1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "locking.h" 17 #include "btrfs_inode.h" 18 #include "async-thread.h" 19 #include "free-space-cache.h" 20 #include "inode-map.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 26 /* 27 * backref_node, mapping_node and tree_block start with this 28 */ 29 struct tree_entry { 30 struct rb_node rb_node; 31 u64 bytenr; 32 }; 33 34 /* 35 * present a tree block in the backref cache 36 */ 37 struct backref_node { 38 struct rb_node rb_node; 39 u64 bytenr; 40 41 u64 new_bytenr; 42 /* objectid of tree block owner, can be not uptodate */ 43 u64 owner; 44 /* link to pending, changed or detached list */ 45 struct list_head list; 46 /* list of upper level blocks reference this block */ 47 struct list_head upper; 48 /* list of child blocks in the cache */ 49 struct list_head lower; 50 /* NULL if this node is not tree root */ 51 struct btrfs_root *root; 52 /* extent buffer got by COW the block */ 53 struct extent_buffer *eb; 54 /* level of tree block */ 55 unsigned int level:8; 56 /* is the block in non-reference counted tree */ 57 unsigned int cowonly:1; 58 /* 1 if no child node in the cache */ 59 unsigned int lowest:1; 60 /* is the extent buffer locked */ 61 unsigned int locked:1; 62 /* has the block been processed */ 63 unsigned int processed:1; 64 /* have backrefs of this block been checked */ 65 unsigned int checked:1; 66 /* 67 * 1 if corresponding block has been cowed but some upper 68 * level block pointers may not point to the new location 69 */ 70 unsigned int pending:1; 71 /* 72 * 1 if the backref node isn't connected to any other 73 * backref node. 74 */ 75 unsigned int detached:1; 76 }; 77 78 /* 79 * present a block pointer in the backref cache 80 */ 81 struct backref_edge { 82 struct list_head list[2]; 83 struct backref_node *node[2]; 84 }; 85 86 #define LOWER 0 87 #define UPPER 1 88 #define RELOCATION_RESERVED_NODES 256 89 90 struct backref_cache { 91 /* red black tree of all backref nodes in the cache */ 92 struct rb_root rb_root; 93 /* for passing backref nodes to btrfs_reloc_cow_block */ 94 struct backref_node *path[BTRFS_MAX_LEVEL]; 95 /* 96 * list of blocks that have been cowed but some block 97 * pointers in upper level blocks may not reflect the 98 * new location 99 */ 100 struct list_head pending[BTRFS_MAX_LEVEL]; 101 /* list of backref nodes with no child node */ 102 struct list_head leaves; 103 /* list of blocks that have been cowed in current transaction */ 104 struct list_head changed; 105 /* list of detached backref node. */ 106 struct list_head detached; 107 108 u64 last_trans; 109 110 int nr_nodes; 111 int nr_edges; 112 }; 113 114 /* 115 * map address of tree root to tree 116 */ 117 struct mapping_node { 118 struct rb_node rb_node; 119 u64 bytenr; 120 void *data; 121 }; 122 123 struct mapping_tree { 124 struct rb_root rb_root; 125 spinlock_t lock; 126 }; 127 128 /* 129 * present a tree block to process 130 */ 131 struct tree_block { 132 struct rb_node rb_node; 133 u64 bytenr; 134 struct btrfs_key key; 135 unsigned int level:8; 136 unsigned int key_ready:1; 137 }; 138 139 #define MAX_EXTENTS 128 140 141 struct file_extent_cluster { 142 u64 start; 143 u64 end; 144 u64 boundary[MAX_EXTENTS]; 145 unsigned int nr; 146 }; 147 148 struct reloc_control { 149 /* block group to relocate */ 150 struct btrfs_block_group_cache *block_group; 151 /* extent tree */ 152 struct btrfs_root *extent_root; 153 /* inode for moving data */ 154 struct inode *data_inode; 155 156 struct btrfs_block_rsv *block_rsv; 157 158 struct backref_cache backref_cache; 159 160 struct file_extent_cluster cluster; 161 /* tree blocks have been processed */ 162 struct extent_io_tree processed_blocks; 163 /* map start of tree root to corresponding reloc tree */ 164 struct mapping_tree reloc_root_tree; 165 /* list of reloc trees */ 166 struct list_head reloc_roots; 167 /* list of subvolume trees that get relocated */ 168 struct list_head dirty_subvol_roots; 169 /* size of metadata reservation for merging reloc trees */ 170 u64 merging_rsv_size; 171 /* size of relocated tree nodes */ 172 u64 nodes_relocated; 173 /* reserved size for block group relocation*/ 174 u64 reserved_bytes; 175 176 u64 search_start; 177 u64 extents_found; 178 179 unsigned int stage:8; 180 unsigned int create_reloc_tree:1; 181 unsigned int merge_reloc_tree:1; 182 unsigned int found_file_extent:1; 183 }; 184 185 /* stages of data relocation */ 186 #define MOVE_DATA_EXTENTS 0 187 #define UPDATE_DATA_PTRS 1 188 189 static void remove_backref_node(struct backref_cache *cache, 190 struct backref_node *node); 191 static void __mark_block_processed(struct reloc_control *rc, 192 struct backref_node *node); 193 194 static void mapping_tree_init(struct mapping_tree *tree) 195 { 196 tree->rb_root = RB_ROOT; 197 spin_lock_init(&tree->lock); 198 } 199 200 static void backref_cache_init(struct backref_cache *cache) 201 { 202 int i; 203 cache->rb_root = RB_ROOT; 204 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 205 INIT_LIST_HEAD(&cache->pending[i]); 206 INIT_LIST_HEAD(&cache->changed); 207 INIT_LIST_HEAD(&cache->detached); 208 INIT_LIST_HEAD(&cache->leaves); 209 } 210 211 static void backref_cache_cleanup(struct backref_cache *cache) 212 { 213 struct backref_node *node; 214 int i; 215 216 while (!list_empty(&cache->detached)) { 217 node = list_entry(cache->detached.next, 218 struct backref_node, list); 219 remove_backref_node(cache, node); 220 } 221 222 while (!list_empty(&cache->leaves)) { 223 node = list_entry(cache->leaves.next, 224 struct backref_node, lower); 225 remove_backref_node(cache, node); 226 } 227 228 cache->last_trans = 0; 229 230 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 231 ASSERT(list_empty(&cache->pending[i])); 232 ASSERT(list_empty(&cache->changed)); 233 ASSERT(list_empty(&cache->detached)); 234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 235 ASSERT(!cache->nr_nodes); 236 ASSERT(!cache->nr_edges); 237 } 238 239 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 240 { 241 struct backref_node *node; 242 243 node = kzalloc(sizeof(*node), GFP_NOFS); 244 if (node) { 245 INIT_LIST_HEAD(&node->list); 246 INIT_LIST_HEAD(&node->upper); 247 INIT_LIST_HEAD(&node->lower); 248 RB_CLEAR_NODE(&node->rb_node); 249 cache->nr_nodes++; 250 } 251 return node; 252 } 253 254 static void free_backref_node(struct backref_cache *cache, 255 struct backref_node *node) 256 { 257 if (node) { 258 cache->nr_nodes--; 259 kfree(node); 260 } 261 } 262 263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 264 { 265 struct backref_edge *edge; 266 267 edge = kzalloc(sizeof(*edge), GFP_NOFS); 268 if (edge) 269 cache->nr_edges++; 270 return edge; 271 } 272 273 static void free_backref_edge(struct backref_cache *cache, 274 struct backref_edge *edge) 275 { 276 if (edge) { 277 cache->nr_edges--; 278 kfree(edge); 279 } 280 } 281 282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 283 struct rb_node *node) 284 { 285 struct rb_node **p = &root->rb_node; 286 struct rb_node *parent = NULL; 287 struct tree_entry *entry; 288 289 while (*p) { 290 parent = *p; 291 entry = rb_entry(parent, struct tree_entry, rb_node); 292 293 if (bytenr < entry->bytenr) 294 p = &(*p)->rb_left; 295 else if (bytenr > entry->bytenr) 296 p = &(*p)->rb_right; 297 else 298 return parent; 299 } 300 301 rb_link_node(node, parent, p); 302 rb_insert_color(node, root); 303 return NULL; 304 } 305 306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 307 { 308 struct rb_node *n = root->rb_node; 309 struct tree_entry *entry; 310 311 while (n) { 312 entry = rb_entry(n, struct tree_entry, rb_node); 313 314 if (bytenr < entry->bytenr) 315 n = n->rb_left; 316 else if (bytenr > entry->bytenr) 317 n = n->rb_right; 318 else 319 return n; 320 } 321 return NULL; 322 } 323 324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 325 { 326 327 struct btrfs_fs_info *fs_info = NULL; 328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 329 rb_node); 330 if (bnode->root) 331 fs_info = bnode->root->fs_info; 332 btrfs_panic(fs_info, errno, 333 "Inconsistency in backref cache found at offset %llu", 334 bytenr); 335 } 336 337 /* 338 * walk up backref nodes until reach node presents tree root 339 */ 340 static struct backref_node *walk_up_backref(struct backref_node *node, 341 struct backref_edge *edges[], 342 int *index) 343 { 344 struct backref_edge *edge; 345 int idx = *index; 346 347 while (!list_empty(&node->upper)) { 348 edge = list_entry(node->upper.next, 349 struct backref_edge, list[LOWER]); 350 edges[idx++] = edge; 351 node = edge->node[UPPER]; 352 } 353 BUG_ON(node->detached); 354 *index = idx; 355 return node; 356 } 357 358 /* 359 * walk down backref nodes to find start of next reference path 360 */ 361 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 362 int *index) 363 { 364 struct backref_edge *edge; 365 struct backref_node *lower; 366 int idx = *index; 367 368 while (idx > 0) { 369 edge = edges[idx - 1]; 370 lower = edge->node[LOWER]; 371 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 372 idx--; 373 continue; 374 } 375 edge = list_entry(edge->list[LOWER].next, 376 struct backref_edge, list[LOWER]); 377 edges[idx - 1] = edge; 378 *index = idx; 379 return edge->node[UPPER]; 380 } 381 *index = 0; 382 return NULL; 383 } 384 385 static void unlock_node_buffer(struct backref_node *node) 386 { 387 if (node->locked) { 388 btrfs_tree_unlock(node->eb); 389 node->locked = 0; 390 } 391 } 392 393 static void drop_node_buffer(struct backref_node *node) 394 { 395 if (node->eb) { 396 unlock_node_buffer(node); 397 free_extent_buffer(node->eb); 398 node->eb = NULL; 399 } 400 } 401 402 static void drop_backref_node(struct backref_cache *tree, 403 struct backref_node *node) 404 { 405 BUG_ON(!list_empty(&node->upper)); 406 407 drop_node_buffer(node); 408 list_del(&node->list); 409 list_del(&node->lower); 410 if (!RB_EMPTY_NODE(&node->rb_node)) 411 rb_erase(&node->rb_node, &tree->rb_root); 412 free_backref_node(tree, node); 413 } 414 415 /* 416 * remove a backref node from the backref cache 417 */ 418 static void remove_backref_node(struct backref_cache *cache, 419 struct backref_node *node) 420 { 421 struct backref_node *upper; 422 struct backref_edge *edge; 423 424 if (!node) 425 return; 426 427 BUG_ON(!node->lowest && !node->detached); 428 while (!list_empty(&node->upper)) { 429 edge = list_entry(node->upper.next, struct backref_edge, 430 list[LOWER]); 431 upper = edge->node[UPPER]; 432 list_del(&edge->list[LOWER]); 433 list_del(&edge->list[UPPER]); 434 free_backref_edge(cache, edge); 435 436 if (RB_EMPTY_NODE(&upper->rb_node)) { 437 BUG_ON(!list_empty(&node->upper)); 438 drop_backref_node(cache, node); 439 node = upper; 440 node->lowest = 1; 441 continue; 442 } 443 /* 444 * add the node to leaf node list if no other 445 * child block cached. 446 */ 447 if (list_empty(&upper->lower)) { 448 list_add_tail(&upper->lower, &cache->leaves); 449 upper->lowest = 1; 450 } 451 } 452 453 drop_backref_node(cache, node); 454 } 455 456 static void update_backref_node(struct backref_cache *cache, 457 struct backref_node *node, u64 bytenr) 458 { 459 struct rb_node *rb_node; 460 rb_erase(&node->rb_node, &cache->rb_root); 461 node->bytenr = bytenr; 462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 463 if (rb_node) 464 backref_tree_panic(rb_node, -EEXIST, bytenr); 465 } 466 467 /* 468 * update backref cache after a transaction commit 469 */ 470 static int update_backref_cache(struct btrfs_trans_handle *trans, 471 struct backref_cache *cache) 472 { 473 struct backref_node *node; 474 int level = 0; 475 476 if (cache->last_trans == 0) { 477 cache->last_trans = trans->transid; 478 return 0; 479 } 480 481 if (cache->last_trans == trans->transid) 482 return 0; 483 484 /* 485 * detached nodes are used to avoid unnecessary backref 486 * lookup. transaction commit changes the extent tree. 487 * so the detached nodes are no longer useful. 488 */ 489 while (!list_empty(&cache->detached)) { 490 node = list_entry(cache->detached.next, 491 struct backref_node, list); 492 remove_backref_node(cache, node); 493 } 494 495 while (!list_empty(&cache->changed)) { 496 node = list_entry(cache->changed.next, 497 struct backref_node, list); 498 list_del_init(&node->list); 499 BUG_ON(node->pending); 500 update_backref_node(cache, node, node->new_bytenr); 501 } 502 503 /* 504 * some nodes can be left in the pending list if there were 505 * errors during processing the pending nodes. 506 */ 507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 508 list_for_each_entry(node, &cache->pending[level], list) { 509 BUG_ON(!node->pending); 510 if (node->bytenr == node->new_bytenr) 511 continue; 512 update_backref_node(cache, node, node->new_bytenr); 513 } 514 } 515 516 cache->last_trans = 0; 517 return 1; 518 } 519 520 521 static int should_ignore_root(struct btrfs_root *root) 522 { 523 struct btrfs_root *reloc_root; 524 525 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 526 return 0; 527 528 reloc_root = root->reloc_root; 529 if (!reloc_root) 530 return 0; 531 532 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 533 root->fs_info->running_transaction->transid - 1) 534 return 0; 535 /* 536 * if there is reloc tree and it was created in previous 537 * transaction backref lookup can find the reloc tree, 538 * so backref node for the fs tree root is useless for 539 * relocation. 540 */ 541 return 1; 542 } 543 /* 544 * find reloc tree by address of tree root 545 */ 546 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 547 u64 bytenr) 548 { 549 struct rb_node *rb_node; 550 struct mapping_node *node; 551 struct btrfs_root *root = NULL; 552 553 spin_lock(&rc->reloc_root_tree.lock); 554 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 555 if (rb_node) { 556 node = rb_entry(rb_node, struct mapping_node, rb_node); 557 root = (struct btrfs_root *)node->data; 558 } 559 spin_unlock(&rc->reloc_root_tree.lock); 560 return root; 561 } 562 563 static int is_cowonly_root(u64 root_objectid) 564 { 565 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 566 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 567 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 568 root_objectid == BTRFS_DEV_TREE_OBJECTID || 569 root_objectid == BTRFS_TREE_LOG_OBJECTID || 570 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 571 root_objectid == BTRFS_UUID_TREE_OBJECTID || 572 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 573 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 574 return 1; 575 return 0; 576 } 577 578 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 579 u64 root_objectid) 580 { 581 struct btrfs_key key; 582 583 key.objectid = root_objectid; 584 key.type = BTRFS_ROOT_ITEM_KEY; 585 if (is_cowonly_root(root_objectid)) 586 key.offset = 0; 587 else 588 key.offset = (u64)-1; 589 590 return btrfs_get_fs_root(fs_info, &key, false); 591 } 592 593 static noinline_for_stack 594 int find_inline_backref(struct extent_buffer *leaf, int slot, 595 unsigned long *ptr, unsigned long *end) 596 { 597 struct btrfs_key key; 598 struct btrfs_extent_item *ei; 599 struct btrfs_tree_block_info *bi; 600 u32 item_size; 601 602 btrfs_item_key_to_cpu(leaf, &key, slot); 603 604 item_size = btrfs_item_size_nr(leaf, slot); 605 if (item_size < sizeof(*ei)) { 606 btrfs_print_v0_err(leaf->fs_info); 607 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL); 608 return 1; 609 } 610 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 611 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 612 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 613 614 if (key.type == BTRFS_EXTENT_ITEM_KEY && 615 item_size <= sizeof(*ei) + sizeof(*bi)) { 616 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 617 return 1; 618 } 619 if (key.type == BTRFS_METADATA_ITEM_KEY && 620 item_size <= sizeof(*ei)) { 621 WARN_ON(item_size < sizeof(*ei)); 622 return 1; 623 } 624 625 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 626 bi = (struct btrfs_tree_block_info *)(ei + 1); 627 *ptr = (unsigned long)(bi + 1); 628 } else { 629 *ptr = (unsigned long)(ei + 1); 630 } 631 *end = (unsigned long)ei + item_size; 632 return 0; 633 } 634 635 /* 636 * build backref tree for a given tree block. root of the backref tree 637 * corresponds the tree block, leaves of the backref tree correspond 638 * roots of b-trees that reference the tree block. 639 * 640 * the basic idea of this function is check backrefs of a given block 641 * to find upper level blocks that reference the block, and then check 642 * backrefs of these upper level blocks recursively. the recursion stop 643 * when tree root is reached or backrefs for the block is cached. 644 * 645 * NOTE: if we find backrefs for a block are cached, we know backrefs 646 * for all upper level blocks that directly/indirectly reference the 647 * block are also cached. 648 */ 649 static noinline_for_stack 650 struct backref_node *build_backref_tree(struct reloc_control *rc, 651 struct btrfs_key *node_key, 652 int level, u64 bytenr) 653 { 654 struct backref_cache *cache = &rc->backref_cache; 655 struct btrfs_path *path1; /* For searching extent root */ 656 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */ 657 struct extent_buffer *eb; 658 struct btrfs_root *root; 659 struct backref_node *cur; 660 struct backref_node *upper; 661 struct backref_node *lower; 662 struct backref_node *node = NULL; 663 struct backref_node *exist = NULL; 664 struct backref_edge *edge; 665 struct rb_node *rb_node; 666 struct btrfs_key key; 667 unsigned long end; 668 unsigned long ptr; 669 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */ 670 LIST_HEAD(useless); 671 int cowonly; 672 int ret; 673 int err = 0; 674 bool need_check = true; 675 676 path1 = btrfs_alloc_path(); 677 path2 = btrfs_alloc_path(); 678 if (!path1 || !path2) { 679 err = -ENOMEM; 680 goto out; 681 } 682 path1->reada = READA_FORWARD; 683 path2->reada = READA_FORWARD; 684 685 node = alloc_backref_node(cache); 686 if (!node) { 687 err = -ENOMEM; 688 goto out; 689 } 690 691 node->bytenr = bytenr; 692 node->level = level; 693 node->lowest = 1; 694 cur = node; 695 again: 696 end = 0; 697 ptr = 0; 698 key.objectid = cur->bytenr; 699 key.type = BTRFS_METADATA_ITEM_KEY; 700 key.offset = (u64)-1; 701 702 path1->search_commit_root = 1; 703 path1->skip_locking = 1; 704 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 705 0, 0); 706 if (ret < 0) { 707 err = ret; 708 goto out; 709 } 710 ASSERT(ret); 711 ASSERT(path1->slots[0]); 712 713 path1->slots[0]--; 714 715 WARN_ON(cur->checked); 716 if (!list_empty(&cur->upper)) { 717 /* 718 * the backref was added previously when processing 719 * backref of type BTRFS_TREE_BLOCK_REF_KEY 720 */ 721 ASSERT(list_is_singular(&cur->upper)); 722 edge = list_entry(cur->upper.next, struct backref_edge, 723 list[LOWER]); 724 ASSERT(list_empty(&edge->list[UPPER])); 725 exist = edge->node[UPPER]; 726 /* 727 * add the upper level block to pending list if we need 728 * check its backrefs 729 */ 730 if (!exist->checked) 731 list_add_tail(&edge->list[UPPER], &list); 732 } else { 733 exist = NULL; 734 } 735 736 while (1) { 737 cond_resched(); 738 eb = path1->nodes[0]; 739 740 if (ptr >= end) { 741 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 742 ret = btrfs_next_leaf(rc->extent_root, path1); 743 if (ret < 0) { 744 err = ret; 745 goto out; 746 } 747 if (ret > 0) 748 break; 749 eb = path1->nodes[0]; 750 } 751 752 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 753 if (key.objectid != cur->bytenr) { 754 WARN_ON(exist); 755 break; 756 } 757 758 if (key.type == BTRFS_EXTENT_ITEM_KEY || 759 key.type == BTRFS_METADATA_ITEM_KEY) { 760 ret = find_inline_backref(eb, path1->slots[0], 761 &ptr, &end); 762 if (ret) 763 goto next; 764 } 765 } 766 767 if (ptr < end) { 768 /* update key for inline back ref */ 769 struct btrfs_extent_inline_ref *iref; 770 int type; 771 iref = (struct btrfs_extent_inline_ref *)ptr; 772 type = btrfs_get_extent_inline_ref_type(eb, iref, 773 BTRFS_REF_TYPE_BLOCK); 774 if (type == BTRFS_REF_TYPE_INVALID) { 775 err = -EUCLEAN; 776 goto out; 777 } 778 key.type = type; 779 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 780 781 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 782 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 783 } 784 785 /* 786 * Parent node found and matches current inline ref, no need to 787 * rebuild this node for this inline ref. 788 */ 789 if (exist && 790 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 791 exist->owner == key.offset) || 792 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 793 exist->bytenr == key.offset))) { 794 exist = NULL; 795 goto next; 796 } 797 798 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 799 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 800 if (key.objectid == key.offset) { 801 /* 802 * Only root blocks of reloc trees use backref 803 * pointing to itself. 804 */ 805 root = find_reloc_root(rc, cur->bytenr); 806 ASSERT(root); 807 cur->root = root; 808 break; 809 } 810 811 edge = alloc_backref_edge(cache); 812 if (!edge) { 813 err = -ENOMEM; 814 goto out; 815 } 816 rb_node = tree_search(&cache->rb_root, key.offset); 817 if (!rb_node) { 818 upper = alloc_backref_node(cache); 819 if (!upper) { 820 free_backref_edge(cache, edge); 821 err = -ENOMEM; 822 goto out; 823 } 824 upper->bytenr = key.offset; 825 upper->level = cur->level + 1; 826 /* 827 * backrefs for the upper level block isn't 828 * cached, add the block to pending list 829 */ 830 list_add_tail(&edge->list[UPPER], &list); 831 } else { 832 upper = rb_entry(rb_node, struct backref_node, 833 rb_node); 834 ASSERT(upper->checked); 835 INIT_LIST_HEAD(&edge->list[UPPER]); 836 } 837 list_add_tail(&edge->list[LOWER], &cur->upper); 838 edge->node[LOWER] = cur; 839 edge->node[UPPER] = upper; 840 841 goto next; 842 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 843 err = -EINVAL; 844 btrfs_print_v0_err(rc->extent_root->fs_info); 845 btrfs_handle_fs_error(rc->extent_root->fs_info, err, 846 NULL); 847 goto out; 848 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 849 goto next; 850 } 851 852 /* 853 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 854 * means the root objectid. We need to search the tree to get 855 * its parent bytenr. 856 */ 857 root = read_fs_root(rc->extent_root->fs_info, key.offset); 858 if (IS_ERR(root)) { 859 err = PTR_ERR(root); 860 goto out; 861 } 862 863 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 864 cur->cowonly = 1; 865 866 if (btrfs_root_level(&root->root_item) == cur->level) { 867 /* tree root */ 868 ASSERT(btrfs_root_bytenr(&root->root_item) == 869 cur->bytenr); 870 if (should_ignore_root(root)) 871 list_add(&cur->list, &useless); 872 else 873 cur->root = root; 874 break; 875 } 876 877 level = cur->level + 1; 878 879 /* Search the tree to find parent blocks referring the block. */ 880 path2->search_commit_root = 1; 881 path2->skip_locking = 1; 882 path2->lowest_level = level; 883 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 884 path2->lowest_level = 0; 885 if (ret < 0) { 886 err = ret; 887 goto out; 888 } 889 if (ret > 0 && path2->slots[level] > 0) 890 path2->slots[level]--; 891 892 eb = path2->nodes[level]; 893 if (btrfs_node_blockptr(eb, path2->slots[level]) != 894 cur->bytenr) { 895 btrfs_err(root->fs_info, 896 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 897 cur->bytenr, level - 1, 898 root->root_key.objectid, 899 node_key->objectid, node_key->type, 900 node_key->offset); 901 err = -ENOENT; 902 goto out; 903 } 904 lower = cur; 905 need_check = true; 906 907 /* Add all nodes and edges in the path */ 908 for (; level < BTRFS_MAX_LEVEL; level++) { 909 if (!path2->nodes[level]) { 910 ASSERT(btrfs_root_bytenr(&root->root_item) == 911 lower->bytenr); 912 if (should_ignore_root(root)) 913 list_add(&lower->list, &useless); 914 else 915 lower->root = root; 916 break; 917 } 918 919 edge = alloc_backref_edge(cache); 920 if (!edge) { 921 err = -ENOMEM; 922 goto out; 923 } 924 925 eb = path2->nodes[level]; 926 rb_node = tree_search(&cache->rb_root, eb->start); 927 if (!rb_node) { 928 upper = alloc_backref_node(cache); 929 if (!upper) { 930 free_backref_edge(cache, edge); 931 err = -ENOMEM; 932 goto out; 933 } 934 upper->bytenr = eb->start; 935 upper->owner = btrfs_header_owner(eb); 936 upper->level = lower->level + 1; 937 if (!test_bit(BTRFS_ROOT_REF_COWS, 938 &root->state)) 939 upper->cowonly = 1; 940 941 /* 942 * if we know the block isn't shared 943 * we can void checking its backrefs. 944 */ 945 if (btrfs_block_can_be_shared(root, eb)) 946 upper->checked = 0; 947 else 948 upper->checked = 1; 949 950 /* 951 * add the block to pending list if we 952 * need check its backrefs, we only do this once 953 * while walking up a tree as we will catch 954 * anything else later on. 955 */ 956 if (!upper->checked && need_check) { 957 need_check = false; 958 list_add_tail(&edge->list[UPPER], 959 &list); 960 } else { 961 if (upper->checked) 962 need_check = true; 963 INIT_LIST_HEAD(&edge->list[UPPER]); 964 } 965 } else { 966 upper = rb_entry(rb_node, struct backref_node, 967 rb_node); 968 ASSERT(upper->checked); 969 INIT_LIST_HEAD(&edge->list[UPPER]); 970 if (!upper->owner) 971 upper->owner = btrfs_header_owner(eb); 972 } 973 list_add_tail(&edge->list[LOWER], &lower->upper); 974 edge->node[LOWER] = lower; 975 edge->node[UPPER] = upper; 976 977 if (rb_node) 978 break; 979 lower = upper; 980 upper = NULL; 981 } 982 btrfs_release_path(path2); 983 next: 984 if (ptr < end) { 985 ptr += btrfs_extent_inline_ref_size(key.type); 986 if (ptr >= end) { 987 WARN_ON(ptr > end); 988 ptr = 0; 989 end = 0; 990 } 991 } 992 if (ptr >= end) 993 path1->slots[0]++; 994 } 995 btrfs_release_path(path1); 996 997 cur->checked = 1; 998 WARN_ON(exist); 999 1000 /* the pending list isn't empty, take the first block to process */ 1001 if (!list_empty(&list)) { 1002 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1003 list_del_init(&edge->list[UPPER]); 1004 cur = edge->node[UPPER]; 1005 goto again; 1006 } 1007 1008 /* 1009 * everything goes well, connect backref nodes and insert backref nodes 1010 * into the cache. 1011 */ 1012 ASSERT(node->checked); 1013 cowonly = node->cowonly; 1014 if (!cowonly) { 1015 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1016 &node->rb_node); 1017 if (rb_node) 1018 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1019 list_add_tail(&node->lower, &cache->leaves); 1020 } 1021 1022 list_for_each_entry(edge, &node->upper, list[LOWER]) 1023 list_add_tail(&edge->list[UPPER], &list); 1024 1025 while (!list_empty(&list)) { 1026 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1027 list_del_init(&edge->list[UPPER]); 1028 upper = edge->node[UPPER]; 1029 if (upper->detached) { 1030 list_del(&edge->list[LOWER]); 1031 lower = edge->node[LOWER]; 1032 free_backref_edge(cache, edge); 1033 if (list_empty(&lower->upper)) 1034 list_add(&lower->list, &useless); 1035 continue; 1036 } 1037 1038 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1039 if (upper->lowest) { 1040 list_del_init(&upper->lower); 1041 upper->lowest = 0; 1042 } 1043 1044 list_add_tail(&edge->list[UPPER], &upper->lower); 1045 continue; 1046 } 1047 1048 if (!upper->checked) { 1049 /* 1050 * Still want to blow up for developers since this is a 1051 * logic bug. 1052 */ 1053 ASSERT(0); 1054 err = -EINVAL; 1055 goto out; 1056 } 1057 if (cowonly != upper->cowonly) { 1058 ASSERT(0); 1059 err = -EINVAL; 1060 goto out; 1061 } 1062 1063 if (!cowonly) { 1064 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1065 &upper->rb_node); 1066 if (rb_node) 1067 backref_tree_panic(rb_node, -EEXIST, 1068 upper->bytenr); 1069 } 1070 1071 list_add_tail(&edge->list[UPPER], &upper->lower); 1072 1073 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1074 list_add_tail(&edge->list[UPPER], &list); 1075 } 1076 /* 1077 * process useless backref nodes. backref nodes for tree leaves 1078 * are deleted from the cache. backref nodes for upper level 1079 * tree blocks are left in the cache to avoid unnecessary backref 1080 * lookup. 1081 */ 1082 while (!list_empty(&useless)) { 1083 upper = list_entry(useless.next, struct backref_node, list); 1084 list_del_init(&upper->list); 1085 ASSERT(list_empty(&upper->upper)); 1086 if (upper == node) 1087 node = NULL; 1088 if (upper->lowest) { 1089 list_del_init(&upper->lower); 1090 upper->lowest = 0; 1091 } 1092 while (!list_empty(&upper->lower)) { 1093 edge = list_entry(upper->lower.next, 1094 struct backref_edge, list[UPPER]); 1095 list_del(&edge->list[UPPER]); 1096 list_del(&edge->list[LOWER]); 1097 lower = edge->node[LOWER]; 1098 free_backref_edge(cache, edge); 1099 1100 if (list_empty(&lower->upper)) 1101 list_add(&lower->list, &useless); 1102 } 1103 __mark_block_processed(rc, upper); 1104 if (upper->level > 0) { 1105 list_add(&upper->list, &cache->detached); 1106 upper->detached = 1; 1107 } else { 1108 rb_erase(&upper->rb_node, &cache->rb_root); 1109 free_backref_node(cache, upper); 1110 } 1111 } 1112 out: 1113 btrfs_free_path(path1); 1114 btrfs_free_path(path2); 1115 if (err) { 1116 while (!list_empty(&useless)) { 1117 lower = list_entry(useless.next, 1118 struct backref_node, list); 1119 list_del_init(&lower->list); 1120 } 1121 while (!list_empty(&list)) { 1122 edge = list_first_entry(&list, struct backref_edge, 1123 list[UPPER]); 1124 list_del(&edge->list[UPPER]); 1125 list_del(&edge->list[LOWER]); 1126 lower = edge->node[LOWER]; 1127 upper = edge->node[UPPER]; 1128 free_backref_edge(cache, edge); 1129 1130 /* 1131 * Lower is no longer linked to any upper backref nodes 1132 * and isn't in the cache, we can free it ourselves. 1133 */ 1134 if (list_empty(&lower->upper) && 1135 RB_EMPTY_NODE(&lower->rb_node)) 1136 list_add(&lower->list, &useless); 1137 1138 if (!RB_EMPTY_NODE(&upper->rb_node)) 1139 continue; 1140 1141 /* Add this guy's upper edges to the list to process */ 1142 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1143 list_add_tail(&edge->list[UPPER], &list); 1144 if (list_empty(&upper->upper)) 1145 list_add(&upper->list, &useless); 1146 } 1147 1148 while (!list_empty(&useless)) { 1149 lower = list_entry(useless.next, 1150 struct backref_node, list); 1151 list_del_init(&lower->list); 1152 if (lower == node) 1153 node = NULL; 1154 free_backref_node(cache, lower); 1155 } 1156 1157 free_backref_node(cache, node); 1158 return ERR_PTR(err); 1159 } 1160 ASSERT(!node || !node->detached); 1161 return node; 1162 } 1163 1164 /* 1165 * helper to add backref node for the newly created snapshot. 1166 * the backref node is created by cloning backref node that 1167 * corresponds to root of source tree 1168 */ 1169 static int clone_backref_node(struct btrfs_trans_handle *trans, 1170 struct reloc_control *rc, 1171 struct btrfs_root *src, 1172 struct btrfs_root *dest) 1173 { 1174 struct btrfs_root *reloc_root = src->reloc_root; 1175 struct backref_cache *cache = &rc->backref_cache; 1176 struct backref_node *node = NULL; 1177 struct backref_node *new_node; 1178 struct backref_edge *edge; 1179 struct backref_edge *new_edge; 1180 struct rb_node *rb_node; 1181 1182 if (cache->last_trans > 0) 1183 update_backref_cache(trans, cache); 1184 1185 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1186 if (rb_node) { 1187 node = rb_entry(rb_node, struct backref_node, rb_node); 1188 if (node->detached) 1189 node = NULL; 1190 else 1191 BUG_ON(node->new_bytenr != reloc_root->node->start); 1192 } 1193 1194 if (!node) { 1195 rb_node = tree_search(&cache->rb_root, 1196 reloc_root->commit_root->start); 1197 if (rb_node) { 1198 node = rb_entry(rb_node, struct backref_node, 1199 rb_node); 1200 BUG_ON(node->detached); 1201 } 1202 } 1203 1204 if (!node) 1205 return 0; 1206 1207 new_node = alloc_backref_node(cache); 1208 if (!new_node) 1209 return -ENOMEM; 1210 1211 new_node->bytenr = dest->node->start; 1212 new_node->level = node->level; 1213 new_node->lowest = node->lowest; 1214 new_node->checked = 1; 1215 new_node->root = dest; 1216 1217 if (!node->lowest) { 1218 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1219 new_edge = alloc_backref_edge(cache); 1220 if (!new_edge) 1221 goto fail; 1222 1223 new_edge->node[UPPER] = new_node; 1224 new_edge->node[LOWER] = edge->node[LOWER]; 1225 list_add_tail(&new_edge->list[UPPER], 1226 &new_node->lower); 1227 } 1228 } else { 1229 list_add_tail(&new_node->lower, &cache->leaves); 1230 } 1231 1232 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1233 &new_node->rb_node); 1234 if (rb_node) 1235 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1236 1237 if (!new_node->lowest) { 1238 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1239 list_add_tail(&new_edge->list[LOWER], 1240 &new_edge->node[LOWER]->upper); 1241 } 1242 } 1243 return 0; 1244 fail: 1245 while (!list_empty(&new_node->lower)) { 1246 new_edge = list_entry(new_node->lower.next, 1247 struct backref_edge, list[UPPER]); 1248 list_del(&new_edge->list[UPPER]); 1249 free_backref_edge(cache, new_edge); 1250 } 1251 free_backref_node(cache, new_node); 1252 return -ENOMEM; 1253 } 1254 1255 /* 1256 * helper to add 'address of tree root -> reloc tree' mapping 1257 */ 1258 static int __must_check __add_reloc_root(struct btrfs_root *root) 1259 { 1260 struct btrfs_fs_info *fs_info = root->fs_info; 1261 struct rb_node *rb_node; 1262 struct mapping_node *node; 1263 struct reloc_control *rc = fs_info->reloc_ctl; 1264 1265 node = kmalloc(sizeof(*node), GFP_NOFS); 1266 if (!node) 1267 return -ENOMEM; 1268 1269 node->bytenr = root->node->start; 1270 node->data = root; 1271 1272 spin_lock(&rc->reloc_root_tree.lock); 1273 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1274 node->bytenr, &node->rb_node); 1275 spin_unlock(&rc->reloc_root_tree.lock); 1276 if (rb_node) { 1277 btrfs_panic(fs_info, -EEXIST, 1278 "Duplicate root found for start=%llu while inserting into relocation tree", 1279 node->bytenr); 1280 } 1281 1282 list_add_tail(&root->root_list, &rc->reloc_roots); 1283 return 0; 1284 } 1285 1286 /* 1287 * helper to delete the 'address of tree root -> reloc tree' 1288 * mapping 1289 */ 1290 static void __del_reloc_root(struct btrfs_root *root) 1291 { 1292 struct btrfs_fs_info *fs_info = root->fs_info; 1293 struct rb_node *rb_node; 1294 struct mapping_node *node = NULL; 1295 struct reloc_control *rc = fs_info->reloc_ctl; 1296 1297 if (rc && root->node) { 1298 spin_lock(&rc->reloc_root_tree.lock); 1299 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1300 root->node->start); 1301 if (rb_node) { 1302 node = rb_entry(rb_node, struct mapping_node, rb_node); 1303 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1304 } 1305 spin_unlock(&rc->reloc_root_tree.lock); 1306 if (!node) 1307 return; 1308 BUG_ON((struct btrfs_root *)node->data != root); 1309 } 1310 1311 spin_lock(&fs_info->trans_lock); 1312 list_del_init(&root->root_list); 1313 spin_unlock(&fs_info->trans_lock); 1314 kfree(node); 1315 } 1316 1317 /* 1318 * helper to update the 'address of tree root -> reloc tree' 1319 * mapping 1320 */ 1321 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1322 { 1323 struct btrfs_fs_info *fs_info = root->fs_info; 1324 struct rb_node *rb_node; 1325 struct mapping_node *node = NULL; 1326 struct reloc_control *rc = fs_info->reloc_ctl; 1327 1328 spin_lock(&rc->reloc_root_tree.lock); 1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1330 root->node->start); 1331 if (rb_node) { 1332 node = rb_entry(rb_node, struct mapping_node, rb_node); 1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1334 } 1335 spin_unlock(&rc->reloc_root_tree.lock); 1336 1337 if (!node) 1338 return 0; 1339 BUG_ON((struct btrfs_root *)node->data != root); 1340 1341 spin_lock(&rc->reloc_root_tree.lock); 1342 node->bytenr = new_bytenr; 1343 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1344 node->bytenr, &node->rb_node); 1345 spin_unlock(&rc->reloc_root_tree.lock); 1346 if (rb_node) 1347 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1348 return 0; 1349 } 1350 1351 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1352 struct btrfs_root *root, u64 objectid) 1353 { 1354 struct btrfs_fs_info *fs_info = root->fs_info; 1355 struct btrfs_root *reloc_root; 1356 struct extent_buffer *eb; 1357 struct btrfs_root_item *root_item; 1358 struct btrfs_key root_key; 1359 int ret; 1360 1361 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1362 BUG_ON(!root_item); 1363 1364 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1365 root_key.type = BTRFS_ROOT_ITEM_KEY; 1366 root_key.offset = objectid; 1367 1368 if (root->root_key.objectid == objectid) { 1369 u64 commit_root_gen; 1370 1371 /* called by btrfs_init_reloc_root */ 1372 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1373 BTRFS_TREE_RELOC_OBJECTID); 1374 BUG_ON(ret); 1375 /* 1376 * Set the last_snapshot field to the generation of the commit 1377 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1378 * correctly (returns true) when the relocation root is created 1379 * either inside the critical section of a transaction commit 1380 * (through transaction.c:qgroup_account_snapshot()) and when 1381 * it's created before the transaction commit is started. 1382 */ 1383 commit_root_gen = btrfs_header_generation(root->commit_root); 1384 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1385 } else { 1386 /* 1387 * called by btrfs_reloc_post_snapshot_hook. 1388 * the source tree is a reloc tree, all tree blocks 1389 * modified after it was created have RELOC flag 1390 * set in their headers. so it's OK to not update 1391 * the 'last_snapshot'. 1392 */ 1393 ret = btrfs_copy_root(trans, root, root->node, &eb, 1394 BTRFS_TREE_RELOC_OBJECTID); 1395 BUG_ON(ret); 1396 } 1397 1398 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1399 btrfs_set_root_bytenr(root_item, eb->start); 1400 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1401 btrfs_set_root_generation(root_item, trans->transid); 1402 1403 if (root->root_key.objectid == objectid) { 1404 btrfs_set_root_refs(root_item, 0); 1405 memset(&root_item->drop_progress, 0, 1406 sizeof(struct btrfs_disk_key)); 1407 root_item->drop_level = 0; 1408 } 1409 1410 btrfs_tree_unlock(eb); 1411 free_extent_buffer(eb); 1412 1413 ret = btrfs_insert_root(trans, fs_info->tree_root, 1414 &root_key, root_item); 1415 BUG_ON(ret); 1416 kfree(root_item); 1417 1418 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1419 BUG_ON(IS_ERR(reloc_root)); 1420 reloc_root->last_trans = trans->transid; 1421 return reloc_root; 1422 } 1423 1424 /* 1425 * create reloc tree for a given fs tree. reloc tree is just a 1426 * snapshot of the fs tree with special root objectid. 1427 */ 1428 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1429 struct btrfs_root *root) 1430 { 1431 struct btrfs_fs_info *fs_info = root->fs_info; 1432 struct btrfs_root *reloc_root; 1433 struct reloc_control *rc = fs_info->reloc_ctl; 1434 struct btrfs_block_rsv *rsv; 1435 int clear_rsv = 0; 1436 int ret; 1437 1438 if (root->reloc_root) { 1439 reloc_root = root->reloc_root; 1440 reloc_root->last_trans = trans->transid; 1441 return 0; 1442 } 1443 1444 if (!rc || !rc->create_reloc_tree || 1445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1446 return 0; 1447 1448 if (!trans->reloc_reserved) { 1449 rsv = trans->block_rsv; 1450 trans->block_rsv = rc->block_rsv; 1451 clear_rsv = 1; 1452 } 1453 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1454 if (clear_rsv) 1455 trans->block_rsv = rsv; 1456 1457 ret = __add_reloc_root(reloc_root); 1458 BUG_ON(ret < 0); 1459 root->reloc_root = reloc_root; 1460 return 0; 1461 } 1462 1463 /* 1464 * update root item of reloc tree 1465 */ 1466 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1467 struct btrfs_root *root) 1468 { 1469 struct btrfs_fs_info *fs_info = root->fs_info; 1470 struct btrfs_root *reloc_root; 1471 struct btrfs_root_item *root_item; 1472 int ret; 1473 1474 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) || 1475 !root->reloc_root) 1476 goto out; 1477 1478 reloc_root = root->reloc_root; 1479 root_item = &reloc_root->root_item; 1480 1481 /* root->reloc_root will stay until current relocation finished */ 1482 if (fs_info->reloc_ctl->merge_reloc_tree && 1483 btrfs_root_refs(root_item) == 0) { 1484 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1485 __del_reloc_root(reloc_root); 1486 } 1487 1488 if (reloc_root->commit_root != reloc_root->node) { 1489 btrfs_set_root_node(root_item, reloc_root->node); 1490 free_extent_buffer(reloc_root->commit_root); 1491 reloc_root->commit_root = btrfs_root_node(reloc_root); 1492 } 1493 1494 ret = btrfs_update_root(trans, fs_info->tree_root, 1495 &reloc_root->root_key, root_item); 1496 BUG_ON(ret); 1497 1498 out: 1499 return 0; 1500 } 1501 1502 /* 1503 * helper to find first cached inode with inode number >= objectid 1504 * in a subvolume 1505 */ 1506 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1507 { 1508 struct rb_node *node; 1509 struct rb_node *prev; 1510 struct btrfs_inode *entry; 1511 struct inode *inode; 1512 1513 spin_lock(&root->inode_lock); 1514 again: 1515 node = root->inode_tree.rb_node; 1516 prev = NULL; 1517 while (node) { 1518 prev = node; 1519 entry = rb_entry(node, struct btrfs_inode, rb_node); 1520 1521 if (objectid < btrfs_ino(entry)) 1522 node = node->rb_left; 1523 else if (objectid > btrfs_ino(entry)) 1524 node = node->rb_right; 1525 else 1526 break; 1527 } 1528 if (!node) { 1529 while (prev) { 1530 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1531 if (objectid <= btrfs_ino(entry)) { 1532 node = prev; 1533 break; 1534 } 1535 prev = rb_next(prev); 1536 } 1537 } 1538 while (node) { 1539 entry = rb_entry(node, struct btrfs_inode, rb_node); 1540 inode = igrab(&entry->vfs_inode); 1541 if (inode) { 1542 spin_unlock(&root->inode_lock); 1543 return inode; 1544 } 1545 1546 objectid = btrfs_ino(entry) + 1; 1547 if (cond_resched_lock(&root->inode_lock)) 1548 goto again; 1549 1550 node = rb_next(node); 1551 } 1552 spin_unlock(&root->inode_lock); 1553 return NULL; 1554 } 1555 1556 static int in_block_group(u64 bytenr, 1557 struct btrfs_block_group_cache *block_group) 1558 { 1559 if (bytenr >= block_group->key.objectid && 1560 bytenr < block_group->key.objectid + block_group->key.offset) 1561 return 1; 1562 return 0; 1563 } 1564 1565 /* 1566 * get new location of data 1567 */ 1568 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1569 u64 bytenr, u64 num_bytes) 1570 { 1571 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1572 struct btrfs_path *path; 1573 struct btrfs_file_extent_item *fi; 1574 struct extent_buffer *leaf; 1575 int ret; 1576 1577 path = btrfs_alloc_path(); 1578 if (!path) 1579 return -ENOMEM; 1580 1581 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1582 ret = btrfs_lookup_file_extent(NULL, root, path, 1583 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1584 if (ret < 0) 1585 goto out; 1586 if (ret > 0) { 1587 ret = -ENOENT; 1588 goto out; 1589 } 1590 1591 leaf = path->nodes[0]; 1592 fi = btrfs_item_ptr(leaf, path->slots[0], 1593 struct btrfs_file_extent_item); 1594 1595 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1596 btrfs_file_extent_compression(leaf, fi) || 1597 btrfs_file_extent_encryption(leaf, fi) || 1598 btrfs_file_extent_other_encoding(leaf, fi)); 1599 1600 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1601 ret = -EINVAL; 1602 goto out; 1603 } 1604 1605 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1606 ret = 0; 1607 out: 1608 btrfs_free_path(path); 1609 return ret; 1610 } 1611 1612 /* 1613 * update file extent items in the tree leaf to point to 1614 * the new locations. 1615 */ 1616 static noinline_for_stack 1617 int replace_file_extents(struct btrfs_trans_handle *trans, 1618 struct reloc_control *rc, 1619 struct btrfs_root *root, 1620 struct extent_buffer *leaf) 1621 { 1622 struct btrfs_fs_info *fs_info = root->fs_info; 1623 struct btrfs_key key; 1624 struct btrfs_file_extent_item *fi; 1625 struct inode *inode = NULL; 1626 u64 parent; 1627 u64 bytenr; 1628 u64 new_bytenr = 0; 1629 u64 num_bytes; 1630 u64 end; 1631 u32 nritems; 1632 u32 i; 1633 int ret = 0; 1634 int first = 1; 1635 int dirty = 0; 1636 1637 if (rc->stage != UPDATE_DATA_PTRS) 1638 return 0; 1639 1640 /* reloc trees always use full backref */ 1641 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1642 parent = leaf->start; 1643 else 1644 parent = 0; 1645 1646 nritems = btrfs_header_nritems(leaf); 1647 for (i = 0; i < nritems; i++) { 1648 struct btrfs_ref ref = { 0 }; 1649 1650 cond_resched(); 1651 btrfs_item_key_to_cpu(leaf, &key, i); 1652 if (key.type != BTRFS_EXTENT_DATA_KEY) 1653 continue; 1654 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1655 if (btrfs_file_extent_type(leaf, fi) == 1656 BTRFS_FILE_EXTENT_INLINE) 1657 continue; 1658 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1659 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1660 if (bytenr == 0) 1661 continue; 1662 if (!in_block_group(bytenr, rc->block_group)) 1663 continue; 1664 1665 /* 1666 * if we are modifying block in fs tree, wait for readpage 1667 * to complete and drop the extent cache 1668 */ 1669 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1670 if (first) { 1671 inode = find_next_inode(root, key.objectid); 1672 first = 0; 1673 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1674 btrfs_add_delayed_iput(inode); 1675 inode = find_next_inode(root, key.objectid); 1676 } 1677 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1678 end = key.offset + 1679 btrfs_file_extent_num_bytes(leaf, fi); 1680 WARN_ON(!IS_ALIGNED(key.offset, 1681 fs_info->sectorsize)); 1682 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1683 end--; 1684 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1685 key.offset, end); 1686 if (!ret) 1687 continue; 1688 1689 btrfs_drop_extent_cache(BTRFS_I(inode), 1690 key.offset, end, 1); 1691 unlock_extent(&BTRFS_I(inode)->io_tree, 1692 key.offset, end); 1693 } 1694 } 1695 1696 ret = get_new_location(rc->data_inode, &new_bytenr, 1697 bytenr, num_bytes); 1698 if (ret) { 1699 /* 1700 * Don't have to abort since we've not changed anything 1701 * in the file extent yet. 1702 */ 1703 break; 1704 } 1705 1706 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1707 dirty = 1; 1708 1709 key.offset -= btrfs_file_extent_offset(leaf, fi); 1710 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1711 num_bytes, parent); 1712 ref.real_root = root->root_key.objectid; 1713 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1714 key.objectid, key.offset); 1715 ret = btrfs_inc_extent_ref(trans, &ref); 1716 if (ret) { 1717 btrfs_abort_transaction(trans, ret); 1718 break; 1719 } 1720 1721 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1722 num_bytes, parent); 1723 ref.real_root = root->root_key.objectid; 1724 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1725 key.objectid, key.offset); 1726 ret = btrfs_free_extent(trans, &ref); 1727 if (ret) { 1728 btrfs_abort_transaction(trans, ret); 1729 break; 1730 } 1731 } 1732 if (dirty) 1733 btrfs_mark_buffer_dirty(leaf); 1734 if (inode) 1735 btrfs_add_delayed_iput(inode); 1736 return ret; 1737 } 1738 1739 static noinline_for_stack 1740 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1741 struct btrfs_path *path, int level) 1742 { 1743 struct btrfs_disk_key key1; 1744 struct btrfs_disk_key key2; 1745 btrfs_node_key(eb, &key1, slot); 1746 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1747 return memcmp(&key1, &key2, sizeof(key1)); 1748 } 1749 1750 /* 1751 * try to replace tree blocks in fs tree with the new blocks 1752 * in reloc tree. tree blocks haven't been modified since the 1753 * reloc tree was create can be replaced. 1754 * 1755 * if a block was replaced, level of the block + 1 is returned. 1756 * if no block got replaced, 0 is returned. if there are other 1757 * errors, a negative error number is returned. 1758 */ 1759 static noinline_for_stack 1760 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1761 struct btrfs_root *dest, struct btrfs_root *src, 1762 struct btrfs_path *path, struct btrfs_key *next_key, 1763 int lowest_level, int max_level) 1764 { 1765 struct btrfs_fs_info *fs_info = dest->fs_info; 1766 struct extent_buffer *eb; 1767 struct extent_buffer *parent; 1768 struct btrfs_ref ref = { 0 }; 1769 struct btrfs_key key; 1770 u64 old_bytenr; 1771 u64 new_bytenr; 1772 u64 old_ptr_gen; 1773 u64 new_ptr_gen; 1774 u64 last_snapshot; 1775 u32 blocksize; 1776 int cow = 0; 1777 int level; 1778 int ret; 1779 int slot; 1780 1781 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1782 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1783 1784 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1785 again: 1786 slot = path->slots[lowest_level]; 1787 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1788 1789 eb = btrfs_lock_root_node(dest); 1790 btrfs_set_lock_blocking_write(eb); 1791 level = btrfs_header_level(eb); 1792 1793 if (level < lowest_level) { 1794 btrfs_tree_unlock(eb); 1795 free_extent_buffer(eb); 1796 return 0; 1797 } 1798 1799 if (cow) { 1800 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1801 BUG_ON(ret); 1802 } 1803 btrfs_set_lock_blocking_write(eb); 1804 1805 if (next_key) { 1806 next_key->objectid = (u64)-1; 1807 next_key->type = (u8)-1; 1808 next_key->offset = (u64)-1; 1809 } 1810 1811 parent = eb; 1812 while (1) { 1813 struct btrfs_key first_key; 1814 1815 level = btrfs_header_level(parent); 1816 BUG_ON(level < lowest_level); 1817 1818 ret = btrfs_bin_search(parent, &key, level, &slot); 1819 if (ret < 0) 1820 break; 1821 if (ret && slot > 0) 1822 slot--; 1823 1824 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1825 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1826 1827 old_bytenr = btrfs_node_blockptr(parent, slot); 1828 blocksize = fs_info->nodesize; 1829 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1830 btrfs_node_key_to_cpu(parent, &first_key, slot); 1831 1832 if (level <= max_level) { 1833 eb = path->nodes[level]; 1834 new_bytenr = btrfs_node_blockptr(eb, 1835 path->slots[level]); 1836 new_ptr_gen = btrfs_node_ptr_generation(eb, 1837 path->slots[level]); 1838 } else { 1839 new_bytenr = 0; 1840 new_ptr_gen = 0; 1841 } 1842 1843 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1844 ret = level; 1845 break; 1846 } 1847 1848 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1849 memcmp_node_keys(parent, slot, path, level)) { 1850 if (level <= lowest_level) { 1851 ret = 0; 1852 break; 1853 } 1854 1855 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1856 level - 1, &first_key); 1857 if (IS_ERR(eb)) { 1858 ret = PTR_ERR(eb); 1859 break; 1860 } else if (!extent_buffer_uptodate(eb)) { 1861 ret = -EIO; 1862 free_extent_buffer(eb); 1863 break; 1864 } 1865 btrfs_tree_lock(eb); 1866 if (cow) { 1867 ret = btrfs_cow_block(trans, dest, eb, parent, 1868 slot, &eb); 1869 BUG_ON(ret); 1870 } 1871 btrfs_set_lock_blocking_write(eb); 1872 1873 btrfs_tree_unlock(parent); 1874 free_extent_buffer(parent); 1875 1876 parent = eb; 1877 continue; 1878 } 1879 1880 if (!cow) { 1881 btrfs_tree_unlock(parent); 1882 free_extent_buffer(parent); 1883 cow = 1; 1884 goto again; 1885 } 1886 1887 btrfs_node_key_to_cpu(path->nodes[level], &key, 1888 path->slots[level]); 1889 btrfs_release_path(path); 1890 1891 path->lowest_level = level; 1892 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1893 path->lowest_level = 0; 1894 BUG_ON(ret); 1895 1896 /* 1897 * Info qgroup to trace both subtrees. 1898 * 1899 * We must trace both trees. 1900 * 1) Tree reloc subtree 1901 * If not traced, we will leak data numbers 1902 * 2) Fs subtree 1903 * If not traced, we will double count old data 1904 * 1905 * We don't scan the subtree right now, but only record 1906 * the swapped tree blocks. 1907 * The real subtree rescan is delayed until we have new 1908 * CoW on the subtree root node before transaction commit. 1909 */ 1910 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1911 rc->block_group, parent, slot, 1912 path->nodes[level], path->slots[level], 1913 last_snapshot); 1914 if (ret < 0) 1915 break; 1916 /* 1917 * swap blocks in fs tree and reloc tree. 1918 */ 1919 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1920 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1921 btrfs_mark_buffer_dirty(parent); 1922 1923 btrfs_set_node_blockptr(path->nodes[level], 1924 path->slots[level], old_bytenr); 1925 btrfs_set_node_ptr_generation(path->nodes[level], 1926 path->slots[level], old_ptr_gen); 1927 btrfs_mark_buffer_dirty(path->nodes[level]); 1928 1929 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1930 blocksize, path->nodes[level]->start); 1931 ref.skip_qgroup = true; 1932 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1933 ret = btrfs_inc_extent_ref(trans, &ref); 1934 BUG_ON(ret); 1935 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1936 blocksize, 0); 1937 ref.skip_qgroup = true; 1938 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1939 ret = btrfs_inc_extent_ref(trans, &ref); 1940 BUG_ON(ret); 1941 1942 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1943 blocksize, path->nodes[level]->start); 1944 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1945 ref.skip_qgroup = true; 1946 ret = btrfs_free_extent(trans, &ref); 1947 BUG_ON(ret); 1948 1949 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1950 blocksize, 0); 1951 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1952 ref.skip_qgroup = true; 1953 ret = btrfs_free_extent(trans, &ref); 1954 BUG_ON(ret); 1955 1956 btrfs_unlock_up_safe(path, 0); 1957 1958 ret = level; 1959 break; 1960 } 1961 btrfs_tree_unlock(parent); 1962 free_extent_buffer(parent); 1963 return ret; 1964 } 1965 1966 /* 1967 * helper to find next relocated block in reloc tree 1968 */ 1969 static noinline_for_stack 1970 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1971 int *level) 1972 { 1973 struct extent_buffer *eb; 1974 int i; 1975 u64 last_snapshot; 1976 u32 nritems; 1977 1978 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1979 1980 for (i = 0; i < *level; i++) { 1981 free_extent_buffer(path->nodes[i]); 1982 path->nodes[i] = NULL; 1983 } 1984 1985 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1986 eb = path->nodes[i]; 1987 nritems = btrfs_header_nritems(eb); 1988 while (path->slots[i] + 1 < nritems) { 1989 path->slots[i]++; 1990 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1991 last_snapshot) 1992 continue; 1993 1994 *level = i; 1995 return 0; 1996 } 1997 free_extent_buffer(path->nodes[i]); 1998 path->nodes[i] = NULL; 1999 } 2000 return 1; 2001 } 2002 2003 /* 2004 * walk down reloc tree to find relocated block of lowest level 2005 */ 2006 static noinline_for_stack 2007 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2008 int *level) 2009 { 2010 struct btrfs_fs_info *fs_info = root->fs_info; 2011 struct extent_buffer *eb = NULL; 2012 int i; 2013 u64 bytenr; 2014 u64 ptr_gen = 0; 2015 u64 last_snapshot; 2016 u32 nritems; 2017 2018 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2019 2020 for (i = *level; i > 0; i--) { 2021 struct btrfs_key first_key; 2022 2023 eb = path->nodes[i]; 2024 nritems = btrfs_header_nritems(eb); 2025 while (path->slots[i] < nritems) { 2026 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2027 if (ptr_gen > last_snapshot) 2028 break; 2029 path->slots[i]++; 2030 } 2031 if (path->slots[i] >= nritems) { 2032 if (i == *level) 2033 break; 2034 *level = i + 1; 2035 return 0; 2036 } 2037 if (i == 1) { 2038 *level = i; 2039 return 0; 2040 } 2041 2042 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2043 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2044 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2045 &first_key); 2046 if (IS_ERR(eb)) { 2047 return PTR_ERR(eb); 2048 } else if (!extent_buffer_uptodate(eb)) { 2049 free_extent_buffer(eb); 2050 return -EIO; 2051 } 2052 BUG_ON(btrfs_header_level(eb) != i - 1); 2053 path->nodes[i - 1] = eb; 2054 path->slots[i - 1] = 0; 2055 } 2056 return 1; 2057 } 2058 2059 /* 2060 * invalidate extent cache for file extents whose key in range of 2061 * [min_key, max_key) 2062 */ 2063 static int invalidate_extent_cache(struct btrfs_root *root, 2064 struct btrfs_key *min_key, 2065 struct btrfs_key *max_key) 2066 { 2067 struct btrfs_fs_info *fs_info = root->fs_info; 2068 struct inode *inode = NULL; 2069 u64 objectid; 2070 u64 start, end; 2071 u64 ino; 2072 2073 objectid = min_key->objectid; 2074 while (1) { 2075 cond_resched(); 2076 iput(inode); 2077 2078 if (objectid > max_key->objectid) 2079 break; 2080 2081 inode = find_next_inode(root, objectid); 2082 if (!inode) 2083 break; 2084 ino = btrfs_ino(BTRFS_I(inode)); 2085 2086 if (ino > max_key->objectid) { 2087 iput(inode); 2088 break; 2089 } 2090 2091 objectid = ino + 1; 2092 if (!S_ISREG(inode->i_mode)) 2093 continue; 2094 2095 if (unlikely(min_key->objectid == ino)) { 2096 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2097 continue; 2098 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2099 start = 0; 2100 else { 2101 start = min_key->offset; 2102 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2103 } 2104 } else { 2105 start = 0; 2106 } 2107 2108 if (unlikely(max_key->objectid == ino)) { 2109 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2110 continue; 2111 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2112 end = (u64)-1; 2113 } else { 2114 if (max_key->offset == 0) 2115 continue; 2116 end = max_key->offset; 2117 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2118 end--; 2119 } 2120 } else { 2121 end = (u64)-1; 2122 } 2123 2124 /* the lock_extent waits for readpage to complete */ 2125 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2126 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2127 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2128 } 2129 return 0; 2130 } 2131 2132 static int find_next_key(struct btrfs_path *path, int level, 2133 struct btrfs_key *key) 2134 2135 { 2136 while (level < BTRFS_MAX_LEVEL) { 2137 if (!path->nodes[level]) 2138 break; 2139 if (path->slots[level] + 1 < 2140 btrfs_header_nritems(path->nodes[level])) { 2141 btrfs_node_key_to_cpu(path->nodes[level], key, 2142 path->slots[level] + 1); 2143 return 0; 2144 } 2145 level++; 2146 } 2147 return 1; 2148 } 2149 2150 /* 2151 * Insert current subvolume into reloc_control::dirty_subvol_roots 2152 */ 2153 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 2154 struct reloc_control *rc, 2155 struct btrfs_root *root) 2156 { 2157 struct btrfs_root *reloc_root = root->reloc_root; 2158 struct btrfs_root_item *reloc_root_item; 2159 2160 /* @root must be a subvolume tree root with a valid reloc tree */ 2161 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 2162 ASSERT(reloc_root); 2163 2164 reloc_root_item = &reloc_root->root_item; 2165 memset(&reloc_root_item->drop_progress, 0, 2166 sizeof(reloc_root_item->drop_progress)); 2167 reloc_root_item->drop_level = 0; 2168 btrfs_set_root_refs(reloc_root_item, 0); 2169 btrfs_update_reloc_root(trans, root); 2170 2171 if (list_empty(&root->reloc_dirty_list)) { 2172 btrfs_grab_fs_root(root); 2173 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 2174 } 2175 } 2176 2177 static int clean_dirty_subvols(struct reloc_control *rc) 2178 { 2179 struct btrfs_root *root; 2180 struct btrfs_root *next; 2181 int ret = 0; 2182 int ret2; 2183 2184 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 2185 reloc_dirty_list) { 2186 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2187 /* Merged subvolume, cleanup its reloc root */ 2188 struct btrfs_root *reloc_root = root->reloc_root; 2189 2190 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 2191 list_del_init(&root->reloc_dirty_list); 2192 root->reloc_root = NULL; 2193 if (reloc_root) { 2194 2195 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1); 2196 if (ret2 < 0 && !ret) 2197 ret = ret2; 2198 } 2199 btrfs_put_fs_root(root); 2200 } else { 2201 /* Orphan reloc tree, just clean it up */ 2202 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1); 2203 if (ret2 < 0 && !ret) 2204 ret = ret2; 2205 } 2206 } 2207 return ret; 2208 } 2209 2210 /* 2211 * merge the relocated tree blocks in reloc tree with corresponding 2212 * fs tree. 2213 */ 2214 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2215 struct btrfs_root *root) 2216 { 2217 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2218 struct btrfs_key key; 2219 struct btrfs_key next_key; 2220 struct btrfs_trans_handle *trans = NULL; 2221 struct btrfs_root *reloc_root; 2222 struct btrfs_root_item *root_item; 2223 struct btrfs_path *path; 2224 struct extent_buffer *leaf; 2225 int level; 2226 int max_level; 2227 int replaced = 0; 2228 int ret; 2229 int err = 0; 2230 u32 min_reserved; 2231 2232 path = btrfs_alloc_path(); 2233 if (!path) 2234 return -ENOMEM; 2235 path->reada = READA_FORWARD; 2236 2237 reloc_root = root->reloc_root; 2238 root_item = &reloc_root->root_item; 2239 2240 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2241 level = btrfs_root_level(root_item); 2242 extent_buffer_get(reloc_root->node); 2243 path->nodes[level] = reloc_root->node; 2244 path->slots[level] = 0; 2245 } else { 2246 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2247 2248 level = root_item->drop_level; 2249 BUG_ON(level == 0); 2250 path->lowest_level = level; 2251 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2252 path->lowest_level = 0; 2253 if (ret < 0) { 2254 btrfs_free_path(path); 2255 return ret; 2256 } 2257 2258 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2259 path->slots[level]); 2260 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2261 2262 btrfs_unlock_up_safe(path, 0); 2263 } 2264 2265 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2266 memset(&next_key, 0, sizeof(next_key)); 2267 2268 while (1) { 2269 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2270 BTRFS_RESERVE_FLUSH_ALL); 2271 if (ret) { 2272 err = ret; 2273 goto out; 2274 } 2275 trans = btrfs_start_transaction(root, 0); 2276 if (IS_ERR(trans)) { 2277 err = PTR_ERR(trans); 2278 trans = NULL; 2279 goto out; 2280 } 2281 trans->block_rsv = rc->block_rsv; 2282 2283 replaced = 0; 2284 max_level = level; 2285 2286 ret = walk_down_reloc_tree(reloc_root, path, &level); 2287 if (ret < 0) { 2288 err = ret; 2289 goto out; 2290 } 2291 if (ret > 0) 2292 break; 2293 2294 if (!find_next_key(path, level, &key) && 2295 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2296 ret = 0; 2297 } else { 2298 ret = replace_path(trans, rc, root, reloc_root, path, 2299 &next_key, level, max_level); 2300 } 2301 if (ret < 0) { 2302 err = ret; 2303 goto out; 2304 } 2305 2306 if (ret > 0) { 2307 level = ret; 2308 btrfs_node_key_to_cpu(path->nodes[level], &key, 2309 path->slots[level]); 2310 replaced = 1; 2311 } 2312 2313 ret = walk_up_reloc_tree(reloc_root, path, &level); 2314 if (ret > 0) 2315 break; 2316 2317 BUG_ON(level == 0); 2318 /* 2319 * save the merging progress in the drop_progress. 2320 * this is OK since root refs == 1 in this case. 2321 */ 2322 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2323 path->slots[level]); 2324 root_item->drop_level = level; 2325 2326 btrfs_end_transaction_throttle(trans); 2327 trans = NULL; 2328 2329 btrfs_btree_balance_dirty(fs_info); 2330 2331 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2332 invalidate_extent_cache(root, &key, &next_key); 2333 } 2334 2335 /* 2336 * handle the case only one block in the fs tree need to be 2337 * relocated and the block is tree root. 2338 */ 2339 leaf = btrfs_lock_root_node(root); 2340 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2341 btrfs_tree_unlock(leaf); 2342 free_extent_buffer(leaf); 2343 if (ret < 0) 2344 err = ret; 2345 out: 2346 btrfs_free_path(path); 2347 2348 if (err == 0) 2349 insert_dirty_subvol(trans, rc, root); 2350 2351 if (trans) 2352 btrfs_end_transaction_throttle(trans); 2353 2354 btrfs_btree_balance_dirty(fs_info); 2355 2356 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2357 invalidate_extent_cache(root, &key, &next_key); 2358 2359 return err; 2360 } 2361 2362 static noinline_for_stack 2363 int prepare_to_merge(struct reloc_control *rc, int err) 2364 { 2365 struct btrfs_root *root = rc->extent_root; 2366 struct btrfs_fs_info *fs_info = root->fs_info; 2367 struct btrfs_root *reloc_root; 2368 struct btrfs_trans_handle *trans; 2369 LIST_HEAD(reloc_roots); 2370 u64 num_bytes = 0; 2371 int ret; 2372 2373 mutex_lock(&fs_info->reloc_mutex); 2374 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2375 rc->merging_rsv_size += rc->nodes_relocated * 2; 2376 mutex_unlock(&fs_info->reloc_mutex); 2377 2378 again: 2379 if (!err) { 2380 num_bytes = rc->merging_rsv_size; 2381 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2382 BTRFS_RESERVE_FLUSH_ALL); 2383 if (ret) 2384 err = ret; 2385 } 2386 2387 trans = btrfs_join_transaction(rc->extent_root); 2388 if (IS_ERR(trans)) { 2389 if (!err) 2390 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2391 num_bytes); 2392 return PTR_ERR(trans); 2393 } 2394 2395 if (!err) { 2396 if (num_bytes != rc->merging_rsv_size) { 2397 btrfs_end_transaction(trans); 2398 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2399 num_bytes); 2400 goto again; 2401 } 2402 } 2403 2404 rc->merge_reloc_tree = 1; 2405 2406 while (!list_empty(&rc->reloc_roots)) { 2407 reloc_root = list_entry(rc->reloc_roots.next, 2408 struct btrfs_root, root_list); 2409 list_del_init(&reloc_root->root_list); 2410 2411 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2412 BUG_ON(IS_ERR(root)); 2413 BUG_ON(root->reloc_root != reloc_root); 2414 2415 /* 2416 * set reference count to 1, so btrfs_recover_relocation 2417 * knows it should resumes merging 2418 */ 2419 if (!err) 2420 btrfs_set_root_refs(&reloc_root->root_item, 1); 2421 btrfs_update_reloc_root(trans, root); 2422 2423 list_add(&reloc_root->root_list, &reloc_roots); 2424 } 2425 2426 list_splice(&reloc_roots, &rc->reloc_roots); 2427 2428 if (!err) 2429 btrfs_commit_transaction(trans); 2430 else 2431 btrfs_end_transaction(trans); 2432 return err; 2433 } 2434 2435 static noinline_for_stack 2436 void free_reloc_roots(struct list_head *list) 2437 { 2438 struct btrfs_root *reloc_root; 2439 2440 while (!list_empty(list)) { 2441 reloc_root = list_entry(list->next, struct btrfs_root, 2442 root_list); 2443 __del_reloc_root(reloc_root); 2444 free_extent_buffer(reloc_root->node); 2445 free_extent_buffer(reloc_root->commit_root); 2446 reloc_root->node = NULL; 2447 reloc_root->commit_root = NULL; 2448 } 2449 } 2450 2451 static noinline_for_stack 2452 void merge_reloc_roots(struct reloc_control *rc) 2453 { 2454 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2455 struct btrfs_root *root; 2456 struct btrfs_root *reloc_root; 2457 LIST_HEAD(reloc_roots); 2458 int found = 0; 2459 int ret = 0; 2460 again: 2461 root = rc->extent_root; 2462 2463 /* 2464 * this serializes us with btrfs_record_root_in_transaction, 2465 * we have to make sure nobody is in the middle of 2466 * adding their roots to the list while we are 2467 * doing this splice 2468 */ 2469 mutex_lock(&fs_info->reloc_mutex); 2470 list_splice_init(&rc->reloc_roots, &reloc_roots); 2471 mutex_unlock(&fs_info->reloc_mutex); 2472 2473 while (!list_empty(&reloc_roots)) { 2474 found = 1; 2475 reloc_root = list_entry(reloc_roots.next, 2476 struct btrfs_root, root_list); 2477 2478 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2479 root = read_fs_root(fs_info, 2480 reloc_root->root_key.offset); 2481 BUG_ON(IS_ERR(root)); 2482 BUG_ON(root->reloc_root != reloc_root); 2483 2484 ret = merge_reloc_root(rc, root); 2485 if (ret) { 2486 if (list_empty(&reloc_root->root_list)) 2487 list_add_tail(&reloc_root->root_list, 2488 &reloc_roots); 2489 goto out; 2490 } 2491 } else { 2492 list_del_init(&reloc_root->root_list); 2493 /* Don't forget to queue this reloc root for cleanup */ 2494 list_add_tail(&reloc_root->reloc_dirty_list, 2495 &rc->dirty_subvol_roots); 2496 } 2497 } 2498 2499 if (found) { 2500 found = 0; 2501 goto again; 2502 } 2503 out: 2504 if (ret) { 2505 btrfs_handle_fs_error(fs_info, ret, NULL); 2506 if (!list_empty(&reloc_roots)) 2507 free_reloc_roots(&reloc_roots); 2508 2509 /* new reloc root may be added */ 2510 mutex_lock(&fs_info->reloc_mutex); 2511 list_splice_init(&rc->reloc_roots, &reloc_roots); 2512 mutex_unlock(&fs_info->reloc_mutex); 2513 if (!list_empty(&reloc_roots)) 2514 free_reloc_roots(&reloc_roots); 2515 } 2516 2517 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2518 } 2519 2520 static void free_block_list(struct rb_root *blocks) 2521 { 2522 struct tree_block *block; 2523 struct rb_node *rb_node; 2524 while ((rb_node = rb_first(blocks))) { 2525 block = rb_entry(rb_node, struct tree_block, rb_node); 2526 rb_erase(rb_node, blocks); 2527 kfree(block); 2528 } 2529 } 2530 2531 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2532 struct btrfs_root *reloc_root) 2533 { 2534 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2535 struct btrfs_root *root; 2536 2537 if (reloc_root->last_trans == trans->transid) 2538 return 0; 2539 2540 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2541 BUG_ON(IS_ERR(root)); 2542 BUG_ON(root->reloc_root != reloc_root); 2543 2544 return btrfs_record_root_in_trans(trans, root); 2545 } 2546 2547 static noinline_for_stack 2548 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2549 struct reloc_control *rc, 2550 struct backref_node *node, 2551 struct backref_edge *edges[]) 2552 { 2553 struct backref_node *next; 2554 struct btrfs_root *root; 2555 int index = 0; 2556 2557 next = node; 2558 while (1) { 2559 cond_resched(); 2560 next = walk_up_backref(next, edges, &index); 2561 root = next->root; 2562 BUG_ON(!root); 2563 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2564 2565 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2566 record_reloc_root_in_trans(trans, root); 2567 break; 2568 } 2569 2570 btrfs_record_root_in_trans(trans, root); 2571 root = root->reloc_root; 2572 2573 if (next->new_bytenr != root->node->start) { 2574 BUG_ON(next->new_bytenr); 2575 BUG_ON(!list_empty(&next->list)); 2576 next->new_bytenr = root->node->start; 2577 next->root = root; 2578 list_add_tail(&next->list, 2579 &rc->backref_cache.changed); 2580 __mark_block_processed(rc, next); 2581 break; 2582 } 2583 2584 WARN_ON(1); 2585 root = NULL; 2586 next = walk_down_backref(edges, &index); 2587 if (!next || next->level <= node->level) 2588 break; 2589 } 2590 if (!root) 2591 return NULL; 2592 2593 next = node; 2594 /* setup backref node path for btrfs_reloc_cow_block */ 2595 while (1) { 2596 rc->backref_cache.path[next->level] = next; 2597 if (--index < 0) 2598 break; 2599 next = edges[index]->node[UPPER]; 2600 } 2601 return root; 2602 } 2603 2604 /* 2605 * select a tree root for relocation. return NULL if the block 2606 * is reference counted. we should use do_relocation() in this 2607 * case. return a tree root pointer if the block isn't reference 2608 * counted. return -ENOENT if the block is root of reloc tree. 2609 */ 2610 static noinline_for_stack 2611 struct btrfs_root *select_one_root(struct backref_node *node) 2612 { 2613 struct backref_node *next; 2614 struct btrfs_root *root; 2615 struct btrfs_root *fs_root = NULL; 2616 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2617 int index = 0; 2618 2619 next = node; 2620 while (1) { 2621 cond_resched(); 2622 next = walk_up_backref(next, edges, &index); 2623 root = next->root; 2624 BUG_ON(!root); 2625 2626 /* no other choice for non-references counted tree */ 2627 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2628 return root; 2629 2630 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2631 fs_root = root; 2632 2633 if (next != node) 2634 return NULL; 2635 2636 next = walk_down_backref(edges, &index); 2637 if (!next || next->level <= node->level) 2638 break; 2639 } 2640 2641 if (!fs_root) 2642 return ERR_PTR(-ENOENT); 2643 return fs_root; 2644 } 2645 2646 static noinline_for_stack 2647 u64 calcu_metadata_size(struct reloc_control *rc, 2648 struct backref_node *node, int reserve) 2649 { 2650 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2651 struct backref_node *next = node; 2652 struct backref_edge *edge; 2653 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2654 u64 num_bytes = 0; 2655 int index = 0; 2656 2657 BUG_ON(reserve && node->processed); 2658 2659 while (next) { 2660 cond_resched(); 2661 while (1) { 2662 if (next->processed && (reserve || next != node)) 2663 break; 2664 2665 num_bytes += fs_info->nodesize; 2666 2667 if (list_empty(&next->upper)) 2668 break; 2669 2670 edge = list_entry(next->upper.next, 2671 struct backref_edge, list[LOWER]); 2672 edges[index++] = edge; 2673 next = edge->node[UPPER]; 2674 } 2675 next = walk_down_backref(edges, &index); 2676 } 2677 return num_bytes; 2678 } 2679 2680 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2681 struct reloc_control *rc, 2682 struct backref_node *node) 2683 { 2684 struct btrfs_root *root = rc->extent_root; 2685 struct btrfs_fs_info *fs_info = root->fs_info; 2686 u64 num_bytes; 2687 int ret; 2688 u64 tmp; 2689 2690 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2691 2692 trans->block_rsv = rc->block_rsv; 2693 rc->reserved_bytes += num_bytes; 2694 2695 /* 2696 * We are under a transaction here so we can only do limited flushing. 2697 * If we get an enospc just kick back -EAGAIN so we know to drop the 2698 * transaction and try to refill when we can flush all the things. 2699 */ 2700 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2701 BTRFS_RESERVE_FLUSH_LIMIT); 2702 if (ret) { 2703 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2704 while (tmp <= rc->reserved_bytes) 2705 tmp <<= 1; 2706 /* 2707 * only one thread can access block_rsv at this point, 2708 * so we don't need hold lock to protect block_rsv. 2709 * we expand more reservation size here to allow enough 2710 * space for relocation and we will return earlier in 2711 * enospc case. 2712 */ 2713 rc->block_rsv->size = tmp + fs_info->nodesize * 2714 RELOCATION_RESERVED_NODES; 2715 return -EAGAIN; 2716 } 2717 2718 return 0; 2719 } 2720 2721 /* 2722 * relocate a block tree, and then update pointers in upper level 2723 * blocks that reference the block to point to the new location. 2724 * 2725 * if called by link_to_upper, the block has already been relocated. 2726 * in that case this function just updates pointers. 2727 */ 2728 static int do_relocation(struct btrfs_trans_handle *trans, 2729 struct reloc_control *rc, 2730 struct backref_node *node, 2731 struct btrfs_key *key, 2732 struct btrfs_path *path, int lowest) 2733 { 2734 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2735 struct backref_node *upper; 2736 struct backref_edge *edge; 2737 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2738 struct btrfs_root *root; 2739 struct extent_buffer *eb; 2740 u32 blocksize; 2741 u64 bytenr; 2742 u64 generation; 2743 int slot; 2744 int ret; 2745 int err = 0; 2746 2747 BUG_ON(lowest && node->eb); 2748 2749 path->lowest_level = node->level + 1; 2750 rc->backref_cache.path[node->level] = node; 2751 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2752 struct btrfs_key first_key; 2753 struct btrfs_ref ref = { 0 }; 2754 2755 cond_resched(); 2756 2757 upper = edge->node[UPPER]; 2758 root = select_reloc_root(trans, rc, upper, edges); 2759 BUG_ON(!root); 2760 2761 if (upper->eb && !upper->locked) { 2762 if (!lowest) { 2763 ret = btrfs_bin_search(upper->eb, key, 2764 upper->level, &slot); 2765 if (ret < 0) { 2766 err = ret; 2767 goto next; 2768 } 2769 BUG_ON(ret); 2770 bytenr = btrfs_node_blockptr(upper->eb, slot); 2771 if (node->eb->start == bytenr) 2772 goto next; 2773 } 2774 drop_node_buffer(upper); 2775 } 2776 2777 if (!upper->eb) { 2778 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2779 if (ret) { 2780 if (ret < 0) 2781 err = ret; 2782 else 2783 err = -ENOENT; 2784 2785 btrfs_release_path(path); 2786 break; 2787 } 2788 2789 if (!upper->eb) { 2790 upper->eb = path->nodes[upper->level]; 2791 path->nodes[upper->level] = NULL; 2792 } else { 2793 BUG_ON(upper->eb != path->nodes[upper->level]); 2794 } 2795 2796 upper->locked = 1; 2797 path->locks[upper->level] = 0; 2798 2799 slot = path->slots[upper->level]; 2800 btrfs_release_path(path); 2801 } else { 2802 ret = btrfs_bin_search(upper->eb, key, upper->level, 2803 &slot); 2804 if (ret < 0) { 2805 err = ret; 2806 goto next; 2807 } 2808 BUG_ON(ret); 2809 } 2810 2811 bytenr = btrfs_node_blockptr(upper->eb, slot); 2812 if (lowest) { 2813 if (bytenr != node->bytenr) { 2814 btrfs_err(root->fs_info, 2815 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2816 bytenr, node->bytenr, slot, 2817 upper->eb->start); 2818 err = -EIO; 2819 goto next; 2820 } 2821 } else { 2822 if (node->eb->start == bytenr) 2823 goto next; 2824 } 2825 2826 blocksize = root->fs_info->nodesize; 2827 generation = btrfs_node_ptr_generation(upper->eb, slot); 2828 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2829 eb = read_tree_block(fs_info, bytenr, generation, 2830 upper->level - 1, &first_key); 2831 if (IS_ERR(eb)) { 2832 err = PTR_ERR(eb); 2833 goto next; 2834 } else if (!extent_buffer_uptodate(eb)) { 2835 free_extent_buffer(eb); 2836 err = -EIO; 2837 goto next; 2838 } 2839 btrfs_tree_lock(eb); 2840 btrfs_set_lock_blocking_write(eb); 2841 2842 if (!node->eb) { 2843 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2844 slot, &eb); 2845 btrfs_tree_unlock(eb); 2846 free_extent_buffer(eb); 2847 if (ret < 0) { 2848 err = ret; 2849 goto next; 2850 } 2851 BUG_ON(node->eb != eb); 2852 } else { 2853 btrfs_set_node_blockptr(upper->eb, slot, 2854 node->eb->start); 2855 btrfs_set_node_ptr_generation(upper->eb, slot, 2856 trans->transid); 2857 btrfs_mark_buffer_dirty(upper->eb); 2858 2859 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2860 node->eb->start, blocksize, 2861 upper->eb->start); 2862 ref.real_root = root->root_key.objectid; 2863 btrfs_init_tree_ref(&ref, node->level, 2864 btrfs_header_owner(upper->eb)); 2865 ret = btrfs_inc_extent_ref(trans, &ref); 2866 BUG_ON(ret); 2867 2868 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2869 BUG_ON(ret); 2870 } 2871 next: 2872 if (!upper->pending) 2873 drop_node_buffer(upper); 2874 else 2875 unlock_node_buffer(upper); 2876 if (err) 2877 break; 2878 } 2879 2880 if (!err && node->pending) { 2881 drop_node_buffer(node); 2882 list_move_tail(&node->list, &rc->backref_cache.changed); 2883 node->pending = 0; 2884 } 2885 2886 path->lowest_level = 0; 2887 BUG_ON(err == -ENOSPC); 2888 return err; 2889 } 2890 2891 static int link_to_upper(struct btrfs_trans_handle *trans, 2892 struct reloc_control *rc, 2893 struct backref_node *node, 2894 struct btrfs_path *path) 2895 { 2896 struct btrfs_key key; 2897 2898 btrfs_node_key_to_cpu(node->eb, &key, 0); 2899 return do_relocation(trans, rc, node, &key, path, 0); 2900 } 2901 2902 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2903 struct reloc_control *rc, 2904 struct btrfs_path *path, int err) 2905 { 2906 LIST_HEAD(list); 2907 struct backref_cache *cache = &rc->backref_cache; 2908 struct backref_node *node; 2909 int level; 2910 int ret; 2911 2912 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2913 while (!list_empty(&cache->pending[level])) { 2914 node = list_entry(cache->pending[level].next, 2915 struct backref_node, list); 2916 list_move_tail(&node->list, &list); 2917 BUG_ON(!node->pending); 2918 2919 if (!err) { 2920 ret = link_to_upper(trans, rc, node, path); 2921 if (ret < 0) 2922 err = ret; 2923 } 2924 } 2925 list_splice_init(&list, &cache->pending[level]); 2926 } 2927 return err; 2928 } 2929 2930 static void mark_block_processed(struct reloc_control *rc, 2931 u64 bytenr, u32 blocksize) 2932 { 2933 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2934 EXTENT_DIRTY); 2935 } 2936 2937 static void __mark_block_processed(struct reloc_control *rc, 2938 struct backref_node *node) 2939 { 2940 u32 blocksize; 2941 if (node->level == 0 || 2942 in_block_group(node->bytenr, rc->block_group)) { 2943 blocksize = rc->extent_root->fs_info->nodesize; 2944 mark_block_processed(rc, node->bytenr, blocksize); 2945 } 2946 node->processed = 1; 2947 } 2948 2949 /* 2950 * mark a block and all blocks directly/indirectly reference the block 2951 * as processed. 2952 */ 2953 static void update_processed_blocks(struct reloc_control *rc, 2954 struct backref_node *node) 2955 { 2956 struct backref_node *next = node; 2957 struct backref_edge *edge; 2958 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2959 int index = 0; 2960 2961 while (next) { 2962 cond_resched(); 2963 while (1) { 2964 if (next->processed) 2965 break; 2966 2967 __mark_block_processed(rc, next); 2968 2969 if (list_empty(&next->upper)) 2970 break; 2971 2972 edge = list_entry(next->upper.next, 2973 struct backref_edge, list[LOWER]); 2974 edges[index++] = edge; 2975 next = edge->node[UPPER]; 2976 } 2977 next = walk_down_backref(edges, &index); 2978 } 2979 } 2980 2981 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2982 { 2983 u32 blocksize = rc->extent_root->fs_info->nodesize; 2984 2985 if (test_range_bit(&rc->processed_blocks, bytenr, 2986 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2987 return 1; 2988 return 0; 2989 } 2990 2991 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2992 struct tree_block *block) 2993 { 2994 struct extent_buffer *eb; 2995 2996 BUG_ON(block->key_ready); 2997 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2998 block->level, NULL); 2999 if (IS_ERR(eb)) { 3000 return PTR_ERR(eb); 3001 } else if (!extent_buffer_uptodate(eb)) { 3002 free_extent_buffer(eb); 3003 return -EIO; 3004 } 3005 if (block->level == 0) 3006 btrfs_item_key_to_cpu(eb, &block->key, 0); 3007 else 3008 btrfs_node_key_to_cpu(eb, &block->key, 0); 3009 free_extent_buffer(eb); 3010 block->key_ready = 1; 3011 return 0; 3012 } 3013 3014 /* 3015 * helper function to relocate a tree block 3016 */ 3017 static int relocate_tree_block(struct btrfs_trans_handle *trans, 3018 struct reloc_control *rc, 3019 struct backref_node *node, 3020 struct btrfs_key *key, 3021 struct btrfs_path *path) 3022 { 3023 struct btrfs_root *root; 3024 int ret = 0; 3025 3026 if (!node) 3027 return 0; 3028 3029 BUG_ON(node->processed); 3030 root = select_one_root(node); 3031 if (root == ERR_PTR(-ENOENT)) { 3032 update_processed_blocks(rc, node); 3033 goto out; 3034 } 3035 3036 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3037 ret = reserve_metadata_space(trans, rc, node); 3038 if (ret) 3039 goto out; 3040 } 3041 3042 if (root) { 3043 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3044 BUG_ON(node->new_bytenr); 3045 BUG_ON(!list_empty(&node->list)); 3046 btrfs_record_root_in_trans(trans, root); 3047 root = root->reloc_root; 3048 node->new_bytenr = root->node->start; 3049 node->root = root; 3050 list_add_tail(&node->list, &rc->backref_cache.changed); 3051 } else { 3052 path->lowest_level = node->level; 3053 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3054 btrfs_release_path(path); 3055 if (ret > 0) 3056 ret = 0; 3057 } 3058 if (!ret) 3059 update_processed_blocks(rc, node); 3060 } else { 3061 ret = do_relocation(trans, rc, node, key, path, 1); 3062 } 3063 out: 3064 if (ret || node->level == 0 || node->cowonly) 3065 remove_backref_node(&rc->backref_cache, node); 3066 return ret; 3067 } 3068 3069 /* 3070 * relocate a list of blocks 3071 */ 3072 static noinline_for_stack 3073 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3074 struct reloc_control *rc, struct rb_root *blocks) 3075 { 3076 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3077 struct backref_node *node; 3078 struct btrfs_path *path; 3079 struct tree_block *block; 3080 struct tree_block *next; 3081 int ret; 3082 int err = 0; 3083 3084 path = btrfs_alloc_path(); 3085 if (!path) { 3086 err = -ENOMEM; 3087 goto out_free_blocks; 3088 } 3089 3090 /* Kick in readahead for tree blocks with missing keys */ 3091 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3092 if (!block->key_ready) 3093 readahead_tree_block(fs_info, block->bytenr); 3094 } 3095 3096 /* Get first keys */ 3097 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3098 if (!block->key_ready) { 3099 err = get_tree_block_key(fs_info, block); 3100 if (err) 3101 goto out_free_path; 3102 } 3103 } 3104 3105 /* Do tree relocation */ 3106 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3107 node = build_backref_tree(rc, &block->key, 3108 block->level, block->bytenr); 3109 if (IS_ERR(node)) { 3110 err = PTR_ERR(node); 3111 goto out; 3112 } 3113 3114 ret = relocate_tree_block(trans, rc, node, &block->key, 3115 path); 3116 if (ret < 0) { 3117 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks)) 3118 err = ret; 3119 goto out; 3120 } 3121 } 3122 out: 3123 err = finish_pending_nodes(trans, rc, path, err); 3124 3125 out_free_path: 3126 btrfs_free_path(path); 3127 out_free_blocks: 3128 free_block_list(blocks); 3129 return err; 3130 } 3131 3132 static noinline_for_stack 3133 int prealloc_file_extent_cluster(struct inode *inode, 3134 struct file_extent_cluster *cluster) 3135 { 3136 u64 alloc_hint = 0; 3137 u64 start; 3138 u64 end; 3139 u64 offset = BTRFS_I(inode)->index_cnt; 3140 u64 num_bytes; 3141 int nr = 0; 3142 int ret = 0; 3143 u64 prealloc_start = cluster->start - offset; 3144 u64 prealloc_end = cluster->end - offset; 3145 u64 cur_offset; 3146 struct extent_changeset *data_reserved = NULL; 3147 3148 BUG_ON(cluster->start != cluster->boundary[0]); 3149 inode_lock(inode); 3150 3151 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3152 prealloc_end + 1 - prealloc_start); 3153 if (ret) 3154 goto out; 3155 3156 cur_offset = prealloc_start; 3157 while (nr < cluster->nr) { 3158 start = cluster->boundary[nr] - offset; 3159 if (nr + 1 < cluster->nr) 3160 end = cluster->boundary[nr + 1] - 1 - offset; 3161 else 3162 end = cluster->end - offset; 3163 3164 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3165 num_bytes = end + 1 - start; 3166 if (cur_offset < start) 3167 btrfs_free_reserved_data_space(inode, data_reserved, 3168 cur_offset, start - cur_offset); 3169 ret = btrfs_prealloc_file_range(inode, 0, start, 3170 num_bytes, num_bytes, 3171 end + 1, &alloc_hint); 3172 cur_offset = end + 1; 3173 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3174 if (ret) 3175 break; 3176 nr++; 3177 } 3178 if (cur_offset < prealloc_end) 3179 btrfs_free_reserved_data_space(inode, data_reserved, 3180 cur_offset, prealloc_end + 1 - cur_offset); 3181 out: 3182 inode_unlock(inode); 3183 extent_changeset_free(data_reserved); 3184 return ret; 3185 } 3186 3187 static noinline_for_stack 3188 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3189 u64 block_start) 3190 { 3191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3193 struct extent_map *em; 3194 int ret = 0; 3195 3196 em = alloc_extent_map(); 3197 if (!em) 3198 return -ENOMEM; 3199 3200 em->start = start; 3201 em->len = end + 1 - start; 3202 em->block_len = em->len; 3203 em->block_start = block_start; 3204 em->bdev = fs_info->fs_devices->latest_bdev; 3205 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3206 3207 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3208 while (1) { 3209 write_lock(&em_tree->lock); 3210 ret = add_extent_mapping(em_tree, em, 0); 3211 write_unlock(&em_tree->lock); 3212 if (ret != -EEXIST) { 3213 free_extent_map(em); 3214 break; 3215 } 3216 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3217 } 3218 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3219 return ret; 3220 } 3221 3222 static int relocate_file_extent_cluster(struct inode *inode, 3223 struct file_extent_cluster *cluster) 3224 { 3225 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3226 u64 page_start; 3227 u64 page_end; 3228 u64 offset = BTRFS_I(inode)->index_cnt; 3229 unsigned long index; 3230 unsigned long last_index; 3231 struct page *page; 3232 struct file_ra_state *ra; 3233 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3234 int nr = 0; 3235 int ret = 0; 3236 3237 if (!cluster->nr) 3238 return 0; 3239 3240 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3241 if (!ra) 3242 return -ENOMEM; 3243 3244 ret = prealloc_file_extent_cluster(inode, cluster); 3245 if (ret) 3246 goto out; 3247 3248 file_ra_state_init(ra, inode->i_mapping); 3249 3250 ret = setup_extent_mapping(inode, cluster->start - offset, 3251 cluster->end - offset, cluster->start); 3252 if (ret) 3253 goto out; 3254 3255 index = (cluster->start - offset) >> PAGE_SHIFT; 3256 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3257 while (index <= last_index) { 3258 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3259 PAGE_SIZE); 3260 if (ret) 3261 goto out; 3262 3263 page = find_lock_page(inode->i_mapping, index); 3264 if (!page) { 3265 page_cache_sync_readahead(inode->i_mapping, 3266 ra, NULL, index, 3267 last_index + 1 - index); 3268 page = find_or_create_page(inode->i_mapping, index, 3269 mask); 3270 if (!page) { 3271 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3272 PAGE_SIZE, true); 3273 ret = -ENOMEM; 3274 goto out; 3275 } 3276 } 3277 3278 if (PageReadahead(page)) { 3279 page_cache_async_readahead(inode->i_mapping, 3280 ra, NULL, page, index, 3281 last_index + 1 - index); 3282 } 3283 3284 if (!PageUptodate(page)) { 3285 btrfs_readpage(NULL, page); 3286 lock_page(page); 3287 if (!PageUptodate(page)) { 3288 unlock_page(page); 3289 put_page(page); 3290 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3291 PAGE_SIZE, true); 3292 btrfs_delalloc_release_extents(BTRFS_I(inode), 3293 PAGE_SIZE, true); 3294 ret = -EIO; 3295 goto out; 3296 } 3297 } 3298 3299 page_start = page_offset(page); 3300 page_end = page_start + PAGE_SIZE - 1; 3301 3302 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3303 3304 set_page_extent_mapped(page); 3305 3306 if (nr < cluster->nr && 3307 page_start + offset == cluster->boundary[nr]) { 3308 set_extent_bits(&BTRFS_I(inode)->io_tree, 3309 page_start, page_end, 3310 EXTENT_BOUNDARY); 3311 nr++; 3312 } 3313 3314 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3315 NULL); 3316 if (ret) { 3317 unlock_page(page); 3318 put_page(page); 3319 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3320 PAGE_SIZE, true); 3321 btrfs_delalloc_release_extents(BTRFS_I(inode), 3322 PAGE_SIZE, true); 3323 3324 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3325 page_start, page_end, 3326 EXTENT_LOCKED | EXTENT_BOUNDARY); 3327 goto out; 3328 3329 } 3330 set_page_dirty(page); 3331 3332 unlock_extent(&BTRFS_I(inode)->io_tree, 3333 page_start, page_end); 3334 unlock_page(page); 3335 put_page(page); 3336 3337 index++; 3338 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, 3339 false); 3340 balance_dirty_pages_ratelimited(inode->i_mapping); 3341 btrfs_throttle(fs_info); 3342 } 3343 WARN_ON(nr != cluster->nr); 3344 out: 3345 kfree(ra); 3346 return ret; 3347 } 3348 3349 static noinline_for_stack 3350 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3351 struct file_extent_cluster *cluster) 3352 { 3353 int ret; 3354 3355 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3356 ret = relocate_file_extent_cluster(inode, cluster); 3357 if (ret) 3358 return ret; 3359 cluster->nr = 0; 3360 } 3361 3362 if (!cluster->nr) 3363 cluster->start = extent_key->objectid; 3364 else 3365 BUG_ON(cluster->nr >= MAX_EXTENTS); 3366 cluster->end = extent_key->objectid + extent_key->offset - 1; 3367 cluster->boundary[cluster->nr] = extent_key->objectid; 3368 cluster->nr++; 3369 3370 if (cluster->nr >= MAX_EXTENTS) { 3371 ret = relocate_file_extent_cluster(inode, cluster); 3372 if (ret) 3373 return ret; 3374 cluster->nr = 0; 3375 } 3376 return 0; 3377 } 3378 3379 /* 3380 * helper to add a tree block to the list. 3381 * the major work is getting the generation and level of the block 3382 */ 3383 static int add_tree_block(struct reloc_control *rc, 3384 struct btrfs_key *extent_key, 3385 struct btrfs_path *path, 3386 struct rb_root *blocks) 3387 { 3388 struct extent_buffer *eb; 3389 struct btrfs_extent_item *ei; 3390 struct btrfs_tree_block_info *bi; 3391 struct tree_block *block; 3392 struct rb_node *rb_node; 3393 u32 item_size; 3394 int level = -1; 3395 u64 generation; 3396 3397 eb = path->nodes[0]; 3398 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3399 3400 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3401 item_size >= sizeof(*ei) + sizeof(*bi)) { 3402 ei = btrfs_item_ptr(eb, path->slots[0], 3403 struct btrfs_extent_item); 3404 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3405 bi = (struct btrfs_tree_block_info *)(ei + 1); 3406 level = btrfs_tree_block_level(eb, bi); 3407 } else { 3408 level = (int)extent_key->offset; 3409 } 3410 generation = btrfs_extent_generation(eb, ei); 3411 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3412 btrfs_print_v0_err(eb->fs_info); 3413 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3414 return -EINVAL; 3415 } else { 3416 BUG(); 3417 } 3418 3419 btrfs_release_path(path); 3420 3421 BUG_ON(level == -1); 3422 3423 block = kmalloc(sizeof(*block), GFP_NOFS); 3424 if (!block) 3425 return -ENOMEM; 3426 3427 block->bytenr = extent_key->objectid; 3428 block->key.objectid = rc->extent_root->fs_info->nodesize; 3429 block->key.offset = generation; 3430 block->level = level; 3431 block->key_ready = 0; 3432 3433 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3434 if (rb_node) 3435 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3436 3437 return 0; 3438 } 3439 3440 /* 3441 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3442 */ 3443 static int __add_tree_block(struct reloc_control *rc, 3444 u64 bytenr, u32 blocksize, 3445 struct rb_root *blocks) 3446 { 3447 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3448 struct btrfs_path *path; 3449 struct btrfs_key key; 3450 int ret; 3451 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3452 3453 if (tree_block_processed(bytenr, rc)) 3454 return 0; 3455 3456 if (tree_search(blocks, bytenr)) 3457 return 0; 3458 3459 path = btrfs_alloc_path(); 3460 if (!path) 3461 return -ENOMEM; 3462 again: 3463 key.objectid = bytenr; 3464 if (skinny) { 3465 key.type = BTRFS_METADATA_ITEM_KEY; 3466 key.offset = (u64)-1; 3467 } else { 3468 key.type = BTRFS_EXTENT_ITEM_KEY; 3469 key.offset = blocksize; 3470 } 3471 3472 path->search_commit_root = 1; 3473 path->skip_locking = 1; 3474 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3475 if (ret < 0) 3476 goto out; 3477 3478 if (ret > 0 && skinny) { 3479 if (path->slots[0]) { 3480 path->slots[0]--; 3481 btrfs_item_key_to_cpu(path->nodes[0], &key, 3482 path->slots[0]); 3483 if (key.objectid == bytenr && 3484 (key.type == BTRFS_METADATA_ITEM_KEY || 3485 (key.type == BTRFS_EXTENT_ITEM_KEY && 3486 key.offset == blocksize))) 3487 ret = 0; 3488 } 3489 3490 if (ret) { 3491 skinny = false; 3492 btrfs_release_path(path); 3493 goto again; 3494 } 3495 } 3496 if (ret) { 3497 ASSERT(ret == 1); 3498 btrfs_print_leaf(path->nodes[0]); 3499 btrfs_err(fs_info, 3500 "tree block extent item (%llu) is not found in extent tree", 3501 bytenr); 3502 WARN_ON(1); 3503 ret = -EINVAL; 3504 goto out; 3505 } 3506 3507 ret = add_tree_block(rc, &key, path, blocks); 3508 out: 3509 btrfs_free_path(path); 3510 return ret; 3511 } 3512 3513 /* 3514 * helper to check if the block use full backrefs for pointers in it 3515 */ 3516 static int block_use_full_backref(struct reloc_control *rc, 3517 struct extent_buffer *eb) 3518 { 3519 u64 flags; 3520 int ret; 3521 3522 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3523 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3524 return 1; 3525 3526 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3527 eb->start, btrfs_header_level(eb), 1, 3528 NULL, &flags); 3529 BUG_ON(ret); 3530 3531 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3532 ret = 1; 3533 else 3534 ret = 0; 3535 return ret; 3536 } 3537 3538 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3539 struct btrfs_block_group_cache *block_group, 3540 struct inode *inode, 3541 u64 ino) 3542 { 3543 struct btrfs_key key; 3544 struct btrfs_root *root = fs_info->tree_root; 3545 struct btrfs_trans_handle *trans; 3546 int ret = 0; 3547 3548 if (inode) 3549 goto truncate; 3550 3551 key.objectid = ino; 3552 key.type = BTRFS_INODE_ITEM_KEY; 3553 key.offset = 0; 3554 3555 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3556 if (IS_ERR(inode)) 3557 return -ENOENT; 3558 3559 truncate: 3560 ret = btrfs_check_trunc_cache_free_space(fs_info, 3561 &fs_info->global_block_rsv); 3562 if (ret) 3563 goto out; 3564 3565 trans = btrfs_join_transaction(root); 3566 if (IS_ERR(trans)) { 3567 ret = PTR_ERR(trans); 3568 goto out; 3569 } 3570 3571 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3572 3573 btrfs_end_transaction(trans); 3574 btrfs_btree_balance_dirty(fs_info); 3575 out: 3576 iput(inode); 3577 return ret; 3578 } 3579 3580 /* 3581 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3582 * this function scans fs tree to find blocks reference the data extent 3583 */ 3584 static int find_data_references(struct reloc_control *rc, 3585 struct btrfs_key *extent_key, 3586 struct extent_buffer *leaf, 3587 struct btrfs_extent_data_ref *ref, 3588 struct rb_root *blocks) 3589 { 3590 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3591 struct btrfs_path *path; 3592 struct tree_block *block; 3593 struct btrfs_root *root; 3594 struct btrfs_file_extent_item *fi; 3595 struct rb_node *rb_node; 3596 struct btrfs_key key; 3597 u64 ref_root; 3598 u64 ref_objectid; 3599 u64 ref_offset; 3600 u32 ref_count; 3601 u32 nritems; 3602 int err = 0; 3603 int added = 0; 3604 int counted; 3605 int ret; 3606 3607 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3608 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3609 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3610 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3611 3612 /* 3613 * This is an extent belonging to the free space cache, lets just delete 3614 * it and redo the search. 3615 */ 3616 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3617 ret = delete_block_group_cache(fs_info, rc->block_group, 3618 NULL, ref_objectid); 3619 if (ret != -ENOENT) 3620 return ret; 3621 ret = 0; 3622 } 3623 3624 path = btrfs_alloc_path(); 3625 if (!path) 3626 return -ENOMEM; 3627 path->reada = READA_FORWARD; 3628 3629 root = read_fs_root(fs_info, ref_root); 3630 if (IS_ERR(root)) { 3631 err = PTR_ERR(root); 3632 goto out; 3633 } 3634 3635 key.objectid = ref_objectid; 3636 key.type = BTRFS_EXTENT_DATA_KEY; 3637 if (ref_offset > ((u64)-1 << 32)) 3638 key.offset = 0; 3639 else 3640 key.offset = ref_offset; 3641 3642 path->search_commit_root = 1; 3643 path->skip_locking = 1; 3644 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3645 if (ret < 0) { 3646 err = ret; 3647 goto out; 3648 } 3649 3650 leaf = path->nodes[0]; 3651 nritems = btrfs_header_nritems(leaf); 3652 /* 3653 * the references in tree blocks that use full backrefs 3654 * are not counted in 3655 */ 3656 if (block_use_full_backref(rc, leaf)) 3657 counted = 0; 3658 else 3659 counted = 1; 3660 rb_node = tree_search(blocks, leaf->start); 3661 if (rb_node) { 3662 if (counted) 3663 added = 1; 3664 else 3665 path->slots[0] = nritems; 3666 } 3667 3668 while (ref_count > 0) { 3669 while (path->slots[0] >= nritems) { 3670 ret = btrfs_next_leaf(root, path); 3671 if (ret < 0) { 3672 err = ret; 3673 goto out; 3674 } 3675 if (WARN_ON(ret > 0)) 3676 goto out; 3677 3678 leaf = path->nodes[0]; 3679 nritems = btrfs_header_nritems(leaf); 3680 added = 0; 3681 3682 if (block_use_full_backref(rc, leaf)) 3683 counted = 0; 3684 else 3685 counted = 1; 3686 rb_node = tree_search(blocks, leaf->start); 3687 if (rb_node) { 3688 if (counted) 3689 added = 1; 3690 else 3691 path->slots[0] = nritems; 3692 } 3693 } 3694 3695 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3696 if (WARN_ON(key.objectid != ref_objectid || 3697 key.type != BTRFS_EXTENT_DATA_KEY)) 3698 break; 3699 3700 fi = btrfs_item_ptr(leaf, path->slots[0], 3701 struct btrfs_file_extent_item); 3702 3703 if (btrfs_file_extent_type(leaf, fi) == 3704 BTRFS_FILE_EXTENT_INLINE) 3705 goto next; 3706 3707 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3708 extent_key->objectid) 3709 goto next; 3710 3711 key.offset -= btrfs_file_extent_offset(leaf, fi); 3712 if (key.offset != ref_offset) 3713 goto next; 3714 3715 if (counted) 3716 ref_count--; 3717 if (added) 3718 goto next; 3719 3720 if (!tree_block_processed(leaf->start, rc)) { 3721 block = kmalloc(sizeof(*block), GFP_NOFS); 3722 if (!block) { 3723 err = -ENOMEM; 3724 break; 3725 } 3726 block->bytenr = leaf->start; 3727 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3728 block->level = 0; 3729 block->key_ready = 1; 3730 rb_node = tree_insert(blocks, block->bytenr, 3731 &block->rb_node); 3732 if (rb_node) 3733 backref_tree_panic(rb_node, -EEXIST, 3734 block->bytenr); 3735 } 3736 if (counted) 3737 added = 1; 3738 else 3739 path->slots[0] = nritems; 3740 next: 3741 path->slots[0]++; 3742 3743 } 3744 out: 3745 btrfs_free_path(path); 3746 return err; 3747 } 3748 3749 /* 3750 * helper to find all tree blocks that reference a given data extent 3751 */ 3752 static noinline_for_stack 3753 int add_data_references(struct reloc_control *rc, 3754 struct btrfs_key *extent_key, 3755 struct btrfs_path *path, 3756 struct rb_root *blocks) 3757 { 3758 struct btrfs_key key; 3759 struct extent_buffer *eb; 3760 struct btrfs_extent_data_ref *dref; 3761 struct btrfs_extent_inline_ref *iref; 3762 unsigned long ptr; 3763 unsigned long end; 3764 u32 blocksize = rc->extent_root->fs_info->nodesize; 3765 int ret = 0; 3766 int err = 0; 3767 3768 eb = path->nodes[0]; 3769 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3770 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3771 ptr += sizeof(struct btrfs_extent_item); 3772 3773 while (ptr < end) { 3774 iref = (struct btrfs_extent_inline_ref *)ptr; 3775 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3776 BTRFS_REF_TYPE_DATA); 3777 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3778 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3779 ret = __add_tree_block(rc, key.offset, blocksize, 3780 blocks); 3781 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3782 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3783 ret = find_data_references(rc, extent_key, 3784 eb, dref, blocks); 3785 } else { 3786 ret = -EUCLEAN; 3787 btrfs_err(rc->extent_root->fs_info, 3788 "extent %llu slot %d has an invalid inline ref type", 3789 eb->start, path->slots[0]); 3790 } 3791 if (ret) { 3792 err = ret; 3793 goto out; 3794 } 3795 ptr += btrfs_extent_inline_ref_size(key.type); 3796 } 3797 WARN_ON(ptr > end); 3798 3799 while (1) { 3800 cond_resched(); 3801 eb = path->nodes[0]; 3802 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3803 ret = btrfs_next_leaf(rc->extent_root, path); 3804 if (ret < 0) { 3805 err = ret; 3806 break; 3807 } 3808 if (ret > 0) 3809 break; 3810 eb = path->nodes[0]; 3811 } 3812 3813 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3814 if (key.objectid != extent_key->objectid) 3815 break; 3816 3817 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3818 ret = __add_tree_block(rc, key.offset, blocksize, 3819 blocks); 3820 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3821 dref = btrfs_item_ptr(eb, path->slots[0], 3822 struct btrfs_extent_data_ref); 3823 ret = find_data_references(rc, extent_key, 3824 eb, dref, blocks); 3825 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3826 btrfs_print_v0_err(eb->fs_info); 3827 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3828 ret = -EINVAL; 3829 } else { 3830 ret = 0; 3831 } 3832 if (ret) { 3833 err = ret; 3834 break; 3835 } 3836 path->slots[0]++; 3837 } 3838 out: 3839 btrfs_release_path(path); 3840 if (err) 3841 free_block_list(blocks); 3842 return err; 3843 } 3844 3845 /* 3846 * helper to find next unprocessed extent 3847 */ 3848 static noinline_for_stack 3849 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3850 struct btrfs_key *extent_key) 3851 { 3852 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3853 struct btrfs_key key; 3854 struct extent_buffer *leaf; 3855 u64 start, end, last; 3856 int ret; 3857 3858 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3859 while (1) { 3860 cond_resched(); 3861 if (rc->search_start >= last) { 3862 ret = 1; 3863 break; 3864 } 3865 3866 key.objectid = rc->search_start; 3867 key.type = BTRFS_EXTENT_ITEM_KEY; 3868 key.offset = 0; 3869 3870 path->search_commit_root = 1; 3871 path->skip_locking = 1; 3872 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3873 0, 0); 3874 if (ret < 0) 3875 break; 3876 next: 3877 leaf = path->nodes[0]; 3878 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3879 ret = btrfs_next_leaf(rc->extent_root, path); 3880 if (ret != 0) 3881 break; 3882 leaf = path->nodes[0]; 3883 } 3884 3885 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3886 if (key.objectid >= last) { 3887 ret = 1; 3888 break; 3889 } 3890 3891 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3892 key.type != BTRFS_METADATA_ITEM_KEY) { 3893 path->slots[0]++; 3894 goto next; 3895 } 3896 3897 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3898 key.objectid + key.offset <= rc->search_start) { 3899 path->slots[0]++; 3900 goto next; 3901 } 3902 3903 if (key.type == BTRFS_METADATA_ITEM_KEY && 3904 key.objectid + fs_info->nodesize <= 3905 rc->search_start) { 3906 path->slots[0]++; 3907 goto next; 3908 } 3909 3910 ret = find_first_extent_bit(&rc->processed_blocks, 3911 key.objectid, &start, &end, 3912 EXTENT_DIRTY, NULL); 3913 3914 if (ret == 0 && start <= key.objectid) { 3915 btrfs_release_path(path); 3916 rc->search_start = end + 1; 3917 } else { 3918 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3919 rc->search_start = key.objectid + key.offset; 3920 else 3921 rc->search_start = key.objectid + 3922 fs_info->nodesize; 3923 memcpy(extent_key, &key, sizeof(key)); 3924 return 0; 3925 } 3926 } 3927 btrfs_release_path(path); 3928 return ret; 3929 } 3930 3931 static void set_reloc_control(struct reloc_control *rc) 3932 { 3933 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3934 3935 mutex_lock(&fs_info->reloc_mutex); 3936 fs_info->reloc_ctl = rc; 3937 mutex_unlock(&fs_info->reloc_mutex); 3938 } 3939 3940 static void unset_reloc_control(struct reloc_control *rc) 3941 { 3942 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3943 3944 mutex_lock(&fs_info->reloc_mutex); 3945 fs_info->reloc_ctl = NULL; 3946 mutex_unlock(&fs_info->reloc_mutex); 3947 } 3948 3949 static int check_extent_flags(u64 flags) 3950 { 3951 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3952 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3953 return 1; 3954 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3955 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3956 return 1; 3957 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3958 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3959 return 1; 3960 return 0; 3961 } 3962 3963 static noinline_for_stack 3964 int prepare_to_relocate(struct reloc_control *rc) 3965 { 3966 struct btrfs_trans_handle *trans; 3967 int ret; 3968 3969 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3970 BTRFS_BLOCK_RSV_TEMP); 3971 if (!rc->block_rsv) 3972 return -ENOMEM; 3973 3974 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3975 rc->search_start = rc->block_group->key.objectid; 3976 rc->extents_found = 0; 3977 rc->nodes_relocated = 0; 3978 rc->merging_rsv_size = 0; 3979 rc->reserved_bytes = 0; 3980 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3981 RELOCATION_RESERVED_NODES; 3982 ret = btrfs_block_rsv_refill(rc->extent_root, 3983 rc->block_rsv, rc->block_rsv->size, 3984 BTRFS_RESERVE_FLUSH_ALL); 3985 if (ret) 3986 return ret; 3987 3988 rc->create_reloc_tree = 1; 3989 set_reloc_control(rc); 3990 3991 trans = btrfs_join_transaction(rc->extent_root); 3992 if (IS_ERR(trans)) { 3993 unset_reloc_control(rc); 3994 /* 3995 * extent tree is not a ref_cow tree and has no reloc_root to 3996 * cleanup. And callers are responsible to free the above 3997 * block rsv. 3998 */ 3999 return PTR_ERR(trans); 4000 } 4001 btrfs_commit_transaction(trans); 4002 return 0; 4003 } 4004 4005 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4006 { 4007 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 4008 struct rb_root blocks = RB_ROOT; 4009 struct btrfs_key key; 4010 struct btrfs_trans_handle *trans = NULL; 4011 struct btrfs_path *path; 4012 struct btrfs_extent_item *ei; 4013 u64 flags; 4014 u32 item_size; 4015 int ret; 4016 int err = 0; 4017 int progress = 0; 4018 4019 path = btrfs_alloc_path(); 4020 if (!path) 4021 return -ENOMEM; 4022 path->reada = READA_FORWARD; 4023 4024 ret = prepare_to_relocate(rc); 4025 if (ret) { 4026 err = ret; 4027 goto out_free; 4028 } 4029 4030 while (1) { 4031 rc->reserved_bytes = 0; 4032 ret = btrfs_block_rsv_refill(rc->extent_root, 4033 rc->block_rsv, rc->block_rsv->size, 4034 BTRFS_RESERVE_FLUSH_ALL); 4035 if (ret) { 4036 err = ret; 4037 break; 4038 } 4039 progress++; 4040 trans = btrfs_start_transaction(rc->extent_root, 0); 4041 if (IS_ERR(trans)) { 4042 err = PTR_ERR(trans); 4043 trans = NULL; 4044 break; 4045 } 4046 restart: 4047 if (update_backref_cache(trans, &rc->backref_cache)) { 4048 btrfs_end_transaction(trans); 4049 trans = NULL; 4050 continue; 4051 } 4052 4053 ret = find_next_extent(rc, path, &key); 4054 if (ret < 0) 4055 err = ret; 4056 if (ret != 0) 4057 break; 4058 4059 rc->extents_found++; 4060 4061 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4062 struct btrfs_extent_item); 4063 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4064 if (item_size >= sizeof(*ei)) { 4065 flags = btrfs_extent_flags(path->nodes[0], ei); 4066 ret = check_extent_flags(flags); 4067 BUG_ON(ret); 4068 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 4069 err = -EINVAL; 4070 btrfs_print_v0_err(trans->fs_info); 4071 btrfs_abort_transaction(trans, err); 4072 break; 4073 } else { 4074 BUG(); 4075 } 4076 4077 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4078 ret = add_tree_block(rc, &key, path, &blocks); 4079 } else if (rc->stage == UPDATE_DATA_PTRS && 4080 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4081 ret = add_data_references(rc, &key, path, &blocks); 4082 } else { 4083 btrfs_release_path(path); 4084 ret = 0; 4085 } 4086 if (ret < 0) { 4087 err = ret; 4088 break; 4089 } 4090 4091 if (!RB_EMPTY_ROOT(&blocks)) { 4092 ret = relocate_tree_blocks(trans, rc, &blocks); 4093 if (ret < 0) { 4094 /* 4095 * if we fail to relocate tree blocks, force to update 4096 * backref cache when committing transaction. 4097 */ 4098 rc->backref_cache.last_trans = trans->transid - 1; 4099 4100 if (ret != -EAGAIN) { 4101 err = ret; 4102 break; 4103 } 4104 rc->extents_found--; 4105 rc->search_start = key.objectid; 4106 } 4107 } 4108 4109 btrfs_end_transaction_throttle(trans); 4110 btrfs_btree_balance_dirty(fs_info); 4111 trans = NULL; 4112 4113 if (rc->stage == MOVE_DATA_EXTENTS && 4114 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4115 rc->found_file_extent = 1; 4116 ret = relocate_data_extent(rc->data_inode, 4117 &key, &rc->cluster); 4118 if (ret < 0) { 4119 err = ret; 4120 break; 4121 } 4122 } 4123 } 4124 if (trans && progress && err == -ENOSPC) { 4125 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 4126 if (ret == 1) { 4127 err = 0; 4128 progress = 0; 4129 goto restart; 4130 } 4131 } 4132 4133 btrfs_release_path(path); 4134 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4135 4136 if (trans) { 4137 btrfs_end_transaction_throttle(trans); 4138 btrfs_btree_balance_dirty(fs_info); 4139 } 4140 4141 if (!err) { 4142 ret = relocate_file_extent_cluster(rc->data_inode, 4143 &rc->cluster); 4144 if (ret < 0) 4145 err = ret; 4146 } 4147 4148 rc->create_reloc_tree = 0; 4149 set_reloc_control(rc); 4150 4151 backref_cache_cleanup(&rc->backref_cache); 4152 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4153 4154 err = prepare_to_merge(rc, err); 4155 4156 merge_reloc_roots(rc); 4157 4158 rc->merge_reloc_tree = 0; 4159 unset_reloc_control(rc); 4160 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4161 4162 /* get rid of pinned extents */ 4163 trans = btrfs_join_transaction(rc->extent_root); 4164 if (IS_ERR(trans)) { 4165 err = PTR_ERR(trans); 4166 goto out_free; 4167 } 4168 btrfs_commit_transaction(trans); 4169 ret = clean_dirty_subvols(rc); 4170 if (ret < 0 && !err) 4171 err = ret; 4172 out_free: 4173 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4174 btrfs_free_path(path); 4175 return err; 4176 } 4177 4178 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4179 struct btrfs_root *root, u64 objectid) 4180 { 4181 struct btrfs_path *path; 4182 struct btrfs_inode_item *item; 4183 struct extent_buffer *leaf; 4184 int ret; 4185 4186 path = btrfs_alloc_path(); 4187 if (!path) 4188 return -ENOMEM; 4189 4190 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4191 if (ret) 4192 goto out; 4193 4194 leaf = path->nodes[0]; 4195 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4196 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4197 btrfs_set_inode_generation(leaf, item, 1); 4198 btrfs_set_inode_size(leaf, item, 0); 4199 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4200 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4201 BTRFS_INODE_PREALLOC); 4202 btrfs_mark_buffer_dirty(leaf); 4203 out: 4204 btrfs_free_path(path); 4205 return ret; 4206 } 4207 4208 /* 4209 * helper to create inode for data relocation. 4210 * the inode is in data relocation tree and its link count is 0 4211 */ 4212 static noinline_for_stack 4213 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4214 struct btrfs_block_group_cache *group) 4215 { 4216 struct inode *inode = NULL; 4217 struct btrfs_trans_handle *trans; 4218 struct btrfs_root *root; 4219 struct btrfs_key key; 4220 u64 objectid; 4221 int err = 0; 4222 4223 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4224 if (IS_ERR(root)) 4225 return ERR_CAST(root); 4226 4227 trans = btrfs_start_transaction(root, 6); 4228 if (IS_ERR(trans)) 4229 return ERR_CAST(trans); 4230 4231 err = btrfs_find_free_objectid(root, &objectid); 4232 if (err) 4233 goto out; 4234 4235 err = __insert_orphan_inode(trans, root, objectid); 4236 BUG_ON(err); 4237 4238 key.objectid = objectid; 4239 key.type = BTRFS_INODE_ITEM_KEY; 4240 key.offset = 0; 4241 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4242 BUG_ON(IS_ERR(inode)); 4243 BTRFS_I(inode)->index_cnt = group->key.objectid; 4244 4245 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4246 out: 4247 btrfs_end_transaction(trans); 4248 btrfs_btree_balance_dirty(fs_info); 4249 if (err) { 4250 if (inode) 4251 iput(inode); 4252 inode = ERR_PTR(err); 4253 } 4254 return inode; 4255 } 4256 4257 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4258 { 4259 struct reloc_control *rc; 4260 4261 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4262 if (!rc) 4263 return NULL; 4264 4265 INIT_LIST_HEAD(&rc->reloc_roots); 4266 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4267 backref_cache_init(&rc->backref_cache); 4268 mapping_tree_init(&rc->reloc_root_tree); 4269 extent_io_tree_init(fs_info, &rc->processed_blocks, 4270 IO_TREE_RELOC_BLOCKS, NULL); 4271 return rc; 4272 } 4273 4274 /* 4275 * Print the block group being relocated 4276 */ 4277 static void describe_relocation(struct btrfs_fs_info *fs_info, 4278 struct btrfs_block_group_cache *block_group) 4279 { 4280 char buf[128] = {'\0'}; 4281 4282 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4283 4284 btrfs_info(fs_info, 4285 "relocating block group %llu flags %s", 4286 block_group->key.objectid, buf); 4287 } 4288 4289 /* 4290 * function to relocate all extents in a block group. 4291 */ 4292 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4293 { 4294 struct btrfs_block_group_cache *bg; 4295 struct btrfs_root *extent_root = fs_info->extent_root; 4296 struct reloc_control *rc; 4297 struct inode *inode; 4298 struct btrfs_path *path; 4299 int ret; 4300 int rw = 0; 4301 int err = 0; 4302 4303 bg = btrfs_lookup_block_group(fs_info, group_start); 4304 if (!bg) 4305 return -ENOENT; 4306 4307 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4308 btrfs_put_block_group(bg); 4309 return -ETXTBSY; 4310 } 4311 4312 rc = alloc_reloc_control(fs_info); 4313 if (!rc) { 4314 btrfs_put_block_group(bg); 4315 return -ENOMEM; 4316 } 4317 4318 rc->extent_root = extent_root; 4319 rc->block_group = bg; 4320 4321 ret = btrfs_inc_block_group_ro(rc->block_group); 4322 if (ret) { 4323 err = ret; 4324 goto out; 4325 } 4326 rw = 1; 4327 4328 path = btrfs_alloc_path(); 4329 if (!path) { 4330 err = -ENOMEM; 4331 goto out; 4332 } 4333 4334 inode = lookup_free_space_inode(rc->block_group, path); 4335 btrfs_free_path(path); 4336 4337 if (!IS_ERR(inode)) 4338 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4339 else 4340 ret = PTR_ERR(inode); 4341 4342 if (ret && ret != -ENOENT) { 4343 err = ret; 4344 goto out; 4345 } 4346 4347 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4348 if (IS_ERR(rc->data_inode)) { 4349 err = PTR_ERR(rc->data_inode); 4350 rc->data_inode = NULL; 4351 goto out; 4352 } 4353 4354 describe_relocation(fs_info, rc->block_group); 4355 4356 btrfs_wait_block_group_reservations(rc->block_group); 4357 btrfs_wait_nocow_writers(rc->block_group); 4358 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4359 rc->block_group->key.objectid, 4360 rc->block_group->key.offset); 4361 4362 while (1) { 4363 mutex_lock(&fs_info->cleaner_mutex); 4364 ret = relocate_block_group(rc); 4365 mutex_unlock(&fs_info->cleaner_mutex); 4366 if (ret < 0) 4367 err = ret; 4368 4369 /* 4370 * We may have gotten ENOSPC after we already dirtied some 4371 * extents. If writeout happens while we're relocating a 4372 * different block group we could end up hitting the 4373 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4374 * btrfs_reloc_cow_block. Make sure we write everything out 4375 * properly so we don't trip over this problem, and then break 4376 * out of the loop if we hit an error. 4377 */ 4378 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4379 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4380 (u64)-1); 4381 if (ret) 4382 err = ret; 4383 invalidate_mapping_pages(rc->data_inode->i_mapping, 4384 0, -1); 4385 rc->stage = UPDATE_DATA_PTRS; 4386 } 4387 4388 if (err < 0) 4389 goto out; 4390 4391 if (rc->extents_found == 0) 4392 break; 4393 4394 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4395 4396 } 4397 4398 WARN_ON(rc->block_group->pinned > 0); 4399 WARN_ON(rc->block_group->reserved > 0); 4400 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4401 out: 4402 if (err && rw) 4403 btrfs_dec_block_group_ro(rc->block_group); 4404 iput(rc->data_inode); 4405 btrfs_put_block_group(rc->block_group); 4406 kfree(rc); 4407 return err; 4408 } 4409 4410 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4411 { 4412 struct btrfs_fs_info *fs_info = root->fs_info; 4413 struct btrfs_trans_handle *trans; 4414 int ret, err; 4415 4416 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4417 if (IS_ERR(trans)) 4418 return PTR_ERR(trans); 4419 4420 memset(&root->root_item.drop_progress, 0, 4421 sizeof(root->root_item.drop_progress)); 4422 root->root_item.drop_level = 0; 4423 btrfs_set_root_refs(&root->root_item, 0); 4424 ret = btrfs_update_root(trans, fs_info->tree_root, 4425 &root->root_key, &root->root_item); 4426 4427 err = btrfs_end_transaction(trans); 4428 if (err) 4429 return err; 4430 return ret; 4431 } 4432 4433 /* 4434 * recover relocation interrupted by system crash. 4435 * 4436 * this function resumes merging reloc trees with corresponding fs trees. 4437 * this is important for keeping the sharing of tree blocks 4438 */ 4439 int btrfs_recover_relocation(struct btrfs_root *root) 4440 { 4441 struct btrfs_fs_info *fs_info = root->fs_info; 4442 LIST_HEAD(reloc_roots); 4443 struct btrfs_key key; 4444 struct btrfs_root *fs_root; 4445 struct btrfs_root *reloc_root; 4446 struct btrfs_path *path; 4447 struct extent_buffer *leaf; 4448 struct reloc_control *rc = NULL; 4449 struct btrfs_trans_handle *trans; 4450 int ret; 4451 int err = 0; 4452 4453 path = btrfs_alloc_path(); 4454 if (!path) 4455 return -ENOMEM; 4456 path->reada = READA_BACK; 4457 4458 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4459 key.type = BTRFS_ROOT_ITEM_KEY; 4460 key.offset = (u64)-1; 4461 4462 while (1) { 4463 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4464 path, 0, 0); 4465 if (ret < 0) { 4466 err = ret; 4467 goto out; 4468 } 4469 if (ret > 0) { 4470 if (path->slots[0] == 0) 4471 break; 4472 path->slots[0]--; 4473 } 4474 leaf = path->nodes[0]; 4475 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4476 btrfs_release_path(path); 4477 4478 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4479 key.type != BTRFS_ROOT_ITEM_KEY) 4480 break; 4481 4482 reloc_root = btrfs_read_fs_root(root, &key); 4483 if (IS_ERR(reloc_root)) { 4484 err = PTR_ERR(reloc_root); 4485 goto out; 4486 } 4487 4488 list_add(&reloc_root->root_list, &reloc_roots); 4489 4490 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4491 fs_root = read_fs_root(fs_info, 4492 reloc_root->root_key.offset); 4493 if (IS_ERR(fs_root)) { 4494 ret = PTR_ERR(fs_root); 4495 if (ret != -ENOENT) { 4496 err = ret; 4497 goto out; 4498 } 4499 ret = mark_garbage_root(reloc_root); 4500 if (ret < 0) { 4501 err = ret; 4502 goto out; 4503 } 4504 } 4505 } 4506 4507 if (key.offset == 0) 4508 break; 4509 4510 key.offset--; 4511 } 4512 btrfs_release_path(path); 4513 4514 if (list_empty(&reloc_roots)) 4515 goto out; 4516 4517 rc = alloc_reloc_control(fs_info); 4518 if (!rc) { 4519 err = -ENOMEM; 4520 goto out; 4521 } 4522 4523 rc->extent_root = fs_info->extent_root; 4524 4525 set_reloc_control(rc); 4526 4527 trans = btrfs_join_transaction(rc->extent_root); 4528 if (IS_ERR(trans)) { 4529 unset_reloc_control(rc); 4530 err = PTR_ERR(trans); 4531 goto out_free; 4532 } 4533 4534 rc->merge_reloc_tree = 1; 4535 4536 while (!list_empty(&reloc_roots)) { 4537 reloc_root = list_entry(reloc_roots.next, 4538 struct btrfs_root, root_list); 4539 list_del(&reloc_root->root_list); 4540 4541 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4542 list_add_tail(&reloc_root->root_list, 4543 &rc->reloc_roots); 4544 continue; 4545 } 4546 4547 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4548 if (IS_ERR(fs_root)) { 4549 err = PTR_ERR(fs_root); 4550 goto out_free; 4551 } 4552 4553 err = __add_reloc_root(reloc_root); 4554 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4555 fs_root->reloc_root = reloc_root; 4556 } 4557 4558 err = btrfs_commit_transaction(trans); 4559 if (err) 4560 goto out_free; 4561 4562 merge_reloc_roots(rc); 4563 4564 unset_reloc_control(rc); 4565 4566 trans = btrfs_join_transaction(rc->extent_root); 4567 if (IS_ERR(trans)) { 4568 err = PTR_ERR(trans); 4569 goto out_free; 4570 } 4571 err = btrfs_commit_transaction(trans); 4572 4573 ret = clean_dirty_subvols(rc); 4574 if (ret < 0 && !err) 4575 err = ret; 4576 out_free: 4577 kfree(rc); 4578 out: 4579 if (!list_empty(&reloc_roots)) 4580 free_reloc_roots(&reloc_roots); 4581 4582 btrfs_free_path(path); 4583 4584 if (err == 0) { 4585 /* cleanup orphan inode in data relocation tree */ 4586 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4587 if (IS_ERR(fs_root)) 4588 err = PTR_ERR(fs_root); 4589 else 4590 err = btrfs_orphan_cleanup(fs_root); 4591 } 4592 return err; 4593 } 4594 4595 /* 4596 * helper to add ordered checksum for data relocation. 4597 * 4598 * cloning checksum properly handles the nodatasum extents. 4599 * it also saves CPU time to re-calculate the checksum. 4600 */ 4601 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4602 { 4603 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4604 struct btrfs_ordered_sum *sums; 4605 struct btrfs_ordered_extent *ordered; 4606 int ret; 4607 u64 disk_bytenr; 4608 u64 new_bytenr; 4609 LIST_HEAD(list); 4610 4611 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4612 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4613 4614 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4615 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4616 disk_bytenr + len - 1, &list, 0); 4617 if (ret) 4618 goto out; 4619 4620 while (!list_empty(&list)) { 4621 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4622 list_del_init(&sums->list); 4623 4624 /* 4625 * We need to offset the new_bytenr based on where the csum is. 4626 * We need to do this because we will read in entire prealloc 4627 * extents but we may have written to say the middle of the 4628 * prealloc extent, so we need to make sure the csum goes with 4629 * the right disk offset. 4630 * 4631 * We can do this because the data reloc inode refers strictly 4632 * to the on disk bytes, so we don't have to worry about 4633 * disk_len vs real len like with real inodes since it's all 4634 * disk length. 4635 */ 4636 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4637 sums->bytenr = new_bytenr; 4638 4639 btrfs_add_ordered_sum(ordered, sums); 4640 } 4641 out: 4642 btrfs_put_ordered_extent(ordered); 4643 return ret; 4644 } 4645 4646 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4647 struct btrfs_root *root, struct extent_buffer *buf, 4648 struct extent_buffer *cow) 4649 { 4650 struct btrfs_fs_info *fs_info = root->fs_info; 4651 struct reloc_control *rc; 4652 struct backref_node *node; 4653 int first_cow = 0; 4654 int level; 4655 int ret = 0; 4656 4657 rc = fs_info->reloc_ctl; 4658 if (!rc) 4659 return 0; 4660 4661 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4662 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4663 4664 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4665 if (buf == root->node) 4666 __update_reloc_root(root, cow->start); 4667 } 4668 4669 level = btrfs_header_level(buf); 4670 if (btrfs_header_generation(buf) <= 4671 btrfs_root_last_snapshot(&root->root_item)) 4672 first_cow = 1; 4673 4674 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4675 rc->create_reloc_tree) { 4676 WARN_ON(!first_cow && level == 0); 4677 4678 node = rc->backref_cache.path[level]; 4679 BUG_ON(node->bytenr != buf->start && 4680 node->new_bytenr != buf->start); 4681 4682 drop_node_buffer(node); 4683 extent_buffer_get(cow); 4684 node->eb = cow; 4685 node->new_bytenr = cow->start; 4686 4687 if (!node->pending) { 4688 list_move_tail(&node->list, 4689 &rc->backref_cache.pending[level]); 4690 node->pending = 1; 4691 } 4692 4693 if (first_cow) 4694 __mark_block_processed(rc, node); 4695 4696 if (first_cow && level > 0) 4697 rc->nodes_relocated += buf->len; 4698 } 4699 4700 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4701 ret = replace_file_extents(trans, rc, root, cow); 4702 return ret; 4703 } 4704 4705 /* 4706 * called before creating snapshot. it calculates metadata reservation 4707 * required for relocating tree blocks in the snapshot 4708 */ 4709 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4710 u64 *bytes_to_reserve) 4711 { 4712 struct btrfs_root *root = pending->root; 4713 struct reloc_control *rc = root->fs_info->reloc_ctl; 4714 4715 if (!root->reloc_root || !rc) 4716 return; 4717 4718 if (!rc->merge_reloc_tree) 4719 return; 4720 4721 root = root->reloc_root; 4722 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4723 /* 4724 * relocation is in the stage of merging trees. the space 4725 * used by merging a reloc tree is twice the size of 4726 * relocated tree nodes in the worst case. half for cowing 4727 * the reloc tree, half for cowing the fs tree. the space 4728 * used by cowing the reloc tree will be freed after the 4729 * tree is dropped. if we create snapshot, cowing the fs 4730 * tree may use more space than it frees. so we need 4731 * reserve extra space. 4732 */ 4733 *bytes_to_reserve += rc->nodes_relocated; 4734 } 4735 4736 /* 4737 * called after snapshot is created. migrate block reservation 4738 * and create reloc root for the newly created snapshot 4739 */ 4740 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4741 struct btrfs_pending_snapshot *pending) 4742 { 4743 struct btrfs_root *root = pending->root; 4744 struct btrfs_root *reloc_root; 4745 struct btrfs_root *new_root; 4746 struct reloc_control *rc = root->fs_info->reloc_ctl; 4747 int ret; 4748 4749 if (!root->reloc_root || !rc) 4750 return 0; 4751 4752 rc = root->fs_info->reloc_ctl; 4753 rc->merging_rsv_size += rc->nodes_relocated; 4754 4755 if (rc->merge_reloc_tree) { 4756 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4757 rc->block_rsv, 4758 rc->nodes_relocated, true); 4759 if (ret) 4760 return ret; 4761 } 4762 4763 new_root = pending->snap; 4764 reloc_root = create_reloc_root(trans, root->reloc_root, 4765 new_root->root_key.objectid); 4766 if (IS_ERR(reloc_root)) 4767 return PTR_ERR(reloc_root); 4768 4769 ret = __add_reloc_root(reloc_root); 4770 BUG_ON(ret < 0); 4771 new_root->reloc_root = reloc_root; 4772 4773 if (rc->create_reloc_tree) 4774 ret = clone_backref_node(trans, rc, root, reloc_root); 4775 return ret; 4776 } 4777