xref: /openbmc/linux/fs/btrfs/relocation.c (revision e553d2a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 
26 /*
27  * backref_node, mapping_node and tree_block start with this
28  */
29 struct tree_entry {
30 	struct rb_node rb_node;
31 	u64 bytenr;
32 };
33 
34 /*
35  * present a tree block in the backref cache
36  */
37 struct backref_node {
38 	struct rb_node rb_node;
39 	u64 bytenr;
40 
41 	u64 new_bytenr;
42 	/* objectid of tree block owner, can be not uptodate */
43 	u64 owner;
44 	/* link to pending, changed or detached list */
45 	struct list_head list;
46 	/* list of upper level blocks reference this block */
47 	struct list_head upper;
48 	/* list of child blocks in the cache */
49 	struct list_head lower;
50 	/* NULL if this node is not tree root */
51 	struct btrfs_root *root;
52 	/* extent buffer got by COW the block */
53 	struct extent_buffer *eb;
54 	/* level of tree block */
55 	unsigned int level:8;
56 	/* is the block in non-reference counted tree */
57 	unsigned int cowonly:1;
58 	/* 1 if no child node in the cache */
59 	unsigned int lowest:1;
60 	/* is the extent buffer locked */
61 	unsigned int locked:1;
62 	/* has the block been processed */
63 	unsigned int processed:1;
64 	/* have backrefs of this block been checked */
65 	unsigned int checked:1;
66 	/*
67 	 * 1 if corresponding block has been cowed but some upper
68 	 * level block pointers may not point to the new location
69 	 */
70 	unsigned int pending:1;
71 	/*
72 	 * 1 if the backref node isn't connected to any other
73 	 * backref node.
74 	 */
75 	unsigned int detached:1;
76 };
77 
78 /*
79  * present a block pointer in the backref cache
80  */
81 struct backref_edge {
82 	struct list_head list[2];
83 	struct backref_node *node[2];
84 };
85 
86 #define LOWER	0
87 #define UPPER	1
88 #define RELOCATION_RESERVED_NODES	256
89 
90 struct backref_cache {
91 	/* red black tree of all backref nodes in the cache */
92 	struct rb_root rb_root;
93 	/* for passing backref nodes to btrfs_reloc_cow_block */
94 	struct backref_node *path[BTRFS_MAX_LEVEL];
95 	/*
96 	 * list of blocks that have been cowed but some block
97 	 * pointers in upper level blocks may not reflect the
98 	 * new location
99 	 */
100 	struct list_head pending[BTRFS_MAX_LEVEL];
101 	/* list of backref nodes with no child node */
102 	struct list_head leaves;
103 	/* list of blocks that have been cowed in current transaction */
104 	struct list_head changed;
105 	/* list of detached backref node. */
106 	struct list_head detached;
107 
108 	u64 last_trans;
109 
110 	int nr_nodes;
111 	int nr_edges;
112 };
113 
114 /*
115  * map address of tree root to tree
116  */
117 struct mapping_node {
118 	struct rb_node rb_node;
119 	u64 bytenr;
120 	void *data;
121 };
122 
123 struct mapping_tree {
124 	struct rb_root rb_root;
125 	spinlock_t lock;
126 };
127 
128 /*
129  * present a tree block to process
130  */
131 struct tree_block {
132 	struct rb_node rb_node;
133 	u64 bytenr;
134 	struct btrfs_key key;
135 	unsigned int level:8;
136 	unsigned int key_ready:1;
137 };
138 
139 #define MAX_EXTENTS 128
140 
141 struct file_extent_cluster {
142 	u64 start;
143 	u64 end;
144 	u64 boundary[MAX_EXTENTS];
145 	unsigned int nr;
146 };
147 
148 struct reloc_control {
149 	/* block group to relocate */
150 	struct btrfs_block_group_cache *block_group;
151 	/* extent tree */
152 	struct btrfs_root *extent_root;
153 	/* inode for moving data */
154 	struct inode *data_inode;
155 
156 	struct btrfs_block_rsv *block_rsv;
157 
158 	struct backref_cache backref_cache;
159 
160 	struct file_extent_cluster cluster;
161 	/* tree blocks have been processed */
162 	struct extent_io_tree processed_blocks;
163 	/* map start of tree root to corresponding reloc tree */
164 	struct mapping_tree reloc_root_tree;
165 	/* list of reloc trees */
166 	struct list_head reloc_roots;
167 	/* list of subvolume trees that get relocated */
168 	struct list_head dirty_subvol_roots;
169 	/* size of metadata reservation for merging reloc trees */
170 	u64 merging_rsv_size;
171 	/* size of relocated tree nodes */
172 	u64 nodes_relocated;
173 	/* reserved size for block group relocation*/
174 	u64 reserved_bytes;
175 
176 	u64 search_start;
177 	u64 extents_found;
178 
179 	unsigned int stage:8;
180 	unsigned int create_reloc_tree:1;
181 	unsigned int merge_reloc_tree:1;
182 	unsigned int found_file_extent:1;
183 };
184 
185 /* stages of data relocation */
186 #define MOVE_DATA_EXTENTS	0
187 #define UPDATE_DATA_PTRS	1
188 
189 static void remove_backref_node(struct backref_cache *cache,
190 				struct backref_node *node);
191 static void __mark_block_processed(struct reloc_control *rc,
192 				   struct backref_node *node);
193 
194 static void mapping_tree_init(struct mapping_tree *tree)
195 {
196 	tree->rb_root = RB_ROOT;
197 	spin_lock_init(&tree->lock);
198 }
199 
200 static void backref_cache_init(struct backref_cache *cache)
201 {
202 	int i;
203 	cache->rb_root = RB_ROOT;
204 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
205 		INIT_LIST_HEAD(&cache->pending[i]);
206 	INIT_LIST_HEAD(&cache->changed);
207 	INIT_LIST_HEAD(&cache->detached);
208 	INIT_LIST_HEAD(&cache->leaves);
209 }
210 
211 static void backref_cache_cleanup(struct backref_cache *cache)
212 {
213 	struct backref_node *node;
214 	int i;
215 
216 	while (!list_empty(&cache->detached)) {
217 		node = list_entry(cache->detached.next,
218 				  struct backref_node, list);
219 		remove_backref_node(cache, node);
220 	}
221 
222 	while (!list_empty(&cache->leaves)) {
223 		node = list_entry(cache->leaves.next,
224 				  struct backref_node, lower);
225 		remove_backref_node(cache, node);
226 	}
227 
228 	cache->last_trans = 0;
229 
230 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
231 		ASSERT(list_empty(&cache->pending[i]));
232 	ASSERT(list_empty(&cache->changed));
233 	ASSERT(list_empty(&cache->detached));
234 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
235 	ASSERT(!cache->nr_nodes);
236 	ASSERT(!cache->nr_edges);
237 }
238 
239 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
240 {
241 	struct backref_node *node;
242 
243 	node = kzalloc(sizeof(*node), GFP_NOFS);
244 	if (node) {
245 		INIT_LIST_HEAD(&node->list);
246 		INIT_LIST_HEAD(&node->upper);
247 		INIT_LIST_HEAD(&node->lower);
248 		RB_CLEAR_NODE(&node->rb_node);
249 		cache->nr_nodes++;
250 	}
251 	return node;
252 }
253 
254 static void free_backref_node(struct backref_cache *cache,
255 			      struct backref_node *node)
256 {
257 	if (node) {
258 		cache->nr_nodes--;
259 		kfree(node);
260 	}
261 }
262 
263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
264 {
265 	struct backref_edge *edge;
266 
267 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
268 	if (edge)
269 		cache->nr_edges++;
270 	return edge;
271 }
272 
273 static void free_backref_edge(struct backref_cache *cache,
274 			      struct backref_edge *edge)
275 {
276 	if (edge) {
277 		cache->nr_edges--;
278 		kfree(edge);
279 	}
280 }
281 
282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
283 				   struct rb_node *node)
284 {
285 	struct rb_node **p = &root->rb_node;
286 	struct rb_node *parent = NULL;
287 	struct tree_entry *entry;
288 
289 	while (*p) {
290 		parent = *p;
291 		entry = rb_entry(parent, struct tree_entry, rb_node);
292 
293 		if (bytenr < entry->bytenr)
294 			p = &(*p)->rb_left;
295 		else if (bytenr > entry->bytenr)
296 			p = &(*p)->rb_right;
297 		else
298 			return parent;
299 	}
300 
301 	rb_link_node(node, parent, p);
302 	rb_insert_color(node, root);
303 	return NULL;
304 }
305 
306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
307 {
308 	struct rb_node *n = root->rb_node;
309 	struct tree_entry *entry;
310 
311 	while (n) {
312 		entry = rb_entry(n, struct tree_entry, rb_node);
313 
314 		if (bytenr < entry->bytenr)
315 			n = n->rb_left;
316 		else if (bytenr > entry->bytenr)
317 			n = n->rb_right;
318 		else
319 			return n;
320 	}
321 	return NULL;
322 }
323 
324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
325 {
326 
327 	struct btrfs_fs_info *fs_info = NULL;
328 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
329 					      rb_node);
330 	if (bnode->root)
331 		fs_info = bnode->root->fs_info;
332 	btrfs_panic(fs_info, errno,
333 		    "Inconsistency in backref cache found at offset %llu",
334 		    bytenr);
335 }
336 
337 /*
338  * walk up backref nodes until reach node presents tree root
339  */
340 static struct backref_node *walk_up_backref(struct backref_node *node,
341 					    struct backref_edge *edges[],
342 					    int *index)
343 {
344 	struct backref_edge *edge;
345 	int idx = *index;
346 
347 	while (!list_empty(&node->upper)) {
348 		edge = list_entry(node->upper.next,
349 				  struct backref_edge, list[LOWER]);
350 		edges[idx++] = edge;
351 		node = edge->node[UPPER];
352 	}
353 	BUG_ON(node->detached);
354 	*index = idx;
355 	return node;
356 }
357 
358 /*
359  * walk down backref nodes to find start of next reference path
360  */
361 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
362 					      int *index)
363 {
364 	struct backref_edge *edge;
365 	struct backref_node *lower;
366 	int idx = *index;
367 
368 	while (idx > 0) {
369 		edge = edges[idx - 1];
370 		lower = edge->node[LOWER];
371 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
372 			idx--;
373 			continue;
374 		}
375 		edge = list_entry(edge->list[LOWER].next,
376 				  struct backref_edge, list[LOWER]);
377 		edges[idx - 1] = edge;
378 		*index = idx;
379 		return edge->node[UPPER];
380 	}
381 	*index = 0;
382 	return NULL;
383 }
384 
385 static void unlock_node_buffer(struct backref_node *node)
386 {
387 	if (node->locked) {
388 		btrfs_tree_unlock(node->eb);
389 		node->locked = 0;
390 	}
391 }
392 
393 static void drop_node_buffer(struct backref_node *node)
394 {
395 	if (node->eb) {
396 		unlock_node_buffer(node);
397 		free_extent_buffer(node->eb);
398 		node->eb = NULL;
399 	}
400 }
401 
402 static void drop_backref_node(struct backref_cache *tree,
403 			      struct backref_node *node)
404 {
405 	BUG_ON(!list_empty(&node->upper));
406 
407 	drop_node_buffer(node);
408 	list_del(&node->list);
409 	list_del(&node->lower);
410 	if (!RB_EMPTY_NODE(&node->rb_node))
411 		rb_erase(&node->rb_node, &tree->rb_root);
412 	free_backref_node(tree, node);
413 }
414 
415 /*
416  * remove a backref node from the backref cache
417  */
418 static void remove_backref_node(struct backref_cache *cache,
419 				struct backref_node *node)
420 {
421 	struct backref_node *upper;
422 	struct backref_edge *edge;
423 
424 	if (!node)
425 		return;
426 
427 	BUG_ON(!node->lowest && !node->detached);
428 	while (!list_empty(&node->upper)) {
429 		edge = list_entry(node->upper.next, struct backref_edge,
430 				  list[LOWER]);
431 		upper = edge->node[UPPER];
432 		list_del(&edge->list[LOWER]);
433 		list_del(&edge->list[UPPER]);
434 		free_backref_edge(cache, edge);
435 
436 		if (RB_EMPTY_NODE(&upper->rb_node)) {
437 			BUG_ON(!list_empty(&node->upper));
438 			drop_backref_node(cache, node);
439 			node = upper;
440 			node->lowest = 1;
441 			continue;
442 		}
443 		/*
444 		 * add the node to leaf node list if no other
445 		 * child block cached.
446 		 */
447 		if (list_empty(&upper->lower)) {
448 			list_add_tail(&upper->lower, &cache->leaves);
449 			upper->lowest = 1;
450 		}
451 	}
452 
453 	drop_backref_node(cache, node);
454 }
455 
456 static void update_backref_node(struct backref_cache *cache,
457 				struct backref_node *node, u64 bytenr)
458 {
459 	struct rb_node *rb_node;
460 	rb_erase(&node->rb_node, &cache->rb_root);
461 	node->bytenr = bytenr;
462 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
463 	if (rb_node)
464 		backref_tree_panic(rb_node, -EEXIST, bytenr);
465 }
466 
467 /*
468  * update backref cache after a transaction commit
469  */
470 static int update_backref_cache(struct btrfs_trans_handle *trans,
471 				struct backref_cache *cache)
472 {
473 	struct backref_node *node;
474 	int level = 0;
475 
476 	if (cache->last_trans == 0) {
477 		cache->last_trans = trans->transid;
478 		return 0;
479 	}
480 
481 	if (cache->last_trans == trans->transid)
482 		return 0;
483 
484 	/*
485 	 * detached nodes are used to avoid unnecessary backref
486 	 * lookup. transaction commit changes the extent tree.
487 	 * so the detached nodes are no longer useful.
488 	 */
489 	while (!list_empty(&cache->detached)) {
490 		node = list_entry(cache->detached.next,
491 				  struct backref_node, list);
492 		remove_backref_node(cache, node);
493 	}
494 
495 	while (!list_empty(&cache->changed)) {
496 		node = list_entry(cache->changed.next,
497 				  struct backref_node, list);
498 		list_del_init(&node->list);
499 		BUG_ON(node->pending);
500 		update_backref_node(cache, node, node->new_bytenr);
501 	}
502 
503 	/*
504 	 * some nodes can be left in the pending list if there were
505 	 * errors during processing the pending nodes.
506 	 */
507 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
508 		list_for_each_entry(node, &cache->pending[level], list) {
509 			BUG_ON(!node->pending);
510 			if (node->bytenr == node->new_bytenr)
511 				continue;
512 			update_backref_node(cache, node, node->new_bytenr);
513 		}
514 	}
515 
516 	cache->last_trans = 0;
517 	return 1;
518 }
519 
520 
521 static int should_ignore_root(struct btrfs_root *root)
522 {
523 	struct btrfs_root *reloc_root;
524 
525 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
526 		return 0;
527 
528 	reloc_root = root->reloc_root;
529 	if (!reloc_root)
530 		return 0;
531 
532 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
533 	    root->fs_info->running_transaction->transid - 1)
534 		return 0;
535 	/*
536 	 * if there is reloc tree and it was created in previous
537 	 * transaction backref lookup can find the reloc tree,
538 	 * so backref node for the fs tree root is useless for
539 	 * relocation.
540 	 */
541 	return 1;
542 }
543 /*
544  * find reloc tree by address of tree root
545  */
546 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
547 					  u64 bytenr)
548 {
549 	struct rb_node *rb_node;
550 	struct mapping_node *node;
551 	struct btrfs_root *root = NULL;
552 
553 	spin_lock(&rc->reloc_root_tree.lock);
554 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
555 	if (rb_node) {
556 		node = rb_entry(rb_node, struct mapping_node, rb_node);
557 		root = (struct btrfs_root *)node->data;
558 	}
559 	spin_unlock(&rc->reloc_root_tree.lock);
560 	return root;
561 }
562 
563 static int is_cowonly_root(u64 root_objectid)
564 {
565 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
566 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
568 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
570 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
574 		return 1;
575 	return 0;
576 }
577 
578 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
579 					u64 root_objectid)
580 {
581 	struct btrfs_key key;
582 
583 	key.objectid = root_objectid;
584 	key.type = BTRFS_ROOT_ITEM_KEY;
585 	if (is_cowonly_root(root_objectid))
586 		key.offset = 0;
587 	else
588 		key.offset = (u64)-1;
589 
590 	return btrfs_get_fs_root(fs_info, &key, false);
591 }
592 
593 static noinline_for_stack
594 int find_inline_backref(struct extent_buffer *leaf, int slot,
595 			unsigned long *ptr, unsigned long *end)
596 {
597 	struct btrfs_key key;
598 	struct btrfs_extent_item *ei;
599 	struct btrfs_tree_block_info *bi;
600 	u32 item_size;
601 
602 	btrfs_item_key_to_cpu(leaf, &key, slot);
603 
604 	item_size = btrfs_item_size_nr(leaf, slot);
605 	if (item_size < sizeof(*ei)) {
606 		btrfs_print_v0_err(leaf->fs_info);
607 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
608 		return 1;
609 	}
610 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
611 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
612 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
613 
614 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
615 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
616 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
617 		return 1;
618 	}
619 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
620 	    item_size <= sizeof(*ei)) {
621 		WARN_ON(item_size < sizeof(*ei));
622 		return 1;
623 	}
624 
625 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
626 		bi = (struct btrfs_tree_block_info *)(ei + 1);
627 		*ptr = (unsigned long)(bi + 1);
628 	} else {
629 		*ptr = (unsigned long)(ei + 1);
630 	}
631 	*end = (unsigned long)ei + item_size;
632 	return 0;
633 }
634 
635 /*
636  * build backref tree for a given tree block. root of the backref tree
637  * corresponds the tree block, leaves of the backref tree correspond
638  * roots of b-trees that reference the tree block.
639  *
640  * the basic idea of this function is check backrefs of a given block
641  * to find upper level blocks that reference the block, and then check
642  * backrefs of these upper level blocks recursively. the recursion stop
643  * when tree root is reached or backrefs for the block is cached.
644  *
645  * NOTE: if we find backrefs for a block are cached, we know backrefs
646  * for all upper level blocks that directly/indirectly reference the
647  * block are also cached.
648  */
649 static noinline_for_stack
650 struct backref_node *build_backref_tree(struct reloc_control *rc,
651 					struct btrfs_key *node_key,
652 					int level, u64 bytenr)
653 {
654 	struct backref_cache *cache = &rc->backref_cache;
655 	struct btrfs_path *path1; /* For searching extent root */
656 	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
657 	struct extent_buffer *eb;
658 	struct btrfs_root *root;
659 	struct backref_node *cur;
660 	struct backref_node *upper;
661 	struct backref_node *lower;
662 	struct backref_node *node = NULL;
663 	struct backref_node *exist = NULL;
664 	struct backref_edge *edge;
665 	struct rb_node *rb_node;
666 	struct btrfs_key key;
667 	unsigned long end;
668 	unsigned long ptr;
669 	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
670 	LIST_HEAD(useless);
671 	int cowonly;
672 	int ret;
673 	int err = 0;
674 	bool need_check = true;
675 
676 	path1 = btrfs_alloc_path();
677 	path2 = btrfs_alloc_path();
678 	if (!path1 || !path2) {
679 		err = -ENOMEM;
680 		goto out;
681 	}
682 	path1->reada = READA_FORWARD;
683 	path2->reada = READA_FORWARD;
684 
685 	node = alloc_backref_node(cache);
686 	if (!node) {
687 		err = -ENOMEM;
688 		goto out;
689 	}
690 
691 	node->bytenr = bytenr;
692 	node->level = level;
693 	node->lowest = 1;
694 	cur = node;
695 again:
696 	end = 0;
697 	ptr = 0;
698 	key.objectid = cur->bytenr;
699 	key.type = BTRFS_METADATA_ITEM_KEY;
700 	key.offset = (u64)-1;
701 
702 	path1->search_commit_root = 1;
703 	path1->skip_locking = 1;
704 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
705 				0, 0);
706 	if (ret < 0) {
707 		err = ret;
708 		goto out;
709 	}
710 	ASSERT(ret);
711 	ASSERT(path1->slots[0]);
712 
713 	path1->slots[0]--;
714 
715 	WARN_ON(cur->checked);
716 	if (!list_empty(&cur->upper)) {
717 		/*
718 		 * the backref was added previously when processing
719 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
720 		 */
721 		ASSERT(list_is_singular(&cur->upper));
722 		edge = list_entry(cur->upper.next, struct backref_edge,
723 				  list[LOWER]);
724 		ASSERT(list_empty(&edge->list[UPPER]));
725 		exist = edge->node[UPPER];
726 		/*
727 		 * add the upper level block to pending list if we need
728 		 * check its backrefs
729 		 */
730 		if (!exist->checked)
731 			list_add_tail(&edge->list[UPPER], &list);
732 	} else {
733 		exist = NULL;
734 	}
735 
736 	while (1) {
737 		cond_resched();
738 		eb = path1->nodes[0];
739 
740 		if (ptr >= end) {
741 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
742 				ret = btrfs_next_leaf(rc->extent_root, path1);
743 				if (ret < 0) {
744 					err = ret;
745 					goto out;
746 				}
747 				if (ret > 0)
748 					break;
749 				eb = path1->nodes[0];
750 			}
751 
752 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
753 			if (key.objectid != cur->bytenr) {
754 				WARN_ON(exist);
755 				break;
756 			}
757 
758 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
759 			    key.type == BTRFS_METADATA_ITEM_KEY) {
760 				ret = find_inline_backref(eb, path1->slots[0],
761 							  &ptr, &end);
762 				if (ret)
763 					goto next;
764 			}
765 		}
766 
767 		if (ptr < end) {
768 			/* update key for inline back ref */
769 			struct btrfs_extent_inline_ref *iref;
770 			int type;
771 			iref = (struct btrfs_extent_inline_ref *)ptr;
772 			type = btrfs_get_extent_inline_ref_type(eb, iref,
773 							BTRFS_REF_TYPE_BLOCK);
774 			if (type == BTRFS_REF_TYPE_INVALID) {
775 				err = -EUCLEAN;
776 				goto out;
777 			}
778 			key.type = type;
779 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
780 
781 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
782 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
783 		}
784 
785 		/*
786 		 * Parent node found and matches current inline ref, no need to
787 		 * rebuild this node for this inline ref.
788 		 */
789 		if (exist &&
790 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
791 		      exist->owner == key.offset) ||
792 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
793 		      exist->bytenr == key.offset))) {
794 			exist = NULL;
795 			goto next;
796 		}
797 
798 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
799 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
800 			if (key.objectid == key.offset) {
801 				/*
802 				 * Only root blocks of reloc trees use backref
803 				 * pointing to itself.
804 				 */
805 				root = find_reloc_root(rc, cur->bytenr);
806 				ASSERT(root);
807 				cur->root = root;
808 				break;
809 			}
810 
811 			edge = alloc_backref_edge(cache);
812 			if (!edge) {
813 				err = -ENOMEM;
814 				goto out;
815 			}
816 			rb_node = tree_search(&cache->rb_root, key.offset);
817 			if (!rb_node) {
818 				upper = alloc_backref_node(cache);
819 				if (!upper) {
820 					free_backref_edge(cache, edge);
821 					err = -ENOMEM;
822 					goto out;
823 				}
824 				upper->bytenr = key.offset;
825 				upper->level = cur->level + 1;
826 				/*
827 				 *  backrefs for the upper level block isn't
828 				 *  cached, add the block to pending list
829 				 */
830 				list_add_tail(&edge->list[UPPER], &list);
831 			} else {
832 				upper = rb_entry(rb_node, struct backref_node,
833 						 rb_node);
834 				ASSERT(upper->checked);
835 				INIT_LIST_HEAD(&edge->list[UPPER]);
836 			}
837 			list_add_tail(&edge->list[LOWER], &cur->upper);
838 			edge->node[LOWER] = cur;
839 			edge->node[UPPER] = upper;
840 
841 			goto next;
842 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
843 			err = -EINVAL;
844 			btrfs_print_v0_err(rc->extent_root->fs_info);
845 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
846 					      NULL);
847 			goto out;
848 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
849 			goto next;
850 		}
851 
852 		/*
853 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
854 		 * means the root objectid. We need to search the tree to get
855 		 * its parent bytenr.
856 		 */
857 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
858 		if (IS_ERR(root)) {
859 			err = PTR_ERR(root);
860 			goto out;
861 		}
862 
863 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
864 			cur->cowonly = 1;
865 
866 		if (btrfs_root_level(&root->root_item) == cur->level) {
867 			/* tree root */
868 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
869 			       cur->bytenr);
870 			if (should_ignore_root(root))
871 				list_add(&cur->list, &useless);
872 			else
873 				cur->root = root;
874 			break;
875 		}
876 
877 		level = cur->level + 1;
878 
879 		/* Search the tree to find parent blocks referring the block. */
880 		path2->search_commit_root = 1;
881 		path2->skip_locking = 1;
882 		path2->lowest_level = level;
883 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
884 		path2->lowest_level = 0;
885 		if (ret < 0) {
886 			err = ret;
887 			goto out;
888 		}
889 		if (ret > 0 && path2->slots[level] > 0)
890 			path2->slots[level]--;
891 
892 		eb = path2->nodes[level];
893 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
894 		    cur->bytenr) {
895 			btrfs_err(root->fs_info,
896 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
897 				  cur->bytenr, level - 1,
898 				  root->root_key.objectid,
899 				  node_key->objectid, node_key->type,
900 				  node_key->offset);
901 			err = -ENOENT;
902 			goto out;
903 		}
904 		lower = cur;
905 		need_check = true;
906 
907 		/* Add all nodes and edges in the path */
908 		for (; level < BTRFS_MAX_LEVEL; level++) {
909 			if (!path2->nodes[level]) {
910 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
911 				       lower->bytenr);
912 				if (should_ignore_root(root))
913 					list_add(&lower->list, &useless);
914 				else
915 					lower->root = root;
916 				break;
917 			}
918 
919 			edge = alloc_backref_edge(cache);
920 			if (!edge) {
921 				err = -ENOMEM;
922 				goto out;
923 			}
924 
925 			eb = path2->nodes[level];
926 			rb_node = tree_search(&cache->rb_root, eb->start);
927 			if (!rb_node) {
928 				upper = alloc_backref_node(cache);
929 				if (!upper) {
930 					free_backref_edge(cache, edge);
931 					err = -ENOMEM;
932 					goto out;
933 				}
934 				upper->bytenr = eb->start;
935 				upper->owner = btrfs_header_owner(eb);
936 				upper->level = lower->level + 1;
937 				if (!test_bit(BTRFS_ROOT_REF_COWS,
938 					      &root->state))
939 					upper->cowonly = 1;
940 
941 				/*
942 				 * if we know the block isn't shared
943 				 * we can void checking its backrefs.
944 				 */
945 				if (btrfs_block_can_be_shared(root, eb))
946 					upper->checked = 0;
947 				else
948 					upper->checked = 1;
949 
950 				/*
951 				 * add the block to pending list if we
952 				 * need check its backrefs, we only do this once
953 				 * while walking up a tree as we will catch
954 				 * anything else later on.
955 				 */
956 				if (!upper->checked && need_check) {
957 					need_check = false;
958 					list_add_tail(&edge->list[UPPER],
959 						      &list);
960 				} else {
961 					if (upper->checked)
962 						need_check = true;
963 					INIT_LIST_HEAD(&edge->list[UPPER]);
964 				}
965 			} else {
966 				upper = rb_entry(rb_node, struct backref_node,
967 						 rb_node);
968 				ASSERT(upper->checked);
969 				INIT_LIST_HEAD(&edge->list[UPPER]);
970 				if (!upper->owner)
971 					upper->owner = btrfs_header_owner(eb);
972 			}
973 			list_add_tail(&edge->list[LOWER], &lower->upper);
974 			edge->node[LOWER] = lower;
975 			edge->node[UPPER] = upper;
976 
977 			if (rb_node)
978 				break;
979 			lower = upper;
980 			upper = NULL;
981 		}
982 		btrfs_release_path(path2);
983 next:
984 		if (ptr < end) {
985 			ptr += btrfs_extent_inline_ref_size(key.type);
986 			if (ptr >= end) {
987 				WARN_ON(ptr > end);
988 				ptr = 0;
989 				end = 0;
990 			}
991 		}
992 		if (ptr >= end)
993 			path1->slots[0]++;
994 	}
995 	btrfs_release_path(path1);
996 
997 	cur->checked = 1;
998 	WARN_ON(exist);
999 
1000 	/* the pending list isn't empty, take the first block to process */
1001 	if (!list_empty(&list)) {
1002 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1003 		list_del_init(&edge->list[UPPER]);
1004 		cur = edge->node[UPPER];
1005 		goto again;
1006 	}
1007 
1008 	/*
1009 	 * everything goes well, connect backref nodes and insert backref nodes
1010 	 * into the cache.
1011 	 */
1012 	ASSERT(node->checked);
1013 	cowonly = node->cowonly;
1014 	if (!cowonly) {
1015 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1016 				      &node->rb_node);
1017 		if (rb_node)
1018 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1019 		list_add_tail(&node->lower, &cache->leaves);
1020 	}
1021 
1022 	list_for_each_entry(edge, &node->upper, list[LOWER])
1023 		list_add_tail(&edge->list[UPPER], &list);
1024 
1025 	while (!list_empty(&list)) {
1026 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1027 		list_del_init(&edge->list[UPPER]);
1028 		upper = edge->node[UPPER];
1029 		if (upper->detached) {
1030 			list_del(&edge->list[LOWER]);
1031 			lower = edge->node[LOWER];
1032 			free_backref_edge(cache, edge);
1033 			if (list_empty(&lower->upper))
1034 				list_add(&lower->list, &useless);
1035 			continue;
1036 		}
1037 
1038 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1039 			if (upper->lowest) {
1040 				list_del_init(&upper->lower);
1041 				upper->lowest = 0;
1042 			}
1043 
1044 			list_add_tail(&edge->list[UPPER], &upper->lower);
1045 			continue;
1046 		}
1047 
1048 		if (!upper->checked) {
1049 			/*
1050 			 * Still want to blow up for developers since this is a
1051 			 * logic bug.
1052 			 */
1053 			ASSERT(0);
1054 			err = -EINVAL;
1055 			goto out;
1056 		}
1057 		if (cowonly != upper->cowonly) {
1058 			ASSERT(0);
1059 			err = -EINVAL;
1060 			goto out;
1061 		}
1062 
1063 		if (!cowonly) {
1064 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1065 					      &upper->rb_node);
1066 			if (rb_node)
1067 				backref_tree_panic(rb_node, -EEXIST,
1068 						   upper->bytenr);
1069 		}
1070 
1071 		list_add_tail(&edge->list[UPPER], &upper->lower);
1072 
1073 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1074 			list_add_tail(&edge->list[UPPER], &list);
1075 	}
1076 	/*
1077 	 * process useless backref nodes. backref nodes for tree leaves
1078 	 * are deleted from the cache. backref nodes for upper level
1079 	 * tree blocks are left in the cache to avoid unnecessary backref
1080 	 * lookup.
1081 	 */
1082 	while (!list_empty(&useless)) {
1083 		upper = list_entry(useless.next, struct backref_node, list);
1084 		list_del_init(&upper->list);
1085 		ASSERT(list_empty(&upper->upper));
1086 		if (upper == node)
1087 			node = NULL;
1088 		if (upper->lowest) {
1089 			list_del_init(&upper->lower);
1090 			upper->lowest = 0;
1091 		}
1092 		while (!list_empty(&upper->lower)) {
1093 			edge = list_entry(upper->lower.next,
1094 					  struct backref_edge, list[UPPER]);
1095 			list_del(&edge->list[UPPER]);
1096 			list_del(&edge->list[LOWER]);
1097 			lower = edge->node[LOWER];
1098 			free_backref_edge(cache, edge);
1099 
1100 			if (list_empty(&lower->upper))
1101 				list_add(&lower->list, &useless);
1102 		}
1103 		__mark_block_processed(rc, upper);
1104 		if (upper->level > 0) {
1105 			list_add(&upper->list, &cache->detached);
1106 			upper->detached = 1;
1107 		} else {
1108 			rb_erase(&upper->rb_node, &cache->rb_root);
1109 			free_backref_node(cache, upper);
1110 		}
1111 	}
1112 out:
1113 	btrfs_free_path(path1);
1114 	btrfs_free_path(path2);
1115 	if (err) {
1116 		while (!list_empty(&useless)) {
1117 			lower = list_entry(useless.next,
1118 					   struct backref_node, list);
1119 			list_del_init(&lower->list);
1120 		}
1121 		while (!list_empty(&list)) {
1122 			edge = list_first_entry(&list, struct backref_edge,
1123 						list[UPPER]);
1124 			list_del(&edge->list[UPPER]);
1125 			list_del(&edge->list[LOWER]);
1126 			lower = edge->node[LOWER];
1127 			upper = edge->node[UPPER];
1128 			free_backref_edge(cache, edge);
1129 
1130 			/*
1131 			 * Lower is no longer linked to any upper backref nodes
1132 			 * and isn't in the cache, we can free it ourselves.
1133 			 */
1134 			if (list_empty(&lower->upper) &&
1135 			    RB_EMPTY_NODE(&lower->rb_node))
1136 				list_add(&lower->list, &useless);
1137 
1138 			if (!RB_EMPTY_NODE(&upper->rb_node))
1139 				continue;
1140 
1141 			/* Add this guy's upper edges to the list to process */
1142 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1143 				list_add_tail(&edge->list[UPPER], &list);
1144 			if (list_empty(&upper->upper))
1145 				list_add(&upper->list, &useless);
1146 		}
1147 
1148 		while (!list_empty(&useless)) {
1149 			lower = list_entry(useless.next,
1150 					   struct backref_node, list);
1151 			list_del_init(&lower->list);
1152 			if (lower == node)
1153 				node = NULL;
1154 			free_backref_node(cache, lower);
1155 		}
1156 
1157 		free_backref_node(cache, node);
1158 		return ERR_PTR(err);
1159 	}
1160 	ASSERT(!node || !node->detached);
1161 	return node;
1162 }
1163 
1164 /*
1165  * helper to add backref node for the newly created snapshot.
1166  * the backref node is created by cloning backref node that
1167  * corresponds to root of source tree
1168  */
1169 static int clone_backref_node(struct btrfs_trans_handle *trans,
1170 			      struct reloc_control *rc,
1171 			      struct btrfs_root *src,
1172 			      struct btrfs_root *dest)
1173 {
1174 	struct btrfs_root *reloc_root = src->reloc_root;
1175 	struct backref_cache *cache = &rc->backref_cache;
1176 	struct backref_node *node = NULL;
1177 	struct backref_node *new_node;
1178 	struct backref_edge *edge;
1179 	struct backref_edge *new_edge;
1180 	struct rb_node *rb_node;
1181 
1182 	if (cache->last_trans > 0)
1183 		update_backref_cache(trans, cache);
1184 
1185 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1186 	if (rb_node) {
1187 		node = rb_entry(rb_node, struct backref_node, rb_node);
1188 		if (node->detached)
1189 			node = NULL;
1190 		else
1191 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1192 	}
1193 
1194 	if (!node) {
1195 		rb_node = tree_search(&cache->rb_root,
1196 				      reloc_root->commit_root->start);
1197 		if (rb_node) {
1198 			node = rb_entry(rb_node, struct backref_node,
1199 					rb_node);
1200 			BUG_ON(node->detached);
1201 		}
1202 	}
1203 
1204 	if (!node)
1205 		return 0;
1206 
1207 	new_node = alloc_backref_node(cache);
1208 	if (!new_node)
1209 		return -ENOMEM;
1210 
1211 	new_node->bytenr = dest->node->start;
1212 	new_node->level = node->level;
1213 	new_node->lowest = node->lowest;
1214 	new_node->checked = 1;
1215 	new_node->root = dest;
1216 
1217 	if (!node->lowest) {
1218 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1219 			new_edge = alloc_backref_edge(cache);
1220 			if (!new_edge)
1221 				goto fail;
1222 
1223 			new_edge->node[UPPER] = new_node;
1224 			new_edge->node[LOWER] = edge->node[LOWER];
1225 			list_add_tail(&new_edge->list[UPPER],
1226 				      &new_node->lower);
1227 		}
1228 	} else {
1229 		list_add_tail(&new_node->lower, &cache->leaves);
1230 	}
1231 
1232 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1233 			      &new_node->rb_node);
1234 	if (rb_node)
1235 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1236 
1237 	if (!new_node->lowest) {
1238 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1239 			list_add_tail(&new_edge->list[LOWER],
1240 				      &new_edge->node[LOWER]->upper);
1241 		}
1242 	}
1243 	return 0;
1244 fail:
1245 	while (!list_empty(&new_node->lower)) {
1246 		new_edge = list_entry(new_node->lower.next,
1247 				      struct backref_edge, list[UPPER]);
1248 		list_del(&new_edge->list[UPPER]);
1249 		free_backref_edge(cache, new_edge);
1250 	}
1251 	free_backref_node(cache, new_node);
1252 	return -ENOMEM;
1253 }
1254 
1255 /*
1256  * helper to add 'address of tree root -> reloc tree' mapping
1257  */
1258 static int __must_check __add_reloc_root(struct btrfs_root *root)
1259 {
1260 	struct btrfs_fs_info *fs_info = root->fs_info;
1261 	struct rb_node *rb_node;
1262 	struct mapping_node *node;
1263 	struct reloc_control *rc = fs_info->reloc_ctl;
1264 
1265 	node = kmalloc(sizeof(*node), GFP_NOFS);
1266 	if (!node)
1267 		return -ENOMEM;
1268 
1269 	node->bytenr = root->node->start;
1270 	node->data = root;
1271 
1272 	spin_lock(&rc->reloc_root_tree.lock);
1273 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1274 			      node->bytenr, &node->rb_node);
1275 	spin_unlock(&rc->reloc_root_tree.lock);
1276 	if (rb_node) {
1277 		btrfs_panic(fs_info, -EEXIST,
1278 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1279 			    node->bytenr);
1280 	}
1281 
1282 	list_add_tail(&root->root_list, &rc->reloc_roots);
1283 	return 0;
1284 }
1285 
1286 /*
1287  * helper to delete the 'address of tree root -> reloc tree'
1288  * mapping
1289  */
1290 static void __del_reloc_root(struct btrfs_root *root)
1291 {
1292 	struct btrfs_fs_info *fs_info = root->fs_info;
1293 	struct rb_node *rb_node;
1294 	struct mapping_node *node = NULL;
1295 	struct reloc_control *rc = fs_info->reloc_ctl;
1296 
1297 	if (rc && root->node) {
1298 		spin_lock(&rc->reloc_root_tree.lock);
1299 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1300 				      root->node->start);
1301 		if (rb_node) {
1302 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1303 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1304 		}
1305 		spin_unlock(&rc->reloc_root_tree.lock);
1306 		if (!node)
1307 			return;
1308 		BUG_ON((struct btrfs_root *)node->data != root);
1309 	}
1310 
1311 	spin_lock(&fs_info->trans_lock);
1312 	list_del_init(&root->root_list);
1313 	spin_unlock(&fs_info->trans_lock);
1314 	kfree(node);
1315 }
1316 
1317 /*
1318  * helper to update the 'address of tree root -> reloc tree'
1319  * mapping
1320  */
1321 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1322 {
1323 	struct btrfs_fs_info *fs_info = root->fs_info;
1324 	struct rb_node *rb_node;
1325 	struct mapping_node *node = NULL;
1326 	struct reloc_control *rc = fs_info->reloc_ctl;
1327 
1328 	spin_lock(&rc->reloc_root_tree.lock);
1329 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1330 			      root->node->start);
1331 	if (rb_node) {
1332 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1333 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1334 	}
1335 	spin_unlock(&rc->reloc_root_tree.lock);
1336 
1337 	if (!node)
1338 		return 0;
1339 	BUG_ON((struct btrfs_root *)node->data != root);
1340 
1341 	spin_lock(&rc->reloc_root_tree.lock);
1342 	node->bytenr = new_bytenr;
1343 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1344 			      node->bytenr, &node->rb_node);
1345 	spin_unlock(&rc->reloc_root_tree.lock);
1346 	if (rb_node)
1347 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1348 	return 0;
1349 }
1350 
1351 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1352 					struct btrfs_root *root, u64 objectid)
1353 {
1354 	struct btrfs_fs_info *fs_info = root->fs_info;
1355 	struct btrfs_root *reloc_root;
1356 	struct extent_buffer *eb;
1357 	struct btrfs_root_item *root_item;
1358 	struct btrfs_key root_key;
1359 	int ret;
1360 
1361 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1362 	BUG_ON(!root_item);
1363 
1364 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1365 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1366 	root_key.offset = objectid;
1367 
1368 	if (root->root_key.objectid == objectid) {
1369 		u64 commit_root_gen;
1370 
1371 		/* called by btrfs_init_reloc_root */
1372 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1373 				      BTRFS_TREE_RELOC_OBJECTID);
1374 		BUG_ON(ret);
1375 		/*
1376 		 * Set the last_snapshot field to the generation of the commit
1377 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1378 		 * correctly (returns true) when the relocation root is created
1379 		 * either inside the critical section of a transaction commit
1380 		 * (through transaction.c:qgroup_account_snapshot()) and when
1381 		 * it's created before the transaction commit is started.
1382 		 */
1383 		commit_root_gen = btrfs_header_generation(root->commit_root);
1384 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1385 	} else {
1386 		/*
1387 		 * called by btrfs_reloc_post_snapshot_hook.
1388 		 * the source tree is a reloc tree, all tree blocks
1389 		 * modified after it was created have RELOC flag
1390 		 * set in their headers. so it's OK to not update
1391 		 * the 'last_snapshot'.
1392 		 */
1393 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1394 				      BTRFS_TREE_RELOC_OBJECTID);
1395 		BUG_ON(ret);
1396 	}
1397 
1398 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1399 	btrfs_set_root_bytenr(root_item, eb->start);
1400 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1401 	btrfs_set_root_generation(root_item, trans->transid);
1402 
1403 	if (root->root_key.objectid == objectid) {
1404 		btrfs_set_root_refs(root_item, 0);
1405 		memset(&root_item->drop_progress, 0,
1406 		       sizeof(struct btrfs_disk_key));
1407 		root_item->drop_level = 0;
1408 	}
1409 
1410 	btrfs_tree_unlock(eb);
1411 	free_extent_buffer(eb);
1412 
1413 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1414 				&root_key, root_item);
1415 	BUG_ON(ret);
1416 	kfree(root_item);
1417 
1418 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1419 	BUG_ON(IS_ERR(reloc_root));
1420 	reloc_root->last_trans = trans->transid;
1421 	return reloc_root;
1422 }
1423 
1424 /*
1425  * create reloc tree for a given fs tree. reloc tree is just a
1426  * snapshot of the fs tree with special root objectid.
1427  */
1428 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1429 			  struct btrfs_root *root)
1430 {
1431 	struct btrfs_fs_info *fs_info = root->fs_info;
1432 	struct btrfs_root *reloc_root;
1433 	struct reloc_control *rc = fs_info->reloc_ctl;
1434 	struct btrfs_block_rsv *rsv;
1435 	int clear_rsv = 0;
1436 	int ret;
1437 
1438 	if (root->reloc_root) {
1439 		reloc_root = root->reloc_root;
1440 		reloc_root->last_trans = trans->transid;
1441 		return 0;
1442 	}
1443 
1444 	if (!rc || !rc->create_reloc_tree ||
1445 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1446 		return 0;
1447 
1448 	if (!trans->reloc_reserved) {
1449 		rsv = trans->block_rsv;
1450 		trans->block_rsv = rc->block_rsv;
1451 		clear_rsv = 1;
1452 	}
1453 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1454 	if (clear_rsv)
1455 		trans->block_rsv = rsv;
1456 
1457 	ret = __add_reloc_root(reloc_root);
1458 	BUG_ON(ret < 0);
1459 	root->reloc_root = reloc_root;
1460 	return 0;
1461 }
1462 
1463 /*
1464  * update root item of reloc tree
1465  */
1466 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1467 			    struct btrfs_root *root)
1468 {
1469 	struct btrfs_fs_info *fs_info = root->fs_info;
1470 	struct btrfs_root *reloc_root;
1471 	struct btrfs_root_item *root_item;
1472 	int ret;
1473 
1474 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1475 	    !root->reloc_root)
1476 		goto out;
1477 
1478 	reloc_root = root->reloc_root;
1479 	root_item = &reloc_root->root_item;
1480 
1481 	/* root->reloc_root will stay until current relocation finished */
1482 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1483 	    btrfs_root_refs(root_item) == 0) {
1484 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1485 		__del_reloc_root(reloc_root);
1486 	}
1487 
1488 	if (reloc_root->commit_root != reloc_root->node) {
1489 		btrfs_set_root_node(root_item, reloc_root->node);
1490 		free_extent_buffer(reloc_root->commit_root);
1491 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1492 	}
1493 
1494 	ret = btrfs_update_root(trans, fs_info->tree_root,
1495 				&reloc_root->root_key, root_item);
1496 	BUG_ON(ret);
1497 
1498 out:
1499 	return 0;
1500 }
1501 
1502 /*
1503  * helper to find first cached inode with inode number >= objectid
1504  * in a subvolume
1505  */
1506 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1507 {
1508 	struct rb_node *node;
1509 	struct rb_node *prev;
1510 	struct btrfs_inode *entry;
1511 	struct inode *inode;
1512 
1513 	spin_lock(&root->inode_lock);
1514 again:
1515 	node = root->inode_tree.rb_node;
1516 	prev = NULL;
1517 	while (node) {
1518 		prev = node;
1519 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1520 
1521 		if (objectid < btrfs_ino(entry))
1522 			node = node->rb_left;
1523 		else if (objectid > btrfs_ino(entry))
1524 			node = node->rb_right;
1525 		else
1526 			break;
1527 	}
1528 	if (!node) {
1529 		while (prev) {
1530 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1531 			if (objectid <= btrfs_ino(entry)) {
1532 				node = prev;
1533 				break;
1534 			}
1535 			prev = rb_next(prev);
1536 		}
1537 	}
1538 	while (node) {
1539 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1540 		inode = igrab(&entry->vfs_inode);
1541 		if (inode) {
1542 			spin_unlock(&root->inode_lock);
1543 			return inode;
1544 		}
1545 
1546 		objectid = btrfs_ino(entry) + 1;
1547 		if (cond_resched_lock(&root->inode_lock))
1548 			goto again;
1549 
1550 		node = rb_next(node);
1551 	}
1552 	spin_unlock(&root->inode_lock);
1553 	return NULL;
1554 }
1555 
1556 static int in_block_group(u64 bytenr,
1557 			  struct btrfs_block_group_cache *block_group)
1558 {
1559 	if (bytenr >= block_group->key.objectid &&
1560 	    bytenr < block_group->key.objectid + block_group->key.offset)
1561 		return 1;
1562 	return 0;
1563 }
1564 
1565 /*
1566  * get new location of data
1567  */
1568 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1569 			    u64 bytenr, u64 num_bytes)
1570 {
1571 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1572 	struct btrfs_path *path;
1573 	struct btrfs_file_extent_item *fi;
1574 	struct extent_buffer *leaf;
1575 	int ret;
1576 
1577 	path = btrfs_alloc_path();
1578 	if (!path)
1579 		return -ENOMEM;
1580 
1581 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1582 	ret = btrfs_lookup_file_extent(NULL, root, path,
1583 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1584 	if (ret < 0)
1585 		goto out;
1586 	if (ret > 0) {
1587 		ret = -ENOENT;
1588 		goto out;
1589 	}
1590 
1591 	leaf = path->nodes[0];
1592 	fi = btrfs_item_ptr(leaf, path->slots[0],
1593 			    struct btrfs_file_extent_item);
1594 
1595 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1596 	       btrfs_file_extent_compression(leaf, fi) ||
1597 	       btrfs_file_extent_encryption(leaf, fi) ||
1598 	       btrfs_file_extent_other_encoding(leaf, fi));
1599 
1600 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1601 		ret = -EINVAL;
1602 		goto out;
1603 	}
1604 
1605 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1606 	ret = 0;
1607 out:
1608 	btrfs_free_path(path);
1609 	return ret;
1610 }
1611 
1612 /*
1613  * update file extent items in the tree leaf to point to
1614  * the new locations.
1615  */
1616 static noinline_for_stack
1617 int replace_file_extents(struct btrfs_trans_handle *trans,
1618 			 struct reloc_control *rc,
1619 			 struct btrfs_root *root,
1620 			 struct extent_buffer *leaf)
1621 {
1622 	struct btrfs_fs_info *fs_info = root->fs_info;
1623 	struct btrfs_key key;
1624 	struct btrfs_file_extent_item *fi;
1625 	struct inode *inode = NULL;
1626 	u64 parent;
1627 	u64 bytenr;
1628 	u64 new_bytenr = 0;
1629 	u64 num_bytes;
1630 	u64 end;
1631 	u32 nritems;
1632 	u32 i;
1633 	int ret = 0;
1634 	int first = 1;
1635 	int dirty = 0;
1636 
1637 	if (rc->stage != UPDATE_DATA_PTRS)
1638 		return 0;
1639 
1640 	/* reloc trees always use full backref */
1641 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1642 		parent = leaf->start;
1643 	else
1644 		parent = 0;
1645 
1646 	nritems = btrfs_header_nritems(leaf);
1647 	for (i = 0; i < nritems; i++) {
1648 		struct btrfs_ref ref = { 0 };
1649 
1650 		cond_resched();
1651 		btrfs_item_key_to_cpu(leaf, &key, i);
1652 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1653 			continue;
1654 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1655 		if (btrfs_file_extent_type(leaf, fi) ==
1656 		    BTRFS_FILE_EXTENT_INLINE)
1657 			continue;
1658 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1659 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1660 		if (bytenr == 0)
1661 			continue;
1662 		if (!in_block_group(bytenr, rc->block_group))
1663 			continue;
1664 
1665 		/*
1666 		 * if we are modifying block in fs tree, wait for readpage
1667 		 * to complete and drop the extent cache
1668 		 */
1669 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1670 			if (first) {
1671 				inode = find_next_inode(root, key.objectid);
1672 				first = 0;
1673 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1674 				btrfs_add_delayed_iput(inode);
1675 				inode = find_next_inode(root, key.objectid);
1676 			}
1677 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1678 				end = key.offset +
1679 				      btrfs_file_extent_num_bytes(leaf, fi);
1680 				WARN_ON(!IS_ALIGNED(key.offset,
1681 						    fs_info->sectorsize));
1682 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1683 				end--;
1684 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1685 						      key.offset, end);
1686 				if (!ret)
1687 					continue;
1688 
1689 				btrfs_drop_extent_cache(BTRFS_I(inode),
1690 						key.offset,	end, 1);
1691 				unlock_extent(&BTRFS_I(inode)->io_tree,
1692 					      key.offset, end);
1693 			}
1694 		}
1695 
1696 		ret = get_new_location(rc->data_inode, &new_bytenr,
1697 				       bytenr, num_bytes);
1698 		if (ret) {
1699 			/*
1700 			 * Don't have to abort since we've not changed anything
1701 			 * in the file extent yet.
1702 			 */
1703 			break;
1704 		}
1705 
1706 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1707 		dirty = 1;
1708 
1709 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1710 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1711 				       num_bytes, parent);
1712 		ref.real_root = root->root_key.objectid;
1713 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1714 				    key.objectid, key.offset);
1715 		ret = btrfs_inc_extent_ref(trans, &ref);
1716 		if (ret) {
1717 			btrfs_abort_transaction(trans, ret);
1718 			break;
1719 		}
1720 
1721 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1722 				       num_bytes, parent);
1723 		ref.real_root = root->root_key.objectid;
1724 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1725 				    key.objectid, key.offset);
1726 		ret = btrfs_free_extent(trans, &ref);
1727 		if (ret) {
1728 			btrfs_abort_transaction(trans, ret);
1729 			break;
1730 		}
1731 	}
1732 	if (dirty)
1733 		btrfs_mark_buffer_dirty(leaf);
1734 	if (inode)
1735 		btrfs_add_delayed_iput(inode);
1736 	return ret;
1737 }
1738 
1739 static noinline_for_stack
1740 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1741 		     struct btrfs_path *path, int level)
1742 {
1743 	struct btrfs_disk_key key1;
1744 	struct btrfs_disk_key key2;
1745 	btrfs_node_key(eb, &key1, slot);
1746 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1747 	return memcmp(&key1, &key2, sizeof(key1));
1748 }
1749 
1750 /*
1751  * try to replace tree blocks in fs tree with the new blocks
1752  * in reloc tree. tree blocks haven't been modified since the
1753  * reloc tree was create can be replaced.
1754  *
1755  * if a block was replaced, level of the block + 1 is returned.
1756  * if no block got replaced, 0 is returned. if there are other
1757  * errors, a negative error number is returned.
1758  */
1759 static noinline_for_stack
1760 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1761 		 struct btrfs_root *dest, struct btrfs_root *src,
1762 		 struct btrfs_path *path, struct btrfs_key *next_key,
1763 		 int lowest_level, int max_level)
1764 {
1765 	struct btrfs_fs_info *fs_info = dest->fs_info;
1766 	struct extent_buffer *eb;
1767 	struct extent_buffer *parent;
1768 	struct btrfs_ref ref = { 0 };
1769 	struct btrfs_key key;
1770 	u64 old_bytenr;
1771 	u64 new_bytenr;
1772 	u64 old_ptr_gen;
1773 	u64 new_ptr_gen;
1774 	u64 last_snapshot;
1775 	u32 blocksize;
1776 	int cow = 0;
1777 	int level;
1778 	int ret;
1779 	int slot;
1780 
1781 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1782 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1783 
1784 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1785 again:
1786 	slot = path->slots[lowest_level];
1787 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1788 
1789 	eb = btrfs_lock_root_node(dest);
1790 	btrfs_set_lock_blocking_write(eb);
1791 	level = btrfs_header_level(eb);
1792 
1793 	if (level < lowest_level) {
1794 		btrfs_tree_unlock(eb);
1795 		free_extent_buffer(eb);
1796 		return 0;
1797 	}
1798 
1799 	if (cow) {
1800 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1801 		BUG_ON(ret);
1802 	}
1803 	btrfs_set_lock_blocking_write(eb);
1804 
1805 	if (next_key) {
1806 		next_key->objectid = (u64)-1;
1807 		next_key->type = (u8)-1;
1808 		next_key->offset = (u64)-1;
1809 	}
1810 
1811 	parent = eb;
1812 	while (1) {
1813 		struct btrfs_key first_key;
1814 
1815 		level = btrfs_header_level(parent);
1816 		BUG_ON(level < lowest_level);
1817 
1818 		ret = btrfs_bin_search(parent, &key, level, &slot);
1819 		if (ret < 0)
1820 			break;
1821 		if (ret && slot > 0)
1822 			slot--;
1823 
1824 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1825 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1826 
1827 		old_bytenr = btrfs_node_blockptr(parent, slot);
1828 		blocksize = fs_info->nodesize;
1829 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1830 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1831 
1832 		if (level <= max_level) {
1833 			eb = path->nodes[level];
1834 			new_bytenr = btrfs_node_blockptr(eb,
1835 							path->slots[level]);
1836 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1837 							path->slots[level]);
1838 		} else {
1839 			new_bytenr = 0;
1840 			new_ptr_gen = 0;
1841 		}
1842 
1843 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1844 			ret = level;
1845 			break;
1846 		}
1847 
1848 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1849 		    memcmp_node_keys(parent, slot, path, level)) {
1850 			if (level <= lowest_level) {
1851 				ret = 0;
1852 				break;
1853 			}
1854 
1855 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1856 					     level - 1, &first_key);
1857 			if (IS_ERR(eb)) {
1858 				ret = PTR_ERR(eb);
1859 				break;
1860 			} else if (!extent_buffer_uptodate(eb)) {
1861 				ret = -EIO;
1862 				free_extent_buffer(eb);
1863 				break;
1864 			}
1865 			btrfs_tree_lock(eb);
1866 			if (cow) {
1867 				ret = btrfs_cow_block(trans, dest, eb, parent,
1868 						      slot, &eb);
1869 				BUG_ON(ret);
1870 			}
1871 			btrfs_set_lock_blocking_write(eb);
1872 
1873 			btrfs_tree_unlock(parent);
1874 			free_extent_buffer(parent);
1875 
1876 			parent = eb;
1877 			continue;
1878 		}
1879 
1880 		if (!cow) {
1881 			btrfs_tree_unlock(parent);
1882 			free_extent_buffer(parent);
1883 			cow = 1;
1884 			goto again;
1885 		}
1886 
1887 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1888 				      path->slots[level]);
1889 		btrfs_release_path(path);
1890 
1891 		path->lowest_level = level;
1892 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1893 		path->lowest_level = 0;
1894 		BUG_ON(ret);
1895 
1896 		/*
1897 		 * Info qgroup to trace both subtrees.
1898 		 *
1899 		 * We must trace both trees.
1900 		 * 1) Tree reloc subtree
1901 		 *    If not traced, we will leak data numbers
1902 		 * 2) Fs subtree
1903 		 *    If not traced, we will double count old data
1904 		 *
1905 		 * We don't scan the subtree right now, but only record
1906 		 * the swapped tree blocks.
1907 		 * The real subtree rescan is delayed until we have new
1908 		 * CoW on the subtree root node before transaction commit.
1909 		 */
1910 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1911 				rc->block_group, parent, slot,
1912 				path->nodes[level], path->slots[level],
1913 				last_snapshot);
1914 		if (ret < 0)
1915 			break;
1916 		/*
1917 		 * swap blocks in fs tree and reloc tree.
1918 		 */
1919 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1920 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1921 		btrfs_mark_buffer_dirty(parent);
1922 
1923 		btrfs_set_node_blockptr(path->nodes[level],
1924 					path->slots[level], old_bytenr);
1925 		btrfs_set_node_ptr_generation(path->nodes[level],
1926 					      path->slots[level], old_ptr_gen);
1927 		btrfs_mark_buffer_dirty(path->nodes[level]);
1928 
1929 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1930 				       blocksize, path->nodes[level]->start);
1931 		ref.skip_qgroup = true;
1932 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1933 		ret = btrfs_inc_extent_ref(trans, &ref);
1934 		BUG_ON(ret);
1935 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1936 				       blocksize, 0);
1937 		ref.skip_qgroup = true;
1938 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1939 		ret = btrfs_inc_extent_ref(trans, &ref);
1940 		BUG_ON(ret);
1941 
1942 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1943 				       blocksize, path->nodes[level]->start);
1944 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1945 		ref.skip_qgroup = true;
1946 		ret = btrfs_free_extent(trans, &ref);
1947 		BUG_ON(ret);
1948 
1949 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1950 				       blocksize, 0);
1951 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1952 		ref.skip_qgroup = true;
1953 		ret = btrfs_free_extent(trans, &ref);
1954 		BUG_ON(ret);
1955 
1956 		btrfs_unlock_up_safe(path, 0);
1957 
1958 		ret = level;
1959 		break;
1960 	}
1961 	btrfs_tree_unlock(parent);
1962 	free_extent_buffer(parent);
1963 	return ret;
1964 }
1965 
1966 /*
1967  * helper to find next relocated block in reloc tree
1968  */
1969 static noinline_for_stack
1970 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1971 		       int *level)
1972 {
1973 	struct extent_buffer *eb;
1974 	int i;
1975 	u64 last_snapshot;
1976 	u32 nritems;
1977 
1978 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1979 
1980 	for (i = 0; i < *level; i++) {
1981 		free_extent_buffer(path->nodes[i]);
1982 		path->nodes[i] = NULL;
1983 	}
1984 
1985 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1986 		eb = path->nodes[i];
1987 		nritems = btrfs_header_nritems(eb);
1988 		while (path->slots[i] + 1 < nritems) {
1989 			path->slots[i]++;
1990 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1991 			    last_snapshot)
1992 				continue;
1993 
1994 			*level = i;
1995 			return 0;
1996 		}
1997 		free_extent_buffer(path->nodes[i]);
1998 		path->nodes[i] = NULL;
1999 	}
2000 	return 1;
2001 }
2002 
2003 /*
2004  * walk down reloc tree to find relocated block of lowest level
2005  */
2006 static noinline_for_stack
2007 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2008 			 int *level)
2009 {
2010 	struct btrfs_fs_info *fs_info = root->fs_info;
2011 	struct extent_buffer *eb = NULL;
2012 	int i;
2013 	u64 bytenr;
2014 	u64 ptr_gen = 0;
2015 	u64 last_snapshot;
2016 	u32 nritems;
2017 
2018 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2019 
2020 	for (i = *level; i > 0; i--) {
2021 		struct btrfs_key first_key;
2022 
2023 		eb = path->nodes[i];
2024 		nritems = btrfs_header_nritems(eb);
2025 		while (path->slots[i] < nritems) {
2026 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2027 			if (ptr_gen > last_snapshot)
2028 				break;
2029 			path->slots[i]++;
2030 		}
2031 		if (path->slots[i] >= nritems) {
2032 			if (i == *level)
2033 				break;
2034 			*level = i + 1;
2035 			return 0;
2036 		}
2037 		if (i == 1) {
2038 			*level = i;
2039 			return 0;
2040 		}
2041 
2042 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2043 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2044 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2045 				     &first_key);
2046 		if (IS_ERR(eb)) {
2047 			return PTR_ERR(eb);
2048 		} else if (!extent_buffer_uptodate(eb)) {
2049 			free_extent_buffer(eb);
2050 			return -EIO;
2051 		}
2052 		BUG_ON(btrfs_header_level(eb) != i - 1);
2053 		path->nodes[i - 1] = eb;
2054 		path->slots[i - 1] = 0;
2055 	}
2056 	return 1;
2057 }
2058 
2059 /*
2060  * invalidate extent cache for file extents whose key in range of
2061  * [min_key, max_key)
2062  */
2063 static int invalidate_extent_cache(struct btrfs_root *root,
2064 				   struct btrfs_key *min_key,
2065 				   struct btrfs_key *max_key)
2066 {
2067 	struct btrfs_fs_info *fs_info = root->fs_info;
2068 	struct inode *inode = NULL;
2069 	u64 objectid;
2070 	u64 start, end;
2071 	u64 ino;
2072 
2073 	objectid = min_key->objectid;
2074 	while (1) {
2075 		cond_resched();
2076 		iput(inode);
2077 
2078 		if (objectid > max_key->objectid)
2079 			break;
2080 
2081 		inode = find_next_inode(root, objectid);
2082 		if (!inode)
2083 			break;
2084 		ino = btrfs_ino(BTRFS_I(inode));
2085 
2086 		if (ino > max_key->objectid) {
2087 			iput(inode);
2088 			break;
2089 		}
2090 
2091 		objectid = ino + 1;
2092 		if (!S_ISREG(inode->i_mode))
2093 			continue;
2094 
2095 		if (unlikely(min_key->objectid == ino)) {
2096 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2097 				continue;
2098 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2099 				start = 0;
2100 			else {
2101 				start = min_key->offset;
2102 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2103 			}
2104 		} else {
2105 			start = 0;
2106 		}
2107 
2108 		if (unlikely(max_key->objectid == ino)) {
2109 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2110 				continue;
2111 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2112 				end = (u64)-1;
2113 			} else {
2114 				if (max_key->offset == 0)
2115 					continue;
2116 				end = max_key->offset;
2117 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2118 				end--;
2119 			}
2120 		} else {
2121 			end = (u64)-1;
2122 		}
2123 
2124 		/* the lock_extent waits for readpage to complete */
2125 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2126 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2127 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2128 	}
2129 	return 0;
2130 }
2131 
2132 static int find_next_key(struct btrfs_path *path, int level,
2133 			 struct btrfs_key *key)
2134 
2135 {
2136 	while (level < BTRFS_MAX_LEVEL) {
2137 		if (!path->nodes[level])
2138 			break;
2139 		if (path->slots[level] + 1 <
2140 		    btrfs_header_nritems(path->nodes[level])) {
2141 			btrfs_node_key_to_cpu(path->nodes[level], key,
2142 					      path->slots[level] + 1);
2143 			return 0;
2144 		}
2145 		level++;
2146 	}
2147 	return 1;
2148 }
2149 
2150 /*
2151  * Insert current subvolume into reloc_control::dirty_subvol_roots
2152  */
2153 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2154 				struct reloc_control *rc,
2155 				struct btrfs_root *root)
2156 {
2157 	struct btrfs_root *reloc_root = root->reloc_root;
2158 	struct btrfs_root_item *reloc_root_item;
2159 
2160 	/* @root must be a subvolume tree root with a valid reloc tree */
2161 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2162 	ASSERT(reloc_root);
2163 
2164 	reloc_root_item = &reloc_root->root_item;
2165 	memset(&reloc_root_item->drop_progress, 0,
2166 		sizeof(reloc_root_item->drop_progress));
2167 	reloc_root_item->drop_level = 0;
2168 	btrfs_set_root_refs(reloc_root_item, 0);
2169 	btrfs_update_reloc_root(trans, root);
2170 
2171 	if (list_empty(&root->reloc_dirty_list)) {
2172 		btrfs_grab_fs_root(root);
2173 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2174 	}
2175 }
2176 
2177 static int clean_dirty_subvols(struct reloc_control *rc)
2178 {
2179 	struct btrfs_root *root;
2180 	struct btrfs_root *next;
2181 	int ret = 0;
2182 	int ret2;
2183 
2184 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2185 				 reloc_dirty_list) {
2186 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
2187 			/* Merged subvolume, cleanup its reloc root */
2188 			struct btrfs_root *reloc_root = root->reloc_root;
2189 
2190 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2191 			list_del_init(&root->reloc_dirty_list);
2192 			root->reloc_root = NULL;
2193 			if (reloc_root) {
2194 
2195 				ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2196 				if (ret2 < 0 && !ret)
2197 					ret = ret2;
2198 			}
2199 			btrfs_put_fs_root(root);
2200 		} else {
2201 			/* Orphan reloc tree, just clean it up */
2202 			ret2 = btrfs_drop_snapshot(root, NULL, 0, 1);
2203 			if (ret2 < 0 && !ret)
2204 				ret = ret2;
2205 		}
2206 	}
2207 	return ret;
2208 }
2209 
2210 /*
2211  * merge the relocated tree blocks in reloc tree with corresponding
2212  * fs tree.
2213  */
2214 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2215 					       struct btrfs_root *root)
2216 {
2217 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2218 	struct btrfs_key key;
2219 	struct btrfs_key next_key;
2220 	struct btrfs_trans_handle *trans = NULL;
2221 	struct btrfs_root *reloc_root;
2222 	struct btrfs_root_item *root_item;
2223 	struct btrfs_path *path;
2224 	struct extent_buffer *leaf;
2225 	int level;
2226 	int max_level;
2227 	int replaced = 0;
2228 	int ret;
2229 	int err = 0;
2230 	u32 min_reserved;
2231 
2232 	path = btrfs_alloc_path();
2233 	if (!path)
2234 		return -ENOMEM;
2235 	path->reada = READA_FORWARD;
2236 
2237 	reloc_root = root->reloc_root;
2238 	root_item = &reloc_root->root_item;
2239 
2240 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2241 		level = btrfs_root_level(root_item);
2242 		extent_buffer_get(reloc_root->node);
2243 		path->nodes[level] = reloc_root->node;
2244 		path->slots[level] = 0;
2245 	} else {
2246 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2247 
2248 		level = root_item->drop_level;
2249 		BUG_ON(level == 0);
2250 		path->lowest_level = level;
2251 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2252 		path->lowest_level = 0;
2253 		if (ret < 0) {
2254 			btrfs_free_path(path);
2255 			return ret;
2256 		}
2257 
2258 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2259 				      path->slots[level]);
2260 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2261 
2262 		btrfs_unlock_up_safe(path, 0);
2263 	}
2264 
2265 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2266 	memset(&next_key, 0, sizeof(next_key));
2267 
2268 	while (1) {
2269 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2270 					     BTRFS_RESERVE_FLUSH_ALL);
2271 		if (ret) {
2272 			err = ret;
2273 			goto out;
2274 		}
2275 		trans = btrfs_start_transaction(root, 0);
2276 		if (IS_ERR(trans)) {
2277 			err = PTR_ERR(trans);
2278 			trans = NULL;
2279 			goto out;
2280 		}
2281 		trans->block_rsv = rc->block_rsv;
2282 
2283 		replaced = 0;
2284 		max_level = level;
2285 
2286 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2287 		if (ret < 0) {
2288 			err = ret;
2289 			goto out;
2290 		}
2291 		if (ret > 0)
2292 			break;
2293 
2294 		if (!find_next_key(path, level, &key) &&
2295 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2296 			ret = 0;
2297 		} else {
2298 			ret = replace_path(trans, rc, root, reloc_root, path,
2299 					   &next_key, level, max_level);
2300 		}
2301 		if (ret < 0) {
2302 			err = ret;
2303 			goto out;
2304 		}
2305 
2306 		if (ret > 0) {
2307 			level = ret;
2308 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2309 					      path->slots[level]);
2310 			replaced = 1;
2311 		}
2312 
2313 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2314 		if (ret > 0)
2315 			break;
2316 
2317 		BUG_ON(level == 0);
2318 		/*
2319 		 * save the merging progress in the drop_progress.
2320 		 * this is OK since root refs == 1 in this case.
2321 		 */
2322 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2323 			       path->slots[level]);
2324 		root_item->drop_level = level;
2325 
2326 		btrfs_end_transaction_throttle(trans);
2327 		trans = NULL;
2328 
2329 		btrfs_btree_balance_dirty(fs_info);
2330 
2331 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2332 			invalidate_extent_cache(root, &key, &next_key);
2333 	}
2334 
2335 	/*
2336 	 * handle the case only one block in the fs tree need to be
2337 	 * relocated and the block is tree root.
2338 	 */
2339 	leaf = btrfs_lock_root_node(root);
2340 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2341 	btrfs_tree_unlock(leaf);
2342 	free_extent_buffer(leaf);
2343 	if (ret < 0)
2344 		err = ret;
2345 out:
2346 	btrfs_free_path(path);
2347 
2348 	if (err == 0)
2349 		insert_dirty_subvol(trans, rc, root);
2350 
2351 	if (trans)
2352 		btrfs_end_transaction_throttle(trans);
2353 
2354 	btrfs_btree_balance_dirty(fs_info);
2355 
2356 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2357 		invalidate_extent_cache(root, &key, &next_key);
2358 
2359 	return err;
2360 }
2361 
2362 static noinline_for_stack
2363 int prepare_to_merge(struct reloc_control *rc, int err)
2364 {
2365 	struct btrfs_root *root = rc->extent_root;
2366 	struct btrfs_fs_info *fs_info = root->fs_info;
2367 	struct btrfs_root *reloc_root;
2368 	struct btrfs_trans_handle *trans;
2369 	LIST_HEAD(reloc_roots);
2370 	u64 num_bytes = 0;
2371 	int ret;
2372 
2373 	mutex_lock(&fs_info->reloc_mutex);
2374 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2375 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2376 	mutex_unlock(&fs_info->reloc_mutex);
2377 
2378 again:
2379 	if (!err) {
2380 		num_bytes = rc->merging_rsv_size;
2381 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2382 					  BTRFS_RESERVE_FLUSH_ALL);
2383 		if (ret)
2384 			err = ret;
2385 	}
2386 
2387 	trans = btrfs_join_transaction(rc->extent_root);
2388 	if (IS_ERR(trans)) {
2389 		if (!err)
2390 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2391 						num_bytes);
2392 		return PTR_ERR(trans);
2393 	}
2394 
2395 	if (!err) {
2396 		if (num_bytes != rc->merging_rsv_size) {
2397 			btrfs_end_transaction(trans);
2398 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2399 						num_bytes);
2400 			goto again;
2401 		}
2402 	}
2403 
2404 	rc->merge_reloc_tree = 1;
2405 
2406 	while (!list_empty(&rc->reloc_roots)) {
2407 		reloc_root = list_entry(rc->reloc_roots.next,
2408 					struct btrfs_root, root_list);
2409 		list_del_init(&reloc_root->root_list);
2410 
2411 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2412 		BUG_ON(IS_ERR(root));
2413 		BUG_ON(root->reloc_root != reloc_root);
2414 
2415 		/*
2416 		 * set reference count to 1, so btrfs_recover_relocation
2417 		 * knows it should resumes merging
2418 		 */
2419 		if (!err)
2420 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2421 		btrfs_update_reloc_root(trans, root);
2422 
2423 		list_add(&reloc_root->root_list, &reloc_roots);
2424 	}
2425 
2426 	list_splice(&reloc_roots, &rc->reloc_roots);
2427 
2428 	if (!err)
2429 		btrfs_commit_transaction(trans);
2430 	else
2431 		btrfs_end_transaction(trans);
2432 	return err;
2433 }
2434 
2435 static noinline_for_stack
2436 void free_reloc_roots(struct list_head *list)
2437 {
2438 	struct btrfs_root *reloc_root;
2439 
2440 	while (!list_empty(list)) {
2441 		reloc_root = list_entry(list->next, struct btrfs_root,
2442 					root_list);
2443 		__del_reloc_root(reloc_root);
2444 		free_extent_buffer(reloc_root->node);
2445 		free_extent_buffer(reloc_root->commit_root);
2446 		reloc_root->node = NULL;
2447 		reloc_root->commit_root = NULL;
2448 	}
2449 }
2450 
2451 static noinline_for_stack
2452 void merge_reloc_roots(struct reloc_control *rc)
2453 {
2454 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2455 	struct btrfs_root *root;
2456 	struct btrfs_root *reloc_root;
2457 	LIST_HEAD(reloc_roots);
2458 	int found = 0;
2459 	int ret = 0;
2460 again:
2461 	root = rc->extent_root;
2462 
2463 	/*
2464 	 * this serializes us with btrfs_record_root_in_transaction,
2465 	 * we have to make sure nobody is in the middle of
2466 	 * adding their roots to the list while we are
2467 	 * doing this splice
2468 	 */
2469 	mutex_lock(&fs_info->reloc_mutex);
2470 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2471 	mutex_unlock(&fs_info->reloc_mutex);
2472 
2473 	while (!list_empty(&reloc_roots)) {
2474 		found = 1;
2475 		reloc_root = list_entry(reloc_roots.next,
2476 					struct btrfs_root, root_list);
2477 
2478 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2479 			root = read_fs_root(fs_info,
2480 					    reloc_root->root_key.offset);
2481 			BUG_ON(IS_ERR(root));
2482 			BUG_ON(root->reloc_root != reloc_root);
2483 
2484 			ret = merge_reloc_root(rc, root);
2485 			if (ret) {
2486 				if (list_empty(&reloc_root->root_list))
2487 					list_add_tail(&reloc_root->root_list,
2488 						      &reloc_roots);
2489 				goto out;
2490 			}
2491 		} else {
2492 			list_del_init(&reloc_root->root_list);
2493 			/* Don't forget to queue this reloc root for cleanup */
2494 			list_add_tail(&reloc_root->reloc_dirty_list,
2495 				      &rc->dirty_subvol_roots);
2496 		}
2497 	}
2498 
2499 	if (found) {
2500 		found = 0;
2501 		goto again;
2502 	}
2503 out:
2504 	if (ret) {
2505 		btrfs_handle_fs_error(fs_info, ret, NULL);
2506 		if (!list_empty(&reloc_roots))
2507 			free_reloc_roots(&reloc_roots);
2508 
2509 		/* new reloc root may be added */
2510 		mutex_lock(&fs_info->reloc_mutex);
2511 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2512 		mutex_unlock(&fs_info->reloc_mutex);
2513 		if (!list_empty(&reloc_roots))
2514 			free_reloc_roots(&reloc_roots);
2515 	}
2516 
2517 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2518 }
2519 
2520 static void free_block_list(struct rb_root *blocks)
2521 {
2522 	struct tree_block *block;
2523 	struct rb_node *rb_node;
2524 	while ((rb_node = rb_first(blocks))) {
2525 		block = rb_entry(rb_node, struct tree_block, rb_node);
2526 		rb_erase(rb_node, blocks);
2527 		kfree(block);
2528 	}
2529 }
2530 
2531 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2532 				      struct btrfs_root *reloc_root)
2533 {
2534 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2535 	struct btrfs_root *root;
2536 
2537 	if (reloc_root->last_trans == trans->transid)
2538 		return 0;
2539 
2540 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2541 	BUG_ON(IS_ERR(root));
2542 	BUG_ON(root->reloc_root != reloc_root);
2543 
2544 	return btrfs_record_root_in_trans(trans, root);
2545 }
2546 
2547 static noinline_for_stack
2548 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2549 				     struct reloc_control *rc,
2550 				     struct backref_node *node,
2551 				     struct backref_edge *edges[])
2552 {
2553 	struct backref_node *next;
2554 	struct btrfs_root *root;
2555 	int index = 0;
2556 
2557 	next = node;
2558 	while (1) {
2559 		cond_resched();
2560 		next = walk_up_backref(next, edges, &index);
2561 		root = next->root;
2562 		BUG_ON(!root);
2563 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2564 
2565 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2566 			record_reloc_root_in_trans(trans, root);
2567 			break;
2568 		}
2569 
2570 		btrfs_record_root_in_trans(trans, root);
2571 		root = root->reloc_root;
2572 
2573 		if (next->new_bytenr != root->node->start) {
2574 			BUG_ON(next->new_bytenr);
2575 			BUG_ON(!list_empty(&next->list));
2576 			next->new_bytenr = root->node->start;
2577 			next->root = root;
2578 			list_add_tail(&next->list,
2579 				      &rc->backref_cache.changed);
2580 			__mark_block_processed(rc, next);
2581 			break;
2582 		}
2583 
2584 		WARN_ON(1);
2585 		root = NULL;
2586 		next = walk_down_backref(edges, &index);
2587 		if (!next || next->level <= node->level)
2588 			break;
2589 	}
2590 	if (!root)
2591 		return NULL;
2592 
2593 	next = node;
2594 	/* setup backref node path for btrfs_reloc_cow_block */
2595 	while (1) {
2596 		rc->backref_cache.path[next->level] = next;
2597 		if (--index < 0)
2598 			break;
2599 		next = edges[index]->node[UPPER];
2600 	}
2601 	return root;
2602 }
2603 
2604 /*
2605  * select a tree root for relocation. return NULL if the block
2606  * is reference counted. we should use do_relocation() in this
2607  * case. return a tree root pointer if the block isn't reference
2608  * counted. return -ENOENT if the block is root of reloc tree.
2609  */
2610 static noinline_for_stack
2611 struct btrfs_root *select_one_root(struct backref_node *node)
2612 {
2613 	struct backref_node *next;
2614 	struct btrfs_root *root;
2615 	struct btrfs_root *fs_root = NULL;
2616 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2617 	int index = 0;
2618 
2619 	next = node;
2620 	while (1) {
2621 		cond_resched();
2622 		next = walk_up_backref(next, edges, &index);
2623 		root = next->root;
2624 		BUG_ON(!root);
2625 
2626 		/* no other choice for non-references counted tree */
2627 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2628 			return root;
2629 
2630 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2631 			fs_root = root;
2632 
2633 		if (next != node)
2634 			return NULL;
2635 
2636 		next = walk_down_backref(edges, &index);
2637 		if (!next || next->level <= node->level)
2638 			break;
2639 	}
2640 
2641 	if (!fs_root)
2642 		return ERR_PTR(-ENOENT);
2643 	return fs_root;
2644 }
2645 
2646 static noinline_for_stack
2647 u64 calcu_metadata_size(struct reloc_control *rc,
2648 			struct backref_node *node, int reserve)
2649 {
2650 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2651 	struct backref_node *next = node;
2652 	struct backref_edge *edge;
2653 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2654 	u64 num_bytes = 0;
2655 	int index = 0;
2656 
2657 	BUG_ON(reserve && node->processed);
2658 
2659 	while (next) {
2660 		cond_resched();
2661 		while (1) {
2662 			if (next->processed && (reserve || next != node))
2663 				break;
2664 
2665 			num_bytes += fs_info->nodesize;
2666 
2667 			if (list_empty(&next->upper))
2668 				break;
2669 
2670 			edge = list_entry(next->upper.next,
2671 					  struct backref_edge, list[LOWER]);
2672 			edges[index++] = edge;
2673 			next = edge->node[UPPER];
2674 		}
2675 		next = walk_down_backref(edges, &index);
2676 	}
2677 	return num_bytes;
2678 }
2679 
2680 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2681 				  struct reloc_control *rc,
2682 				  struct backref_node *node)
2683 {
2684 	struct btrfs_root *root = rc->extent_root;
2685 	struct btrfs_fs_info *fs_info = root->fs_info;
2686 	u64 num_bytes;
2687 	int ret;
2688 	u64 tmp;
2689 
2690 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2691 
2692 	trans->block_rsv = rc->block_rsv;
2693 	rc->reserved_bytes += num_bytes;
2694 
2695 	/*
2696 	 * We are under a transaction here so we can only do limited flushing.
2697 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2698 	 * transaction and try to refill when we can flush all the things.
2699 	 */
2700 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2701 				BTRFS_RESERVE_FLUSH_LIMIT);
2702 	if (ret) {
2703 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2704 		while (tmp <= rc->reserved_bytes)
2705 			tmp <<= 1;
2706 		/*
2707 		 * only one thread can access block_rsv at this point,
2708 		 * so we don't need hold lock to protect block_rsv.
2709 		 * we expand more reservation size here to allow enough
2710 		 * space for relocation and we will return earlier in
2711 		 * enospc case.
2712 		 */
2713 		rc->block_rsv->size = tmp + fs_info->nodesize *
2714 				      RELOCATION_RESERVED_NODES;
2715 		return -EAGAIN;
2716 	}
2717 
2718 	return 0;
2719 }
2720 
2721 /*
2722  * relocate a block tree, and then update pointers in upper level
2723  * blocks that reference the block to point to the new location.
2724  *
2725  * if called by link_to_upper, the block has already been relocated.
2726  * in that case this function just updates pointers.
2727  */
2728 static int do_relocation(struct btrfs_trans_handle *trans,
2729 			 struct reloc_control *rc,
2730 			 struct backref_node *node,
2731 			 struct btrfs_key *key,
2732 			 struct btrfs_path *path, int lowest)
2733 {
2734 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2735 	struct backref_node *upper;
2736 	struct backref_edge *edge;
2737 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2738 	struct btrfs_root *root;
2739 	struct extent_buffer *eb;
2740 	u32 blocksize;
2741 	u64 bytenr;
2742 	u64 generation;
2743 	int slot;
2744 	int ret;
2745 	int err = 0;
2746 
2747 	BUG_ON(lowest && node->eb);
2748 
2749 	path->lowest_level = node->level + 1;
2750 	rc->backref_cache.path[node->level] = node;
2751 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2752 		struct btrfs_key first_key;
2753 		struct btrfs_ref ref = { 0 };
2754 
2755 		cond_resched();
2756 
2757 		upper = edge->node[UPPER];
2758 		root = select_reloc_root(trans, rc, upper, edges);
2759 		BUG_ON(!root);
2760 
2761 		if (upper->eb && !upper->locked) {
2762 			if (!lowest) {
2763 				ret = btrfs_bin_search(upper->eb, key,
2764 						       upper->level, &slot);
2765 				if (ret < 0) {
2766 					err = ret;
2767 					goto next;
2768 				}
2769 				BUG_ON(ret);
2770 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2771 				if (node->eb->start == bytenr)
2772 					goto next;
2773 			}
2774 			drop_node_buffer(upper);
2775 		}
2776 
2777 		if (!upper->eb) {
2778 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2779 			if (ret) {
2780 				if (ret < 0)
2781 					err = ret;
2782 				else
2783 					err = -ENOENT;
2784 
2785 				btrfs_release_path(path);
2786 				break;
2787 			}
2788 
2789 			if (!upper->eb) {
2790 				upper->eb = path->nodes[upper->level];
2791 				path->nodes[upper->level] = NULL;
2792 			} else {
2793 				BUG_ON(upper->eb != path->nodes[upper->level]);
2794 			}
2795 
2796 			upper->locked = 1;
2797 			path->locks[upper->level] = 0;
2798 
2799 			slot = path->slots[upper->level];
2800 			btrfs_release_path(path);
2801 		} else {
2802 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2803 					       &slot);
2804 			if (ret < 0) {
2805 				err = ret;
2806 				goto next;
2807 			}
2808 			BUG_ON(ret);
2809 		}
2810 
2811 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2812 		if (lowest) {
2813 			if (bytenr != node->bytenr) {
2814 				btrfs_err(root->fs_info,
2815 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2816 					  bytenr, node->bytenr, slot,
2817 					  upper->eb->start);
2818 				err = -EIO;
2819 				goto next;
2820 			}
2821 		} else {
2822 			if (node->eb->start == bytenr)
2823 				goto next;
2824 		}
2825 
2826 		blocksize = root->fs_info->nodesize;
2827 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2828 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2829 		eb = read_tree_block(fs_info, bytenr, generation,
2830 				     upper->level - 1, &first_key);
2831 		if (IS_ERR(eb)) {
2832 			err = PTR_ERR(eb);
2833 			goto next;
2834 		} else if (!extent_buffer_uptodate(eb)) {
2835 			free_extent_buffer(eb);
2836 			err = -EIO;
2837 			goto next;
2838 		}
2839 		btrfs_tree_lock(eb);
2840 		btrfs_set_lock_blocking_write(eb);
2841 
2842 		if (!node->eb) {
2843 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2844 					      slot, &eb);
2845 			btrfs_tree_unlock(eb);
2846 			free_extent_buffer(eb);
2847 			if (ret < 0) {
2848 				err = ret;
2849 				goto next;
2850 			}
2851 			BUG_ON(node->eb != eb);
2852 		} else {
2853 			btrfs_set_node_blockptr(upper->eb, slot,
2854 						node->eb->start);
2855 			btrfs_set_node_ptr_generation(upper->eb, slot,
2856 						      trans->transid);
2857 			btrfs_mark_buffer_dirty(upper->eb);
2858 
2859 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2860 					       node->eb->start, blocksize,
2861 					       upper->eb->start);
2862 			ref.real_root = root->root_key.objectid;
2863 			btrfs_init_tree_ref(&ref, node->level,
2864 					    btrfs_header_owner(upper->eb));
2865 			ret = btrfs_inc_extent_ref(trans, &ref);
2866 			BUG_ON(ret);
2867 
2868 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2869 			BUG_ON(ret);
2870 		}
2871 next:
2872 		if (!upper->pending)
2873 			drop_node_buffer(upper);
2874 		else
2875 			unlock_node_buffer(upper);
2876 		if (err)
2877 			break;
2878 	}
2879 
2880 	if (!err && node->pending) {
2881 		drop_node_buffer(node);
2882 		list_move_tail(&node->list, &rc->backref_cache.changed);
2883 		node->pending = 0;
2884 	}
2885 
2886 	path->lowest_level = 0;
2887 	BUG_ON(err == -ENOSPC);
2888 	return err;
2889 }
2890 
2891 static int link_to_upper(struct btrfs_trans_handle *trans,
2892 			 struct reloc_control *rc,
2893 			 struct backref_node *node,
2894 			 struct btrfs_path *path)
2895 {
2896 	struct btrfs_key key;
2897 
2898 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2899 	return do_relocation(trans, rc, node, &key, path, 0);
2900 }
2901 
2902 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2903 				struct reloc_control *rc,
2904 				struct btrfs_path *path, int err)
2905 {
2906 	LIST_HEAD(list);
2907 	struct backref_cache *cache = &rc->backref_cache;
2908 	struct backref_node *node;
2909 	int level;
2910 	int ret;
2911 
2912 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2913 		while (!list_empty(&cache->pending[level])) {
2914 			node = list_entry(cache->pending[level].next,
2915 					  struct backref_node, list);
2916 			list_move_tail(&node->list, &list);
2917 			BUG_ON(!node->pending);
2918 
2919 			if (!err) {
2920 				ret = link_to_upper(trans, rc, node, path);
2921 				if (ret < 0)
2922 					err = ret;
2923 			}
2924 		}
2925 		list_splice_init(&list, &cache->pending[level]);
2926 	}
2927 	return err;
2928 }
2929 
2930 static void mark_block_processed(struct reloc_control *rc,
2931 				 u64 bytenr, u32 blocksize)
2932 {
2933 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2934 			EXTENT_DIRTY);
2935 }
2936 
2937 static void __mark_block_processed(struct reloc_control *rc,
2938 				   struct backref_node *node)
2939 {
2940 	u32 blocksize;
2941 	if (node->level == 0 ||
2942 	    in_block_group(node->bytenr, rc->block_group)) {
2943 		blocksize = rc->extent_root->fs_info->nodesize;
2944 		mark_block_processed(rc, node->bytenr, blocksize);
2945 	}
2946 	node->processed = 1;
2947 }
2948 
2949 /*
2950  * mark a block and all blocks directly/indirectly reference the block
2951  * as processed.
2952  */
2953 static void update_processed_blocks(struct reloc_control *rc,
2954 				    struct backref_node *node)
2955 {
2956 	struct backref_node *next = node;
2957 	struct backref_edge *edge;
2958 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2959 	int index = 0;
2960 
2961 	while (next) {
2962 		cond_resched();
2963 		while (1) {
2964 			if (next->processed)
2965 				break;
2966 
2967 			__mark_block_processed(rc, next);
2968 
2969 			if (list_empty(&next->upper))
2970 				break;
2971 
2972 			edge = list_entry(next->upper.next,
2973 					  struct backref_edge, list[LOWER]);
2974 			edges[index++] = edge;
2975 			next = edge->node[UPPER];
2976 		}
2977 		next = walk_down_backref(edges, &index);
2978 	}
2979 }
2980 
2981 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2982 {
2983 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2984 
2985 	if (test_range_bit(&rc->processed_blocks, bytenr,
2986 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2987 		return 1;
2988 	return 0;
2989 }
2990 
2991 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2992 			      struct tree_block *block)
2993 {
2994 	struct extent_buffer *eb;
2995 
2996 	BUG_ON(block->key_ready);
2997 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2998 			     block->level, NULL);
2999 	if (IS_ERR(eb)) {
3000 		return PTR_ERR(eb);
3001 	} else if (!extent_buffer_uptodate(eb)) {
3002 		free_extent_buffer(eb);
3003 		return -EIO;
3004 	}
3005 	if (block->level == 0)
3006 		btrfs_item_key_to_cpu(eb, &block->key, 0);
3007 	else
3008 		btrfs_node_key_to_cpu(eb, &block->key, 0);
3009 	free_extent_buffer(eb);
3010 	block->key_ready = 1;
3011 	return 0;
3012 }
3013 
3014 /*
3015  * helper function to relocate a tree block
3016  */
3017 static int relocate_tree_block(struct btrfs_trans_handle *trans,
3018 				struct reloc_control *rc,
3019 				struct backref_node *node,
3020 				struct btrfs_key *key,
3021 				struct btrfs_path *path)
3022 {
3023 	struct btrfs_root *root;
3024 	int ret = 0;
3025 
3026 	if (!node)
3027 		return 0;
3028 
3029 	BUG_ON(node->processed);
3030 	root = select_one_root(node);
3031 	if (root == ERR_PTR(-ENOENT)) {
3032 		update_processed_blocks(rc, node);
3033 		goto out;
3034 	}
3035 
3036 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3037 		ret = reserve_metadata_space(trans, rc, node);
3038 		if (ret)
3039 			goto out;
3040 	}
3041 
3042 	if (root) {
3043 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3044 			BUG_ON(node->new_bytenr);
3045 			BUG_ON(!list_empty(&node->list));
3046 			btrfs_record_root_in_trans(trans, root);
3047 			root = root->reloc_root;
3048 			node->new_bytenr = root->node->start;
3049 			node->root = root;
3050 			list_add_tail(&node->list, &rc->backref_cache.changed);
3051 		} else {
3052 			path->lowest_level = node->level;
3053 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3054 			btrfs_release_path(path);
3055 			if (ret > 0)
3056 				ret = 0;
3057 		}
3058 		if (!ret)
3059 			update_processed_blocks(rc, node);
3060 	} else {
3061 		ret = do_relocation(trans, rc, node, key, path, 1);
3062 	}
3063 out:
3064 	if (ret || node->level == 0 || node->cowonly)
3065 		remove_backref_node(&rc->backref_cache, node);
3066 	return ret;
3067 }
3068 
3069 /*
3070  * relocate a list of blocks
3071  */
3072 static noinline_for_stack
3073 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3074 			 struct reloc_control *rc, struct rb_root *blocks)
3075 {
3076 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3077 	struct backref_node *node;
3078 	struct btrfs_path *path;
3079 	struct tree_block *block;
3080 	struct tree_block *next;
3081 	int ret;
3082 	int err = 0;
3083 
3084 	path = btrfs_alloc_path();
3085 	if (!path) {
3086 		err = -ENOMEM;
3087 		goto out_free_blocks;
3088 	}
3089 
3090 	/* Kick in readahead for tree blocks with missing keys */
3091 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3092 		if (!block->key_ready)
3093 			readahead_tree_block(fs_info, block->bytenr);
3094 	}
3095 
3096 	/* Get first keys */
3097 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3098 		if (!block->key_ready) {
3099 			err = get_tree_block_key(fs_info, block);
3100 			if (err)
3101 				goto out_free_path;
3102 		}
3103 	}
3104 
3105 	/* Do tree relocation */
3106 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3107 		node = build_backref_tree(rc, &block->key,
3108 					  block->level, block->bytenr);
3109 		if (IS_ERR(node)) {
3110 			err = PTR_ERR(node);
3111 			goto out;
3112 		}
3113 
3114 		ret = relocate_tree_block(trans, rc, node, &block->key,
3115 					  path);
3116 		if (ret < 0) {
3117 			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3118 				err = ret;
3119 			goto out;
3120 		}
3121 	}
3122 out:
3123 	err = finish_pending_nodes(trans, rc, path, err);
3124 
3125 out_free_path:
3126 	btrfs_free_path(path);
3127 out_free_blocks:
3128 	free_block_list(blocks);
3129 	return err;
3130 }
3131 
3132 static noinline_for_stack
3133 int prealloc_file_extent_cluster(struct inode *inode,
3134 				 struct file_extent_cluster *cluster)
3135 {
3136 	u64 alloc_hint = 0;
3137 	u64 start;
3138 	u64 end;
3139 	u64 offset = BTRFS_I(inode)->index_cnt;
3140 	u64 num_bytes;
3141 	int nr = 0;
3142 	int ret = 0;
3143 	u64 prealloc_start = cluster->start - offset;
3144 	u64 prealloc_end = cluster->end - offset;
3145 	u64 cur_offset;
3146 	struct extent_changeset *data_reserved = NULL;
3147 
3148 	BUG_ON(cluster->start != cluster->boundary[0]);
3149 	inode_lock(inode);
3150 
3151 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3152 					  prealloc_end + 1 - prealloc_start);
3153 	if (ret)
3154 		goto out;
3155 
3156 	cur_offset = prealloc_start;
3157 	while (nr < cluster->nr) {
3158 		start = cluster->boundary[nr] - offset;
3159 		if (nr + 1 < cluster->nr)
3160 			end = cluster->boundary[nr + 1] - 1 - offset;
3161 		else
3162 			end = cluster->end - offset;
3163 
3164 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3165 		num_bytes = end + 1 - start;
3166 		if (cur_offset < start)
3167 			btrfs_free_reserved_data_space(inode, data_reserved,
3168 					cur_offset, start - cur_offset);
3169 		ret = btrfs_prealloc_file_range(inode, 0, start,
3170 						num_bytes, num_bytes,
3171 						end + 1, &alloc_hint);
3172 		cur_offset = end + 1;
3173 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3174 		if (ret)
3175 			break;
3176 		nr++;
3177 	}
3178 	if (cur_offset < prealloc_end)
3179 		btrfs_free_reserved_data_space(inode, data_reserved,
3180 				cur_offset, prealloc_end + 1 - cur_offset);
3181 out:
3182 	inode_unlock(inode);
3183 	extent_changeset_free(data_reserved);
3184 	return ret;
3185 }
3186 
3187 static noinline_for_stack
3188 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3189 			 u64 block_start)
3190 {
3191 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3192 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3193 	struct extent_map *em;
3194 	int ret = 0;
3195 
3196 	em = alloc_extent_map();
3197 	if (!em)
3198 		return -ENOMEM;
3199 
3200 	em->start = start;
3201 	em->len = end + 1 - start;
3202 	em->block_len = em->len;
3203 	em->block_start = block_start;
3204 	em->bdev = fs_info->fs_devices->latest_bdev;
3205 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3206 
3207 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3208 	while (1) {
3209 		write_lock(&em_tree->lock);
3210 		ret = add_extent_mapping(em_tree, em, 0);
3211 		write_unlock(&em_tree->lock);
3212 		if (ret != -EEXIST) {
3213 			free_extent_map(em);
3214 			break;
3215 		}
3216 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3217 	}
3218 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3219 	return ret;
3220 }
3221 
3222 static int relocate_file_extent_cluster(struct inode *inode,
3223 					struct file_extent_cluster *cluster)
3224 {
3225 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3226 	u64 page_start;
3227 	u64 page_end;
3228 	u64 offset = BTRFS_I(inode)->index_cnt;
3229 	unsigned long index;
3230 	unsigned long last_index;
3231 	struct page *page;
3232 	struct file_ra_state *ra;
3233 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3234 	int nr = 0;
3235 	int ret = 0;
3236 
3237 	if (!cluster->nr)
3238 		return 0;
3239 
3240 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3241 	if (!ra)
3242 		return -ENOMEM;
3243 
3244 	ret = prealloc_file_extent_cluster(inode, cluster);
3245 	if (ret)
3246 		goto out;
3247 
3248 	file_ra_state_init(ra, inode->i_mapping);
3249 
3250 	ret = setup_extent_mapping(inode, cluster->start - offset,
3251 				   cluster->end - offset, cluster->start);
3252 	if (ret)
3253 		goto out;
3254 
3255 	index = (cluster->start - offset) >> PAGE_SHIFT;
3256 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3257 	while (index <= last_index) {
3258 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3259 				PAGE_SIZE);
3260 		if (ret)
3261 			goto out;
3262 
3263 		page = find_lock_page(inode->i_mapping, index);
3264 		if (!page) {
3265 			page_cache_sync_readahead(inode->i_mapping,
3266 						  ra, NULL, index,
3267 						  last_index + 1 - index);
3268 			page = find_or_create_page(inode->i_mapping, index,
3269 						   mask);
3270 			if (!page) {
3271 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3272 							PAGE_SIZE, true);
3273 				ret = -ENOMEM;
3274 				goto out;
3275 			}
3276 		}
3277 
3278 		if (PageReadahead(page)) {
3279 			page_cache_async_readahead(inode->i_mapping,
3280 						   ra, NULL, page, index,
3281 						   last_index + 1 - index);
3282 		}
3283 
3284 		if (!PageUptodate(page)) {
3285 			btrfs_readpage(NULL, page);
3286 			lock_page(page);
3287 			if (!PageUptodate(page)) {
3288 				unlock_page(page);
3289 				put_page(page);
3290 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3291 							PAGE_SIZE, true);
3292 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3293 							       PAGE_SIZE, true);
3294 				ret = -EIO;
3295 				goto out;
3296 			}
3297 		}
3298 
3299 		page_start = page_offset(page);
3300 		page_end = page_start + PAGE_SIZE - 1;
3301 
3302 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3303 
3304 		set_page_extent_mapped(page);
3305 
3306 		if (nr < cluster->nr &&
3307 		    page_start + offset == cluster->boundary[nr]) {
3308 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3309 					page_start, page_end,
3310 					EXTENT_BOUNDARY);
3311 			nr++;
3312 		}
3313 
3314 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3315 						NULL);
3316 		if (ret) {
3317 			unlock_page(page);
3318 			put_page(page);
3319 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3320 							 PAGE_SIZE, true);
3321 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3322 			                               PAGE_SIZE, true);
3323 
3324 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3325 					  page_start, page_end,
3326 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3327 			goto out;
3328 
3329 		}
3330 		set_page_dirty(page);
3331 
3332 		unlock_extent(&BTRFS_I(inode)->io_tree,
3333 			      page_start, page_end);
3334 		unlock_page(page);
3335 		put_page(page);
3336 
3337 		index++;
3338 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3339 					       false);
3340 		balance_dirty_pages_ratelimited(inode->i_mapping);
3341 		btrfs_throttle(fs_info);
3342 	}
3343 	WARN_ON(nr != cluster->nr);
3344 out:
3345 	kfree(ra);
3346 	return ret;
3347 }
3348 
3349 static noinline_for_stack
3350 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3351 			 struct file_extent_cluster *cluster)
3352 {
3353 	int ret;
3354 
3355 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3356 		ret = relocate_file_extent_cluster(inode, cluster);
3357 		if (ret)
3358 			return ret;
3359 		cluster->nr = 0;
3360 	}
3361 
3362 	if (!cluster->nr)
3363 		cluster->start = extent_key->objectid;
3364 	else
3365 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3366 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3367 	cluster->boundary[cluster->nr] = extent_key->objectid;
3368 	cluster->nr++;
3369 
3370 	if (cluster->nr >= MAX_EXTENTS) {
3371 		ret = relocate_file_extent_cluster(inode, cluster);
3372 		if (ret)
3373 			return ret;
3374 		cluster->nr = 0;
3375 	}
3376 	return 0;
3377 }
3378 
3379 /*
3380  * helper to add a tree block to the list.
3381  * the major work is getting the generation and level of the block
3382  */
3383 static int add_tree_block(struct reloc_control *rc,
3384 			  struct btrfs_key *extent_key,
3385 			  struct btrfs_path *path,
3386 			  struct rb_root *blocks)
3387 {
3388 	struct extent_buffer *eb;
3389 	struct btrfs_extent_item *ei;
3390 	struct btrfs_tree_block_info *bi;
3391 	struct tree_block *block;
3392 	struct rb_node *rb_node;
3393 	u32 item_size;
3394 	int level = -1;
3395 	u64 generation;
3396 
3397 	eb =  path->nodes[0];
3398 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3399 
3400 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3401 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3402 		ei = btrfs_item_ptr(eb, path->slots[0],
3403 				struct btrfs_extent_item);
3404 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3405 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3406 			level = btrfs_tree_block_level(eb, bi);
3407 		} else {
3408 			level = (int)extent_key->offset;
3409 		}
3410 		generation = btrfs_extent_generation(eb, ei);
3411 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3412 		btrfs_print_v0_err(eb->fs_info);
3413 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3414 		return -EINVAL;
3415 	} else {
3416 		BUG();
3417 	}
3418 
3419 	btrfs_release_path(path);
3420 
3421 	BUG_ON(level == -1);
3422 
3423 	block = kmalloc(sizeof(*block), GFP_NOFS);
3424 	if (!block)
3425 		return -ENOMEM;
3426 
3427 	block->bytenr = extent_key->objectid;
3428 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3429 	block->key.offset = generation;
3430 	block->level = level;
3431 	block->key_ready = 0;
3432 
3433 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3434 	if (rb_node)
3435 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3436 
3437 	return 0;
3438 }
3439 
3440 /*
3441  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3442  */
3443 static int __add_tree_block(struct reloc_control *rc,
3444 			    u64 bytenr, u32 blocksize,
3445 			    struct rb_root *blocks)
3446 {
3447 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3448 	struct btrfs_path *path;
3449 	struct btrfs_key key;
3450 	int ret;
3451 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3452 
3453 	if (tree_block_processed(bytenr, rc))
3454 		return 0;
3455 
3456 	if (tree_search(blocks, bytenr))
3457 		return 0;
3458 
3459 	path = btrfs_alloc_path();
3460 	if (!path)
3461 		return -ENOMEM;
3462 again:
3463 	key.objectid = bytenr;
3464 	if (skinny) {
3465 		key.type = BTRFS_METADATA_ITEM_KEY;
3466 		key.offset = (u64)-1;
3467 	} else {
3468 		key.type = BTRFS_EXTENT_ITEM_KEY;
3469 		key.offset = blocksize;
3470 	}
3471 
3472 	path->search_commit_root = 1;
3473 	path->skip_locking = 1;
3474 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3475 	if (ret < 0)
3476 		goto out;
3477 
3478 	if (ret > 0 && skinny) {
3479 		if (path->slots[0]) {
3480 			path->slots[0]--;
3481 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3482 					      path->slots[0]);
3483 			if (key.objectid == bytenr &&
3484 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3485 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3486 			      key.offset == blocksize)))
3487 				ret = 0;
3488 		}
3489 
3490 		if (ret) {
3491 			skinny = false;
3492 			btrfs_release_path(path);
3493 			goto again;
3494 		}
3495 	}
3496 	if (ret) {
3497 		ASSERT(ret == 1);
3498 		btrfs_print_leaf(path->nodes[0]);
3499 		btrfs_err(fs_info,
3500 	     "tree block extent item (%llu) is not found in extent tree",
3501 		     bytenr);
3502 		WARN_ON(1);
3503 		ret = -EINVAL;
3504 		goto out;
3505 	}
3506 
3507 	ret = add_tree_block(rc, &key, path, blocks);
3508 out:
3509 	btrfs_free_path(path);
3510 	return ret;
3511 }
3512 
3513 /*
3514  * helper to check if the block use full backrefs for pointers in it
3515  */
3516 static int block_use_full_backref(struct reloc_control *rc,
3517 				  struct extent_buffer *eb)
3518 {
3519 	u64 flags;
3520 	int ret;
3521 
3522 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3523 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3524 		return 1;
3525 
3526 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3527 				       eb->start, btrfs_header_level(eb), 1,
3528 				       NULL, &flags);
3529 	BUG_ON(ret);
3530 
3531 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3532 		ret = 1;
3533 	else
3534 		ret = 0;
3535 	return ret;
3536 }
3537 
3538 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3539 				    struct btrfs_block_group_cache *block_group,
3540 				    struct inode *inode,
3541 				    u64 ino)
3542 {
3543 	struct btrfs_key key;
3544 	struct btrfs_root *root = fs_info->tree_root;
3545 	struct btrfs_trans_handle *trans;
3546 	int ret = 0;
3547 
3548 	if (inode)
3549 		goto truncate;
3550 
3551 	key.objectid = ino;
3552 	key.type = BTRFS_INODE_ITEM_KEY;
3553 	key.offset = 0;
3554 
3555 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3556 	if (IS_ERR(inode))
3557 		return -ENOENT;
3558 
3559 truncate:
3560 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3561 						 &fs_info->global_block_rsv);
3562 	if (ret)
3563 		goto out;
3564 
3565 	trans = btrfs_join_transaction(root);
3566 	if (IS_ERR(trans)) {
3567 		ret = PTR_ERR(trans);
3568 		goto out;
3569 	}
3570 
3571 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3572 
3573 	btrfs_end_transaction(trans);
3574 	btrfs_btree_balance_dirty(fs_info);
3575 out:
3576 	iput(inode);
3577 	return ret;
3578 }
3579 
3580 /*
3581  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3582  * this function scans fs tree to find blocks reference the data extent
3583  */
3584 static int find_data_references(struct reloc_control *rc,
3585 				struct btrfs_key *extent_key,
3586 				struct extent_buffer *leaf,
3587 				struct btrfs_extent_data_ref *ref,
3588 				struct rb_root *blocks)
3589 {
3590 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3591 	struct btrfs_path *path;
3592 	struct tree_block *block;
3593 	struct btrfs_root *root;
3594 	struct btrfs_file_extent_item *fi;
3595 	struct rb_node *rb_node;
3596 	struct btrfs_key key;
3597 	u64 ref_root;
3598 	u64 ref_objectid;
3599 	u64 ref_offset;
3600 	u32 ref_count;
3601 	u32 nritems;
3602 	int err = 0;
3603 	int added = 0;
3604 	int counted;
3605 	int ret;
3606 
3607 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3608 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3609 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3610 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3611 
3612 	/*
3613 	 * This is an extent belonging to the free space cache, lets just delete
3614 	 * it and redo the search.
3615 	 */
3616 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3617 		ret = delete_block_group_cache(fs_info, rc->block_group,
3618 					       NULL, ref_objectid);
3619 		if (ret != -ENOENT)
3620 			return ret;
3621 		ret = 0;
3622 	}
3623 
3624 	path = btrfs_alloc_path();
3625 	if (!path)
3626 		return -ENOMEM;
3627 	path->reada = READA_FORWARD;
3628 
3629 	root = read_fs_root(fs_info, ref_root);
3630 	if (IS_ERR(root)) {
3631 		err = PTR_ERR(root);
3632 		goto out;
3633 	}
3634 
3635 	key.objectid = ref_objectid;
3636 	key.type = BTRFS_EXTENT_DATA_KEY;
3637 	if (ref_offset > ((u64)-1 << 32))
3638 		key.offset = 0;
3639 	else
3640 		key.offset = ref_offset;
3641 
3642 	path->search_commit_root = 1;
3643 	path->skip_locking = 1;
3644 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3645 	if (ret < 0) {
3646 		err = ret;
3647 		goto out;
3648 	}
3649 
3650 	leaf = path->nodes[0];
3651 	nritems = btrfs_header_nritems(leaf);
3652 	/*
3653 	 * the references in tree blocks that use full backrefs
3654 	 * are not counted in
3655 	 */
3656 	if (block_use_full_backref(rc, leaf))
3657 		counted = 0;
3658 	else
3659 		counted = 1;
3660 	rb_node = tree_search(blocks, leaf->start);
3661 	if (rb_node) {
3662 		if (counted)
3663 			added = 1;
3664 		else
3665 			path->slots[0] = nritems;
3666 	}
3667 
3668 	while (ref_count > 0) {
3669 		while (path->slots[0] >= nritems) {
3670 			ret = btrfs_next_leaf(root, path);
3671 			if (ret < 0) {
3672 				err = ret;
3673 				goto out;
3674 			}
3675 			if (WARN_ON(ret > 0))
3676 				goto out;
3677 
3678 			leaf = path->nodes[0];
3679 			nritems = btrfs_header_nritems(leaf);
3680 			added = 0;
3681 
3682 			if (block_use_full_backref(rc, leaf))
3683 				counted = 0;
3684 			else
3685 				counted = 1;
3686 			rb_node = tree_search(blocks, leaf->start);
3687 			if (rb_node) {
3688 				if (counted)
3689 					added = 1;
3690 				else
3691 					path->slots[0] = nritems;
3692 			}
3693 		}
3694 
3695 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3696 		if (WARN_ON(key.objectid != ref_objectid ||
3697 		    key.type != BTRFS_EXTENT_DATA_KEY))
3698 			break;
3699 
3700 		fi = btrfs_item_ptr(leaf, path->slots[0],
3701 				    struct btrfs_file_extent_item);
3702 
3703 		if (btrfs_file_extent_type(leaf, fi) ==
3704 		    BTRFS_FILE_EXTENT_INLINE)
3705 			goto next;
3706 
3707 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3708 		    extent_key->objectid)
3709 			goto next;
3710 
3711 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3712 		if (key.offset != ref_offset)
3713 			goto next;
3714 
3715 		if (counted)
3716 			ref_count--;
3717 		if (added)
3718 			goto next;
3719 
3720 		if (!tree_block_processed(leaf->start, rc)) {
3721 			block = kmalloc(sizeof(*block), GFP_NOFS);
3722 			if (!block) {
3723 				err = -ENOMEM;
3724 				break;
3725 			}
3726 			block->bytenr = leaf->start;
3727 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3728 			block->level = 0;
3729 			block->key_ready = 1;
3730 			rb_node = tree_insert(blocks, block->bytenr,
3731 					      &block->rb_node);
3732 			if (rb_node)
3733 				backref_tree_panic(rb_node, -EEXIST,
3734 						   block->bytenr);
3735 		}
3736 		if (counted)
3737 			added = 1;
3738 		else
3739 			path->slots[0] = nritems;
3740 next:
3741 		path->slots[0]++;
3742 
3743 	}
3744 out:
3745 	btrfs_free_path(path);
3746 	return err;
3747 }
3748 
3749 /*
3750  * helper to find all tree blocks that reference a given data extent
3751  */
3752 static noinline_for_stack
3753 int add_data_references(struct reloc_control *rc,
3754 			struct btrfs_key *extent_key,
3755 			struct btrfs_path *path,
3756 			struct rb_root *blocks)
3757 {
3758 	struct btrfs_key key;
3759 	struct extent_buffer *eb;
3760 	struct btrfs_extent_data_ref *dref;
3761 	struct btrfs_extent_inline_ref *iref;
3762 	unsigned long ptr;
3763 	unsigned long end;
3764 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3765 	int ret = 0;
3766 	int err = 0;
3767 
3768 	eb = path->nodes[0];
3769 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3770 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3771 	ptr += sizeof(struct btrfs_extent_item);
3772 
3773 	while (ptr < end) {
3774 		iref = (struct btrfs_extent_inline_ref *)ptr;
3775 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3776 							BTRFS_REF_TYPE_DATA);
3777 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3778 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3779 			ret = __add_tree_block(rc, key.offset, blocksize,
3780 					       blocks);
3781 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3782 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3783 			ret = find_data_references(rc, extent_key,
3784 						   eb, dref, blocks);
3785 		} else {
3786 			ret = -EUCLEAN;
3787 			btrfs_err(rc->extent_root->fs_info,
3788 		     "extent %llu slot %d has an invalid inline ref type",
3789 			     eb->start, path->slots[0]);
3790 		}
3791 		if (ret) {
3792 			err = ret;
3793 			goto out;
3794 		}
3795 		ptr += btrfs_extent_inline_ref_size(key.type);
3796 	}
3797 	WARN_ON(ptr > end);
3798 
3799 	while (1) {
3800 		cond_resched();
3801 		eb = path->nodes[0];
3802 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3803 			ret = btrfs_next_leaf(rc->extent_root, path);
3804 			if (ret < 0) {
3805 				err = ret;
3806 				break;
3807 			}
3808 			if (ret > 0)
3809 				break;
3810 			eb = path->nodes[0];
3811 		}
3812 
3813 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3814 		if (key.objectid != extent_key->objectid)
3815 			break;
3816 
3817 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3818 			ret = __add_tree_block(rc, key.offset, blocksize,
3819 					       blocks);
3820 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3821 			dref = btrfs_item_ptr(eb, path->slots[0],
3822 					      struct btrfs_extent_data_ref);
3823 			ret = find_data_references(rc, extent_key,
3824 						   eb, dref, blocks);
3825 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3826 			btrfs_print_v0_err(eb->fs_info);
3827 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3828 			ret = -EINVAL;
3829 		} else {
3830 			ret = 0;
3831 		}
3832 		if (ret) {
3833 			err = ret;
3834 			break;
3835 		}
3836 		path->slots[0]++;
3837 	}
3838 out:
3839 	btrfs_release_path(path);
3840 	if (err)
3841 		free_block_list(blocks);
3842 	return err;
3843 }
3844 
3845 /*
3846  * helper to find next unprocessed extent
3847  */
3848 static noinline_for_stack
3849 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3850 		     struct btrfs_key *extent_key)
3851 {
3852 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3853 	struct btrfs_key key;
3854 	struct extent_buffer *leaf;
3855 	u64 start, end, last;
3856 	int ret;
3857 
3858 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3859 	while (1) {
3860 		cond_resched();
3861 		if (rc->search_start >= last) {
3862 			ret = 1;
3863 			break;
3864 		}
3865 
3866 		key.objectid = rc->search_start;
3867 		key.type = BTRFS_EXTENT_ITEM_KEY;
3868 		key.offset = 0;
3869 
3870 		path->search_commit_root = 1;
3871 		path->skip_locking = 1;
3872 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3873 					0, 0);
3874 		if (ret < 0)
3875 			break;
3876 next:
3877 		leaf = path->nodes[0];
3878 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3879 			ret = btrfs_next_leaf(rc->extent_root, path);
3880 			if (ret != 0)
3881 				break;
3882 			leaf = path->nodes[0];
3883 		}
3884 
3885 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3886 		if (key.objectid >= last) {
3887 			ret = 1;
3888 			break;
3889 		}
3890 
3891 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3892 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3893 			path->slots[0]++;
3894 			goto next;
3895 		}
3896 
3897 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3898 		    key.objectid + key.offset <= rc->search_start) {
3899 			path->slots[0]++;
3900 			goto next;
3901 		}
3902 
3903 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3904 		    key.objectid + fs_info->nodesize <=
3905 		    rc->search_start) {
3906 			path->slots[0]++;
3907 			goto next;
3908 		}
3909 
3910 		ret = find_first_extent_bit(&rc->processed_blocks,
3911 					    key.objectid, &start, &end,
3912 					    EXTENT_DIRTY, NULL);
3913 
3914 		if (ret == 0 && start <= key.objectid) {
3915 			btrfs_release_path(path);
3916 			rc->search_start = end + 1;
3917 		} else {
3918 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3919 				rc->search_start = key.objectid + key.offset;
3920 			else
3921 				rc->search_start = key.objectid +
3922 					fs_info->nodesize;
3923 			memcpy(extent_key, &key, sizeof(key));
3924 			return 0;
3925 		}
3926 	}
3927 	btrfs_release_path(path);
3928 	return ret;
3929 }
3930 
3931 static void set_reloc_control(struct reloc_control *rc)
3932 {
3933 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3934 
3935 	mutex_lock(&fs_info->reloc_mutex);
3936 	fs_info->reloc_ctl = rc;
3937 	mutex_unlock(&fs_info->reloc_mutex);
3938 }
3939 
3940 static void unset_reloc_control(struct reloc_control *rc)
3941 {
3942 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3943 
3944 	mutex_lock(&fs_info->reloc_mutex);
3945 	fs_info->reloc_ctl = NULL;
3946 	mutex_unlock(&fs_info->reloc_mutex);
3947 }
3948 
3949 static int check_extent_flags(u64 flags)
3950 {
3951 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3952 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3953 		return 1;
3954 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3955 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3956 		return 1;
3957 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3958 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3959 		return 1;
3960 	return 0;
3961 }
3962 
3963 static noinline_for_stack
3964 int prepare_to_relocate(struct reloc_control *rc)
3965 {
3966 	struct btrfs_trans_handle *trans;
3967 	int ret;
3968 
3969 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3970 					      BTRFS_BLOCK_RSV_TEMP);
3971 	if (!rc->block_rsv)
3972 		return -ENOMEM;
3973 
3974 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3975 	rc->search_start = rc->block_group->key.objectid;
3976 	rc->extents_found = 0;
3977 	rc->nodes_relocated = 0;
3978 	rc->merging_rsv_size = 0;
3979 	rc->reserved_bytes = 0;
3980 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3981 			      RELOCATION_RESERVED_NODES;
3982 	ret = btrfs_block_rsv_refill(rc->extent_root,
3983 				     rc->block_rsv, rc->block_rsv->size,
3984 				     BTRFS_RESERVE_FLUSH_ALL);
3985 	if (ret)
3986 		return ret;
3987 
3988 	rc->create_reloc_tree = 1;
3989 	set_reloc_control(rc);
3990 
3991 	trans = btrfs_join_transaction(rc->extent_root);
3992 	if (IS_ERR(trans)) {
3993 		unset_reloc_control(rc);
3994 		/*
3995 		 * extent tree is not a ref_cow tree and has no reloc_root to
3996 		 * cleanup.  And callers are responsible to free the above
3997 		 * block rsv.
3998 		 */
3999 		return PTR_ERR(trans);
4000 	}
4001 	btrfs_commit_transaction(trans);
4002 	return 0;
4003 }
4004 
4005 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4006 {
4007 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4008 	struct rb_root blocks = RB_ROOT;
4009 	struct btrfs_key key;
4010 	struct btrfs_trans_handle *trans = NULL;
4011 	struct btrfs_path *path;
4012 	struct btrfs_extent_item *ei;
4013 	u64 flags;
4014 	u32 item_size;
4015 	int ret;
4016 	int err = 0;
4017 	int progress = 0;
4018 
4019 	path = btrfs_alloc_path();
4020 	if (!path)
4021 		return -ENOMEM;
4022 	path->reada = READA_FORWARD;
4023 
4024 	ret = prepare_to_relocate(rc);
4025 	if (ret) {
4026 		err = ret;
4027 		goto out_free;
4028 	}
4029 
4030 	while (1) {
4031 		rc->reserved_bytes = 0;
4032 		ret = btrfs_block_rsv_refill(rc->extent_root,
4033 					rc->block_rsv, rc->block_rsv->size,
4034 					BTRFS_RESERVE_FLUSH_ALL);
4035 		if (ret) {
4036 			err = ret;
4037 			break;
4038 		}
4039 		progress++;
4040 		trans = btrfs_start_transaction(rc->extent_root, 0);
4041 		if (IS_ERR(trans)) {
4042 			err = PTR_ERR(trans);
4043 			trans = NULL;
4044 			break;
4045 		}
4046 restart:
4047 		if (update_backref_cache(trans, &rc->backref_cache)) {
4048 			btrfs_end_transaction(trans);
4049 			trans = NULL;
4050 			continue;
4051 		}
4052 
4053 		ret = find_next_extent(rc, path, &key);
4054 		if (ret < 0)
4055 			err = ret;
4056 		if (ret != 0)
4057 			break;
4058 
4059 		rc->extents_found++;
4060 
4061 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4062 				    struct btrfs_extent_item);
4063 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4064 		if (item_size >= sizeof(*ei)) {
4065 			flags = btrfs_extent_flags(path->nodes[0], ei);
4066 			ret = check_extent_flags(flags);
4067 			BUG_ON(ret);
4068 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4069 			err = -EINVAL;
4070 			btrfs_print_v0_err(trans->fs_info);
4071 			btrfs_abort_transaction(trans, err);
4072 			break;
4073 		} else {
4074 			BUG();
4075 		}
4076 
4077 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4078 			ret = add_tree_block(rc, &key, path, &blocks);
4079 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4080 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4081 			ret = add_data_references(rc, &key, path, &blocks);
4082 		} else {
4083 			btrfs_release_path(path);
4084 			ret = 0;
4085 		}
4086 		if (ret < 0) {
4087 			err = ret;
4088 			break;
4089 		}
4090 
4091 		if (!RB_EMPTY_ROOT(&blocks)) {
4092 			ret = relocate_tree_blocks(trans, rc, &blocks);
4093 			if (ret < 0) {
4094 				/*
4095 				 * if we fail to relocate tree blocks, force to update
4096 				 * backref cache when committing transaction.
4097 				 */
4098 				rc->backref_cache.last_trans = trans->transid - 1;
4099 
4100 				if (ret != -EAGAIN) {
4101 					err = ret;
4102 					break;
4103 				}
4104 				rc->extents_found--;
4105 				rc->search_start = key.objectid;
4106 			}
4107 		}
4108 
4109 		btrfs_end_transaction_throttle(trans);
4110 		btrfs_btree_balance_dirty(fs_info);
4111 		trans = NULL;
4112 
4113 		if (rc->stage == MOVE_DATA_EXTENTS &&
4114 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4115 			rc->found_file_extent = 1;
4116 			ret = relocate_data_extent(rc->data_inode,
4117 						   &key, &rc->cluster);
4118 			if (ret < 0) {
4119 				err = ret;
4120 				break;
4121 			}
4122 		}
4123 	}
4124 	if (trans && progress && err == -ENOSPC) {
4125 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4126 		if (ret == 1) {
4127 			err = 0;
4128 			progress = 0;
4129 			goto restart;
4130 		}
4131 	}
4132 
4133 	btrfs_release_path(path);
4134 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4135 
4136 	if (trans) {
4137 		btrfs_end_transaction_throttle(trans);
4138 		btrfs_btree_balance_dirty(fs_info);
4139 	}
4140 
4141 	if (!err) {
4142 		ret = relocate_file_extent_cluster(rc->data_inode,
4143 						   &rc->cluster);
4144 		if (ret < 0)
4145 			err = ret;
4146 	}
4147 
4148 	rc->create_reloc_tree = 0;
4149 	set_reloc_control(rc);
4150 
4151 	backref_cache_cleanup(&rc->backref_cache);
4152 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4153 
4154 	err = prepare_to_merge(rc, err);
4155 
4156 	merge_reloc_roots(rc);
4157 
4158 	rc->merge_reloc_tree = 0;
4159 	unset_reloc_control(rc);
4160 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4161 
4162 	/* get rid of pinned extents */
4163 	trans = btrfs_join_transaction(rc->extent_root);
4164 	if (IS_ERR(trans)) {
4165 		err = PTR_ERR(trans);
4166 		goto out_free;
4167 	}
4168 	btrfs_commit_transaction(trans);
4169 	ret = clean_dirty_subvols(rc);
4170 	if (ret < 0 && !err)
4171 		err = ret;
4172 out_free:
4173 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4174 	btrfs_free_path(path);
4175 	return err;
4176 }
4177 
4178 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4179 				 struct btrfs_root *root, u64 objectid)
4180 {
4181 	struct btrfs_path *path;
4182 	struct btrfs_inode_item *item;
4183 	struct extent_buffer *leaf;
4184 	int ret;
4185 
4186 	path = btrfs_alloc_path();
4187 	if (!path)
4188 		return -ENOMEM;
4189 
4190 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4191 	if (ret)
4192 		goto out;
4193 
4194 	leaf = path->nodes[0];
4195 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4196 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4197 	btrfs_set_inode_generation(leaf, item, 1);
4198 	btrfs_set_inode_size(leaf, item, 0);
4199 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4200 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4201 					  BTRFS_INODE_PREALLOC);
4202 	btrfs_mark_buffer_dirty(leaf);
4203 out:
4204 	btrfs_free_path(path);
4205 	return ret;
4206 }
4207 
4208 /*
4209  * helper to create inode for data relocation.
4210  * the inode is in data relocation tree and its link count is 0
4211  */
4212 static noinline_for_stack
4213 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4214 				 struct btrfs_block_group_cache *group)
4215 {
4216 	struct inode *inode = NULL;
4217 	struct btrfs_trans_handle *trans;
4218 	struct btrfs_root *root;
4219 	struct btrfs_key key;
4220 	u64 objectid;
4221 	int err = 0;
4222 
4223 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4224 	if (IS_ERR(root))
4225 		return ERR_CAST(root);
4226 
4227 	trans = btrfs_start_transaction(root, 6);
4228 	if (IS_ERR(trans))
4229 		return ERR_CAST(trans);
4230 
4231 	err = btrfs_find_free_objectid(root, &objectid);
4232 	if (err)
4233 		goto out;
4234 
4235 	err = __insert_orphan_inode(trans, root, objectid);
4236 	BUG_ON(err);
4237 
4238 	key.objectid = objectid;
4239 	key.type = BTRFS_INODE_ITEM_KEY;
4240 	key.offset = 0;
4241 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4242 	BUG_ON(IS_ERR(inode));
4243 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4244 
4245 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4246 out:
4247 	btrfs_end_transaction(trans);
4248 	btrfs_btree_balance_dirty(fs_info);
4249 	if (err) {
4250 		if (inode)
4251 			iput(inode);
4252 		inode = ERR_PTR(err);
4253 	}
4254 	return inode;
4255 }
4256 
4257 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4258 {
4259 	struct reloc_control *rc;
4260 
4261 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4262 	if (!rc)
4263 		return NULL;
4264 
4265 	INIT_LIST_HEAD(&rc->reloc_roots);
4266 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4267 	backref_cache_init(&rc->backref_cache);
4268 	mapping_tree_init(&rc->reloc_root_tree);
4269 	extent_io_tree_init(fs_info, &rc->processed_blocks,
4270 			    IO_TREE_RELOC_BLOCKS, NULL);
4271 	return rc;
4272 }
4273 
4274 /*
4275  * Print the block group being relocated
4276  */
4277 static void describe_relocation(struct btrfs_fs_info *fs_info,
4278 				struct btrfs_block_group_cache *block_group)
4279 {
4280 	char buf[128] = {'\0'};
4281 
4282 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4283 
4284 	btrfs_info(fs_info,
4285 		   "relocating block group %llu flags %s",
4286 		   block_group->key.objectid, buf);
4287 }
4288 
4289 /*
4290  * function to relocate all extents in a block group.
4291  */
4292 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4293 {
4294 	struct btrfs_block_group_cache *bg;
4295 	struct btrfs_root *extent_root = fs_info->extent_root;
4296 	struct reloc_control *rc;
4297 	struct inode *inode;
4298 	struct btrfs_path *path;
4299 	int ret;
4300 	int rw = 0;
4301 	int err = 0;
4302 
4303 	bg = btrfs_lookup_block_group(fs_info, group_start);
4304 	if (!bg)
4305 		return -ENOENT;
4306 
4307 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4308 		btrfs_put_block_group(bg);
4309 		return -ETXTBSY;
4310 	}
4311 
4312 	rc = alloc_reloc_control(fs_info);
4313 	if (!rc) {
4314 		btrfs_put_block_group(bg);
4315 		return -ENOMEM;
4316 	}
4317 
4318 	rc->extent_root = extent_root;
4319 	rc->block_group = bg;
4320 
4321 	ret = btrfs_inc_block_group_ro(rc->block_group);
4322 	if (ret) {
4323 		err = ret;
4324 		goto out;
4325 	}
4326 	rw = 1;
4327 
4328 	path = btrfs_alloc_path();
4329 	if (!path) {
4330 		err = -ENOMEM;
4331 		goto out;
4332 	}
4333 
4334 	inode = lookup_free_space_inode(rc->block_group, path);
4335 	btrfs_free_path(path);
4336 
4337 	if (!IS_ERR(inode))
4338 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4339 	else
4340 		ret = PTR_ERR(inode);
4341 
4342 	if (ret && ret != -ENOENT) {
4343 		err = ret;
4344 		goto out;
4345 	}
4346 
4347 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4348 	if (IS_ERR(rc->data_inode)) {
4349 		err = PTR_ERR(rc->data_inode);
4350 		rc->data_inode = NULL;
4351 		goto out;
4352 	}
4353 
4354 	describe_relocation(fs_info, rc->block_group);
4355 
4356 	btrfs_wait_block_group_reservations(rc->block_group);
4357 	btrfs_wait_nocow_writers(rc->block_group);
4358 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4359 				 rc->block_group->key.objectid,
4360 				 rc->block_group->key.offset);
4361 
4362 	while (1) {
4363 		mutex_lock(&fs_info->cleaner_mutex);
4364 		ret = relocate_block_group(rc);
4365 		mutex_unlock(&fs_info->cleaner_mutex);
4366 		if (ret < 0)
4367 			err = ret;
4368 
4369 		/*
4370 		 * We may have gotten ENOSPC after we already dirtied some
4371 		 * extents.  If writeout happens while we're relocating a
4372 		 * different block group we could end up hitting the
4373 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4374 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4375 		 * properly so we don't trip over this problem, and then break
4376 		 * out of the loop if we hit an error.
4377 		 */
4378 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4379 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4380 						       (u64)-1);
4381 			if (ret)
4382 				err = ret;
4383 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4384 						 0, -1);
4385 			rc->stage = UPDATE_DATA_PTRS;
4386 		}
4387 
4388 		if (err < 0)
4389 			goto out;
4390 
4391 		if (rc->extents_found == 0)
4392 			break;
4393 
4394 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4395 
4396 	}
4397 
4398 	WARN_ON(rc->block_group->pinned > 0);
4399 	WARN_ON(rc->block_group->reserved > 0);
4400 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4401 out:
4402 	if (err && rw)
4403 		btrfs_dec_block_group_ro(rc->block_group);
4404 	iput(rc->data_inode);
4405 	btrfs_put_block_group(rc->block_group);
4406 	kfree(rc);
4407 	return err;
4408 }
4409 
4410 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4411 {
4412 	struct btrfs_fs_info *fs_info = root->fs_info;
4413 	struct btrfs_trans_handle *trans;
4414 	int ret, err;
4415 
4416 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4417 	if (IS_ERR(trans))
4418 		return PTR_ERR(trans);
4419 
4420 	memset(&root->root_item.drop_progress, 0,
4421 		sizeof(root->root_item.drop_progress));
4422 	root->root_item.drop_level = 0;
4423 	btrfs_set_root_refs(&root->root_item, 0);
4424 	ret = btrfs_update_root(trans, fs_info->tree_root,
4425 				&root->root_key, &root->root_item);
4426 
4427 	err = btrfs_end_transaction(trans);
4428 	if (err)
4429 		return err;
4430 	return ret;
4431 }
4432 
4433 /*
4434  * recover relocation interrupted by system crash.
4435  *
4436  * this function resumes merging reloc trees with corresponding fs trees.
4437  * this is important for keeping the sharing of tree blocks
4438  */
4439 int btrfs_recover_relocation(struct btrfs_root *root)
4440 {
4441 	struct btrfs_fs_info *fs_info = root->fs_info;
4442 	LIST_HEAD(reloc_roots);
4443 	struct btrfs_key key;
4444 	struct btrfs_root *fs_root;
4445 	struct btrfs_root *reloc_root;
4446 	struct btrfs_path *path;
4447 	struct extent_buffer *leaf;
4448 	struct reloc_control *rc = NULL;
4449 	struct btrfs_trans_handle *trans;
4450 	int ret;
4451 	int err = 0;
4452 
4453 	path = btrfs_alloc_path();
4454 	if (!path)
4455 		return -ENOMEM;
4456 	path->reada = READA_BACK;
4457 
4458 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4459 	key.type = BTRFS_ROOT_ITEM_KEY;
4460 	key.offset = (u64)-1;
4461 
4462 	while (1) {
4463 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4464 					path, 0, 0);
4465 		if (ret < 0) {
4466 			err = ret;
4467 			goto out;
4468 		}
4469 		if (ret > 0) {
4470 			if (path->slots[0] == 0)
4471 				break;
4472 			path->slots[0]--;
4473 		}
4474 		leaf = path->nodes[0];
4475 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4476 		btrfs_release_path(path);
4477 
4478 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4479 		    key.type != BTRFS_ROOT_ITEM_KEY)
4480 			break;
4481 
4482 		reloc_root = btrfs_read_fs_root(root, &key);
4483 		if (IS_ERR(reloc_root)) {
4484 			err = PTR_ERR(reloc_root);
4485 			goto out;
4486 		}
4487 
4488 		list_add(&reloc_root->root_list, &reloc_roots);
4489 
4490 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4491 			fs_root = read_fs_root(fs_info,
4492 					       reloc_root->root_key.offset);
4493 			if (IS_ERR(fs_root)) {
4494 				ret = PTR_ERR(fs_root);
4495 				if (ret != -ENOENT) {
4496 					err = ret;
4497 					goto out;
4498 				}
4499 				ret = mark_garbage_root(reloc_root);
4500 				if (ret < 0) {
4501 					err = ret;
4502 					goto out;
4503 				}
4504 			}
4505 		}
4506 
4507 		if (key.offset == 0)
4508 			break;
4509 
4510 		key.offset--;
4511 	}
4512 	btrfs_release_path(path);
4513 
4514 	if (list_empty(&reloc_roots))
4515 		goto out;
4516 
4517 	rc = alloc_reloc_control(fs_info);
4518 	if (!rc) {
4519 		err = -ENOMEM;
4520 		goto out;
4521 	}
4522 
4523 	rc->extent_root = fs_info->extent_root;
4524 
4525 	set_reloc_control(rc);
4526 
4527 	trans = btrfs_join_transaction(rc->extent_root);
4528 	if (IS_ERR(trans)) {
4529 		unset_reloc_control(rc);
4530 		err = PTR_ERR(trans);
4531 		goto out_free;
4532 	}
4533 
4534 	rc->merge_reloc_tree = 1;
4535 
4536 	while (!list_empty(&reloc_roots)) {
4537 		reloc_root = list_entry(reloc_roots.next,
4538 					struct btrfs_root, root_list);
4539 		list_del(&reloc_root->root_list);
4540 
4541 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4542 			list_add_tail(&reloc_root->root_list,
4543 				      &rc->reloc_roots);
4544 			continue;
4545 		}
4546 
4547 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4548 		if (IS_ERR(fs_root)) {
4549 			err = PTR_ERR(fs_root);
4550 			goto out_free;
4551 		}
4552 
4553 		err = __add_reloc_root(reloc_root);
4554 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4555 		fs_root->reloc_root = reloc_root;
4556 	}
4557 
4558 	err = btrfs_commit_transaction(trans);
4559 	if (err)
4560 		goto out_free;
4561 
4562 	merge_reloc_roots(rc);
4563 
4564 	unset_reloc_control(rc);
4565 
4566 	trans = btrfs_join_transaction(rc->extent_root);
4567 	if (IS_ERR(trans)) {
4568 		err = PTR_ERR(trans);
4569 		goto out_free;
4570 	}
4571 	err = btrfs_commit_transaction(trans);
4572 
4573 	ret = clean_dirty_subvols(rc);
4574 	if (ret < 0 && !err)
4575 		err = ret;
4576 out_free:
4577 	kfree(rc);
4578 out:
4579 	if (!list_empty(&reloc_roots))
4580 		free_reloc_roots(&reloc_roots);
4581 
4582 	btrfs_free_path(path);
4583 
4584 	if (err == 0) {
4585 		/* cleanup orphan inode in data relocation tree */
4586 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4587 		if (IS_ERR(fs_root))
4588 			err = PTR_ERR(fs_root);
4589 		else
4590 			err = btrfs_orphan_cleanup(fs_root);
4591 	}
4592 	return err;
4593 }
4594 
4595 /*
4596  * helper to add ordered checksum for data relocation.
4597  *
4598  * cloning checksum properly handles the nodatasum extents.
4599  * it also saves CPU time to re-calculate the checksum.
4600  */
4601 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4602 {
4603 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4604 	struct btrfs_ordered_sum *sums;
4605 	struct btrfs_ordered_extent *ordered;
4606 	int ret;
4607 	u64 disk_bytenr;
4608 	u64 new_bytenr;
4609 	LIST_HEAD(list);
4610 
4611 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4612 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4613 
4614 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4615 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4616 				       disk_bytenr + len - 1, &list, 0);
4617 	if (ret)
4618 		goto out;
4619 
4620 	while (!list_empty(&list)) {
4621 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4622 		list_del_init(&sums->list);
4623 
4624 		/*
4625 		 * We need to offset the new_bytenr based on where the csum is.
4626 		 * We need to do this because we will read in entire prealloc
4627 		 * extents but we may have written to say the middle of the
4628 		 * prealloc extent, so we need to make sure the csum goes with
4629 		 * the right disk offset.
4630 		 *
4631 		 * We can do this because the data reloc inode refers strictly
4632 		 * to the on disk bytes, so we don't have to worry about
4633 		 * disk_len vs real len like with real inodes since it's all
4634 		 * disk length.
4635 		 */
4636 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4637 		sums->bytenr = new_bytenr;
4638 
4639 		btrfs_add_ordered_sum(ordered, sums);
4640 	}
4641 out:
4642 	btrfs_put_ordered_extent(ordered);
4643 	return ret;
4644 }
4645 
4646 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4647 			  struct btrfs_root *root, struct extent_buffer *buf,
4648 			  struct extent_buffer *cow)
4649 {
4650 	struct btrfs_fs_info *fs_info = root->fs_info;
4651 	struct reloc_control *rc;
4652 	struct backref_node *node;
4653 	int first_cow = 0;
4654 	int level;
4655 	int ret = 0;
4656 
4657 	rc = fs_info->reloc_ctl;
4658 	if (!rc)
4659 		return 0;
4660 
4661 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4662 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4663 
4664 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4665 		if (buf == root->node)
4666 			__update_reloc_root(root, cow->start);
4667 	}
4668 
4669 	level = btrfs_header_level(buf);
4670 	if (btrfs_header_generation(buf) <=
4671 	    btrfs_root_last_snapshot(&root->root_item))
4672 		first_cow = 1;
4673 
4674 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4675 	    rc->create_reloc_tree) {
4676 		WARN_ON(!first_cow && level == 0);
4677 
4678 		node = rc->backref_cache.path[level];
4679 		BUG_ON(node->bytenr != buf->start &&
4680 		       node->new_bytenr != buf->start);
4681 
4682 		drop_node_buffer(node);
4683 		extent_buffer_get(cow);
4684 		node->eb = cow;
4685 		node->new_bytenr = cow->start;
4686 
4687 		if (!node->pending) {
4688 			list_move_tail(&node->list,
4689 				       &rc->backref_cache.pending[level]);
4690 			node->pending = 1;
4691 		}
4692 
4693 		if (first_cow)
4694 			__mark_block_processed(rc, node);
4695 
4696 		if (first_cow && level > 0)
4697 			rc->nodes_relocated += buf->len;
4698 	}
4699 
4700 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4701 		ret = replace_file_extents(trans, rc, root, cow);
4702 	return ret;
4703 }
4704 
4705 /*
4706  * called before creating snapshot. it calculates metadata reservation
4707  * required for relocating tree blocks in the snapshot
4708  */
4709 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4710 			      u64 *bytes_to_reserve)
4711 {
4712 	struct btrfs_root *root = pending->root;
4713 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4714 
4715 	if (!root->reloc_root || !rc)
4716 		return;
4717 
4718 	if (!rc->merge_reloc_tree)
4719 		return;
4720 
4721 	root = root->reloc_root;
4722 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4723 	/*
4724 	 * relocation is in the stage of merging trees. the space
4725 	 * used by merging a reloc tree is twice the size of
4726 	 * relocated tree nodes in the worst case. half for cowing
4727 	 * the reloc tree, half for cowing the fs tree. the space
4728 	 * used by cowing the reloc tree will be freed after the
4729 	 * tree is dropped. if we create snapshot, cowing the fs
4730 	 * tree may use more space than it frees. so we need
4731 	 * reserve extra space.
4732 	 */
4733 	*bytes_to_reserve += rc->nodes_relocated;
4734 }
4735 
4736 /*
4737  * called after snapshot is created. migrate block reservation
4738  * and create reloc root for the newly created snapshot
4739  */
4740 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4741 			       struct btrfs_pending_snapshot *pending)
4742 {
4743 	struct btrfs_root *root = pending->root;
4744 	struct btrfs_root *reloc_root;
4745 	struct btrfs_root *new_root;
4746 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4747 	int ret;
4748 
4749 	if (!root->reloc_root || !rc)
4750 		return 0;
4751 
4752 	rc = root->fs_info->reloc_ctl;
4753 	rc->merging_rsv_size += rc->nodes_relocated;
4754 
4755 	if (rc->merge_reloc_tree) {
4756 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4757 					      rc->block_rsv,
4758 					      rc->nodes_relocated, true);
4759 		if (ret)
4760 			return ret;
4761 	}
4762 
4763 	new_root = pending->snap;
4764 	reloc_root = create_reloc_root(trans, root->reloc_root,
4765 				       new_root->root_key.objectid);
4766 	if (IS_ERR(reloc_root))
4767 		return PTR_ERR(reloc_root);
4768 
4769 	ret = __add_reloc_root(reloc_root);
4770 	BUG_ON(ret < 0);
4771 	new_root->reloc_root = reloc_root;
4772 
4773 	if (rc->create_reloc_tree)
4774 		ret = clone_backref_node(trans, rc, root, reloc_root);
4775 	return ret;
4776 }
4777