xref: /openbmc/linux/fs/btrfs/relocation.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 
34 /*
35  * backref_node, mapping_node and tree_block start with this
36  */
37 struct tree_entry {
38 	struct rb_node rb_node;
39 	u64 bytenr;
40 };
41 
42 /*
43  * present a tree block in the backref cache
44  */
45 struct backref_node {
46 	struct rb_node rb_node;
47 	u64 bytenr;
48 
49 	u64 new_bytenr;
50 	/* objectid of tree block owner, can be not uptodate */
51 	u64 owner;
52 	/* link to pending, changed or detached list */
53 	struct list_head list;
54 	/* list of upper level blocks reference this block */
55 	struct list_head upper;
56 	/* list of child blocks in the cache */
57 	struct list_head lower;
58 	/* NULL if this node is not tree root */
59 	struct btrfs_root *root;
60 	/* extent buffer got by COW the block */
61 	struct extent_buffer *eb;
62 	/* level of tree block */
63 	unsigned int level:8;
64 	/* is the block in non-reference counted tree */
65 	unsigned int cowonly:1;
66 	/* 1 if no child node in the cache */
67 	unsigned int lowest:1;
68 	/* is the extent buffer locked */
69 	unsigned int locked:1;
70 	/* has the block been processed */
71 	unsigned int processed:1;
72 	/* have backrefs of this block been checked */
73 	unsigned int checked:1;
74 	/*
75 	 * 1 if corresponding block has been cowed but some upper
76 	 * level block pointers may not point to the new location
77 	 */
78 	unsigned int pending:1;
79 	/*
80 	 * 1 if the backref node isn't connected to any other
81 	 * backref node.
82 	 */
83 	unsigned int detached:1;
84 };
85 
86 /*
87  * present a block pointer in the backref cache
88  */
89 struct backref_edge {
90 	struct list_head list[2];
91 	struct backref_node *node[2];
92 };
93 
94 #define LOWER	0
95 #define UPPER	1
96 
97 struct backref_cache {
98 	/* red black tree of all backref nodes in the cache */
99 	struct rb_root rb_root;
100 	/* for passing backref nodes to btrfs_reloc_cow_block */
101 	struct backref_node *path[BTRFS_MAX_LEVEL];
102 	/*
103 	 * list of blocks that have been cowed but some block
104 	 * pointers in upper level blocks may not reflect the
105 	 * new location
106 	 */
107 	struct list_head pending[BTRFS_MAX_LEVEL];
108 	/* list of backref nodes with no child node */
109 	struct list_head leaves;
110 	/* list of blocks that have been cowed in current transaction */
111 	struct list_head changed;
112 	/* list of detached backref node. */
113 	struct list_head detached;
114 
115 	u64 last_trans;
116 
117 	int nr_nodes;
118 	int nr_edges;
119 };
120 
121 /*
122  * map address of tree root to tree
123  */
124 struct mapping_node {
125 	struct rb_node rb_node;
126 	u64 bytenr;
127 	void *data;
128 };
129 
130 struct mapping_tree {
131 	struct rb_root rb_root;
132 	spinlock_t lock;
133 };
134 
135 /*
136  * present a tree block to process
137  */
138 struct tree_block {
139 	struct rb_node rb_node;
140 	u64 bytenr;
141 	struct btrfs_key key;
142 	unsigned int level:8;
143 	unsigned int key_ready:1;
144 };
145 
146 #define MAX_EXTENTS 128
147 
148 struct file_extent_cluster {
149 	u64 start;
150 	u64 end;
151 	u64 boundary[MAX_EXTENTS];
152 	unsigned int nr;
153 };
154 
155 struct reloc_control {
156 	/* block group to relocate */
157 	struct btrfs_block_group_cache *block_group;
158 	/* extent tree */
159 	struct btrfs_root *extent_root;
160 	/* inode for moving data */
161 	struct inode *data_inode;
162 
163 	struct btrfs_block_rsv *block_rsv;
164 
165 	struct backref_cache backref_cache;
166 
167 	struct file_extent_cluster cluster;
168 	/* tree blocks have been processed */
169 	struct extent_io_tree processed_blocks;
170 	/* map start of tree root to corresponding reloc tree */
171 	struct mapping_tree reloc_root_tree;
172 	/* list of reloc trees */
173 	struct list_head reloc_roots;
174 	/* size of metadata reservation for merging reloc trees */
175 	u64 merging_rsv_size;
176 	/* size of relocated tree nodes */
177 	u64 nodes_relocated;
178 
179 	u64 search_start;
180 	u64 extents_found;
181 
182 	unsigned int stage:8;
183 	unsigned int create_reloc_tree:1;
184 	unsigned int merge_reloc_tree:1;
185 	unsigned int found_file_extent:1;
186 	unsigned int commit_transaction:1;
187 };
188 
189 /* stages of data relocation */
190 #define MOVE_DATA_EXTENTS	0
191 #define UPDATE_DATA_PTRS	1
192 
193 static void remove_backref_node(struct backref_cache *cache,
194 				struct backref_node *node);
195 static void __mark_block_processed(struct reloc_control *rc,
196 				   struct backref_node *node);
197 
198 static void mapping_tree_init(struct mapping_tree *tree)
199 {
200 	tree->rb_root = RB_ROOT;
201 	spin_lock_init(&tree->lock);
202 }
203 
204 static void backref_cache_init(struct backref_cache *cache)
205 {
206 	int i;
207 	cache->rb_root = RB_ROOT;
208 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
209 		INIT_LIST_HEAD(&cache->pending[i]);
210 	INIT_LIST_HEAD(&cache->changed);
211 	INIT_LIST_HEAD(&cache->detached);
212 	INIT_LIST_HEAD(&cache->leaves);
213 }
214 
215 static void backref_cache_cleanup(struct backref_cache *cache)
216 {
217 	struct backref_node *node;
218 	int i;
219 
220 	while (!list_empty(&cache->detached)) {
221 		node = list_entry(cache->detached.next,
222 				  struct backref_node, list);
223 		remove_backref_node(cache, node);
224 	}
225 
226 	while (!list_empty(&cache->leaves)) {
227 		node = list_entry(cache->leaves.next,
228 				  struct backref_node, lower);
229 		remove_backref_node(cache, node);
230 	}
231 
232 	cache->last_trans = 0;
233 
234 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
235 		BUG_ON(!list_empty(&cache->pending[i]));
236 	BUG_ON(!list_empty(&cache->changed));
237 	BUG_ON(!list_empty(&cache->detached));
238 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
239 	BUG_ON(cache->nr_nodes);
240 	BUG_ON(cache->nr_edges);
241 }
242 
243 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
244 {
245 	struct backref_node *node;
246 
247 	node = kzalloc(sizeof(*node), GFP_NOFS);
248 	if (node) {
249 		INIT_LIST_HEAD(&node->list);
250 		INIT_LIST_HEAD(&node->upper);
251 		INIT_LIST_HEAD(&node->lower);
252 		RB_CLEAR_NODE(&node->rb_node);
253 		cache->nr_nodes++;
254 	}
255 	return node;
256 }
257 
258 static void free_backref_node(struct backref_cache *cache,
259 			      struct backref_node *node)
260 {
261 	if (node) {
262 		cache->nr_nodes--;
263 		kfree(node);
264 	}
265 }
266 
267 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
268 {
269 	struct backref_edge *edge;
270 
271 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
272 	if (edge)
273 		cache->nr_edges++;
274 	return edge;
275 }
276 
277 static void free_backref_edge(struct backref_cache *cache,
278 			      struct backref_edge *edge)
279 {
280 	if (edge) {
281 		cache->nr_edges--;
282 		kfree(edge);
283 	}
284 }
285 
286 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
287 				   struct rb_node *node)
288 {
289 	struct rb_node **p = &root->rb_node;
290 	struct rb_node *parent = NULL;
291 	struct tree_entry *entry;
292 
293 	while (*p) {
294 		parent = *p;
295 		entry = rb_entry(parent, struct tree_entry, rb_node);
296 
297 		if (bytenr < entry->bytenr)
298 			p = &(*p)->rb_left;
299 		else if (bytenr > entry->bytenr)
300 			p = &(*p)->rb_right;
301 		else
302 			return parent;
303 	}
304 
305 	rb_link_node(node, parent, p);
306 	rb_insert_color(node, root);
307 	return NULL;
308 }
309 
310 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
311 {
312 	struct rb_node *n = root->rb_node;
313 	struct tree_entry *entry;
314 
315 	while (n) {
316 		entry = rb_entry(n, struct tree_entry, rb_node);
317 
318 		if (bytenr < entry->bytenr)
319 			n = n->rb_left;
320 		else if (bytenr > entry->bytenr)
321 			n = n->rb_right;
322 		else
323 			return n;
324 	}
325 	return NULL;
326 }
327 
328 /*
329  * walk up backref nodes until reach node presents tree root
330  */
331 static struct backref_node *walk_up_backref(struct backref_node *node,
332 					    struct backref_edge *edges[],
333 					    int *index)
334 {
335 	struct backref_edge *edge;
336 	int idx = *index;
337 
338 	while (!list_empty(&node->upper)) {
339 		edge = list_entry(node->upper.next,
340 				  struct backref_edge, list[LOWER]);
341 		edges[idx++] = edge;
342 		node = edge->node[UPPER];
343 	}
344 	BUG_ON(node->detached);
345 	*index = idx;
346 	return node;
347 }
348 
349 /*
350  * walk down backref nodes to find start of next reference path
351  */
352 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
353 					      int *index)
354 {
355 	struct backref_edge *edge;
356 	struct backref_node *lower;
357 	int idx = *index;
358 
359 	while (idx > 0) {
360 		edge = edges[idx - 1];
361 		lower = edge->node[LOWER];
362 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
363 			idx--;
364 			continue;
365 		}
366 		edge = list_entry(edge->list[LOWER].next,
367 				  struct backref_edge, list[LOWER]);
368 		edges[idx - 1] = edge;
369 		*index = idx;
370 		return edge->node[UPPER];
371 	}
372 	*index = 0;
373 	return NULL;
374 }
375 
376 static void unlock_node_buffer(struct backref_node *node)
377 {
378 	if (node->locked) {
379 		btrfs_tree_unlock(node->eb);
380 		node->locked = 0;
381 	}
382 }
383 
384 static void drop_node_buffer(struct backref_node *node)
385 {
386 	if (node->eb) {
387 		unlock_node_buffer(node);
388 		free_extent_buffer(node->eb);
389 		node->eb = NULL;
390 	}
391 }
392 
393 static void drop_backref_node(struct backref_cache *tree,
394 			      struct backref_node *node)
395 {
396 	BUG_ON(!list_empty(&node->upper));
397 
398 	drop_node_buffer(node);
399 	list_del(&node->list);
400 	list_del(&node->lower);
401 	if (!RB_EMPTY_NODE(&node->rb_node))
402 		rb_erase(&node->rb_node, &tree->rb_root);
403 	free_backref_node(tree, node);
404 }
405 
406 /*
407  * remove a backref node from the backref cache
408  */
409 static void remove_backref_node(struct backref_cache *cache,
410 				struct backref_node *node)
411 {
412 	struct backref_node *upper;
413 	struct backref_edge *edge;
414 
415 	if (!node)
416 		return;
417 
418 	BUG_ON(!node->lowest && !node->detached);
419 	while (!list_empty(&node->upper)) {
420 		edge = list_entry(node->upper.next, struct backref_edge,
421 				  list[LOWER]);
422 		upper = edge->node[UPPER];
423 		list_del(&edge->list[LOWER]);
424 		list_del(&edge->list[UPPER]);
425 		free_backref_edge(cache, edge);
426 
427 		if (RB_EMPTY_NODE(&upper->rb_node)) {
428 			BUG_ON(!list_empty(&node->upper));
429 			drop_backref_node(cache, node);
430 			node = upper;
431 			node->lowest = 1;
432 			continue;
433 		}
434 		/*
435 		 * add the node to leaf node list if no other
436 		 * child block cached.
437 		 */
438 		if (list_empty(&upper->lower)) {
439 			list_add_tail(&upper->lower, &cache->leaves);
440 			upper->lowest = 1;
441 		}
442 	}
443 
444 	drop_backref_node(cache, node);
445 }
446 
447 static void update_backref_node(struct backref_cache *cache,
448 				struct backref_node *node, u64 bytenr)
449 {
450 	struct rb_node *rb_node;
451 	rb_erase(&node->rb_node, &cache->rb_root);
452 	node->bytenr = bytenr;
453 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
454 	BUG_ON(rb_node);
455 }
456 
457 /*
458  * update backref cache after a transaction commit
459  */
460 static int update_backref_cache(struct btrfs_trans_handle *trans,
461 				struct backref_cache *cache)
462 {
463 	struct backref_node *node;
464 	int level = 0;
465 
466 	if (cache->last_trans == 0) {
467 		cache->last_trans = trans->transid;
468 		return 0;
469 	}
470 
471 	if (cache->last_trans == trans->transid)
472 		return 0;
473 
474 	/*
475 	 * detached nodes are used to avoid unnecessary backref
476 	 * lookup. transaction commit changes the extent tree.
477 	 * so the detached nodes are no longer useful.
478 	 */
479 	while (!list_empty(&cache->detached)) {
480 		node = list_entry(cache->detached.next,
481 				  struct backref_node, list);
482 		remove_backref_node(cache, node);
483 	}
484 
485 	while (!list_empty(&cache->changed)) {
486 		node = list_entry(cache->changed.next,
487 				  struct backref_node, list);
488 		list_del_init(&node->list);
489 		BUG_ON(node->pending);
490 		update_backref_node(cache, node, node->new_bytenr);
491 	}
492 
493 	/*
494 	 * some nodes can be left in the pending list if there were
495 	 * errors during processing the pending nodes.
496 	 */
497 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
498 		list_for_each_entry(node, &cache->pending[level], list) {
499 			BUG_ON(!node->pending);
500 			if (node->bytenr == node->new_bytenr)
501 				continue;
502 			update_backref_node(cache, node, node->new_bytenr);
503 		}
504 	}
505 
506 	cache->last_trans = 0;
507 	return 1;
508 }
509 
510 static int should_ignore_root(struct btrfs_root *root)
511 {
512 	struct btrfs_root *reloc_root;
513 
514 	if (!root->ref_cows)
515 		return 0;
516 
517 	reloc_root = root->reloc_root;
518 	if (!reloc_root)
519 		return 0;
520 
521 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
522 	    root->fs_info->running_transaction->transid - 1)
523 		return 0;
524 	/*
525 	 * if there is reloc tree and it was created in previous
526 	 * transaction backref lookup can find the reloc tree,
527 	 * so backref node for the fs tree root is useless for
528 	 * relocation.
529 	 */
530 	return 1;
531 }
532 
533 /*
534  * find reloc tree by address of tree root
535  */
536 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
537 					  u64 bytenr)
538 {
539 	struct rb_node *rb_node;
540 	struct mapping_node *node;
541 	struct btrfs_root *root = NULL;
542 
543 	spin_lock(&rc->reloc_root_tree.lock);
544 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
545 	if (rb_node) {
546 		node = rb_entry(rb_node, struct mapping_node, rb_node);
547 		root = (struct btrfs_root *)node->data;
548 	}
549 	spin_unlock(&rc->reloc_root_tree.lock);
550 	return root;
551 }
552 
553 static int is_cowonly_root(u64 root_objectid)
554 {
555 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
556 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
557 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
558 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
559 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
560 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
561 		return 1;
562 	return 0;
563 }
564 
565 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
566 					u64 root_objectid)
567 {
568 	struct btrfs_key key;
569 
570 	key.objectid = root_objectid;
571 	key.type = BTRFS_ROOT_ITEM_KEY;
572 	if (is_cowonly_root(root_objectid))
573 		key.offset = 0;
574 	else
575 		key.offset = (u64)-1;
576 
577 	return btrfs_read_fs_root_no_name(fs_info, &key);
578 }
579 
580 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
581 static noinline_for_stack
582 struct btrfs_root *find_tree_root(struct reloc_control *rc,
583 				  struct extent_buffer *leaf,
584 				  struct btrfs_extent_ref_v0 *ref0)
585 {
586 	struct btrfs_root *root;
587 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
588 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
589 
590 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
591 
592 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
593 	BUG_ON(IS_ERR(root));
594 
595 	if (root->ref_cows &&
596 	    generation != btrfs_root_generation(&root->root_item))
597 		return NULL;
598 
599 	return root;
600 }
601 #endif
602 
603 static noinline_for_stack
604 int find_inline_backref(struct extent_buffer *leaf, int slot,
605 			unsigned long *ptr, unsigned long *end)
606 {
607 	struct btrfs_extent_item *ei;
608 	struct btrfs_tree_block_info *bi;
609 	u32 item_size;
610 
611 	item_size = btrfs_item_size_nr(leaf, slot);
612 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
613 	if (item_size < sizeof(*ei)) {
614 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
615 		return 1;
616 	}
617 #endif
618 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
619 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
620 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
621 
622 	if (item_size <= sizeof(*ei) + sizeof(*bi)) {
623 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
624 		return 1;
625 	}
626 
627 	bi = (struct btrfs_tree_block_info *)(ei + 1);
628 	*ptr = (unsigned long)(bi + 1);
629 	*end = (unsigned long)ei + item_size;
630 	return 0;
631 }
632 
633 /*
634  * build backref tree for a given tree block. root of the backref tree
635  * corresponds the tree block, leaves of the backref tree correspond
636  * roots of b-trees that reference the tree block.
637  *
638  * the basic idea of this function is check backrefs of a given block
639  * to find upper level blocks that refernece the block, and then check
640  * bakcrefs of these upper level blocks recursively. the recursion stop
641  * when tree root is reached or backrefs for the block is cached.
642  *
643  * NOTE: if we find backrefs for a block are cached, we know backrefs
644  * for all upper level blocks that directly/indirectly reference the
645  * block are also cached.
646  */
647 static noinline_for_stack
648 struct backref_node *build_backref_tree(struct reloc_control *rc,
649 					struct btrfs_key *node_key,
650 					int level, u64 bytenr)
651 {
652 	struct backref_cache *cache = &rc->backref_cache;
653 	struct btrfs_path *path1;
654 	struct btrfs_path *path2;
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root;
657 	struct backref_node *cur;
658 	struct backref_node *upper;
659 	struct backref_node *lower;
660 	struct backref_node *node = NULL;
661 	struct backref_node *exist = NULL;
662 	struct backref_edge *edge;
663 	struct rb_node *rb_node;
664 	struct btrfs_key key;
665 	unsigned long end;
666 	unsigned long ptr;
667 	LIST_HEAD(list);
668 	LIST_HEAD(useless);
669 	int cowonly;
670 	int ret;
671 	int err = 0;
672 
673 	path1 = btrfs_alloc_path();
674 	path2 = btrfs_alloc_path();
675 	if (!path1 || !path2) {
676 		err = -ENOMEM;
677 		goto out;
678 	}
679 
680 	node = alloc_backref_node(cache);
681 	if (!node) {
682 		err = -ENOMEM;
683 		goto out;
684 	}
685 
686 	node->bytenr = bytenr;
687 	node->level = level;
688 	node->lowest = 1;
689 	cur = node;
690 again:
691 	end = 0;
692 	ptr = 0;
693 	key.objectid = cur->bytenr;
694 	key.type = BTRFS_EXTENT_ITEM_KEY;
695 	key.offset = (u64)-1;
696 
697 	path1->search_commit_root = 1;
698 	path1->skip_locking = 1;
699 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
700 				0, 0);
701 	if (ret < 0) {
702 		err = ret;
703 		goto out;
704 	}
705 	BUG_ON(!ret || !path1->slots[0]);
706 
707 	path1->slots[0]--;
708 
709 	WARN_ON(cur->checked);
710 	if (!list_empty(&cur->upper)) {
711 		/*
712 		 * the backref was added previously when processsing
713 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
714 		 */
715 		BUG_ON(!list_is_singular(&cur->upper));
716 		edge = list_entry(cur->upper.next, struct backref_edge,
717 				  list[LOWER]);
718 		BUG_ON(!list_empty(&edge->list[UPPER]));
719 		exist = edge->node[UPPER];
720 		/*
721 		 * add the upper level block to pending list if we need
722 		 * check its backrefs
723 		 */
724 		if (!exist->checked)
725 			list_add_tail(&edge->list[UPPER], &list);
726 	} else {
727 		exist = NULL;
728 	}
729 
730 	while (1) {
731 		cond_resched();
732 		eb = path1->nodes[0];
733 
734 		if (ptr >= end) {
735 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
736 				ret = btrfs_next_leaf(rc->extent_root, path1);
737 				if (ret < 0) {
738 					err = ret;
739 					goto out;
740 				}
741 				if (ret > 0)
742 					break;
743 				eb = path1->nodes[0];
744 			}
745 
746 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
747 			if (key.objectid != cur->bytenr) {
748 				WARN_ON(exist);
749 				break;
750 			}
751 
752 			if (key.type == BTRFS_EXTENT_ITEM_KEY) {
753 				ret = find_inline_backref(eb, path1->slots[0],
754 							  &ptr, &end);
755 				if (ret)
756 					goto next;
757 			}
758 		}
759 
760 		if (ptr < end) {
761 			/* update key for inline back ref */
762 			struct btrfs_extent_inline_ref *iref;
763 			iref = (struct btrfs_extent_inline_ref *)ptr;
764 			key.type = btrfs_extent_inline_ref_type(eb, iref);
765 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
766 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
767 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
768 		}
769 
770 		if (exist &&
771 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
772 		      exist->owner == key.offset) ||
773 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
774 		      exist->bytenr == key.offset))) {
775 			exist = NULL;
776 			goto next;
777 		}
778 
779 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
780 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
781 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
782 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
783 				struct btrfs_extent_ref_v0 *ref0;
784 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
785 						struct btrfs_extent_ref_v0);
786 				if (key.objectid == key.offset) {
787 					root = find_tree_root(rc, eb, ref0);
788 					if (root && !should_ignore_root(root))
789 						cur->root = root;
790 					else
791 						list_add(&cur->list, &useless);
792 					break;
793 				}
794 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
795 								      ref0)))
796 					cur->cowonly = 1;
797 			}
798 #else
799 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
800 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
801 #endif
802 			if (key.objectid == key.offset) {
803 				/*
804 				 * only root blocks of reloc trees use
805 				 * backref of this type.
806 				 */
807 				root = find_reloc_root(rc, cur->bytenr);
808 				BUG_ON(!root);
809 				cur->root = root;
810 				break;
811 			}
812 
813 			edge = alloc_backref_edge(cache);
814 			if (!edge) {
815 				err = -ENOMEM;
816 				goto out;
817 			}
818 			rb_node = tree_search(&cache->rb_root, key.offset);
819 			if (!rb_node) {
820 				upper = alloc_backref_node(cache);
821 				if (!upper) {
822 					free_backref_edge(cache, edge);
823 					err = -ENOMEM;
824 					goto out;
825 				}
826 				upper->bytenr = key.offset;
827 				upper->level = cur->level + 1;
828 				/*
829 				 *  backrefs for the upper level block isn't
830 				 *  cached, add the block to pending list
831 				 */
832 				list_add_tail(&edge->list[UPPER], &list);
833 			} else {
834 				upper = rb_entry(rb_node, struct backref_node,
835 						 rb_node);
836 				BUG_ON(!upper->checked);
837 				INIT_LIST_HEAD(&edge->list[UPPER]);
838 			}
839 			list_add_tail(&edge->list[LOWER], &cur->upper);
840 			edge->node[LOWER] = cur;
841 			edge->node[UPPER] = upper;
842 
843 			goto next;
844 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
845 			goto next;
846 		}
847 
848 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
849 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
850 		if (IS_ERR(root)) {
851 			err = PTR_ERR(root);
852 			goto out;
853 		}
854 
855 		if (!root->ref_cows)
856 			cur->cowonly = 1;
857 
858 		if (btrfs_root_level(&root->root_item) == cur->level) {
859 			/* tree root */
860 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
861 			       cur->bytenr);
862 			if (should_ignore_root(root))
863 				list_add(&cur->list, &useless);
864 			else
865 				cur->root = root;
866 			break;
867 		}
868 
869 		level = cur->level + 1;
870 
871 		/*
872 		 * searching the tree to find upper level blocks
873 		 * reference the block.
874 		 */
875 		path2->search_commit_root = 1;
876 		path2->skip_locking = 1;
877 		path2->lowest_level = level;
878 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
879 		path2->lowest_level = 0;
880 		if (ret < 0) {
881 			err = ret;
882 			goto out;
883 		}
884 		if (ret > 0 && path2->slots[level] > 0)
885 			path2->slots[level]--;
886 
887 		eb = path2->nodes[level];
888 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
889 			cur->bytenr);
890 
891 		lower = cur;
892 		for (; level < BTRFS_MAX_LEVEL; level++) {
893 			if (!path2->nodes[level]) {
894 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
895 				       lower->bytenr);
896 				if (should_ignore_root(root))
897 					list_add(&lower->list, &useless);
898 				else
899 					lower->root = root;
900 				break;
901 			}
902 
903 			edge = alloc_backref_edge(cache);
904 			if (!edge) {
905 				err = -ENOMEM;
906 				goto out;
907 			}
908 
909 			eb = path2->nodes[level];
910 			rb_node = tree_search(&cache->rb_root, eb->start);
911 			if (!rb_node) {
912 				upper = alloc_backref_node(cache);
913 				if (!upper) {
914 					free_backref_edge(cache, edge);
915 					err = -ENOMEM;
916 					goto out;
917 				}
918 				upper->bytenr = eb->start;
919 				upper->owner = btrfs_header_owner(eb);
920 				upper->level = lower->level + 1;
921 				if (!root->ref_cows)
922 					upper->cowonly = 1;
923 
924 				/*
925 				 * if we know the block isn't shared
926 				 * we can void checking its backrefs.
927 				 */
928 				if (btrfs_block_can_be_shared(root, eb))
929 					upper->checked = 0;
930 				else
931 					upper->checked = 1;
932 
933 				/*
934 				 * add the block to pending list if we
935 				 * need check its backrefs. only block
936 				 * at 'cur->level + 1' is added to the
937 				 * tail of pending list. this guarantees
938 				 * we check backrefs from lower level
939 				 * blocks to upper level blocks.
940 				 */
941 				if (!upper->checked &&
942 				    level == cur->level + 1) {
943 					list_add_tail(&edge->list[UPPER],
944 						      &list);
945 				} else
946 					INIT_LIST_HEAD(&edge->list[UPPER]);
947 			} else {
948 				upper = rb_entry(rb_node, struct backref_node,
949 						 rb_node);
950 				BUG_ON(!upper->checked);
951 				INIT_LIST_HEAD(&edge->list[UPPER]);
952 				if (!upper->owner)
953 					upper->owner = btrfs_header_owner(eb);
954 			}
955 			list_add_tail(&edge->list[LOWER], &lower->upper);
956 			edge->node[LOWER] = lower;
957 			edge->node[UPPER] = upper;
958 
959 			if (rb_node)
960 				break;
961 			lower = upper;
962 			upper = NULL;
963 		}
964 		btrfs_release_path(root, path2);
965 next:
966 		if (ptr < end) {
967 			ptr += btrfs_extent_inline_ref_size(key.type);
968 			if (ptr >= end) {
969 				WARN_ON(ptr > end);
970 				ptr = 0;
971 				end = 0;
972 			}
973 		}
974 		if (ptr >= end)
975 			path1->slots[0]++;
976 	}
977 	btrfs_release_path(rc->extent_root, path1);
978 
979 	cur->checked = 1;
980 	WARN_ON(exist);
981 
982 	/* the pending list isn't empty, take the first block to process */
983 	if (!list_empty(&list)) {
984 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
985 		list_del_init(&edge->list[UPPER]);
986 		cur = edge->node[UPPER];
987 		goto again;
988 	}
989 
990 	/*
991 	 * everything goes well, connect backref nodes and insert backref nodes
992 	 * into the cache.
993 	 */
994 	BUG_ON(!node->checked);
995 	cowonly = node->cowonly;
996 	if (!cowonly) {
997 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
998 				      &node->rb_node);
999 		BUG_ON(rb_node);
1000 		list_add_tail(&node->lower, &cache->leaves);
1001 	}
1002 
1003 	list_for_each_entry(edge, &node->upper, list[LOWER])
1004 		list_add_tail(&edge->list[UPPER], &list);
1005 
1006 	while (!list_empty(&list)) {
1007 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1008 		list_del_init(&edge->list[UPPER]);
1009 		upper = edge->node[UPPER];
1010 		if (upper->detached) {
1011 			list_del(&edge->list[LOWER]);
1012 			lower = edge->node[LOWER];
1013 			free_backref_edge(cache, edge);
1014 			if (list_empty(&lower->upper))
1015 				list_add(&lower->list, &useless);
1016 			continue;
1017 		}
1018 
1019 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1020 			if (upper->lowest) {
1021 				list_del_init(&upper->lower);
1022 				upper->lowest = 0;
1023 			}
1024 
1025 			list_add_tail(&edge->list[UPPER], &upper->lower);
1026 			continue;
1027 		}
1028 
1029 		BUG_ON(!upper->checked);
1030 		BUG_ON(cowonly != upper->cowonly);
1031 		if (!cowonly) {
1032 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1033 					      &upper->rb_node);
1034 			BUG_ON(rb_node);
1035 		}
1036 
1037 		list_add_tail(&edge->list[UPPER], &upper->lower);
1038 
1039 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1040 			list_add_tail(&edge->list[UPPER], &list);
1041 	}
1042 	/*
1043 	 * process useless backref nodes. backref nodes for tree leaves
1044 	 * are deleted from the cache. backref nodes for upper level
1045 	 * tree blocks are left in the cache to avoid unnecessary backref
1046 	 * lookup.
1047 	 */
1048 	while (!list_empty(&useless)) {
1049 		upper = list_entry(useless.next, struct backref_node, list);
1050 		list_del_init(&upper->list);
1051 		BUG_ON(!list_empty(&upper->upper));
1052 		if (upper == node)
1053 			node = NULL;
1054 		if (upper->lowest) {
1055 			list_del_init(&upper->lower);
1056 			upper->lowest = 0;
1057 		}
1058 		while (!list_empty(&upper->lower)) {
1059 			edge = list_entry(upper->lower.next,
1060 					  struct backref_edge, list[UPPER]);
1061 			list_del(&edge->list[UPPER]);
1062 			list_del(&edge->list[LOWER]);
1063 			lower = edge->node[LOWER];
1064 			free_backref_edge(cache, edge);
1065 
1066 			if (list_empty(&lower->upper))
1067 				list_add(&lower->list, &useless);
1068 		}
1069 		__mark_block_processed(rc, upper);
1070 		if (upper->level > 0) {
1071 			list_add(&upper->list, &cache->detached);
1072 			upper->detached = 1;
1073 		} else {
1074 			rb_erase(&upper->rb_node, &cache->rb_root);
1075 			free_backref_node(cache, upper);
1076 		}
1077 	}
1078 out:
1079 	btrfs_free_path(path1);
1080 	btrfs_free_path(path2);
1081 	if (err) {
1082 		while (!list_empty(&useless)) {
1083 			lower = list_entry(useless.next,
1084 					   struct backref_node, upper);
1085 			list_del_init(&lower->upper);
1086 		}
1087 		upper = node;
1088 		INIT_LIST_HEAD(&list);
1089 		while (upper) {
1090 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1091 				list_splice_tail(&upper->upper, &list);
1092 				free_backref_node(cache, upper);
1093 			}
1094 
1095 			if (list_empty(&list))
1096 				break;
1097 
1098 			edge = list_entry(list.next, struct backref_edge,
1099 					  list[LOWER]);
1100 			list_del(&edge->list[LOWER]);
1101 			upper = edge->node[UPPER];
1102 			free_backref_edge(cache, edge);
1103 		}
1104 		return ERR_PTR(err);
1105 	}
1106 	BUG_ON(node && node->detached);
1107 	return node;
1108 }
1109 
1110 /*
1111  * helper to add backref node for the newly created snapshot.
1112  * the backref node is created by cloning backref node that
1113  * corresponds to root of source tree
1114  */
1115 static int clone_backref_node(struct btrfs_trans_handle *trans,
1116 			      struct reloc_control *rc,
1117 			      struct btrfs_root *src,
1118 			      struct btrfs_root *dest)
1119 {
1120 	struct btrfs_root *reloc_root = src->reloc_root;
1121 	struct backref_cache *cache = &rc->backref_cache;
1122 	struct backref_node *node = NULL;
1123 	struct backref_node *new_node;
1124 	struct backref_edge *edge;
1125 	struct backref_edge *new_edge;
1126 	struct rb_node *rb_node;
1127 
1128 	if (cache->last_trans > 0)
1129 		update_backref_cache(trans, cache);
1130 
1131 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1132 	if (rb_node) {
1133 		node = rb_entry(rb_node, struct backref_node, rb_node);
1134 		if (node->detached)
1135 			node = NULL;
1136 		else
1137 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1138 	}
1139 
1140 	if (!node) {
1141 		rb_node = tree_search(&cache->rb_root,
1142 				      reloc_root->commit_root->start);
1143 		if (rb_node) {
1144 			node = rb_entry(rb_node, struct backref_node,
1145 					rb_node);
1146 			BUG_ON(node->detached);
1147 		}
1148 	}
1149 
1150 	if (!node)
1151 		return 0;
1152 
1153 	new_node = alloc_backref_node(cache);
1154 	if (!new_node)
1155 		return -ENOMEM;
1156 
1157 	new_node->bytenr = dest->node->start;
1158 	new_node->level = node->level;
1159 	new_node->lowest = node->lowest;
1160 	new_node->checked = 1;
1161 	new_node->root = dest;
1162 
1163 	if (!node->lowest) {
1164 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1165 			new_edge = alloc_backref_edge(cache);
1166 			if (!new_edge)
1167 				goto fail;
1168 
1169 			new_edge->node[UPPER] = new_node;
1170 			new_edge->node[LOWER] = edge->node[LOWER];
1171 			list_add_tail(&new_edge->list[UPPER],
1172 				      &new_node->lower);
1173 		}
1174 	}
1175 
1176 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1177 			      &new_node->rb_node);
1178 	BUG_ON(rb_node);
1179 
1180 	if (!new_node->lowest) {
1181 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1182 			list_add_tail(&new_edge->list[LOWER],
1183 				      &new_edge->node[LOWER]->upper);
1184 		}
1185 	}
1186 	return 0;
1187 fail:
1188 	while (!list_empty(&new_node->lower)) {
1189 		new_edge = list_entry(new_node->lower.next,
1190 				      struct backref_edge, list[UPPER]);
1191 		list_del(&new_edge->list[UPPER]);
1192 		free_backref_edge(cache, new_edge);
1193 	}
1194 	free_backref_node(cache, new_node);
1195 	return -ENOMEM;
1196 }
1197 
1198 /*
1199  * helper to add 'address of tree root -> reloc tree' mapping
1200  */
1201 static int __add_reloc_root(struct btrfs_root *root)
1202 {
1203 	struct rb_node *rb_node;
1204 	struct mapping_node *node;
1205 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1206 
1207 	node = kmalloc(sizeof(*node), GFP_NOFS);
1208 	BUG_ON(!node);
1209 
1210 	node->bytenr = root->node->start;
1211 	node->data = root;
1212 
1213 	spin_lock(&rc->reloc_root_tree.lock);
1214 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1215 			      node->bytenr, &node->rb_node);
1216 	spin_unlock(&rc->reloc_root_tree.lock);
1217 	BUG_ON(rb_node);
1218 
1219 	list_add_tail(&root->root_list, &rc->reloc_roots);
1220 	return 0;
1221 }
1222 
1223 /*
1224  * helper to update/delete the 'address of tree root -> reloc tree'
1225  * mapping
1226  */
1227 static int __update_reloc_root(struct btrfs_root *root, int del)
1228 {
1229 	struct rb_node *rb_node;
1230 	struct mapping_node *node = NULL;
1231 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1232 
1233 	spin_lock(&rc->reloc_root_tree.lock);
1234 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1235 			      root->commit_root->start);
1236 	if (rb_node) {
1237 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1238 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1239 	}
1240 	spin_unlock(&rc->reloc_root_tree.lock);
1241 
1242 	BUG_ON((struct btrfs_root *)node->data != root);
1243 
1244 	if (!del) {
1245 		spin_lock(&rc->reloc_root_tree.lock);
1246 		node->bytenr = root->node->start;
1247 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1248 				      node->bytenr, &node->rb_node);
1249 		spin_unlock(&rc->reloc_root_tree.lock);
1250 		BUG_ON(rb_node);
1251 	} else {
1252 		list_del_init(&root->root_list);
1253 		kfree(node);
1254 	}
1255 	return 0;
1256 }
1257 
1258 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1259 					struct btrfs_root *root, u64 objectid)
1260 {
1261 	struct btrfs_root *reloc_root;
1262 	struct extent_buffer *eb;
1263 	struct btrfs_root_item *root_item;
1264 	struct btrfs_key root_key;
1265 	int ret;
1266 
1267 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1268 	BUG_ON(!root_item);
1269 
1270 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1271 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 	root_key.offset = objectid;
1273 
1274 	if (root->root_key.objectid == objectid) {
1275 		/* called by btrfs_init_reloc_root */
1276 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1277 				      BTRFS_TREE_RELOC_OBJECTID);
1278 		BUG_ON(ret);
1279 
1280 		btrfs_set_root_last_snapshot(&root->root_item,
1281 					     trans->transid - 1);
1282 	} else {
1283 		/*
1284 		 * called by btrfs_reloc_post_snapshot_hook.
1285 		 * the source tree is a reloc tree, all tree blocks
1286 		 * modified after it was created have RELOC flag
1287 		 * set in their headers. so it's OK to not update
1288 		 * the 'last_snapshot'.
1289 		 */
1290 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1291 				      BTRFS_TREE_RELOC_OBJECTID);
1292 		BUG_ON(ret);
1293 	}
1294 
1295 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1296 	btrfs_set_root_bytenr(root_item, eb->start);
1297 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1298 	btrfs_set_root_generation(root_item, trans->transid);
1299 
1300 	if (root->root_key.objectid == objectid) {
1301 		btrfs_set_root_refs(root_item, 0);
1302 		memset(&root_item->drop_progress, 0,
1303 		       sizeof(struct btrfs_disk_key));
1304 		root_item->drop_level = 0;
1305 	}
1306 
1307 	btrfs_tree_unlock(eb);
1308 	free_extent_buffer(eb);
1309 
1310 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1311 				&root_key, root_item);
1312 	BUG_ON(ret);
1313 	kfree(root_item);
1314 
1315 	reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root,
1316 						 &root_key);
1317 	BUG_ON(IS_ERR(reloc_root));
1318 	reloc_root->last_trans = trans->transid;
1319 	return reloc_root;
1320 }
1321 
1322 /*
1323  * create reloc tree for a given fs tree. reloc tree is just a
1324  * snapshot of the fs tree with special root objectid.
1325  */
1326 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1327 			  struct btrfs_root *root)
1328 {
1329 	struct btrfs_root *reloc_root;
1330 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1331 	int clear_rsv = 0;
1332 
1333 	if (root->reloc_root) {
1334 		reloc_root = root->reloc_root;
1335 		reloc_root->last_trans = trans->transid;
1336 		return 0;
1337 	}
1338 
1339 	if (!rc || !rc->create_reloc_tree ||
1340 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1341 		return 0;
1342 
1343 	if (!trans->block_rsv) {
1344 		trans->block_rsv = rc->block_rsv;
1345 		clear_rsv = 1;
1346 	}
1347 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1348 	if (clear_rsv)
1349 		trans->block_rsv = NULL;
1350 
1351 	__add_reloc_root(reloc_root);
1352 	root->reloc_root = reloc_root;
1353 	return 0;
1354 }
1355 
1356 /*
1357  * update root item of reloc tree
1358  */
1359 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1360 			    struct btrfs_root *root)
1361 {
1362 	struct btrfs_root *reloc_root;
1363 	struct btrfs_root_item *root_item;
1364 	int del = 0;
1365 	int ret;
1366 
1367 	if (!root->reloc_root)
1368 		return 0;
1369 
1370 	reloc_root = root->reloc_root;
1371 	root_item = &reloc_root->root_item;
1372 
1373 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1374 	    btrfs_root_refs(root_item) == 0) {
1375 		root->reloc_root = NULL;
1376 		del = 1;
1377 	}
1378 
1379 	__update_reloc_root(reloc_root, del);
1380 
1381 	if (reloc_root->commit_root != reloc_root->node) {
1382 		btrfs_set_root_node(root_item, reloc_root->node);
1383 		free_extent_buffer(reloc_root->commit_root);
1384 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1385 	}
1386 
1387 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1388 				&reloc_root->root_key, root_item);
1389 	BUG_ON(ret);
1390 	return 0;
1391 }
1392 
1393 /*
1394  * helper to find first cached inode with inode number >= objectid
1395  * in a subvolume
1396  */
1397 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1398 {
1399 	struct rb_node *node;
1400 	struct rb_node *prev;
1401 	struct btrfs_inode *entry;
1402 	struct inode *inode;
1403 
1404 	spin_lock(&root->inode_lock);
1405 again:
1406 	node = root->inode_tree.rb_node;
1407 	prev = NULL;
1408 	while (node) {
1409 		prev = node;
1410 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1411 
1412 		if (objectid < entry->vfs_inode.i_ino)
1413 			node = node->rb_left;
1414 		else if (objectid > entry->vfs_inode.i_ino)
1415 			node = node->rb_right;
1416 		else
1417 			break;
1418 	}
1419 	if (!node) {
1420 		while (prev) {
1421 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1422 			if (objectid <= entry->vfs_inode.i_ino) {
1423 				node = prev;
1424 				break;
1425 			}
1426 			prev = rb_next(prev);
1427 		}
1428 	}
1429 	while (node) {
1430 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1431 		inode = igrab(&entry->vfs_inode);
1432 		if (inode) {
1433 			spin_unlock(&root->inode_lock);
1434 			return inode;
1435 		}
1436 
1437 		objectid = entry->vfs_inode.i_ino + 1;
1438 		if (cond_resched_lock(&root->inode_lock))
1439 			goto again;
1440 
1441 		node = rb_next(node);
1442 	}
1443 	spin_unlock(&root->inode_lock);
1444 	return NULL;
1445 }
1446 
1447 static int in_block_group(u64 bytenr,
1448 			  struct btrfs_block_group_cache *block_group)
1449 {
1450 	if (bytenr >= block_group->key.objectid &&
1451 	    bytenr < block_group->key.objectid + block_group->key.offset)
1452 		return 1;
1453 	return 0;
1454 }
1455 
1456 /*
1457  * get new location of data
1458  */
1459 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1460 			    u64 bytenr, u64 num_bytes)
1461 {
1462 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1463 	struct btrfs_path *path;
1464 	struct btrfs_file_extent_item *fi;
1465 	struct extent_buffer *leaf;
1466 	int ret;
1467 
1468 	path = btrfs_alloc_path();
1469 	if (!path)
1470 		return -ENOMEM;
1471 
1472 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1473 	ret = btrfs_lookup_file_extent(NULL, root, path, reloc_inode->i_ino,
1474 				       bytenr, 0);
1475 	if (ret < 0)
1476 		goto out;
1477 	if (ret > 0) {
1478 		ret = -ENOENT;
1479 		goto out;
1480 	}
1481 
1482 	leaf = path->nodes[0];
1483 	fi = btrfs_item_ptr(leaf, path->slots[0],
1484 			    struct btrfs_file_extent_item);
1485 
1486 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1487 	       btrfs_file_extent_compression(leaf, fi) ||
1488 	       btrfs_file_extent_encryption(leaf, fi) ||
1489 	       btrfs_file_extent_other_encoding(leaf, fi));
1490 
1491 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1492 		ret = 1;
1493 		goto out;
1494 	}
1495 
1496 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1497 	ret = 0;
1498 out:
1499 	btrfs_free_path(path);
1500 	return ret;
1501 }
1502 
1503 /*
1504  * update file extent items in the tree leaf to point to
1505  * the new locations.
1506  */
1507 static noinline_for_stack
1508 int replace_file_extents(struct btrfs_trans_handle *trans,
1509 			 struct reloc_control *rc,
1510 			 struct btrfs_root *root,
1511 			 struct extent_buffer *leaf)
1512 {
1513 	struct btrfs_key key;
1514 	struct btrfs_file_extent_item *fi;
1515 	struct inode *inode = NULL;
1516 	u64 parent;
1517 	u64 bytenr;
1518 	u64 new_bytenr = 0;
1519 	u64 num_bytes;
1520 	u64 end;
1521 	u32 nritems;
1522 	u32 i;
1523 	int ret;
1524 	int first = 1;
1525 	int dirty = 0;
1526 
1527 	if (rc->stage != UPDATE_DATA_PTRS)
1528 		return 0;
1529 
1530 	/* reloc trees always use full backref */
1531 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1532 		parent = leaf->start;
1533 	else
1534 		parent = 0;
1535 
1536 	nritems = btrfs_header_nritems(leaf);
1537 	for (i = 0; i < nritems; i++) {
1538 		cond_resched();
1539 		btrfs_item_key_to_cpu(leaf, &key, i);
1540 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1541 			continue;
1542 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1543 		if (btrfs_file_extent_type(leaf, fi) ==
1544 		    BTRFS_FILE_EXTENT_INLINE)
1545 			continue;
1546 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1547 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1548 		if (bytenr == 0)
1549 			continue;
1550 		if (!in_block_group(bytenr, rc->block_group))
1551 			continue;
1552 
1553 		/*
1554 		 * if we are modifying block in fs tree, wait for readpage
1555 		 * to complete and drop the extent cache
1556 		 */
1557 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1558 			if (first) {
1559 				inode = find_next_inode(root, key.objectid);
1560 				first = 0;
1561 			} else if (inode && inode->i_ino < key.objectid) {
1562 				btrfs_add_delayed_iput(inode);
1563 				inode = find_next_inode(root, key.objectid);
1564 			}
1565 			if (inode && inode->i_ino == key.objectid) {
1566 				end = key.offset +
1567 				      btrfs_file_extent_num_bytes(leaf, fi);
1568 				WARN_ON(!IS_ALIGNED(key.offset,
1569 						    root->sectorsize));
1570 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1571 				end--;
1572 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1573 						      key.offset, end,
1574 						      GFP_NOFS);
1575 				if (!ret)
1576 					continue;
1577 
1578 				btrfs_drop_extent_cache(inode, key.offset, end,
1579 							1);
1580 				unlock_extent(&BTRFS_I(inode)->io_tree,
1581 					      key.offset, end, GFP_NOFS);
1582 			}
1583 		}
1584 
1585 		ret = get_new_location(rc->data_inode, &new_bytenr,
1586 				       bytenr, num_bytes);
1587 		if (ret > 0) {
1588 			WARN_ON(1);
1589 			continue;
1590 		}
1591 		BUG_ON(ret < 0);
1592 
1593 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1594 		dirty = 1;
1595 
1596 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1597 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1598 					   num_bytes, parent,
1599 					   btrfs_header_owner(leaf),
1600 					   key.objectid, key.offset);
1601 		BUG_ON(ret);
1602 
1603 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1604 					parent, btrfs_header_owner(leaf),
1605 					key.objectid, key.offset);
1606 		BUG_ON(ret);
1607 	}
1608 	if (dirty)
1609 		btrfs_mark_buffer_dirty(leaf);
1610 	if (inode)
1611 		btrfs_add_delayed_iput(inode);
1612 	return 0;
1613 }
1614 
1615 static noinline_for_stack
1616 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1617 		     struct btrfs_path *path, int level)
1618 {
1619 	struct btrfs_disk_key key1;
1620 	struct btrfs_disk_key key2;
1621 	btrfs_node_key(eb, &key1, slot);
1622 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1623 	return memcmp(&key1, &key2, sizeof(key1));
1624 }
1625 
1626 /*
1627  * try to replace tree blocks in fs tree with the new blocks
1628  * in reloc tree. tree blocks haven't been modified since the
1629  * reloc tree was create can be replaced.
1630  *
1631  * if a block was replaced, level of the block + 1 is returned.
1632  * if no block got replaced, 0 is returned. if there are other
1633  * errors, a negative error number is returned.
1634  */
1635 static noinline_for_stack
1636 int replace_path(struct btrfs_trans_handle *trans,
1637 		 struct btrfs_root *dest, struct btrfs_root *src,
1638 		 struct btrfs_path *path, struct btrfs_key *next_key,
1639 		 int lowest_level, int max_level)
1640 {
1641 	struct extent_buffer *eb;
1642 	struct extent_buffer *parent;
1643 	struct btrfs_key key;
1644 	u64 old_bytenr;
1645 	u64 new_bytenr;
1646 	u64 old_ptr_gen;
1647 	u64 new_ptr_gen;
1648 	u64 last_snapshot;
1649 	u32 blocksize;
1650 	int cow = 0;
1651 	int level;
1652 	int ret;
1653 	int slot;
1654 
1655 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1656 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1657 
1658 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1659 again:
1660 	slot = path->slots[lowest_level];
1661 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1662 
1663 	eb = btrfs_lock_root_node(dest);
1664 	btrfs_set_lock_blocking(eb);
1665 	level = btrfs_header_level(eb);
1666 
1667 	if (level < lowest_level) {
1668 		btrfs_tree_unlock(eb);
1669 		free_extent_buffer(eb);
1670 		return 0;
1671 	}
1672 
1673 	if (cow) {
1674 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1675 		BUG_ON(ret);
1676 	}
1677 	btrfs_set_lock_blocking(eb);
1678 
1679 	if (next_key) {
1680 		next_key->objectid = (u64)-1;
1681 		next_key->type = (u8)-1;
1682 		next_key->offset = (u64)-1;
1683 	}
1684 
1685 	parent = eb;
1686 	while (1) {
1687 		level = btrfs_header_level(parent);
1688 		BUG_ON(level < lowest_level);
1689 
1690 		ret = btrfs_bin_search(parent, &key, level, &slot);
1691 		if (ret && slot > 0)
1692 			slot--;
1693 
1694 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1695 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1696 
1697 		old_bytenr = btrfs_node_blockptr(parent, slot);
1698 		blocksize = btrfs_level_size(dest, level - 1);
1699 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1700 
1701 		if (level <= max_level) {
1702 			eb = path->nodes[level];
1703 			new_bytenr = btrfs_node_blockptr(eb,
1704 							path->slots[level]);
1705 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1706 							path->slots[level]);
1707 		} else {
1708 			new_bytenr = 0;
1709 			new_ptr_gen = 0;
1710 		}
1711 
1712 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1713 			WARN_ON(1);
1714 			ret = level;
1715 			break;
1716 		}
1717 
1718 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1719 		    memcmp_node_keys(parent, slot, path, level)) {
1720 			if (level <= lowest_level) {
1721 				ret = 0;
1722 				break;
1723 			}
1724 
1725 			eb = read_tree_block(dest, old_bytenr, blocksize,
1726 					     old_ptr_gen);
1727 			btrfs_tree_lock(eb);
1728 			if (cow) {
1729 				ret = btrfs_cow_block(trans, dest, eb, parent,
1730 						      slot, &eb);
1731 				BUG_ON(ret);
1732 			}
1733 			btrfs_set_lock_blocking(eb);
1734 
1735 			btrfs_tree_unlock(parent);
1736 			free_extent_buffer(parent);
1737 
1738 			parent = eb;
1739 			continue;
1740 		}
1741 
1742 		if (!cow) {
1743 			btrfs_tree_unlock(parent);
1744 			free_extent_buffer(parent);
1745 			cow = 1;
1746 			goto again;
1747 		}
1748 
1749 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1750 				      path->slots[level]);
1751 		btrfs_release_path(src, path);
1752 
1753 		path->lowest_level = level;
1754 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1755 		path->lowest_level = 0;
1756 		BUG_ON(ret);
1757 
1758 		/*
1759 		 * swap blocks in fs tree and reloc tree.
1760 		 */
1761 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1762 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1763 		btrfs_mark_buffer_dirty(parent);
1764 
1765 		btrfs_set_node_blockptr(path->nodes[level],
1766 					path->slots[level], old_bytenr);
1767 		btrfs_set_node_ptr_generation(path->nodes[level],
1768 					      path->slots[level], old_ptr_gen);
1769 		btrfs_mark_buffer_dirty(path->nodes[level]);
1770 
1771 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1772 					path->nodes[level]->start,
1773 					src->root_key.objectid, level - 1, 0);
1774 		BUG_ON(ret);
1775 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1776 					0, dest->root_key.objectid, level - 1,
1777 					0);
1778 		BUG_ON(ret);
1779 
1780 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1781 					path->nodes[level]->start,
1782 					src->root_key.objectid, level - 1, 0);
1783 		BUG_ON(ret);
1784 
1785 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1786 					0, dest->root_key.objectid, level - 1,
1787 					0);
1788 		BUG_ON(ret);
1789 
1790 		btrfs_unlock_up_safe(path, 0);
1791 
1792 		ret = level;
1793 		break;
1794 	}
1795 	btrfs_tree_unlock(parent);
1796 	free_extent_buffer(parent);
1797 	return ret;
1798 }
1799 
1800 /*
1801  * helper to find next relocated block in reloc tree
1802  */
1803 static noinline_for_stack
1804 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1805 		       int *level)
1806 {
1807 	struct extent_buffer *eb;
1808 	int i;
1809 	u64 last_snapshot;
1810 	u32 nritems;
1811 
1812 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1813 
1814 	for (i = 0; i < *level; i++) {
1815 		free_extent_buffer(path->nodes[i]);
1816 		path->nodes[i] = NULL;
1817 	}
1818 
1819 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1820 		eb = path->nodes[i];
1821 		nritems = btrfs_header_nritems(eb);
1822 		while (path->slots[i] + 1 < nritems) {
1823 			path->slots[i]++;
1824 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1825 			    last_snapshot)
1826 				continue;
1827 
1828 			*level = i;
1829 			return 0;
1830 		}
1831 		free_extent_buffer(path->nodes[i]);
1832 		path->nodes[i] = NULL;
1833 	}
1834 	return 1;
1835 }
1836 
1837 /*
1838  * walk down reloc tree to find relocated block of lowest level
1839  */
1840 static noinline_for_stack
1841 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1842 			 int *level)
1843 {
1844 	struct extent_buffer *eb = NULL;
1845 	int i;
1846 	u64 bytenr;
1847 	u64 ptr_gen = 0;
1848 	u64 last_snapshot;
1849 	u32 blocksize;
1850 	u32 nritems;
1851 
1852 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1853 
1854 	for (i = *level; i > 0; i--) {
1855 		eb = path->nodes[i];
1856 		nritems = btrfs_header_nritems(eb);
1857 		while (path->slots[i] < nritems) {
1858 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1859 			if (ptr_gen > last_snapshot)
1860 				break;
1861 			path->slots[i]++;
1862 		}
1863 		if (path->slots[i] >= nritems) {
1864 			if (i == *level)
1865 				break;
1866 			*level = i + 1;
1867 			return 0;
1868 		}
1869 		if (i == 1) {
1870 			*level = i;
1871 			return 0;
1872 		}
1873 
1874 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1875 		blocksize = btrfs_level_size(root, i - 1);
1876 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1877 		BUG_ON(btrfs_header_level(eb) != i - 1);
1878 		path->nodes[i - 1] = eb;
1879 		path->slots[i - 1] = 0;
1880 	}
1881 	return 1;
1882 }
1883 
1884 /*
1885  * invalidate extent cache for file extents whose key in range of
1886  * [min_key, max_key)
1887  */
1888 static int invalidate_extent_cache(struct btrfs_root *root,
1889 				   struct btrfs_key *min_key,
1890 				   struct btrfs_key *max_key)
1891 {
1892 	struct inode *inode = NULL;
1893 	u64 objectid;
1894 	u64 start, end;
1895 
1896 	objectid = min_key->objectid;
1897 	while (1) {
1898 		cond_resched();
1899 		iput(inode);
1900 
1901 		if (objectid > max_key->objectid)
1902 			break;
1903 
1904 		inode = find_next_inode(root, objectid);
1905 		if (!inode)
1906 			break;
1907 
1908 		if (inode->i_ino > max_key->objectid) {
1909 			iput(inode);
1910 			break;
1911 		}
1912 
1913 		objectid = inode->i_ino + 1;
1914 		if (!S_ISREG(inode->i_mode))
1915 			continue;
1916 
1917 		if (unlikely(min_key->objectid == inode->i_ino)) {
1918 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1919 				continue;
1920 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1921 				start = 0;
1922 			else {
1923 				start = min_key->offset;
1924 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1925 			}
1926 		} else {
1927 			start = 0;
1928 		}
1929 
1930 		if (unlikely(max_key->objectid == inode->i_ino)) {
1931 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1932 				continue;
1933 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1934 				end = (u64)-1;
1935 			} else {
1936 				if (max_key->offset == 0)
1937 					continue;
1938 				end = max_key->offset;
1939 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1940 				end--;
1941 			}
1942 		} else {
1943 			end = (u64)-1;
1944 		}
1945 
1946 		/* the lock_extent waits for readpage to complete */
1947 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1948 		btrfs_drop_extent_cache(inode, start, end, 1);
1949 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
1950 	}
1951 	return 0;
1952 }
1953 
1954 static int find_next_key(struct btrfs_path *path, int level,
1955 			 struct btrfs_key *key)
1956 
1957 {
1958 	while (level < BTRFS_MAX_LEVEL) {
1959 		if (!path->nodes[level])
1960 			break;
1961 		if (path->slots[level] + 1 <
1962 		    btrfs_header_nritems(path->nodes[level])) {
1963 			btrfs_node_key_to_cpu(path->nodes[level], key,
1964 					      path->slots[level] + 1);
1965 			return 0;
1966 		}
1967 		level++;
1968 	}
1969 	return 1;
1970 }
1971 
1972 /*
1973  * merge the relocated tree blocks in reloc tree with corresponding
1974  * fs tree.
1975  */
1976 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1977 					       struct btrfs_root *root)
1978 {
1979 	LIST_HEAD(inode_list);
1980 	struct btrfs_key key;
1981 	struct btrfs_key next_key;
1982 	struct btrfs_trans_handle *trans;
1983 	struct btrfs_root *reloc_root;
1984 	struct btrfs_root_item *root_item;
1985 	struct btrfs_path *path;
1986 	struct extent_buffer *leaf;
1987 	unsigned long nr;
1988 	int level;
1989 	int max_level;
1990 	int replaced = 0;
1991 	int ret;
1992 	int err = 0;
1993 	u32 min_reserved;
1994 
1995 	path = btrfs_alloc_path();
1996 	if (!path)
1997 		return -ENOMEM;
1998 
1999 	reloc_root = root->reloc_root;
2000 	root_item = &reloc_root->root_item;
2001 
2002 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2003 		level = btrfs_root_level(root_item);
2004 		extent_buffer_get(reloc_root->node);
2005 		path->nodes[level] = reloc_root->node;
2006 		path->slots[level] = 0;
2007 	} else {
2008 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2009 
2010 		level = root_item->drop_level;
2011 		BUG_ON(level == 0);
2012 		path->lowest_level = level;
2013 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2014 		path->lowest_level = 0;
2015 		if (ret < 0) {
2016 			btrfs_free_path(path);
2017 			return ret;
2018 		}
2019 
2020 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2021 				      path->slots[level]);
2022 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2023 
2024 		btrfs_unlock_up_safe(path, 0);
2025 	}
2026 
2027 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2028 	memset(&next_key, 0, sizeof(next_key));
2029 
2030 	while (1) {
2031 		trans = btrfs_start_transaction(root, 0);
2032 		BUG_ON(IS_ERR(trans));
2033 		trans->block_rsv = rc->block_rsv;
2034 
2035 		ret = btrfs_block_rsv_check(trans, root, rc->block_rsv,
2036 					    min_reserved, 0);
2037 		if (ret) {
2038 			BUG_ON(ret != -EAGAIN);
2039 			ret = btrfs_commit_transaction(trans, root);
2040 			BUG_ON(ret);
2041 			continue;
2042 		}
2043 
2044 		replaced = 0;
2045 		max_level = level;
2046 
2047 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2048 		if (ret < 0) {
2049 			err = ret;
2050 			goto out;
2051 		}
2052 		if (ret > 0)
2053 			break;
2054 
2055 		if (!find_next_key(path, level, &key) &&
2056 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2057 			ret = 0;
2058 		} else {
2059 			ret = replace_path(trans, root, reloc_root, path,
2060 					   &next_key, level, max_level);
2061 		}
2062 		if (ret < 0) {
2063 			err = ret;
2064 			goto out;
2065 		}
2066 
2067 		if (ret > 0) {
2068 			level = ret;
2069 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2070 					      path->slots[level]);
2071 			replaced = 1;
2072 		}
2073 
2074 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2075 		if (ret > 0)
2076 			break;
2077 
2078 		BUG_ON(level == 0);
2079 		/*
2080 		 * save the merging progress in the drop_progress.
2081 		 * this is OK since root refs == 1 in this case.
2082 		 */
2083 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2084 			       path->slots[level]);
2085 		root_item->drop_level = level;
2086 
2087 		nr = trans->blocks_used;
2088 		btrfs_end_transaction_throttle(trans, root);
2089 
2090 		btrfs_btree_balance_dirty(root, nr);
2091 
2092 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2093 			invalidate_extent_cache(root, &key, &next_key);
2094 	}
2095 
2096 	/*
2097 	 * handle the case only one block in the fs tree need to be
2098 	 * relocated and the block is tree root.
2099 	 */
2100 	leaf = btrfs_lock_root_node(root);
2101 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2102 	btrfs_tree_unlock(leaf);
2103 	free_extent_buffer(leaf);
2104 	if (ret < 0)
2105 		err = ret;
2106 out:
2107 	btrfs_free_path(path);
2108 
2109 	if (err == 0) {
2110 		memset(&root_item->drop_progress, 0,
2111 		       sizeof(root_item->drop_progress));
2112 		root_item->drop_level = 0;
2113 		btrfs_set_root_refs(root_item, 0);
2114 		btrfs_update_reloc_root(trans, root);
2115 	}
2116 
2117 	nr = trans->blocks_used;
2118 	btrfs_end_transaction_throttle(trans, root);
2119 
2120 	btrfs_btree_balance_dirty(root, nr);
2121 
2122 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2123 		invalidate_extent_cache(root, &key, &next_key);
2124 
2125 	return err;
2126 }
2127 
2128 static noinline_for_stack
2129 int prepare_to_merge(struct reloc_control *rc, int err)
2130 {
2131 	struct btrfs_root *root = rc->extent_root;
2132 	struct btrfs_root *reloc_root;
2133 	struct btrfs_trans_handle *trans;
2134 	LIST_HEAD(reloc_roots);
2135 	u64 num_bytes = 0;
2136 	int ret;
2137 
2138 	mutex_lock(&root->fs_info->trans_mutex);
2139 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2140 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2141 	mutex_unlock(&root->fs_info->trans_mutex);
2142 again:
2143 	if (!err) {
2144 		num_bytes = rc->merging_rsv_size;
2145 		ret = btrfs_block_rsv_add(NULL, root, rc->block_rsv,
2146 					  num_bytes);
2147 		if (ret)
2148 			err = ret;
2149 	}
2150 
2151 	trans = btrfs_join_transaction(rc->extent_root, 1);
2152 	if (IS_ERR(trans)) {
2153 		if (!err)
2154 			btrfs_block_rsv_release(rc->extent_root,
2155 						rc->block_rsv, num_bytes);
2156 		return PTR_ERR(trans);
2157 	}
2158 
2159 	if (!err) {
2160 		if (num_bytes != rc->merging_rsv_size) {
2161 			btrfs_end_transaction(trans, rc->extent_root);
2162 			btrfs_block_rsv_release(rc->extent_root,
2163 						rc->block_rsv, num_bytes);
2164 			goto again;
2165 		}
2166 	}
2167 
2168 	rc->merge_reloc_tree = 1;
2169 
2170 	while (!list_empty(&rc->reloc_roots)) {
2171 		reloc_root = list_entry(rc->reloc_roots.next,
2172 					struct btrfs_root, root_list);
2173 		list_del_init(&reloc_root->root_list);
2174 
2175 		root = read_fs_root(reloc_root->fs_info,
2176 				    reloc_root->root_key.offset);
2177 		BUG_ON(IS_ERR(root));
2178 		BUG_ON(root->reloc_root != reloc_root);
2179 
2180 		/*
2181 		 * set reference count to 1, so btrfs_recover_relocation
2182 		 * knows it should resumes merging
2183 		 */
2184 		if (!err)
2185 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2186 		btrfs_update_reloc_root(trans, root);
2187 
2188 		list_add(&reloc_root->root_list, &reloc_roots);
2189 	}
2190 
2191 	list_splice(&reloc_roots, &rc->reloc_roots);
2192 
2193 	if (!err)
2194 		btrfs_commit_transaction(trans, rc->extent_root);
2195 	else
2196 		btrfs_end_transaction(trans, rc->extent_root);
2197 	return err;
2198 }
2199 
2200 static noinline_for_stack
2201 int merge_reloc_roots(struct reloc_control *rc)
2202 {
2203 	struct btrfs_root *root;
2204 	struct btrfs_root *reloc_root;
2205 	LIST_HEAD(reloc_roots);
2206 	int found = 0;
2207 	int ret;
2208 again:
2209 	root = rc->extent_root;
2210 	mutex_lock(&root->fs_info->trans_mutex);
2211 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2212 	mutex_unlock(&root->fs_info->trans_mutex);
2213 
2214 	while (!list_empty(&reloc_roots)) {
2215 		found = 1;
2216 		reloc_root = list_entry(reloc_roots.next,
2217 					struct btrfs_root, root_list);
2218 
2219 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2220 			root = read_fs_root(reloc_root->fs_info,
2221 					    reloc_root->root_key.offset);
2222 			BUG_ON(IS_ERR(root));
2223 			BUG_ON(root->reloc_root != reloc_root);
2224 
2225 			ret = merge_reloc_root(rc, root);
2226 			BUG_ON(ret);
2227 		} else {
2228 			list_del_init(&reloc_root->root_list);
2229 		}
2230 		btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0);
2231 	}
2232 
2233 	if (found) {
2234 		found = 0;
2235 		goto again;
2236 	}
2237 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2238 	return 0;
2239 }
2240 
2241 static void free_block_list(struct rb_root *blocks)
2242 {
2243 	struct tree_block *block;
2244 	struct rb_node *rb_node;
2245 	while ((rb_node = rb_first(blocks))) {
2246 		block = rb_entry(rb_node, struct tree_block, rb_node);
2247 		rb_erase(rb_node, blocks);
2248 		kfree(block);
2249 	}
2250 }
2251 
2252 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2253 				      struct btrfs_root *reloc_root)
2254 {
2255 	struct btrfs_root *root;
2256 
2257 	if (reloc_root->last_trans == trans->transid)
2258 		return 0;
2259 
2260 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2261 	BUG_ON(IS_ERR(root));
2262 	BUG_ON(root->reloc_root != reloc_root);
2263 
2264 	return btrfs_record_root_in_trans(trans, root);
2265 }
2266 
2267 static noinline_for_stack
2268 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2269 				     struct reloc_control *rc,
2270 				     struct backref_node *node,
2271 				     struct backref_edge *edges[], int *nr)
2272 {
2273 	struct backref_node *next;
2274 	struct btrfs_root *root;
2275 	int index = 0;
2276 
2277 	next = node;
2278 	while (1) {
2279 		cond_resched();
2280 		next = walk_up_backref(next, edges, &index);
2281 		root = next->root;
2282 		BUG_ON(!root);
2283 		BUG_ON(!root->ref_cows);
2284 
2285 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2286 			record_reloc_root_in_trans(trans, root);
2287 			break;
2288 		}
2289 
2290 		btrfs_record_root_in_trans(trans, root);
2291 		root = root->reloc_root;
2292 
2293 		if (next->new_bytenr != root->node->start) {
2294 			BUG_ON(next->new_bytenr);
2295 			BUG_ON(!list_empty(&next->list));
2296 			next->new_bytenr = root->node->start;
2297 			next->root = root;
2298 			list_add_tail(&next->list,
2299 				      &rc->backref_cache.changed);
2300 			__mark_block_processed(rc, next);
2301 			break;
2302 		}
2303 
2304 		WARN_ON(1);
2305 		root = NULL;
2306 		next = walk_down_backref(edges, &index);
2307 		if (!next || next->level <= node->level)
2308 			break;
2309 	}
2310 	if (!root)
2311 		return NULL;
2312 
2313 	*nr = index;
2314 	next = node;
2315 	/* setup backref node path for btrfs_reloc_cow_block */
2316 	while (1) {
2317 		rc->backref_cache.path[next->level] = next;
2318 		if (--index < 0)
2319 			break;
2320 		next = edges[index]->node[UPPER];
2321 	}
2322 	return root;
2323 }
2324 
2325 /*
2326  * select a tree root for relocation. return NULL if the block
2327  * is reference counted. we should use do_relocation() in this
2328  * case. return a tree root pointer if the block isn't reference
2329  * counted. return -ENOENT if the block is root of reloc tree.
2330  */
2331 static noinline_for_stack
2332 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2333 				   struct backref_node *node)
2334 {
2335 	struct backref_node *next;
2336 	struct btrfs_root *root;
2337 	struct btrfs_root *fs_root = NULL;
2338 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2339 	int index = 0;
2340 
2341 	next = node;
2342 	while (1) {
2343 		cond_resched();
2344 		next = walk_up_backref(next, edges, &index);
2345 		root = next->root;
2346 		BUG_ON(!root);
2347 
2348 		/* no other choice for non-refernce counted tree */
2349 		if (!root->ref_cows)
2350 			return root;
2351 
2352 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2353 			fs_root = root;
2354 
2355 		if (next != node)
2356 			return NULL;
2357 
2358 		next = walk_down_backref(edges, &index);
2359 		if (!next || next->level <= node->level)
2360 			break;
2361 	}
2362 
2363 	if (!fs_root)
2364 		return ERR_PTR(-ENOENT);
2365 	return fs_root;
2366 }
2367 
2368 static noinline_for_stack
2369 u64 calcu_metadata_size(struct reloc_control *rc,
2370 			struct backref_node *node, int reserve)
2371 {
2372 	struct backref_node *next = node;
2373 	struct backref_edge *edge;
2374 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2375 	u64 num_bytes = 0;
2376 	int index = 0;
2377 
2378 	BUG_ON(reserve && node->processed);
2379 
2380 	while (next) {
2381 		cond_resched();
2382 		while (1) {
2383 			if (next->processed && (reserve || next != node))
2384 				break;
2385 
2386 			num_bytes += btrfs_level_size(rc->extent_root,
2387 						      next->level);
2388 
2389 			if (list_empty(&next->upper))
2390 				break;
2391 
2392 			edge = list_entry(next->upper.next,
2393 					  struct backref_edge, list[LOWER]);
2394 			edges[index++] = edge;
2395 			next = edge->node[UPPER];
2396 		}
2397 		next = walk_down_backref(edges, &index);
2398 	}
2399 	return num_bytes;
2400 }
2401 
2402 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2403 				  struct reloc_control *rc,
2404 				  struct backref_node *node)
2405 {
2406 	struct btrfs_root *root = rc->extent_root;
2407 	u64 num_bytes;
2408 	int ret;
2409 
2410 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2411 
2412 	trans->block_rsv = rc->block_rsv;
2413 	ret = btrfs_block_rsv_add(trans, root, rc->block_rsv, num_bytes);
2414 	if (ret) {
2415 		if (ret == -EAGAIN)
2416 			rc->commit_transaction = 1;
2417 		return ret;
2418 	}
2419 
2420 	return 0;
2421 }
2422 
2423 static void release_metadata_space(struct reloc_control *rc,
2424 				   struct backref_node *node)
2425 {
2426 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2427 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2428 }
2429 
2430 /*
2431  * relocate a block tree, and then update pointers in upper level
2432  * blocks that reference the block to point to the new location.
2433  *
2434  * if called by link_to_upper, the block has already been relocated.
2435  * in that case this function just updates pointers.
2436  */
2437 static int do_relocation(struct btrfs_trans_handle *trans,
2438 			 struct reloc_control *rc,
2439 			 struct backref_node *node,
2440 			 struct btrfs_key *key,
2441 			 struct btrfs_path *path, int lowest)
2442 {
2443 	struct backref_node *upper;
2444 	struct backref_edge *edge;
2445 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2446 	struct btrfs_root *root;
2447 	struct extent_buffer *eb;
2448 	u32 blocksize;
2449 	u64 bytenr;
2450 	u64 generation;
2451 	int nr;
2452 	int slot;
2453 	int ret;
2454 	int err = 0;
2455 
2456 	BUG_ON(lowest && node->eb);
2457 
2458 	path->lowest_level = node->level + 1;
2459 	rc->backref_cache.path[node->level] = node;
2460 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2461 		cond_resched();
2462 
2463 		upper = edge->node[UPPER];
2464 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2465 		BUG_ON(!root);
2466 
2467 		if (upper->eb && !upper->locked) {
2468 			if (!lowest) {
2469 				ret = btrfs_bin_search(upper->eb, key,
2470 						       upper->level, &slot);
2471 				BUG_ON(ret);
2472 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2473 				if (node->eb->start == bytenr)
2474 					goto next;
2475 			}
2476 			drop_node_buffer(upper);
2477 		}
2478 
2479 		if (!upper->eb) {
2480 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2481 			if (ret < 0) {
2482 				err = ret;
2483 				break;
2484 			}
2485 			BUG_ON(ret > 0);
2486 
2487 			if (!upper->eb) {
2488 				upper->eb = path->nodes[upper->level];
2489 				path->nodes[upper->level] = NULL;
2490 			} else {
2491 				BUG_ON(upper->eb != path->nodes[upper->level]);
2492 			}
2493 
2494 			upper->locked = 1;
2495 			path->locks[upper->level] = 0;
2496 
2497 			slot = path->slots[upper->level];
2498 			btrfs_release_path(NULL, path);
2499 		} else {
2500 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2501 					       &slot);
2502 			BUG_ON(ret);
2503 		}
2504 
2505 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2506 		if (lowest) {
2507 			BUG_ON(bytenr != node->bytenr);
2508 		} else {
2509 			if (node->eb->start == bytenr)
2510 				goto next;
2511 		}
2512 
2513 		blocksize = btrfs_level_size(root, node->level);
2514 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2515 		eb = read_tree_block(root, bytenr, blocksize, generation);
2516 		btrfs_tree_lock(eb);
2517 		btrfs_set_lock_blocking(eb);
2518 
2519 		if (!node->eb) {
2520 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2521 					      slot, &eb);
2522 			btrfs_tree_unlock(eb);
2523 			free_extent_buffer(eb);
2524 			if (ret < 0) {
2525 				err = ret;
2526 				goto next;
2527 			}
2528 			BUG_ON(node->eb != eb);
2529 		} else {
2530 			btrfs_set_node_blockptr(upper->eb, slot,
2531 						node->eb->start);
2532 			btrfs_set_node_ptr_generation(upper->eb, slot,
2533 						      trans->transid);
2534 			btrfs_mark_buffer_dirty(upper->eb);
2535 
2536 			ret = btrfs_inc_extent_ref(trans, root,
2537 						node->eb->start, blocksize,
2538 						upper->eb->start,
2539 						btrfs_header_owner(upper->eb),
2540 						node->level, 0);
2541 			BUG_ON(ret);
2542 
2543 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2544 			BUG_ON(ret);
2545 		}
2546 next:
2547 		if (!upper->pending)
2548 			drop_node_buffer(upper);
2549 		else
2550 			unlock_node_buffer(upper);
2551 		if (err)
2552 			break;
2553 	}
2554 
2555 	if (!err && node->pending) {
2556 		drop_node_buffer(node);
2557 		list_move_tail(&node->list, &rc->backref_cache.changed);
2558 		node->pending = 0;
2559 	}
2560 
2561 	path->lowest_level = 0;
2562 	BUG_ON(err == -ENOSPC);
2563 	return err;
2564 }
2565 
2566 static int link_to_upper(struct btrfs_trans_handle *trans,
2567 			 struct reloc_control *rc,
2568 			 struct backref_node *node,
2569 			 struct btrfs_path *path)
2570 {
2571 	struct btrfs_key key;
2572 
2573 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2574 	return do_relocation(trans, rc, node, &key, path, 0);
2575 }
2576 
2577 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2578 				struct reloc_control *rc,
2579 				struct btrfs_path *path, int err)
2580 {
2581 	LIST_HEAD(list);
2582 	struct backref_cache *cache = &rc->backref_cache;
2583 	struct backref_node *node;
2584 	int level;
2585 	int ret;
2586 
2587 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2588 		while (!list_empty(&cache->pending[level])) {
2589 			node = list_entry(cache->pending[level].next,
2590 					  struct backref_node, list);
2591 			list_move_tail(&node->list, &list);
2592 			BUG_ON(!node->pending);
2593 
2594 			if (!err) {
2595 				ret = link_to_upper(trans, rc, node, path);
2596 				if (ret < 0)
2597 					err = ret;
2598 			}
2599 		}
2600 		list_splice_init(&list, &cache->pending[level]);
2601 	}
2602 	return err;
2603 }
2604 
2605 static void mark_block_processed(struct reloc_control *rc,
2606 				 u64 bytenr, u32 blocksize)
2607 {
2608 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2609 			EXTENT_DIRTY, GFP_NOFS);
2610 }
2611 
2612 static void __mark_block_processed(struct reloc_control *rc,
2613 				   struct backref_node *node)
2614 {
2615 	u32 blocksize;
2616 	if (node->level == 0 ||
2617 	    in_block_group(node->bytenr, rc->block_group)) {
2618 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2619 		mark_block_processed(rc, node->bytenr, blocksize);
2620 	}
2621 	node->processed = 1;
2622 }
2623 
2624 /*
2625  * mark a block and all blocks directly/indirectly reference the block
2626  * as processed.
2627  */
2628 static void update_processed_blocks(struct reloc_control *rc,
2629 				    struct backref_node *node)
2630 {
2631 	struct backref_node *next = node;
2632 	struct backref_edge *edge;
2633 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2634 	int index = 0;
2635 
2636 	while (next) {
2637 		cond_resched();
2638 		while (1) {
2639 			if (next->processed)
2640 				break;
2641 
2642 			__mark_block_processed(rc, next);
2643 
2644 			if (list_empty(&next->upper))
2645 				break;
2646 
2647 			edge = list_entry(next->upper.next,
2648 					  struct backref_edge, list[LOWER]);
2649 			edges[index++] = edge;
2650 			next = edge->node[UPPER];
2651 		}
2652 		next = walk_down_backref(edges, &index);
2653 	}
2654 }
2655 
2656 static int tree_block_processed(u64 bytenr, u32 blocksize,
2657 				struct reloc_control *rc)
2658 {
2659 	if (test_range_bit(&rc->processed_blocks, bytenr,
2660 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2661 		return 1;
2662 	return 0;
2663 }
2664 
2665 static int get_tree_block_key(struct reloc_control *rc,
2666 			      struct tree_block *block)
2667 {
2668 	struct extent_buffer *eb;
2669 
2670 	BUG_ON(block->key_ready);
2671 	eb = read_tree_block(rc->extent_root, block->bytenr,
2672 			     block->key.objectid, block->key.offset);
2673 	WARN_ON(btrfs_header_level(eb) != block->level);
2674 	if (block->level == 0)
2675 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2676 	else
2677 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2678 	free_extent_buffer(eb);
2679 	block->key_ready = 1;
2680 	return 0;
2681 }
2682 
2683 static int reada_tree_block(struct reloc_control *rc,
2684 			    struct tree_block *block)
2685 {
2686 	BUG_ON(block->key_ready);
2687 	readahead_tree_block(rc->extent_root, block->bytenr,
2688 			     block->key.objectid, block->key.offset);
2689 	return 0;
2690 }
2691 
2692 /*
2693  * helper function to relocate a tree block
2694  */
2695 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2696 				struct reloc_control *rc,
2697 				struct backref_node *node,
2698 				struct btrfs_key *key,
2699 				struct btrfs_path *path)
2700 {
2701 	struct btrfs_root *root;
2702 	int release = 0;
2703 	int ret = 0;
2704 
2705 	if (!node)
2706 		return 0;
2707 
2708 	BUG_ON(node->processed);
2709 	root = select_one_root(trans, node);
2710 	if (root == ERR_PTR(-ENOENT)) {
2711 		update_processed_blocks(rc, node);
2712 		goto out;
2713 	}
2714 
2715 	if (!root || root->ref_cows) {
2716 		ret = reserve_metadata_space(trans, rc, node);
2717 		if (ret)
2718 			goto out;
2719 		release = 1;
2720 	}
2721 
2722 	if (root) {
2723 		if (root->ref_cows) {
2724 			BUG_ON(node->new_bytenr);
2725 			BUG_ON(!list_empty(&node->list));
2726 			btrfs_record_root_in_trans(trans, root);
2727 			root = root->reloc_root;
2728 			node->new_bytenr = root->node->start;
2729 			node->root = root;
2730 			list_add_tail(&node->list, &rc->backref_cache.changed);
2731 		} else {
2732 			path->lowest_level = node->level;
2733 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2734 			btrfs_release_path(root, path);
2735 			if (ret > 0)
2736 				ret = 0;
2737 		}
2738 		if (!ret)
2739 			update_processed_blocks(rc, node);
2740 	} else {
2741 		ret = do_relocation(trans, rc, node, key, path, 1);
2742 	}
2743 out:
2744 	if (ret || node->level == 0 || node->cowonly) {
2745 		if (release)
2746 			release_metadata_space(rc, node);
2747 		remove_backref_node(&rc->backref_cache, node);
2748 	}
2749 	return ret;
2750 }
2751 
2752 /*
2753  * relocate a list of blocks
2754  */
2755 static noinline_for_stack
2756 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2757 			 struct reloc_control *rc, struct rb_root *blocks)
2758 {
2759 	struct backref_node *node;
2760 	struct btrfs_path *path;
2761 	struct tree_block *block;
2762 	struct rb_node *rb_node;
2763 	int ret;
2764 	int err = 0;
2765 
2766 	path = btrfs_alloc_path();
2767 	if (!path)
2768 		return -ENOMEM;
2769 
2770 	rb_node = rb_first(blocks);
2771 	while (rb_node) {
2772 		block = rb_entry(rb_node, struct tree_block, rb_node);
2773 		if (!block->key_ready)
2774 			reada_tree_block(rc, block);
2775 		rb_node = rb_next(rb_node);
2776 	}
2777 
2778 	rb_node = rb_first(blocks);
2779 	while (rb_node) {
2780 		block = rb_entry(rb_node, struct tree_block, rb_node);
2781 		if (!block->key_ready)
2782 			get_tree_block_key(rc, block);
2783 		rb_node = rb_next(rb_node);
2784 	}
2785 
2786 	rb_node = rb_first(blocks);
2787 	while (rb_node) {
2788 		block = rb_entry(rb_node, struct tree_block, rb_node);
2789 
2790 		node = build_backref_tree(rc, &block->key,
2791 					  block->level, block->bytenr);
2792 		if (IS_ERR(node)) {
2793 			err = PTR_ERR(node);
2794 			goto out;
2795 		}
2796 
2797 		ret = relocate_tree_block(trans, rc, node, &block->key,
2798 					  path);
2799 		if (ret < 0) {
2800 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2801 				err = ret;
2802 			goto out;
2803 		}
2804 		rb_node = rb_next(rb_node);
2805 	}
2806 out:
2807 	free_block_list(blocks);
2808 	err = finish_pending_nodes(trans, rc, path, err);
2809 
2810 	btrfs_free_path(path);
2811 	return err;
2812 }
2813 
2814 static noinline_for_stack
2815 int prealloc_file_extent_cluster(struct inode *inode,
2816 				 struct file_extent_cluster *cluster)
2817 {
2818 	u64 alloc_hint = 0;
2819 	u64 start;
2820 	u64 end;
2821 	u64 offset = BTRFS_I(inode)->index_cnt;
2822 	u64 num_bytes;
2823 	int nr = 0;
2824 	int ret = 0;
2825 
2826 	BUG_ON(cluster->start != cluster->boundary[0]);
2827 	mutex_lock(&inode->i_mutex);
2828 
2829 	ret = btrfs_check_data_free_space(inode, cluster->end +
2830 					  1 - cluster->start);
2831 	if (ret)
2832 		goto out;
2833 
2834 	while (nr < cluster->nr) {
2835 		start = cluster->boundary[nr] - offset;
2836 		if (nr + 1 < cluster->nr)
2837 			end = cluster->boundary[nr + 1] - 1 - offset;
2838 		else
2839 			end = cluster->end - offset;
2840 
2841 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2842 		num_bytes = end + 1 - start;
2843 		ret = btrfs_prealloc_file_range(inode, 0, start,
2844 						num_bytes, num_bytes,
2845 						end + 1, &alloc_hint);
2846 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2847 		if (ret)
2848 			break;
2849 		nr++;
2850 	}
2851 	btrfs_free_reserved_data_space(inode, cluster->end +
2852 				       1 - cluster->start);
2853 out:
2854 	mutex_unlock(&inode->i_mutex);
2855 	return ret;
2856 }
2857 
2858 static noinline_for_stack
2859 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2860 			 u64 block_start)
2861 {
2862 	struct btrfs_root *root = BTRFS_I(inode)->root;
2863 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2864 	struct extent_map *em;
2865 	int ret = 0;
2866 
2867 	em = alloc_extent_map(GFP_NOFS);
2868 	if (!em)
2869 		return -ENOMEM;
2870 
2871 	em->start = start;
2872 	em->len = end + 1 - start;
2873 	em->block_len = em->len;
2874 	em->block_start = block_start;
2875 	em->bdev = root->fs_info->fs_devices->latest_bdev;
2876 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2877 
2878 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2879 	while (1) {
2880 		write_lock(&em_tree->lock);
2881 		ret = add_extent_mapping(em_tree, em);
2882 		write_unlock(&em_tree->lock);
2883 		if (ret != -EEXIST) {
2884 			free_extent_map(em);
2885 			break;
2886 		}
2887 		btrfs_drop_extent_cache(inode, start, end, 0);
2888 	}
2889 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS);
2890 	return ret;
2891 }
2892 
2893 static int relocate_file_extent_cluster(struct inode *inode,
2894 					struct file_extent_cluster *cluster)
2895 {
2896 	u64 page_start;
2897 	u64 page_end;
2898 	u64 offset = BTRFS_I(inode)->index_cnt;
2899 	unsigned long index;
2900 	unsigned long last_index;
2901 	struct page *page;
2902 	struct file_ra_state *ra;
2903 	int nr = 0;
2904 	int ret = 0;
2905 
2906 	if (!cluster->nr)
2907 		return 0;
2908 
2909 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2910 	if (!ra)
2911 		return -ENOMEM;
2912 
2913 	ret = prealloc_file_extent_cluster(inode, cluster);
2914 	if (ret)
2915 		goto out;
2916 
2917 	file_ra_state_init(ra, inode->i_mapping);
2918 
2919 	ret = setup_extent_mapping(inode, cluster->start - offset,
2920 				   cluster->end - offset, cluster->start);
2921 	if (ret)
2922 		goto out;
2923 
2924 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
2925 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
2926 	while (index <= last_index) {
2927 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
2928 		if (ret)
2929 			goto out;
2930 
2931 		page = find_lock_page(inode->i_mapping, index);
2932 		if (!page) {
2933 			page_cache_sync_readahead(inode->i_mapping,
2934 						  ra, NULL, index,
2935 						  last_index + 1 - index);
2936 			page = grab_cache_page(inode->i_mapping, index);
2937 			if (!page) {
2938 				btrfs_delalloc_release_metadata(inode,
2939 							PAGE_CACHE_SIZE);
2940 				ret = -ENOMEM;
2941 				goto out;
2942 			}
2943 		}
2944 
2945 		if (PageReadahead(page)) {
2946 			page_cache_async_readahead(inode->i_mapping,
2947 						   ra, NULL, page, index,
2948 						   last_index + 1 - index);
2949 		}
2950 
2951 		if (!PageUptodate(page)) {
2952 			btrfs_readpage(NULL, page);
2953 			lock_page(page);
2954 			if (!PageUptodate(page)) {
2955 				unlock_page(page);
2956 				page_cache_release(page);
2957 				btrfs_delalloc_release_metadata(inode,
2958 							PAGE_CACHE_SIZE);
2959 				ret = -EIO;
2960 				goto out;
2961 			}
2962 		}
2963 
2964 		page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2965 		page_end = page_start + PAGE_CACHE_SIZE - 1;
2966 
2967 		lock_extent(&BTRFS_I(inode)->io_tree,
2968 			    page_start, page_end, GFP_NOFS);
2969 
2970 		set_page_extent_mapped(page);
2971 
2972 		if (nr < cluster->nr &&
2973 		    page_start + offset == cluster->boundary[nr]) {
2974 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2975 					page_start, page_end,
2976 					EXTENT_BOUNDARY, GFP_NOFS);
2977 			nr++;
2978 		}
2979 
2980 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
2981 		set_page_dirty(page);
2982 
2983 		unlock_extent(&BTRFS_I(inode)->io_tree,
2984 			      page_start, page_end, GFP_NOFS);
2985 		unlock_page(page);
2986 		page_cache_release(page);
2987 
2988 		index++;
2989 		balance_dirty_pages_ratelimited(inode->i_mapping);
2990 		btrfs_throttle(BTRFS_I(inode)->root);
2991 	}
2992 	WARN_ON(nr != cluster->nr);
2993 out:
2994 	kfree(ra);
2995 	return ret;
2996 }
2997 
2998 static noinline_for_stack
2999 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3000 			 struct file_extent_cluster *cluster)
3001 {
3002 	int ret;
3003 
3004 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3005 		ret = relocate_file_extent_cluster(inode, cluster);
3006 		if (ret)
3007 			return ret;
3008 		cluster->nr = 0;
3009 	}
3010 
3011 	if (!cluster->nr)
3012 		cluster->start = extent_key->objectid;
3013 	else
3014 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3015 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3016 	cluster->boundary[cluster->nr] = extent_key->objectid;
3017 	cluster->nr++;
3018 
3019 	if (cluster->nr >= MAX_EXTENTS) {
3020 		ret = relocate_file_extent_cluster(inode, cluster);
3021 		if (ret)
3022 			return ret;
3023 		cluster->nr = 0;
3024 	}
3025 	return 0;
3026 }
3027 
3028 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3029 static int get_ref_objectid_v0(struct reloc_control *rc,
3030 			       struct btrfs_path *path,
3031 			       struct btrfs_key *extent_key,
3032 			       u64 *ref_objectid, int *path_change)
3033 {
3034 	struct btrfs_key key;
3035 	struct extent_buffer *leaf;
3036 	struct btrfs_extent_ref_v0 *ref0;
3037 	int ret;
3038 	int slot;
3039 
3040 	leaf = path->nodes[0];
3041 	slot = path->slots[0];
3042 	while (1) {
3043 		if (slot >= btrfs_header_nritems(leaf)) {
3044 			ret = btrfs_next_leaf(rc->extent_root, path);
3045 			if (ret < 0)
3046 				return ret;
3047 			BUG_ON(ret > 0);
3048 			leaf = path->nodes[0];
3049 			slot = path->slots[0];
3050 			if (path_change)
3051 				*path_change = 1;
3052 		}
3053 		btrfs_item_key_to_cpu(leaf, &key, slot);
3054 		if (key.objectid != extent_key->objectid)
3055 			return -ENOENT;
3056 
3057 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3058 			slot++;
3059 			continue;
3060 		}
3061 		ref0 = btrfs_item_ptr(leaf, slot,
3062 				struct btrfs_extent_ref_v0);
3063 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3064 		break;
3065 	}
3066 	return 0;
3067 }
3068 #endif
3069 
3070 /*
3071  * helper to add a tree block to the list.
3072  * the major work is getting the generation and level of the block
3073  */
3074 static int add_tree_block(struct reloc_control *rc,
3075 			  struct btrfs_key *extent_key,
3076 			  struct btrfs_path *path,
3077 			  struct rb_root *blocks)
3078 {
3079 	struct extent_buffer *eb;
3080 	struct btrfs_extent_item *ei;
3081 	struct btrfs_tree_block_info *bi;
3082 	struct tree_block *block;
3083 	struct rb_node *rb_node;
3084 	u32 item_size;
3085 	int level = -1;
3086 	int generation;
3087 
3088 	eb =  path->nodes[0];
3089 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3090 
3091 	if (item_size >= sizeof(*ei) + sizeof(*bi)) {
3092 		ei = btrfs_item_ptr(eb, path->slots[0],
3093 				struct btrfs_extent_item);
3094 		bi = (struct btrfs_tree_block_info *)(ei + 1);
3095 		generation = btrfs_extent_generation(eb, ei);
3096 		level = btrfs_tree_block_level(eb, bi);
3097 	} else {
3098 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3099 		u64 ref_owner;
3100 		int ret;
3101 
3102 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3103 		ret = get_ref_objectid_v0(rc, path, extent_key,
3104 					  &ref_owner, NULL);
3105 		if (ret < 0)
3106 			return ret;
3107 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3108 		level = (int)ref_owner;
3109 		/* FIXME: get real generation */
3110 		generation = 0;
3111 #else
3112 		BUG();
3113 #endif
3114 	}
3115 
3116 	btrfs_release_path(rc->extent_root, path);
3117 
3118 	BUG_ON(level == -1);
3119 
3120 	block = kmalloc(sizeof(*block), GFP_NOFS);
3121 	if (!block)
3122 		return -ENOMEM;
3123 
3124 	block->bytenr = extent_key->objectid;
3125 	block->key.objectid = extent_key->offset;
3126 	block->key.offset = generation;
3127 	block->level = level;
3128 	block->key_ready = 0;
3129 
3130 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3131 	BUG_ON(rb_node);
3132 
3133 	return 0;
3134 }
3135 
3136 /*
3137  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3138  */
3139 static int __add_tree_block(struct reloc_control *rc,
3140 			    u64 bytenr, u32 blocksize,
3141 			    struct rb_root *blocks)
3142 {
3143 	struct btrfs_path *path;
3144 	struct btrfs_key key;
3145 	int ret;
3146 
3147 	if (tree_block_processed(bytenr, blocksize, rc))
3148 		return 0;
3149 
3150 	if (tree_search(blocks, bytenr))
3151 		return 0;
3152 
3153 	path = btrfs_alloc_path();
3154 	if (!path)
3155 		return -ENOMEM;
3156 
3157 	key.objectid = bytenr;
3158 	key.type = BTRFS_EXTENT_ITEM_KEY;
3159 	key.offset = blocksize;
3160 
3161 	path->search_commit_root = 1;
3162 	path->skip_locking = 1;
3163 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3164 	if (ret < 0)
3165 		goto out;
3166 	BUG_ON(ret);
3167 
3168 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3169 	ret = add_tree_block(rc, &key, path, blocks);
3170 out:
3171 	btrfs_free_path(path);
3172 	return ret;
3173 }
3174 
3175 /*
3176  * helper to check if the block use full backrefs for pointers in it
3177  */
3178 static int block_use_full_backref(struct reloc_control *rc,
3179 				  struct extent_buffer *eb)
3180 {
3181 	u64 flags;
3182 	int ret;
3183 
3184 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3185 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3186 		return 1;
3187 
3188 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3189 				       eb->start, eb->len, NULL, &flags);
3190 	BUG_ON(ret);
3191 
3192 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3193 		ret = 1;
3194 	else
3195 		ret = 0;
3196 	return ret;
3197 }
3198 
3199 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3200 				    struct inode *inode, u64 ino)
3201 {
3202 	struct btrfs_key key;
3203 	struct btrfs_path *path;
3204 	struct btrfs_root *root = fs_info->tree_root;
3205 	struct btrfs_trans_handle *trans;
3206 	unsigned long nr;
3207 	int ret = 0;
3208 
3209 	if (inode)
3210 		goto truncate;
3211 
3212 	key.objectid = ino;
3213 	key.type = BTRFS_INODE_ITEM_KEY;
3214 	key.offset = 0;
3215 
3216 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3217 	if (!inode || IS_ERR(inode) || is_bad_inode(inode)) {
3218 		if (inode && !IS_ERR(inode))
3219 			iput(inode);
3220 		return -ENOENT;
3221 	}
3222 
3223 truncate:
3224 	path = btrfs_alloc_path();
3225 	if (!path) {
3226 		ret = -ENOMEM;
3227 		goto out;
3228 	}
3229 
3230 	trans = btrfs_join_transaction(root, 0);
3231 	if (IS_ERR(trans)) {
3232 		btrfs_free_path(path);
3233 		ret = PTR_ERR(trans);
3234 		goto out;
3235 	}
3236 
3237 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3238 
3239 	btrfs_free_path(path);
3240 	nr = trans->blocks_used;
3241 	btrfs_end_transaction(trans, root);
3242 	btrfs_btree_balance_dirty(root, nr);
3243 out:
3244 	iput(inode);
3245 	return ret;
3246 }
3247 
3248 /*
3249  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3250  * this function scans fs tree to find blocks reference the data extent
3251  */
3252 static int find_data_references(struct reloc_control *rc,
3253 				struct btrfs_key *extent_key,
3254 				struct extent_buffer *leaf,
3255 				struct btrfs_extent_data_ref *ref,
3256 				struct rb_root *blocks)
3257 {
3258 	struct btrfs_path *path;
3259 	struct tree_block *block;
3260 	struct btrfs_root *root;
3261 	struct btrfs_file_extent_item *fi;
3262 	struct rb_node *rb_node;
3263 	struct btrfs_key key;
3264 	u64 ref_root;
3265 	u64 ref_objectid;
3266 	u64 ref_offset;
3267 	u32 ref_count;
3268 	u32 nritems;
3269 	int err = 0;
3270 	int added = 0;
3271 	int counted;
3272 	int ret;
3273 
3274 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3275 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3276 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3277 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3278 
3279 	/*
3280 	 * This is an extent belonging to the free space cache, lets just delete
3281 	 * it and redo the search.
3282 	 */
3283 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3284 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3285 					       NULL, ref_objectid);
3286 		if (ret != -ENOENT)
3287 			return ret;
3288 		ret = 0;
3289 	}
3290 
3291 	path = btrfs_alloc_path();
3292 	if (!path)
3293 		return -ENOMEM;
3294 
3295 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3296 	if (IS_ERR(root)) {
3297 		err = PTR_ERR(root);
3298 		goto out;
3299 	}
3300 
3301 	key.objectid = ref_objectid;
3302 	key.offset = ref_offset;
3303 	key.type = BTRFS_EXTENT_DATA_KEY;
3304 
3305 	path->search_commit_root = 1;
3306 	path->skip_locking = 1;
3307 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3308 	if (ret < 0) {
3309 		err = ret;
3310 		goto out;
3311 	}
3312 
3313 	leaf = path->nodes[0];
3314 	nritems = btrfs_header_nritems(leaf);
3315 	/*
3316 	 * the references in tree blocks that use full backrefs
3317 	 * are not counted in
3318 	 */
3319 	if (block_use_full_backref(rc, leaf))
3320 		counted = 0;
3321 	else
3322 		counted = 1;
3323 	rb_node = tree_search(blocks, leaf->start);
3324 	if (rb_node) {
3325 		if (counted)
3326 			added = 1;
3327 		else
3328 			path->slots[0] = nritems;
3329 	}
3330 
3331 	while (ref_count > 0) {
3332 		while (path->slots[0] >= nritems) {
3333 			ret = btrfs_next_leaf(root, path);
3334 			if (ret < 0) {
3335 				err = ret;
3336 				goto out;
3337 			}
3338 			if (ret > 0) {
3339 				WARN_ON(1);
3340 				goto out;
3341 			}
3342 
3343 			leaf = path->nodes[0];
3344 			nritems = btrfs_header_nritems(leaf);
3345 			added = 0;
3346 
3347 			if (block_use_full_backref(rc, leaf))
3348 				counted = 0;
3349 			else
3350 				counted = 1;
3351 			rb_node = tree_search(blocks, leaf->start);
3352 			if (rb_node) {
3353 				if (counted)
3354 					added = 1;
3355 				else
3356 					path->slots[0] = nritems;
3357 			}
3358 		}
3359 
3360 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3361 		if (key.objectid != ref_objectid ||
3362 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3363 			WARN_ON(1);
3364 			break;
3365 		}
3366 
3367 		fi = btrfs_item_ptr(leaf, path->slots[0],
3368 				    struct btrfs_file_extent_item);
3369 
3370 		if (btrfs_file_extent_type(leaf, fi) ==
3371 		    BTRFS_FILE_EXTENT_INLINE)
3372 			goto next;
3373 
3374 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3375 		    extent_key->objectid)
3376 			goto next;
3377 
3378 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3379 		if (key.offset != ref_offset)
3380 			goto next;
3381 
3382 		if (counted)
3383 			ref_count--;
3384 		if (added)
3385 			goto next;
3386 
3387 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3388 			block = kmalloc(sizeof(*block), GFP_NOFS);
3389 			if (!block) {
3390 				err = -ENOMEM;
3391 				break;
3392 			}
3393 			block->bytenr = leaf->start;
3394 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3395 			block->level = 0;
3396 			block->key_ready = 1;
3397 			rb_node = tree_insert(blocks, block->bytenr,
3398 					      &block->rb_node);
3399 			BUG_ON(rb_node);
3400 		}
3401 		if (counted)
3402 			added = 1;
3403 		else
3404 			path->slots[0] = nritems;
3405 next:
3406 		path->slots[0]++;
3407 
3408 	}
3409 out:
3410 	btrfs_free_path(path);
3411 	return err;
3412 }
3413 
3414 /*
3415  * hepler to find all tree blocks that reference a given data extent
3416  */
3417 static noinline_for_stack
3418 int add_data_references(struct reloc_control *rc,
3419 			struct btrfs_key *extent_key,
3420 			struct btrfs_path *path,
3421 			struct rb_root *blocks)
3422 {
3423 	struct btrfs_key key;
3424 	struct extent_buffer *eb;
3425 	struct btrfs_extent_data_ref *dref;
3426 	struct btrfs_extent_inline_ref *iref;
3427 	unsigned long ptr;
3428 	unsigned long end;
3429 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3430 	int ret;
3431 	int err = 0;
3432 
3433 	eb = path->nodes[0];
3434 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3435 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3436 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3437 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3438 		ptr = end;
3439 	else
3440 #endif
3441 		ptr += sizeof(struct btrfs_extent_item);
3442 
3443 	while (ptr < end) {
3444 		iref = (struct btrfs_extent_inline_ref *)ptr;
3445 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3446 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3447 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3448 			ret = __add_tree_block(rc, key.offset, blocksize,
3449 					       blocks);
3450 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3451 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3452 			ret = find_data_references(rc, extent_key,
3453 						   eb, dref, blocks);
3454 		} else {
3455 			BUG();
3456 		}
3457 		ptr += btrfs_extent_inline_ref_size(key.type);
3458 	}
3459 	WARN_ON(ptr > end);
3460 
3461 	while (1) {
3462 		cond_resched();
3463 		eb = path->nodes[0];
3464 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3465 			ret = btrfs_next_leaf(rc->extent_root, path);
3466 			if (ret < 0) {
3467 				err = ret;
3468 				break;
3469 			}
3470 			if (ret > 0)
3471 				break;
3472 			eb = path->nodes[0];
3473 		}
3474 
3475 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3476 		if (key.objectid != extent_key->objectid)
3477 			break;
3478 
3479 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3480 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3481 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3482 #else
3483 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3484 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3485 #endif
3486 			ret = __add_tree_block(rc, key.offset, blocksize,
3487 					       blocks);
3488 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3489 			dref = btrfs_item_ptr(eb, path->slots[0],
3490 					      struct btrfs_extent_data_ref);
3491 			ret = find_data_references(rc, extent_key,
3492 						   eb, dref, blocks);
3493 		} else {
3494 			ret = 0;
3495 		}
3496 		if (ret) {
3497 			err = ret;
3498 			break;
3499 		}
3500 		path->slots[0]++;
3501 	}
3502 	btrfs_release_path(rc->extent_root, path);
3503 	if (err)
3504 		free_block_list(blocks);
3505 	return err;
3506 }
3507 
3508 /*
3509  * hepler to find next unprocessed extent
3510  */
3511 static noinline_for_stack
3512 int find_next_extent(struct btrfs_trans_handle *trans,
3513 		     struct reloc_control *rc, struct btrfs_path *path,
3514 		     struct btrfs_key *extent_key)
3515 {
3516 	struct btrfs_key key;
3517 	struct extent_buffer *leaf;
3518 	u64 start, end, last;
3519 	int ret;
3520 
3521 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3522 	while (1) {
3523 		cond_resched();
3524 		if (rc->search_start >= last) {
3525 			ret = 1;
3526 			break;
3527 		}
3528 
3529 		key.objectid = rc->search_start;
3530 		key.type = BTRFS_EXTENT_ITEM_KEY;
3531 		key.offset = 0;
3532 
3533 		path->search_commit_root = 1;
3534 		path->skip_locking = 1;
3535 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3536 					0, 0);
3537 		if (ret < 0)
3538 			break;
3539 next:
3540 		leaf = path->nodes[0];
3541 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3542 			ret = btrfs_next_leaf(rc->extent_root, path);
3543 			if (ret != 0)
3544 				break;
3545 			leaf = path->nodes[0];
3546 		}
3547 
3548 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3549 		if (key.objectid >= last) {
3550 			ret = 1;
3551 			break;
3552 		}
3553 
3554 		if (key.type != BTRFS_EXTENT_ITEM_KEY ||
3555 		    key.objectid + key.offset <= rc->search_start) {
3556 			path->slots[0]++;
3557 			goto next;
3558 		}
3559 
3560 		ret = find_first_extent_bit(&rc->processed_blocks,
3561 					    key.objectid, &start, &end,
3562 					    EXTENT_DIRTY);
3563 
3564 		if (ret == 0 && start <= key.objectid) {
3565 			btrfs_release_path(rc->extent_root, path);
3566 			rc->search_start = end + 1;
3567 		} else {
3568 			rc->search_start = key.objectid + key.offset;
3569 			memcpy(extent_key, &key, sizeof(key));
3570 			return 0;
3571 		}
3572 	}
3573 	btrfs_release_path(rc->extent_root, path);
3574 	return ret;
3575 }
3576 
3577 static void set_reloc_control(struct reloc_control *rc)
3578 {
3579 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3580 	mutex_lock(&fs_info->trans_mutex);
3581 	fs_info->reloc_ctl = rc;
3582 	mutex_unlock(&fs_info->trans_mutex);
3583 }
3584 
3585 static void unset_reloc_control(struct reloc_control *rc)
3586 {
3587 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3588 	mutex_lock(&fs_info->trans_mutex);
3589 	fs_info->reloc_ctl = NULL;
3590 	mutex_unlock(&fs_info->trans_mutex);
3591 }
3592 
3593 static int check_extent_flags(u64 flags)
3594 {
3595 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3596 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3597 		return 1;
3598 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3599 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3600 		return 1;
3601 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3602 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3603 		return 1;
3604 	return 0;
3605 }
3606 
3607 static noinline_for_stack
3608 int prepare_to_relocate(struct reloc_control *rc)
3609 {
3610 	struct btrfs_trans_handle *trans;
3611 	int ret;
3612 
3613 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root);
3614 	if (!rc->block_rsv)
3615 		return -ENOMEM;
3616 
3617 	/*
3618 	 * reserve some space for creating reloc trees.
3619 	 * btrfs_init_reloc_root will use them when there
3620 	 * is no reservation in transaction handle.
3621 	 */
3622 	ret = btrfs_block_rsv_add(NULL, rc->extent_root, rc->block_rsv,
3623 				  rc->extent_root->nodesize * 256);
3624 	if (ret)
3625 		return ret;
3626 
3627 	rc->block_rsv->refill_used = 1;
3628 	btrfs_add_durable_block_rsv(rc->extent_root->fs_info, rc->block_rsv);
3629 
3630 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3631 	rc->search_start = rc->block_group->key.objectid;
3632 	rc->extents_found = 0;
3633 	rc->nodes_relocated = 0;
3634 	rc->merging_rsv_size = 0;
3635 
3636 	rc->create_reloc_tree = 1;
3637 	set_reloc_control(rc);
3638 
3639 	trans = btrfs_join_transaction(rc->extent_root, 1);
3640 	BUG_ON(IS_ERR(trans));
3641 	btrfs_commit_transaction(trans, rc->extent_root);
3642 	return 0;
3643 }
3644 
3645 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3646 {
3647 	struct rb_root blocks = RB_ROOT;
3648 	struct btrfs_key key;
3649 	struct btrfs_trans_handle *trans = NULL;
3650 	struct btrfs_path *path;
3651 	struct btrfs_extent_item *ei;
3652 	unsigned long nr;
3653 	u64 flags;
3654 	u32 item_size;
3655 	int ret;
3656 	int err = 0;
3657 
3658 	path = btrfs_alloc_path();
3659 	if (!path)
3660 		return -ENOMEM;
3661 
3662 	ret = prepare_to_relocate(rc);
3663 	if (ret) {
3664 		err = ret;
3665 		goto out_free;
3666 	}
3667 
3668 	while (1) {
3669 		trans = btrfs_start_transaction(rc->extent_root, 0);
3670 		BUG_ON(IS_ERR(trans));
3671 
3672 		if (update_backref_cache(trans, &rc->backref_cache)) {
3673 			btrfs_end_transaction(trans, rc->extent_root);
3674 			continue;
3675 		}
3676 
3677 		ret = find_next_extent(trans, rc, path, &key);
3678 		if (ret < 0)
3679 			err = ret;
3680 		if (ret != 0)
3681 			break;
3682 
3683 		rc->extents_found++;
3684 
3685 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3686 				    struct btrfs_extent_item);
3687 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3688 		if (item_size >= sizeof(*ei)) {
3689 			flags = btrfs_extent_flags(path->nodes[0], ei);
3690 			ret = check_extent_flags(flags);
3691 			BUG_ON(ret);
3692 
3693 		} else {
3694 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3695 			u64 ref_owner;
3696 			int path_change = 0;
3697 
3698 			BUG_ON(item_size !=
3699 			       sizeof(struct btrfs_extent_item_v0));
3700 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3701 						  &path_change);
3702 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3703 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3704 			else
3705 				flags = BTRFS_EXTENT_FLAG_DATA;
3706 
3707 			if (path_change) {
3708 				btrfs_release_path(rc->extent_root, path);
3709 
3710 				path->search_commit_root = 1;
3711 				path->skip_locking = 1;
3712 				ret = btrfs_search_slot(NULL, rc->extent_root,
3713 							&key, path, 0, 0);
3714 				if (ret < 0) {
3715 					err = ret;
3716 					break;
3717 				}
3718 				BUG_ON(ret > 0);
3719 			}
3720 #else
3721 			BUG();
3722 #endif
3723 		}
3724 
3725 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3726 			ret = add_tree_block(rc, &key, path, &blocks);
3727 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3728 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3729 			ret = add_data_references(rc, &key, path, &blocks);
3730 		} else {
3731 			btrfs_release_path(rc->extent_root, path);
3732 			ret = 0;
3733 		}
3734 		if (ret < 0) {
3735 			err = ret;
3736 			break;
3737 		}
3738 
3739 		if (!RB_EMPTY_ROOT(&blocks)) {
3740 			ret = relocate_tree_blocks(trans, rc, &blocks);
3741 			if (ret < 0) {
3742 				if (ret != -EAGAIN) {
3743 					err = ret;
3744 					break;
3745 				}
3746 				rc->extents_found--;
3747 				rc->search_start = key.objectid;
3748 			}
3749 		}
3750 
3751 		ret = btrfs_block_rsv_check(trans, rc->extent_root,
3752 					    rc->block_rsv, 0, 5);
3753 		if (ret < 0) {
3754 			if (ret != -EAGAIN) {
3755 				err = ret;
3756 				WARN_ON(1);
3757 				break;
3758 			}
3759 			rc->commit_transaction = 1;
3760 		}
3761 
3762 		if (rc->commit_transaction) {
3763 			rc->commit_transaction = 0;
3764 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3765 			BUG_ON(ret);
3766 		} else {
3767 			nr = trans->blocks_used;
3768 			btrfs_end_transaction_throttle(trans, rc->extent_root);
3769 			btrfs_btree_balance_dirty(rc->extent_root, nr);
3770 		}
3771 		trans = NULL;
3772 
3773 		if (rc->stage == MOVE_DATA_EXTENTS &&
3774 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3775 			rc->found_file_extent = 1;
3776 			ret = relocate_data_extent(rc->data_inode,
3777 						   &key, &rc->cluster);
3778 			if (ret < 0) {
3779 				err = ret;
3780 				break;
3781 			}
3782 		}
3783 	}
3784 
3785 	btrfs_release_path(rc->extent_root, path);
3786 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
3787 			  GFP_NOFS);
3788 
3789 	if (trans) {
3790 		nr = trans->blocks_used;
3791 		btrfs_end_transaction_throttle(trans, rc->extent_root);
3792 		btrfs_btree_balance_dirty(rc->extent_root, nr);
3793 	}
3794 
3795 	if (!err) {
3796 		ret = relocate_file_extent_cluster(rc->data_inode,
3797 						   &rc->cluster);
3798 		if (ret < 0)
3799 			err = ret;
3800 	}
3801 
3802 	rc->create_reloc_tree = 0;
3803 	set_reloc_control(rc);
3804 
3805 	backref_cache_cleanup(&rc->backref_cache);
3806 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3807 
3808 	err = prepare_to_merge(rc, err);
3809 
3810 	merge_reloc_roots(rc);
3811 
3812 	rc->merge_reloc_tree = 0;
3813 	unset_reloc_control(rc);
3814 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
3815 
3816 	/* get rid of pinned extents */
3817 	trans = btrfs_join_transaction(rc->extent_root, 1);
3818 	if (IS_ERR(trans))
3819 		err = PTR_ERR(trans);
3820 	else
3821 		btrfs_commit_transaction(trans, rc->extent_root);
3822 out_free:
3823 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
3824 	btrfs_free_path(path);
3825 	return err;
3826 }
3827 
3828 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3829 				 struct btrfs_root *root, u64 objectid)
3830 {
3831 	struct btrfs_path *path;
3832 	struct btrfs_inode_item *item;
3833 	struct extent_buffer *leaf;
3834 	int ret;
3835 
3836 	path = btrfs_alloc_path();
3837 	if (!path)
3838 		return -ENOMEM;
3839 
3840 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3841 	if (ret)
3842 		goto out;
3843 
3844 	leaf = path->nodes[0];
3845 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3846 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
3847 	btrfs_set_inode_generation(leaf, item, 1);
3848 	btrfs_set_inode_size(leaf, item, 0);
3849 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3850 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3851 					  BTRFS_INODE_PREALLOC);
3852 	btrfs_mark_buffer_dirty(leaf);
3853 	btrfs_release_path(root, path);
3854 out:
3855 	btrfs_free_path(path);
3856 	return ret;
3857 }
3858 
3859 /*
3860  * helper to create inode for data relocation.
3861  * the inode is in data relocation tree and its link count is 0
3862  */
3863 static noinline_for_stack
3864 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3865 				 struct btrfs_block_group_cache *group)
3866 {
3867 	struct inode *inode = NULL;
3868 	struct btrfs_trans_handle *trans;
3869 	struct btrfs_root *root;
3870 	struct btrfs_key key;
3871 	unsigned long nr;
3872 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
3873 	int err = 0;
3874 
3875 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
3876 	if (IS_ERR(root))
3877 		return ERR_CAST(root);
3878 
3879 	trans = btrfs_start_transaction(root, 6);
3880 	if (IS_ERR(trans))
3881 		return ERR_CAST(trans);
3882 
3883 	err = btrfs_find_free_objectid(trans, root, objectid, &objectid);
3884 	if (err)
3885 		goto out;
3886 
3887 	err = __insert_orphan_inode(trans, root, objectid);
3888 	BUG_ON(err);
3889 
3890 	key.objectid = objectid;
3891 	key.type = BTRFS_INODE_ITEM_KEY;
3892 	key.offset = 0;
3893 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
3894 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
3895 	BTRFS_I(inode)->index_cnt = group->key.objectid;
3896 
3897 	err = btrfs_orphan_add(trans, inode);
3898 out:
3899 	nr = trans->blocks_used;
3900 	btrfs_end_transaction(trans, root);
3901 	btrfs_btree_balance_dirty(root, nr);
3902 	if (err) {
3903 		if (inode)
3904 			iput(inode);
3905 		inode = ERR_PTR(err);
3906 	}
3907 	return inode;
3908 }
3909 
3910 static struct reloc_control *alloc_reloc_control(void)
3911 {
3912 	struct reloc_control *rc;
3913 
3914 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3915 	if (!rc)
3916 		return NULL;
3917 
3918 	INIT_LIST_HEAD(&rc->reloc_roots);
3919 	backref_cache_init(&rc->backref_cache);
3920 	mapping_tree_init(&rc->reloc_root_tree);
3921 	extent_io_tree_init(&rc->processed_blocks, NULL, GFP_NOFS);
3922 	return rc;
3923 }
3924 
3925 /*
3926  * function to relocate all extents in a block group.
3927  */
3928 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
3929 {
3930 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3931 	struct reloc_control *rc;
3932 	struct inode *inode;
3933 	struct btrfs_path *path;
3934 	int ret;
3935 	int rw = 0;
3936 	int err = 0;
3937 
3938 	rc = alloc_reloc_control();
3939 	if (!rc)
3940 		return -ENOMEM;
3941 
3942 	rc->extent_root = extent_root;
3943 
3944 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
3945 	BUG_ON(!rc->block_group);
3946 
3947 	if (!rc->block_group->ro) {
3948 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
3949 		if (ret) {
3950 			err = ret;
3951 			goto out;
3952 		}
3953 		rw = 1;
3954 	}
3955 
3956 	path = btrfs_alloc_path();
3957 	if (!path) {
3958 		err = -ENOMEM;
3959 		goto out;
3960 	}
3961 
3962 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
3963 					path);
3964 	btrfs_free_path(path);
3965 
3966 	if (!IS_ERR(inode))
3967 		ret = delete_block_group_cache(fs_info, inode, 0);
3968 	else
3969 		ret = PTR_ERR(inode);
3970 
3971 	if (ret && ret != -ENOENT) {
3972 		err = ret;
3973 		goto out;
3974 	}
3975 
3976 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3977 	if (IS_ERR(rc->data_inode)) {
3978 		err = PTR_ERR(rc->data_inode);
3979 		rc->data_inode = NULL;
3980 		goto out;
3981 	}
3982 
3983 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
3984 	       (unsigned long long)rc->block_group->key.objectid,
3985 	       (unsigned long long)rc->block_group->flags);
3986 
3987 	btrfs_start_delalloc_inodes(fs_info->tree_root, 0);
3988 	btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0);
3989 
3990 	while (1) {
3991 		mutex_lock(&fs_info->cleaner_mutex);
3992 
3993 		btrfs_clean_old_snapshots(fs_info->tree_root);
3994 		ret = relocate_block_group(rc);
3995 
3996 		mutex_unlock(&fs_info->cleaner_mutex);
3997 		if (ret < 0) {
3998 			err = ret;
3999 			goto out;
4000 		}
4001 
4002 		if (rc->extents_found == 0)
4003 			break;
4004 
4005 		printk(KERN_INFO "btrfs: found %llu extents\n",
4006 			(unsigned long long)rc->extents_found);
4007 
4008 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4009 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4010 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4011 						 0, -1);
4012 			rc->stage = UPDATE_DATA_PTRS;
4013 		}
4014 	}
4015 
4016 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4017 				     rc->block_group->key.objectid,
4018 				     rc->block_group->key.objectid +
4019 				     rc->block_group->key.offset - 1);
4020 
4021 	WARN_ON(rc->block_group->pinned > 0);
4022 	WARN_ON(rc->block_group->reserved > 0);
4023 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4024 out:
4025 	if (err && rw)
4026 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4027 	iput(rc->data_inode);
4028 	btrfs_put_block_group(rc->block_group);
4029 	kfree(rc);
4030 	return err;
4031 }
4032 
4033 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4034 {
4035 	struct btrfs_trans_handle *trans;
4036 	int ret;
4037 
4038 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4039 	BUG_ON(IS_ERR(trans));
4040 
4041 	memset(&root->root_item.drop_progress, 0,
4042 		sizeof(root->root_item.drop_progress));
4043 	root->root_item.drop_level = 0;
4044 	btrfs_set_root_refs(&root->root_item, 0);
4045 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4046 				&root->root_key, &root->root_item);
4047 	BUG_ON(ret);
4048 
4049 	ret = btrfs_end_transaction(trans, root->fs_info->tree_root);
4050 	BUG_ON(ret);
4051 	return 0;
4052 }
4053 
4054 /*
4055  * recover relocation interrupted by system crash.
4056  *
4057  * this function resumes merging reloc trees with corresponding fs trees.
4058  * this is important for keeping the sharing of tree blocks
4059  */
4060 int btrfs_recover_relocation(struct btrfs_root *root)
4061 {
4062 	LIST_HEAD(reloc_roots);
4063 	struct btrfs_key key;
4064 	struct btrfs_root *fs_root;
4065 	struct btrfs_root *reloc_root;
4066 	struct btrfs_path *path;
4067 	struct extent_buffer *leaf;
4068 	struct reloc_control *rc = NULL;
4069 	struct btrfs_trans_handle *trans;
4070 	int ret;
4071 	int err = 0;
4072 
4073 	path = btrfs_alloc_path();
4074 	if (!path)
4075 		return -ENOMEM;
4076 
4077 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4078 	key.type = BTRFS_ROOT_ITEM_KEY;
4079 	key.offset = (u64)-1;
4080 
4081 	while (1) {
4082 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4083 					path, 0, 0);
4084 		if (ret < 0) {
4085 			err = ret;
4086 			goto out;
4087 		}
4088 		if (ret > 0) {
4089 			if (path->slots[0] == 0)
4090 				break;
4091 			path->slots[0]--;
4092 		}
4093 		leaf = path->nodes[0];
4094 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4095 		btrfs_release_path(root->fs_info->tree_root, path);
4096 
4097 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4098 		    key.type != BTRFS_ROOT_ITEM_KEY)
4099 			break;
4100 
4101 		reloc_root = btrfs_read_fs_root_no_radix(root, &key);
4102 		if (IS_ERR(reloc_root)) {
4103 			err = PTR_ERR(reloc_root);
4104 			goto out;
4105 		}
4106 
4107 		list_add(&reloc_root->root_list, &reloc_roots);
4108 
4109 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4110 			fs_root = read_fs_root(root->fs_info,
4111 					       reloc_root->root_key.offset);
4112 			if (IS_ERR(fs_root)) {
4113 				ret = PTR_ERR(fs_root);
4114 				if (ret != -ENOENT) {
4115 					err = ret;
4116 					goto out;
4117 				}
4118 				mark_garbage_root(reloc_root);
4119 			}
4120 		}
4121 
4122 		if (key.offset == 0)
4123 			break;
4124 
4125 		key.offset--;
4126 	}
4127 	btrfs_release_path(root->fs_info->tree_root, path);
4128 
4129 	if (list_empty(&reloc_roots))
4130 		goto out;
4131 
4132 	rc = alloc_reloc_control();
4133 	if (!rc) {
4134 		err = -ENOMEM;
4135 		goto out;
4136 	}
4137 
4138 	rc->extent_root = root->fs_info->extent_root;
4139 
4140 	set_reloc_control(rc);
4141 
4142 	trans = btrfs_join_transaction(rc->extent_root, 1);
4143 	if (IS_ERR(trans)) {
4144 		unset_reloc_control(rc);
4145 		err = PTR_ERR(trans);
4146 		goto out_free;
4147 	}
4148 
4149 	rc->merge_reloc_tree = 1;
4150 
4151 	while (!list_empty(&reloc_roots)) {
4152 		reloc_root = list_entry(reloc_roots.next,
4153 					struct btrfs_root, root_list);
4154 		list_del(&reloc_root->root_list);
4155 
4156 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4157 			list_add_tail(&reloc_root->root_list,
4158 				      &rc->reloc_roots);
4159 			continue;
4160 		}
4161 
4162 		fs_root = read_fs_root(root->fs_info,
4163 				       reloc_root->root_key.offset);
4164 		BUG_ON(IS_ERR(fs_root));
4165 
4166 		__add_reloc_root(reloc_root);
4167 		fs_root->reloc_root = reloc_root;
4168 	}
4169 
4170 	btrfs_commit_transaction(trans, rc->extent_root);
4171 
4172 	merge_reloc_roots(rc);
4173 
4174 	unset_reloc_control(rc);
4175 
4176 	trans = btrfs_join_transaction(rc->extent_root, 1);
4177 	if (IS_ERR(trans))
4178 		err = PTR_ERR(trans);
4179 	else
4180 		btrfs_commit_transaction(trans, rc->extent_root);
4181 out_free:
4182 	kfree(rc);
4183 out:
4184 	while (!list_empty(&reloc_roots)) {
4185 		reloc_root = list_entry(reloc_roots.next,
4186 					struct btrfs_root, root_list);
4187 		list_del(&reloc_root->root_list);
4188 		free_extent_buffer(reloc_root->node);
4189 		free_extent_buffer(reloc_root->commit_root);
4190 		kfree(reloc_root);
4191 	}
4192 	btrfs_free_path(path);
4193 
4194 	if (err == 0) {
4195 		/* cleanup orphan inode in data relocation tree */
4196 		fs_root = read_fs_root(root->fs_info,
4197 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4198 		if (IS_ERR(fs_root))
4199 			err = PTR_ERR(fs_root);
4200 		else
4201 			btrfs_orphan_cleanup(fs_root);
4202 	}
4203 	return err;
4204 }
4205 
4206 /*
4207  * helper to add ordered checksum for data relocation.
4208  *
4209  * cloning checksum properly handles the nodatasum extents.
4210  * it also saves CPU time to re-calculate the checksum.
4211  */
4212 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4213 {
4214 	struct btrfs_ordered_sum *sums;
4215 	struct btrfs_sector_sum *sector_sum;
4216 	struct btrfs_ordered_extent *ordered;
4217 	struct btrfs_root *root = BTRFS_I(inode)->root;
4218 	size_t offset;
4219 	int ret;
4220 	u64 disk_bytenr;
4221 	LIST_HEAD(list);
4222 
4223 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4224 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4225 
4226 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4227 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4228 				       disk_bytenr + len - 1, &list);
4229 
4230 	while (!list_empty(&list)) {
4231 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4232 		list_del_init(&sums->list);
4233 
4234 		sector_sum = sums->sums;
4235 		sums->bytenr = ordered->start;
4236 
4237 		offset = 0;
4238 		while (offset < sums->len) {
4239 			sector_sum->bytenr += ordered->start - disk_bytenr;
4240 			sector_sum++;
4241 			offset += root->sectorsize;
4242 		}
4243 
4244 		btrfs_add_ordered_sum(inode, ordered, sums);
4245 	}
4246 	btrfs_put_ordered_extent(ordered);
4247 	return ret;
4248 }
4249 
4250 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4251 			   struct btrfs_root *root, struct extent_buffer *buf,
4252 			   struct extent_buffer *cow)
4253 {
4254 	struct reloc_control *rc;
4255 	struct backref_node *node;
4256 	int first_cow = 0;
4257 	int level;
4258 	int ret;
4259 
4260 	rc = root->fs_info->reloc_ctl;
4261 	if (!rc)
4262 		return;
4263 
4264 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4265 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4266 
4267 	level = btrfs_header_level(buf);
4268 	if (btrfs_header_generation(buf) <=
4269 	    btrfs_root_last_snapshot(&root->root_item))
4270 		first_cow = 1;
4271 
4272 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4273 	    rc->create_reloc_tree) {
4274 		WARN_ON(!first_cow && level == 0);
4275 
4276 		node = rc->backref_cache.path[level];
4277 		BUG_ON(node->bytenr != buf->start &&
4278 		       node->new_bytenr != buf->start);
4279 
4280 		drop_node_buffer(node);
4281 		extent_buffer_get(cow);
4282 		node->eb = cow;
4283 		node->new_bytenr = cow->start;
4284 
4285 		if (!node->pending) {
4286 			list_move_tail(&node->list,
4287 				       &rc->backref_cache.pending[level]);
4288 			node->pending = 1;
4289 		}
4290 
4291 		if (first_cow)
4292 			__mark_block_processed(rc, node);
4293 
4294 		if (first_cow && level > 0)
4295 			rc->nodes_relocated += buf->len;
4296 	}
4297 
4298 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4299 		ret = replace_file_extents(trans, rc, root, cow);
4300 		BUG_ON(ret);
4301 	}
4302 }
4303 
4304 /*
4305  * called before creating snapshot. it calculates metadata reservation
4306  * requried for relocating tree blocks in the snapshot
4307  */
4308 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4309 			      struct btrfs_pending_snapshot *pending,
4310 			      u64 *bytes_to_reserve)
4311 {
4312 	struct btrfs_root *root;
4313 	struct reloc_control *rc;
4314 
4315 	root = pending->root;
4316 	if (!root->reloc_root)
4317 		return;
4318 
4319 	rc = root->fs_info->reloc_ctl;
4320 	if (!rc->merge_reloc_tree)
4321 		return;
4322 
4323 	root = root->reloc_root;
4324 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4325 	/*
4326 	 * relocation is in the stage of merging trees. the space
4327 	 * used by merging a reloc tree is twice the size of
4328 	 * relocated tree nodes in the worst case. half for cowing
4329 	 * the reloc tree, half for cowing the fs tree. the space
4330 	 * used by cowing the reloc tree will be freed after the
4331 	 * tree is dropped. if we create snapshot, cowing the fs
4332 	 * tree may use more space than it frees. so we need
4333 	 * reserve extra space.
4334 	 */
4335 	*bytes_to_reserve += rc->nodes_relocated;
4336 }
4337 
4338 /*
4339  * called after snapshot is created. migrate block reservation
4340  * and create reloc root for the newly created snapshot
4341  */
4342 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4343 			       struct btrfs_pending_snapshot *pending)
4344 {
4345 	struct btrfs_root *root = pending->root;
4346 	struct btrfs_root *reloc_root;
4347 	struct btrfs_root *new_root;
4348 	struct reloc_control *rc;
4349 	int ret;
4350 
4351 	if (!root->reloc_root)
4352 		return;
4353 
4354 	rc = root->fs_info->reloc_ctl;
4355 	rc->merging_rsv_size += rc->nodes_relocated;
4356 
4357 	if (rc->merge_reloc_tree) {
4358 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4359 					      rc->block_rsv,
4360 					      rc->nodes_relocated);
4361 		BUG_ON(ret);
4362 	}
4363 
4364 	new_root = pending->snap;
4365 	reloc_root = create_reloc_root(trans, root->reloc_root,
4366 				       new_root->root_key.objectid);
4367 
4368 	__add_reloc_root(reloc_root);
4369 	new_root->reloc_root = reloc_root;
4370 
4371 	if (rc->create_reloc_tree) {
4372 		ret = clone_backref_node(trans, rc, root, reloc_root);
4373 		BUG_ON(ret);
4374 	}
4375 }
4376