176 int max_level; 2177 int replaced = 0; 2178 int ret; 2179 int err = 0; 2180 u32 min_reserved; 2181 2182 path = btrfs_alloc_path(); 2183 if (!path) 2184 return -ENOMEM; 2185 path->reada = READA_FORWARD; 2186 2187 reloc_root = root->reloc_root; 2188 root_item = &reloc_root->root_item; 2189 2190 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2191 level = btrfs_root_level(root_item); 2192 extent_buffer_get(reloc_root->node); 2193 path->nodes[level] = reloc_root->node; 2194 path->slots[level] = 0; 2195 } else { 2196 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2197 2198 level = root_item->drop_level; 2199 BUG_ON(level == 0); 2200 path->lowest_level = level; 2201 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2202 path->lowest_level = 0; 2203 if (ret < 0) { 2204 btrfs_free_path(path); 2205 return ret; 2206 } 2207 2208 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2209 path->slots[level]); 2210 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2211 2212 btrfs_unlock_up_safe(path, 0); 2213 } 2214 2215 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2216 memset(&next_key, 0, sizeof(next_key)); 2217 2218 while (1) { 2219 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2220 BTRFS_RESERVE_FLUSH_ALL); 2221 if (ret) { 2222 err = ret; 2223 goto out; 2224 } 2225 trans = btrfs_start_transaction(root, 0); 2226 if (IS_ERR(trans)) { 2227 err = PTR_ERR(trans); 2228 trans = NULL; 2229 goto out; 2230 } 2231 trans->block_rsv = rc->block_rsv; 2232 2233 replaced = 0; 2234 max_level = level; 2235 2236 ret = walk_down_reloc_tree(reloc_root, path, &level); 2237 if (ret < 0) { 2238 err = ret; 2239 goto out; 2240 } 2241 if (ret > 0) 2242 break; 2243 2244 if (!find_next_key(path, level, &key) && 2245 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2246 ret = 0; 2247 } else { 2248 ret = replace_path(trans, root, reloc_root, path, 2249 &next_key, level, max_level); 2250 } 2251 if (ret < 0) { 2252 err = ret; 2253 goto out; 2254 } 2255 2256 if (ret > 0) { 2257 level = ret; 2258 btrfs_node_key_to_cpu(path->nodes[level], &key, 2259 path->slots[level]); 2260 replaced = 1; 2261 } 2262 2263 ret = walk_up_reloc_tree(reloc_root, path, &level); 2264 if (ret > 0) 2265 break; 2266 2267 BUG_ON(level == 0); 2268 /* 2269 * save the merging progress in the drop_progress. 2270 * this is OK since root refs == 1 in this case. 2271 */ 2272 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2273 path->slots[level]); 2274 root_item->drop_level = level; 2275 2276 btrfs_end_transaction_throttle(trans); 2277 trans = NULL; 2278 2279 btrfs_btree_balance_dirty(fs_info); 2280 2281 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2282 invalidate_extent_cache(root, &key, &next_key); 2283 } 2284 2285 /* 2286 * handle the case only one block in the fs tree need to be 2287 * relocated and the block is tree root. 2288 */ 2289 leaf = btrfs_lock_root_node(root); 2290 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2291 btrfs_tree_unlock(leaf); 2292 free_extent_buffer(leaf); 2293 if (ret < 0) 2294 err = ret; 2295 out: 2296 btrfs_free_path(path); 2297 2298 if (err == 0) { 2299 memset(&root_item->drop_progress, 0, 2300 sizeof(root_item->drop_progress)); 2301 root_item->drop_level = 0; 2302 btrfs_set_root_refs(root_item, 0); 2303 btrfs_update_reloc_root(trans, root); 2304 } 2305 2306 if (trans) 2307 btrfs_end_transaction_throttle(trans); 2308 2309 btrfs_btree_balance_dirty(fs_info); 2310 2311 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2312 invalidate_extent_cache(root, &key, &next_key); 2313 2314 return err; 2315 } 2316 2317 static noinline_for_stack 2318 int prepare_to_merge(struct reloc_control *rc, int err) 2319 { 2320 struct btrfs_root *root = rc->extent_root; 2321 struct btrfs_fs_info *fs_info = root->fs_info; 2322 struct btrfs_root *reloc_root; 2323 struct btrfs_trans_handle *trans; 2324 LIST_HEAD(reloc_roots); 2325 u64 num_bytes = 0; 2326 int ret; 2327 2328 mutex_lock(&fs_info->reloc_mutex); 2329 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2330 rc->merging_rsv_size += rc->nodes_relocated * 2; 2331 mutex_unlock(&fs_info->reloc_mutex); 2332 2333 again: 2334 if (!err) { 2335 num_bytes = rc->merging_rsv_size; 2336 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2337 BTRFS_RESERVE_FLUSH_ALL); 2338 if (ret) 2339 err = ret; 2340 } 2341 2342 trans = btrfs_join_transaction(rc->extent_root); 2343 if (IS_ERR(trans)) { 2344 if (!err) 2345 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2346 num_bytes); 2347 return PTR_ERR(trans); 2348 } 2349 2350 if (!err) { 2351 if (num_bytes != rc->merging_rsv_size) { 2352 btrfs_end_transaction(trans); 2353 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2354 num_bytes); 2355 goto again; 2356 } 2357 } 2358 2359 rc->merge_reloc_tree = 1; 2360 2361 while (!list_empty(&rc->reloc_roots)) { 2362 reloc_root = list_entry(rc->reloc_roots.next, 2363 struct btrfs_root, root_list); 2364 list_del_init(&reloc_root->root_list); 2365 2366 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2367 BUG_ON(IS_ERR(root)); 2368 BUG_ON(root->reloc_root != reloc_root); 2369 2370 /* 2371 * set reference count to 1, so btrfs_recover_relocation 2372 * knows it should resumes merging 2373 */ 2374 if (!err) 2375 btrfs_set_root_refs(&reloc_root->root_item, 1); 2376 btrfs_update_reloc_root(trans, root); 2377 2378 list_add(&reloc_root->root_list, &reloc_roots); 2379 } 2380 2381 list_splice(&reloc_roots, &rc->reloc_roots); 2382 2383 if (!err) 2384 btrfs_commit_transaction(trans); 2385 else 2386 btrfs_end_transaction(trans); 2387 return err; 2388 } 2389 2390 static noinline_for_stack 2391 void free_reloc_roots(struct list_head *list) 2392 { 2393 struct btrfs_root *reloc_root; 2394 2395 while (!list_empty(list)) { 2396 reloc_root = list_entry(list->next, struct btrfs_root, 2397 root_list); 2398 __del_reloc_root(reloc_root); 2399 free_extent_buffer(reloc_root->node); 2400 free_extent_buffer(reloc_root->commit_root); 2401 reloc_root->node = NULL; 2402 reloc_root->commit_root = NULL; 2403 } 2404 } 2405 2406 static noinline_for_stack 2407 void merge_reloc_roots(struct reloc_control *rc) 2408 { 2409 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2410 struct btrfs_root *root; 2411 struct btrfs_root *reloc_root; 2412 LIST_HEAD(reloc_roots); 2413 int found = 0; 2414 int ret = 0; 2415 again: 2416 root = rc->extent_root; 2417 2418 /* 2419 * this serializes us with btrfs_record_root_in_transaction, 2420 * we have to make sure nobody is in the middle of 2421 * adding their roots to the list while we are 2422 * doing this splice 2423 */ 2424 mutex_lock(&fs_info->reloc_mutex); 2425 list_splice_init(&rc->reloc_roots, &reloc_roots); 2426 mutex_unlock(&fs_info->reloc_mutex); 2427 2428 while (!list_empty(&reloc_roots)) { 2429 found = 1; 2430 reloc_root = list_entry(reloc_roots.next, 2431 struct btrfs_root, root_list); 2432 2433 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2434 root = read_fs_root(fs_info, 2435 reloc_root->root_key.offset); 2436 BUG_ON(IS_ERR(root)); 2437 BUG_ON(root->reloc_root != reloc_root); 2438 2439 ret = merge_reloc_root(rc, root); 2440 if (ret) { 2441 if (list_empty(&reloc_root->root_list)) 2442 list_add_tail(&reloc_root->root_list, 2443 &reloc_roots); 2444 goto out; 2445 } 2446 } else { 2447 list_del_init(&reloc_root->root_list); 2448 } 2449 2450 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2451 if (ret < 0) { 2452 if (list_empty(&reloc_root->root_list)) 2453 list_add_tail(&reloc_root->root_list, 2454 &reloc_roots); 2455 goto out; 2456 } 2457 } 2458 2459 if (found) { 2460 found = 0; 2461 goto again; 2462 } 2463 out: 2464 if (ret) { 2465 btrfs_handle_fs_error(fs_info, ret, NULL); 2466 if (!list_empty(&reloc_roots)) 2467 free_reloc_roots(&reloc_roots); 2468 2469 /* new reloc root may be added */ 2470 mutex_lock(&fs_info->reloc_mutex); 2471 list_splice_init(&rc->reloc_roots, &reloc_roots); 2472 mutex_unlock(&fs_info->reloc_mutex); 2473 if (!list_empty(&reloc_roots)) 2474 free_reloc_roots(&reloc_roots); 2475 } 2476 2477 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2478 } 2479 2480 static void free_block_list(struct rb_root *blocks) 2481 { 2482 struct tree_block *block; 2483 struct rb_node *rb_node; 2484 while ((rb_node = rb_first(blocks))) { 2485 block = rb_entry(rb_node, struct tree_block, rb_node); 2486 rb_erase(rb_node, blocks); 2487 kfree(block); 2488 } 2489 } 2490 2491 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2492 struct btrfs_root *reloc_root) 2493 { 2494 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2495 struct btrfs_root *root; 2496 2497 if (reloc_root->last_trans == trans->transid) 2498 return 0; 2499 2500 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2501 BUG_ON(IS_ERR(root)); 2502 BUG_ON(root->reloc_root != reloc_root); 2503 2504 return btrfs_record_root_in_trans(trans, root); 2505 } 2506 2507 static noinline_for_stack 2508 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2509 struct reloc_control *rc, 2510 struct backref_node *node, 2511 struct backref_edge *edges[]) 2512 { 2513 struct backref_node *next; 2514 struct btrfs_root *root; 2515 int index = 0; 2516 2517 next = node; 2518 while (1) { 2519 cond_resched(); 2520 next = walk_up_backref(next, edges, &index); 2521 root = next->root; 2522 BUG_ON(!root); 2523 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2524 2525 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2526 record_reloc_root_in_trans(trans, root); 2527 break; 2528 } 2529 2530 btrfs_record_root_in_trans(trans, root); 2531 root = root->reloc_root; 2532 2533 if (next->new_bytenr != root->node->start) { 2534 BUG_ON(next->new_bytenr); 2535 BUG_ON(!list_empty(&next->list)); 2536 next->new_bytenr = root->node->start; 2537 next->root = root; 2538 list_add_tail(&next->list, 2539 &rc->backref_cache.changed); 2540 __mark_block_processed(rc, next); 2541 break; 2542 } 2543 2544 WARN_ON(1); 2545 root = NULL; 2546 next = walk_down_backref(edges, &index); 2547 if (!next || next->level <= node->level) 2548 break; 2549 } 2550 if (!root) 2551 return NULL; 2552 2553 next = node; 2554 /* setup backref node path for btrfs_reloc_cow_block */ 2555 while (1) { 2556 rc->backref_cache.path[next->level] = next; 2557 if (--index < 0) 2558 break; 2559 next = edges[index]->node[UPPER]; 2560 } 2561 return root; 2562 } 2563 2564 /* 2565 * select a tree root for relocation. return NULL if the block 2566 * is reference counted. we should use do_relocation() in this 2567 * case. return a tree root pointer if the block isn't reference 2568 * counted. return -ENOENT if the block is root of reloc tree. 2569 */ 2570 static noinline_for_stack 2571 struct btrfs_root *select_one_root(struct backref_node *node) 2572 { 2573 struct backref_node *next; 2574 struct btrfs_root *root; 2575 struct btrfs_root *fs_root = NULL; 2576 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2577 int index = 0; 2578 2579 next = node; 2580 while (1) { 2581 cond_resched(); 2582 next = walk_up_backref(next, edges, &index); 2583 root = next->root; 2584 BUG_ON(!root); 2585 2586 /* no other choice for non-references counted tree */ 2587 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2588 return root; 2589 2590 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2591 fs_root = root; 2592 2593 if (next != node) 2594 return NULL; 2595 2596 next = walk_down_backref(edges, &index); 2597 if (!next || next->level <= node->level) 2598 break; 2599 } 2600 2601 if (!fs_root) 2602 return ERR_PTR(-ENOENT); 2603 return fs_root; 2604 } 2605 2606 static noinline_for_stack 2607 u64 calcu_metadata_size(struct reloc_control *rc, 2608 struct backref_node *node, int reserve) 2609 { 2610 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2611 struct backref_node *next = node; 2612 struct backref_edge *edge; 2613 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2614 u64 num_bytes = 0; 2615 int index = 0; 2616 2617 BUG_ON(reserve && node->processed); 2618 2619 while (next) { 2620 cond_resched(); 2621 while (1) { 2622 if (next->processed && (reserve || next != node)) 2623 break; 2624 2625 num_bytes += fs_info->nodesize; 2626 2627 if (list_empty(&next->upper)) 2628 break; 2629 2630 edge = list_entry(next->upper.next, 2631 struct backref_edge, list[LOWER]); 2632 edges[index++] = edge; 2633 next = edge->node[UPPER]; 2634 } 2635 next = walk_down_backref(edges, &index); 2636 } 2637 return num_bytes; 2638 } 2639 2640 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2641 struct reloc_control *rc, 2642 struct backref_node *node) 2643 { 2644 struct btrfs_root *root = rc->extent_root; 2645 struct btrfs_fs_info *fs_info = root->fs_info; 2646 u64 num_bytes; 2647 int ret; 2648 u64 tmp; 2649 2650 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2651 2652 trans->block_rsv = rc->block_rsv; 2653 rc->reserved_bytes += num_bytes; 2654 2655 /* 2656 * We are under a transaction here so we can only do limited flushing. 2657 * If we get an enospc just kick back -EAGAIN so we know to drop the 2658 * transaction and try to refill when we can flush all the things. 2659 */ 2660 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2661 BTRFS_RESERVE_FLUSH_LIMIT); 2662 if (ret) { 2663 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2664 while (tmp <= rc->reserved_bytes) 2665 tmp <<= 1; 2666 /* 2667 * only one thread can access block_rsv at this point, 2668 * so we don't need hold lock to protect block_rsv. 2669 * we expand more reservation size here to allow enough 2670 * space for relocation and we will return eailer in 2671 * enospc case. 2672 */ 2673 rc->block_rsv->size = tmp + fs_info->nodesize * 2674 RELOCATION_RESERVED_NODES; 2675 return -EAGAIN; 2676 } 2677 2678 return 0; 2679 } 2680 2681 /* 2682 * relocate a block tree, and then update pointers in upper level 2683 * blocks that reference the block to point to the new location. 2684 * 2685 * if called by link_to_upper, the block has already been relocated. 2686 * in that case this function just updates pointers. 2687 */ 2688 static int do_relocation(struct btrfs_trans_handle *trans, 2689 struct reloc_control *rc, 2690 struct backref_node *node, 2691 struct btrfs_key *key, 2692 struct btrfs_path *path, int lowest) 2693 { 2694 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2695 struct backref_node *upper; 2696 struct backref_edge *edge; 2697 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2698 struct btrfs_root *root; 2699 struct extent_buffer *eb; 2700 u32 blocksize; 2701 u64 bytenr; 2702 u64 generation; 2703 int slot; 2704 int ret; 2705 int err = 0; 2706 2707 BUG_ON(lowest && node->eb); 2708 2709 path->lowest_level = node->level + 1; 2710 rc->backref_cache.path[node->level] = node; 2711 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2712 struct btrfs_key first_key; 2713 2714 cond_resched(); 2715 2716 upper = edge->node[UPPER]; 2717 root = select_reloc_root(trans, rc, upper, edges); 2718 BUG_ON(!root); 2719 2720 if (upper->eb && !upper->locked) { 2721 if (!lowest) { 2722 ret = btrfs_bin_search(upper->eb, key, 2723 upper->level, &slot); 2724 BUG_ON(ret); 2725 bytenr = btrfs_node_blockptr(upper->eb, slot); 2726 if (node->eb->start == bytenr) 2727 goto next; 2728 } 2729 drop_node_buffer(upper); 2730 } 2731 2732 if (!upper->eb) { 2733 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2734 if (ret) { 2735 if (ret < 0) 2736 err = ret; 2737 else 2738 err = -ENOENT; 2739 2740 btrfs_release_path(path); 2741 break; 2742 } 2743 2744 if (!upper->eb) { 2745 upper->eb = path->nodes[upper->level]; 2746 path->nodes[upper->level] = NULL; 2747 } else { 2748 BUG_ON(upper->eb != path->nodes[upper->level]); 2749 } 2750 2751 upper->locked = 1; 2752 path->locks[upper->level] = 0; 2753 2754 slot = path->slots[upper->level]; 2755 btrfs_release_path(path); 2756 } else { 2757 ret = btrfs_bin_search(upper->eb, key, upper->level, 2758 &slot); 2759 BUG_ON(ret); 2760 } 2761 2762 bytenr = btrfs_node_blockptr(upper->eb, slot); 2763 if (lowest) { 2764 if (bytenr != node->bytenr) { 2765 btrfs_err(root->fs_info, 2766 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2767 bytenr, node->bytenr, slot, 2768 upper->eb->start); 2769 err = -EIO; 2770 goto next; 2771 } 2772 } else { 2773 if (node->eb->start == bytenr) 2774 goto next; 2775 } 2776 2777 blocksize = root->fs_info->nodesize; 2778 generation = btrfs_node_ptr_generation(upper->eb, slot); 2779 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2780 eb = read_tree_block(fs_info, bytenr, generation, 2781 upper->level - 1, &first_key); 2782 if (IS_ERR(eb)) { 2783 err = PTR_ERR(eb); 2784 goto next; 2785 } else if (!extent_buffer_uptodate(eb)) { 2786 free_extent_buffer(eb); 2787 err = -EIO; 2788 goto next; 2789 } 2790 btrfs_tree_lock(eb); 2791 btrfs_set_lock_blocking(eb); 2792 2793 if (!node->eb) { 2794 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2795 slot, &eb); 2796 btrfs_tree_unlock(eb); 2797 free_extent_buffer(eb); 2798 if (ret < 0) { 2799 err = ret; 2800 goto next; 2801 } 2802 BUG_ON(node->eb != eb); 2803 } else { 2804 btrfs_set_node_blockptr(upper->eb, slot, 2805 node->eb->start); 2806 btrfs_set_node_ptr_generation(upper->eb, slot, 2807 trans->transid); 2808 btrfs_mark_buffer_dirty(upper->eb); 2809 2810 ret = btrfs_inc_extent_ref(trans, root, 2811 node->eb->start, blocksize, 2812 upper->eb->start, 2813 btrfs_header_owner(upper->eb), 2814 node->level, 0); 2815 BUG_ON(ret); 2816 2817 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2818 BUG_ON(ret); 2819 } 2820 next: 2821 if (!upper->pending) 2822 drop_node_buffer(upper); 2823 else 2824 unlock_node_buffer(upper); 2825 if (err) 2826 break; 2827 } 2828 2829 if (!err && node->pending) { 2830 drop_node_buffer(node); 2831 list_move_tail(&node->list, &rc->backref_cache.changed); 2832 node->pending = 0; 2833 } 2834 2835 path->lowest_level = 0; 2836 BUG_ON(err == -ENOSPC); 2837 return err; 2838 } 2839 2840 static int link_to_upper(struct btrfs_trans_handle *trans, 2841 struct reloc_control *rc, 2842 struct backref_node *node, 2843 struct btrfs_path *path) 2844 { 2845 struct btrfs_key key; 2846 2847 btrfs_node_key_to_cpu(node->eb, &key, 0); 2848 return do_relocation(trans, rc, node, &key, path, 0); 2849 } 2850 2851 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2852 struct reloc_control *rc, 2853 struct btrfs_path *path, int err) 2854 { 2855 LIST_HEAD(list); 2856 struct backref_cache *cache = &rc->backref_cache; 2857 struct backref_node *node; 2858 int level; 2859 int ret; 2860 2861 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2862 while (!list_empty(&cache->pending[level])) { 2863 node = list_entry(cache->pending[level].next, 2864 struct backref_node, list); 2865 list_move_tail(&node->list, &list); 2866 BUG_ON(!node->pending); 2867 2868 if (!err) { 2869 ret = link_to_upper(trans, rc, node, path); 2870 if (ret < 0) 2871 err = ret; 2872 } 2873 } 2874 list_splice_init(&list, &cache->pending[level]); 2875 } 2876 return err; 2877 } 2878 2879 static void mark_block_processed(struct reloc_control *rc, 2880 u64 bytenr, u32 blocksize) 2881 { 2882 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2883 EXTENT_DIRTY); 2884 } 2885 2886 static void __mark_block_processed(struct reloc_control *rc, 2887 struct backref_node *node) 2888 { 2889 u32 blocksize; 2890 if (node->level == 0 || 2891 in_block_group(node->bytenr, rc->block_group)) { 2892 blocksize = rc->extent_root->fs_info->nodesize; 2893 mark_block_processed(rc, node->bytenr, blocksize); 2894 } 2895 node->processed = 1; 2896 } 2897 2898 /* 2899 * mark a block and all blocks directly/indirectly reference the block 2900 * as processed. 2901 */ 2902 static void update_processed_blocks(struct reloc_control *rc, 2903 struct backref_node *node) 2904 { 2905 struct backref_node *next = node; 2906 struct backref_edge *edge; 2907 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2908 int index = 0; 2909 2910 while (next) { 2911 cond_resched(); 2912 while (1) { 2913 if (next->processed) 2914 break; 2915 2916 __mark_block_processed(rc, next); 2917 2918 if (list_empty(&next->upper)) 2919 break; 2920 2921 edge = list_entry(next->upper.next, 2922 struct backref_edge, list[LOWER]); 2923 edges[index++] = edge; 2924 next = edge->node[UPPER]; 2925 } 2926 next = walk_down_backref(edges, &index); 2927 } 2928 } 2929 2930 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2931 { 2932 u32 blocksize = rc->extent_root->fs_info->nodesize; 2933 2934 if (test_range_bit(&rc->processed_blocks, bytenr, 2935 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2936 return 1; 2937 return 0; 2938 } 2939 2940 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2941 struct tree_block *block) 2942 { 2943 struct extent_buffer *eb; 2944 2945 BUG_ON(block->key_ready); 2946 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2947 block->level, NULL); 2948 if (IS_ERR(eb)) { 2949 return PTR_ERR(eb); 2950 } else if (!extent_buffer_uptodate(eb)) { 2951 free_extent_buffer(eb); 2952 return -EIO; 2953 } 2954 WARN_ON(btrfs_header_level(eb) != block->level); 2955 if (block->level == 0) 2956 btrfs_item_key_to_cpu(eb, &block->key, 0); 2957 else 2958 btrfs_node_key_to_cpu(eb, &block->key, 0); 2959 free_extent_buffer(eb); 2960 block->key_ready = 1; 2961 return 0; 2962 } 2963 2964 /* 2965 * helper function to relocate a tree block 2966 */ 2967 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2968 struct reloc_control *rc, 2969 struct backref_node *node, 2970 struct btrfs_key *key, 2971 struct btrfs_path *path) 2972 { 2973 struct btrfs_root *root; 2974 int ret = 0; 2975 2976 if (!node) 2977 return 0; 2978 2979 BUG_ON(node->processed); 2980 root = select_one_root(node); 2981 if (root == ERR_PTR(-ENOENT)) { 2982 update_processed_blocks(rc, node); 2983 goto out; 2984 } 2985 2986 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2987 ret = reserve_metadata_space(trans, rc, node); 2988 if (ret) 2989 goto out; 2990 } 2991 2992 if (root) { 2993 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2994 BUG_ON(node->new_bytenr); 2995 BUG_ON(!list_empty(&node->list)); 2996 btrfs_record_root_in_trans(trans, root); 2997 root = root->reloc_root; 2998 node->new_bytenr = root->node->start; 2999 node->root = root; 3000 list_add_tail(&node->list, &rc->backref_cache.changed); 3001 } else { 3002 path->lowest_level = node->level; 3003 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3004 btrfs_release_path(path); 3005 if (ret > 0) 3006 ret = 0; 3007 } 3008 if (!ret) 3009 update_processed_blocks(rc, node); 3010 } else { 3011 ret = do_relocation(trans, rc, node, key, path, 1); 3012 } 3013 out: 3014 if (ret || node->level == 0 || node->cowonly) 3015 remove_backref_node(&rc->backref_cache, node); 3016 return ret; 3017 } 3018 3019 /* 3020 * relocate a list of blocks 3021 */ 3022 static noinline_for_stack 3023 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3024 struct reloc_control *rc, struct rb_root *blocks) 3025 { 3026 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3027 struct backref_node *node; 3028 struct btrfs_path *path; 3029 struct tree_block *block; 3030 struct rb_node *rb_node; 3031 int ret; 3032 int err = 0; 3033 3034 path = btrfs_alloc_path(); 3035 if (!path) { 3036 err = -ENOMEM; 3037 goto out_free_blocks; 3038 } 3039 3040 rb_node = rb_first(blocks); 3041 while (rb_node) { 3042 block = rb_entry(rb_node, struct tree_block, rb_node); 3043 if (!block->key_ready) 3044 readahead_tree_block(fs_info, block->bytenr); 3045 rb_node = rb_next(rb_node); 3046 } 3047 3048 rb_node = rb_first(blocks); 3049 while (rb_node) { 3050 block = rb_entry(rb_node, struct tree_block, rb_node); 3051 if (!block->key_ready) { 3052 err = get_tree_block_key(fs_info, block); 3053 if (err) 3054 goto out_free_path; 3055 } 3056 rb_node = rb_next(rb_node); 3057 } 3058 3059 rb_node = rb_first(blocks); 3060 while (rb_node) { 3061 block = rb_entry(rb_node, struct tree_block, rb_node); 3062 3063 node = build_backref_tree(rc, &block->key, 3064 block->level, block->bytenr); 3065 if (IS_ERR(node)) { 3066 err = PTR_ERR(node); 3067 goto out; 3068 } 3069 3070 ret = relocate_tree_block(trans, rc, node, &block->key, 3071 path); 3072 if (ret < 0) { 3073 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3074 err = ret; 3075 goto out; 3076 } 3077 rb_node = rb_next(rb_node); 3078 } 3079 out: 3080 err = finish_pending_nodes(trans, rc, path, err); 3081 3082 out_free_path: 3083 btrfs_free_path(path); 3084 out_free_blocks: 3085 free_block_list(blocks); 3086 return err; 3087 } 3088 3089 static noinline_for_stack 3090 int prealloc_file_extent_cluster(struct inode *inode, 3091 struct file_extent_cluster *cluster) 3092 { 3093 u64 alloc_hint = 0; 3094 u64 start; 3095 u64 end; 3096 u64 offset = BTRFS_I(inode)->index_cnt; 3097 u64 num_bytes; 3098 int nr = 0; 3099 int ret = 0; 3100 u64 prealloc_start = cluster->start - offset; 3101 u64 prealloc_end = cluster->end - offset; 3102 u64 cur_offset; 3103 struct extent_changeset *data_reserved = NULL; 3104 3105 BUG_ON(cluster->start != cluster->boundary[0]); 3106 inode_lock(inode); 3107 3108 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3109 prealloc_end + 1 - prealloc_start); 3110 if (ret) 3111 goto out; 3112 3113 cur_offset = prealloc_start; 3114 while (nr < cluster->nr) { 3115 start = cluster->boundary[nr] - offset; 3116 if (nr + 1 < cluster->nr) 3117 end = cluster->boundary[nr + 1] - 1 - offset; 3118 else 3119 end = cluster->end - offset; 3120 3121 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3122 num_bytes = end + 1 - start; 3123 if (cur_offset < start) 3124 btrfs_free_reserved_data_space(inode, data_reserved, 3125 cur_offset, start - cur_offset); 3126 ret = btrfs_prealloc_file_range(inode, 0, start, 3127 num_bytes, num_bytes, 3128 end + 1, &alloc_hint); 3129 cur_offset = end + 1; 3130 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3131 if (ret) 3132 break; 3133 nr++; 3134 } 3135 if (cur_offset < prealloc_end) 3136 btrfs_free_reserved_data_space(inode, data_reserved, 3137 cur_offset, prealloc_end + 1 - cur_offset); 3138 out: 3139 inode_unlock(inode); 3140 extent_changeset_free(data_reserved); 3141 return ret; 3142 } 3143 3144 static noinline_for_stack 3145 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3146 u64 block_start) 3147 { 3148 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3149 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3150 struct extent_map *em; 3151 int ret = 0; 3152 3153 em = alloc_extent_map(); 3154 if (!em) 3155 return -ENOMEM; 3156 3157 em->start = start; 3158 em->len = end + 1 - start; 3159 em->block_len = em->len; 3160 em->block_start = block_start; 3161 em->bdev = fs_info->fs_devices->latest_bdev; 3162 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3163 3164 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3165 while (1) { 3166 write_lock(&em_tree->lock); 3167 ret = add_extent_mapping(em_tree, em, 0); 3168 write_unlock(&em_tree->lock); 3169 if (ret != -EEXIST) { 3170 free_extent_map(em); 3171 break; 3172 } 3173 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3174 } 3175 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3176 return ret; 3177 } 3178 3179 static int relocate_file_extent_cluster(struct inode *inode, 3180 struct file_extent_cluster *cluster) 3181 { 3182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3183 u64 page_start; 3184 u64 page_end; 3185 u64 offset = BTRFS_I(inode)->index_cnt; 3186 unsigned long index; 3187 unsigned long last_index; 3188 struct page *page; 3189 struct file_ra_state *ra; 3190 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3191 int nr = 0; 3192 int ret = 0; 3193 3194 if (!cluster->nr) 3195 return 0; 3196 3197 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3198 if (!ra) 3199 return -ENOMEM; 3200 3201 ret = prealloc_file_extent_cluster(inode, cluster); 3202 if (ret) 3203 goto out; 3204 3205 file_ra_state_init(ra, inode->i_mapping); 3206 3207 ret = setup_extent_mapping(inode, cluster->start - offset, 3208 cluster->end - offset, cluster->start); 3209 if (ret) 3210 goto out; 3211 3212 index = (cluster->start - offset) >> PAGE_SHIFT; 3213 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3214 while (index <= last_index) { 3215 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3216 PAGE_SIZE); 3217 if (ret) 3218 goto out; 3219 3220 page = find_lock_page(inode->i_mapping, index); 3221 if (!page) { 3222 page_cache_sync_readahead(inode->i_mapping, 3223 ra, NULL, index, 3224 last_index + 1 - index); 3225 page = find_or_create_page(inode->i_mapping, index, 3226 mask); 3227 if (!page) { 3228 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3229 PAGE_SIZE, true); 3230 ret = -ENOMEM; 3231 goto out; 3232 } 3233 } 3234 3235 if (PageReadahead(page)) { 3236 page_cache_async_readahead(inode->i_mapping, 3237 ra, NULL, page, index, 3238 last_index + 1 - index); 3239 } 3240 3241 if (!PageUptodate(page)) { 3242 btrfs_readpage(NULL, page); 3243 lock_page(page); 3244 if (!PageUptodate(page)) { 3245 unlock_page(page); 3246 put_page(page); 3247 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3248 PAGE_SIZE, true); 3249 btrfs_delalloc_release_extents(BTRFS_I(inode), 3250 PAGE_SIZE, true); 3251 ret = -EIO; 3252 goto out; 3253 } 3254 } 3255 3256 page_start = page_offset(page); 3257 page_end = page_start + PAGE_SIZE - 1; 3258 3259 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3260 3261 set_page_extent_mapped(page); 3262 3263 if (nr < cluster->nr && 3264 page_start + offset == cluster->boundary[nr]) { 3265 set_extent_bits(&BTRFS_I(inode)->io_tree, 3266 page_start, page_end, 3267 EXTENT_BOUNDARY); 3268 nr++; 3269 } 3270 3271 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3272 NULL, 0); 3273 if (ret) { 3274 unlock_page(page); 3275 put_page(page); 3276 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3277 PAGE_SIZE, true); 3278 btrfs_delalloc_release_extents(BTRFS_I(inode), 3279 PAGE_SIZE, true); 3280 3281 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3282 page_start, page_end, 3283 EXTENT_LOCKED | EXTENT_BOUNDARY); 3284 goto out; 3285 3286 } 3287 set_page_dirty(page); 3288 3289 unlock_extent(&BTRFS_I(inode)->io_tree, 3290 page_start, page_end); 3291 unlock_page(page); 3292 put_page(page); 3293 3294 index++; 3295 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, 3296 false); 3297 balance_dirty_pages_ratelimited(inode->i_mapping); 3298 btrfs_throttle(fs_info); 3299 } 3300 WARN_ON(nr != cluster->nr); 3301 out: 3302 kfree(ra); 3303 return ret; 3304 } 3305 3306 static noinline_for_stack 3307 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3308 struct file_extent_cluster *cluster) 3309 { 3310 int ret; 3311 3312 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3313 ret = relocate_file_extent_cluster(inode, cluster); 3314 if (ret) 3315 return ret; 3316 cluster->nr = 0; 3317 } 3318 3319 if (!cluster->nr) 3320 cluster->start = extent_key->objectid; 3321 else 3322 BUG_ON(cluster->nr >= MAX_EXTENTS); 3323 cluster->end = extent_key->objectid + extent_key->offset - 1; 3324 cluster->boundary[cluster->nr] = extent_key->objectid; 3325 cluster->nr++; 3326 3327 if (cluster->nr >= MAX_EXTENTS) { 3328 ret = relocate_file_extent_cluster(inode, cluster); 3329 if (ret) 3330 return ret; 3331 cluster->nr = 0; 3332 } 3333 return 0; 3334 } 3335 3336 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3337 static int get_ref_objectid_v0(struct reloc_control *rc, 3338 struct btrfs_path *path, 3339 struct btrfs_key *extent_key, 3340 u64 *ref_objectid, int *path_change) 3341 { 3342 struct btrfs_key key; 3343 struct extent_buffer *leaf; 3344 struct btrfs_extent_ref_v0 *ref0; 3345 int ret; 3346 int slot; 3347 3348 leaf = path->nodes[0]; 3349 slot = path->slots[0]; 3350 while (1) { 3351 if (slot >= btrfs_header_nritems(leaf)) { 3352 ret = btrfs_next_leaf(rc->extent_root, path); 3353 if (ret < 0) 3354 return ret; 3355 BUG_ON(ret > 0); 3356 leaf = path->nodes[0]; 3357 slot = path->slots[0]; 3358 if (path_change) 3359 *path_change = 1; 3360 } 3361 btrfs_item_key_to_cpu(leaf, &key, slot); 3362 if (key.objectid != extent_key->objectid) 3363 return -ENOENT; 3364 3365 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3366 slot++; 3367 continue; 3368 } 3369 ref0 = btrfs_item_ptr(leaf, slot, 3370 struct btrfs_extent_ref_v0); 3371 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3372 break; 3373 } 3374 return 0; 3375 } 3376 #endif 3377 3378 /* 3379 * helper to add a tree block to the list. 3380 * the major work is getting the generation and level of the block 3381 */ 3382 static int add_tree_block(struct reloc_control *rc, 3383 struct btrfs_key *extent_key, 3384 struct btrfs_path *path, 3385 struct rb_root *blocks) 3386 { 3387 struct extent_buffer *eb; 3388 struct btrfs_extent_item *ei; 3389 struct btrfs_tree_block_info *bi; 3390 struct tree_block *block; 3391 struct rb_node *rb_node; 3392 u32 item_size; 3393 int level = -1; 3394 u64 generation; 3395 3396 eb = path->nodes[0]; 3397 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3398 3399 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3400 item_size >= sizeof(*ei) + sizeof(*bi)) { 3401 ei = btrfs_item_ptr(eb, path->slots[0], 3402 struct btrfs_extent_item); 3403 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3404 bi = (struct btrfs_tree_block_info *)(ei + 1); 3405 level = btrfs_tree_block_level(eb, bi); 3406 } else { 3407 level = (int)extent_key->offset; 3408 } 3409 generation = btrfs_extent_generation(eb, ei); 3410 } else { 3411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3412 u64 ref_owner; 3413 int ret; 3414 3415 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3416 ret = get_ref_objectid_v0(rc, path, extent_key, 3417 &ref_owner, NULL); 3418 if (ret < 0) 3419 return ret; 3420 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3421 level = (int)ref_owner; 3422 /* FIXME: get real generation */ 3423 generation = 0; 3424 #else 3425 BUG(); 3426 #endif 3427 } 3428 3429 btrfs_release_path(path); 3430 3431 BUG_ON(level == -1); 3432 3433 block = kmalloc(sizeof(*block), GFP_NOFS); 3434 if (!block) 3435 return -ENOMEM; 3436 3437 block->bytenr = extent_key->objectid; 3438 block->key.objectid = rc->extent_root->fs_info->nodesize; 3439 block->key.offset = generation; 3440 block->level = level; 3441 block->key_ready = 0; 3442 3443 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3444 if (rb_node) 3445 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3446 3447 return 0; 3448 } 3449 3450 /* 3451 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3452 */ 3453 static int __add_tree_block(struct reloc_control *rc, 3454 u64 bytenr, u32 blocksize, 3455 struct rb_root *blocks) 3456 { 3457 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3458 struct btrfs_path *path; 3459 struct btrfs_key key; 3460 int ret; 3461 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3462 3463 if (tree_block_processed(bytenr, rc)) 3464 return 0; 3465 3466 if (tree_search(blocks, bytenr)) 3467 return 0; 3468 3469 path = btrfs_alloc_path(); 3470 if (!path) 3471 return -ENOMEM; 3472 again: 3473 key.objectid = bytenr; 3474 if (skinny) { 3475 key.type = BTRFS_METADATA_ITEM_KEY; 3476 key.offset = (u64)-1; 3477 } else { 3478 key.type = BTRFS_EXTENT_ITEM_KEY; 3479 key.offset = blocksize; 3480 } 3481 3482 path->search_commit_root = 1; 3483 path->skip_locking = 1; 3484 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3485 if (ret < 0) 3486 goto out; 3487 3488 if (ret > 0 && skinny) { 3489 if (path->slots[0]) { 3490 path->slots[0]--; 3491 btrfs_item_key_to_cpu(path->nodes[0], &key, 3492 path->slots[0]); 3493 if (key.objectid == bytenr && 3494 (key.type == BTRFS_METADATA_ITEM_KEY || 3495 (key.type == BTRFS_EXTENT_ITEM_KEY && 3496 key.offset == blocksize))) 3497 ret = 0; 3498 } 3499 3500 if (ret) { 3501 skinny = false; 3502 btrfs_release_path(path); 3503 goto again; 3504 } 3505 } 3506 if (ret) { 3507 ASSERT(ret == 1); 3508 btrfs_print_leaf(path->nodes[0]); 3509 btrfs_err(fs_info, 3510 "tree block extent item (%llu) is not found in extent tree", 3511 bytenr); 3512 WARN_ON(1); 3513 ret = -EINVAL; 3514 goto out; 3515 } 3516 3517 ret = add_tree_block(rc, &key, path, blocks); 3518 out: 3519 btrfs_free_path(path); 3520 return ret; 3521 } 3522 3523 /* 3524 * helper to check if the block use full backrefs for pointers in it 3525 */ 3526 static int block_use_full_backref(struct reloc_control *rc, 3527 struct extent_buffer *eb) 3528 { 3529 u64 flags; 3530 int ret; 3531 3532 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3533 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3534 return 1; 3535 3536 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3537 eb->start, btrfs_header_level(eb), 1, 3538 NULL, &flags); 3539 BUG_ON(ret); 3540 3541 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3542 ret = 1; 3543 else 3544 ret = 0; 3545 return ret; 3546 } 3547 3548 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3549 struct btrfs_block_group_cache *block_group, 3550 struct inode *inode, 3551 u64 ino) 3552 { 3553 struct btrfs_key key; 3554 struct btrfs_root *root = fs_info->tree_root; 3555 struct btrfs_trans_handle *trans; 3556 int ret = 0; 3557 3558 if (inode) 3559 goto truncate; 3560 3561 key.objectid = ino; 3562 key.type = BTRFS_INODE_ITEM_KEY; 3563 key.offset = 0; 3564 3565 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3566 if (IS_ERR(inode) || is_bad_inode(inode)) { 3567 if (!IS_ERR(inode)) 3568 iput(inode); 3569 return -ENOENT; 3570 } 3571 3572 truncate: 3573 ret = btrfs_check_trunc_cache_free_space(fs_info, 3574 &fs_info->global_block_rsv); 3575 if (ret) 3576 goto out; 3577 3578 trans = btrfs_join_transaction(root); 3579 if (IS_ERR(trans)) { 3580 ret = PTR_ERR(trans); 3581 goto out; 3582 } 3583 3584 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3585 3586 btrfs_end_transaction(trans); 3587 btrfs_btree_balance_dirty(fs_info); 3588 out: 3589 iput(inode); 3590 return ret; 3591 } 3592 3593 /* 3594 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3595 * this function scans fs tree to find blocks reference the data extent 3596 */ 3597 static int find_data_references(struct reloc_control *rc, 3598 struct btrfs_key *extent_key, 3599 struct extent_buffer *leaf, 3600 struct btrfs_extent_data_ref *ref, 3601 struct rb_root *blocks) 3602 { 3603 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3604 struct btrfs_path *path; 3605 struct tree_block *block; 3606 struct btrfs_root *root; 3607 struct btrfs_file_extent_item *fi; 3608 struct rb_node *rb_node; 3609 struct btrfs_key key; 3610 u64 ref_root; 3611 u64 ref_objectid; 3612 u64 ref_offset; 3613 u32 ref_count; 3614 u32 nritems; 3615 int err = 0; 3616 int added = 0; 3617 int counted; 3618 int ret; 3619 3620 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3621 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3622 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3623 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3624 3625 /* 3626 * This is an extent belonging to the free space cache, lets just delete 3627 * it and redo the search. 3628 */ 3629 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3630 ret = delete_block_group_cache(fs_info, rc->block_group, 3631 NULL, ref_objectid); 3632 if (ret != -ENOENT) 3633 return ret; 3634 ret = 0; 3635 } 3636 3637 path = btrfs_alloc_path(); 3638 if (!path) 3639 return -ENOMEM; 3640 path->reada = READA_FORWARD; 3641 3642 root = read_fs_root(fs_info, ref_root); 3643 if (IS_ERR(root)) { 3644 err = PTR_ERR(root); 3645 goto out; 3646 } 3647 3648 key.objectid = ref_objectid; 3649 key.type = BTRFS_EXTENT_DATA_KEY; 3650 if (ref_offset > ((u64)-1 << 32)) 3651 key.offset = 0; 3652 else 3653 key.offset = ref_offset; 3654 3655 path->search_commit_root = 1; 3656 path->skip_locking = 1; 3657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3658 if (ret < 0) { 3659 err = ret; 3660 goto out; 3661 } 3662 3663 leaf = path->nodes[0]; 3664 nritems = btrfs_header_nritems(leaf); 3665 /* 3666 * the references in tree blocks that use full backrefs 3667 * are not counted in 3668 */ 3669 if (block_use_full_backref(rc, leaf)) 3670 counted = 0; 3671 else 3672 counted = 1; 3673 rb_node = tree_search(blocks, leaf->start); 3674 if (rb_node) { 3675 if (counted) 3676 added = 1; 3677 else 3678 path->slots[0] = nritems; 3679 } 3680 3681 while (ref_count > 0) { 3682 while (path->slots[0] >= nritems) { 3683 ret = btrfs_next_leaf(root, path); 3684 if (ret < 0) { 3685 err = ret; 3686 goto out; 3687 } 3688 if (WARN_ON(ret > 0)) 3689 goto out; 3690 3691 leaf = path->nodes[0]; 3692 nritems = btrfs_header_nritems(leaf); 3693 added = 0; 3694 3695 if (block_use_full_backref(rc, leaf)) 3696 counted = 0; 3697 else 3698 counted = 1; 3699 rb_node = tree_search(blocks, leaf->start); 3700 if (rb_node) { 3701 if (counted) 3702 added = 1; 3703 else 3704 path->slots[0] = nritems; 3705 } 3706 } 3707 3708 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3709 if (WARN_ON(key.objectid != ref_objectid || 3710 key.type != BTRFS_EXTENT_DATA_KEY)) 3711 break; 3712 3713 fi = btrfs_item_ptr(leaf, path->slots[0], 3714 struct btrfs_file_extent_item); 3715 3716 if (btrfs_file_extent_type(leaf, fi) == 3717 BTRFS_FILE_EXTENT_INLINE) 3718 goto next; 3719 3720 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3721 extent_key->objectid) 3722 goto next; 3723 3724 key.offset -= btrfs_file_extent_offset(leaf, fi); 3725 if (key.offset != ref_offset) 3726 goto next; 3727 3728 if (counted) 3729 ref_count--; 3730 if (added) 3731 goto next; 3732 3733 if (!tree_block_processed(leaf->start, rc)) { 3734 block = kmalloc(sizeof(*block), GFP_NOFS); 3735 if (!block) { 3736 err = -ENOMEM; 3737 break; 3738 } 3739 block->bytenr = leaf->start; 3740 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3741 block->level = 0; 3742 block->key_ready = 1; 3743 rb_node = tree_insert(blocks, block->bytenr, 3744 &block->rb_node); 3745 if (rb_node) 3746 backref_tree_panic(rb_node, -EEXIST, 3747 block->bytenr); 3748 } 3749 if (counted) 3750 added = 1; 3751 else 3752 path->slots[0] = nritems; 3753 next: 3754 path->slots[0]++; 3755 3756 } 3757 out: 3758 btrfs_free_path(path); 3759 return err; 3760 } 3761 3762 /* 3763 * helper to find all tree blocks that reference a given data extent 3764 */ 3765 static noinline_for_stack 3766 int add_data_references(struct reloc_control *rc, 3767 struct btrfs_key *extent_key, 3768 struct btrfs_path *path, 3769 struct rb_root *blocks) 3770 { 3771 struct btrfs_key key; 3772 struct extent_buffer *eb; 3773 struct btrfs_extent_data_ref *dref; 3774 struct btrfs_extent_inline_ref *iref; 3775 unsigned long ptr; 3776 unsigned long end; 3777 u32 blocksize = rc->extent_root->fs_info->nodesize; 3778 int ret = 0; 3779 int err = 0; 3780 3781 eb = path->nodes[0]; 3782 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3783 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3784 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3785 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3786 ptr = end; 3787 else 3788 #endif 3789 ptr += sizeof(struct btrfs_extent_item); 3790 3791 while (ptr < end) { 3792 iref = (struct btrfs_extent_inline_ref *)ptr; 3793 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3794 BTRFS_REF_TYPE_DATA); 3795 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3796 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3797 ret = __add_tree_block(rc, key.offset, blocksize, 3798 blocks); 3799 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3800 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3801 ret = find_data_references(rc, extent_key, 3802 eb, dref, blocks); 3803 } else { 3804 ret = -EINVAL; 3805 btrfs_err(rc->extent_root->fs_info, 3806 "extent %llu slot %d has an invalid inline ref type", 3807 eb->start, path->slots[0]); 3808 } 3809 if (ret) { 3810 err = ret; 3811 goto out; 3812 } 3813 ptr += btrfs_extent_inline_ref_size(key.type); 3814 } 3815 WARN_ON(ptr > end); 3816 3817 while (1) { 3818 cond_resched(); 3819 eb = path->nodes[0]; 3820 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3821 ret = btrfs_next_leaf(rc->extent_root, path); 3822 if (ret < 0) { 3823 err = ret; 3824 break; 3825 } 3826 if (ret > 0) 3827 break; 3828 eb = path->nodes[0]; 3829 } 3830 3831 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3832 if (key.objectid != extent_key->objectid) 3833 break; 3834 3835 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3836 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3837 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3838 #else 3839 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3840 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3841 #endif 3842 ret = __add_tree_block(rc, key.offset, blocksize, 3843 blocks); 3844 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3845 dref = btrfs_item_ptr(eb, path->slots[0], 3846 struct btrfs_extent_data_ref); 3847 ret = find_data_references(rc, extent_key, 3848 eb, dref, blocks); 3849 } else { 3850 ret = 0; 3851 } 3852 if (ret) { 3853 err = ret; 3854 break; 3855 } 3856 path->slots[0]++; 3857 } 3858 out: 3859 btrfs_release_path(path); 3860 if (err) 3861 free_block_list(blocks); 3862 return err; 3863 } 3864 3865 /* 3866 * helper to find next unprocessed extent 3867 */ 3868 static noinline_for_stack 3869 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3870 struct btrfs_key *extent_key) 3871 { 3872 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3873 struct btrfs_key key; 3874 struct extent_buffer *leaf; 3875 u64 start, end, last; 3876 int ret; 3877 3878 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3879 while (1) { 3880 cond_resched(); 3881 if (rc->search_start >= last) { 3882 ret = 1; 3883 break; 3884 } 3885 3886 key.objectid = rc->search_start; 3887 key.type = BTRFS_EXTENT_ITEM_KEY; 3888 key.offset = 0; 3889 3890 path->search_commit_root = 1; 3891 path->skip_locking = 1; 3892 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3893 0, 0); 3894 if (ret < 0) 3895 break; 3896 next: 3897 leaf = path->nodes[0]; 3898 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3899 ret = btrfs_next_leaf(rc->extent_root, path); 3900 if (ret != 0) 3901 break; 3902 leaf = path->nodes[0]; 3903 } 3904 3905 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3906 if (key.objectid >= last) { 3907 ret = 1; 3908 break; 3909 } 3910 3911 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3912 key.type != BTRFS_METADATA_ITEM_KEY) { 3913 path->slots[0]++; 3914 goto next; 3915 } 3916 3917 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3918 key.objectid + key.offset <= rc->search_start) { 3919 path->slots[0]++; 3920 goto next; 3921 } 3922 3923 if (key.type == BTRFS_METADATA_ITEM_KEY && 3924 key.objectid + fs_info->nodesize <= 3925 rc->search_start) { 3926 path->slots[0]++; 3927 goto next; 3928 } 3929 3930 ret = find_first_extent_bit(&rc->processed_blocks, 3931 key.objectid, &start, &end, 3932 EXTENT_DIRTY, NULL); 3933 3934 if (ret == 0 && start <= key.objectid) { 3935 btrfs_release_path(path); 3936 rc->search_start = end + 1; 3937 } else { 3938 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3939 rc->search_start = key.objectid + key.offset; 3940 else 3941 rc->search_start = key.objectid + 3942 fs_info->nodesize; 3943 memcpy(extent_key, &key, sizeof(key)); 3944 return 0; 3945 } 3946 } 3947 btrfs_release_path(path); 3948 return ret; 3949 } 3950 3951 static void set_reloc_control(struct reloc_control *rc) 3952 { 3953 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3954 3955 mutex_lock(&fs_info->reloc_mutex); 3956 fs_info->reloc_ctl = rc; 3957 mutex_unlock(&fs_info->reloc_mutex); 3958 } 3959 3960 static void unset_reloc_control(struct reloc_control *rc) 3961 { 3962 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3963 3964 mutex_lock(&fs_info->reloc_mutex); 3965 fs_info->reloc_ctl = NULL; 3966 mutex_unlock(&fs_info->reloc_mutex); 3967 } 3968 3969 static int check_extent_flags(u64 flags) 3970 { 3971 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3972 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3973 return 1; 3974 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3975 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3976 return 1; 3977 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3978 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3979 return 1; 3980 return 0; 3981 } 3982 3983 static noinline_for_stack 3984 int prepare_to_relocate(struct reloc_control *rc) 3985 { 3986 struct btrfs_trans_handle *trans; 3987 int ret; 3988 3989 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3990 BTRFS_BLOCK_RSV_TEMP); 3991 if (!rc->block_rsv) 3992 return -ENOMEM; 3993 3994 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3995 rc->search_start = rc->block_group->key.objectid; 3996 rc->extents_found = 0; 3997 rc->nodes_relocated = 0; 3998 rc->merging_rsv_size = 0; 3999 rc->reserved_bytes = 0; 4000 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 4001 RELOCATION_RESERVED_NODES; 4002 ret = btrfs_block_rsv_refill(rc->extent_root, 4003 rc->block_rsv, rc->block_rsv->size, 4004 BTRFS_RESERVE_FLUSH_ALL); 4005 if (ret) 4006 return ret; 4007 4008 rc->create_reloc_tree = 1; 4009 set_reloc_control(rc); 4010 4011 trans = btrfs_join_transaction(rc->extent_root); 4012 if (IS_ERR(trans)) { 4013 unset_reloc_control(rc); 4014 /* 4015 * extent tree is not a ref_cow tree and has no reloc_root to 4016 * cleanup. And callers are responsible to free the above 4017 * block rsv. 4018 */ 4019 return PTR_ERR(trans); 4020 } 4021 btrfs_commit_transaction(trans); 4022 return 0; 4023 } 4024 4025 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4026 { 4027 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 4028 struct rb_root blocks = RB_ROOT; 4029 struct btrfs_key key; 4030 struct btrfs_trans_handle *trans = NULL; 4031 struct btrfs_path *path; 4032 struct btrfs_extent_item *ei; 4033 u64 flags; 4034 u32 item_size; 4035 int ret; 4036 int err = 0; 4037 int progress = 0; 4038 4039 path = btrfs_alloc_path(); 4040 if (!path) 4041 return -ENOMEM; 4042 path->reada = READA_FORWARD; 4043 4044 ret = prepare_to_relocate(rc); 4045 if (ret) { 4046 err = ret; 4047 goto out_free; 4048 } 4049 4050 while (1) { 4051 rc->reserved_bytes = 0; 4052 ret = btrfs_block_rsv_refill(rc->extent_root, 4053 rc->block_rsv, rc->block_rsv->size, 4054 BTRFS_RESERVE_FLUSH_ALL); 4055 if (ret) { 4056 err = ret; 4057 break; 4058 } 4059 progress++; 4060 trans = btrfs_start_transaction(rc->extent_root, 0); 4061 if (IS_ERR(trans)) { 4062 err = PTR_ERR(trans); 4063 trans = NULL; 4064 break; 4065 } 4066 restart: 4067 if (update_backref_cache(trans, &rc->backref_cache)) { 4068 btrfs_end_transaction(trans); 4069 continue; 4070 } 4071 4072 ret = find_next_extent(rc, path, &key); 4073 if (ret < 0) 4074 err = ret; 4075 if (ret != 0) 4076 break; 4077 4078 rc->extents_found++; 4079 4080 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4081 struct btrfs_extent_item); 4082 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4083 if (item_size >= sizeof(*ei)) { 4084 flags = btrfs_extent_flags(path->nodes[0], ei); 4085 ret = check_extent_flags(flags); 4086 BUG_ON(ret); 4087 4088 } else { 4089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4090 u64 ref_owner; 4091 int path_change = 0; 4092 4093 BUG_ON(item_size != 4094 sizeof(struct btrfs_extent_item_v0)); 4095 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 4096 &path_change); 4097 if (ret < 0) { 4098 err = ret; 4099 break; 4100 } 4101 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 4102 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 4103 else 4104 flags = BTRFS_EXTENT_FLAG_DATA; 4105 4106 if (path_change) { 4107 btrfs_release_path(path); 4108 4109 path->search_commit_root = 1; 4110 path->skip_locking = 1; 4111 ret = btrfs_search_slot(NULL, rc->extent_root, 4112 &key, path, 0, 0); 4113 if (ret < 0) { 4114 err = ret; 4115 break; 4116 } 4117 BUG_ON(ret > 0); 4118 } 4119 #else 4120 BUG(); 4121 #endif 4122 } 4123 4124 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4125 ret = add_tree_block(rc, &key, path, &blocks); 4126 } else if (rc->stage == UPDATE_DATA_PTRS && 4127 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4128 ret = add_data_references(rc, &key, path, &blocks); 4129 } else { 4130 btrfs_release_path(path); 4131 ret = 0; 4132 } 4133 if (ret < 0) { 4134 err = ret; 4135 break; 4136 } 4137 4138 if (!RB_EMPTY_ROOT(&blocks)) { 4139 ret = relocate_tree_blocks(trans, rc, &blocks); 4140 if (ret < 0) { 4141 /* 4142 * if we fail to relocate tree blocks, force to update 4143 * backref cache when committing transaction. 4144 */ 4145 rc->backref_cache.last_trans = trans->transid - 1; 4146 4147 if (ret != -EAGAIN) { 4148 err = ret; 4149 break; 4150 } 4151 rc->extents_found--; 4152 rc->search_start = key.objectid; 4153 } 4154 } 4155 4156 btrfs_end_transaction_throttle(trans); 4157 btrfs_btree_balance_dirty(fs_info); 4158 trans = NULL; 4159 4160 if (rc->stage == MOVE_DATA_EXTENTS && 4161 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4162 rc->found_file_extent = 1; 4163 ret = relocate_data_extent(rc->data_inode, 4164 &key, &rc->cluster); 4165 if (ret < 0) { 4166 err = ret; 4167 break; 4168 } 4169 } 4170 } 4171 if (trans && progress && err == -ENOSPC) { 4172 ret = btrfs_force_chunk_alloc(trans, fs_info, 4173 rc->block_group->flags); 4174 if (ret == 1) { 4175 err = 0; 4176 progress = 0; 4177 goto restart; 4178 } 4179 } 4180 4181 btrfs_release_path(path); 4182 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4183 4184 if (trans) { 4185 btrfs_end_transaction_throttle(trans); 4186 btrfs_btree_balance_dirty(fs_info); 4187 } 4188 4189 if (!err) { 4190 ret = relocate_file_extent_cluster(rc->data_inode, 4191 &rc->cluster); 4192 if (ret < 0) 4193 err = ret; 4194 } 4195 4196 rc->create_reloc_tree = 0; 4197 set_reloc_control(rc); 4198 4199 backref_cache_cleanup(&rc->backref_cache); 4200 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4201 4202 err = prepare_to_merge(rc, err); 4203 4204 merge_reloc_roots(rc); 4205 4206 rc->merge_reloc_tree = 0; 4207 unset_reloc_control(rc); 4208 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4209 4210 /* get rid of pinned extents */ 4211 trans = btrfs_join_transaction(rc->extent_root); 4212 if (IS_ERR(trans)) { 4213 err = PTR_ERR(trans); 4214 goto out_free; 4215 } 4216 btrfs_commit_transaction(trans); 4217 out_free: 4218 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4219 btrfs_free_path(path); 4220 return err; 4221 } 4222 4223 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4224 struct btrfs_root *root, u64 objectid) 4225 { 4226 struct btrfs_path *path; 4227 struct btrfs_inode_item *item; 4228 struct extent_buffer *leaf; 4229 int ret; 4230 4231 path = btrfs_alloc_path(); 4232 if (!path) 4233 return -ENOMEM; 4234 4235 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4236 if (ret) 4237 goto out; 4238 4239 leaf = path->nodes[0]; 4240 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4241 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4242 btrfs_set_inode_generation(leaf, item, 1); 4243 btrfs_set_inode_size(leaf, item, 0); 4244 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4245 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4246 BTRFS_INODE_PREALLOC); 4247 btrfs_mark_buffer_dirty(leaf); 4248 out: 4249 btrfs_free_path(path); 4250 return ret; 4251 } 4252 4253 /* 4254 * helper to create inode for data relocation. 4255 * the inode is in data relocation tree and its link count is 0 4256 */ 4257 static noinline_for_stack 4258 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4259 struct btrfs_block_group_cache *group) 4260 { 4261 struct inode *inode = NULL; 4262 struct btrfs_trans_handle *trans; 4263 struct btrfs_root *root; 4264 struct btrfs_key key; 4265 u64 objectid; 4266 int err = 0; 4267 4268 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4269 if (IS_ERR(root)) 4270 return ERR_CAST(root); 4271 4272 trans = btrfs_start_transaction(root, 6); 4273 if (IS_ERR(trans)) 4274 return ERR_CAST(trans); 4275 4276 err = btrfs_find_free_objectid(root, &objectid); 4277 if (err) 4278 goto out; 4279 4280 err = __insert_orphan_inode(trans, root, objectid); 4281 BUG_ON(err); 4282 4283 key.objectid = objectid; 4284 key.type = BTRFS_INODE_ITEM_KEY; 4285 key.offset = 0; 4286 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4287 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4288 BTRFS_I(inode)->index_cnt = group->key.objectid; 4289 4290 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4291 out: 4292 btrfs_end_transaction(trans); 4293 btrfs_btree_balance_dirty(fs_info); 4294 if (err) { 4295 if (inode) 4296 iput(inode); 4297 inode = ERR_PTR(err); 4298 } 4299 return inode; 4300 } 4301 4302 static struct reloc_control *alloc_reloc_control(void) 4303 { 4304 struct reloc_control *rc; 4305 4306 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4307 if (!rc) 4308 return NULL; 4309 4310 INIT_LIST_HEAD(&rc->reloc_roots); 4311 backref_cache_init(&rc->backref_cache); 4312 mapping_tree_init(&rc->reloc_root_tree); 4313 extent_io_tree_init(&rc->processed_blocks, NULL); 4314 return rc; 4315 } 4316 4317 /* 4318 * Print the block group being relocated 4319 */ 4320 static void describe_relocation(struct btrfs_fs_info *fs_info, 4321 struct btrfs_block_group_cache *block_group) 4322 { 4323 char buf[128]; /* prefixed by a '|' that'll be dropped */ 4324 u64 flags = block_group->flags; 4325 4326 /* Shouldn't happen */ 4327 if (!flags) { 4328 strcpy(buf, "|NONE"); 4329 } else { 4330 char *bp = buf; 4331 4332 #define DESCRIBE_FLAG(f, d) \ 4333 if (flags & BTRFS_BLOCK_GROUP_##f) { \ 4334 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \ 4335 flags &= ~BTRFS_BLOCK_GROUP_##f; \ 4336 } 4337 DESCRIBE_FLAG(DATA, "data"); 4338 DESCRIBE_FLAG(SYSTEM, "system"); 4339 DESCRIBE_FLAG(METADATA, "metadata"); 4340 DESCRIBE_FLAG(RAID0, "raid0"); 4341 DESCRIBE_FLAG(RAID1, "raid1"); 4342 DESCRIBE_FLAG(DUP, "dup"); 4343 DESCRIBE_FLAG(RAID10, "raid10"); 4344 DESCRIBE_FLAG(RAID5, "raid5"); 4345 DESCRIBE_FLAG(RAID6, "raid6"); 4346 if (flags) 4347 snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags); 4348 #undef DESCRIBE_FLAG 4349 } 4350 4351 btrfs_info(fs_info, 4352 "relocating block group %llu flags %s", 4353 block_group->key.objectid, buf + 1); 4354 } 4355 4356 /* 4357 * function to relocate all extents in a block group. 4358 */ 4359 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4360 { 4361 struct btrfs_root *extent_root = fs_info->extent_root; 4362 struct reloc_control *rc; 4363 struct inode *inode; 4364 struct btrfs_path *path; 4365 int ret; 4366 int rw = 0; 4367 int err = 0; 4368 4369 rc = alloc_reloc_control(); 4370 if (!rc) 4371 return -ENOMEM; 4372 4373 rc->extent_root = extent_root; 4374 4375 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4376 BUG_ON(!rc->block_group); 4377 4378 ret = btrfs_inc_block_group_ro(fs_info, rc->block_group); 4379 if (ret) { 4380 err = ret; 4381 goto out; 4382 } 4383 rw = 1; 4384 4385 path = btrfs_alloc_path(); 4386 if (!path) { 4387 err = -ENOMEM; 4388 goto out; 4389 } 4390 4391 inode = lookup_free_space_inode(fs_info, rc->block_group, path); 4392 btrfs_free_path(path); 4393 4394 if (!IS_ERR(inode)) 4395 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4396 else 4397 ret = PTR_ERR(inode); 4398 4399 if (ret && ret != -ENOENT) { 4400 err = ret; 4401 goto out; 4402 } 4403 4404 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4405 if (IS_ERR(rc->data_inode)) { 4406 err = PTR_ERR(rc->data_inode); 4407 rc->data_inode = NULL; 4408 goto out; 4409 } 4410 4411 describe_relocation(fs_info, rc->block_group); 4412 4413 btrfs_wait_block_group_reservations(rc->block_group); 4414 btrfs_wait_nocow_writers(rc->block_group); 4415 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4416 rc->block_group->key.objectid, 4417 rc->block_group->key.offset); 4418 4419 while (1) { 4420 mutex_lock(&fs_info->cleaner_mutex); 4421 ret = relocate_block_group(rc); 4422 mutex_unlock(&fs_info->cleaner_mutex); 4423 if (ret < 0) { 4424 err = ret; 4425 goto out; 4426 } 4427 4428 if (rc->extents_found == 0) 4429 break; 4430 4431 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4432 4433 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4434 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4435 (u64)-1); 4436 if (ret) { 4437 err = ret; 4438 goto out; 4439 } 4440 invalidate_mapping_pages(rc->data_inode->i_mapping, 4441 0, -1); 4442 rc->stage = UPDATE_DATA_PTRS; 4443 } 4444 } 4445 4446 WARN_ON(rc->block_group->pinned > 0); 4447 WARN_ON(rc->block_group->reserved > 0); 4448 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4449 out: 4450 if (err && rw) 4451 btrfs_dec_block_group_ro(rc->block_group); 4452 iput(rc->data_inode); 4453 btrfs_put_block_group(rc->block_group); 4454 kfree(rc); 4455 return err; 4456 } 4457 4458 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4459 { 4460 struct btrfs_fs_info *fs_info = root->fs_info; 4461 struct btrfs_trans_handle *trans; 4462 int ret, err; 4463 4464 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4465 if (IS_ERR(trans)) 4466 return PTR_ERR(trans); 4467 4468 memset(&root->root_item.drop_progress, 0, 4469 sizeof(root->root_item.drop_progress)); 4470 root->root_item.drop_level = 0; 4471 btrfs_set_root_refs(&root->root_item, 0); 4472 ret = btrfs_update_root(trans, fs_info->tree_root, 4473 &root->root_key, &root->root_item); 4474 4475 err = btrfs_end_transaction(trans); 4476 if (err) 4477 return err; 4478 return ret; 4479 } 4480 4481 /* 4482 * recover relocation interrupted by system crash. 4483 * 4484 * this function resumes merging reloc trees with corresponding fs trees. 4485 * this is important for keeping the sharing of tree blocks 4486 */ 4487 int btrfs_recover_relocation(struct btrfs_root *root) 4488 { 4489 struct btrfs_fs_info *fs_info = root->fs_info; 4490 LIST_HEAD(reloc_roots); 4491 struct btrfs_key key; 4492 struct btrfs_root *fs_root; 4493 struct btrfs_root *reloc_root; 4494 struct btrfs_path *path; 4495 struct extent_buffer *leaf; 4496 struct reloc_control *rc = NULL; 4497 struct btrfs_trans_handle *trans; 4498 int ret; 4499 int err = 0; 4500 4501 path = btrfs_alloc_path(); 4502 if (!path) 4503 return -ENOMEM; 4504 path->reada = READA_BACK; 4505 4506 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4507 key.type = BTRFS_ROOT_ITEM_KEY; 4508 key.offset = (u64)-1; 4509 4510 while (1) { 4511 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4512 path, 0, 0); 4513 if (ret < 0) { 4514 err = ret; 4515 goto out; 4516 } 4517 if (ret > 0) { 4518 if (path->slots[0] == 0) 4519 break; 4520 path->slots[0]--; 4521 } 4522 leaf = path->nodes[0]; 4523 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4524 btrfs_release_path(path); 4525 4526 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4527 key.type != BTRFS_ROOT_ITEM_KEY) 4528 break; 4529 4530 reloc_root = btrfs_read_fs_root(root, &key); 4531 if (IS_ERR(reloc_root)) { 4532 err = PTR_ERR(reloc_root); 4533 goto out; 4534 } 4535 4536 list_add(&reloc_root->root_list, &reloc_roots); 4537 4538 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4539 fs_root = read_fs_root(fs_info, 4540 reloc_root->root_key.offset); 4541 if (IS_ERR(fs_root)) { 4542 ret = PTR_ERR(fs_root); 4543 if (ret != -ENOENT) { 4544 err = ret; 4545 goto out; 4546 } 4547 ret = mark_garbage_root(reloc_root); 4548 if (ret < 0) { 4549 err = ret; 4550 goto out; 4551 } 4552 } 4553 } 4554 4555 if (key.offset == 0) 4556 break; 4557 4558 key.offset--; 4559 } 4560 btrfs_release_path(path); 4561 4562 if (list_empty(&reloc_roots)) 4563 goto out; 4564 4565 rc = alloc_reloc_control(); 4566 if (!rc) { 4567 err = -ENOMEM; 4568 goto out; 4569 } 4570 4571 rc->extent_root = fs_info->extent_root; 4572 4573 set_reloc_control(rc); 4574 4575 trans = btrfs_join_transaction(rc->extent_root); 4576 if (IS_ERR(trans)) { 4577 unset_reloc_control(rc); 4578 err = PTR_ERR(trans); 4579 goto out_free; 4580 } 4581 4582 rc->merge_reloc_tree = 1; 4583 4584 while (!list_empty(&reloc_roots)) { 4585 reloc_root = list_entry(reloc_roots.next, 4586 struct btrfs_root, root_list); 4587 list_del(&reloc_root->root_list); 4588 4589 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4590 list_add_tail(&reloc_root->root_list, 4591 &rc->reloc_roots); 4592 continue; 4593 } 4594 4595 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4596 if (IS_ERR(fs_root)) { 4597 err = PTR_ERR(fs_root); 4598 goto out_free; 4599 } 4600 4601 err = __add_reloc_root(reloc_root); 4602 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4603 fs_root->reloc_root = reloc_root; 4604 } 4605 4606 err = btrfs_commit_transaction(trans); 4607 if (err) 4608 goto out_free; 4609 4610 merge_reloc_roots(rc); 4611 4612 unset_reloc_control(rc); 4613 4614 trans = btrfs_join_transaction(rc->extent_root); 4615 if (IS_ERR(trans)) { 4616 err = PTR_ERR(trans); 4617 goto out_free; 4618 } 4619 err = btrfs_commit_transaction(trans); 4620 out_free: 4621 kfree(rc); 4622 out: 4623 if (!list_empty(&reloc_roots)) 4624 free_reloc_roots(&reloc_roots); 4625 4626 btrfs_free_path(path); 4627 4628 if (err == 0) { 4629 /* cleanup orphan inode in data relocation tree */ 4630 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4631 if (IS_ERR(fs_root)) 4632 err = PTR_ERR(fs_root); 4633 else 4634 err = btrfs_orphan_cleanup(fs_root); 4635 } 4636 return err; 4637 } 4638 4639 /* 4640 * helper to add ordered checksum for data relocation. 4641 * 4642 * cloning checksum properly handles the nodatasum extents. 4643 * it also saves CPU time to re-calculate the checksum. 4644 */ 4645 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4646 { 4647 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4648 struct btrfs_ordered_sum *sums; 4649 struct btrfs_ordered_extent *ordered; 4650 int ret; 4651 u64 disk_bytenr; 4652 u64 new_bytenr; 4653 LIST_HEAD(list); 4654 4655 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4656 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4657 4658 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4659 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4660 disk_bytenr + len - 1, &list, 0); 4661 if (ret) 4662 goto out; 4663 4664 while (!list_empty(&list)) { 4665 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4666 list_del_init(&sums->list); 4667 4668 /* 4669 * We need to offset the new_bytenr based on where the csum is. 4670 * We need to do this because we will read in entire prealloc 4671 * extents but we may have written to say the middle of the 4672 * prealloc extent, so we need to make sure the csum goes with 4673 * the right disk offset. 4674 * 4675 * We can do this because the data reloc inode refers strictly 4676 * to the on disk bytes, so we don't have to worry about 4677 * disk_len vs real len like with real inodes since it's all 4678 * disk length. 4679 */ 4680 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4681 sums->bytenr = new_bytenr; 4682 4683 btrfs_add_ordered_sum(inode, ordered, sums); 4684 } 4685 out: 4686 btrfs_put_ordered_extent(ordered); 4687 return ret; 4688 } 4689 4690 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4691 struct btrfs_root *root, struct extent_buffer *buf, 4692 struct extent_buffer *cow) 4693 { 4694 struct btrfs_fs_info *fs_info = root->fs_info; 4695 struct reloc_control *rc; 4696 struct backref_node *node; 4697 int first_cow = 0; 4698 int level; 4699 int ret = 0; 4700 4701 rc = fs_info->reloc_ctl; 4702 if (!rc) 4703 return 0; 4704 4705 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4706 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4707 4708 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4709 if (buf == root->node) 4710 __update_reloc_root(root, cow->start); 4711 } 4712 4713 level = btrfs_header_level(buf); 4714 if (btrfs_header_generation(buf) <= 4715 btrfs_root_last_snapshot(&root->root_item)) 4716 first_cow = 1; 4717 4718 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4719 rc->create_reloc_tree) { 4720 WARN_ON(!first_cow && level == 0); 4721 4722 node = rc->backref_cache.path[level]; 4723 BUG_ON(node->bytenr != buf->start && 4724 node->new_bytenr != buf->start); 4725 4726 drop_node_buffer(node); 4727 extent_buffer_get(cow); 4728 node->eb = cow; 4729 node->new_bytenr = cow->start; 4730 4731 if (!node->pending) { 4732 list_move_tail(&node->list, 4733 &rc->backref_cache.pending[level]); 4734 node->pending = 1; 4735 } 4736 4737 if (first_cow) 4738 __mark_block_processed(rc, node); 4739 4740 if (first_cow && level > 0) 4741 rc->nodes_relocated += buf->len; 4742 } 4743 4744 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4745 ret = replace_file_extents(trans, rc, root, cow); 4746 return ret; 4747 } 4748 4749 /* 4750 * called before creating snapshot. it calculates metadata reservation 4751 * required for relocating tree blocks in the snapshot 4752 */ 4753 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4754 u64 *bytes_to_reserve) 4755 { 4756 struct btrfs_root *root; 4757 struct reloc_control *rc; 4758 4759 root = pending->root; 4760 if (!root->reloc_root) 4761 return; 4762 4763 rc = root->fs_info->reloc_ctl; 4764 if (!rc->merge_reloc_tree) 4765 return; 4766 4767 root = root->reloc_root; 4768 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4769 /* 4770 * relocation is in the stage of merging trees. the space 4771 * used by merging a reloc tree is twice the size of 4772 * relocated tree nodes in the worst case. half for cowing 4773 * the reloc tree, half for cowing the fs tree. the space 4774 * used by cowing the reloc tree will be freed after the 4775 * tree is dropped. if we create snapshot, cowing the fs 4776 * tree may use more space than it frees. so we need 4777 * reserve extra space. 4778 */ 4779 *bytes_to_reserve += rc->nodes_relocated; 4780 } 4781 4782 /* 4783 * called after snapshot is created. migrate block reservation 4784 * and create reloc root for the newly created snapshot 4785 */ 4786 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4787 struct btrfs_pending_snapshot *pending) 4788 { 4789 struct btrfs_root *root = pending->root; 4790 struct btrfs_root *reloc_root; 4791 struct btrfs_root *new_root; 4792 struct reloc_control *rc; 4793 int ret; 4794 4795 if (!root->reloc_root) 4796 return 0; 4797 4798 rc = root->fs_info->reloc_ctl; 4799 rc->merging_rsv_size += rc->nodes_relocated; 4800 4801 if (rc->merge_reloc_tree) { 4802 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4803 rc->block_rsv, 4804 rc->nodes_relocated, 1); 4805 if (ret) 4806 return ret; 4807 } 4808 4809 new_root = pending->snap; 4810 reloc_root = create_reloc_root(trans, root->reloc_root, 4811 new_root->root_key.objectid); 4812 if (IS_ERR(reloc_root)) 4813 return PTR_ERR(reloc_root); 4814 4815 ret = __add_reloc_root(reloc_root); 4816 BUG_ON(ret < 0); 4817 new_root->reloc_root = reloc_root; 4818 4819 if (rc->create_reloc_tree) 4820 ret = clone_backref_node(trans, rc, root, reloc_root); 4821 return ret; 4822 } 4823