xref: /openbmc/linux/fs/btrfs/relocation.c (revision db65c49e)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 #include "qgroup.h"
35 
36 /*
37  * backref_node, mapping_node and tree_block start with this
38  */
39 struct tree_entry {
40 	struct rb_node rb_node;
41 	u64 bytenr;
42 };
43 
44 /*
45  * present a tree block in the backref cache
46  */
47 struct backref_node {
48 	struct rb_node rb_node;
49 	u64 bytenr;
50 
51 	u64 new_bytenr;
52 	/* objectid of tree block owner, can be not uptodate */
53 	u64 owner;
54 	/* link to pending, changed or detached list */
55 	struct list_head list;
56 	/* list of upper level blocks reference this block */
57 	struct list_head upper;
58 	/* list of child blocks in the cache */
59 	struct list_head lower;
60 	/* NULL if this node is not tree root */
61 	struct btrfs_root *root;
62 	/* extent buffer got by COW the block */
63 	struct extent_buffer *eb;
64 	/* level of tree block */
65 	unsigned int level:8;
66 	/* is the block in non-reference counted tree */
67 	unsigned int cowonly:1;
68 	/* 1 if no child node in the cache */
69 	unsigned int lowest:1;
70 	/* is the extent buffer locked */
71 	unsigned int locked:1;
72 	/* has the block been processed */
73 	unsigned int processed:1;
74 	/* have backrefs of this block been checked */
75 	unsigned int checked:1;
76 	/*
77 	 * 1 if corresponding block has been cowed but some upper
78 	 * level block pointers may not point to the new location
79 	 */
80 	unsigned int pending:1;
81 	/*
82 	 * 1 if the backref node isn't connected to any other
83 	 * backref node.
84 	 */
85 	unsigned int detached:1;
86 };
87 
88 /*
89  * present a block pointer in the backref cache
90  */
91 struct backref_edge {
92 	struct list_head list[2];
93 	struct backref_node *node[2];
94 };
95 
96 #define LOWER	0
97 #define UPPER	1
98 #define RELOCATION_RESERVED_NODES	256
99 
100 struct backref_cache {
101 	/* red black tree of all backref nodes in the cache */
102 	struct rb_root rb_root;
103 	/* for passing backref nodes to btrfs_reloc_cow_block */
104 	struct backref_node *path[BTRFS_MAX_LEVEL];
105 	/*
106 	 * list of blocks that have been cowed but some block
107 	 * pointers in upper level blocks may not reflect the
108 	 * new location
109 	 */
110 	struct list_head pending[BTRFS_MAX_LEVEL];
111 	/* list of backref nodes with no child node */
112 	struct list_head leaves;
113 	/* list of blocks that have been cowed in current transaction */
114 	struct list_head changed;
115 	/* list of detached backref node. */
116 	struct list_head detached;
117 
118 	u64 last_trans;
119 
120 	int nr_nodes;
121 	int nr_edges;
122 };
123 
124 /*
125  * map address of tree root to tree
126  */
127 struct mapping_node {
128 	struct rb_node rb_node;
129 	u64 bytenr;
130 	void *data;
131 };
132 
133 struct mapping_tree {
134 	struct rb_root rb_root;
135 	spinlock_t lock;
136 };
137 
138 /*
139  * present a tree block to process
140  */
141 struct tree_block {
142 	struct rb_node rb_node;
143 	u64 bytenr;
144 	struct btrfs_key key;
145 	unsigned int level:8;
146 	unsigned int key_ready:1;
147 };
148 
149 #define MAX_EXTENTS 128
150 
151 struct file_extent_cluster {
152 	u64 start;
153 	u64 end;
154 	u64 boundary[MAX_EXTENTS];
155 	unsigned int nr;
156 };
157 
158 struct reloc_control {
159 	/* block group to relocate */
160 	struct btrfs_block_group_cache *block_group;
161 	/* extent tree */
162 	struct btrfs_root *extent_root;
163 	/* inode for moving data */
164 	struct inode *data_inode;
165 
166 	struct btrfs_block_rsv *block_rsv;
167 
168 	struct backref_cache backref_cache;
169 
170 	struct file_extent_cluster cluster;
171 	/* tree blocks have been processed */
172 	struct extent_io_tree processed_blocks;
173 	/* map start of tree root to corresponding reloc tree */
174 	struct mapping_tree reloc_root_tree;
175 	/* list of reloc trees */
176 	struct list_head reloc_roots;
177 	/* size of metadata reservation for merging reloc trees */
178 	u64 merging_rsv_size;
179 	/* size of relocated tree nodes */
180 	u64 nodes_relocated;
181 	/* reserved size for block group relocation*/
182 	u64 reserved_bytes;
183 
184 	u64 search_start;
185 	u64 extents_found;
186 
187 	unsigned int stage:8;
188 	unsigned int create_reloc_tree:1;
189 	unsigned int merge_reloc_tree:1;
190 	unsigned int found_file_extent:1;
191 };
192 
193 /* stages of data relocation */
194 #define MOVE_DATA_EXTENTS	0
195 #define UPDATE_DATA_PTRS	1
196 
197 static void remove_backref_node(struct backref_cache *cache,
198 				struct backref_node *node);
199 static void __mark_block_processed(struct reloc_control *rc,
200 				   struct backref_node *node);
201 
202 static void mapping_tree_init(struct mapping_tree *tree)
203 {
204 	tree->rb_root = RB_ROOT;
205 	spin_lock_init(&tree->lock);
206 }
207 
208 static void backref_cache_init(struct backref_cache *cache)
209 {
210 	int i;
211 	cache->rb_root = RB_ROOT;
212 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
213 		INIT_LIST_HEAD(&cache->pending[i]);
214 	INIT_LIST_HEAD(&cache->changed);
215 	INIT_LIST_HEAD(&cache->detached);
216 	INIT_LIST_HEAD(&cache->leaves);
217 }
218 
219 static void backref_cache_cleanup(struct backref_cache *cache)
220 {
221 	struct backref_node *node;
222 	int i;
223 
224 	while (!list_empty(&cache->detached)) {
225 		node = list_entry(cache->detached.next,
226 				  struct backref_node, list);
227 		remove_backref_node(cache, node);
228 	}
229 
230 	while (!list_empty(&cache->leaves)) {
231 		node = list_entry(cache->leaves.next,
232 				  struct backref_node, lower);
233 		remove_backref_node(cache, node);
234 	}
235 
236 	cache->last_trans = 0;
237 
238 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
239 		ASSERT(list_empty(&cache->pending[i]));
240 	ASSERT(list_empty(&cache->changed));
241 	ASSERT(list_empty(&cache->detached));
242 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
243 	ASSERT(!cache->nr_nodes);
244 	ASSERT(!cache->nr_edges);
245 }
246 
247 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
248 {
249 	struct backref_node *node;
250 
251 	node = kzalloc(sizeof(*node), GFP_NOFS);
252 	if (node) {
253 		INIT_LIST_HEAD(&node->list);
254 		INIT_LIST_HEAD(&node->upper);
255 		INIT_LIST_HEAD(&node->lower);
256 		RB_CLEAR_NODE(&node->rb_node);
257 		cache->nr_nodes++;
258 	}
259 	return node;
260 }
261 
262 static void free_backref_node(struct backref_cache *cache,
263 			      struct backref_node *node)
264 {
265 	if (node) {
266 		cache->nr_nodes--;
267 		kfree(node);
268 	}
269 }
270 
271 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
272 {
273 	struct backref_edge *edge;
274 
275 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
276 	if (edge)
277 		cache->nr_edges++;
278 	return edge;
279 }
280 
281 static void free_backref_edge(struct backref_cache *cache,
282 			      struct backref_edge *edge)
283 {
284 	if (edge) {
285 		cache->nr_edges--;
286 		kfree(edge);
287 	}
288 }
289 
290 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
291 				   struct rb_node *node)
292 {
293 	struct rb_node **p = &root->rb_node;
294 	struct rb_node *parent = NULL;
295 	struct tree_entry *entry;
296 
297 	while (*p) {
298 		parent = *p;
299 		entry = rb_entry(parent, struct tree_entry, rb_node);
300 
301 		if (bytenr < entry->bytenr)
302 			p = &(*p)->rb_left;
303 		else if (bytenr > entry->bytenr)
304 			p = &(*p)->rb_right;
305 		else
306 			return parent;
307 	}
308 
309 	rb_link_node(node, parent, p);
310 	rb_insert_color(node, root);
311 	return NULL;
312 }
313 
314 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
315 {
316 	struct rb_node *n = root->rb_node;
317 	struct tree_entry *entry;
318 
319 	while (n) {
320 		entry = rb_entry(n, struct tree_entry, rb_node);
321 
322 		if (bytenr < entry->bytenr)
323 			n = n->rb_left;
324 		else if (bytenr > entry->bytenr)
325 			n = n->rb_right;
326 		else
327 			return n;
328 	}
329 	return NULL;
330 }
331 
332 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
333 {
334 
335 	struct btrfs_fs_info *fs_info = NULL;
336 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
337 					      rb_node);
338 	if (bnode->root)
339 		fs_info = bnode->root->fs_info;
340 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
341 		    "found at offset %llu", bytenr);
342 }
343 
344 /*
345  * walk up backref nodes until reach node presents tree root
346  */
347 static struct backref_node *walk_up_backref(struct backref_node *node,
348 					    struct backref_edge *edges[],
349 					    int *index)
350 {
351 	struct backref_edge *edge;
352 	int idx = *index;
353 
354 	while (!list_empty(&node->upper)) {
355 		edge = list_entry(node->upper.next,
356 				  struct backref_edge, list[LOWER]);
357 		edges[idx++] = edge;
358 		node = edge->node[UPPER];
359 	}
360 	BUG_ON(node->detached);
361 	*index = idx;
362 	return node;
363 }
364 
365 /*
366  * walk down backref nodes to find start of next reference path
367  */
368 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
369 					      int *index)
370 {
371 	struct backref_edge *edge;
372 	struct backref_node *lower;
373 	int idx = *index;
374 
375 	while (idx > 0) {
376 		edge = edges[idx - 1];
377 		lower = edge->node[LOWER];
378 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
379 			idx--;
380 			continue;
381 		}
382 		edge = list_entry(edge->list[LOWER].next,
383 				  struct backref_edge, list[LOWER]);
384 		edges[idx - 1] = edge;
385 		*index = idx;
386 		return edge->node[UPPER];
387 	}
388 	*index = 0;
389 	return NULL;
390 }
391 
392 static void unlock_node_buffer(struct backref_node *node)
393 {
394 	if (node->locked) {
395 		btrfs_tree_unlock(node->eb);
396 		node->locked = 0;
397 	}
398 }
399 
400 static void drop_node_buffer(struct backref_node *node)
401 {
402 	if (node->eb) {
403 		unlock_node_buffer(node);
404 		free_extent_buffer(node->eb);
405 		node->eb = NULL;
406 	}
407 }
408 
409 static void drop_backref_node(struct backref_cache *tree,
410 			      struct backref_node *node)
411 {
412 	BUG_ON(!list_empty(&node->upper));
413 
414 	drop_node_buffer(node);
415 	list_del(&node->list);
416 	list_del(&node->lower);
417 	if (!RB_EMPTY_NODE(&node->rb_node))
418 		rb_erase(&node->rb_node, &tree->rb_root);
419 	free_backref_node(tree, node);
420 }
421 
422 /*
423  * remove a backref node from the backref cache
424  */
425 static void remove_backref_node(struct backref_cache *cache,
426 				struct backref_node *node)
427 {
428 	struct backref_node *upper;
429 	struct backref_edge *edge;
430 
431 	if (!node)
432 		return;
433 
434 	BUG_ON(!node->lowest && !node->detached);
435 	while (!list_empty(&node->upper)) {
436 		edge = list_entry(node->upper.next, struct backref_edge,
437 				  list[LOWER]);
438 		upper = edge->node[UPPER];
439 		list_del(&edge->list[LOWER]);
440 		list_del(&edge->list[UPPER]);
441 		free_backref_edge(cache, edge);
442 
443 		if (RB_EMPTY_NODE(&upper->rb_node)) {
444 			BUG_ON(!list_empty(&node->upper));
445 			drop_backref_node(cache, node);
446 			node = upper;
447 			node->lowest = 1;
448 			continue;
449 		}
450 		/*
451 		 * add the node to leaf node list if no other
452 		 * child block cached.
453 		 */
454 		if (list_empty(&upper->lower)) {
455 			list_add_tail(&upper->lower, &cache->leaves);
456 			upper->lowest = 1;
457 		}
458 	}
459 
460 	drop_backref_node(cache, node);
461 }
462 
463 static void update_backref_node(struct backref_cache *cache,
464 				struct backref_node *node, u64 bytenr)
465 {
466 	struct rb_node *rb_node;
467 	rb_erase(&node->rb_node, &cache->rb_root);
468 	node->bytenr = bytenr;
469 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
470 	if (rb_node)
471 		backref_tree_panic(rb_node, -EEXIST, bytenr);
472 }
473 
474 /*
475  * update backref cache after a transaction commit
476  */
477 static int update_backref_cache(struct btrfs_trans_handle *trans,
478 				struct backref_cache *cache)
479 {
480 	struct backref_node *node;
481 	int level = 0;
482 
483 	if (cache->last_trans == 0) {
484 		cache->last_trans = trans->transid;
485 		return 0;
486 	}
487 
488 	if (cache->last_trans == trans->transid)
489 		return 0;
490 
491 	/*
492 	 * detached nodes are used to avoid unnecessary backref
493 	 * lookup. transaction commit changes the extent tree.
494 	 * so the detached nodes are no longer useful.
495 	 */
496 	while (!list_empty(&cache->detached)) {
497 		node = list_entry(cache->detached.next,
498 				  struct backref_node, list);
499 		remove_backref_node(cache, node);
500 	}
501 
502 	while (!list_empty(&cache->changed)) {
503 		node = list_entry(cache->changed.next,
504 				  struct backref_node, list);
505 		list_del_init(&node->list);
506 		BUG_ON(node->pending);
507 		update_backref_node(cache, node, node->new_bytenr);
508 	}
509 
510 	/*
511 	 * some nodes can be left in the pending list if there were
512 	 * errors during processing the pending nodes.
513 	 */
514 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
515 		list_for_each_entry(node, &cache->pending[level], list) {
516 			BUG_ON(!node->pending);
517 			if (node->bytenr == node->new_bytenr)
518 				continue;
519 			update_backref_node(cache, node, node->new_bytenr);
520 		}
521 	}
522 
523 	cache->last_trans = 0;
524 	return 1;
525 }
526 
527 
528 static int should_ignore_root(struct btrfs_root *root)
529 {
530 	struct btrfs_root *reloc_root;
531 
532 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
533 		return 0;
534 
535 	reloc_root = root->reloc_root;
536 	if (!reloc_root)
537 		return 0;
538 
539 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
540 	    root->fs_info->running_transaction->transid - 1)
541 		return 0;
542 	/*
543 	 * if there is reloc tree and it was created in previous
544 	 * transaction backref lookup can find the reloc tree,
545 	 * so backref node for the fs tree root is useless for
546 	 * relocation.
547 	 */
548 	return 1;
549 }
550 /*
551  * find reloc tree by address of tree root
552  */
553 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
554 					  u64 bytenr)
555 {
556 	struct rb_node *rb_node;
557 	struct mapping_node *node;
558 	struct btrfs_root *root = NULL;
559 
560 	spin_lock(&rc->reloc_root_tree.lock);
561 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
562 	if (rb_node) {
563 		node = rb_entry(rb_node, struct mapping_node, rb_node);
564 		root = (struct btrfs_root *)node->data;
565 	}
566 	spin_unlock(&rc->reloc_root_tree.lock);
567 	return root;
568 }
569 
570 static int is_cowonly_root(u64 root_objectid)
571 {
572 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
576 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
577 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
579 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
580 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
581 		return 1;
582 	return 0;
583 }
584 
585 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
586 					u64 root_objectid)
587 {
588 	struct btrfs_key key;
589 
590 	key.objectid = root_objectid;
591 	key.type = BTRFS_ROOT_ITEM_KEY;
592 	if (is_cowonly_root(root_objectid))
593 		key.offset = 0;
594 	else
595 		key.offset = (u64)-1;
596 
597 	return btrfs_get_fs_root(fs_info, &key, false);
598 }
599 
600 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
601 static noinline_for_stack
602 struct btrfs_root *find_tree_root(struct reloc_control *rc,
603 				  struct extent_buffer *leaf,
604 				  struct btrfs_extent_ref_v0 *ref0)
605 {
606 	struct btrfs_root *root;
607 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
608 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
609 
610 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
611 
612 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
613 	BUG_ON(IS_ERR(root));
614 
615 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
616 	    generation != btrfs_root_generation(&root->root_item))
617 		return NULL;
618 
619 	return root;
620 }
621 #endif
622 
623 static noinline_for_stack
624 int find_inline_backref(struct extent_buffer *leaf, int slot,
625 			unsigned long *ptr, unsigned long *end)
626 {
627 	struct btrfs_key key;
628 	struct btrfs_extent_item *ei;
629 	struct btrfs_tree_block_info *bi;
630 	u32 item_size;
631 
632 	btrfs_item_key_to_cpu(leaf, &key, slot);
633 
634 	item_size = btrfs_item_size_nr(leaf, slot);
635 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
636 	if (item_size < sizeof(*ei)) {
637 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
638 		return 1;
639 	}
640 #endif
641 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
642 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
643 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
644 
645 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
646 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
647 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
648 		return 1;
649 	}
650 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
651 	    item_size <= sizeof(*ei)) {
652 		WARN_ON(item_size < sizeof(*ei));
653 		return 1;
654 	}
655 
656 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
657 		bi = (struct btrfs_tree_block_info *)(ei + 1);
658 		*ptr = (unsigned long)(bi + 1);
659 	} else {
660 		*ptr = (unsigned long)(ei + 1);
661 	}
662 	*end = (unsigned long)ei + item_size;
663 	return 0;
664 }
665 
666 /*
667  * build backref tree for a given tree block. root of the backref tree
668  * corresponds the tree block, leaves of the backref tree correspond
669  * roots of b-trees that reference the tree block.
670  *
671  * the basic idea of this function is check backrefs of a given block
672  * to find upper level blocks that reference the block, and then check
673  * backrefs of these upper level blocks recursively. the recursion stop
674  * when tree root is reached or backrefs for the block is cached.
675  *
676  * NOTE: if we find backrefs for a block are cached, we know backrefs
677  * for all upper level blocks that directly/indirectly reference the
678  * block are also cached.
679  */
680 static noinline_for_stack
681 struct backref_node *build_backref_tree(struct reloc_control *rc,
682 					struct btrfs_key *node_key,
683 					int level, u64 bytenr)
684 {
685 	struct backref_cache *cache = &rc->backref_cache;
686 	struct btrfs_path *path1;
687 	struct btrfs_path *path2;
688 	struct extent_buffer *eb;
689 	struct btrfs_root *root;
690 	struct backref_node *cur;
691 	struct backref_node *upper;
692 	struct backref_node *lower;
693 	struct backref_node *node = NULL;
694 	struct backref_node *exist = NULL;
695 	struct backref_edge *edge;
696 	struct rb_node *rb_node;
697 	struct btrfs_key key;
698 	unsigned long end;
699 	unsigned long ptr;
700 	LIST_HEAD(list);
701 	LIST_HEAD(useless);
702 	int cowonly;
703 	int ret;
704 	int err = 0;
705 	bool need_check = true;
706 
707 	path1 = btrfs_alloc_path();
708 	path2 = btrfs_alloc_path();
709 	if (!path1 || !path2) {
710 		err = -ENOMEM;
711 		goto out;
712 	}
713 	path1->reada = READA_FORWARD;
714 	path2->reada = READA_FORWARD;
715 
716 	node = alloc_backref_node(cache);
717 	if (!node) {
718 		err = -ENOMEM;
719 		goto out;
720 	}
721 
722 	node->bytenr = bytenr;
723 	node->level = level;
724 	node->lowest = 1;
725 	cur = node;
726 again:
727 	end = 0;
728 	ptr = 0;
729 	key.objectid = cur->bytenr;
730 	key.type = BTRFS_METADATA_ITEM_KEY;
731 	key.offset = (u64)-1;
732 
733 	path1->search_commit_root = 1;
734 	path1->skip_locking = 1;
735 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
736 				0, 0);
737 	if (ret < 0) {
738 		err = ret;
739 		goto out;
740 	}
741 	ASSERT(ret);
742 	ASSERT(path1->slots[0]);
743 
744 	path1->slots[0]--;
745 
746 	WARN_ON(cur->checked);
747 	if (!list_empty(&cur->upper)) {
748 		/*
749 		 * the backref was added previously when processing
750 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
751 		 */
752 		ASSERT(list_is_singular(&cur->upper));
753 		edge = list_entry(cur->upper.next, struct backref_edge,
754 				  list[LOWER]);
755 		ASSERT(list_empty(&edge->list[UPPER]));
756 		exist = edge->node[UPPER];
757 		/*
758 		 * add the upper level block to pending list if we need
759 		 * check its backrefs
760 		 */
761 		if (!exist->checked)
762 			list_add_tail(&edge->list[UPPER], &list);
763 	} else {
764 		exist = NULL;
765 	}
766 
767 	while (1) {
768 		cond_resched();
769 		eb = path1->nodes[0];
770 
771 		if (ptr >= end) {
772 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
773 				ret = btrfs_next_leaf(rc->extent_root, path1);
774 				if (ret < 0) {
775 					err = ret;
776 					goto out;
777 				}
778 				if (ret > 0)
779 					break;
780 				eb = path1->nodes[0];
781 			}
782 
783 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
784 			if (key.objectid != cur->bytenr) {
785 				WARN_ON(exist);
786 				break;
787 			}
788 
789 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
790 			    key.type == BTRFS_METADATA_ITEM_KEY) {
791 				ret = find_inline_backref(eb, path1->slots[0],
792 							  &ptr, &end);
793 				if (ret)
794 					goto next;
795 			}
796 		}
797 
798 		if (ptr < end) {
799 			/* update key for inline back ref */
800 			struct btrfs_extent_inline_ref *iref;
801 			iref = (struct btrfs_extent_inline_ref *)ptr;
802 			key.type = btrfs_extent_inline_ref_type(eb, iref);
803 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
804 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
805 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
806 		}
807 
808 		if (exist &&
809 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
810 		      exist->owner == key.offset) ||
811 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
812 		      exist->bytenr == key.offset))) {
813 			exist = NULL;
814 			goto next;
815 		}
816 
817 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
818 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
819 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
820 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
821 				struct btrfs_extent_ref_v0 *ref0;
822 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
823 						struct btrfs_extent_ref_v0);
824 				if (key.objectid == key.offset) {
825 					root = find_tree_root(rc, eb, ref0);
826 					if (root && !should_ignore_root(root))
827 						cur->root = root;
828 					else
829 						list_add(&cur->list, &useless);
830 					break;
831 				}
832 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
833 								      ref0)))
834 					cur->cowonly = 1;
835 			}
836 #else
837 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
838 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
839 #endif
840 			if (key.objectid == key.offset) {
841 				/*
842 				 * only root blocks of reloc trees use
843 				 * backref of this type.
844 				 */
845 				root = find_reloc_root(rc, cur->bytenr);
846 				ASSERT(root);
847 				cur->root = root;
848 				break;
849 			}
850 
851 			edge = alloc_backref_edge(cache);
852 			if (!edge) {
853 				err = -ENOMEM;
854 				goto out;
855 			}
856 			rb_node = tree_search(&cache->rb_root, key.offset);
857 			if (!rb_node) {
858 				upper = alloc_backref_node(cache);
859 				if (!upper) {
860 					free_backref_edge(cache, edge);
861 					err = -ENOMEM;
862 					goto out;
863 				}
864 				upper->bytenr = key.offset;
865 				upper->level = cur->level + 1;
866 				/*
867 				 *  backrefs for the upper level block isn't
868 				 *  cached, add the block to pending list
869 				 */
870 				list_add_tail(&edge->list[UPPER], &list);
871 			} else {
872 				upper = rb_entry(rb_node, struct backref_node,
873 						 rb_node);
874 				ASSERT(upper->checked);
875 				INIT_LIST_HEAD(&edge->list[UPPER]);
876 			}
877 			list_add_tail(&edge->list[LOWER], &cur->upper);
878 			edge->node[LOWER] = cur;
879 			edge->node[UPPER] = upper;
880 
881 			goto next;
882 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
883 			goto next;
884 		}
885 
886 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
887 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
888 		if (IS_ERR(root)) {
889 			err = PTR_ERR(root);
890 			goto out;
891 		}
892 
893 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
894 			cur->cowonly = 1;
895 
896 		if (btrfs_root_level(&root->root_item) == cur->level) {
897 			/* tree root */
898 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
899 			       cur->bytenr);
900 			if (should_ignore_root(root))
901 				list_add(&cur->list, &useless);
902 			else
903 				cur->root = root;
904 			break;
905 		}
906 
907 		level = cur->level + 1;
908 
909 		/*
910 		 * searching the tree to find upper level blocks
911 		 * reference the block.
912 		 */
913 		path2->search_commit_root = 1;
914 		path2->skip_locking = 1;
915 		path2->lowest_level = level;
916 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
917 		path2->lowest_level = 0;
918 		if (ret < 0) {
919 			err = ret;
920 			goto out;
921 		}
922 		if (ret > 0 && path2->slots[level] > 0)
923 			path2->slots[level]--;
924 
925 		eb = path2->nodes[level];
926 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
927 			cur->bytenr);
928 
929 		lower = cur;
930 		need_check = true;
931 		for (; level < BTRFS_MAX_LEVEL; level++) {
932 			if (!path2->nodes[level]) {
933 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
934 				       lower->bytenr);
935 				if (should_ignore_root(root))
936 					list_add(&lower->list, &useless);
937 				else
938 					lower->root = root;
939 				break;
940 			}
941 
942 			edge = alloc_backref_edge(cache);
943 			if (!edge) {
944 				err = -ENOMEM;
945 				goto out;
946 			}
947 
948 			eb = path2->nodes[level];
949 			rb_node = tree_search(&cache->rb_root, eb->start);
950 			if (!rb_node) {
951 				upper = alloc_backref_node(cache);
952 				if (!upper) {
953 					free_backref_edge(cache, edge);
954 					err = -ENOMEM;
955 					goto out;
956 				}
957 				upper->bytenr = eb->start;
958 				upper->owner = btrfs_header_owner(eb);
959 				upper->level = lower->level + 1;
960 				if (!test_bit(BTRFS_ROOT_REF_COWS,
961 					      &root->state))
962 					upper->cowonly = 1;
963 
964 				/*
965 				 * if we know the block isn't shared
966 				 * we can void checking its backrefs.
967 				 */
968 				if (btrfs_block_can_be_shared(root, eb))
969 					upper->checked = 0;
970 				else
971 					upper->checked = 1;
972 
973 				/*
974 				 * add the block to pending list if we
975 				 * need check its backrefs, we only do this once
976 				 * while walking up a tree as we will catch
977 				 * anything else later on.
978 				 */
979 				if (!upper->checked && need_check) {
980 					need_check = false;
981 					list_add_tail(&edge->list[UPPER],
982 						      &list);
983 				} else {
984 					if (upper->checked)
985 						need_check = true;
986 					INIT_LIST_HEAD(&edge->list[UPPER]);
987 				}
988 			} else {
989 				upper = rb_entry(rb_node, struct backref_node,
990 						 rb_node);
991 				ASSERT(upper->checked);
992 				INIT_LIST_HEAD(&edge->list[UPPER]);
993 				if (!upper->owner)
994 					upper->owner = btrfs_header_owner(eb);
995 			}
996 			list_add_tail(&edge->list[LOWER], &lower->upper);
997 			edge->node[LOWER] = lower;
998 			edge->node[UPPER] = upper;
999 
1000 			if (rb_node)
1001 				break;
1002 			lower = upper;
1003 			upper = NULL;
1004 		}
1005 		btrfs_release_path(path2);
1006 next:
1007 		if (ptr < end) {
1008 			ptr += btrfs_extent_inline_ref_size(key.type);
1009 			if (ptr >= end) {
1010 				WARN_ON(ptr > end);
1011 				ptr = 0;
1012 				end = 0;
1013 			}
1014 		}
1015 		if (ptr >= end)
1016 			path1->slots[0]++;
1017 	}
1018 	btrfs_release_path(path1);
1019 
1020 	cur->checked = 1;
1021 	WARN_ON(exist);
1022 
1023 	/* the pending list isn't empty, take the first block to process */
1024 	if (!list_empty(&list)) {
1025 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1026 		list_del_init(&edge->list[UPPER]);
1027 		cur = edge->node[UPPER];
1028 		goto again;
1029 	}
1030 
1031 	/*
1032 	 * everything goes well, connect backref nodes and insert backref nodes
1033 	 * into the cache.
1034 	 */
1035 	ASSERT(node->checked);
1036 	cowonly = node->cowonly;
1037 	if (!cowonly) {
1038 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1039 				      &node->rb_node);
1040 		if (rb_node)
1041 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1042 		list_add_tail(&node->lower, &cache->leaves);
1043 	}
1044 
1045 	list_for_each_entry(edge, &node->upper, list[LOWER])
1046 		list_add_tail(&edge->list[UPPER], &list);
1047 
1048 	while (!list_empty(&list)) {
1049 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1050 		list_del_init(&edge->list[UPPER]);
1051 		upper = edge->node[UPPER];
1052 		if (upper->detached) {
1053 			list_del(&edge->list[LOWER]);
1054 			lower = edge->node[LOWER];
1055 			free_backref_edge(cache, edge);
1056 			if (list_empty(&lower->upper))
1057 				list_add(&lower->list, &useless);
1058 			continue;
1059 		}
1060 
1061 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1062 			if (upper->lowest) {
1063 				list_del_init(&upper->lower);
1064 				upper->lowest = 0;
1065 			}
1066 
1067 			list_add_tail(&edge->list[UPPER], &upper->lower);
1068 			continue;
1069 		}
1070 
1071 		if (!upper->checked) {
1072 			/*
1073 			 * Still want to blow up for developers since this is a
1074 			 * logic bug.
1075 			 */
1076 			ASSERT(0);
1077 			err = -EINVAL;
1078 			goto out;
1079 		}
1080 		if (cowonly != upper->cowonly) {
1081 			ASSERT(0);
1082 			err = -EINVAL;
1083 			goto out;
1084 		}
1085 
1086 		if (!cowonly) {
1087 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1088 					      &upper->rb_node);
1089 			if (rb_node)
1090 				backref_tree_panic(rb_node, -EEXIST,
1091 						   upper->bytenr);
1092 		}
1093 
1094 		list_add_tail(&edge->list[UPPER], &upper->lower);
1095 
1096 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1097 			list_add_tail(&edge->list[UPPER], &list);
1098 	}
1099 	/*
1100 	 * process useless backref nodes. backref nodes for tree leaves
1101 	 * are deleted from the cache. backref nodes for upper level
1102 	 * tree blocks are left in the cache to avoid unnecessary backref
1103 	 * lookup.
1104 	 */
1105 	while (!list_empty(&useless)) {
1106 		upper = list_entry(useless.next, struct backref_node, list);
1107 		list_del_init(&upper->list);
1108 		ASSERT(list_empty(&upper->upper));
1109 		if (upper == node)
1110 			node = NULL;
1111 		if (upper->lowest) {
1112 			list_del_init(&upper->lower);
1113 			upper->lowest = 0;
1114 		}
1115 		while (!list_empty(&upper->lower)) {
1116 			edge = list_entry(upper->lower.next,
1117 					  struct backref_edge, list[UPPER]);
1118 			list_del(&edge->list[UPPER]);
1119 			list_del(&edge->list[LOWER]);
1120 			lower = edge->node[LOWER];
1121 			free_backref_edge(cache, edge);
1122 
1123 			if (list_empty(&lower->upper))
1124 				list_add(&lower->list, &useless);
1125 		}
1126 		__mark_block_processed(rc, upper);
1127 		if (upper->level > 0) {
1128 			list_add(&upper->list, &cache->detached);
1129 			upper->detached = 1;
1130 		} else {
1131 			rb_erase(&upper->rb_node, &cache->rb_root);
1132 			free_backref_node(cache, upper);
1133 		}
1134 	}
1135 out:
1136 	btrfs_free_path(path1);
1137 	btrfs_free_path(path2);
1138 	if (err) {
1139 		while (!list_empty(&useless)) {
1140 			lower = list_entry(useless.next,
1141 					   struct backref_node, list);
1142 			list_del_init(&lower->list);
1143 		}
1144 		while (!list_empty(&list)) {
1145 			edge = list_first_entry(&list, struct backref_edge,
1146 						list[UPPER]);
1147 			list_del(&edge->list[UPPER]);
1148 			list_del(&edge->list[LOWER]);
1149 			lower = edge->node[LOWER];
1150 			upper = edge->node[UPPER];
1151 			free_backref_edge(cache, edge);
1152 
1153 			/*
1154 			 * Lower is no longer linked to any upper backref nodes
1155 			 * and isn't in the cache, we can free it ourselves.
1156 			 */
1157 			if (list_empty(&lower->upper) &&
1158 			    RB_EMPTY_NODE(&lower->rb_node))
1159 				list_add(&lower->list, &useless);
1160 
1161 			if (!RB_EMPTY_NODE(&upper->rb_node))
1162 				continue;
1163 
1164 			/* Add this guy's upper edges to the list to process */
1165 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1166 				list_add_tail(&edge->list[UPPER], &list);
1167 			if (list_empty(&upper->upper))
1168 				list_add(&upper->list, &useless);
1169 		}
1170 
1171 		while (!list_empty(&useless)) {
1172 			lower = list_entry(useless.next,
1173 					   struct backref_node, list);
1174 			list_del_init(&lower->list);
1175 			if (lower == node)
1176 				node = NULL;
1177 			free_backref_node(cache, lower);
1178 		}
1179 
1180 		free_backref_node(cache, node);
1181 		return ERR_PTR(err);
1182 	}
1183 	ASSERT(!node || !node->detached);
1184 	return node;
1185 }
1186 
1187 /*
1188  * helper to add backref node for the newly created snapshot.
1189  * the backref node is created by cloning backref node that
1190  * corresponds to root of source tree
1191  */
1192 static int clone_backref_node(struct btrfs_trans_handle *trans,
1193 			      struct reloc_control *rc,
1194 			      struct btrfs_root *src,
1195 			      struct btrfs_root *dest)
1196 {
1197 	struct btrfs_root *reloc_root = src->reloc_root;
1198 	struct backref_cache *cache = &rc->backref_cache;
1199 	struct backref_node *node = NULL;
1200 	struct backref_node *new_node;
1201 	struct backref_edge *edge;
1202 	struct backref_edge *new_edge;
1203 	struct rb_node *rb_node;
1204 
1205 	if (cache->last_trans > 0)
1206 		update_backref_cache(trans, cache);
1207 
1208 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1209 	if (rb_node) {
1210 		node = rb_entry(rb_node, struct backref_node, rb_node);
1211 		if (node->detached)
1212 			node = NULL;
1213 		else
1214 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1215 	}
1216 
1217 	if (!node) {
1218 		rb_node = tree_search(&cache->rb_root,
1219 				      reloc_root->commit_root->start);
1220 		if (rb_node) {
1221 			node = rb_entry(rb_node, struct backref_node,
1222 					rb_node);
1223 			BUG_ON(node->detached);
1224 		}
1225 	}
1226 
1227 	if (!node)
1228 		return 0;
1229 
1230 	new_node = alloc_backref_node(cache);
1231 	if (!new_node)
1232 		return -ENOMEM;
1233 
1234 	new_node->bytenr = dest->node->start;
1235 	new_node->level = node->level;
1236 	new_node->lowest = node->lowest;
1237 	new_node->checked = 1;
1238 	new_node->root = dest;
1239 
1240 	if (!node->lowest) {
1241 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1242 			new_edge = alloc_backref_edge(cache);
1243 			if (!new_edge)
1244 				goto fail;
1245 
1246 			new_edge->node[UPPER] = new_node;
1247 			new_edge->node[LOWER] = edge->node[LOWER];
1248 			list_add_tail(&new_edge->list[UPPER],
1249 				      &new_node->lower);
1250 		}
1251 	} else {
1252 		list_add_tail(&new_node->lower, &cache->leaves);
1253 	}
1254 
1255 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1256 			      &new_node->rb_node);
1257 	if (rb_node)
1258 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1259 
1260 	if (!new_node->lowest) {
1261 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1262 			list_add_tail(&new_edge->list[LOWER],
1263 				      &new_edge->node[LOWER]->upper);
1264 		}
1265 	}
1266 	return 0;
1267 fail:
1268 	while (!list_empty(&new_node->lower)) {
1269 		new_edge = list_entry(new_node->lower.next,
1270 				      struct backref_edge, list[UPPER]);
1271 		list_del(&new_edge->list[UPPER]);
1272 		free_backref_edge(cache, new_edge);
1273 	}
1274 	free_backref_node(cache, new_node);
1275 	return -ENOMEM;
1276 }
1277 
1278 /*
1279  * helper to add 'address of tree root -> reloc tree' mapping
1280  */
1281 static int __must_check __add_reloc_root(struct btrfs_root *root)
1282 {
1283 	struct rb_node *rb_node;
1284 	struct mapping_node *node;
1285 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1286 
1287 	node = kmalloc(sizeof(*node), GFP_NOFS);
1288 	if (!node)
1289 		return -ENOMEM;
1290 
1291 	node->bytenr = root->node->start;
1292 	node->data = root;
1293 
1294 	spin_lock(&rc->reloc_root_tree.lock);
1295 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1296 			      node->bytenr, &node->rb_node);
1297 	spin_unlock(&rc->reloc_root_tree.lock);
1298 	if (rb_node) {
1299 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1300 			    "for start=%llu while inserting into relocation "
1301 			    "tree", node->bytenr);
1302 		kfree(node);
1303 		return -EEXIST;
1304 	}
1305 
1306 	list_add_tail(&root->root_list, &rc->reloc_roots);
1307 	return 0;
1308 }
1309 
1310 /*
1311  * helper to delete the 'address of tree root -> reloc tree'
1312  * mapping
1313  */
1314 static void __del_reloc_root(struct btrfs_root *root)
1315 {
1316 	struct rb_node *rb_node;
1317 	struct mapping_node *node = NULL;
1318 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1319 
1320 	spin_lock(&rc->reloc_root_tree.lock);
1321 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1322 			      root->node->start);
1323 	if (rb_node) {
1324 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1325 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1326 	}
1327 	spin_unlock(&rc->reloc_root_tree.lock);
1328 
1329 	if (!node)
1330 		return;
1331 	BUG_ON((struct btrfs_root *)node->data != root);
1332 
1333 	spin_lock(&root->fs_info->trans_lock);
1334 	list_del_init(&root->root_list);
1335 	spin_unlock(&root->fs_info->trans_lock);
1336 	kfree(node);
1337 }
1338 
1339 /*
1340  * helper to update the 'address of tree root -> reloc tree'
1341  * mapping
1342  */
1343 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1344 {
1345 	struct rb_node *rb_node;
1346 	struct mapping_node *node = NULL;
1347 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1348 
1349 	spin_lock(&rc->reloc_root_tree.lock);
1350 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1351 			      root->node->start);
1352 	if (rb_node) {
1353 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1354 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1355 	}
1356 	spin_unlock(&rc->reloc_root_tree.lock);
1357 
1358 	if (!node)
1359 		return 0;
1360 	BUG_ON((struct btrfs_root *)node->data != root);
1361 
1362 	spin_lock(&rc->reloc_root_tree.lock);
1363 	node->bytenr = new_bytenr;
1364 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1365 			      node->bytenr, &node->rb_node);
1366 	spin_unlock(&rc->reloc_root_tree.lock);
1367 	if (rb_node)
1368 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1369 	return 0;
1370 }
1371 
1372 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1373 					struct btrfs_root *root, u64 objectid)
1374 {
1375 	struct btrfs_root *reloc_root;
1376 	struct extent_buffer *eb;
1377 	struct btrfs_root_item *root_item;
1378 	struct btrfs_key root_key;
1379 	u64 last_snap = 0;
1380 	int ret;
1381 
1382 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1383 	BUG_ON(!root_item);
1384 
1385 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1386 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1387 	root_key.offset = objectid;
1388 
1389 	if (root->root_key.objectid == objectid) {
1390 		/* called by btrfs_init_reloc_root */
1391 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1392 				      BTRFS_TREE_RELOC_OBJECTID);
1393 		BUG_ON(ret);
1394 
1395 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1396 		btrfs_set_root_last_snapshot(&root->root_item,
1397 					     trans->transid - 1);
1398 	} else {
1399 		/*
1400 		 * called by btrfs_reloc_post_snapshot_hook.
1401 		 * the source tree is a reloc tree, all tree blocks
1402 		 * modified after it was created have RELOC flag
1403 		 * set in their headers. so it's OK to not update
1404 		 * the 'last_snapshot'.
1405 		 */
1406 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1407 				      BTRFS_TREE_RELOC_OBJECTID);
1408 		BUG_ON(ret);
1409 	}
1410 
1411 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1412 	btrfs_set_root_bytenr(root_item, eb->start);
1413 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1414 	btrfs_set_root_generation(root_item, trans->transid);
1415 
1416 	if (root->root_key.objectid == objectid) {
1417 		btrfs_set_root_refs(root_item, 0);
1418 		memset(&root_item->drop_progress, 0,
1419 		       sizeof(struct btrfs_disk_key));
1420 		root_item->drop_level = 0;
1421 		/*
1422 		 * abuse rtransid, it is safe because it is impossible to
1423 		 * receive data into a relocation tree.
1424 		 */
1425 		btrfs_set_root_rtransid(root_item, last_snap);
1426 		btrfs_set_root_otransid(root_item, trans->transid);
1427 	}
1428 
1429 	btrfs_tree_unlock(eb);
1430 	free_extent_buffer(eb);
1431 
1432 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1433 				&root_key, root_item);
1434 	BUG_ON(ret);
1435 	kfree(root_item);
1436 
1437 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1438 	BUG_ON(IS_ERR(reloc_root));
1439 	reloc_root->last_trans = trans->transid;
1440 	return reloc_root;
1441 }
1442 
1443 /*
1444  * create reloc tree for a given fs tree. reloc tree is just a
1445  * snapshot of the fs tree with special root objectid.
1446  */
1447 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1448 			  struct btrfs_root *root)
1449 {
1450 	struct btrfs_root *reloc_root;
1451 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1452 	struct btrfs_block_rsv *rsv;
1453 	int clear_rsv = 0;
1454 	int ret;
1455 
1456 	if (root->reloc_root) {
1457 		reloc_root = root->reloc_root;
1458 		reloc_root->last_trans = trans->transid;
1459 		return 0;
1460 	}
1461 
1462 	if (!rc || !rc->create_reloc_tree ||
1463 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1464 		return 0;
1465 
1466 	if (!trans->reloc_reserved) {
1467 		rsv = trans->block_rsv;
1468 		trans->block_rsv = rc->block_rsv;
1469 		clear_rsv = 1;
1470 	}
1471 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1472 	if (clear_rsv)
1473 		trans->block_rsv = rsv;
1474 
1475 	ret = __add_reloc_root(reloc_root);
1476 	BUG_ON(ret < 0);
1477 	root->reloc_root = reloc_root;
1478 	return 0;
1479 }
1480 
1481 /*
1482  * update root item of reloc tree
1483  */
1484 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1485 			    struct btrfs_root *root)
1486 {
1487 	struct btrfs_root *reloc_root;
1488 	struct btrfs_root_item *root_item;
1489 	int ret;
1490 
1491 	if (!root->reloc_root)
1492 		goto out;
1493 
1494 	reloc_root = root->reloc_root;
1495 	root_item = &reloc_root->root_item;
1496 
1497 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1498 	    btrfs_root_refs(root_item) == 0) {
1499 		root->reloc_root = NULL;
1500 		__del_reloc_root(reloc_root);
1501 	}
1502 
1503 	if (reloc_root->commit_root != reloc_root->node) {
1504 		btrfs_set_root_node(root_item, reloc_root->node);
1505 		free_extent_buffer(reloc_root->commit_root);
1506 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1507 	}
1508 
1509 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1510 				&reloc_root->root_key, root_item);
1511 	BUG_ON(ret);
1512 
1513 out:
1514 	return 0;
1515 }
1516 
1517 /*
1518  * helper to find first cached inode with inode number >= objectid
1519  * in a subvolume
1520  */
1521 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1522 {
1523 	struct rb_node *node;
1524 	struct rb_node *prev;
1525 	struct btrfs_inode *entry;
1526 	struct inode *inode;
1527 
1528 	spin_lock(&root->inode_lock);
1529 again:
1530 	node = root->inode_tree.rb_node;
1531 	prev = NULL;
1532 	while (node) {
1533 		prev = node;
1534 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1535 
1536 		if (objectid < btrfs_ino(&entry->vfs_inode))
1537 			node = node->rb_left;
1538 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1539 			node = node->rb_right;
1540 		else
1541 			break;
1542 	}
1543 	if (!node) {
1544 		while (prev) {
1545 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1546 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1547 				node = prev;
1548 				break;
1549 			}
1550 			prev = rb_next(prev);
1551 		}
1552 	}
1553 	while (node) {
1554 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1555 		inode = igrab(&entry->vfs_inode);
1556 		if (inode) {
1557 			spin_unlock(&root->inode_lock);
1558 			return inode;
1559 		}
1560 
1561 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1562 		if (cond_resched_lock(&root->inode_lock))
1563 			goto again;
1564 
1565 		node = rb_next(node);
1566 	}
1567 	spin_unlock(&root->inode_lock);
1568 	return NULL;
1569 }
1570 
1571 static int in_block_group(u64 bytenr,
1572 			  struct btrfs_block_group_cache *block_group)
1573 {
1574 	if (bytenr >= block_group->key.objectid &&
1575 	    bytenr < block_group->key.objectid + block_group->key.offset)
1576 		return 1;
1577 	return 0;
1578 }
1579 
1580 /*
1581  * get new location of data
1582  */
1583 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1584 			    u64 bytenr, u64 num_bytes)
1585 {
1586 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1587 	struct btrfs_path *path;
1588 	struct btrfs_file_extent_item *fi;
1589 	struct extent_buffer *leaf;
1590 	int ret;
1591 
1592 	path = btrfs_alloc_path();
1593 	if (!path)
1594 		return -ENOMEM;
1595 
1596 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1597 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1598 				       bytenr, 0);
1599 	if (ret < 0)
1600 		goto out;
1601 	if (ret > 0) {
1602 		ret = -ENOENT;
1603 		goto out;
1604 	}
1605 
1606 	leaf = path->nodes[0];
1607 	fi = btrfs_item_ptr(leaf, path->slots[0],
1608 			    struct btrfs_file_extent_item);
1609 
1610 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1611 	       btrfs_file_extent_compression(leaf, fi) ||
1612 	       btrfs_file_extent_encryption(leaf, fi) ||
1613 	       btrfs_file_extent_other_encoding(leaf, fi));
1614 
1615 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1616 		ret = -EINVAL;
1617 		goto out;
1618 	}
1619 
1620 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1621 	ret = 0;
1622 out:
1623 	btrfs_free_path(path);
1624 	return ret;
1625 }
1626 
1627 /*
1628  * update file extent items in the tree leaf to point to
1629  * the new locations.
1630  */
1631 static noinline_for_stack
1632 int replace_file_extents(struct btrfs_trans_handle *trans,
1633 			 struct reloc_control *rc,
1634 			 struct btrfs_root *root,
1635 			 struct extent_buffer *leaf)
1636 {
1637 	struct btrfs_key key;
1638 	struct btrfs_file_extent_item *fi;
1639 	struct inode *inode = NULL;
1640 	u64 parent;
1641 	u64 bytenr;
1642 	u64 new_bytenr = 0;
1643 	u64 num_bytes;
1644 	u64 end;
1645 	u32 nritems;
1646 	u32 i;
1647 	int ret = 0;
1648 	int first = 1;
1649 	int dirty = 0;
1650 
1651 	if (rc->stage != UPDATE_DATA_PTRS)
1652 		return 0;
1653 
1654 	/* reloc trees always use full backref */
1655 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1656 		parent = leaf->start;
1657 	else
1658 		parent = 0;
1659 
1660 	nritems = btrfs_header_nritems(leaf);
1661 	for (i = 0; i < nritems; i++) {
1662 		cond_resched();
1663 		btrfs_item_key_to_cpu(leaf, &key, i);
1664 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1665 			continue;
1666 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1667 		if (btrfs_file_extent_type(leaf, fi) ==
1668 		    BTRFS_FILE_EXTENT_INLINE)
1669 			continue;
1670 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1671 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1672 		if (bytenr == 0)
1673 			continue;
1674 		if (!in_block_group(bytenr, rc->block_group))
1675 			continue;
1676 
1677 		/*
1678 		 * if we are modifying block in fs tree, wait for readpage
1679 		 * to complete and drop the extent cache
1680 		 */
1681 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1682 			if (first) {
1683 				inode = find_next_inode(root, key.objectid);
1684 				first = 0;
1685 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1686 				btrfs_add_delayed_iput(inode);
1687 				inode = find_next_inode(root, key.objectid);
1688 			}
1689 			if (inode && btrfs_ino(inode) == key.objectid) {
1690 				end = key.offset +
1691 				      btrfs_file_extent_num_bytes(leaf, fi);
1692 				WARN_ON(!IS_ALIGNED(key.offset,
1693 						    root->sectorsize));
1694 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1695 				end--;
1696 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1697 						      key.offset, end);
1698 				if (!ret)
1699 					continue;
1700 
1701 				btrfs_drop_extent_cache(inode, key.offset, end,
1702 							1);
1703 				unlock_extent(&BTRFS_I(inode)->io_tree,
1704 					      key.offset, end);
1705 			}
1706 		}
1707 
1708 		ret = get_new_location(rc->data_inode, &new_bytenr,
1709 				       bytenr, num_bytes);
1710 		if (ret) {
1711 			/*
1712 			 * Don't have to abort since we've not changed anything
1713 			 * in the file extent yet.
1714 			 */
1715 			break;
1716 		}
1717 
1718 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1719 		dirty = 1;
1720 
1721 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1722 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1723 					   num_bytes, parent,
1724 					   btrfs_header_owner(leaf),
1725 					   key.objectid, key.offset);
1726 		if (ret) {
1727 			btrfs_abort_transaction(trans, ret);
1728 			break;
1729 		}
1730 
1731 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1732 					parent, btrfs_header_owner(leaf),
1733 					key.objectid, key.offset);
1734 		if (ret) {
1735 			btrfs_abort_transaction(trans, ret);
1736 			break;
1737 		}
1738 	}
1739 	if (dirty)
1740 		btrfs_mark_buffer_dirty(leaf);
1741 	if (inode)
1742 		btrfs_add_delayed_iput(inode);
1743 	return ret;
1744 }
1745 
1746 static noinline_for_stack
1747 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1748 		     struct btrfs_path *path, int level)
1749 {
1750 	struct btrfs_disk_key key1;
1751 	struct btrfs_disk_key key2;
1752 	btrfs_node_key(eb, &key1, slot);
1753 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1754 	return memcmp(&key1, &key2, sizeof(key1));
1755 }
1756 
1757 /*
1758  * try to replace tree blocks in fs tree with the new blocks
1759  * in reloc tree. tree blocks haven't been modified since the
1760  * reloc tree was create can be replaced.
1761  *
1762  * if a block was replaced, level of the block + 1 is returned.
1763  * if no block got replaced, 0 is returned. if there are other
1764  * errors, a negative error number is returned.
1765  */
1766 static noinline_for_stack
1767 int replace_path(struct btrfs_trans_handle *trans,
1768 		 struct btrfs_root *dest, struct btrfs_root *src,
1769 		 struct btrfs_path *path, struct btrfs_key *next_key,
1770 		 int lowest_level, int max_level)
1771 {
1772 	struct extent_buffer *eb;
1773 	struct extent_buffer *parent;
1774 	struct btrfs_key key;
1775 	u64 old_bytenr;
1776 	u64 new_bytenr;
1777 	u64 old_ptr_gen;
1778 	u64 new_ptr_gen;
1779 	u64 last_snapshot;
1780 	u32 blocksize;
1781 	int cow = 0;
1782 	int level;
1783 	int ret;
1784 	int slot;
1785 
1786 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1787 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1788 
1789 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1790 again:
1791 	slot = path->slots[lowest_level];
1792 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1793 
1794 	eb = btrfs_lock_root_node(dest);
1795 	btrfs_set_lock_blocking(eb);
1796 	level = btrfs_header_level(eb);
1797 
1798 	if (level < lowest_level) {
1799 		btrfs_tree_unlock(eb);
1800 		free_extent_buffer(eb);
1801 		return 0;
1802 	}
1803 
1804 	if (cow) {
1805 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1806 		BUG_ON(ret);
1807 	}
1808 	btrfs_set_lock_blocking(eb);
1809 
1810 	if (next_key) {
1811 		next_key->objectid = (u64)-1;
1812 		next_key->type = (u8)-1;
1813 		next_key->offset = (u64)-1;
1814 	}
1815 
1816 	parent = eb;
1817 	while (1) {
1818 		level = btrfs_header_level(parent);
1819 		BUG_ON(level < lowest_level);
1820 
1821 		ret = btrfs_bin_search(parent, &key, level, &slot);
1822 		if (ret && slot > 0)
1823 			slot--;
1824 
1825 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1826 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1827 
1828 		old_bytenr = btrfs_node_blockptr(parent, slot);
1829 		blocksize = dest->nodesize;
1830 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1831 
1832 		if (level <= max_level) {
1833 			eb = path->nodes[level];
1834 			new_bytenr = btrfs_node_blockptr(eb,
1835 							path->slots[level]);
1836 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1837 							path->slots[level]);
1838 		} else {
1839 			new_bytenr = 0;
1840 			new_ptr_gen = 0;
1841 		}
1842 
1843 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1844 			ret = level;
1845 			break;
1846 		}
1847 
1848 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1849 		    memcmp_node_keys(parent, slot, path, level)) {
1850 			if (level <= lowest_level) {
1851 				ret = 0;
1852 				break;
1853 			}
1854 
1855 			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1856 			if (IS_ERR(eb)) {
1857 				ret = PTR_ERR(eb);
1858 				break;
1859 			} else if (!extent_buffer_uptodate(eb)) {
1860 				ret = -EIO;
1861 				free_extent_buffer(eb);
1862 				break;
1863 			}
1864 			btrfs_tree_lock(eb);
1865 			if (cow) {
1866 				ret = btrfs_cow_block(trans, dest, eb, parent,
1867 						      slot, &eb);
1868 				BUG_ON(ret);
1869 			}
1870 			btrfs_set_lock_blocking(eb);
1871 
1872 			btrfs_tree_unlock(parent);
1873 			free_extent_buffer(parent);
1874 
1875 			parent = eb;
1876 			continue;
1877 		}
1878 
1879 		if (!cow) {
1880 			btrfs_tree_unlock(parent);
1881 			free_extent_buffer(parent);
1882 			cow = 1;
1883 			goto again;
1884 		}
1885 
1886 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1887 				      path->slots[level]);
1888 		btrfs_release_path(path);
1889 
1890 		path->lowest_level = level;
1891 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1892 		path->lowest_level = 0;
1893 		BUG_ON(ret);
1894 
1895 		/*
1896 		 * swap blocks in fs tree and reloc tree.
1897 		 */
1898 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1899 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1900 		btrfs_mark_buffer_dirty(parent);
1901 
1902 		btrfs_set_node_blockptr(path->nodes[level],
1903 					path->slots[level], old_bytenr);
1904 		btrfs_set_node_ptr_generation(path->nodes[level],
1905 					      path->slots[level], old_ptr_gen);
1906 		btrfs_mark_buffer_dirty(path->nodes[level]);
1907 
1908 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1909 					path->nodes[level]->start,
1910 					src->root_key.objectid, level - 1, 0);
1911 		BUG_ON(ret);
1912 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1913 					0, dest->root_key.objectid, level - 1,
1914 					0);
1915 		BUG_ON(ret);
1916 
1917 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1918 					path->nodes[level]->start,
1919 					src->root_key.objectid, level - 1, 0);
1920 		BUG_ON(ret);
1921 
1922 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1923 					0, dest->root_key.objectid, level - 1,
1924 					0);
1925 		BUG_ON(ret);
1926 
1927 		btrfs_unlock_up_safe(path, 0);
1928 
1929 		ret = level;
1930 		break;
1931 	}
1932 	btrfs_tree_unlock(parent);
1933 	free_extent_buffer(parent);
1934 	return ret;
1935 }
1936 
1937 /*
1938  * helper to find next relocated block in reloc tree
1939  */
1940 static noinline_for_stack
1941 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1942 		       int *level)
1943 {
1944 	struct extent_buffer *eb;
1945 	int i;
1946 	u64 last_snapshot;
1947 	u32 nritems;
1948 
1949 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1950 
1951 	for (i = 0; i < *level; i++) {
1952 		free_extent_buffer(path->nodes[i]);
1953 		path->nodes[i] = NULL;
1954 	}
1955 
1956 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1957 		eb = path->nodes[i];
1958 		nritems = btrfs_header_nritems(eb);
1959 		while (path->slots[i] + 1 < nritems) {
1960 			path->slots[i]++;
1961 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1962 			    last_snapshot)
1963 				continue;
1964 
1965 			*level = i;
1966 			return 0;
1967 		}
1968 		free_extent_buffer(path->nodes[i]);
1969 		path->nodes[i] = NULL;
1970 	}
1971 	return 1;
1972 }
1973 
1974 /*
1975  * walk down reloc tree to find relocated block of lowest level
1976  */
1977 static noinline_for_stack
1978 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1979 			 int *level)
1980 {
1981 	struct extent_buffer *eb = NULL;
1982 	int i;
1983 	u64 bytenr;
1984 	u64 ptr_gen = 0;
1985 	u64 last_snapshot;
1986 	u32 nritems;
1987 
1988 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1989 
1990 	for (i = *level; i > 0; i--) {
1991 		eb = path->nodes[i];
1992 		nritems = btrfs_header_nritems(eb);
1993 		while (path->slots[i] < nritems) {
1994 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1995 			if (ptr_gen > last_snapshot)
1996 				break;
1997 			path->slots[i]++;
1998 		}
1999 		if (path->slots[i] >= nritems) {
2000 			if (i == *level)
2001 				break;
2002 			*level = i + 1;
2003 			return 0;
2004 		}
2005 		if (i == 1) {
2006 			*level = i;
2007 			return 0;
2008 		}
2009 
2010 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2011 		eb = read_tree_block(root, bytenr, ptr_gen);
2012 		if (IS_ERR(eb)) {
2013 			return PTR_ERR(eb);
2014 		} else if (!extent_buffer_uptodate(eb)) {
2015 			free_extent_buffer(eb);
2016 			return -EIO;
2017 		}
2018 		BUG_ON(btrfs_header_level(eb) != i - 1);
2019 		path->nodes[i - 1] = eb;
2020 		path->slots[i - 1] = 0;
2021 	}
2022 	return 1;
2023 }
2024 
2025 /*
2026  * invalidate extent cache for file extents whose key in range of
2027  * [min_key, max_key)
2028  */
2029 static int invalidate_extent_cache(struct btrfs_root *root,
2030 				   struct btrfs_key *min_key,
2031 				   struct btrfs_key *max_key)
2032 {
2033 	struct inode *inode = NULL;
2034 	u64 objectid;
2035 	u64 start, end;
2036 	u64 ino;
2037 
2038 	objectid = min_key->objectid;
2039 	while (1) {
2040 		cond_resched();
2041 		iput(inode);
2042 
2043 		if (objectid > max_key->objectid)
2044 			break;
2045 
2046 		inode = find_next_inode(root, objectid);
2047 		if (!inode)
2048 			break;
2049 		ino = btrfs_ino(inode);
2050 
2051 		if (ino > max_key->objectid) {
2052 			iput(inode);
2053 			break;
2054 		}
2055 
2056 		objectid = ino + 1;
2057 		if (!S_ISREG(inode->i_mode))
2058 			continue;
2059 
2060 		if (unlikely(min_key->objectid == ino)) {
2061 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2062 				continue;
2063 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2064 				start = 0;
2065 			else {
2066 				start = min_key->offset;
2067 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2068 			}
2069 		} else {
2070 			start = 0;
2071 		}
2072 
2073 		if (unlikely(max_key->objectid == ino)) {
2074 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2075 				continue;
2076 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2077 				end = (u64)-1;
2078 			} else {
2079 				if (max_key->offset == 0)
2080 					continue;
2081 				end = max_key->offset;
2082 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2083 				end--;
2084 			}
2085 		} else {
2086 			end = (u64)-1;
2087 		}
2088 
2089 		/* the lock_extent waits for readpage to complete */
2090 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2091 		btrfs_drop_extent_cache(inode, start, end, 1);
2092 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2093 	}
2094 	return 0;
2095 }
2096 
2097 static int find_next_key(struct btrfs_path *path, int level,
2098 			 struct btrfs_key *key)
2099 
2100 {
2101 	while (level < BTRFS_MAX_LEVEL) {
2102 		if (!path->nodes[level])
2103 			break;
2104 		if (path->slots[level] + 1 <
2105 		    btrfs_header_nritems(path->nodes[level])) {
2106 			btrfs_node_key_to_cpu(path->nodes[level], key,
2107 					      path->slots[level] + 1);
2108 			return 0;
2109 		}
2110 		level++;
2111 	}
2112 	return 1;
2113 }
2114 
2115 /*
2116  * merge the relocated tree blocks in reloc tree with corresponding
2117  * fs tree.
2118  */
2119 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2120 					       struct btrfs_root *root)
2121 {
2122 	LIST_HEAD(inode_list);
2123 	struct btrfs_key key;
2124 	struct btrfs_key next_key;
2125 	struct btrfs_trans_handle *trans = NULL;
2126 	struct btrfs_root *reloc_root;
2127 	struct btrfs_root_item *root_item;
2128 	struct btrfs_path *path;
2129 	struct extent_buffer *leaf;
2130 	int level;
2131 	int max_level;
2132 	int replaced = 0;
2133 	int ret;
2134 	int err = 0;
2135 	u32 min_reserved;
2136 
2137 	path = btrfs_alloc_path();
2138 	if (!path)
2139 		return -ENOMEM;
2140 	path->reada = READA_FORWARD;
2141 
2142 	reloc_root = root->reloc_root;
2143 	root_item = &reloc_root->root_item;
2144 
2145 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2146 		level = btrfs_root_level(root_item);
2147 		extent_buffer_get(reloc_root->node);
2148 		path->nodes[level] = reloc_root->node;
2149 		path->slots[level] = 0;
2150 	} else {
2151 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2152 
2153 		level = root_item->drop_level;
2154 		BUG_ON(level == 0);
2155 		path->lowest_level = level;
2156 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2157 		path->lowest_level = 0;
2158 		if (ret < 0) {
2159 			btrfs_free_path(path);
2160 			return ret;
2161 		}
2162 
2163 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2164 				      path->slots[level]);
2165 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2166 
2167 		btrfs_unlock_up_safe(path, 0);
2168 	}
2169 
2170 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2171 	memset(&next_key, 0, sizeof(next_key));
2172 
2173 	while (1) {
2174 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2175 					     BTRFS_RESERVE_FLUSH_ALL);
2176 		if (ret) {
2177 			err = ret;
2178 			goto out;
2179 		}
2180 		trans = btrfs_start_transaction(root, 0);
2181 		if (IS_ERR(trans)) {
2182 			err = PTR_ERR(trans);
2183 			trans = NULL;
2184 			goto out;
2185 		}
2186 		trans->block_rsv = rc->block_rsv;
2187 
2188 		replaced = 0;
2189 		max_level = level;
2190 
2191 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2192 		if (ret < 0) {
2193 			err = ret;
2194 			goto out;
2195 		}
2196 		if (ret > 0)
2197 			break;
2198 
2199 		if (!find_next_key(path, level, &key) &&
2200 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2201 			ret = 0;
2202 		} else {
2203 			ret = replace_path(trans, root, reloc_root, path,
2204 					   &next_key, level, max_level);
2205 		}
2206 		if (ret < 0) {
2207 			err = ret;
2208 			goto out;
2209 		}
2210 
2211 		if (ret > 0) {
2212 			level = ret;
2213 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2214 					      path->slots[level]);
2215 			replaced = 1;
2216 		}
2217 
2218 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2219 		if (ret > 0)
2220 			break;
2221 
2222 		BUG_ON(level == 0);
2223 		/*
2224 		 * save the merging progress in the drop_progress.
2225 		 * this is OK since root refs == 1 in this case.
2226 		 */
2227 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2228 			       path->slots[level]);
2229 		root_item->drop_level = level;
2230 
2231 		btrfs_end_transaction_throttle(trans, root);
2232 		trans = NULL;
2233 
2234 		btrfs_btree_balance_dirty(root);
2235 
2236 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2237 			invalidate_extent_cache(root, &key, &next_key);
2238 	}
2239 
2240 	/*
2241 	 * handle the case only one block in the fs tree need to be
2242 	 * relocated and the block is tree root.
2243 	 */
2244 	leaf = btrfs_lock_root_node(root);
2245 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2246 	btrfs_tree_unlock(leaf);
2247 	free_extent_buffer(leaf);
2248 	if (ret < 0)
2249 		err = ret;
2250 out:
2251 	btrfs_free_path(path);
2252 
2253 	if (err == 0) {
2254 		memset(&root_item->drop_progress, 0,
2255 		       sizeof(root_item->drop_progress));
2256 		root_item->drop_level = 0;
2257 		btrfs_set_root_refs(root_item, 0);
2258 		btrfs_update_reloc_root(trans, root);
2259 	}
2260 
2261 	if (trans)
2262 		btrfs_end_transaction_throttle(trans, root);
2263 
2264 	btrfs_btree_balance_dirty(root);
2265 
2266 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2267 		invalidate_extent_cache(root, &key, &next_key);
2268 
2269 	return err;
2270 }
2271 
2272 static noinline_for_stack
2273 int prepare_to_merge(struct reloc_control *rc, int err)
2274 {
2275 	struct btrfs_root *root = rc->extent_root;
2276 	struct btrfs_root *reloc_root;
2277 	struct btrfs_trans_handle *trans;
2278 	LIST_HEAD(reloc_roots);
2279 	u64 num_bytes = 0;
2280 	int ret;
2281 
2282 	mutex_lock(&root->fs_info->reloc_mutex);
2283 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2284 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2285 	mutex_unlock(&root->fs_info->reloc_mutex);
2286 
2287 again:
2288 	if (!err) {
2289 		num_bytes = rc->merging_rsv_size;
2290 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2291 					  BTRFS_RESERVE_FLUSH_ALL);
2292 		if (ret)
2293 			err = ret;
2294 	}
2295 
2296 	trans = btrfs_join_transaction(rc->extent_root);
2297 	if (IS_ERR(trans)) {
2298 		if (!err)
2299 			btrfs_block_rsv_release(rc->extent_root,
2300 						rc->block_rsv, num_bytes);
2301 		return PTR_ERR(trans);
2302 	}
2303 
2304 	if (!err) {
2305 		if (num_bytes != rc->merging_rsv_size) {
2306 			btrfs_end_transaction(trans, rc->extent_root);
2307 			btrfs_block_rsv_release(rc->extent_root,
2308 						rc->block_rsv, num_bytes);
2309 			goto again;
2310 		}
2311 	}
2312 
2313 	rc->merge_reloc_tree = 1;
2314 
2315 	while (!list_empty(&rc->reloc_roots)) {
2316 		reloc_root = list_entry(rc->reloc_roots.next,
2317 					struct btrfs_root, root_list);
2318 		list_del_init(&reloc_root->root_list);
2319 
2320 		root = read_fs_root(reloc_root->fs_info,
2321 				    reloc_root->root_key.offset);
2322 		BUG_ON(IS_ERR(root));
2323 		BUG_ON(root->reloc_root != reloc_root);
2324 
2325 		/*
2326 		 * set reference count to 1, so btrfs_recover_relocation
2327 		 * knows it should resumes merging
2328 		 */
2329 		if (!err)
2330 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2331 		btrfs_update_reloc_root(trans, root);
2332 
2333 		list_add(&reloc_root->root_list, &reloc_roots);
2334 	}
2335 
2336 	list_splice(&reloc_roots, &rc->reloc_roots);
2337 
2338 	if (!err)
2339 		btrfs_commit_transaction(trans, rc->extent_root);
2340 	else
2341 		btrfs_end_transaction(trans, rc->extent_root);
2342 	return err;
2343 }
2344 
2345 static noinline_for_stack
2346 void free_reloc_roots(struct list_head *list)
2347 {
2348 	struct btrfs_root *reloc_root;
2349 
2350 	while (!list_empty(list)) {
2351 		reloc_root = list_entry(list->next, struct btrfs_root,
2352 					root_list);
2353 		__del_reloc_root(reloc_root);
2354 	}
2355 }
2356 
2357 static noinline_for_stack
2358 void merge_reloc_roots(struct reloc_control *rc)
2359 {
2360 	struct btrfs_root *root;
2361 	struct btrfs_root *reloc_root;
2362 	u64 last_snap;
2363 	u64 otransid;
2364 	u64 objectid;
2365 	LIST_HEAD(reloc_roots);
2366 	int found = 0;
2367 	int ret = 0;
2368 again:
2369 	root = rc->extent_root;
2370 
2371 	/*
2372 	 * this serializes us with btrfs_record_root_in_transaction,
2373 	 * we have to make sure nobody is in the middle of
2374 	 * adding their roots to the list while we are
2375 	 * doing this splice
2376 	 */
2377 	mutex_lock(&root->fs_info->reloc_mutex);
2378 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2379 	mutex_unlock(&root->fs_info->reloc_mutex);
2380 
2381 	while (!list_empty(&reloc_roots)) {
2382 		found = 1;
2383 		reloc_root = list_entry(reloc_roots.next,
2384 					struct btrfs_root, root_list);
2385 
2386 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2387 			root = read_fs_root(reloc_root->fs_info,
2388 					    reloc_root->root_key.offset);
2389 			BUG_ON(IS_ERR(root));
2390 			BUG_ON(root->reloc_root != reloc_root);
2391 
2392 			ret = merge_reloc_root(rc, root);
2393 			if (ret) {
2394 				if (list_empty(&reloc_root->root_list))
2395 					list_add_tail(&reloc_root->root_list,
2396 						      &reloc_roots);
2397 				goto out;
2398 			}
2399 		} else {
2400 			list_del_init(&reloc_root->root_list);
2401 		}
2402 
2403 		/*
2404 		 * we keep the old last snapshot transid in rtranid when we
2405 		 * created the relocation tree.
2406 		 */
2407 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2408 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2409 		objectid = reloc_root->root_key.offset;
2410 
2411 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2412 		if (ret < 0) {
2413 			if (list_empty(&reloc_root->root_list))
2414 				list_add_tail(&reloc_root->root_list,
2415 					      &reloc_roots);
2416 			goto out;
2417 		}
2418 	}
2419 
2420 	if (found) {
2421 		found = 0;
2422 		goto again;
2423 	}
2424 out:
2425 	if (ret) {
2426 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2427 		if (!list_empty(&reloc_roots))
2428 			free_reloc_roots(&reloc_roots);
2429 
2430 		/* new reloc root may be added */
2431 		mutex_lock(&root->fs_info->reloc_mutex);
2432 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2433 		mutex_unlock(&root->fs_info->reloc_mutex);
2434 		if (!list_empty(&reloc_roots))
2435 			free_reloc_roots(&reloc_roots);
2436 	}
2437 
2438 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2439 }
2440 
2441 static void free_block_list(struct rb_root *blocks)
2442 {
2443 	struct tree_block *block;
2444 	struct rb_node *rb_node;
2445 	while ((rb_node = rb_first(blocks))) {
2446 		block = rb_entry(rb_node, struct tree_block, rb_node);
2447 		rb_erase(rb_node, blocks);
2448 		kfree(block);
2449 	}
2450 }
2451 
2452 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2453 				      struct btrfs_root *reloc_root)
2454 {
2455 	struct btrfs_root *root;
2456 
2457 	if (reloc_root->last_trans == trans->transid)
2458 		return 0;
2459 
2460 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2461 	BUG_ON(IS_ERR(root));
2462 	BUG_ON(root->reloc_root != reloc_root);
2463 
2464 	return btrfs_record_root_in_trans(trans, root);
2465 }
2466 
2467 static noinline_for_stack
2468 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2469 				     struct reloc_control *rc,
2470 				     struct backref_node *node,
2471 				     struct backref_edge *edges[])
2472 {
2473 	struct backref_node *next;
2474 	struct btrfs_root *root;
2475 	int index = 0;
2476 
2477 	next = node;
2478 	while (1) {
2479 		cond_resched();
2480 		next = walk_up_backref(next, edges, &index);
2481 		root = next->root;
2482 		BUG_ON(!root);
2483 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2484 
2485 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2486 			record_reloc_root_in_trans(trans, root);
2487 			break;
2488 		}
2489 
2490 		btrfs_record_root_in_trans(trans, root);
2491 		root = root->reloc_root;
2492 
2493 		if (next->new_bytenr != root->node->start) {
2494 			BUG_ON(next->new_bytenr);
2495 			BUG_ON(!list_empty(&next->list));
2496 			next->new_bytenr = root->node->start;
2497 			next->root = root;
2498 			list_add_tail(&next->list,
2499 				      &rc->backref_cache.changed);
2500 			__mark_block_processed(rc, next);
2501 			break;
2502 		}
2503 
2504 		WARN_ON(1);
2505 		root = NULL;
2506 		next = walk_down_backref(edges, &index);
2507 		if (!next || next->level <= node->level)
2508 			break;
2509 	}
2510 	if (!root)
2511 		return NULL;
2512 
2513 	next = node;
2514 	/* setup backref node path for btrfs_reloc_cow_block */
2515 	while (1) {
2516 		rc->backref_cache.path[next->level] = next;
2517 		if (--index < 0)
2518 			break;
2519 		next = edges[index]->node[UPPER];
2520 	}
2521 	return root;
2522 }
2523 
2524 /*
2525  * select a tree root for relocation. return NULL if the block
2526  * is reference counted. we should use do_relocation() in this
2527  * case. return a tree root pointer if the block isn't reference
2528  * counted. return -ENOENT if the block is root of reloc tree.
2529  */
2530 static noinline_for_stack
2531 struct btrfs_root *select_one_root(struct backref_node *node)
2532 {
2533 	struct backref_node *next;
2534 	struct btrfs_root *root;
2535 	struct btrfs_root *fs_root = NULL;
2536 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2537 	int index = 0;
2538 
2539 	next = node;
2540 	while (1) {
2541 		cond_resched();
2542 		next = walk_up_backref(next, edges, &index);
2543 		root = next->root;
2544 		BUG_ON(!root);
2545 
2546 		/* no other choice for non-references counted tree */
2547 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2548 			return root;
2549 
2550 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2551 			fs_root = root;
2552 
2553 		if (next != node)
2554 			return NULL;
2555 
2556 		next = walk_down_backref(edges, &index);
2557 		if (!next || next->level <= node->level)
2558 			break;
2559 	}
2560 
2561 	if (!fs_root)
2562 		return ERR_PTR(-ENOENT);
2563 	return fs_root;
2564 }
2565 
2566 static noinline_for_stack
2567 u64 calcu_metadata_size(struct reloc_control *rc,
2568 			struct backref_node *node, int reserve)
2569 {
2570 	struct backref_node *next = node;
2571 	struct backref_edge *edge;
2572 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2573 	u64 num_bytes = 0;
2574 	int index = 0;
2575 
2576 	BUG_ON(reserve && node->processed);
2577 
2578 	while (next) {
2579 		cond_resched();
2580 		while (1) {
2581 			if (next->processed && (reserve || next != node))
2582 				break;
2583 
2584 			num_bytes += rc->extent_root->nodesize;
2585 
2586 			if (list_empty(&next->upper))
2587 				break;
2588 
2589 			edge = list_entry(next->upper.next,
2590 					  struct backref_edge, list[LOWER]);
2591 			edges[index++] = edge;
2592 			next = edge->node[UPPER];
2593 		}
2594 		next = walk_down_backref(edges, &index);
2595 	}
2596 	return num_bytes;
2597 }
2598 
2599 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2600 				  struct reloc_control *rc,
2601 				  struct backref_node *node)
2602 {
2603 	struct btrfs_root *root = rc->extent_root;
2604 	u64 num_bytes;
2605 	int ret;
2606 	u64 tmp;
2607 
2608 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2609 
2610 	trans->block_rsv = rc->block_rsv;
2611 	rc->reserved_bytes += num_bytes;
2612 
2613 	/*
2614 	 * We are under a transaction here so we can only do limited flushing.
2615 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2616 	 * transaction and try to refill when we can flush all the things.
2617 	 */
2618 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2619 				BTRFS_RESERVE_FLUSH_LIMIT);
2620 	if (ret) {
2621 		tmp = rc->extent_root->nodesize * RELOCATION_RESERVED_NODES;
2622 		while (tmp <= rc->reserved_bytes)
2623 			tmp <<= 1;
2624 		/*
2625 		 * only one thread can access block_rsv at this point,
2626 		 * so we don't need hold lock to protect block_rsv.
2627 		 * we expand more reservation size here to allow enough
2628 		 * space for relocation and we will return eailer in
2629 		 * enospc case.
2630 		 */
2631 		rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2632 			RELOCATION_RESERVED_NODES;
2633 		return -EAGAIN;
2634 	}
2635 
2636 	return 0;
2637 }
2638 
2639 /*
2640  * relocate a block tree, and then update pointers in upper level
2641  * blocks that reference the block to point to the new location.
2642  *
2643  * if called by link_to_upper, the block has already been relocated.
2644  * in that case this function just updates pointers.
2645  */
2646 static int do_relocation(struct btrfs_trans_handle *trans,
2647 			 struct reloc_control *rc,
2648 			 struct backref_node *node,
2649 			 struct btrfs_key *key,
2650 			 struct btrfs_path *path, int lowest)
2651 {
2652 	struct backref_node *upper;
2653 	struct backref_edge *edge;
2654 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2655 	struct btrfs_root *root;
2656 	struct extent_buffer *eb;
2657 	u32 blocksize;
2658 	u64 bytenr;
2659 	u64 generation;
2660 	int slot;
2661 	int ret;
2662 	int err = 0;
2663 
2664 	BUG_ON(lowest && node->eb);
2665 
2666 	path->lowest_level = node->level + 1;
2667 	rc->backref_cache.path[node->level] = node;
2668 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2669 		cond_resched();
2670 
2671 		upper = edge->node[UPPER];
2672 		root = select_reloc_root(trans, rc, upper, edges);
2673 		BUG_ON(!root);
2674 
2675 		if (upper->eb && !upper->locked) {
2676 			if (!lowest) {
2677 				ret = btrfs_bin_search(upper->eb, key,
2678 						       upper->level, &slot);
2679 				BUG_ON(ret);
2680 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2681 				if (node->eb->start == bytenr)
2682 					goto next;
2683 			}
2684 			drop_node_buffer(upper);
2685 		}
2686 
2687 		if (!upper->eb) {
2688 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2689 			if (ret < 0) {
2690 				err = ret;
2691 				break;
2692 			}
2693 			BUG_ON(ret > 0);
2694 
2695 			if (!upper->eb) {
2696 				upper->eb = path->nodes[upper->level];
2697 				path->nodes[upper->level] = NULL;
2698 			} else {
2699 				BUG_ON(upper->eb != path->nodes[upper->level]);
2700 			}
2701 
2702 			upper->locked = 1;
2703 			path->locks[upper->level] = 0;
2704 
2705 			slot = path->slots[upper->level];
2706 			btrfs_release_path(path);
2707 		} else {
2708 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2709 					       &slot);
2710 			BUG_ON(ret);
2711 		}
2712 
2713 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2714 		if (lowest) {
2715 			BUG_ON(bytenr != node->bytenr);
2716 		} else {
2717 			if (node->eb->start == bytenr)
2718 				goto next;
2719 		}
2720 
2721 		blocksize = root->nodesize;
2722 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2723 		eb = read_tree_block(root, bytenr, generation);
2724 		if (IS_ERR(eb)) {
2725 			err = PTR_ERR(eb);
2726 			goto next;
2727 		} else if (!extent_buffer_uptodate(eb)) {
2728 			free_extent_buffer(eb);
2729 			err = -EIO;
2730 			goto next;
2731 		}
2732 		btrfs_tree_lock(eb);
2733 		btrfs_set_lock_blocking(eb);
2734 
2735 		if (!node->eb) {
2736 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2737 					      slot, &eb);
2738 			btrfs_tree_unlock(eb);
2739 			free_extent_buffer(eb);
2740 			if (ret < 0) {
2741 				err = ret;
2742 				goto next;
2743 			}
2744 			BUG_ON(node->eb != eb);
2745 		} else {
2746 			btrfs_set_node_blockptr(upper->eb, slot,
2747 						node->eb->start);
2748 			btrfs_set_node_ptr_generation(upper->eb, slot,
2749 						      trans->transid);
2750 			btrfs_mark_buffer_dirty(upper->eb);
2751 
2752 			ret = btrfs_inc_extent_ref(trans, root,
2753 						node->eb->start, blocksize,
2754 						upper->eb->start,
2755 						btrfs_header_owner(upper->eb),
2756 						node->level, 0);
2757 			BUG_ON(ret);
2758 
2759 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2760 			BUG_ON(ret);
2761 		}
2762 next:
2763 		if (!upper->pending)
2764 			drop_node_buffer(upper);
2765 		else
2766 			unlock_node_buffer(upper);
2767 		if (err)
2768 			break;
2769 	}
2770 
2771 	if (!err && node->pending) {
2772 		drop_node_buffer(node);
2773 		list_move_tail(&node->list, &rc->backref_cache.changed);
2774 		node->pending = 0;
2775 	}
2776 
2777 	path->lowest_level = 0;
2778 	BUG_ON(err == -ENOSPC);
2779 	return err;
2780 }
2781 
2782 static int link_to_upper(struct btrfs_trans_handle *trans,
2783 			 struct reloc_control *rc,
2784 			 struct backref_node *node,
2785 			 struct btrfs_path *path)
2786 {
2787 	struct btrfs_key key;
2788 
2789 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2790 	return do_relocation(trans, rc, node, &key, path, 0);
2791 }
2792 
2793 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2794 				struct reloc_control *rc,
2795 				struct btrfs_path *path, int err)
2796 {
2797 	LIST_HEAD(list);
2798 	struct backref_cache *cache = &rc->backref_cache;
2799 	struct backref_node *node;
2800 	int level;
2801 	int ret;
2802 
2803 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2804 		while (!list_empty(&cache->pending[level])) {
2805 			node = list_entry(cache->pending[level].next,
2806 					  struct backref_node, list);
2807 			list_move_tail(&node->list, &list);
2808 			BUG_ON(!node->pending);
2809 
2810 			if (!err) {
2811 				ret = link_to_upper(trans, rc, node, path);
2812 				if (ret < 0)
2813 					err = ret;
2814 			}
2815 		}
2816 		list_splice_init(&list, &cache->pending[level]);
2817 	}
2818 	return err;
2819 }
2820 
2821 static void mark_block_processed(struct reloc_control *rc,
2822 				 u64 bytenr, u32 blocksize)
2823 {
2824 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2825 			EXTENT_DIRTY);
2826 }
2827 
2828 static void __mark_block_processed(struct reloc_control *rc,
2829 				   struct backref_node *node)
2830 {
2831 	u32 blocksize;
2832 	if (node->level == 0 ||
2833 	    in_block_group(node->bytenr, rc->block_group)) {
2834 		blocksize = rc->extent_root->nodesize;
2835 		mark_block_processed(rc, node->bytenr, blocksize);
2836 	}
2837 	node->processed = 1;
2838 }
2839 
2840 /*
2841  * mark a block and all blocks directly/indirectly reference the block
2842  * as processed.
2843  */
2844 static void update_processed_blocks(struct reloc_control *rc,
2845 				    struct backref_node *node)
2846 {
2847 	struct backref_node *next = node;
2848 	struct backref_edge *edge;
2849 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2850 	int index = 0;
2851 
2852 	while (next) {
2853 		cond_resched();
2854 		while (1) {
2855 			if (next->processed)
2856 				break;
2857 
2858 			__mark_block_processed(rc, next);
2859 
2860 			if (list_empty(&next->upper))
2861 				break;
2862 
2863 			edge = list_entry(next->upper.next,
2864 					  struct backref_edge, list[LOWER]);
2865 			edges[index++] = edge;
2866 			next = edge->node[UPPER];
2867 		}
2868 		next = walk_down_backref(edges, &index);
2869 	}
2870 }
2871 
2872 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2873 {
2874 	u32 blocksize = rc->extent_root->nodesize;
2875 
2876 	if (test_range_bit(&rc->processed_blocks, bytenr,
2877 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2878 		return 1;
2879 	return 0;
2880 }
2881 
2882 static int get_tree_block_key(struct reloc_control *rc,
2883 			      struct tree_block *block)
2884 {
2885 	struct extent_buffer *eb;
2886 
2887 	BUG_ON(block->key_ready);
2888 	eb = read_tree_block(rc->extent_root, block->bytenr,
2889 			     block->key.offset);
2890 	if (IS_ERR(eb)) {
2891 		return PTR_ERR(eb);
2892 	} else if (!extent_buffer_uptodate(eb)) {
2893 		free_extent_buffer(eb);
2894 		return -EIO;
2895 	}
2896 	WARN_ON(btrfs_header_level(eb) != block->level);
2897 	if (block->level == 0)
2898 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2899 	else
2900 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2901 	free_extent_buffer(eb);
2902 	block->key_ready = 1;
2903 	return 0;
2904 }
2905 
2906 /*
2907  * helper function to relocate a tree block
2908  */
2909 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2910 				struct reloc_control *rc,
2911 				struct backref_node *node,
2912 				struct btrfs_key *key,
2913 				struct btrfs_path *path)
2914 {
2915 	struct btrfs_root *root;
2916 	int ret = 0;
2917 
2918 	if (!node)
2919 		return 0;
2920 
2921 	BUG_ON(node->processed);
2922 	root = select_one_root(node);
2923 	if (root == ERR_PTR(-ENOENT)) {
2924 		update_processed_blocks(rc, node);
2925 		goto out;
2926 	}
2927 
2928 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2929 		ret = reserve_metadata_space(trans, rc, node);
2930 		if (ret)
2931 			goto out;
2932 	}
2933 
2934 	if (root) {
2935 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2936 			BUG_ON(node->new_bytenr);
2937 			BUG_ON(!list_empty(&node->list));
2938 			btrfs_record_root_in_trans(trans, root);
2939 			root = root->reloc_root;
2940 			node->new_bytenr = root->node->start;
2941 			node->root = root;
2942 			list_add_tail(&node->list, &rc->backref_cache.changed);
2943 		} else {
2944 			path->lowest_level = node->level;
2945 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2946 			btrfs_release_path(path);
2947 			if (ret > 0)
2948 				ret = 0;
2949 		}
2950 		if (!ret)
2951 			update_processed_blocks(rc, node);
2952 	} else {
2953 		ret = do_relocation(trans, rc, node, key, path, 1);
2954 	}
2955 out:
2956 	if (ret || node->level == 0 || node->cowonly)
2957 		remove_backref_node(&rc->backref_cache, node);
2958 	return ret;
2959 }
2960 
2961 /*
2962  * relocate a list of blocks
2963  */
2964 static noinline_for_stack
2965 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2966 			 struct reloc_control *rc, struct rb_root *blocks)
2967 {
2968 	struct backref_node *node;
2969 	struct btrfs_path *path;
2970 	struct tree_block *block;
2971 	struct rb_node *rb_node;
2972 	int ret;
2973 	int err = 0;
2974 
2975 	path = btrfs_alloc_path();
2976 	if (!path) {
2977 		err = -ENOMEM;
2978 		goto out_free_blocks;
2979 	}
2980 
2981 	rb_node = rb_first(blocks);
2982 	while (rb_node) {
2983 		block = rb_entry(rb_node, struct tree_block, rb_node);
2984 		if (!block->key_ready)
2985 			readahead_tree_block(rc->extent_root, block->bytenr);
2986 		rb_node = rb_next(rb_node);
2987 	}
2988 
2989 	rb_node = rb_first(blocks);
2990 	while (rb_node) {
2991 		block = rb_entry(rb_node, struct tree_block, rb_node);
2992 		if (!block->key_ready) {
2993 			err = get_tree_block_key(rc, block);
2994 			if (err)
2995 				goto out_free_path;
2996 		}
2997 		rb_node = rb_next(rb_node);
2998 	}
2999 
3000 	rb_node = rb_first(blocks);
3001 	while (rb_node) {
3002 		block = rb_entry(rb_node, struct tree_block, rb_node);
3003 
3004 		node = build_backref_tree(rc, &block->key,
3005 					  block->level, block->bytenr);
3006 		if (IS_ERR(node)) {
3007 			err = PTR_ERR(node);
3008 			goto out;
3009 		}
3010 
3011 		ret = relocate_tree_block(trans, rc, node, &block->key,
3012 					  path);
3013 		if (ret < 0) {
3014 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3015 				err = ret;
3016 			goto out;
3017 		}
3018 		rb_node = rb_next(rb_node);
3019 	}
3020 out:
3021 	err = finish_pending_nodes(trans, rc, path, err);
3022 
3023 out_free_path:
3024 	btrfs_free_path(path);
3025 out_free_blocks:
3026 	free_block_list(blocks);
3027 	return err;
3028 }
3029 
3030 static noinline_for_stack
3031 int prealloc_file_extent_cluster(struct inode *inode,
3032 				 struct file_extent_cluster *cluster)
3033 {
3034 	u64 alloc_hint = 0;
3035 	u64 start;
3036 	u64 end;
3037 	u64 offset = BTRFS_I(inode)->index_cnt;
3038 	u64 num_bytes;
3039 	int nr = 0;
3040 	int ret = 0;
3041 	u64 prealloc_start = cluster->start - offset;
3042 	u64 prealloc_end = cluster->end - offset;
3043 	u64 cur_offset;
3044 
3045 	BUG_ON(cluster->start != cluster->boundary[0]);
3046 	inode_lock(inode);
3047 
3048 	ret = btrfs_check_data_free_space(inode, prealloc_start,
3049 					  prealloc_end + 1 - prealloc_start);
3050 	if (ret)
3051 		goto out;
3052 
3053 	cur_offset = prealloc_start;
3054 	while (nr < cluster->nr) {
3055 		start = cluster->boundary[nr] - offset;
3056 		if (nr + 1 < cluster->nr)
3057 			end = cluster->boundary[nr + 1] - 1 - offset;
3058 		else
3059 			end = cluster->end - offset;
3060 
3061 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3062 		num_bytes = end + 1 - start;
3063 		if (cur_offset < start)
3064 			btrfs_free_reserved_data_space(inode, cur_offset,
3065 					start - cur_offset);
3066 		ret = btrfs_prealloc_file_range(inode, 0, start,
3067 						num_bytes, num_bytes,
3068 						end + 1, &alloc_hint);
3069 		cur_offset = end + 1;
3070 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3071 		if (ret)
3072 			break;
3073 		nr++;
3074 	}
3075 	if (cur_offset < prealloc_end)
3076 		btrfs_free_reserved_data_space(inode, cur_offset,
3077 				       prealloc_end + 1 - cur_offset);
3078 out:
3079 	inode_unlock(inode);
3080 	return ret;
3081 }
3082 
3083 static noinline_for_stack
3084 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3085 			 u64 block_start)
3086 {
3087 	struct btrfs_root *root = BTRFS_I(inode)->root;
3088 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3089 	struct extent_map *em;
3090 	int ret = 0;
3091 
3092 	em = alloc_extent_map();
3093 	if (!em)
3094 		return -ENOMEM;
3095 
3096 	em->start = start;
3097 	em->len = end + 1 - start;
3098 	em->block_len = em->len;
3099 	em->block_start = block_start;
3100 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3101 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3102 
3103 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3104 	while (1) {
3105 		write_lock(&em_tree->lock);
3106 		ret = add_extent_mapping(em_tree, em, 0);
3107 		write_unlock(&em_tree->lock);
3108 		if (ret != -EEXIST) {
3109 			free_extent_map(em);
3110 			break;
3111 		}
3112 		btrfs_drop_extent_cache(inode, start, end, 0);
3113 	}
3114 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3115 	return ret;
3116 }
3117 
3118 static int relocate_file_extent_cluster(struct inode *inode,
3119 					struct file_extent_cluster *cluster)
3120 {
3121 	u64 page_start;
3122 	u64 page_end;
3123 	u64 offset = BTRFS_I(inode)->index_cnt;
3124 	unsigned long index;
3125 	unsigned long last_index;
3126 	struct page *page;
3127 	struct file_ra_state *ra;
3128 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3129 	int nr = 0;
3130 	int ret = 0;
3131 
3132 	if (!cluster->nr)
3133 		return 0;
3134 
3135 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3136 	if (!ra)
3137 		return -ENOMEM;
3138 
3139 	ret = prealloc_file_extent_cluster(inode, cluster);
3140 	if (ret)
3141 		goto out;
3142 
3143 	file_ra_state_init(ra, inode->i_mapping);
3144 
3145 	ret = setup_extent_mapping(inode, cluster->start - offset,
3146 				   cluster->end - offset, cluster->start);
3147 	if (ret)
3148 		goto out;
3149 
3150 	index = (cluster->start - offset) >> PAGE_SHIFT;
3151 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3152 	while (index <= last_index) {
3153 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3154 		if (ret)
3155 			goto out;
3156 
3157 		page = find_lock_page(inode->i_mapping, index);
3158 		if (!page) {
3159 			page_cache_sync_readahead(inode->i_mapping,
3160 						  ra, NULL, index,
3161 						  last_index + 1 - index);
3162 			page = find_or_create_page(inode->i_mapping, index,
3163 						   mask);
3164 			if (!page) {
3165 				btrfs_delalloc_release_metadata(inode,
3166 							PAGE_SIZE);
3167 				ret = -ENOMEM;
3168 				goto out;
3169 			}
3170 		}
3171 
3172 		if (PageReadahead(page)) {
3173 			page_cache_async_readahead(inode->i_mapping,
3174 						   ra, NULL, page, index,
3175 						   last_index + 1 - index);
3176 		}
3177 
3178 		if (!PageUptodate(page)) {
3179 			btrfs_readpage(NULL, page);
3180 			lock_page(page);
3181 			if (!PageUptodate(page)) {
3182 				unlock_page(page);
3183 				put_page(page);
3184 				btrfs_delalloc_release_metadata(inode,
3185 							PAGE_SIZE);
3186 				ret = -EIO;
3187 				goto out;
3188 			}
3189 		}
3190 
3191 		page_start = page_offset(page);
3192 		page_end = page_start + PAGE_SIZE - 1;
3193 
3194 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3195 
3196 		set_page_extent_mapped(page);
3197 
3198 		if (nr < cluster->nr &&
3199 		    page_start + offset == cluster->boundary[nr]) {
3200 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3201 					page_start, page_end,
3202 					EXTENT_BOUNDARY);
3203 			nr++;
3204 		}
3205 
3206 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3207 		set_page_dirty(page);
3208 
3209 		unlock_extent(&BTRFS_I(inode)->io_tree,
3210 			      page_start, page_end);
3211 		unlock_page(page);
3212 		put_page(page);
3213 
3214 		index++;
3215 		balance_dirty_pages_ratelimited(inode->i_mapping);
3216 		btrfs_throttle(BTRFS_I(inode)->root);
3217 	}
3218 	WARN_ON(nr != cluster->nr);
3219 out:
3220 	kfree(ra);
3221 	return ret;
3222 }
3223 
3224 static noinline_for_stack
3225 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3226 			 struct file_extent_cluster *cluster)
3227 {
3228 	int ret;
3229 
3230 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3231 		ret = relocate_file_extent_cluster(inode, cluster);
3232 		if (ret)
3233 			return ret;
3234 		cluster->nr = 0;
3235 	}
3236 
3237 	if (!cluster->nr)
3238 		cluster->start = extent_key->objectid;
3239 	else
3240 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3241 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3242 	cluster->boundary[cluster->nr] = extent_key->objectid;
3243 	cluster->nr++;
3244 
3245 	if (cluster->nr >= MAX_EXTENTS) {
3246 		ret = relocate_file_extent_cluster(inode, cluster);
3247 		if (ret)
3248 			return ret;
3249 		cluster->nr = 0;
3250 	}
3251 	return 0;
3252 }
3253 
3254 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3255 static int get_ref_objectid_v0(struct reloc_control *rc,
3256 			       struct btrfs_path *path,
3257 			       struct btrfs_key *extent_key,
3258 			       u64 *ref_objectid, int *path_change)
3259 {
3260 	struct btrfs_key key;
3261 	struct extent_buffer *leaf;
3262 	struct btrfs_extent_ref_v0 *ref0;
3263 	int ret;
3264 	int slot;
3265 
3266 	leaf = path->nodes[0];
3267 	slot = path->slots[0];
3268 	while (1) {
3269 		if (slot >= btrfs_header_nritems(leaf)) {
3270 			ret = btrfs_next_leaf(rc->extent_root, path);
3271 			if (ret < 0)
3272 				return ret;
3273 			BUG_ON(ret > 0);
3274 			leaf = path->nodes[0];
3275 			slot = path->slots[0];
3276 			if (path_change)
3277 				*path_change = 1;
3278 		}
3279 		btrfs_item_key_to_cpu(leaf, &key, slot);
3280 		if (key.objectid != extent_key->objectid)
3281 			return -ENOENT;
3282 
3283 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3284 			slot++;
3285 			continue;
3286 		}
3287 		ref0 = btrfs_item_ptr(leaf, slot,
3288 				struct btrfs_extent_ref_v0);
3289 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3290 		break;
3291 	}
3292 	return 0;
3293 }
3294 #endif
3295 
3296 /*
3297  * helper to add a tree block to the list.
3298  * the major work is getting the generation and level of the block
3299  */
3300 static int add_tree_block(struct reloc_control *rc,
3301 			  struct btrfs_key *extent_key,
3302 			  struct btrfs_path *path,
3303 			  struct rb_root *blocks)
3304 {
3305 	struct extent_buffer *eb;
3306 	struct btrfs_extent_item *ei;
3307 	struct btrfs_tree_block_info *bi;
3308 	struct tree_block *block;
3309 	struct rb_node *rb_node;
3310 	u32 item_size;
3311 	int level = -1;
3312 	u64 generation;
3313 
3314 	eb =  path->nodes[0];
3315 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3316 
3317 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3318 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3319 		ei = btrfs_item_ptr(eb, path->slots[0],
3320 				struct btrfs_extent_item);
3321 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3322 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3323 			level = btrfs_tree_block_level(eb, bi);
3324 		} else {
3325 			level = (int)extent_key->offset;
3326 		}
3327 		generation = btrfs_extent_generation(eb, ei);
3328 	} else {
3329 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3330 		u64 ref_owner;
3331 		int ret;
3332 
3333 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3334 		ret = get_ref_objectid_v0(rc, path, extent_key,
3335 					  &ref_owner, NULL);
3336 		if (ret < 0)
3337 			return ret;
3338 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3339 		level = (int)ref_owner;
3340 		/* FIXME: get real generation */
3341 		generation = 0;
3342 #else
3343 		BUG();
3344 #endif
3345 	}
3346 
3347 	btrfs_release_path(path);
3348 
3349 	BUG_ON(level == -1);
3350 
3351 	block = kmalloc(sizeof(*block), GFP_NOFS);
3352 	if (!block)
3353 		return -ENOMEM;
3354 
3355 	block->bytenr = extent_key->objectid;
3356 	block->key.objectid = rc->extent_root->nodesize;
3357 	block->key.offset = generation;
3358 	block->level = level;
3359 	block->key_ready = 0;
3360 
3361 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3362 	if (rb_node)
3363 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3364 
3365 	return 0;
3366 }
3367 
3368 /*
3369  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3370  */
3371 static int __add_tree_block(struct reloc_control *rc,
3372 			    u64 bytenr, u32 blocksize,
3373 			    struct rb_root *blocks)
3374 {
3375 	struct btrfs_path *path;
3376 	struct btrfs_key key;
3377 	int ret;
3378 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3379 					SKINNY_METADATA);
3380 
3381 	if (tree_block_processed(bytenr, rc))
3382 		return 0;
3383 
3384 	if (tree_search(blocks, bytenr))
3385 		return 0;
3386 
3387 	path = btrfs_alloc_path();
3388 	if (!path)
3389 		return -ENOMEM;
3390 again:
3391 	key.objectid = bytenr;
3392 	if (skinny) {
3393 		key.type = BTRFS_METADATA_ITEM_KEY;
3394 		key.offset = (u64)-1;
3395 	} else {
3396 		key.type = BTRFS_EXTENT_ITEM_KEY;
3397 		key.offset = blocksize;
3398 	}
3399 
3400 	path->search_commit_root = 1;
3401 	path->skip_locking = 1;
3402 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3403 	if (ret < 0)
3404 		goto out;
3405 
3406 	if (ret > 0 && skinny) {
3407 		if (path->slots[0]) {
3408 			path->slots[0]--;
3409 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3410 					      path->slots[0]);
3411 			if (key.objectid == bytenr &&
3412 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3413 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3414 			      key.offset == blocksize)))
3415 				ret = 0;
3416 		}
3417 
3418 		if (ret) {
3419 			skinny = false;
3420 			btrfs_release_path(path);
3421 			goto again;
3422 		}
3423 	}
3424 	BUG_ON(ret);
3425 
3426 	ret = add_tree_block(rc, &key, path, blocks);
3427 out:
3428 	btrfs_free_path(path);
3429 	return ret;
3430 }
3431 
3432 /*
3433  * helper to check if the block use full backrefs for pointers in it
3434  */
3435 static int block_use_full_backref(struct reloc_control *rc,
3436 				  struct extent_buffer *eb)
3437 {
3438 	u64 flags;
3439 	int ret;
3440 
3441 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3442 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3443 		return 1;
3444 
3445 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3446 				       eb->start, btrfs_header_level(eb), 1,
3447 				       NULL, &flags);
3448 	BUG_ON(ret);
3449 
3450 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3451 		ret = 1;
3452 	else
3453 		ret = 0;
3454 	return ret;
3455 }
3456 
3457 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3458 				    struct btrfs_block_group_cache *block_group,
3459 				    struct inode *inode,
3460 				    u64 ino)
3461 {
3462 	struct btrfs_key key;
3463 	struct btrfs_root *root = fs_info->tree_root;
3464 	struct btrfs_trans_handle *trans;
3465 	int ret = 0;
3466 
3467 	if (inode)
3468 		goto truncate;
3469 
3470 	key.objectid = ino;
3471 	key.type = BTRFS_INODE_ITEM_KEY;
3472 	key.offset = 0;
3473 
3474 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3475 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3476 		if (!IS_ERR(inode))
3477 			iput(inode);
3478 		return -ENOENT;
3479 	}
3480 
3481 truncate:
3482 	ret = btrfs_check_trunc_cache_free_space(root,
3483 						 &fs_info->global_block_rsv);
3484 	if (ret)
3485 		goto out;
3486 
3487 	trans = btrfs_join_transaction(root);
3488 	if (IS_ERR(trans)) {
3489 		ret = PTR_ERR(trans);
3490 		goto out;
3491 	}
3492 
3493 	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3494 
3495 	btrfs_end_transaction(trans, root);
3496 	btrfs_btree_balance_dirty(root);
3497 out:
3498 	iput(inode);
3499 	return ret;
3500 }
3501 
3502 /*
3503  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3504  * this function scans fs tree to find blocks reference the data extent
3505  */
3506 static int find_data_references(struct reloc_control *rc,
3507 				struct btrfs_key *extent_key,
3508 				struct extent_buffer *leaf,
3509 				struct btrfs_extent_data_ref *ref,
3510 				struct rb_root *blocks)
3511 {
3512 	struct btrfs_path *path;
3513 	struct tree_block *block;
3514 	struct btrfs_root *root;
3515 	struct btrfs_file_extent_item *fi;
3516 	struct rb_node *rb_node;
3517 	struct btrfs_key key;
3518 	u64 ref_root;
3519 	u64 ref_objectid;
3520 	u64 ref_offset;
3521 	u32 ref_count;
3522 	u32 nritems;
3523 	int err = 0;
3524 	int added = 0;
3525 	int counted;
3526 	int ret;
3527 
3528 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3529 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3530 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3531 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3532 
3533 	/*
3534 	 * This is an extent belonging to the free space cache, lets just delete
3535 	 * it and redo the search.
3536 	 */
3537 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3538 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3539 					       rc->block_group,
3540 					       NULL, ref_objectid);
3541 		if (ret != -ENOENT)
3542 			return ret;
3543 		ret = 0;
3544 	}
3545 
3546 	path = btrfs_alloc_path();
3547 	if (!path)
3548 		return -ENOMEM;
3549 	path->reada = READA_FORWARD;
3550 
3551 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3552 	if (IS_ERR(root)) {
3553 		err = PTR_ERR(root);
3554 		goto out;
3555 	}
3556 
3557 	key.objectid = ref_objectid;
3558 	key.type = BTRFS_EXTENT_DATA_KEY;
3559 	if (ref_offset > ((u64)-1 << 32))
3560 		key.offset = 0;
3561 	else
3562 		key.offset = ref_offset;
3563 
3564 	path->search_commit_root = 1;
3565 	path->skip_locking = 1;
3566 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3567 	if (ret < 0) {
3568 		err = ret;
3569 		goto out;
3570 	}
3571 
3572 	leaf = path->nodes[0];
3573 	nritems = btrfs_header_nritems(leaf);
3574 	/*
3575 	 * the references in tree blocks that use full backrefs
3576 	 * are not counted in
3577 	 */
3578 	if (block_use_full_backref(rc, leaf))
3579 		counted = 0;
3580 	else
3581 		counted = 1;
3582 	rb_node = tree_search(blocks, leaf->start);
3583 	if (rb_node) {
3584 		if (counted)
3585 			added = 1;
3586 		else
3587 			path->slots[0] = nritems;
3588 	}
3589 
3590 	while (ref_count > 0) {
3591 		while (path->slots[0] >= nritems) {
3592 			ret = btrfs_next_leaf(root, path);
3593 			if (ret < 0) {
3594 				err = ret;
3595 				goto out;
3596 			}
3597 			if (WARN_ON(ret > 0))
3598 				goto out;
3599 
3600 			leaf = path->nodes[0];
3601 			nritems = btrfs_header_nritems(leaf);
3602 			added = 0;
3603 
3604 			if (block_use_full_backref(rc, leaf))
3605 				counted = 0;
3606 			else
3607 				counted = 1;
3608 			rb_node = tree_search(blocks, leaf->start);
3609 			if (rb_node) {
3610 				if (counted)
3611 					added = 1;
3612 				else
3613 					path->slots[0] = nritems;
3614 			}
3615 		}
3616 
3617 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3618 		if (WARN_ON(key.objectid != ref_objectid ||
3619 		    key.type != BTRFS_EXTENT_DATA_KEY))
3620 			break;
3621 
3622 		fi = btrfs_item_ptr(leaf, path->slots[0],
3623 				    struct btrfs_file_extent_item);
3624 
3625 		if (btrfs_file_extent_type(leaf, fi) ==
3626 		    BTRFS_FILE_EXTENT_INLINE)
3627 			goto next;
3628 
3629 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3630 		    extent_key->objectid)
3631 			goto next;
3632 
3633 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3634 		if (key.offset != ref_offset)
3635 			goto next;
3636 
3637 		if (counted)
3638 			ref_count--;
3639 		if (added)
3640 			goto next;
3641 
3642 		if (!tree_block_processed(leaf->start, rc)) {
3643 			block = kmalloc(sizeof(*block), GFP_NOFS);
3644 			if (!block) {
3645 				err = -ENOMEM;
3646 				break;
3647 			}
3648 			block->bytenr = leaf->start;
3649 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3650 			block->level = 0;
3651 			block->key_ready = 1;
3652 			rb_node = tree_insert(blocks, block->bytenr,
3653 					      &block->rb_node);
3654 			if (rb_node)
3655 				backref_tree_panic(rb_node, -EEXIST,
3656 						   block->bytenr);
3657 		}
3658 		if (counted)
3659 			added = 1;
3660 		else
3661 			path->slots[0] = nritems;
3662 next:
3663 		path->slots[0]++;
3664 
3665 	}
3666 out:
3667 	btrfs_free_path(path);
3668 	return err;
3669 }
3670 
3671 /*
3672  * helper to find all tree blocks that reference a given data extent
3673  */
3674 static noinline_for_stack
3675 int add_data_references(struct reloc_control *rc,
3676 			struct btrfs_key *extent_key,
3677 			struct btrfs_path *path,
3678 			struct rb_root *blocks)
3679 {
3680 	struct btrfs_key key;
3681 	struct extent_buffer *eb;
3682 	struct btrfs_extent_data_ref *dref;
3683 	struct btrfs_extent_inline_ref *iref;
3684 	unsigned long ptr;
3685 	unsigned long end;
3686 	u32 blocksize = rc->extent_root->nodesize;
3687 	int ret = 0;
3688 	int err = 0;
3689 
3690 	eb = path->nodes[0];
3691 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3692 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3693 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3694 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3695 		ptr = end;
3696 	else
3697 #endif
3698 		ptr += sizeof(struct btrfs_extent_item);
3699 
3700 	while (ptr < end) {
3701 		iref = (struct btrfs_extent_inline_ref *)ptr;
3702 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3703 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3704 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3705 			ret = __add_tree_block(rc, key.offset, blocksize,
3706 					       blocks);
3707 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3708 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3709 			ret = find_data_references(rc, extent_key,
3710 						   eb, dref, blocks);
3711 		} else {
3712 			BUG();
3713 		}
3714 		if (ret) {
3715 			err = ret;
3716 			goto out;
3717 		}
3718 		ptr += btrfs_extent_inline_ref_size(key.type);
3719 	}
3720 	WARN_ON(ptr > end);
3721 
3722 	while (1) {
3723 		cond_resched();
3724 		eb = path->nodes[0];
3725 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3726 			ret = btrfs_next_leaf(rc->extent_root, path);
3727 			if (ret < 0) {
3728 				err = ret;
3729 				break;
3730 			}
3731 			if (ret > 0)
3732 				break;
3733 			eb = path->nodes[0];
3734 		}
3735 
3736 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3737 		if (key.objectid != extent_key->objectid)
3738 			break;
3739 
3740 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3741 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3742 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3743 #else
3744 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3745 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3746 #endif
3747 			ret = __add_tree_block(rc, key.offset, blocksize,
3748 					       blocks);
3749 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3750 			dref = btrfs_item_ptr(eb, path->slots[0],
3751 					      struct btrfs_extent_data_ref);
3752 			ret = find_data_references(rc, extent_key,
3753 						   eb, dref, blocks);
3754 		} else {
3755 			ret = 0;
3756 		}
3757 		if (ret) {
3758 			err = ret;
3759 			break;
3760 		}
3761 		path->slots[0]++;
3762 	}
3763 out:
3764 	btrfs_release_path(path);
3765 	if (err)
3766 		free_block_list(blocks);
3767 	return err;
3768 }
3769 
3770 /*
3771  * helper to find next unprocessed extent
3772  */
3773 static noinline_for_stack
3774 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3775 		     struct btrfs_key *extent_key)
3776 {
3777 	struct btrfs_key key;
3778 	struct extent_buffer *leaf;
3779 	u64 start, end, last;
3780 	int ret;
3781 
3782 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3783 	while (1) {
3784 		cond_resched();
3785 		if (rc->search_start >= last) {
3786 			ret = 1;
3787 			break;
3788 		}
3789 
3790 		key.objectid = rc->search_start;
3791 		key.type = BTRFS_EXTENT_ITEM_KEY;
3792 		key.offset = 0;
3793 
3794 		path->search_commit_root = 1;
3795 		path->skip_locking = 1;
3796 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3797 					0, 0);
3798 		if (ret < 0)
3799 			break;
3800 next:
3801 		leaf = path->nodes[0];
3802 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3803 			ret = btrfs_next_leaf(rc->extent_root, path);
3804 			if (ret != 0)
3805 				break;
3806 			leaf = path->nodes[0];
3807 		}
3808 
3809 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3810 		if (key.objectid >= last) {
3811 			ret = 1;
3812 			break;
3813 		}
3814 
3815 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3816 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3817 			path->slots[0]++;
3818 			goto next;
3819 		}
3820 
3821 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3822 		    key.objectid + key.offset <= rc->search_start) {
3823 			path->slots[0]++;
3824 			goto next;
3825 		}
3826 
3827 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3828 		    key.objectid + rc->extent_root->nodesize <=
3829 		    rc->search_start) {
3830 			path->slots[0]++;
3831 			goto next;
3832 		}
3833 
3834 		ret = find_first_extent_bit(&rc->processed_blocks,
3835 					    key.objectid, &start, &end,
3836 					    EXTENT_DIRTY, NULL);
3837 
3838 		if (ret == 0 && start <= key.objectid) {
3839 			btrfs_release_path(path);
3840 			rc->search_start = end + 1;
3841 		} else {
3842 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3843 				rc->search_start = key.objectid + key.offset;
3844 			else
3845 				rc->search_start = key.objectid +
3846 					rc->extent_root->nodesize;
3847 			memcpy(extent_key, &key, sizeof(key));
3848 			return 0;
3849 		}
3850 	}
3851 	btrfs_release_path(path);
3852 	return ret;
3853 }
3854 
3855 static void set_reloc_control(struct reloc_control *rc)
3856 {
3857 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3858 
3859 	mutex_lock(&fs_info->reloc_mutex);
3860 	fs_info->reloc_ctl = rc;
3861 	mutex_unlock(&fs_info->reloc_mutex);
3862 }
3863 
3864 static void unset_reloc_control(struct reloc_control *rc)
3865 {
3866 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3867 
3868 	mutex_lock(&fs_info->reloc_mutex);
3869 	fs_info->reloc_ctl = NULL;
3870 	mutex_unlock(&fs_info->reloc_mutex);
3871 }
3872 
3873 static int check_extent_flags(u64 flags)
3874 {
3875 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3876 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3877 		return 1;
3878 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3879 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3880 		return 1;
3881 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3882 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3883 		return 1;
3884 	return 0;
3885 }
3886 
3887 static noinline_for_stack
3888 int prepare_to_relocate(struct reloc_control *rc)
3889 {
3890 	struct btrfs_trans_handle *trans;
3891 	int ret;
3892 
3893 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3894 					      BTRFS_BLOCK_RSV_TEMP);
3895 	if (!rc->block_rsv)
3896 		return -ENOMEM;
3897 
3898 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3899 	rc->search_start = rc->block_group->key.objectid;
3900 	rc->extents_found = 0;
3901 	rc->nodes_relocated = 0;
3902 	rc->merging_rsv_size = 0;
3903 	rc->reserved_bytes = 0;
3904 	rc->block_rsv->size = rc->extent_root->nodesize *
3905 			      RELOCATION_RESERVED_NODES;
3906 	ret = btrfs_block_rsv_refill(rc->extent_root,
3907 				     rc->block_rsv, rc->block_rsv->size,
3908 				     BTRFS_RESERVE_FLUSH_ALL);
3909 	if (ret)
3910 		return ret;
3911 
3912 	rc->create_reloc_tree = 1;
3913 	set_reloc_control(rc);
3914 
3915 	trans = btrfs_join_transaction(rc->extent_root);
3916 	if (IS_ERR(trans)) {
3917 		unset_reloc_control(rc);
3918 		/*
3919 		 * extent tree is not a ref_cow tree and has no reloc_root to
3920 		 * cleanup.  And callers are responsible to free the above
3921 		 * block rsv.
3922 		 */
3923 		return PTR_ERR(trans);
3924 	}
3925 	btrfs_commit_transaction(trans, rc->extent_root);
3926 	return 0;
3927 }
3928 
3929 /*
3930  * Qgroup fixer for data chunk relocation.
3931  * The data relocation is done in the following steps
3932  * 1) Copy data extents into data reloc tree
3933  * 2) Create tree reloc tree(special snapshot) for related subvolumes
3934  * 3) Modify file extents in tree reloc tree
3935  * 4) Merge tree reloc tree with original fs tree, by swapping tree blocks
3936  *
3937  * The problem is, data and tree reloc tree are not accounted to qgroup,
3938  * and 4) will only info qgroup to track tree blocks change, not file extents
3939  * in the tree blocks.
3940  *
3941  * The good news is, related data extents are all in data reloc tree, so we
3942  * only need to info qgroup to track all file extents in data reloc tree
3943  * before commit trans.
3944  */
3945 static int qgroup_fix_relocated_data_extents(struct btrfs_trans_handle *trans,
3946 					     struct reloc_control *rc)
3947 {
3948 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3949 	struct inode *inode = rc->data_inode;
3950 	struct btrfs_root *data_reloc_root = BTRFS_I(inode)->root;
3951 	struct btrfs_path *path;
3952 	struct btrfs_key key;
3953 	int ret = 0;
3954 
3955 	if (!fs_info->quota_enabled)
3956 		return 0;
3957 
3958 	/*
3959 	 * Only for stage where we update data pointers the qgroup fix is
3960 	 * valid.
3961 	 * For MOVING_DATA stage, we will miss the timing of swapping tree
3962 	 * blocks, and won't fix it.
3963 	 */
3964 	if (!(rc->stage == UPDATE_DATA_PTRS && rc->extents_found))
3965 		return 0;
3966 
3967 	path = btrfs_alloc_path();
3968 	if (!path)
3969 		return -ENOMEM;
3970 	key.objectid = btrfs_ino(inode);
3971 	key.type = BTRFS_EXTENT_DATA_KEY;
3972 	key.offset = 0;
3973 
3974 	ret = btrfs_search_slot(NULL, data_reloc_root, &key, path, 0, 0);
3975 	if (ret < 0)
3976 		goto out;
3977 
3978 	lock_extent(&BTRFS_I(inode)->io_tree, 0, (u64)-1);
3979 	while (1) {
3980 		struct btrfs_file_extent_item *fi;
3981 
3982 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3983 		if (key.objectid > btrfs_ino(inode))
3984 			break;
3985 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3986 			goto next;
3987 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3988 				    struct btrfs_file_extent_item);
3989 		if (btrfs_file_extent_type(path->nodes[0], fi) !=
3990 				BTRFS_FILE_EXTENT_REG)
3991 			goto next;
3992 		ret = btrfs_qgroup_insert_dirty_extent(trans, fs_info,
3993 			btrfs_file_extent_disk_bytenr(path->nodes[0], fi),
3994 			btrfs_file_extent_disk_num_bytes(path->nodes[0], fi),
3995 			GFP_NOFS);
3996 		if (ret < 0)
3997 			break;
3998 next:
3999 		ret = btrfs_next_item(data_reloc_root, path);
4000 		if (ret < 0)
4001 			break;
4002 		if (ret > 0) {
4003 			ret = 0;
4004 			break;
4005 		}
4006 	}
4007 	unlock_extent(&BTRFS_I(inode)->io_tree, 0 , (u64)-1);
4008 out:
4009 	btrfs_free_path(path);
4010 	return ret;
4011 }
4012 
4013 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4014 {
4015 	struct rb_root blocks = RB_ROOT;
4016 	struct btrfs_key key;
4017 	struct btrfs_trans_handle *trans = NULL;
4018 	struct btrfs_path *path;
4019 	struct btrfs_extent_item *ei;
4020 	u64 flags;
4021 	u32 item_size;
4022 	int ret;
4023 	int err = 0;
4024 	int progress = 0;
4025 
4026 	path = btrfs_alloc_path();
4027 	if (!path)
4028 		return -ENOMEM;
4029 	path->reada = READA_FORWARD;
4030 
4031 	ret = prepare_to_relocate(rc);
4032 	if (ret) {
4033 		err = ret;
4034 		goto out_free;
4035 	}
4036 
4037 	while (1) {
4038 		rc->reserved_bytes = 0;
4039 		ret = btrfs_block_rsv_refill(rc->extent_root,
4040 					rc->block_rsv, rc->block_rsv->size,
4041 					BTRFS_RESERVE_FLUSH_ALL);
4042 		if (ret) {
4043 			err = ret;
4044 			break;
4045 		}
4046 		progress++;
4047 		trans = btrfs_start_transaction(rc->extent_root, 0);
4048 		if (IS_ERR(trans)) {
4049 			err = PTR_ERR(trans);
4050 			trans = NULL;
4051 			break;
4052 		}
4053 restart:
4054 		if (update_backref_cache(trans, &rc->backref_cache)) {
4055 			btrfs_end_transaction(trans, rc->extent_root);
4056 			continue;
4057 		}
4058 
4059 		ret = find_next_extent(rc, path, &key);
4060 		if (ret < 0)
4061 			err = ret;
4062 		if (ret != 0)
4063 			break;
4064 
4065 		rc->extents_found++;
4066 
4067 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4068 				    struct btrfs_extent_item);
4069 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4070 		if (item_size >= sizeof(*ei)) {
4071 			flags = btrfs_extent_flags(path->nodes[0], ei);
4072 			ret = check_extent_flags(flags);
4073 			BUG_ON(ret);
4074 
4075 		} else {
4076 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4077 			u64 ref_owner;
4078 			int path_change = 0;
4079 
4080 			BUG_ON(item_size !=
4081 			       sizeof(struct btrfs_extent_item_v0));
4082 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4083 						  &path_change);
4084 			if (ret < 0) {
4085 				err = ret;
4086 				break;
4087 			}
4088 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4089 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4090 			else
4091 				flags = BTRFS_EXTENT_FLAG_DATA;
4092 
4093 			if (path_change) {
4094 				btrfs_release_path(path);
4095 
4096 				path->search_commit_root = 1;
4097 				path->skip_locking = 1;
4098 				ret = btrfs_search_slot(NULL, rc->extent_root,
4099 							&key, path, 0, 0);
4100 				if (ret < 0) {
4101 					err = ret;
4102 					break;
4103 				}
4104 				BUG_ON(ret > 0);
4105 			}
4106 #else
4107 			BUG();
4108 #endif
4109 		}
4110 
4111 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4112 			ret = add_tree_block(rc, &key, path, &blocks);
4113 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4114 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4115 			ret = add_data_references(rc, &key, path, &blocks);
4116 		} else {
4117 			btrfs_release_path(path);
4118 			ret = 0;
4119 		}
4120 		if (ret < 0) {
4121 			err = ret;
4122 			break;
4123 		}
4124 
4125 		if (!RB_EMPTY_ROOT(&blocks)) {
4126 			ret = relocate_tree_blocks(trans, rc, &blocks);
4127 			if (ret < 0) {
4128 				/*
4129 				 * if we fail to relocate tree blocks, force to update
4130 				 * backref cache when committing transaction.
4131 				 */
4132 				rc->backref_cache.last_trans = trans->transid - 1;
4133 
4134 				if (ret != -EAGAIN) {
4135 					err = ret;
4136 					break;
4137 				}
4138 				rc->extents_found--;
4139 				rc->search_start = key.objectid;
4140 			}
4141 		}
4142 
4143 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4144 		btrfs_btree_balance_dirty(rc->extent_root);
4145 		trans = NULL;
4146 
4147 		if (rc->stage == MOVE_DATA_EXTENTS &&
4148 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4149 			rc->found_file_extent = 1;
4150 			ret = relocate_data_extent(rc->data_inode,
4151 						   &key, &rc->cluster);
4152 			if (ret < 0) {
4153 				err = ret;
4154 				break;
4155 			}
4156 		}
4157 	}
4158 	if (trans && progress && err == -ENOSPC) {
4159 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4160 					      rc->block_group->flags);
4161 		if (ret == 1) {
4162 			err = 0;
4163 			progress = 0;
4164 			goto restart;
4165 		}
4166 	}
4167 
4168 	btrfs_release_path(path);
4169 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4170 
4171 	if (trans) {
4172 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4173 		btrfs_btree_balance_dirty(rc->extent_root);
4174 	}
4175 
4176 	if (!err) {
4177 		ret = relocate_file_extent_cluster(rc->data_inode,
4178 						   &rc->cluster);
4179 		if (ret < 0)
4180 			err = ret;
4181 	}
4182 
4183 	rc->create_reloc_tree = 0;
4184 	set_reloc_control(rc);
4185 
4186 	backref_cache_cleanup(&rc->backref_cache);
4187 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4188 
4189 	err = prepare_to_merge(rc, err);
4190 
4191 	merge_reloc_roots(rc);
4192 
4193 	rc->merge_reloc_tree = 0;
4194 	unset_reloc_control(rc);
4195 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4196 
4197 	/* get rid of pinned extents */
4198 	trans = btrfs_join_transaction(rc->extent_root);
4199 	if (IS_ERR(trans)) {
4200 		err = PTR_ERR(trans);
4201 		goto out_free;
4202 	}
4203 	ret = qgroup_fix_relocated_data_extents(trans, rc);
4204 	if (ret < 0) {
4205 		btrfs_abort_transaction(trans, ret);
4206 		if (!err)
4207 			err = ret;
4208 		goto out_free;
4209 	}
4210 	btrfs_commit_transaction(trans, rc->extent_root);
4211 out_free:
4212 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4213 	btrfs_free_path(path);
4214 	return err;
4215 }
4216 
4217 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4218 				 struct btrfs_root *root, u64 objectid)
4219 {
4220 	struct btrfs_path *path;
4221 	struct btrfs_inode_item *item;
4222 	struct extent_buffer *leaf;
4223 	int ret;
4224 
4225 	path = btrfs_alloc_path();
4226 	if (!path)
4227 		return -ENOMEM;
4228 
4229 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4230 	if (ret)
4231 		goto out;
4232 
4233 	leaf = path->nodes[0];
4234 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4235 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4236 	btrfs_set_inode_generation(leaf, item, 1);
4237 	btrfs_set_inode_size(leaf, item, 0);
4238 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4239 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4240 					  BTRFS_INODE_PREALLOC);
4241 	btrfs_mark_buffer_dirty(leaf);
4242 out:
4243 	btrfs_free_path(path);
4244 	return ret;
4245 }
4246 
4247 /*
4248  * helper to create inode for data relocation.
4249  * the inode is in data relocation tree and its link count is 0
4250  */
4251 static noinline_for_stack
4252 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4253 				 struct btrfs_block_group_cache *group)
4254 {
4255 	struct inode *inode = NULL;
4256 	struct btrfs_trans_handle *trans;
4257 	struct btrfs_root *root;
4258 	struct btrfs_key key;
4259 	u64 objectid;
4260 	int err = 0;
4261 
4262 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4263 	if (IS_ERR(root))
4264 		return ERR_CAST(root);
4265 
4266 	trans = btrfs_start_transaction(root, 6);
4267 	if (IS_ERR(trans))
4268 		return ERR_CAST(trans);
4269 
4270 	err = btrfs_find_free_objectid(root, &objectid);
4271 	if (err)
4272 		goto out;
4273 
4274 	err = __insert_orphan_inode(trans, root, objectid);
4275 	BUG_ON(err);
4276 
4277 	key.objectid = objectid;
4278 	key.type = BTRFS_INODE_ITEM_KEY;
4279 	key.offset = 0;
4280 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4281 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4282 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4283 
4284 	err = btrfs_orphan_add(trans, inode);
4285 out:
4286 	btrfs_end_transaction(trans, root);
4287 	btrfs_btree_balance_dirty(root);
4288 	if (err) {
4289 		if (inode)
4290 			iput(inode);
4291 		inode = ERR_PTR(err);
4292 	}
4293 	return inode;
4294 }
4295 
4296 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4297 {
4298 	struct reloc_control *rc;
4299 
4300 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4301 	if (!rc)
4302 		return NULL;
4303 
4304 	INIT_LIST_HEAD(&rc->reloc_roots);
4305 	backref_cache_init(&rc->backref_cache);
4306 	mapping_tree_init(&rc->reloc_root_tree);
4307 	extent_io_tree_init(&rc->processed_blocks,
4308 			    fs_info->btree_inode->i_mapping);
4309 	return rc;
4310 }
4311 
4312 /*
4313  * function to relocate all extents in a block group.
4314  */
4315 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4316 {
4317 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4318 	struct reloc_control *rc;
4319 	struct inode *inode;
4320 	struct btrfs_path *path;
4321 	int ret;
4322 	int rw = 0;
4323 	int err = 0;
4324 
4325 	rc = alloc_reloc_control(fs_info);
4326 	if (!rc)
4327 		return -ENOMEM;
4328 
4329 	rc->extent_root = extent_root;
4330 
4331 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4332 	BUG_ON(!rc->block_group);
4333 
4334 	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4335 	if (ret) {
4336 		err = ret;
4337 		goto out;
4338 	}
4339 	rw = 1;
4340 
4341 	path = btrfs_alloc_path();
4342 	if (!path) {
4343 		err = -ENOMEM;
4344 		goto out;
4345 	}
4346 
4347 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4348 					path);
4349 	btrfs_free_path(path);
4350 
4351 	if (!IS_ERR(inode))
4352 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4353 	else
4354 		ret = PTR_ERR(inode);
4355 
4356 	if (ret && ret != -ENOENT) {
4357 		err = ret;
4358 		goto out;
4359 	}
4360 
4361 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4362 	if (IS_ERR(rc->data_inode)) {
4363 		err = PTR_ERR(rc->data_inode);
4364 		rc->data_inode = NULL;
4365 		goto out;
4366 	}
4367 
4368 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4369 	       rc->block_group->key.objectid, rc->block_group->flags);
4370 
4371 	btrfs_wait_block_group_reservations(rc->block_group);
4372 	btrfs_wait_nocow_writers(rc->block_group);
4373 	btrfs_wait_ordered_roots(fs_info, -1,
4374 				 rc->block_group->key.objectid,
4375 				 rc->block_group->key.offset);
4376 
4377 	while (1) {
4378 		mutex_lock(&fs_info->cleaner_mutex);
4379 		ret = relocate_block_group(rc);
4380 		mutex_unlock(&fs_info->cleaner_mutex);
4381 		if (ret < 0) {
4382 			err = ret;
4383 			goto out;
4384 		}
4385 
4386 		if (rc->extents_found == 0)
4387 			break;
4388 
4389 		btrfs_info(extent_root->fs_info, "found %llu extents",
4390 			rc->extents_found);
4391 
4392 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4393 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4394 						       (u64)-1);
4395 			if (ret) {
4396 				err = ret;
4397 				goto out;
4398 			}
4399 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4400 						 0, -1);
4401 			rc->stage = UPDATE_DATA_PTRS;
4402 		}
4403 	}
4404 
4405 	WARN_ON(rc->block_group->pinned > 0);
4406 	WARN_ON(rc->block_group->reserved > 0);
4407 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4408 out:
4409 	if (err && rw)
4410 		btrfs_dec_block_group_ro(extent_root, rc->block_group);
4411 	iput(rc->data_inode);
4412 	btrfs_put_block_group(rc->block_group);
4413 	kfree(rc);
4414 	return err;
4415 }
4416 
4417 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4418 {
4419 	struct btrfs_trans_handle *trans;
4420 	int ret, err;
4421 
4422 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4423 	if (IS_ERR(trans))
4424 		return PTR_ERR(trans);
4425 
4426 	memset(&root->root_item.drop_progress, 0,
4427 		sizeof(root->root_item.drop_progress));
4428 	root->root_item.drop_level = 0;
4429 	btrfs_set_root_refs(&root->root_item, 0);
4430 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4431 				&root->root_key, &root->root_item);
4432 
4433 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4434 	if (err)
4435 		return err;
4436 	return ret;
4437 }
4438 
4439 /*
4440  * recover relocation interrupted by system crash.
4441  *
4442  * this function resumes merging reloc trees with corresponding fs trees.
4443  * this is important for keeping the sharing of tree blocks
4444  */
4445 int btrfs_recover_relocation(struct btrfs_root *root)
4446 {
4447 	LIST_HEAD(reloc_roots);
4448 	struct btrfs_key key;
4449 	struct btrfs_root *fs_root;
4450 	struct btrfs_root *reloc_root;
4451 	struct btrfs_path *path;
4452 	struct extent_buffer *leaf;
4453 	struct reloc_control *rc = NULL;
4454 	struct btrfs_trans_handle *trans;
4455 	int ret;
4456 	int err = 0;
4457 
4458 	path = btrfs_alloc_path();
4459 	if (!path)
4460 		return -ENOMEM;
4461 	path->reada = READA_BACK;
4462 
4463 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4464 	key.type = BTRFS_ROOT_ITEM_KEY;
4465 	key.offset = (u64)-1;
4466 
4467 	while (1) {
4468 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4469 					path, 0, 0);
4470 		if (ret < 0) {
4471 			err = ret;
4472 			goto out;
4473 		}
4474 		if (ret > 0) {
4475 			if (path->slots[0] == 0)
4476 				break;
4477 			path->slots[0]--;
4478 		}
4479 		leaf = path->nodes[0];
4480 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4481 		btrfs_release_path(path);
4482 
4483 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4484 		    key.type != BTRFS_ROOT_ITEM_KEY)
4485 			break;
4486 
4487 		reloc_root = btrfs_read_fs_root(root, &key);
4488 		if (IS_ERR(reloc_root)) {
4489 			err = PTR_ERR(reloc_root);
4490 			goto out;
4491 		}
4492 
4493 		list_add(&reloc_root->root_list, &reloc_roots);
4494 
4495 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4496 			fs_root = read_fs_root(root->fs_info,
4497 					       reloc_root->root_key.offset);
4498 			if (IS_ERR(fs_root)) {
4499 				ret = PTR_ERR(fs_root);
4500 				if (ret != -ENOENT) {
4501 					err = ret;
4502 					goto out;
4503 				}
4504 				ret = mark_garbage_root(reloc_root);
4505 				if (ret < 0) {
4506 					err = ret;
4507 					goto out;
4508 				}
4509 			}
4510 		}
4511 
4512 		if (key.offset == 0)
4513 			break;
4514 
4515 		key.offset--;
4516 	}
4517 	btrfs_release_path(path);
4518 
4519 	if (list_empty(&reloc_roots))
4520 		goto out;
4521 
4522 	rc = alloc_reloc_control(root->fs_info);
4523 	if (!rc) {
4524 		err = -ENOMEM;
4525 		goto out;
4526 	}
4527 
4528 	rc->extent_root = root->fs_info->extent_root;
4529 
4530 	set_reloc_control(rc);
4531 
4532 	trans = btrfs_join_transaction(rc->extent_root);
4533 	if (IS_ERR(trans)) {
4534 		unset_reloc_control(rc);
4535 		err = PTR_ERR(trans);
4536 		goto out_free;
4537 	}
4538 
4539 	rc->merge_reloc_tree = 1;
4540 
4541 	while (!list_empty(&reloc_roots)) {
4542 		reloc_root = list_entry(reloc_roots.next,
4543 					struct btrfs_root, root_list);
4544 		list_del(&reloc_root->root_list);
4545 
4546 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4547 			list_add_tail(&reloc_root->root_list,
4548 				      &rc->reloc_roots);
4549 			continue;
4550 		}
4551 
4552 		fs_root = read_fs_root(root->fs_info,
4553 				       reloc_root->root_key.offset);
4554 		if (IS_ERR(fs_root)) {
4555 			err = PTR_ERR(fs_root);
4556 			goto out_free;
4557 		}
4558 
4559 		err = __add_reloc_root(reloc_root);
4560 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4561 		fs_root->reloc_root = reloc_root;
4562 	}
4563 
4564 	err = btrfs_commit_transaction(trans, rc->extent_root);
4565 	if (err)
4566 		goto out_free;
4567 
4568 	merge_reloc_roots(rc);
4569 
4570 	unset_reloc_control(rc);
4571 
4572 	trans = btrfs_join_transaction(rc->extent_root);
4573 	if (IS_ERR(trans)) {
4574 		err = PTR_ERR(trans);
4575 		goto out_free;
4576 	}
4577 	err = qgroup_fix_relocated_data_extents(trans, rc);
4578 	if (err < 0) {
4579 		btrfs_abort_transaction(trans, err);
4580 		goto out_free;
4581 	}
4582 	err = btrfs_commit_transaction(trans, rc->extent_root);
4583 out_free:
4584 	kfree(rc);
4585 out:
4586 	if (!list_empty(&reloc_roots))
4587 		free_reloc_roots(&reloc_roots);
4588 
4589 	btrfs_free_path(path);
4590 
4591 	if (err == 0) {
4592 		/* cleanup orphan inode in data relocation tree */
4593 		fs_root = read_fs_root(root->fs_info,
4594 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4595 		if (IS_ERR(fs_root))
4596 			err = PTR_ERR(fs_root);
4597 		else
4598 			err = btrfs_orphan_cleanup(fs_root);
4599 	}
4600 	return err;
4601 }
4602 
4603 /*
4604  * helper to add ordered checksum for data relocation.
4605  *
4606  * cloning checksum properly handles the nodatasum extents.
4607  * it also saves CPU time to re-calculate the checksum.
4608  */
4609 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4610 {
4611 	struct btrfs_ordered_sum *sums;
4612 	struct btrfs_ordered_extent *ordered;
4613 	struct btrfs_root *root = BTRFS_I(inode)->root;
4614 	int ret;
4615 	u64 disk_bytenr;
4616 	u64 new_bytenr;
4617 	LIST_HEAD(list);
4618 
4619 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4620 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4621 
4622 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4623 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4624 				       disk_bytenr + len - 1, &list, 0);
4625 	if (ret)
4626 		goto out;
4627 
4628 	while (!list_empty(&list)) {
4629 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4630 		list_del_init(&sums->list);
4631 
4632 		/*
4633 		 * We need to offset the new_bytenr based on where the csum is.
4634 		 * We need to do this because we will read in entire prealloc
4635 		 * extents but we may have written to say the middle of the
4636 		 * prealloc extent, so we need to make sure the csum goes with
4637 		 * the right disk offset.
4638 		 *
4639 		 * We can do this because the data reloc inode refers strictly
4640 		 * to the on disk bytes, so we don't have to worry about
4641 		 * disk_len vs real len like with real inodes since it's all
4642 		 * disk length.
4643 		 */
4644 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4645 		sums->bytenr = new_bytenr;
4646 
4647 		btrfs_add_ordered_sum(inode, ordered, sums);
4648 	}
4649 out:
4650 	btrfs_put_ordered_extent(ordered);
4651 	return ret;
4652 }
4653 
4654 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4655 			  struct btrfs_root *root, struct extent_buffer *buf,
4656 			  struct extent_buffer *cow)
4657 {
4658 	struct reloc_control *rc;
4659 	struct backref_node *node;
4660 	int first_cow = 0;
4661 	int level;
4662 	int ret = 0;
4663 
4664 	rc = root->fs_info->reloc_ctl;
4665 	if (!rc)
4666 		return 0;
4667 
4668 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4669 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4670 
4671 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4672 		if (buf == root->node)
4673 			__update_reloc_root(root, cow->start);
4674 	}
4675 
4676 	level = btrfs_header_level(buf);
4677 	if (btrfs_header_generation(buf) <=
4678 	    btrfs_root_last_snapshot(&root->root_item))
4679 		first_cow = 1;
4680 
4681 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4682 	    rc->create_reloc_tree) {
4683 		WARN_ON(!first_cow && level == 0);
4684 
4685 		node = rc->backref_cache.path[level];
4686 		BUG_ON(node->bytenr != buf->start &&
4687 		       node->new_bytenr != buf->start);
4688 
4689 		drop_node_buffer(node);
4690 		extent_buffer_get(cow);
4691 		node->eb = cow;
4692 		node->new_bytenr = cow->start;
4693 
4694 		if (!node->pending) {
4695 			list_move_tail(&node->list,
4696 				       &rc->backref_cache.pending[level]);
4697 			node->pending = 1;
4698 		}
4699 
4700 		if (first_cow)
4701 			__mark_block_processed(rc, node);
4702 
4703 		if (first_cow && level > 0)
4704 			rc->nodes_relocated += buf->len;
4705 	}
4706 
4707 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4708 		ret = replace_file_extents(trans, rc, root, cow);
4709 	return ret;
4710 }
4711 
4712 /*
4713  * called before creating snapshot. it calculates metadata reservation
4714  * required for relocating tree blocks in the snapshot
4715  */
4716 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4717 			      u64 *bytes_to_reserve)
4718 {
4719 	struct btrfs_root *root;
4720 	struct reloc_control *rc;
4721 
4722 	root = pending->root;
4723 	if (!root->reloc_root)
4724 		return;
4725 
4726 	rc = root->fs_info->reloc_ctl;
4727 	if (!rc->merge_reloc_tree)
4728 		return;
4729 
4730 	root = root->reloc_root;
4731 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4732 	/*
4733 	 * relocation is in the stage of merging trees. the space
4734 	 * used by merging a reloc tree is twice the size of
4735 	 * relocated tree nodes in the worst case. half for cowing
4736 	 * the reloc tree, half for cowing the fs tree. the space
4737 	 * used by cowing the reloc tree will be freed after the
4738 	 * tree is dropped. if we create snapshot, cowing the fs
4739 	 * tree may use more space than it frees. so we need
4740 	 * reserve extra space.
4741 	 */
4742 	*bytes_to_reserve += rc->nodes_relocated;
4743 }
4744 
4745 /*
4746  * called after snapshot is created. migrate block reservation
4747  * and create reloc root for the newly created snapshot
4748  */
4749 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4750 			       struct btrfs_pending_snapshot *pending)
4751 {
4752 	struct btrfs_root *root = pending->root;
4753 	struct btrfs_root *reloc_root;
4754 	struct btrfs_root *new_root;
4755 	struct reloc_control *rc;
4756 	int ret;
4757 
4758 	if (!root->reloc_root)
4759 		return 0;
4760 
4761 	rc = root->fs_info->reloc_ctl;
4762 	rc->merging_rsv_size += rc->nodes_relocated;
4763 
4764 	if (rc->merge_reloc_tree) {
4765 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4766 					      rc->block_rsv,
4767 					      rc->nodes_relocated, 1);
4768 		if (ret)
4769 			return ret;
4770 	}
4771 
4772 	new_root = pending->snap;
4773 	reloc_root = create_reloc_root(trans, root->reloc_root,
4774 				       new_root->root_key.objectid);
4775 	if (IS_ERR(reloc_root))
4776 		return PTR_ERR(reloc_root);
4777 
4778 	ret = __add_reloc_root(reloc_root);
4779 	BUG_ON(ret < 0);
4780 	new_root->reloc_root = reloc_root;
4781 
4782 	if (rc->create_reloc_tree)
4783 		ret = clone_backref_node(trans, rc, root, reloc_root);
4784 	return ret;
4785 }
4786