1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "inode-map.h" 22 #include "qgroup.h" 23 #include "print-tree.h" 24 #include "delalloc-space.h" 25 #include "block-group.h" 26 #include "backref.h" 27 #include "misc.h" 28 29 /* 30 * Relocation overview 31 * 32 * [What does relocation do] 33 * 34 * The objective of relocation is to relocate all extents of the target block 35 * group to other block groups. 36 * This is utilized by resize (shrink only), profile converting, compacting 37 * space, or balance routine to spread chunks over devices. 38 * 39 * Before | After 40 * ------------------------------------------------------------------ 41 * BG A: 10 data extents | BG A: deleted 42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 44 * 45 * [How does relocation work] 46 * 47 * 1. Mark the target block group read-only 48 * New extents won't be allocated from the target block group. 49 * 50 * 2.1 Record each extent in the target block group 51 * To build a proper map of extents to be relocated. 52 * 53 * 2.2 Build data reloc tree and reloc trees 54 * Data reloc tree will contain an inode, recording all newly relocated 55 * data extents. 56 * There will be only one data reloc tree for one data block group. 57 * 58 * Reloc tree will be a special snapshot of its source tree, containing 59 * relocated tree blocks. 60 * Each tree referring to a tree block in target block group will get its 61 * reloc tree built. 62 * 63 * 2.3 Swap source tree with its corresponding reloc tree 64 * Each involved tree only refers to new extents after swap. 65 * 66 * 3. Cleanup reloc trees and data reloc tree. 67 * As old extents in the target block group are still referenced by reloc 68 * trees, we need to clean them up before really freeing the target block 69 * group. 70 * 71 * The main complexity is in steps 2.2 and 2.3. 72 * 73 * The entry point of relocation is relocate_block_group() function. 74 */ 75 76 #define RELOCATION_RESERVED_NODES 256 77 /* 78 * map address of tree root to tree 79 */ 80 struct mapping_node { 81 struct { 82 struct rb_node rb_node; 83 u64 bytenr; 84 }; /* Use rb_simle_node for search/insert */ 85 void *data; 86 }; 87 88 struct mapping_tree { 89 struct rb_root rb_root; 90 spinlock_t lock; 91 }; 92 93 /* 94 * present a tree block to process 95 */ 96 struct tree_block { 97 struct { 98 struct rb_node rb_node; 99 u64 bytenr; 100 }; /* Use rb_simple_node for search/insert */ 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104 }; 105 106 #define MAX_EXTENTS 128 107 108 struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113 }; 114 115 struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150 }; 151 152 /* stages of data relocation */ 153 #define MOVE_DATA_EXTENTS 0 154 #define UPDATE_DATA_PTRS 1 155 156 static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158 { 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169 } 170 171 172 static void mapping_tree_init(struct mapping_tree *tree) 173 { 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176 } 177 178 /* 179 * walk up backref nodes until reach node presents tree root 180 */ 181 static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184 { 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197 } 198 199 /* 200 * walk down backref nodes to find start of next reference path 201 */ 202 static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204 { 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224 } 225 226 static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228 { 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235 } 236 237 /* 238 * update backref cache after a transaction commit 239 */ 240 static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242 { 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288 } 289 290 static bool reloc_root_is_dead(struct btrfs_root *root) 291 { 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301 } 302 303 /* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311 static bool have_reloc_root(struct btrfs_root *root) 312 { 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318 } 319 320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321 { 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345 } 346 347 /* 348 * find reloc tree by address of tree root 349 */ 350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351 { 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366 } 367 368 /* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381 static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383 { 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440 } 441 442 /* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459 { 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517 out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528 } 529 530 /* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535 static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539 { 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608 fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617 } 618 619 /* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622 static int __must_check __add_reloc_root(struct btrfs_root *root) 623 { 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_panic(fs_info, -EEXIST, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 } 645 646 list_add_tail(&root->root_list, &rc->reloc_roots); 647 return 0; 648 } 649 650 /* 651 * helper to delete the 'address of tree root -> reloc tree' 652 * mapping 653 */ 654 static void __del_reloc_root(struct btrfs_root *root) 655 { 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct rb_node *rb_node; 658 struct mapping_node *node = NULL; 659 struct reloc_control *rc = fs_info->reloc_ctl; 660 bool put_ref = false; 661 662 if (rc && root->node) { 663 spin_lock(&rc->reloc_root_tree.lock); 664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 665 root->commit_root->start); 666 if (rb_node) { 667 node = rb_entry(rb_node, struct mapping_node, rb_node); 668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 669 RB_CLEAR_NODE(&node->rb_node); 670 } 671 spin_unlock(&rc->reloc_root_tree.lock); 672 if (!node) 673 return; 674 BUG_ON((struct btrfs_root *)node->data != root); 675 } 676 677 /* 678 * We only put the reloc root here if it's on the list. There's a lot 679 * of places where the pattern is to splice the rc->reloc_roots, process 680 * the reloc roots, and then add the reloc root back onto 681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 682 * list we don't want the reference being dropped, because the guy 683 * messing with the list is in charge of the reference. 684 */ 685 spin_lock(&fs_info->trans_lock); 686 if (!list_empty(&root->root_list)) { 687 put_ref = true; 688 list_del_init(&root->root_list); 689 } 690 spin_unlock(&fs_info->trans_lock); 691 if (put_ref) 692 btrfs_put_root(root); 693 kfree(node); 694 } 695 696 /* 697 * helper to update the 'address of tree root -> reloc tree' 698 * mapping 699 */ 700 static int __update_reloc_root(struct btrfs_root *root) 701 { 702 struct btrfs_fs_info *fs_info = root->fs_info; 703 struct rb_node *rb_node; 704 struct mapping_node *node = NULL; 705 struct reloc_control *rc = fs_info->reloc_ctl; 706 707 spin_lock(&rc->reloc_root_tree.lock); 708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 709 root->commit_root->start); 710 if (rb_node) { 711 node = rb_entry(rb_node, struct mapping_node, rb_node); 712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 713 } 714 spin_unlock(&rc->reloc_root_tree.lock); 715 716 if (!node) 717 return 0; 718 BUG_ON((struct btrfs_root *)node->data != root); 719 720 spin_lock(&rc->reloc_root_tree.lock); 721 node->bytenr = root->node->start; 722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 723 node->bytenr, &node->rb_node); 724 spin_unlock(&rc->reloc_root_tree.lock); 725 if (rb_node) 726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 727 return 0; 728 } 729 730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 731 struct btrfs_root *root, u64 objectid) 732 { 733 struct btrfs_fs_info *fs_info = root->fs_info; 734 struct btrfs_root *reloc_root; 735 struct extent_buffer *eb; 736 struct btrfs_root_item *root_item; 737 struct btrfs_key root_key; 738 int ret; 739 740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 741 BUG_ON(!root_item); 742 743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 744 root_key.type = BTRFS_ROOT_ITEM_KEY; 745 root_key.offset = objectid; 746 747 if (root->root_key.objectid == objectid) { 748 u64 commit_root_gen; 749 750 /* called by btrfs_init_reloc_root */ 751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 752 BTRFS_TREE_RELOC_OBJECTID); 753 BUG_ON(ret); 754 /* 755 * Set the last_snapshot field to the generation of the commit 756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 757 * correctly (returns true) when the relocation root is created 758 * either inside the critical section of a transaction commit 759 * (through transaction.c:qgroup_account_snapshot()) and when 760 * it's created before the transaction commit is started. 761 */ 762 commit_root_gen = btrfs_header_generation(root->commit_root); 763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 764 } else { 765 /* 766 * called by btrfs_reloc_post_snapshot_hook. 767 * the source tree is a reloc tree, all tree blocks 768 * modified after it was created have RELOC flag 769 * set in their headers. so it's OK to not update 770 * the 'last_snapshot'. 771 */ 772 ret = btrfs_copy_root(trans, root, root->node, &eb, 773 BTRFS_TREE_RELOC_OBJECTID); 774 BUG_ON(ret); 775 } 776 777 memcpy(root_item, &root->root_item, sizeof(*root_item)); 778 btrfs_set_root_bytenr(root_item, eb->start); 779 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 780 btrfs_set_root_generation(root_item, trans->transid); 781 782 if (root->root_key.objectid == objectid) { 783 btrfs_set_root_refs(root_item, 0); 784 memset(&root_item->drop_progress, 0, 785 sizeof(struct btrfs_disk_key)); 786 root_item->drop_level = 0; 787 } 788 789 btrfs_tree_unlock(eb); 790 free_extent_buffer(eb); 791 792 ret = btrfs_insert_root(trans, fs_info->tree_root, 793 &root_key, root_item); 794 BUG_ON(ret); 795 kfree(root_item); 796 797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 798 BUG_ON(IS_ERR(reloc_root)); 799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 800 reloc_root->last_trans = trans->transid; 801 return reloc_root; 802 } 803 804 /* 805 * create reloc tree for a given fs tree. reloc tree is just a 806 * snapshot of the fs tree with special root objectid. 807 * 808 * The reloc_root comes out of here with two references, one for 809 * root->reloc_root, and another for being on the rc->reloc_roots list. 810 */ 811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 812 struct btrfs_root *root) 813 { 814 struct btrfs_fs_info *fs_info = root->fs_info; 815 struct btrfs_root *reloc_root; 816 struct reloc_control *rc = fs_info->reloc_ctl; 817 struct btrfs_block_rsv *rsv; 818 int clear_rsv = 0; 819 int ret; 820 821 if (!rc) 822 return 0; 823 824 /* 825 * The subvolume has reloc tree but the swap is finished, no need to 826 * create/update the dead reloc tree 827 */ 828 if (reloc_root_is_dead(root)) 829 return 0; 830 831 /* 832 * This is subtle but important. We do not do 833 * record_root_in_transaction for reloc roots, instead we record their 834 * corresponding fs root, and then here we update the last trans for the 835 * reloc root. This means that we have to do this for the entire life 836 * of the reloc root, regardless of which stage of the relocation we are 837 * in. 838 */ 839 if (root->reloc_root) { 840 reloc_root = root->reloc_root; 841 reloc_root->last_trans = trans->transid; 842 return 0; 843 } 844 845 /* 846 * We are merging reloc roots, we do not need new reloc trees. Also 847 * reloc trees never need their own reloc tree. 848 */ 849 if (!rc->create_reloc_tree || 850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 851 return 0; 852 853 if (!trans->reloc_reserved) { 854 rsv = trans->block_rsv; 855 trans->block_rsv = rc->block_rsv; 856 clear_rsv = 1; 857 } 858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 859 if (clear_rsv) 860 trans->block_rsv = rsv; 861 862 ret = __add_reloc_root(reloc_root); 863 BUG_ON(ret < 0); 864 root->reloc_root = btrfs_grab_root(reloc_root); 865 return 0; 866 } 867 868 /* 869 * update root item of reloc tree 870 */ 871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root) 873 { 874 struct btrfs_fs_info *fs_info = root->fs_info; 875 struct btrfs_root *reloc_root; 876 struct btrfs_root_item *root_item; 877 int ret; 878 879 if (!have_reloc_root(root)) 880 goto out; 881 882 reloc_root = root->reloc_root; 883 root_item = &reloc_root->root_item; 884 885 /* 886 * We are probably ok here, but __del_reloc_root() will drop its ref of 887 * the root. We have the ref for root->reloc_root, but just in case 888 * hold it while we update the reloc root. 889 */ 890 btrfs_grab_root(reloc_root); 891 892 /* root->reloc_root will stay until current relocation finished */ 893 if (fs_info->reloc_ctl->merge_reloc_tree && 894 btrfs_root_refs(root_item) == 0) { 895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 896 /* 897 * Mark the tree as dead before we change reloc_root so 898 * have_reloc_root will not touch it from now on. 899 */ 900 smp_wmb(); 901 __del_reloc_root(reloc_root); 902 } 903 904 if (reloc_root->commit_root != reloc_root->node) { 905 __update_reloc_root(reloc_root); 906 btrfs_set_root_node(root_item, reloc_root->node); 907 free_extent_buffer(reloc_root->commit_root); 908 reloc_root->commit_root = btrfs_root_node(reloc_root); 909 } 910 911 ret = btrfs_update_root(trans, fs_info->tree_root, 912 &reloc_root->root_key, root_item); 913 BUG_ON(ret); 914 btrfs_put_root(reloc_root); 915 out: 916 return 0; 917 } 918 919 /* 920 * helper to find first cached inode with inode number >= objectid 921 * in a subvolume 922 */ 923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 924 { 925 struct rb_node *node; 926 struct rb_node *prev; 927 struct btrfs_inode *entry; 928 struct inode *inode; 929 930 spin_lock(&root->inode_lock); 931 again: 932 node = root->inode_tree.rb_node; 933 prev = NULL; 934 while (node) { 935 prev = node; 936 entry = rb_entry(node, struct btrfs_inode, rb_node); 937 938 if (objectid < btrfs_ino(entry)) 939 node = node->rb_left; 940 else if (objectid > btrfs_ino(entry)) 941 node = node->rb_right; 942 else 943 break; 944 } 945 if (!node) { 946 while (prev) { 947 entry = rb_entry(prev, struct btrfs_inode, rb_node); 948 if (objectid <= btrfs_ino(entry)) { 949 node = prev; 950 break; 951 } 952 prev = rb_next(prev); 953 } 954 } 955 while (node) { 956 entry = rb_entry(node, struct btrfs_inode, rb_node); 957 inode = igrab(&entry->vfs_inode); 958 if (inode) { 959 spin_unlock(&root->inode_lock); 960 return inode; 961 } 962 963 objectid = btrfs_ino(entry) + 1; 964 if (cond_resched_lock(&root->inode_lock)) 965 goto again; 966 967 node = rb_next(node); 968 } 969 spin_unlock(&root->inode_lock); 970 return NULL; 971 } 972 973 /* 974 * get new location of data 975 */ 976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 977 u64 bytenr, u64 num_bytes) 978 { 979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 980 struct btrfs_path *path; 981 struct btrfs_file_extent_item *fi; 982 struct extent_buffer *leaf; 983 int ret; 984 985 path = btrfs_alloc_path(); 986 if (!path) 987 return -ENOMEM; 988 989 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 990 ret = btrfs_lookup_file_extent(NULL, root, path, 991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 992 if (ret < 0) 993 goto out; 994 if (ret > 0) { 995 ret = -ENOENT; 996 goto out; 997 } 998 999 leaf = path->nodes[0]; 1000 fi = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_file_extent_item); 1002 1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1004 btrfs_file_extent_compression(leaf, fi) || 1005 btrfs_file_extent_encryption(leaf, fi) || 1006 btrfs_file_extent_other_encoding(leaf, fi)); 1007 1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1009 ret = -EINVAL; 1010 goto out; 1011 } 1012 1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1014 ret = 0; 1015 out: 1016 btrfs_free_path(path); 1017 return ret; 1018 } 1019 1020 /* 1021 * update file extent items in the tree leaf to point to 1022 * the new locations. 1023 */ 1024 static noinline_for_stack 1025 int replace_file_extents(struct btrfs_trans_handle *trans, 1026 struct reloc_control *rc, 1027 struct btrfs_root *root, 1028 struct extent_buffer *leaf) 1029 { 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 struct btrfs_key key; 1032 struct btrfs_file_extent_item *fi; 1033 struct inode *inode = NULL; 1034 u64 parent; 1035 u64 bytenr; 1036 u64 new_bytenr = 0; 1037 u64 num_bytes; 1038 u64 end; 1039 u32 nritems; 1040 u32 i; 1041 int ret = 0; 1042 int first = 1; 1043 int dirty = 0; 1044 1045 if (rc->stage != UPDATE_DATA_PTRS) 1046 return 0; 1047 1048 /* reloc trees always use full backref */ 1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1050 parent = leaf->start; 1051 else 1052 parent = 0; 1053 1054 nritems = btrfs_header_nritems(leaf); 1055 for (i = 0; i < nritems; i++) { 1056 struct btrfs_ref ref = { 0 }; 1057 1058 cond_resched(); 1059 btrfs_item_key_to_cpu(leaf, &key, i); 1060 if (key.type != BTRFS_EXTENT_DATA_KEY) 1061 continue; 1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1063 if (btrfs_file_extent_type(leaf, fi) == 1064 BTRFS_FILE_EXTENT_INLINE) 1065 continue; 1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1068 if (bytenr == 0) 1069 continue; 1070 if (!in_range(bytenr, rc->block_group->start, 1071 rc->block_group->length)) 1072 continue; 1073 1074 /* 1075 * if we are modifying block in fs tree, wait for readpage 1076 * to complete and drop the extent cache 1077 */ 1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1079 if (first) { 1080 inode = find_next_inode(root, key.objectid); 1081 first = 0; 1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1083 btrfs_add_delayed_iput(inode); 1084 inode = find_next_inode(root, key.objectid); 1085 } 1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1087 end = key.offset + 1088 btrfs_file_extent_num_bytes(leaf, fi); 1089 WARN_ON(!IS_ALIGNED(key.offset, 1090 fs_info->sectorsize)); 1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1092 end--; 1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1094 key.offset, end); 1095 if (!ret) 1096 continue; 1097 1098 btrfs_drop_extent_cache(BTRFS_I(inode), 1099 key.offset, end, 1); 1100 unlock_extent(&BTRFS_I(inode)->io_tree, 1101 key.offset, end); 1102 } 1103 } 1104 1105 ret = get_new_location(rc->data_inode, &new_bytenr, 1106 bytenr, num_bytes); 1107 if (ret) { 1108 /* 1109 * Don't have to abort since we've not changed anything 1110 * in the file extent yet. 1111 */ 1112 break; 1113 } 1114 1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1116 dirty = 1; 1117 1118 key.offset -= btrfs_file_extent_offset(leaf, fi); 1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1120 num_bytes, parent); 1121 ref.real_root = root->root_key.objectid; 1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1123 key.objectid, key.offset); 1124 ret = btrfs_inc_extent_ref(trans, &ref); 1125 if (ret) { 1126 btrfs_abort_transaction(trans, ret); 1127 break; 1128 } 1129 1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1131 num_bytes, parent); 1132 ref.real_root = root->root_key.objectid; 1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1134 key.objectid, key.offset); 1135 ret = btrfs_free_extent(trans, &ref); 1136 if (ret) { 1137 btrfs_abort_transaction(trans, ret); 1138 break; 1139 } 1140 } 1141 if (dirty) 1142 btrfs_mark_buffer_dirty(leaf); 1143 if (inode) 1144 btrfs_add_delayed_iput(inode); 1145 return ret; 1146 } 1147 1148 static noinline_for_stack 1149 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1150 struct btrfs_path *path, int level) 1151 { 1152 struct btrfs_disk_key key1; 1153 struct btrfs_disk_key key2; 1154 btrfs_node_key(eb, &key1, slot); 1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1156 return memcmp(&key1, &key2, sizeof(key1)); 1157 } 1158 1159 /* 1160 * try to replace tree blocks in fs tree with the new blocks 1161 * in reloc tree. tree blocks haven't been modified since the 1162 * reloc tree was create can be replaced. 1163 * 1164 * if a block was replaced, level of the block + 1 is returned. 1165 * if no block got replaced, 0 is returned. if there are other 1166 * errors, a negative error number is returned. 1167 */ 1168 static noinline_for_stack 1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1170 struct btrfs_root *dest, struct btrfs_root *src, 1171 struct btrfs_path *path, struct btrfs_key *next_key, 1172 int lowest_level, int max_level) 1173 { 1174 struct btrfs_fs_info *fs_info = dest->fs_info; 1175 struct extent_buffer *eb; 1176 struct extent_buffer *parent; 1177 struct btrfs_ref ref = { 0 }; 1178 struct btrfs_key key; 1179 u64 old_bytenr; 1180 u64 new_bytenr; 1181 u64 old_ptr_gen; 1182 u64 new_ptr_gen; 1183 u64 last_snapshot; 1184 u32 blocksize; 1185 int cow = 0; 1186 int level; 1187 int ret; 1188 int slot; 1189 1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1192 1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1194 again: 1195 slot = path->slots[lowest_level]; 1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1197 1198 eb = btrfs_lock_root_node(dest); 1199 btrfs_set_lock_blocking_write(eb); 1200 level = btrfs_header_level(eb); 1201 1202 if (level < lowest_level) { 1203 btrfs_tree_unlock(eb); 1204 free_extent_buffer(eb); 1205 return 0; 1206 } 1207 1208 if (cow) { 1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1210 BUG_ON(ret); 1211 } 1212 btrfs_set_lock_blocking_write(eb); 1213 1214 if (next_key) { 1215 next_key->objectid = (u64)-1; 1216 next_key->type = (u8)-1; 1217 next_key->offset = (u64)-1; 1218 } 1219 1220 parent = eb; 1221 while (1) { 1222 struct btrfs_key first_key; 1223 1224 level = btrfs_header_level(parent); 1225 BUG_ON(level < lowest_level); 1226 1227 ret = btrfs_bin_search(parent, &key, &slot); 1228 if (ret < 0) 1229 break; 1230 if (ret && slot > 0) 1231 slot--; 1232 1233 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1234 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1235 1236 old_bytenr = btrfs_node_blockptr(parent, slot); 1237 blocksize = fs_info->nodesize; 1238 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1239 btrfs_node_key_to_cpu(parent, &first_key, slot); 1240 1241 if (level <= max_level) { 1242 eb = path->nodes[level]; 1243 new_bytenr = btrfs_node_blockptr(eb, 1244 path->slots[level]); 1245 new_ptr_gen = btrfs_node_ptr_generation(eb, 1246 path->slots[level]); 1247 } else { 1248 new_bytenr = 0; 1249 new_ptr_gen = 0; 1250 } 1251 1252 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1253 ret = level; 1254 break; 1255 } 1256 1257 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1258 memcmp_node_keys(parent, slot, path, level)) { 1259 if (level <= lowest_level) { 1260 ret = 0; 1261 break; 1262 } 1263 1264 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1265 level - 1, &first_key); 1266 if (IS_ERR(eb)) { 1267 ret = PTR_ERR(eb); 1268 break; 1269 } else if (!extent_buffer_uptodate(eb)) { 1270 ret = -EIO; 1271 free_extent_buffer(eb); 1272 break; 1273 } 1274 btrfs_tree_lock(eb); 1275 if (cow) { 1276 ret = btrfs_cow_block(trans, dest, eb, parent, 1277 slot, &eb); 1278 BUG_ON(ret); 1279 } 1280 btrfs_set_lock_blocking_write(eb); 1281 1282 btrfs_tree_unlock(parent); 1283 free_extent_buffer(parent); 1284 1285 parent = eb; 1286 continue; 1287 } 1288 1289 if (!cow) { 1290 btrfs_tree_unlock(parent); 1291 free_extent_buffer(parent); 1292 cow = 1; 1293 goto again; 1294 } 1295 1296 btrfs_node_key_to_cpu(path->nodes[level], &key, 1297 path->slots[level]); 1298 btrfs_release_path(path); 1299 1300 path->lowest_level = level; 1301 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1302 path->lowest_level = 0; 1303 BUG_ON(ret); 1304 1305 /* 1306 * Info qgroup to trace both subtrees. 1307 * 1308 * We must trace both trees. 1309 * 1) Tree reloc subtree 1310 * If not traced, we will leak data numbers 1311 * 2) Fs subtree 1312 * If not traced, we will double count old data 1313 * 1314 * We don't scan the subtree right now, but only record 1315 * the swapped tree blocks. 1316 * The real subtree rescan is delayed until we have new 1317 * CoW on the subtree root node before transaction commit. 1318 */ 1319 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1320 rc->block_group, parent, slot, 1321 path->nodes[level], path->slots[level], 1322 last_snapshot); 1323 if (ret < 0) 1324 break; 1325 /* 1326 * swap blocks in fs tree and reloc tree. 1327 */ 1328 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1329 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1330 btrfs_mark_buffer_dirty(parent); 1331 1332 btrfs_set_node_blockptr(path->nodes[level], 1333 path->slots[level], old_bytenr); 1334 btrfs_set_node_ptr_generation(path->nodes[level], 1335 path->slots[level], old_ptr_gen); 1336 btrfs_mark_buffer_dirty(path->nodes[level]); 1337 1338 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1339 blocksize, path->nodes[level]->start); 1340 ref.skip_qgroup = true; 1341 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1342 ret = btrfs_inc_extent_ref(trans, &ref); 1343 BUG_ON(ret); 1344 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1345 blocksize, 0); 1346 ref.skip_qgroup = true; 1347 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1348 ret = btrfs_inc_extent_ref(trans, &ref); 1349 BUG_ON(ret); 1350 1351 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1352 blocksize, path->nodes[level]->start); 1353 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1354 ref.skip_qgroup = true; 1355 ret = btrfs_free_extent(trans, &ref); 1356 BUG_ON(ret); 1357 1358 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1359 blocksize, 0); 1360 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1361 ref.skip_qgroup = true; 1362 ret = btrfs_free_extent(trans, &ref); 1363 BUG_ON(ret); 1364 1365 btrfs_unlock_up_safe(path, 0); 1366 1367 ret = level; 1368 break; 1369 } 1370 btrfs_tree_unlock(parent); 1371 free_extent_buffer(parent); 1372 return ret; 1373 } 1374 1375 /* 1376 * helper to find next relocated block in reloc tree 1377 */ 1378 static noinline_for_stack 1379 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1380 int *level) 1381 { 1382 struct extent_buffer *eb; 1383 int i; 1384 u64 last_snapshot; 1385 u32 nritems; 1386 1387 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1388 1389 for (i = 0; i < *level; i++) { 1390 free_extent_buffer(path->nodes[i]); 1391 path->nodes[i] = NULL; 1392 } 1393 1394 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1395 eb = path->nodes[i]; 1396 nritems = btrfs_header_nritems(eb); 1397 while (path->slots[i] + 1 < nritems) { 1398 path->slots[i]++; 1399 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1400 last_snapshot) 1401 continue; 1402 1403 *level = i; 1404 return 0; 1405 } 1406 free_extent_buffer(path->nodes[i]); 1407 path->nodes[i] = NULL; 1408 } 1409 return 1; 1410 } 1411 1412 /* 1413 * walk down reloc tree to find relocated block of lowest level 1414 */ 1415 static noinline_for_stack 1416 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1417 int *level) 1418 { 1419 struct btrfs_fs_info *fs_info = root->fs_info; 1420 struct extent_buffer *eb = NULL; 1421 int i; 1422 u64 bytenr; 1423 u64 ptr_gen = 0; 1424 u64 last_snapshot; 1425 u32 nritems; 1426 1427 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1428 1429 for (i = *level; i > 0; i--) { 1430 struct btrfs_key first_key; 1431 1432 eb = path->nodes[i]; 1433 nritems = btrfs_header_nritems(eb); 1434 while (path->slots[i] < nritems) { 1435 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1436 if (ptr_gen > last_snapshot) 1437 break; 1438 path->slots[i]++; 1439 } 1440 if (path->slots[i] >= nritems) { 1441 if (i == *level) 1442 break; 1443 *level = i + 1; 1444 return 0; 1445 } 1446 if (i == 1) { 1447 *level = i; 1448 return 0; 1449 } 1450 1451 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1452 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 1453 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 1454 &first_key); 1455 if (IS_ERR(eb)) { 1456 return PTR_ERR(eb); 1457 } else if (!extent_buffer_uptodate(eb)) { 1458 free_extent_buffer(eb); 1459 return -EIO; 1460 } 1461 BUG_ON(btrfs_header_level(eb) != i - 1); 1462 path->nodes[i - 1] = eb; 1463 path->slots[i - 1] = 0; 1464 } 1465 return 1; 1466 } 1467 1468 /* 1469 * invalidate extent cache for file extents whose key in range of 1470 * [min_key, max_key) 1471 */ 1472 static int invalidate_extent_cache(struct btrfs_root *root, 1473 struct btrfs_key *min_key, 1474 struct btrfs_key *max_key) 1475 { 1476 struct btrfs_fs_info *fs_info = root->fs_info; 1477 struct inode *inode = NULL; 1478 u64 objectid; 1479 u64 start, end; 1480 u64 ino; 1481 1482 objectid = min_key->objectid; 1483 while (1) { 1484 cond_resched(); 1485 iput(inode); 1486 1487 if (objectid > max_key->objectid) 1488 break; 1489 1490 inode = find_next_inode(root, objectid); 1491 if (!inode) 1492 break; 1493 ino = btrfs_ino(BTRFS_I(inode)); 1494 1495 if (ino > max_key->objectid) { 1496 iput(inode); 1497 break; 1498 } 1499 1500 objectid = ino + 1; 1501 if (!S_ISREG(inode->i_mode)) 1502 continue; 1503 1504 if (unlikely(min_key->objectid == ino)) { 1505 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1506 continue; 1507 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1508 start = 0; 1509 else { 1510 start = min_key->offset; 1511 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1512 } 1513 } else { 1514 start = 0; 1515 } 1516 1517 if (unlikely(max_key->objectid == ino)) { 1518 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1519 continue; 1520 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1521 end = (u64)-1; 1522 } else { 1523 if (max_key->offset == 0) 1524 continue; 1525 end = max_key->offset; 1526 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1527 end--; 1528 } 1529 } else { 1530 end = (u64)-1; 1531 } 1532 1533 /* the lock_extent waits for readpage to complete */ 1534 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1535 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1536 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1537 } 1538 return 0; 1539 } 1540 1541 static int find_next_key(struct btrfs_path *path, int level, 1542 struct btrfs_key *key) 1543 1544 { 1545 while (level < BTRFS_MAX_LEVEL) { 1546 if (!path->nodes[level]) 1547 break; 1548 if (path->slots[level] + 1 < 1549 btrfs_header_nritems(path->nodes[level])) { 1550 btrfs_node_key_to_cpu(path->nodes[level], key, 1551 path->slots[level] + 1); 1552 return 0; 1553 } 1554 level++; 1555 } 1556 return 1; 1557 } 1558 1559 /* 1560 * Insert current subvolume into reloc_control::dirty_subvol_roots 1561 */ 1562 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1563 struct reloc_control *rc, 1564 struct btrfs_root *root) 1565 { 1566 struct btrfs_root *reloc_root = root->reloc_root; 1567 struct btrfs_root_item *reloc_root_item; 1568 1569 /* @root must be a subvolume tree root with a valid reloc tree */ 1570 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1571 ASSERT(reloc_root); 1572 1573 reloc_root_item = &reloc_root->root_item; 1574 memset(&reloc_root_item->drop_progress, 0, 1575 sizeof(reloc_root_item->drop_progress)); 1576 reloc_root_item->drop_level = 0; 1577 btrfs_set_root_refs(reloc_root_item, 0); 1578 btrfs_update_reloc_root(trans, root); 1579 1580 if (list_empty(&root->reloc_dirty_list)) { 1581 btrfs_grab_root(root); 1582 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1583 } 1584 } 1585 1586 static int clean_dirty_subvols(struct reloc_control *rc) 1587 { 1588 struct btrfs_root *root; 1589 struct btrfs_root *next; 1590 int ret = 0; 1591 int ret2; 1592 1593 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1594 reloc_dirty_list) { 1595 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1596 /* Merged subvolume, cleanup its reloc root */ 1597 struct btrfs_root *reloc_root = root->reloc_root; 1598 1599 list_del_init(&root->reloc_dirty_list); 1600 root->reloc_root = NULL; 1601 /* 1602 * Need barrier to ensure clear_bit() only happens after 1603 * root->reloc_root = NULL. Pairs with have_reloc_root. 1604 */ 1605 smp_wmb(); 1606 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1607 if (reloc_root) { 1608 /* 1609 * btrfs_drop_snapshot drops our ref we hold for 1610 * ->reloc_root. If it fails however we must 1611 * drop the ref ourselves. 1612 */ 1613 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1614 if (ret2 < 0) { 1615 btrfs_put_root(reloc_root); 1616 if (!ret) 1617 ret = ret2; 1618 } 1619 } 1620 btrfs_put_root(root); 1621 } else { 1622 /* Orphan reloc tree, just clean it up */ 1623 ret2 = btrfs_drop_snapshot(root, 0, 1); 1624 if (ret2 < 0) { 1625 btrfs_put_root(root); 1626 if (!ret) 1627 ret = ret2; 1628 } 1629 } 1630 } 1631 return ret; 1632 } 1633 1634 /* 1635 * merge the relocated tree blocks in reloc tree with corresponding 1636 * fs tree. 1637 */ 1638 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1639 struct btrfs_root *root) 1640 { 1641 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1642 struct btrfs_key key; 1643 struct btrfs_key next_key; 1644 struct btrfs_trans_handle *trans = NULL; 1645 struct btrfs_root *reloc_root; 1646 struct btrfs_root_item *root_item; 1647 struct btrfs_path *path; 1648 struct extent_buffer *leaf; 1649 int level; 1650 int max_level; 1651 int replaced = 0; 1652 int ret; 1653 int err = 0; 1654 u32 min_reserved; 1655 1656 path = btrfs_alloc_path(); 1657 if (!path) 1658 return -ENOMEM; 1659 path->reada = READA_FORWARD; 1660 1661 reloc_root = root->reloc_root; 1662 root_item = &reloc_root->root_item; 1663 1664 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1665 level = btrfs_root_level(root_item); 1666 atomic_inc(&reloc_root->node->refs); 1667 path->nodes[level] = reloc_root->node; 1668 path->slots[level] = 0; 1669 } else { 1670 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1671 1672 level = root_item->drop_level; 1673 BUG_ON(level == 0); 1674 path->lowest_level = level; 1675 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1676 path->lowest_level = 0; 1677 if (ret < 0) { 1678 btrfs_free_path(path); 1679 return ret; 1680 } 1681 1682 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1683 path->slots[level]); 1684 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1685 1686 btrfs_unlock_up_safe(path, 0); 1687 } 1688 1689 /* 1690 * In merge_reloc_root(), we modify the upper level pointer to swap the 1691 * tree blocks between reloc tree and subvolume tree. Thus for tree 1692 * block COW, we COW at most from level 1 to root level for each tree. 1693 * 1694 * Thus the needed metadata size is at most root_level * nodesize, 1695 * and * 2 since we have two trees to COW. 1696 */ 1697 min_reserved = fs_info->nodesize * btrfs_root_level(root_item) * 2; 1698 memset(&next_key, 0, sizeof(next_key)); 1699 1700 while (1) { 1701 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1702 BTRFS_RESERVE_FLUSH_LIMIT); 1703 if (ret) { 1704 err = ret; 1705 goto out; 1706 } 1707 trans = btrfs_start_transaction(root, 0); 1708 if (IS_ERR(trans)) { 1709 err = PTR_ERR(trans); 1710 trans = NULL; 1711 goto out; 1712 } 1713 1714 /* 1715 * At this point we no longer have a reloc_control, so we can't 1716 * depend on btrfs_init_reloc_root to update our last_trans. 1717 * 1718 * But that's ok, we started the trans handle on our 1719 * corresponding fs_root, which means it's been added to the 1720 * dirty list. At commit time we'll still call 1721 * btrfs_update_reloc_root() and update our root item 1722 * appropriately. 1723 */ 1724 reloc_root->last_trans = trans->transid; 1725 trans->block_rsv = rc->block_rsv; 1726 1727 replaced = 0; 1728 max_level = level; 1729 1730 ret = walk_down_reloc_tree(reloc_root, path, &level); 1731 if (ret < 0) { 1732 err = ret; 1733 goto out; 1734 } 1735 if (ret > 0) 1736 break; 1737 1738 if (!find_next_key(path, level, &key) && 1739 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1740 ret = 0; 1741 } else { 1742 ret = replace_path(trans, rc, root, reloc_root, path, 1743 &next_key, level, max_level); 1744 } 1745 if (ret < 0) { 1746 err = ret; 1747 goto out; 1748 } 1749 1750 if (ret > 0) { 1751 level = ret; 1752 btrfs_node_key_to_cpu(path->nodes[level], &key, 1753 path->slots[level]); 1754 replaced = 1; 1755 } 1756 1757 ret = walk_up_reloc_tree(reloc_root, path, &level); 1758 if (ret > 0) 1759 break; 1760 1761 BUG_ON(level == 0); 1762 /* 1763 * save the merging progress in the drop_progress. 1764 * this is OK since root refs == 1 in this case. 1765 */ 1766 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1767 path->slots[level]); 1768 root_item->drop_level = level; 1769 1770 btrfs_end_transaction_throttle(trans); 1771 trans = NULL; 1772 1773 btrfs_btree_balance_dirty(fs_info); 1774 1775 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1776 invalidate_extent_cache(root, &key, &next_key); 1777 } 1778 1779 /* 1780 * handle the case only one block in the fs tree need to be 1781 * relocated and the block is tree root. 1782 */ 1783 leaf = btrfs_lock_root_node(root); 1784 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 1785 btrfs_tree_unlock(leaf); 1786 free_extent_buffer(leaf); 1787 if (ret < 0) 1788 err = ret; 1789 out: 1790 btrfs_free_path(path); 1791 1792 if (err == 0) 1793 insert_dirty_subvol(trans, rc, root); 1794 1795 if (trans) 1796 btrfs_end_transaction_throttle(trans); 1797 1798 btrfs_btree_balance_dirty(fs_info); 1799 1800 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1801 invalidate_extent_cache(root, &key, &next_key); 1802 1803 return err; 1804 } 1805 1806 static noinline_for_stack 1807 int prepare_to_merge(struct reloc_control *rc, int err) 1808 { 1809 struct btrfs_root *root = rc->extent_root; 1810 struct btrfs_fs_info *fs_info = root->fs_info; 1811 struct btrfs_root *reloc_root; 1812 struct btrfs_trans_handle *trans; 1813 LIST_HEAD(reloc_roots); 1814 u64 num_bytes = 0; 1815 int ret; 1816 1817 mutex_lock(&fs_info->reloc_mutex); 1818 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1819 rc->merging_rsv_size += rc->nodes_relocated * 2; 1820 mutex_unlock(&fs_info->reloc_mutex); 1821 1822 again: 1823 if (!err) { 1824 num_bytes = rc->merging_rsv_size; 1825 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1826 BTRFS_RESERVE_FLUSH_ALL); 1827 if (ret) 1828 err = ret; 1829 } 1830 1831 trans = btrfs_join_transaction(rc->extent_root); 1832 if (IS_ERR(trans)) { 1833 if (!err) 1834 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1835 num_bytes, NULL); 1836 return PTR_ERR(trans); 1837 } 1838 1839 if (!err) { 1840 if (num_bytes != rc->merging_rsv_size) { 1841 btrfs_end_transaction(trans); 1842 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1843 num_bytes, NULL); 1844 goto again; 1845 } 1846 } 1847 1848 rc->merge_reloc_tree = 1; 1849 1850 while (!list_empty(&rc->reloc_roots)) { 1851 reloc_root = list_entry(rc->reloc_roots.next, 1852 struct btrfs_root, root_list); 1853 list_del_init(&reloc_root->root_list); 1854 1855 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1856 false); 1857 BUG_ON(IS_ERR(root)); 1858 BUG_ON(root->reloc_root != reloc_root); 1859 1860 /* 1861 * set reference count to 1, so btrfs_recover_relocation 1862 * knows it should resumes merging 1863 */ 1864 if (!err) 1865 btrfs_set_root_refs(&reloc_root->root_item, 1); 1866 btrfs_update_reloc_root(trans, root); 1867 1868 list_add(&reloc_root->root_list, &reloc_roots); 1869 btrfs_put_root(root); 1870 } 1871 1872 list_splice(&reloc_roots, &rc->reloc_roots); 1873 1874 if (!err) 1875 btrfs_commit_transaction(trans); 1876 else 1877 btrfs_end_transaction(trans); 1878 return err; 1879 } 1880 1881 static noinline_for_stack 1882 void free_reloc_roots(struct list_head *list) 1883 { 1884 struct btrfs_root *reloc_root, *tmp; 1885 1886 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1887 __del_reloc_root(reloc_root); 1888 } 1889 1890 static noinline_for_stack 1891 void merge_reloc_roots(struct reloc_control *rc) 1892 { 1893 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1894 struct btrfs_root *root; 1895 struct btrfs_root *reloc_root; 1896 LIST_HEAD(reloc_roots); 1897 int found = 0; 1898 int ret = 0; 1899 again: 1900 root = rc->extent_root; 1901 1902 /* 1903 * this serializes us with btrfs_record_root_in_transaction, 1904 * we have to make sure nobody is in the middle of 1905 * adding their roots to the list while we are 1906 * doing this splice 1907 */ 1908 mutex_lock(&fs_info->reloc_mutex); 1909 list_splice_init(&rc->reloc_roots, &reloc_roots); 1910 mutex_unlock(&fs_info->reloc_mutex); 1911 1912 while (!list_empty(&reloc_roots)) { 1913 found = 1; 1914 reloc_root = list_entry(reloc_roots.next, 1915 struct btrfs_root, root_list); 1916 1917 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1918 false); 1919 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1920 BUG_ON(IS_ERR(root)); 1921 BUG_ON(root->reloc_root != reloc_root); 1922 ret = merge_reloc_root(rc, root); 1923 btrfs_put_root(root); 1924 if (ret) { 1925 if (list_empty(&reloc_root->root_list)) 1926 list_add_tail(&reloc_root->root_list, 1927 &reloc_roots); 1928 goto out; 1929 } 1930 } else { 1931 if (!IS_ERR(root)) { 1932 if (root->reloc_root == reloc_root) { 1933 root->reloc_root = NULL; 1934 btrfs_put_root(reloc_root); 1935 } 1936 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1937 &root->state); 1938 btrfs_put_root(root); 1939 } 1940 1941 list_del_init(&reloc_root->root_list); 1942 /* Don't forget to queue this reloc root for cleanup */ 1943 list_add_tail(&reloc_root->reloc_dirty_list, 1944 &rc->dirty_subvol_roots); 1945 } 1946 } 1947 1948 if (found) { 1949 found = 0; 1950 goto again; 1951 } 1952 out: 1953 if (ret) { 1954 btrfs_handle_fs_error(fs_info, ret, NULL); 1955 free_reloc_roots(&reloc_roots); 1956 1957 /* new reloc root may be added */ 1958 mutex_lock(&fs_info->reloc_mutex); 1959 list_splice_init(&rc->reloc_roots, &reloc_roots); 1960 mutex_unlock(&fs_info->reloc_mutex); 1961 free_reloc_roots(&reloc_roots); 1962 } 1963 1964 /* 1965 * We used to have 1966 * 1967 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1968 * 1969 * here, but it's wrong. If we fail to start the transaction in 1970 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1971 * have actually been removed from the reloc_root_tree rb tree. This is 1972 * fine because we're bailing here, and we hold a reference on the root 1973 * for the list that holds it, so these roots will be cleaned up when we 1974 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1975 * will be cleaned up on unmount. 1976 * 1977 * The remaining nodes will be cleaned up by free_reloc_control. 1978 */ 1979 } 1980 1981 static void free_block_list(struct rb_root *blocks) 1982 { 1983 struct tree_block *block; 1984 struct rb_node *rb_node; 1985 while ((rb_node = rb_first(blocks))) { 1986 block = rb_entry(rb_node, struct tree_block, rb_node); 1987 rb_erase(rb_node, blocks); 1988 kfree(block); 1989 } 1990 } 1991 1992 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1993 struct btrfs_root *reloc_root) 1994 { 1995 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 1996 struct btrfs_root *root; 1997 int ret; 1998 1999 if (reloc_root->last_trans == trans->transid) 2000 return 0; 2001 2002 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2003 BUG_ON(IS_ERR(root)); 2004 BUG_ON(root->reloc_root != reloc_root); 2005 ret = btrfs_record_root_in_trans(trans, root); 2006 btrfs_put_root(root); 2007 2008 return ret; 2009 } 2010 2011 static noinline_for_stack 2012 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2013 struct reloc_control *rc, 2014 struct btrfs_backref_node *node, 2015 struct btrfs_backref_edge *edges[]) 2016 { 2017 struct btrfs_backref_node *next; 2018 struct btrfs_root *root; 2019 int index = 0; 2020 2021 next = node; 2022 while (1) { 2023 cond_resched(); 2024 next = walk_up_backref(next, edges, &index); 2025 root = next->root; 2026 BUG_ON(!root); 2027 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 2028 2029 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2030 record_reloc_root_in_trans(trans, root); 2031 break; 2032 } 2033 2034 btrfs_record_root_in_trans(trans, root); 2035 root = root->reloc_root; 2036 2037 if (next->new_bytenr != root->node->start) { 2038 BUG_ON(next->new_bytenr); 2039 BUG_ON(!list_empty(&next->list)); 2040 next->new_bytenr = root->node->start; 2041 btrfs_put_root(next->root); 2042 next->root = btrfs_grab_root(root); 2043 ASSERT(next->root); 2044 list_add_tail(&next->list, 2045 &rc->backref_cache.changed); 2046 mark_block_processed(rc, next); 2047 break; 2048 } 2049 2050 WARN_ON(1); 2051 root = NULL; 2052 next = walk_down_backref(edges, &index); 2053 if (!next || next->level <= node->level) 2054 break; 2055 } 2056 if (!root) 2057 return NULL; 2058 2059 next = node; 2060 /* setup backref node path for btrfs_reloc_cow_block */ 2061 while (1) { 2062 rc->backref_cache.path[next->level] = next; 2063 if (--index < 0) 2064 break; 2065 next = edges[index]->node[UPPER]; 2066 } 2067 return root; 2068 } 2069 2070 /* 2071 * Select a tree root for relocation. 2072 * 2073 * Return NULL if the block is not shareable. We should use do_relocation() in 2074 * this case. 2075 * 2076 * Return a tree root pointer if the block is shareable. 2077 * Return -ENOENT if the block is root of reloc tree. 2078 */ 2079 static noinline_for_stack 2080 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2081 { 2082 struct btrfs_backref_node *next; 2083 struct btrfs_root *root; 2084 struct btrfs_root *fs_root = NULL; 2085 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2086 int index = 0; 2087 2088 next = node; 2089 while (1) { 2090 cond_resched(); 2091 next = walk_up_backref(next, edges, &index); 2092 root = next->root; 2093 BUG_ON(!root); 2094 2095 /* No other choice for non-shareable tree */ 2096 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2097 return root; 2098 2099 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2100 fs_root = root; 2101 2102 if (next != node) 2103 return NULL; 2104 2105 next = walk_down_backref(edges, &index); 2106 if (!next || next->level <= node->level) 2107 break; 2108 } 2109 2110 if (!fs_root) 2111 return ERR_PTR(-ENOENT); 2112 return fs_root; 2113 } 2114 2115 static noinline_for_stack 2116 u64 calcu_metadata_size(struct reloc_control *rc, 2117 struct btrfs_backref_node *node, int reserve) 2118 { 2119 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2120 struct btrfs_backref_node *next = node; 2121 struct btrfs_backref_edge *edge; 2122 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2123 u64 num_bytes = 0; 2124 int index = 0; 2125 2126 BUG_ON(reserve && node->processed); 2127 2128 while (next) { 2129 cond_resched(); 2130 while (1) { 2131 if (next->processed && (reserve || next != node)) 2132 break; 2133 2134 num_bytes += fs_info->nodesize; 2135 2136 if (list_empty(&next->upper)) 2137 break; 2138 2139 edge = list_entry(next->upper.next, 2140 struct btrfs_backref_edge, list[LOWER]); 2141 edges[index++] = edge; 2142 next = edge->node[UPPER]; 2143 } 2144 next = walk_down_backref(edges, &index); 2145 } 2146 return num_bytes; 2147 } 2148 2149 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2150 struct reloc_control *rc, 2151 struct btrfs_backref_node *node) 2152 { 2153 struct btrfs_root *root = rc->extent_root; 2154 struct btrfs_fs_info *fs_info = root->fs_info; 2155 u64 num_bytes; 2156 int ret; 2157 u64 tmp; 2158 2159 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2160 2161 trans->block_rsv = rc->block_rsv; 2162 rc->reserved_bytes += num_bytes; 2163 2164 /* 2165 * We are under a transaction here so we can only do limited flushing. 2166 * If we get an enospc just kick back -EAGAIN so we know to drop the 2167 * transaction and try to refill when we can flush all the things. 2168 */ 2169 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2170 BTRFS_RESERVE_FLUSH_LIMIT); 2171 if (ret) { 2172 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2173 while (tmp <= rc->reserved_bytes) 2174 tmp <<= 1; 2175 /* 2176 * only one thread can access block_rsv at this point, 2177 * so we don't need hold lock to protect block_rsv. 2178 * we expand more reservation size here to allow enough 2179 * space for relocation and we will return earlier in 2180 * enospc case. 2181 */ 2182 rc->block_rsv->size = tmp + fs_info->nodesize * 2183 RELOCATION_RESERVED_NODES; 2184 return -EAGAIN; 2185 } 2186 2187 return 0; 2188 } 2189 2190 /* 2191 * relocate a block tree, and then update pointers in upper level 2192 * blocks that reference the block to point to the new location. 2193 * 2194 * if called by link_to_upper, the block has already been relocated. 2195 * in that case this function just updates pointers. 2196 */ 2197 static int do_relocation(struct btrfs_trans_handle *trans, 2198 struct reloc_control *rc, 2199 struct btrfs_backref_node *node, 2200 struct btrfs_key *key, 2201 struct btrfs_path *path, int lowest) 2202 { 2203 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2204 struct btrfs_backref_node *upper; 2205 struct btrfs_backref_edge *edge; 2206 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2207 struct btrfs_root *root; 2208 struct extent_buffer *eb; 2209 u32 blocksize; 2210 u64 bytenr; 2211 u64 generation; 2212 int slot; 2213 int ret; 2214 int err = 0; 2215 2216 BUG_ON(lowest && node->eb); 2217 2218 path->lowest_level = node->level + 1; 2219 rc->backref_cache.path[node->level] = node; 2220 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2221 struct btrfs_key first_key; 2222 struct btrfs_ref ref = { 0 }; 2223 2224 cond_resched(); 2225 2226 upper = edge->node[UPPER]; 2227 root = select_reloc_root(trans, rc, upper, edges); 2228 BUG_ON(!root); 2229 2230 if (upper->eb && !upper->locked) { 2231 if (!lowest) { 2232 ret = btrfs_bin_search(upper->eb, key, &slot); 2233 if (ret < 0) { 2234 err = ret; 2235 goto next; 2236 } 2237 BUG_ON(ret); 2238 bytenr = btrfs_node_blockptr(upper->eb, slot); 2239 if (node->eb->start == bytenr) 2240 goto next; 2241 } 2242 btrfs_backref_drop_node_buffer(upper); 2243 } 2244 2245 if (!upper->eb) { 2246 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2247 if (ret) { 2248 if (ret < 0) 2249 err = ret; 2250 else 2251 err = -ENOENT; 2252 2253 btrfs_release_path(path); 2254 break; 2255 } 2256 2257 if (!upper->eb) { 2258 upper->eb = path->nodes[upper->level]; 2259 path->nodes[upper->level] = NULL; 2260 } else { 2261 BUG_ON(upper->eb != path->nodes[upper->level]); 2262 } 2263 2264 upper->locked = 1; 2265 path->locks[upper->level] = 0; 2266 2267 slot = path->slots[upper->level]; 2268 btrfs_release_path(path); 2269 } else { 2270 ret = btrfs_bin_search(upper->eb, key, &slot); 2271 if (ret < 0) { 2272 err = ret; 2273 goto next; 2274 } 2275 BUG_ON(ret); 2276 } 2277 2278 bytenr = btrfs_node_blockptr(upper->eb, slot); 2279 if (lowest) { 2280 if (bytenr != node->bytenr) { 2281 btrfs_err(root->fs_info, 2282 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2283 bytenr, node->bytenr, slot, 2284 upper->eb->start); 2285 err = -EIO; 2286 goto next; 2287 } 2288 } else { 2289 if (node->eb->start == bytenr) 2290 goto next; 2291 } 2292 2293 blocksize = root->fs_info->nodesize; 2294 generation = btrfs_node_ptr_generation(upper->eb, slot); 2295 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2296 eb = read_tree_block(fs_info, bytenr, generation, 2297 upper->level - 1, &first_key); 2298 if (IS_ERR(eb)) { 2299 err = PTR_ERR(eb); 2300 goto next; 2301 } else if (!extent_buffer_uptodate(eb)) { 2302 free_extent_buffer(eb); 2303 err = -EIO; 2304 goto next; 2305 } 2306 btrfs_tree_lock(eb); 2307 btrfs_set_lock_blocking_write(eb); 2308 2309 if (!node->eb) { 2310 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2311 slot, &eb); 2312 btrfs_tree_unlock(eb); 2313 free_extent_buffer(eb); 2314 if (ret < 0) { 2315 err = ret; 2316 goto next; 2317 } 2318 BUG_ON(node->eb != eb); 2319 } else { 2320 btrfs_set_node_blockptr(upper->eb, slot, 2321 node->eb->start); 2322 btrfs_set_node_ptr_generation(upper->eb, slot, 2323 trans->transid); 2324 btrfs_mark_buffer_dirty(upper->eb); 2325 2326 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2327 node->eb->start, blocksize, 2328 upper->eb->start); 2329 ref.real_root = root->root_key.objectid; 2330 btrfs_init_tree_ref(&ref, node->level, 2331 btrfs_header_owner(upper->eb)); 2332 ret = btrfs_inc_extent_ref(trans, &ref); 2333 BUG_ON(ret); 2334 2335 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2336 BUG_ON(ret); 2337 } 2338 next: 2339 if (!upper->pending) 2340 btrfs_backref_drop_node_buffer(upper); 2341 else 2342 btrfs_backref_unlock_node_buffer(upper); 2343 if (err) 2344 break; 2345 } 2346 2347 if (!err && node->pending) { 2348 btrfs_backref_drop_node_buffer(node); 2349 list_move_tail(&node->list, &rc->backref_cache.changed); 2350 node->pending = 0; 2351 } 2352 2353 path->lowest_level = 0; 2354 BUG_ON(err == -ENOSPC); 2355 return err; 2356 } 2357 2358 static int link_to_upper(struct btrfs_trans_handle *trans, 2359 struct reloc_control *rc, 2360 struct btrfs_backref_node *node, 2361 struct btrfs_path *path) 2362 { 2363 struct btrfs_key key; 2364 2365 btrfs_node_key_to_cpu(node->eb, &key, 0); 2366 return do_relocation(trans, rc, node, &key, path, 0); 2367 } 2368 2369 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2370 struct reloc_control *rc, 2371 struct btrfs_path *path, int err) 2372 { 2373 LIST_HEAD(list); 2374 struct btrfs_backref_cache *cache = &rc->backref_cache; 2375 struct btrfs_backref_node *node; 2376 int level; 2377 int ret; 2378 2379 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2380 while (!list_empty(&cache->pending[level])) { 2381 node = list_entry(cache->pending[level].next, 2382 struct btrfs_backref_node, list); 2383 list_move_tail(&node->list, &list); 2384 BUG_ON(!node->pending); 2385 2386 if (!err) { 2387 ret = link_to_upper(trans, rc, node, path); 2388 if (ret < 0) 2389 err = ret; 2390 } 2391 } 2392 list_splice_init(&list, &cache->pending[level]); 2393 } 2394 return err; 2395 } 2396 2397 /* 2398 * mark a block and all blocks directly/indirectly reference the block 2399 * as processed. 2400 */ 2401 static void update_processed_blocks(struct reloc_control *rc, 2402 struct btrfs_backref_node *node) 2403 { 2404 struct btrfs_backref_node *next = node; 2405 struct btrfs_backref_edge *edge; 2406 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2407 int index = 0; 2408 2409 while (next) { 2410 cond_resched(); 2411 while (1) { 2412 if (next->processed) 2413 break; 2414 2415 mark_block_processed(rc, next); 2416 2417 if (list_empty(&next->upper)) 2418 break; 2419 2420 edge = list_entry(next->upper.next, 2421 struct btrfs_backref_edge, list[LOWER]); 2422 edges[index++] = edge; 2423 next = edge->node[UPPER]; 2424 } 2425 next = walk_down_backref(edges, &index); 2426 } 2427 } 2428 2429 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2430 { 2431 u32 blocksize = rc->extent_root->fs_info->nodesize; 2432 2433 if (test_range_bit(&rc->processed_blocks, bytenr, 2434 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2435 return 1; 2436 return 0; 2437 } 2438 2439 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2440 struct tree_block *block) 2441 { 2442 struct extent_buffer *eb; 2443 2444 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2445 block->level, NULL); 2446 if (IS_ERR(eb)) { 2447 return PTR_ERR(eb); 2448 } else if (!extent_buffer_uptodate(eb)) { 2449 free_extent_buffer(eb); 2450 return -EIO; 2451 } 2452 if (block->level == 0) 2453 btrfs_item_key_to_cpu(eb, &block->key, 0); 2454 else 2455 btrfs_node_key_to_cpu(eb, &block->key, 0); 2456 free_extent_buffer(eb); 2457 block->key_ready = 1; 2458 return 0; 2459 } 2460 2461 /* 2462 * helper function to relocate a tree block 2463 */ 2464 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2465 struct reloc_control *rc, 2466 struct btrfs_backref_node *node, 2467 struct btrfs_key *key, 2468 struct btrfs_path *path) 2469 { 2470 struct btrfs_root *root; 2471 int ret = 0; 2472 2473 if (!node) 2474 return 0; 2475 2476 /* 2477 * If we fail here we want to drop our backref_node because we are going 2478 * to start over and regenerate the tree for it. 2479 */ 2480 ret = reserve_metadata_space(trans, rc, node); 2481 if (ret) 2482 goto out; 2483 2484 BUG_ON(node->processed); 2485 root = select_one_root(node); 2486 if (root == ERR_PTR(-ENOENT)) { 2487 update_processed_blocks(rc, node); 2488 goto out; 2489 } 2490 2491 if (root) { 2492 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2493 BUG_ON(node->new_bytenr); 2494 BUG_ON(!list_empty(&node->list)); 2495 btrfs_record_root_in_trans(trans, root); 2496 root = root->reloc_root; 2497 node->new_bytenr = root->node->start; 2498 btrfs_put_root(node->root); 2499 node->root = btrfs_grab_root(root); 2500 ASSERT(node->root); 2501 list_add_tail(&node->list, &rc->backref_cache.changed); 2502 } else { 2503 path->lowest_level = node->level; 2504 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2505 btrfs_release_path(path); 2506 if (ret > 0) 2507 ret = 0; 2508 } 2509 if (!ret) 2510 update_processed_blocks(rc, node); 2511 } else { 2512 ret = do_relocation(trans, rc, node, key, path, 1); 2513 } 2514 out: 2515 if (ret || node->level == 0 || node->cowonly) 2516 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2517 return ret; 2518 } 2519 2520 /* 2521 * relocate a list of blocks 2522 */ 2523 static noinline_for_stack 2524 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2525 struct reloc_control *rc, struct rb_root *blocks) 2526 { 2527 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2528 struct btrfs_backref_node *node; 2529 struct btrfs_path *path; 2530 struct tree_block *block; 2531 struct tree_block *next; 2532 int ret; 2533 int err = 0; 2534 2535 path = btrfs_alloc_path(); 2536 if (!path) { 2537 err = -ENOMEM; 2538 goto out_free_blocks; 2539 } 2540 2541 /* Kick in readahead for tree blocks with missing keys */ 2542 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2543 if (!block->key_ready) 2544 readahead_tree_block(fs_info, block->bytenr); 2545 } 2546 2547 /* Get first keys */ 2548 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2549 if (!block->key_ready) { 2550 err = get_tree_block_key(fs_info, block); 2551 if (err) 2552 goto out_free_path; 2553 } 2554 } 2555 2556 /* Do tree relocation */ 2557 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2558 node = build_backref_tree(rc, &block->key, 2559 block->level, block->bytenr); 2560 if (IS_ERR(node)) { 2561 err = PTR_ERR(node); 2562 goto out; 2563 } 2564 2565 ret = relocate_tree_block(trans, rc, node, &block->key, 2566 path); 2567 if (ret < 0) { 2568 err = ret; 2569 break; 2570 } 2571 } 2572 out: 2573 err = finish_pending_nodes(trans, rc, path, err); 2574 2575 out_free_path: 2576 btrfs_free_path(path); 2577 out_free_blocks: 2578 free_block_list(blocks); 2579 return err; 2580 } 2581 2582 static noinline_for_stack int prealloc_file_extent_cluster( 2583 struct btrfs_inode *inode, 2584 struct file_extent_cluster *cluster) 2585 { 2586 u64 alloc_hint = 0; 2587 u64 start; 2588 u64 end; 2589 u64 offset = inode->index_cnt; 2590 u64 num_bytes; 2591 int nr; 2592 int ret = 0; 2593 u64 prealloc_start = cluster->start - offset; 2594 u64 prealloc_end = cluster->end - offset; 2595 u64 cur_offset = prealloc_start; 2596 2597 BUG_ON(cluster->start != cluster->boundary[0]); 2598 ret = btrfs_alloc_data_chunk_ondemand(inode, 2599 prealloc_end + 1 - prealloc_start); 2600 if (ret) 2601 return ret; 2602 2603 inode_lock(&inode->vfs_inode); 2604 for (nr = 0; nr < cluster->nr; nr++) { 2605 start = cluster->boundary[nr] - offset; 2606 if (nr + 1 < cluster->nr) 2607 end = cluster->boundary[nr + 1] - 1 - offset; 2608 else 2609 end = cluster->end - offset; 2610 2611 lock_extent(&inode->io_tree, start, end); 2612 num_bytes = end + 1 - start; 2613 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2614 num_bytes, num_bytes, 2615 end + 1, &alloc_hint); 2616 cur_offset = end + 1; 2617 unlock_extent(&inode->io_tree, start, end); 2618 if (ret) 2619 break; 2620 } 2621 inode_unlock(&inode->vfs_inode); 2622 2623 if (cur_offset < prealloc_end) 2624 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2625 prealloc_end + 1 - cur_offset); 2626 return ret; 2627 } 2628 2629 static noinline_for_stack 2630 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2631 u64 block_start) 2632 { 2633 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2634 struct extent_map *em; 2635 int ret = 0; 2636 2637 em = alloc_extent_map(); 2638 if (!em) 2639 return -ENOMEM; 2640 2641 em->start = start; 2642 em->len = end + 1 - start; 2643 em->block_len = em->len; 2644 em->block_start = block_start; 2645 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2646 2647 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2648 while (1) { 2649 write_lock(&em_tree->lock); 2650 ret = add_extent_mapping(em_tree, em, 0); 2651 write_unlock(&em_tree->lock); 2652 if (ret != -EEXIST) { 2653 free_extent_map(em); 2654 break; 2655 } 2656 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2657 } 2658 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2659 return ret; 2660 } 2661 2662 /* 2663 * Allow error injection to test balance cancellation 2664 */ 2665 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2666 { 2667 return atomic_read(&fs_info->balance_cancel_req) || 2668 fatal_signal_pending(current); 2669 } 2670 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2671 2672 static int relocate_file_extent_cluster(struct inode *inode, 2673 struct file_extent_cluster *cluster) 2674 { 2675 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2676 u64 page_start; 2677 u64 page_end; 2678 u64 offset = BTRFS_I(inode)->index_cnt; 2679 unsigned long index; 2680 unsigned long last_index; 2681 struct page *page; 2682 struct file_ra_state *ra; 2683 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2684 int nr = 0; 2685 int ret = 0; 2686 2687 if (!cluster->nr) 2688 return 0; 2689 2690 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2691 if (!ra) 2692 return -ENOMEM; 2693 2694 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2695 if (ret) 2696 goto out; 2697 2698 file_ra_state_init(ra, inode->i_mapping); 2699 2700 ret = setup_extent_mapping(inode, cluster->start - offset, 2701 cluster->end - offset, cluster->start); 2702 if (ret) 2703 goto out; 2704 2705 index = (cluster->start - offset) >> PAGE_SHIFT; 2706 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2707 while (index <= last_index) { 2708 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2709 PAGE_SIZE); 2710 if (ret) 2711 goto out; 2712 2713 page = find_lock_page(inode->i_mapping, index); 2714 if (!page) { 2715 page_cache_sync_readahead(inode->i_mapping, 2716 ra, NULL, index, 2717 last_index + 1 - index); 2718 page = find_or_create_page(inode->i_mapping, index, 2719 mask); 2720 if (!page) { 2721 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2722 PAGE_SIZE, true); 2723 btrfs_delalloc_release_extents(BTRFS_I(inode), 2724 PAGE_SIZE); 2725 ret = -ENOMEM; 2726 goto out; 2727 } 2728 } 2729 2730 if (PageReadahead(page)) { 2731 page_cache_async_readahead(inode->i_mapping, 2732 ra, NULL, page, index, 2733 last_index + 1 - index); 2734 } 2735 2736 if (!PageUptodate(page)) { 2737 btrfs_readpage(NULL, page); 2738 lock_page(page); 2739 if (!PageUptodate(page)) { 2740 unlock_page(page); 2741 put_page(page); 2742 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2743 PAGE_SIZE, true); 2744 btrfs_delalloc_release_extents(BTRFS_I(inode), 2745 PAGE_SIZE); 2746 ret = -EIO; 2747 goto out; 2748 } 2749 } 2750 2751 page_start = page_offset(page); 2752 page_end = page_start + PAGE_SIZE - 1; 2753 2754 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2755 2756 set_page_extent_mapped(page); 2757 2758 if (nr < cluster->nr && 2759 page_start + offset == cluster->boundary[nr]) { 2760 set_extent_bits(&BTRFS_I(inode)->io_tree, 2761 page_start, page_end, 2762 EXTENT_BOUNDARY); 2763 nr++; 2764 } 2765 2766 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2767 page_end, 0, NULL); 2768 if (ret) { 2769 unlock_page(page); 2770 put_page(page); 2771 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2772 PAGE_SIZE, true); 2773 btrfs_delalloc_release_extents(BTRFS_I(inode), 2774 PAGE_SIZE); 2775 2776 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2777 page_start, page_end, 2778 EXTENT_LOCKED | EXTENT_BOUNDARY); 2779 goto out; 2780 2781 } 2782 set_page_dirty(page); 2783 2784 unlock_extent(&BTRFS_I(inode)->io_tree, 2785 page_start, page_end); 2786 unlock_page(page); 2787 put_page(page); 2788 2789 index++; 2790 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2791 balance_dirty_pages_ratelimited(inode->i_mapping); 2792 btrfs_throttle(fs_info); 2793 if (btrfs_should_cancel_balance(fs_info)) { 2794 ret = -ECANCELED; 2795 goto out; 2796 } 2797 } 2798 WARN_ON(nr != cluster->nr); 2799 out: 2800 kfree(ra); 2801 return ret; 2802 } 2803 2804 static noinline_for_stack 2805 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2806 struct file_extent_cluster *cluster) 2807 { 2808 int ret; 2809 2810 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2811 ret = relocate_file_extent_cluster(inode, cluster); 2812 if (ret) 2813 return ret; 2814 cluster->nr = 0; 2815 } 2816 2817 if (!cluster->nr) 2818 cluster->start = extent_key->objectid; 2819 else 2820 BUG_ON(cluster->nr >= MAX_EXTENTS); 2821 cluster->end = extent_key->objectid + extent_key->offset - 1; 2822 cluster->boundary[cluster->nr] = extent_key->objectid; 2823 cluster->nr++; 2824 2825 if (cluster->nr >= MAX_EXTENTS) { 2826 ret = relocate_file_extent_cluster(inode, cluster); 2827 if (ret) 2828 return ret; 2829 cluster->nr = 0; 2830 } 2831 return 0; 2832 } 2833 2834 /* 2835 * helper to add a tree block to the list. 2836 * the major work is getting the generation and level of the block 2837 */ 2838 static int add_tree_block(struct reloc_control *rc, 2839 struct btrfs_key *extent_key, 2840 struct btrfs_path *path, 2841 struct rb_root *blocks) 2842 { 2843 struct extent_buffer *eb; 2844 struct btrfs_extent_item *ei; 2845 struct btrfs_tree_block_info *bi; 2846 struct tree_block *block; 2847 struct rb_node *rb_node; 2848 u32 item_size; 2849 int level = -1; 2850 u64 generation; 2851 2852 eb = path->nodes[0]; 2853 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2854 2855 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2856 item_size >= sizeof(*ei) + sizeof(*bi)) { 2857 ei = btrfs_item_ptr(eb, path->slots[0], 2858 struct btrfs_extent_item); 2859 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2860 bi = (struct btrfs_tree_block_info *)(ei + 1); 2861 level = btrfs_tree_block_level(eb, bi); 2862 } else { 2863 level = (int)extent_key->offset; 2864 } 2865 generation = btrfs_extent_generation(eb, ei); 2866 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2867 btrfs_print_v0_err(eb->fs_info); 2868 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2869 return -EINVAL; 2870 } else { 2871 BUG(); 2872 } 2873 2874 btrfs_release_path(path); 2875 2876 BUG_ON(level == -1); 2877 2878 block = kmalloc(sizeof(*block), GFP_NOFS); 2879 if (!block) 2880 return -ENOMEM; 2881 2882 block->bytenr = extent_key->objectid; 2883 block->key.objectid = rc->extent_root->fs_info->nodesize; 2884 block->key.offset = generation; 2885 block->level = level; 2886 block->key_ready = 0; 2887 2888 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2889 if (rb_node) 2890 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2891 -EEXIST); 2892 2893 return 0; 2894 } 2895 2896 /* 2897 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2898 */ 2899 static int __add_tree_block(struct reloc_control *rc, 2900 u64 bytenr, u32 blocksize, 2901 struct rb_root *blocks) 2902 { 2903 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2904 struct btrfs_path *path; 2905 struct btrfs_key key; 2906 int ret; 2907 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2908 2909 if (tree_block_processed(bytenr, rc)) 2910 return 0; 2911 2912 if (rb_simple_search(blocks, bytenr)) 2913 return 0; 2914 2915 path = btrfs_alloc_path(); 2916 if (!path) 2917 return -ENOMEM; 2918 again: 2919 key.objectid = bytenr; 2920 if (skinny) { 2921 key.type = BTRFS_METADATA_ITEM_KEY; 2922 key.offset = (u64)-1; 2923 } else { 2924 key.type = BTRFS_EXTENT_ITEM_KEY; 2925 key.offset = blocksize; 2926 } 2927 2928 path->search_commit_root = 1; 2929 path->skip_locking = 1; 2930 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2931 if (ret < 0) 2932 goto out; 2933 2934 if (ret > 0 && skinny) { 2935 if (path->slots[0]) { 2936 path->slots[0]--; 2937 btrfs_item_key_to_cpu(path->nodes[0], &key, 2938 path->slots[0]); 2939 if (key.objectid == bytenr && 2940 (key.type == BTRFS_METADATA_ITEM_KEY || 2941 (key.type == BTRFS_EXTENT_ITEM_KEY && 2942 key.offset == blocksize))) 2943 ret = 0; 2944 } 2945 2946 if (ret) { 2947 skinny = false; 2948 btrfs_release_path(path); 2949 goto again; 2950 } 2951 } 2952 if (ret) { 2953 ASSERT(ret == 1); 2954 btrfs_print_leaf(path->nodes[0]); 2955 btrfs_err(fs_info, 2956 "tree block extent item (%llu) is not found in extent tree", 2957 bytenr); 2958 WARN_ON(1); 2959 ret = -EINVAL; 2960 goto out; 2961 } 2962 2963 ret = add_tree_block(rc, &key, path, blocks); 2964 out: 2965 btrfs_free_path(path); 2966 return ret; 2967 } 2968 2969 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2970 struct btrfs_block_group *block_group, 2971 struct inode *inode, 2972 u64 ino) 2973 { 2974 struct btrfs_root *root = fs_info->tree_root; 2975 struct btrfs_trans_handle *trans; 2976 int ret = 0; 2977 2978 if (inode) 2979 goto truncate; 2980 2981 inode = btrfs_iget(fs_info->sb, ino, root); 2982 if (IS_ERR(inode)) 2983 return -ENOENT; 2984 2985 truncate: 2986 ret = btrfs_check_trunc_cache_free_space(fs_info, 2987 &fs_info->global_block_rsv); 2988 if (ret) 2989 goto out; 2990 2991 trans = btrfs_join_transaction(root); 2992 if (IS_ERR(trans)) { 2993 ret = PTR_ERR(trans); 2994 goto out; 2995 } 2996 2997 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 2998 2999 btrfs_end_transaction(trans); 3000 btrfs_btree_balance_dirty(fs_info); 3001 out: 3002 iput(inode); 3003 return ret; 3004 } 3005 3006 /* 3007 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3008 * cache inode, to avoid free space cache data extent blocking data relocation. 3009 */ 3010 static int delete_v1_space_cache(struct extent_buffer *leaf, 3011 struct btrfs_block_group *block_group, 3012 u64 data_bytenr) 3013 { 3014 u64 space_cache_ino; 3015 struct btrfs_file_extent_item *ei; 3016 struct btrfs_key key; 3017 bool found = false; 3018 int i; 3019 int ret; 3020 3021 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3022 return 0; 3023 3024 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3025 btrfs_item_key_to_cpu(leaf, &key, i); 3026 if (key.type != BTRFS_EXTENT_DATA_KEY) 3027 continue; 3028 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3029 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG && 3030 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3031 found = true; 3032 space_cache_ino = key.objectid; 3033 break; 3034 } 3035 } 3036 if (!found) 3037 return -ENOENT; 3038 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3039 space_cache_ino); 3040 return ret; 3041 } 3042 3043 /* 3044 * helper to find all tree blocks that reference a given data extent 3045 */ 3046 static noinline_for_stack 3047 int add_data_references(struct reloc_control *rc, 3048 struct btrfs_key *extent_key, 3049 struct btrfs_path *path, 3050 struct rb_root *blocks) 3051 { 3052 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3053 struct ulist *leaves = NULL; 3054 struct ulist_iterator leaf_uiter; 3055 struct ulist_node *ref_node = NULL; 3056 const u32 blocksize = fs_info->nodesize; 3057 int ret = 0; 3058 3059 btrfs_release_path(path); 3060 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3061 0, &leaves, NULL, true); 3062 if (ret < 0) 3063 return ret; 3064 3065 ULIST_ITER_INIT(&leaf_uiter); 3066 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3067 struct extent_buffer *eb; 3068 3069 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL); 3070 if (IS_ERR(eb)) { 3071 ret = PTR_ERR(eb); 3072 break; 3073 } 3074 ret = delete_v1_space_cache(eb, rc->block_group, 3075 extent_key->objectid); 3076 free_extent_buffer(eb); 3077 if (ret < 0) 3078 break; 3079 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3080 if (ret < 0) 3081 break; 3082 } 3083 if (ret < 0) 3084 free_block_list(blocks); 3085 ulist_free(leaves); 3086 return ret; 3087 } 3088 3089 /* 3090 * helper to find next unprocessed extent 3091 */ 3092 static noinline_for_stack 3093 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3094 struct btrfs_key *extent_key) 3095 { 3096 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3097 struct btrfs_key key; 3098 struct extent_buffer *leaf; 3099 u64 start, end, last; 3100 int ret; 3101 3102 last = rc->block_group->start + rc->block_group->length; 3103 while (1) { 3104 cond_resched(); 3105 if (rc->search_start >= last) { 3106 ret = 1; 3107 break; 3108 } 3109 3110 key.objectid = rc->search_start; 3111 key.type = BTRFS_EXTENT_ITEM_KEY; 3112 key.offset = 0; 3113 3114 path->search_commit_root = 1; 3115 path->skip_locking = 1; 3116 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3117 0, 0); 3118 if (ret < 0) 3119 break; 3120 next: 3121 leaf = path->nodes[0]; 3122 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3123 ret = btrfs_next_leaf(rc->extent_root, path); 3124 if (ret != 0) 3125 break; 3126 leaf = path->nodes[0]; 3127 } 3128 3129 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3130 if (key.objectid >= last) { 3131 ret = 1; 3132 break; 3133 } 3134 3135 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3136 key.type != BTRFS_METADATA_ITEM_KEY) { 3137 path->slots[0]++; 3138 goto next; 3139 } 3140 3141 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3142 key.objectid + key.offset <= rc->search_start) { 3143 path->slots[0]++; 3144 goto next; 3145 } 3146 3147 if (key.type == BTRFS_METADATA_ITEM_KEY && 3148 key.objectid + fs_info->nodesize <= 3149 rc->search_start) { 3150 path->slots[0]++; 3151 goto next; 3152 } 3153 3154 ret = find_first_extent_bit(&rc->processed_blocks, 3155 key.objectid, &start, &end, 3156 EXTENT_DIRTY, NULL); 3157 3158 if (ret == 0 && start <= key.objectid) { 3159 btrfs_release_path(path); 3160 rc->search_start = end + 1; 3161 } else { 3162 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3163 rc->search_start = key.objectid + key.offset; 3164 else 3165 rc->search_start = key.objectid + 3166 fs_info->nodesize; 3167 memcpy(extent_key, &key, sizeof(key)); 3168 return 0; 3169 } 3170 } 3171 btrfs_release_path(path); 3172 return ret; 3173 } 3174 3175 static void set_reloc_control(struct reloc_control *rc) 3176 { 3177 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3178 3179 mutex_lock(&fs_info->reloc_mutex); 3180 fs_info->reloc_ctl = rc; 3181 mutex_unlock(&fs_info->reloc_mutex); 3182 } 3183 3184 static void unset_reloc_control(struct reloc_control *rc) 3185 { 3186 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3187 3188 mutex_lock(&fs_info->reloc_mutex); 3189 fs_info->reloc_ctl = NULL; 3190 mutex_unlock(&fs_info->reloc_mutex); 3191 } 3192 3193 static int check_extent_flags(u64 flags) 3194 { 3195 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3196 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3197 return 1; 3198 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3199 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3200 return 1; 3201 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3202 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3203 return 1; 3204 return 0; 3205 } 3206 3207 static noinline_for_stack 3208 int prepare_to_relocate(struct reloc_control *rc) 3209 { 3210 struct btrfs_trans_handle *trans; 3211 int ret; 3212 3213 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3214 BTRFS_BLOCK_RSV_TEMP); 3215 if (!rc->block_rsv) 3216 return -ENOMEM; 3217 3218 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3219 rc->search_start = rc->block_group->start; 3220 rc->extents_found = 0; 3221 rc->nodes_relocated = 0; 3222 rc->merging_rsv_size = 0; 3223 rc->reserved_bytes = 0; 3224 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3225 RELOCATION_RESERVED_NODES; 3226 ret = btrfs_block_rsv_refill(rc->extent_root, 3227 rc->block_rsv, rc->block_rsv->size, 3228 BTRFS_RESERVE_FLUSH_ALL); 3229 if (ret) 3230 return ret; 3231 3232 rc->create_reloc_tree = 1; 3233 set_reloc_control(rc); 3234 3235 trans = btrfs_join_transaction(rc->extent_root); 3236 if (IS_ERR(trans)) { 3237 unset_reloc_control(rc); 3238 /* 3239 * extent tree is not a ref_cow tree and has no reloc_root to 3240 * cleanup. And callers are responsible to free the above 3241 * block rsv. 3242 */ 3243 return PTR_ERR(trans); 3244 } 3245 btrfs_commit_transaction(trans); 3246 return 0; 3247 } 3248 3249 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3250 { 3251 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3252 struct rb_root blocks = RB_ROOT; 3253 struct btrfs_key key; 3254 struct btrfs_trans_handle *trans = NULL; 3255 struct btrfs_path *path; 3256 struct btrfs_extent_item *ei; 3257 u64 flags; 3258 u32 item_size; 3259 int ret; 3260 int err = 0; 3261 int progress = 0; 3262 3263 path = btrfs_alloc_path(); 3264 if (!path) 3265 return -ENOMEM; 3266 path->reada = READA_FORWARD; 3267 3268 ret = prepare_to_relocate(rc); 3269 if (ret) { 3270 err = ret; 3271 goto out_free; 3272 } 3273 3274 while (1) { 3275 rc->reserved_bytes = 0; 3276 ret = btrfs_block_rsv_refill(rc->extent_root, 3277 rc->block_rsv, rc->block_rsv->size, 3278 BTRFS_RESERVE_FLUSH_ALL); 3279 if (ret) { 3280 err = ret; 3281 break; 3282 } 3283 progress++; 3284 trans = btrfs_start_transaction(rc->extent_root, 0); 3285 if (IS_ERR(trans)) { 3286 err = PTR_ERR(trans); 3287 trans = NULL; 3288 break; 3289 } 3290 restart: 3291 if (update_backref_cache(trans, &rc->backref_cache)) { 3292 btrfs_end_transaction(trans); 3293 trans = NULL; 3294 continue; 3295 } 3296 3297 ret = find_next_extent(rc, path, &key); 3298 if (ret < 0) 3299 err = ret; 3300 if (ret != 0) 3301 break; 3302 3303 rc->extents_found++; 3304 3305 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3306 struct btrfs_extent_item); 3307 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3308 if (item_size >= sizeof(*ei)) { 3309 flags = btrfs_extent_flags(path->nodes[0], ei); 3310 ret = check_extent_flags(flags); 3311 BUG_ON(ret); 3312 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3313 err = -EINVAL; 3314 btrfs_print_v0_err(trans->fs_info); 3315 btrfs_abort_transaction(trans, err); 3316 break; 3317 } else { 3318 BUG(); 3319 } 3320 3321 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3322 ret = add_tree_block(rc, &key, path, &blocks); 3323 } else if (rc->stage == UPDATE_DATA_PTRS && 3324 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3325 ret = add_data_references(rc, &key, path, &blocks); 3326 } else { 3327 btrfs_release_path(path); 3328 ret = 0; 3329 } 3330 if (ret < 0) { 3331 err = ret; 3332 break; 3333 } 3334 3335 if (!RB_EMPTY_ROOT(&blocks)) { 3336 ret = relocate_tree_blocks(trans, rc, &blocks); 3337 if (ret < 0) { 3338 if (ret != -EAGAIN) { 3339 err = ret; 3340 break; 3341 } 3342 rc->extents_found--; 3343 rc->search_start = key.objectid; 3344 } 3345 } 3346 3347 btrfs_end_transaction_throttle(trans); 3348 btrfs_btree_balance_dirty(fs_info); 3349 trans = NULL; 3350 3351 if (rc->stage == MOVE_DATA_EXTENTS && 3352 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3353 rc->found_file_extent = 1; 3354 ret = relocate_data_extent(rc->data_inode, 3355 &key, &rc->cluster); 3356 if (ret < 0) { 3357 err = ret; 3358 break; 3359 } 3360 } 3361 if (btrfs_should_cancel_balance(fs_info)) { 3362 err = -ECANCELED; 3363 break; 3364 } 3365 } 3366 if (trans && progress && err == -ENOSPC) { 3367 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3368 if (ret == 1) { 3369 err = 0; 3370 progress = 0; 3371 goto restart; 3372 } 3373 } 3374 3375 btrfs_release_path(path); 3376 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3377 3378 if (trans) { 3379 btrfs_end_transaction_throttle(trans); 3380 btrfs_btree_balance_dirty(fs_info); 3381 } 3382 3383 if (!err) { 3384 ret = relocate_file_extent_cluster(rc->data_inode, 3385 &rc->cluster); 3386 if (ret < 0) 3387 err = ret; 3388 } 3389 3390 rc->create_reloc_tree = 0; 3391 set_reloc_control(rc); 3392 3393 btrfs_backref_release_cache(&rc->backref_cache); 3394 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3395 3396 /* 3397 * Even in the case when the relocation is cancelled, we should all go 3398 * through prepare_to_merge() and merge_reloc_roots(). 3399 * 3400 * For error (including cancelled balance), prepare_to_merge() will 3401 * mark all reloc trees orphan, then queue them for cleanup in 3402 * merge_reloc_roots() 3403 */ 3404 err = prepare_to_merge(rc, err); 3405 3406 merge_reloc_roots(rc); 3407 3408 rc->merge_reloc_tree = 0; 3409 unset_reloc_control(rc); 3410 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3411 3412 /* get rid of pinned extents */ 3413 trans = btrfs_join_transaction(rc->extent_root); 3414 if (IS_ERR(trans)) { 3415 err = PTR_ERR(trans); 3416 goto out_free; 3417 } 3418 btrfs_commit_transaction(trans); 3419 out_free: 3420 ret = clean_dirty_subvols(rc); 3421 if (ret < 0 && !err) 3422 err = ret; 3423 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3424 btrfs_free_path(path); 3425 return err; 3426 } 3427 3428 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3429 struct btrfs_root *root, u64 objectid) 3430 { 3431 struct btrfs_path *path; 3432 struct btrfs_inode_item *item; 3433 struct extent_buffer *leaf; 3434 int ret; 3435 3436 path = btrfs_alloc_path(); 3437 if (!path) 3438 return -ENOMEM; 3439 3440 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3441 if (ret) 3442 goto out; 3443 3444 leaf = path->nodes[0]; 3445 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3446 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3447 btrfs_set_inode_generation(leaf, item, 1); 3448 btrfs_set_inode_size(leaf, item, 0); 3449 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3450 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3451 BTRFS_INODE_PREALLOC); 3452 btrfs_mark_buffer_dirty(leaf); 3453 out: 3454 btrfs_free_path(path); 3455 return ret; 3456 } 3457 3458 /* 3459 * helper to create inode for data relocation. 3460 * the inode is in data relocation tree and its link count is 0 3461 */ 3462 static noinline_for_stack 3463 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3464 struct btrfs_block_group *group) 3465 { 3466 struct inode *inode = NULL; 3467 struct btrfs_trans_handle *trans; 3468 struct btrfs_root *root; 3469 u64 objectid; 3470 int err = 0; 3471 3472 root = btrfs_grab_root(fs_info->data_reloc_root); 3473 trans = btrfs_start_transaction(root, 6); 3474 if (IS_ERR(trans)) { 3475 btrfs_put_root(root); 3476 return ERR_CAST(trans); 3477 } 3478 3479 err = btrfs_find_free_objectid(root, &objectid); 3480 if (err) 3481 goto out; 3482 3483 err = __insert_orphan_inode(trans, root, objectid); 3484 BUG_ON(err); 3485 3486 inode = btrfs_iget(fs_info->sb, objectid, root); 3487 BUG_ON(IS_ERR(inode)); 3488 BTRFS_I(inode)->index_cnt = group->start; 3489 3490 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3491 out: 3492 btrfs_put_root(root); 3493 btrfs_end_transaction(trans); 3494 btrfs_btree_balance_dirty(fs_info); 3495 if (err) { 3496 if (inode) 3497 iput(inode); 3498 inode = ERR_PTR(err); 3499 } 3500 return inode; 3501 } 3502 3503 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3504 { 3505 struct reloc_control *rc; 3506 3507 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3508 if (!rc) 3509 return NULL; 3510 3511 INIT_LIST_HEAD(&rc->reloc_roots); 3512 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3513 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3514 mapping_tree_init(&rc->reloc_root_tree); 3515 extent_io_tree_init(fs_info, &rc->processed_blocks, 3516 IO_TREE_RELOC_BLOCKS, NULL); 3517 return rc; 3518 } 3519 3520 static void free_reloc_control(struct reloc_control *rc) 3521 { 3522 struct mapping_node *node, *tmp; 3523 3524 free_reloc_roots(&rc->reloc_roots); 3525 rbtree_postorder_for_each_entry_safe(node, tmp, 3526 &rc->reloc_root_tree.rb_root, rb_node) 3527 kfree(node); 3528 3529 kfree(rc); 3530 } 3531 3532 /* 3533 * Print the block group being relocated 3534 */ 3535 static void describe_relocation(struct btrfs_fs_info *fs_info, 3536 struct btrfs_block_group *block_group) 3537 { 3538 char buf[128] = {'\0'}; 3539 3540 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3541 3542 btrfs_info(fs_info, 3543 "relocating block group %llu flags %s", 3544 block_group->start, buf); 3545 } 3546 3547 static const char *stage_to_string(int stage) 3548 { 3549 if (stage == MOVE_DATA_EXTENTS) 3550 return "move data extents"; 3551 if (stage == UPDATE_DATA_PTRS) 3552 return "update data pointers"; 3553 return "unknown"; 3554 } 3555 3556 /* 3557 * function to relocate all extents in a block group. 3558 */ 3559 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3560 { 3561 struct btrfs_block_group *bg; 3562 struct btrfs_root *extent_root = fs_info->extent_root; 3563 struct reloc_control *rc; 3564 struct inode *inode; 3565 struct btrfs_path *path; 3566 int ret; 3567 int rw = 0; 3568 int err = 0; 3569 3570 bg = btrfs_lookup_block_group(fs_info, group_start); 3571 if (!bg) 3572 return -ENOENT; 3573 3574 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3575 btrfs_put_block_group(bg); 3576 return -ETXTBSY; 3577 } 3578 3579 rc = alloc_reloc_control(fs_info); 3580 if (!rc) { 3581 btrfs_put_block_group(bg); 3582 return -ENOMEM; 3583 } 3584 3585 rc->extent_root = extent_root; 3586 rc->block_group = bg; 3587 3588 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3589 if (ret) { 3590 err = ret; 3591 goto out; 3592 } 3593 rw = 1; 3594 3595 path = btrfs_alloc_path(); 3596 if (!path) { 3597 err = -ENOMEM; 3598 goto out; 3599 } 3600 3601 inode = lookup_free_space_inode(rc->block_group, path); 3602 btrfs_free_path(path); 3603 3604 if (!IS_ERR(inode)) 3605 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3606 else 3607 ret = PTR_ERR(inode); 3608 3609 if (ret && ret != -ENOENT) { 3610 err = ret; 3611 goto out; 3612 } 3613 3614 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3615 if (IS_ERR(rc->data_inode)) { 3616 err = PTR_ERR(rc->data_inode); 3617 rc->data_inode = NULL; 3618 goto out; 3619 } 3620 3621 describe_relocation(fs_info, rc->block_group); 3622 3623 btrfs_wait_block_group_reservations(rc->block_group); 3624 btrfs_wait_nocow_writers(rc->block_group); 3625 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3626 rc->block_group->start, 3627 rc->block_group->length); 3628 3629 while (1) { 3630 int finishes_stage; 3631 3632 mutex_lock(&fs_info->cleaner_mutex); 3633 ret = relocate_block_group(rc); 3634 mutex_unlock(&fs_info->cleaner_mutex); 3635 if (ret < 0) 3636 err = ret; 3637 3638 finishes_stage = rc->stage; 3639 /* 3640 * We may have gotten ENOSPC after we already dirtied some 3641 * extents. If writeout happens while we're relocating a 3642 * different block group we could end up hitting the 3643 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3644 * btrfs_reloc_cow_block. Make sure we write everything out 3645 * properly so we don't trip over this problem, and then break 3646 * out of the loop if we hit an error. 3647 */ 3648 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3649 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3650 (u64)-1); 3651 if (ret) 3652 err = ret; 3653 invalidate_mapping_pages(rc->data_inode->i_mapping, 3654 0, -1); 3655 rc->stage = UPDATE_DATA_PTRS; 3656 } 3657 3658 if (err < 0) 3659 goto out; 3660 3661 if (rc->extents_found == 0) 3662 break; 3663 3664 btrfs_info(fs_info, "found %llu extents, stage: %s", 3665 rc->extents_found, stage_to_string(finishes_stage)); 3666 } 3667 3668 WARN_ON(rc->block_group->pinned > 0); 3669 WARN_ON(rc->block_group->reserved > 0); 3670 WARN_ON(rc->block_group->used > 0); 3671 out: 3672 if (err && rw) 3673 btrfs_dec_block_group_ro(rc->block_group); 3674 iput(rc->data_inode); 3675 btrfs_put_block_group(rc->block_group); 3676 free_reloc_control(rc); 3677 return err; 3678 } 3679 3680 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3681 { 3682 struct btrfs_fs_info *fs_info = root->fs_info; 3683 struct btrfs_trans_handle *trans; 3684 int ret, err; 3685 3686 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3687 if (IS_ERR(trans)) 3688 return PTR_ERR(trans); 3689 3690 memset(&root->root_item.drop_progress, 0, 3691 sizeof(root->root_item.drop_progress)); 3692 root->root_item.drop_level = 0; 3693 btrfs_set_root_refs(&root->root_item, 0); 3694 ret = btrfs_update_root(trans, fs_info->tree_root, 3695 &root->root_key, &root->root_item); 3696 3697 err = btrfs_end_transaction(trans); 3698 if (err) 3699 return err; 3700 return ret; 3701 } 3702 3703 /* 3704 * recover relocation interrupted by system crash. 3705 * 3706 * this function resumes merging reloc trees with corresponding fs trees. 3707 * this is important for keeping the sharing of tree blocks 3708 */ 3709 int btrfs_recover_relocation(struct btrfs_root *root) 3710 { 3711 struct btrfs_fs_info *fs_info = root->fs_info; 3712 LIST_HEAD(reloc_roots); 3713 struct btrfs_key key; 3714 struct btrfs_root *fs_root; 3715 struct btrfs_root *reloc_root; 3716 struct btrfs_path *path; 3717 struct extent_buffer *leaf; 3718 struct reloc_control *rc = NULL; 3719 struct btrfs_trans_handle *trans; 3720 int ret; 3721 int err = 0; 3722 3723 path = btrfs_alloc_path(); 3724 if (!path) 3725 return -ENOMEM; 3726 path->reada = READA_BACK; 3727 3728 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3729 key.type = BTRFS_ROOT_ITEM_KEY; 3730 key.offset = (u64)-1; 3731 3732 while (1) { 3733 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3734 path, 0, 0); 3735 if (ret < 0) { 3736 err = ret; 3737 goto out; 3738 } 3739 if (ret > 0) { 3740 if (path->slots[0] == 0) 3741 break; 3742 path->slots[0]--; 3743 } 3744 leaf = path->nodes[0]; 3745 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3746 btrfs_release_path(path); 3747 3748 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3749 key.type != BTRFS_ROOT_ITEM_KEY) 3750 break; 3751 3752 reloc_root = btrfs_read_tree_root(root, &key); 3753 if (IS_ERR(reloc_root)) { 3754 err = PTR_ERR(reloc_root); 3755 goto out; 3756 } 3757 3758 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3759 list_add(&reloc_root->root_list, &reloc_roots); 3760 3761 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3762 fs_root = btrfs_get_fs_root(fs_info, 3763 reloc_root->root_key.offset, false); 3764 if (IS_ERR(fs_root)) { 3765 ret = PTR_ERR(fs_root); 3766 if (ret != -ENOENT) { 3767 err = ret; 3768 goto out; 3769 } 3770 ret = mark_garbage_root(reloc_root); 3771 if (ret < 0) { 3772 err = ret; 3773 goto out; 3774 } 3775 } else { 3776 btrfs_put_root(fs_root); 3777 } 3778 } 3779 3780 if (key.offset == 0) 3781 break; 3782 3783 key.offset--; 3784 } 3785 btrfs_release_path(path); 3786 3787 if (list_empty(&reloc_roots)) 3788 goto out; 3789 3790 rc = alloc_reloc_control(fs_info); 3791 if (!rc) { 3792 err = -ENOMEM; 3793 goto out; 3794 } 3795 3796 rc->extent_root = fs_info->extent_root; 3797 3798 set_reloc_control(rc); 3799 3800 trans = btrfs_join_transaction(rc->extent_root); 3801 if (IS_ERR(trans)) { 3802 err = PTR_ERR(trans); 3803 goto out_unset; 3804 } 3805 3806 rc->merge_reloc_tree = 1; 3807 3808 while (!list_empty(&reloc_roots)) { 3809 reloc_root = list_entry(reloc_roots.next, 3810 struct btrfs_root, root_list); 3811 list_del(&reloc_root->root_list); 3812 3813 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3814 list_add_tail(&reloc_root->root_list, 3815 &rc->reloc_roots); 3816 continue; 3817 } 3818 3819 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3820 false); 3821 if (IS_ERR(fs_root)) { 3822 err = PTR_ERR(fs_root); 3823 list_add_tail(&reloc_root->root_list, &reloc_roots); 3824 btrfs_end_transaction(trans); 3825 goto out_unset; 3826 } 3827 3828 err = __add_reloc_root(reloc_root); 3829 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3830 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3831 btrfs_put_root(fs_root); 3832 } 3833 3834 err = btrfs_commit_transaction(trans); 3835 if (err) 3836 goto out_unset; 3837 3838 merge_reloc_roots(rc); 3839 3840 unset_reloc_control(rc); 3841 3842 trans = btrfs_join_transaction(rc->extent_root); 3843 if (IS_ERR(trans)) { 3844 err = PTR_ERR(trans); 3845 goto out_clean; 3846 } 3847 err = btrfs_commit_transaction(trans); 3848 out_clean: 3849 ret = clean_dirty_subvols(rc); 3850 if (ret < 0 && !err) 3851 err = ret; 3852 out_unset: 3853 unset_reloc_control(rc); 3854 free_reloc_control(rc); 3855 out: 3856 free_reloc_roots(&reloc_roots); 3857 3858 btrfs_free_path(path); 3859 3860 if (err == 0) { 3861 /* cleanup orphan inode in data relocation tree */ 3862 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3863 ASSERT(fs_root); 3864 err = btrfs_orphan_cleanup(fs_root); 3865 btrfs_put_root(fs_root); 3866 } 3867 return err; 3868 } 3869 3870 /* 3871 * helper to add ordered checksum for data relocation. 3872 * 3873 * cloning checksum properly handles the nodatasum extents. 3874 * it also saves CPU time to re-calculate the checksum. 3875 */ 3876 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 3877 { 3878 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3879 struct btrfs_ordered_sum *sums; 3880 struct btrfs_ordered_extent *ordered; 3881 int ret; 3882 u64 disk_bytenr; 3883 u64 new_bytenr; 3884 LIST_HEAD(list); 3885 3886 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3887 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3888 3889 disk_bytenr = file_pos + inode->index_cnt; 3890 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3891 disk_bytenr + len - 1, &list, 0); 3892 if (ret) 3893 goto out; 3894 3895 while (!list_empty(&list)) { 3896 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3897 list_del_init(&sums->list); 3898 3899 /* 3900 * We need to offset the new_bytenr based on where the csum is. 3901 * We need to do this because we will read in entire prealloc 3902 * extents but we may have written to say the middle of the 3903 * prealloc extent, so we need to make sure the csum goes with 3904 * the right disk offset. 3905 * 3906 * We can do this because the data reloc inode refers strictly 3907 * to the on disk bytes, so we don't have to worry about 3908 * disk_len vs real len like with real inodes since it's all 3909 * disk length. 3910 */ 3911 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3912 sums->bytenr = new_bytenr; 3913 3914 btrfs_add_ordered_sum(ordered, sums); 3915 } 3916 out: 3917 btrfs_put_ordered_extent(ordered); 3918 return ret; 3919 } 3920 3921 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3922 struct btrfs_root *root, struct extent_buffer *buf, 3923 struct extent_buffer *cow) 3924 { 3925 struct btrfs_fs_info *fs_info = root->fs_info; 3926 struct reloc_control *rc; 3927 struct btrfs_backref_node *node; 3928 int first_cow = 0; 3929 int level; 3930 int ret = 0; 3931 3932 rc = fs_info->reloc_ctl; 3933 if (!rc) 3934 return 0; 3935 3936 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3937 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3938 3939 level = btrfs_header_level(buf); 3940 if (btrfs_header_generation(buf) <= 3941 btrfs_root_last_snapshot(&root->root_item)) 3942 first_cow = 1; 3943 3944 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3945 rc->create_reloc_tree) { 3946 WARN_ON(!first_cow && level == 0); 3947 3948 node = rc->backref_cache.path[level]; 3949 BUG_ON(node->bytenr != buf->start && 3950 node->new_bytenr != buf->start); 3951 3952 btrfs_backref_drop_node_buffer(node); 3953 atomic_inc(&cow->refs); 3954 node->eb = cow; 3955 node->new_bytenr = cow->start; 3956 3957 if (!node->pending) { 3958 list_move_tail(&node->list, 3959 &rc->backref_cache.pending[level]); 3960 node->pending = 1; 3961 } 3962 3963 if (first_cow) 3964 mark_block_processed(rc, node); 3965 3966 if (first_cow && level > 0) 3967 rc->nodes_relocated += buf->len; 3968 } 3969 3970 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 3971 ret = replace_file_extents(trans, rc, root, cow); 3972 return ret; 3973 } 3974 3975 /* 3976 * called before creating snapshot. it calculates metadata reservation 3977 * required for relocating tree blocks in the snapshot 3978 */ 3979 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3980 u64 *bytes_to_reserve) 3981 { 3982 struct btrfs_root *root = pending->root; 3983 struct reloc_control *rc = root->fs_info->reloc_ctl; 3984 3985 if (!rc || !have_reloc_root(root)) 3986 return; 3987 3988 if (!rc->merge_reloc_tree) 3989 return; 3990 3991 root = root->reloc_root; 3992 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 3993 /* 3994 * relocation is in the stage of merging trees. the space 3995 * used by merging a reloc tree is twice the size of 3996 * relocated tree nodes in the worst case. half for cowing 3997 * the reloc tree, half for cowing the fs tree. the space 3998 * used by cowing the reloc tree will be freed after the 3999 * tree is dropped. if we create snapshot, cowing the fs 4000 * tree may use more space than it frees. so we need 4001 * reserve extra space. 4002 */ 4003 *bytes_to_reserve += rc->nodes_relocated; 4004 } 4005 4006 /* 4007 * called after snapshot is created. migrate block reservation 4008 * and create reloc root for the newly created snapshot 4009 * 4010 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4011 * references held on the reloc_root, one for root->reloc_root and one for 4012 * rc->reloc_roots. 4013 */ 4014 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4015 struct btrfs_pending_snapshot *pending) 4016 { 4017 struct btrfs_root *root = pending->root; 4018 struct btrfs_root *reloc_root; 4019 struct btrfs_root *new_root; 4020 struct reloc_control *rc = root->fs_info->reloc_ctl; 4021 int ret; 4022 4023 if (!rc || !have_reloc_root(root)) 4024 return 0; 4025 4026 rc = root->fs_info->reloc_ctl; 4027 rc->merging_rsv_size += rc->nodes_relocated; 4028 4029 if (rc->merge_reloc_tree) { 4030 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4031 rc->block_rsv, 4032 rc->nodes_relocated, true); 4033 if (ret) 4034 return ret; 4035 } 4036 4037 new_root = pending->snap; 4038 reloc_root = create_reloc_root(trans, root->reloc_root, 4039 new_root->root_key.objectid); 4040 if (IS_ERR(reloc_root)) 4041 return PTR_ERR(reloc_root); 4042 4043 ret = __add_reloc_root(reloc_root); 4044 BUG_ON(ret < 0); 4045 new_root->reloc_root = btrfs_grab_root(reloc_root); 4046 4047 if (rc->create_reloc_tree) 4048 ret = clone_backref_node(trans, rc, root, reloc_root); 4049 return ret; 4050 } 4051