xref: /openbmc/linux/fs/btrfs/relocation.c (revision da1d9caf)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 
31 /*
32  * Relocation overview
33  *
34  * [What does relocation do]
35  *
36  * The objective of relocation is to relocate all extents of the target block
37  * group to other block groups.
38  * This is utilized by resize (shrink only), profile converting, compacting
39  * space, or balance routine to spread chunks over devices.
40  *
41  * 		Before		|		After
42  * ------------------------------------------------------------------
43  *  BG A: 10 data extents	| BG A: deleted
44  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
45  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
46  *
47  * [How does relocation work]
48  *
49  * 1.   Mark the target block group read-only
50  *      New extents won't be allocated from the target block group.
51  *
52  * 2.1  Record each extent in the target block group
53  *      To build a proper map of extents to be relocated.
54  *
55  * 2.2  Build data reloc tree and reloc trees
56  *      Data reloc tree will contain an inode, recording all newly relocated
57  *      data extents.
58  *      There will be only one data reloc tree for one data block group.
59  *
60  *      Reloc tree will be a special snapshot of its source tree, containing
61  *      relocated tree blocks.
62  *      Each tree referring to a tree block in target block group will get its
63  *      reloc tree built.
64  *
65  * 2.3  Swap source tree with its corresponding reloc tree
66  *      Each involved tree only refers to new extents after swap.
67  *
68  * 3.   Cleanup reloc trees and data reloc tree.
69  *      As old extents in the target block group are still referenced by reloc
70  *      trees, we need to clean them up before really freeing the target block
71  *      group.
72  *
73  * The main complexity is in steps 2.2 and 2.3.
74  *
75  * The entry point of relocation is relocate_block_group() function.
76  */
77 
78 #define RELOCATION_RESERVED_NODES	256
79 /*
80  * map address of tree root to tree
81  */
82 struct mapping_node {
83 	struct {
84 		struct rb_node rb_node;
85 		u64 bytenr;
86 	}; /* Use rb_simle_node for search/insert */
87 	void *data;
88 };
89 
90 struct mapping_tree {
91 	struct rb_root rb_root;
92 	spinlock_t lock;
93 };
94 
95 /*
96  * present a tree block to process
97  */
98 struct tree_block {
99 	struct {
100 		struct rb_node rb_node;
101 		u64 bytenr;
102 	}; /* Use rb_simple_node for search/insert */
103 	u64 owner;
104 	struct btrfs_key key;
105 	unsigned int level:8;
106 	unsigned int key_ready:1;
107 };
108 
109 #define MAX_EXTENTS 128
110 
111 struct file_extent_cluster {
112 	u64 start;
113 	u64 end;
114 	u64 boundary[MAX_EXTENTS];
115 	unsigned int nr;
116 };
117 
118 struct reloc_control {
119 	/* block group to relocate */
120 	struct btrfs_block_group *block_group;
121 	/* extent tree */
122 	struct btrfs_root *extent_root;
123 	/* inode for moving data */
124 	struct inode *data_inode;
125 
126 	struct btrfs_block_rsv *block_rsv;
127 
128 	struct btrfs_backref_cache backref_cache;
129 
130 	struct file_extent_cluster cluster;
131 	/* tree blocks have been processed */
132 	struct extent_io_tree processed_blocks;
133 	/* map start of tree root to corresponding reloc tree */
134 	struct mapping_tree reloc_root_tree;
135 	/* list of reloc trees */
136 	struct list_head reloc_roots;
137 	/* list of subvolume trees that get relocated */
138 	struct list_head dirty_subvol_roots;
139 	/* size of metadata reservation for merging reloc trees */
140 	u64 merging_rsv_size;
141 	/* size of relocated tree nodes */
142 	u64 nodes_relocated;
143 	/* reserved size for block group relocation*/
144 	u64 reserved_bytes;
145 
146 	u64 search_start;
147 	u64 extents_found;
148 
149 	unsigned int stage:8;
150 	unsigned int create_reloc_tree:1;
151 	unsigned int merge_reloc_tree:1;
152 	unsigned int found_file_extent:1;
153 };
154 
155 /* stages of data relocation */
156 #define MOVE_DATA_EXTENTS	0
157 #define UPDATE_DATA_PTRS	1
158 
159 static void mark_block_processed(struct reloc_control *rc,
160 				 struct btrfs_backref_node *node)
161 {
162 	u32 blocksize;
163 
164 	if (node->level == 0 ||
165 	    in_range(node->bytenr, rc->block_group->start,
166 		     rc->block_group->length)) {
167 		blocksize = rc->extent_root->fs_info->nodesize;
168 		set_extent_bits(&rc->processed_blocks, node->bytenr,
169 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
170 	}
171 	node->processed = 1;
172 }
173 
174 
175 static void mapping_tree_init(struct mapping_tree *tree)
176 {
177 	tree->rb_root = RB_ROOT;
178 	spin_lock_init(&tree->lock);
179 }
180 
181 /*
182  * walk up backref nodes until reach node presents tree root
183  */
184 static struct btrfs_backref_node *walk_up_backref(
185 		struct btrfs_backref_node *node,
186 		struct btrfs_backref_edge *edges[], int *index)
187 {
188 	struct btrfs_backref_edge *edge;
189 	int idx = *index;
190 
191 	while (!list_empty(&node->upper)) {
192 		edge = list_entry(node->upper.next,
193 				  struct btrfs_backref_edge, list[LOWER]);
194 		edges[idx++] = edge;
195 		node = edge->node[UPPER];
196 	}
197 	BUG_ON(node->detached);
198 	*index = idx;
199 	return node;
200 }
201 
202 /*
203  * walk down backref nodes to find start of next reference path
204  */
205 static struct btrfs_backref_node *walk_down_backref(
206 		struct btrfs_backref_edge *edges[], int *index)
207 {
208 	struct btrfs_backref_edge *edge;
209 	struct btrfs_backref_node *lower;
210 	int idx = *index;
211 
212 	while (idx > 0) {
213 		edge = edges[idx - 1];
214 		lower = edge->node[LOWER];
215 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
216 			idx--;
217 			continue;
218 		}
219 		edge = list_entry(edge->list[LOWER].next,
220 				  struct btrfs_backref_edge, list[LOWER]);
221 		edges[idx - 1] = edge;
222 		*index = idx;
223 		return edge->node[UPPER];
224 	}
225 	*index = 0;
226 	return NULL;
227 }
228 
229 static void update_backref_node(struct btrfs_backref_cache *cache,
230 				struct btrfs_backref_node *node, u64 bytenr)
231 {
232 	struct rb_node *rb_node;
233 	rb_erase(&node->rb_node, &cache->rb_root);
234 	node->bytenr = bytenr;
235 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
236 	if (rb_node)
237 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
238 }
239 
240 /*
241  * update backref cache after a transaction commit
242  */
243 static int update_backref_cache(struct btrfs_trans_handle *trans,
244 				struct btrfs_backref_cache *cache)
245 {
246 	struct btrfs_backref_node *node;
247 	int level = 0;
248 
249 	if (cache->last_trans == 0) {
250 		cache->last_trans = trans->transid;
251 		return 0;
252 	}
253 
254 	if (cache->last_trans == trans->transid)
255 		return 0;
256 
257 	/*
258 	 * detached nodes are used to avoid unnecessary backref
259 	 * lookup. transaction commit changes the extent tree.
260 	 * so the detached nodes are no longer useful.
261 	 */
262 	while (!list_empty(&cache->detached)) {
263 		node = list_entry(cache->detached.next,
264 				  struct btrfs_backref_node, list);
265 		btrfs_backref_cleanup_node(cache, node);
266 	}
267 
268 	while (!list_empty(&cache->changed)) {
269 		node = list_entry(cache->changed.next,
270 				  struct btrfs_backref_node, list);
271 		list_del_init(&node->list);
272 		BUG_ON(node->pending);
273 		update_backref_node(cache, node, node->new_bytenr);
274 	}
275 
276 	/*
277 	 * some nodes can be left in the pending list if there were
278 	 * errors during processing the pending nodes.
279 	 */
280 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
281 		list_for_each_entry(node, &cache->pending[level], list) {
282 			BUG_ON(!node->pending);
283 			if (node->bytenr == node->new_bytenr)
284 				continue;
285 			update_backref_node(cache, node, node->new_bytenr);
286 		}
287 	}
288 
289 	cache->last_trans = 0;
290 	return 1;
291 }
292 
293 static bool reloc_root_is_dead(struct btrfs_root *root)
294 {
295 	/*
296 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
297 	 * btrfs_update_reloc_root. We need to see the updated bit before
298 	 * trying to access reloc_root
299 	 */
300 	smp_rmb();
301 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
302 		return true;
303 	return false;
304 }
305 
306 /*
307  * Check if this subvolume tree has valid reloc tree.
308  *
309  * Reloc tree after swap is considered dead, thus not considered as valid.
310  * This is enough for most callers, as they don't distinguish dead reloc root
311  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
312  * special case.
313  */
314 static bool have_reloc_root(struct btrfs_root *root)
315 {
316 	if (reloc_root_is_dead(root))
317 		return false;
318 	if (!root->reloc_root)
319 		return false;
320 	return true;
321 }
322 
323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
324 {
325 	struct btrfs_root *reloc_root;
326 
327 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
328 		return 0;
329 
330 	/* This root has been merged with its reloc tree, we can ignore it */
331 	if (reloc_root_is_dead(root))
332 		return 1;
333 
334 	reloc_root = root->reloc_root;
335 	if (!reloc_root)
336 		return 0;
337 
338 	if (btrfs_header_generation(reloc_root->commit_root) ==
339 	    root->fs_info->running_transaction->transid)
340 		return 0;
341 	/*
342 	 * if there is reloc tree and it was created in previous
343 	 * transaction backref lookup can find the reloc tree,
344 	 * so backref node for the fs tree root is useless for
345 	 * relocation.
346 	 */
347 	return 1;
348 }
349 
350 /*
351  * find reloc tree by address of tree root
352  */
353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
354 {
355 	struct reloc_control *rc = fs_info->reloc_ctl;
356 	struct rb_node *rb_node;
357 	struct mapping_node *node;
358 	struct btrfs_root *root = NULL;
359 
360 	ASSERT(rc);
361 	spin_lock(&rc->reloc_root_tree.lock);
362 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
363 	if (rb_node) {
364 		node = rb_entry(rb_node, struct mapping_node, rb_node);
365 		root = node->data;
366 	}
367 	spin_unlock(&rc->reloc_root_tree.lock);
368 	return btrfs_grab_root(root);
369 }
370 
371 /*
372  * For useless nodes, do two major clean ups:
373  *
374  * - Cleanup the children edges and nodes
375  *   If child node is also orphan (no parent) during cleanup, then the child
376  *   node will also be cleaned up.
377  *
378  * - Freeing up leaves (level 0), keeps nodes detached
379  *   For nodes, the node is still cached as "detached"
380  *
381  * Return false if @node is not in the @useless_nodes list.
382  * Return true if @node is in the @useless_nodes list.
383  */
384 static bool handle_useless_nodes(struct reloc_control *rc,
385 				 struct btrfs_backref_node *node)
386 {
387 	struct btrfs_backref_cache *cache = &rc->backref_cache;
388 	struct list_head *useless_node = &cache->useless_node;
389 	bool ret = false;
390 
391 	while (!list_empty(useless_node)) {
392 		struct btrfs_backref_node *cur;
393 
394 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
395 				 list);
396 		list_del_init(&cur->list);
397 
398 		/* Only tree root nodes can be added to @useless_nodes */
399 		ASSERT(list_empty(&cur->upper));
400 
401 		if (cur == node)
402 			ret = true;
403 
404 		/* The node is the lowest node */
405 		if (cur->lowest) {
406 			list_del_init(&cur->lower);
407 			cur->lowest = 0;
408 		}
409 
410 		/* Cleanup the lower edges */
411 		while (!list_empty(&cur->lower)) {
412 			struct btrfs_backref_edge *edge;
413 			struct btrfs_backref_node *lower;
414 
415 			edge = list_entry(cur->lower.next,
416 					struct btrfs_backref_edge, list[UPPER]);
417 			list_del(&edge->list[UPPER]);
418 			list_del(&edge->list[LOWER]);
419 			lower = edge->node[LOWER];
420 			btrfs_backref_free_edge(cache, edge);
421 
422 			/* Child node is also orphan, queue for cleanup */
423 			if (list_empty(&lower->upper))
424 				list_add(&lower->list, useless_node);
425 		}
426 		/* Mark this block processed for relocation */
427 		mark_block_processed(rc, cur);
428 
429 		/*
430 		 * Backref nodes for tree leaves are deleted from the cache.
431 		 * Backref nodes for upper level tree blocks are left in the
432 		 * cache to avoid unnecessary backref lookup.
433 		 */
434 		if (cur->level > 0) {
435 			list_add(&cur->list, &cache->detached);
436 			cur->detached = 1;
437 		} else {
438 			rb_erase(&cur->rb_node, &cache->rb_root);
439 			btrfs_backref_free_node(cache, cur);
440 		}
441 	}
442 	return ret;
443 }
444 
445 /*
446  * Build backref tree for a given tree block. Root of the backref tree
447  * corresponds the tree block, leaves of the backref tree correspond roots of
448  * b-trees that reference the tree block.
449  *
450  * The basic idea of this function is check backrefs of a given block to find
451  * upper level blocks that reference the block, and then check backrefs of
452  * these upper level blocks recursively. The recursion stops when tree root is
453  * reached or backrefs for the block is cached.
454  *
455  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
456  * all upper level blocks that directly/indirectly reference the block are also
457  * cached.
458  */
459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
460 			struct reloc_control *rc, struct btrfs_key *node_key,
461 			int level, u64 bytenr)
462 {
463 	struct btrfs_backref_iter *iter;
464 	struct btrfs_backref_cache *cache = &rc->backref_cache;
465 	/* For searching parent of TREE_BLOCK_REF */
466 	struct btrfs_path *path;
467 	struct btrfs_backref_node *cur;
468 	struct btrfs_backref_node *node = NULL;
469 	struct btrfs_backref_edge *edge;
470 	int ret;
471 	int err = 0;
472 
473 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
474 	if (!iter)
475 		return ERR_PTR(-ENOMEM);
476 	path = btrfs_alloc_path();
477 	if (!path) {
478 		err = -ENOMEM;
479 		goto out;
480 	}
481 
482 	node = btrfs_backref_alloc_node(cache, bytenr, level);
483 	if (!node) {
484 		err = -ENOMEM;
485 		goto out;
486 	}
487 
488 	node->lowest = 1;
489 	cur = node;
490 
491 	/* Breadth-first search to build backref cache */
492 	do {
493 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
494 						  cur);
495 		if (ret < 0) {
496 			err = ret;
497 			goto out;
498 		}
499 		edge = list_first_entry_or_null(&cache->pending_edge,
500 				struct btrfs_backref_edge, list[UPPER]);
501 		/*
502 		 * The pending list isn't empty, take the first block to
503 		 * process
504 		 */
505 		if (edge) {
506 			list_del_init(&edge->list[UPPER]);
507 			cur = edge->node[UPPER];
508 		}
509 	} while (edge);
510 
511 	/* Finish the upper linkage of newly added edges/nodes */
512 	ret = btrfs_backref_finish_upper_links(cache, node);
513 	if (ret < 0) {
514 		err = ret;
515 		goto out;
516 	}
517 
518 	if (handle_useless_nodes(rc, node))
519 		node = NULL;
520 out:
521 	btrfs_backref_iter_free(iter);
522 	btrfs_free_path(path);
523 	if (err) {
524 		btrfs_backref_error_cleanup(cache, node);
525 		return ERR_PTR(err);
526 	}
527 	ASSERT(!node || !node->detached);
528 	ASSERT(list_empty(&cache->useless_node) &&
529 	       list_empty(&cache->pending_edge));
530 	return node;
531 }
532 
533 /*
534  * helper to add backref node for the newly created snapshot.
535  * the backref node is created by cloning backref node that
536  * corresponds to root of source tree
537  */
538 static int clone_backref_node(struct btrfs_trans_handle *trans,
539 			      struct reloc_control *rc,
540 			      struct btrfs_root *src,
541 			      struct btrfs_root *dest)
542 {
543 	struct btrfs_root *reloc_root = src->reloc_root;
544 	struct btrfs_backref_cache *cache = &rc->backref_cache;
545 	struct btrfs_backref_node *node = NULL;
546 	struct btrfs_backref_node *new_node;
547 	struct btrfs_backref_edge *edge;
548 	struct btrfs_backref_edge *new_edge;
549 	struct rb_node *rb_node;
550 
551 	if (cache->last_trans > 0)
552 		update_backref_cache(trans, cache);
553 
554 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
555 	if (rb_node) {
556 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
557 		if (node->detached)
558 			node = NULL;
559 		else
560 			BUG_ON(node->new_bytenr != reloc_root->node->start);
561 	}
562 
563 	if (!node) {
564 		rb_node = rb_simple_search(&cache->rb_root,
565 					   reloc_root->commit_root->start);
566 		if (rb_node) {
567 			node = rb_entry(rb_node, struct btrfs_backref_node,
568 					rb_node);
569 			BUG_ON(node->detached);
570 		}
571 	}
572 
573 	if (!node)
574 		return 0;
575 
576 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
577 					    node->level);
578 	if (!new_node)
579 		return -ENOMEM;
580 
581 	new_node->lowest = node->lowest;
582 	new_node->checked = 1;
583 	new_node->root = btrfs_grab_root(dest);
584 	ASSERT(new_node->root);
585 
586 	if (!node->lowest) {
587 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
588 			new_edge = btrfs_backref_alloc_edge(cache);
589 			if (!new_edge)
590 				goto fail;
591 
592 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
593 						new_node, LINK_UPPER);
594 		}
595 	} else {
596 		list_add_tail(&new_node->lower, &cache->leaves);
597 	}
598 
599 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
600 				   &new_node->rb_node);
601 	if (rb_node)
602 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
603 
604 	if (!new_node->lowest) {
605 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
606 			list_add_tail(&new_edge->list[LOWER],
607 				      &new_edge->node[LOWER]->upper);
608 		}
609 	}
610 	return 0;
611 fail:
612 	while (!list_empty(&new_node->lower)) {
613 		new_edge = list_entry(new_node->lower.next,
614 				      struct btrfs_backref_edge, list[UPPER]);
615 		list_del(&new_edge->list[UPPER]);
616 		btrfs_backref_free_edge(cache, new_edge);
617 	}
618 	btrfs_backref_free_node(cache, new_node);
619 	return -ENOMEM;
620 }
621 
622 /*
623  * helper to add 'address of tree root -> reloc tree' mapping
624  */
625 static int __must_check __add_reloc_root(struct btrfs_root *root)
626 {
627 	struct btrfs_fs_info *fs_info = root->fs_info;
628 	struct rb_node *rb_node;
629 	struct mapping_node *node;
630 	struct reloc_control *rc = fs_info->reloc_ctl;
631 
632 	node = kmalloc(sizeof(*node), GFP_NOFS);
633 	if (!node)
634 		return -ENOMEM;
635 
636 	node->bytenr = root->commit_root->start;
637 	node->data = root;
638 
639 	spin_lock(&rc->reloc_root_tree.lock);
640 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
641 				   node->bytenr, &node->rb_node);
642 	spin_unlock(&rc->reloc_root_tree.lock);
643 	if (rb_node) {
644 		btrfs_err(fs_info,
645 			    "Duplicate root found for start=%llu while inserting into relocation tree",
646 			    node->bytenr);
647 		return -EEXIST;
648 	}
649 
650 	list_add_tail(&root->root_list, &rc->reloc_roots);
651 	return 0;
652 }
653 
654 /*
655  * helper to delete the 'address of tree root -> reloc tree'
656  * mapping
657  */
658 static void __del_reloc_root(struct btrfs_root *root)
659 {
660 	struct btrfs_fs_info *fs_info = root->fs_info;
661 	struct rb_node *rb_node;
662 	struct mapping_node *node = NULL;
663 	struct reloc_control *rc = fs_info->reloc_ctl;
664 	bool put_ref = false;
665 
666 	if (rc && root->node) {
667 		spin_lock(&rc->reloc_root_tree.lock);
668 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
669 					   root->commit_root->start);
670 		if (rb_node) {
671 			node = rb_entry(rb_node, struct mapping_node, rb_node);
672 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
673 			RB_CLEAR_NODE(&node->rb_node);
674 		}
675 		spin_unlock(&rc->reloc_root_tree.lock);
676 		ASSERT(!node || (struct btrfs_root *)node->data == root);
677 	}
678 
679 	/*
680 	 * We only put the reloc root here if it's on the list.  There's a lot
681 	 * of places where the pattern is to splice the rc->reloc_roots, process
682 	 * the reloc roots, and then add the reloc root back onto
683 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
684 	 * list we don't want the reference being dropped, because the guy
685 	 * messing with the list is in charge of the reference.
686 	 */
687 	spin_lock(&fs_info->trans_lock);
688 	if (!list_empty(&root->root_list)) {
689 		put_ref = true;
690 		list_del_init(&root->root_list);
691 	}
692 	spin_unlock(&fs_info->trans_lock);
693 	if (put_ref)
694 		btrfs_put_root(root);
695 	kfree(node);
696 }
697 
698 /*
699  * helper to update the 'address of tree root -> reloc tree'
700  * mapping
701  */
702 static int __update_reloc_root(struct btrfs_root *root)
703 {
704 	struct btrfs_fs_info *fs_info = root->fs_info;
705 	struct rb_node *rb_node;
706 	struct mapping_node *node = NULL;
707 	struct reloc_control *rc = fs_info->reloc_ctl;
708 
709 	spin_lock(&rc->reloc_root_tree.lock);
710 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
711 				   root->commit_root->start);
712 	if (rb_node) {
713 		node = rb_entry(rb_node, struct mapping_node, rb_node);
714 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
715 	}
716 	spin_unlock(&rc->reloc_root_tree.lock);
717 
718 	if (!node)
719 		return 0;
720 	BUG_ON((struct btrfs_root *)node->data != root);
721 
722 	spin_lock(&rc->reloc_root_tree.lock);
723 	node->bytenr = root->node->start;
724 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
725 				   node->bytenr, &node->rb_node);
726 	spin_unlock(&rc->reloc_root_tree.lock);
727 	if (rb_node)
728 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
729 	return 0;
730 }
731 
732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
733 					struct btrfs_root *root, u64 objectid)
734 {
735 	struct btrfs_fs_info *fs_info = root->fs_info;
736 	struct btrfs_root *reloc_root;
737 	struct extent_buffer *eb;
738 	struct btrfs_root_item *root_item;
739 	struct btrfs_key root_key;
740 	int ret = 0;
741 	bool must_abort = false;
742 
743 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
744 	if (!root_item)
745 		return ERR_PTR(-ENOMEM);
746 
747 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
748 	root_key.type = BTRFS_ROOT_ITEM_KEY;
749 	root_key.offset = objectid;
750 
751 	if (root->root_key.objectid == objectid) {
752 		u64 commit_root_gen;
753 
754 		/* called by btrfs_init_reloc_root */
755 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
756 				      BTRFS_TREE_RELOC_OBJECTID);
757 		if (ret)
758 			goto fail;
759 
760 		/*
761 		 * Set the last_snapshot field to the generation of the commit
762 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
763 		 * correctly (returns true) when the relocation root is created
764 		 * either inside the critical section of a transaction commit
765 		 * (through transaction.c:qgroup_account_snapshot()) and when
766 		 * it's created before the transaction commit is started.
767 		 */
768 		commit_root_gen = btrfs_header_generation(root->commit_root);
769 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
770 	} else {
771 		/*
772 		 * called by btrfs_reloc_post_snapshot_hook.
773 		 * the source tree is a reloc tree, all tree blocks
774 		 * modified after it was created have RELOC flag
775 		 * set in their headers. so it's OK to not update
776 		 * the 'last_snapshot'.
777 		 */
778 		ret = btrfs_copy_root(trans, root, root->node, &eb,
779 				      BTRFS_TREE_RELOC_OBJECTID);
780 		if (ret)
781 			goto fail;
782 	}
783 
784 	/*
785 	 * We have changed references at this point, we must abort the
786 	 * transaction if anything fails.
787 	 */
788 	must_abort = true;
789 
790 	memcpy(root_item, &root->root_item, sizeof(*root_item));
791 	btrfs_set_root_bytenr(root_item, eb->start);
792 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
793 	btrfs_set_root_generation(root_item, trans->transid);
794 
795 	if (root->root_key.objectid == objectid) {
796 		btrfs_set_root_refs(root_item, 0);
797 		memset(&root_item->drop_progress, 0,
798 		       sizeof(struct btrfs_disk_key));
799 		btrfs_set_root_drop_level(root_item, 0);
800 	}
801 
802 	btrfs_tree_unlock(eb);
803 	free_extent_buffer(eb);
804 
805 	ret = btrfs_insert_root(trans, fs_info->tree_root,
806 				&root_key, root_item);
807 	if (ret)
808 		goto fail;
809 
810 	kfree(root_item);
811 
812 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
813 	if (IS_ERR(reloc_root)) {
814 		ret = PTR_ERR(reloc_root);
815 		goto abort;
816 	}
817 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
818 	reloc_root->last_trans = trans->transid;
819 	return reloc_root;
820 fail:
821 	kfree(root_item);
822 abort:
823 	if (must_abort)
824 		btrfs_abort_transaction(trans, ret);
825 	return ERR_PTR(ret);
826 }
827 
828 /*
829  * create reloc tree for a given fs tree. reloc tree is just a
830  * snapshot of the fs tree with special root objectid.
831  *
832  * The reloc_root comes out of here with two references, one for
833  * root->reloc_root, and another for being on the rc->reloc_roots list.
834  */
835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
836 			  struct btrfs_root *root)
837 {
838 	struct btrfs_fs_info *fs_info = root->fs_info;
839 	struct btrfs_root *reloc_root;
840 	struct reloc_control *rc = fs_info->reloc_ctl;
841 	struct btrfs_block_rsv *rsv;
842 	int clear_rsv = 0;
843 	int ret;
844 
845 	if (!rc)
846 		return 0;
847 
848 	/*
849 	 * The subvolume has reloc tree but the swap is finished, no need to
850 	 * create/update the dead reloc tree
851 	 */
852 	if (reloc_root_is_dead(root))
853 		return 0;
854 
855 	/*
856 	 * This is subtle but important.  We do not do
857 	 * record_root_in_transaction for reloc roots, instead we record their
858 	 * corresponding fs root, and then here we update the last trans for the
859 	 * reloc root.  This means that we have to do this for the entire life
860 	 * of the reloc root, regardless of which stage of the relocation we are
861 	 * in.
862 	 */
863 	if (root->reloc_root) {
864 		reloc_root = root->reloc_root;
865 		reloc_root->last_trans = trans->transid;
866 		return 0;
867 	}
868 
869 	/*
870 	 * We are merging reloc roots, we do not need new reloc trees.  Also
871 	 * reloc trees never need their own reloc tree.
872 	 */
873 	if (!rc->create_reloc_tree ||
874 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
875 		return 0;
876 
877 	if (!trans->reloc_reserved) {
878 		rsv = trans->block_rsv;
879 		trans->block_rsv = rc->block_rsv;
880 		clear_rsv = 1;
881 	}
882 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
883 	if (clear_rsv)
884 		trans->block_rsv = rsv;
885 	if (IS_ERR(reloc_root))
886 		return PTR_ERR(reloc_root);
887 
888 	ret = __add_reloc_root(reloc_root);
889 	ASSERT(ret != -EEXIST);
890 	if (ret) {
891 		/* Pairs with create_reloc_root */
892 		btrfs_put_root(reloc_root);
893 		return ret;
894 	}
895 	root->reloc_root = btrfs_grab_root(reloc_root);
896 	return 0;
897 }
898 
899 /*
900  * update root item of reloc tree
901  */
902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
903 			    struct btrfs_root *root)
904 {
905 	struct btrfs_fs_info *fs_info = root->fs_info;
906 	struct btrfs_root *reloc_root;
907 	struct btrfs_root_item *root_item;
908 	int ret;
909 
910 	if (!have_reloc_root(root))
911 		return 0;
912 
913 	reloc_root = root->reloc_root;
914 	root_item = &reloc_root->root_item;
915 
916 	/*
917 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
918 	 * the root.  We have the ref for root->reloc_root, but just in case
919 	 * hold it while we update the reloc root.
920 	 */
921 	btrfs_grab_root(reloc_root);
922 
923 	/* root->reloc_root will stay until current relocation finished */
924 	if (fs_info->reloc_ctl->merge_reloc_tree &&
925 	    btrfs_root_refs(root_item) == 0) {
926 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
927 		/*
928 		 * Mark the tree as dead before we change reloc_root so
929 		 * have_reloc_root will not touch it from now on.
930 		 */
931 		smp_wmb();
932 		__del_reloc_root(reloc_root);
933 	}
934 
935 	if (reloc_root->commit_root != reloc_root->node) {
936 		__update_reloc_root(reloc_root);
937 		btrfs_set_root_node(root_item, reloc_root->node);
938 		free_extent_buffer(reloc_root->commit_root);
939 		reloc_root->commit_root = btrfs_root_node(reloc_root);
940 	}
941 
942 	ret = btrfs_update_root(trans, fs_info->tree_root,
943 				&reloc_root->root_key, root_item);
944 	btrfs_put_root(reloc_root);
945 	return ret;
946 }
947 
948 /*
949  * helper to find first cached inode with inode number >= objectid
950  * in a subvolume
951  */
952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
953 {
954 	struct rb_node *node;
955 	struct rb_node *prev;
956 	struct btrfs_inode *entry;
957 	struct inode *inode;
958 
959 	spin_lock(&root->inode_lock);
960 again:
961 	node = root->inode_tree.rb_node;
962 	prev = NULL;
963 	while (node) {
964 		prev = node;
965 		entry = rb_entry(node, struct btrfs_inode, rb_node);
966 
967 		if (objectid < btrfs_ino(entry))
968 			node = node->rb_left;
969 		else if (objectid > btrfs_ino(entry))
970 			node = node->rb_right;
971 		else
972 			break;
973 	}
974 	if (!node) {
975 		while (prev) {
976 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
977 			if (objectid <= btrfs_ino(entry)) {
978 				node = prev;
979 				break;
980 			}
981 			prev = rb_next(prev);
982 		}
983 	}
984 	while (node) {
985 		entry = rb_entry(node, struct btrfs_inode, rb_node);
986 		inode = igrab(&entry->vfs_inode);
987 		if (inode) {
988 			spin_unlock(&root->inode_lock);
989 			return inode;
990 		}
991 
992 		objectid = btrfs_ino(entry) + 1;
993 		if (cond_resched_lock(&root->inode_lock))
994 			goto again;
995 
996 		node = rb_next(node);
997 	}
998 	spin_unlock(&root->inode_lock);
999 	return NULL;
1000 }
1001 
1002 /*
1003  * get new location of data
1004  */
1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1006 			    u64 bytenr, u64 num_bytes)
1007 {
1008 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1009 	struct btrfs_path *path;
1010 	struct btrfs_file_extent_item *fi;
1011 	struct extent_buffer *leaf;
1012 	int ret;
1013 
1014 	path = btrfs_alloc_path();
1015 	if (!path)
1016 		return -ENOMEM;
1017 
1018 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1019 	ret = btrfs_lookup_file_extent(NULL, root, path,
1020 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1021 	if (ret < 0)
1022 		goto out;
1023 	if (ret > 0) {
1024 		ret = -ENOENT;
1025 		goto out;
1026 	}
1027 
1028 	leaf = path->nodes[0];
1029 	fi = btrfs_item_ptr(leaf, path->slots[0],
1030 			    struct btrfs_file_extent_item);
1031 
1032 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1033 	       btrfs_file_extent_compression(leaf, fi) ||
1034 	       btrfs_file_extent_encryption(leaf, fi) ||
1035 	       btrfs_file_extent_other_encoding(leaf, fi));
1036 
1037 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1038 		ret = -EINVAL;
1039 		goto out;
1040 	}
1041 
1042 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043 	ret = 0;
1044 out:
1045 	btrfs_free_path(path);
1046 	return ret;
1047 }
1048 
1049 /*
1050  * update file extent items in the tree leaf to point to
1051  * the new locations.
1052  */
1053 static noinline_for_stack
1054 int replace_file_extents(struct btrfs_trans_handle *trans,
1055 			 struct reloc_control *rc,
1056 			 struct btrfs_root *root,
1057 			 struct extent_buffer *leaf)
1058 {
1059 	struct btrfs_fs_info *fs_info = root->fs_info;
1060 	struct btrfs_key key;
1061 	struct btrfs_file_extent_item *fi;
1062 	struct inode *inode = NULL;
1063 	u64 parent;
1064 	u64 bytenr;
1065 	u64 new_bytenr = 0;
1066 	u64 num_bytes;
1067 	u64 end;
1068 	u32 nritems;
1069 	u32 i;
1070 	int ret = 0;
1071 	int first = 1;
1072 	int dirty = 0;
1073 
1074 	if (rc->stage != UPDATE_DATA_PTRS)
1075 		return 0;
1076 
1077 	/* reloc trees always use full backref */
1078 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1079 		parent = leaf->start;
1080 	else
1081 		parent = 0;
1082 
1083 	nritems = btrfs_header_nritems(leaf);
1084 	for (i = 0; i < nritems; i++) {
1085 		struct btrfs_ref ref = { 0 };
1086 
1087 		cond_resched();
1088 		btrfs_item_key_to_cpu(leaf, &key, i);
1089 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1090 			continue;
1091 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1092 		if (btrfs_file_extent_type(leaf, fi) ==
1093 		    BTRFS_FILE_EXTENT_INLINE)
1094 			continue;
1095 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1096 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1097 		if (bytenr == 0)
1098 			continue;
1099 		if (!in_range(bytenr, rc->block_group->start,
1100 			      rc->block_group->length))
1101 			continue;
1102 
1103 		/*
1104 		 * if we are modifying block in fs tree, wait for read_folio
1105 		 * to complete and drop the extent cache
1106 		 */
1107 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1108 			if (first) {
1109 				inode = find_next_inode(root, key.objectid);
1110 				first = 0;
1111 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1112 				btrfs_add_delayed_iput(inode);
1113 				inode = find_next_inode(root, key.objectid);
1114 			}
1115 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1116 				end = key.offset +
1117 				      btrfs_file_extent_num_bytes(leaf, fi);
1118 				WARN_ON(!IS_ALIGNED(key.offset,
1119 						    fs_info->sectorsize));
1120 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1121 				end--;
1122 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1123 						      key.offset, end);
1124 				if (!ret)
1125 					continue;
1126 
1127 				btrfs_drop_extent_cache(BTRFS_I(inode),
1128 						key.offset,	end, 1);
1129 				unlock_extent(&BTRFS_I(inode)->io_tree,
1130 					      key.offset, end);
1131 			}
1132 		}
1133 
1134 		ret = get_new_location(rc->data_inode, &new_bytenr,
1135 				       bytenr, num_bytes);
1136 		if (ret) {
1137 			/*
1138 			 * Don't have to abort since we've not changed anything
1139 			 * in the file extent yet.
1140 			 */
1141 			break;
1142 		}
1143 
1144 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1145 		dirty = 1;
1146 
1147 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1148 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1149 				       num_bytes, parent);
1150 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1151 				    key.objectid, key.offset,
1152 				    root->root_key.objectid, false);
1153 		ret = btrfs_inc_extent_ref(trans, &ref);
1154 		if (ret) {
1155 			btrfs_abort_transaction(trans, ret);
1156 			break;
1157 		}
1158 
1159 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1160 				       num_bytes, parent);
1161 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162 				    key.objectid, key.offset,
1163 				    root->root_key.objectid, false);
1164 		ret = btrfs_free_extent(trans, &ref);
1165 		if (ret) {
1166 			btrfs_abort_transaction(trans, ret);
1167 			break;
1168 		}
1169 	}
1170 	if (dirty)
1171 		btrfs_mark_buffer_dirty(leaf);
1172 	if (inode)
1173 		btrfs_add_delayed_iput(inode);
1174 	return ret;
1175 }
1176 
1177 static noinline_for_stack
1178 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1179 		     struct btrfs_path *path, int level)
1180 {
1181 	struct btrfs_disk_key key1;
1182 	struct btrfs_disk_key key2;
1183 	btrfs_node_key(eb, &key1, slot);
1184 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1185 	return memcmp(&key1, &key2, sizeof(key1));
1186 }
1187 
1188 /*
1189  * try to replace tree blocks in fs tree with the new blocks
1190  * in reloc tree. tree blocks haven't been modified since the
1191  * reloc tree was create can be replaced.
1192  *
1193  * if a block was replaced, level of the block + 1 is returned.
1194  * if no block got replaced, 0 is returned. if there are other
1195  * errors, a negative error number is returned.
1196  */
1197 static noinline_for_stack
1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1199 		 struct btrfs_root *dest, struct btrfs_root *src,
1200 		 struct btrfs_path *path, struct btrfs_key *next_key,
1201 		 int lowest_level, int max_level)
1202 {
1203 	struct btrfs_fs_info *fs_info = dest->fs_info;
1204 	struct extent_buffer *eb;
1205 	struct extent_buffer *parent;
1206 	struct btrfs_ref ref = { 0 };
1207 	struct btrfs_key key;
1208 	u64 old_bytenr;
1209 	u64 new_bytenr;
1210 	u64 old_ptr_gen;
1211 	u64 new_ptr_gen;
1212 	u64 last_snapshot;
1213 	u32 blocksize;
1214 	int cow = 0;
1215 	int level;
1216 	int ret;
1217 	int slot;
1218 
1219 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1220 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1221 
1222 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1223 again:
1224 	slot = path->slots[lowest_level];
1225 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1226 
1227 	eb = btrfs_lock_root_node(dest);
1228 	level = btrfs_header_level(eb);
1229 
1230 	if (level < lowest_level) {
1231 		btrfs_tree_unlock(eb);
1232 		free_extent_buffer(eb);
1233 		return 0;
1234 	}
1235 
1236 	if (cow) {
1237 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1238 				      BTRFS_NESTING_COW);
1239 		if (ret) {
1240 			btrfs_tree_unlock(eb);
1241 			free_extent_buffer(eb);
1242 			return ret;
1243 		}
1244 	}
1245 
1246 	if (next_key) {
1247 		next_key->objectid = (u64)-1;
1248 		next_key->type = (u8)-1;
1249 		next_key->offset = (u64)-1;
1250 	}
1251 
1252 	parent = eb;
1253 	while (1) {
1254 		level = btrfs_header_level(parent);
1255 		ASSERT(level >= lowest_level);
1256 
1257 		ret = btrfs_bin_search(parent, &key, &slot);
1258 		if (ret < 0)
1259 			break;
1260 		if (ret && slot > 0)
1261 			slot--;
1262 
1263 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1264 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1265 
1266 		old_bytenr = btrfs_node_blockptr(parent, slot);
1267 		blocksize = fs_info->nodesize;
1268 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1269 
1270 		if (level <= max_level) {
1271 			eb = path->nodes[level];
1272 			new_bytenr = btrfs_node_blockptr(eb,
1273 							path->slots[level]);
1274 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1275 							path->slots[level]);
1276 		} else {
1277 			new_bytenr = 0;
1278 			new_ptr_gen = 0;
1279 		}
1280 
1281 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1282 			ret = level;
1283 			break;
1284 		}
1285 
1286 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1287 		    memcmp_node_keys(parent, slot, path, level)) {
1288 			if (level <= lowest_level) {
1289 				ret = 0;
1290 				break;
1291 			}
1292 
1293 			eb = btrfs_read_node_slot(parent, slot);
1294 			if (IS_ERR(eb)) {
1295 				ret = PTR_ERR(eb);
1296 				break;
1297 			}
1298 			btrfs_tree_lock(eb);
1299 			if (cow) {
1300 				ret = btrfs_cow_block(trans, dest, eb, parent,
1301 						      slot, &eb,
1302 						      BTRFS_NESTING_COW);
1303 				if (ret) {
1304 					btrfs_tree_unlock(eb);
1305 					free_extent_buffer(eb);
1306 					break;
1307 				}
1308 			}
1309 
1310 			btrfs_tree_unlock(parent);
1311 			free_extent_buffer(parent);
1312 
1313 			parent = eb;
1314 			continue;
1315 		}
1316 
1317 		if (!cow) {
1318 			btrfs_tree_unlock(parent);
1319 			free_extent_buffer(parent);
1320 			cow = 1;
1321 			goto again;
1322 		}
1323 
1324 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1325 				      path->slots[level]);
1326 		btrfs_release_path(path);
1327 
1328 		path->lowest_level = level;
1329 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1330 		path->lowest_level = 0;
1331 		if (ret) {
1332 			if (ret > 0)
1333 				ret = -ENOENT;
1334 			break;
1335 		}
1336 
1337 		/*
1338 		 * Info qgroup to trace both subtrees.
1339 		 *
1340 		 * We must trace both trees.
1341 		 * 1) Tree reloc subtree
1342 		 *    If not traced, we will leak data numbers
1343 		 * 2) Fs subtree
1344 		 *    If not traced, we will double count old data
1345 		 *
1346 		 * We don't scan the subtree right now, but only record
1347 		 * the swapped tree blocks.
1348 		 * The real subtree rescan is delayed until we have new
1349 		 * CoW on the subtree root node before transaction commit.
1350 		 */
1351 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1352 				rc->block_group, parent, slot,
1353 				path->nodes[level], path->slots[level],
1354 				last_snapshot);
1355 		if (ret < 0)
1356 			break;
1357 		/*
1358 		 * swap blocks in fs tree and reloc tree.
1359 		 */
1360 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1361 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1362 		btrfs_mark_buffer_dirty(parent);
1363 
1364 		btrfs_set_node_blockptr(path->nodes[level],
1365 					path->slots[level], old_bytenr);
1366 		btrfs_set_node_ptr_generation(path->nodes[level],
1367 					      path->slots[level], old_ptr_gen);
1368 		btrfs_mark_buffer_dirty(path->nodes[level]);
1369 
1370 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1371 				       blocksize, path->nodes[level]->start);
1372 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1373 				    0, true);
1374 		ret = btrfs_inc_extent_ref(trans, &ref);
1375 		if (ret) {
1376 			btrfs_abort_transaction(trans, ret);
1377 			break;
1378 		}
1379 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1380 				       blocksize, 0);
1381 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1382 				    true);
1383 		ret = btrfs_inc_extent_ref(trans, &ref);
1384 		if (ret) {
1385 			btrfs_abort_transaction(trans, ret);
1386 			break;
1387 		}
1388 
1389 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1390 				       blocksize, path->nodes[level]->start);
1391 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1392 				    0, true);
1393 		ret = btrfs_free_extent(trans, &ref);
1394 		if (ret) {
1395 			btrfs_abort_transaction(trans, ret);
1396 			break;
1397 		}
1398 
1399 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1400 				       blocksize, 0);
1401 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1402 				    0, true);
1403 		ret = btrfs_free_extent(trans, &ref);
1404 		if (ret) {
1405 			btrfs_abort_transaction(trans, ret);
1406 			break;
1407 		}
1408 
1409 		btrfs_unlock_up_safe(path, 0);
1410 
1411 		ret = level;
1412 		break;
1413 	}
1414 	btrfs_tree_unlock(parent);
1415 	free_extent_buffer(parent);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * helper to find next relocated block in reloc tree
1421  */
1422 static noinline_for_stack
1423 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1424 		       int *level)
1425 {
1426 	struct extent_buffer *eb;
1427 	int i;
1428 	u64 last_snapshot;
1429 	u32 nritems;
1430 
1431 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1432 
1433 	for (i = 0; i < *level; i++) {
1434 		free_extent_buffer(path->nodes[i]);
1435 		path->nodes[i] = NULL;
1436 	}
1437 
1438 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1439 		eb = path->nodes[i];
1440 		nritems = btrfs_header_nritems(eb);
1441 		while (path->slots[i] + 1 < nritems) {
1442 			path->slots[i]++;
1443 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1444 			    last_snapshot)
1445 				continue;
1446 
1447 			*level = i;
1448 			return 0;
1449 		}
1450 		free_extent_buffer(path->nodes[i]);
1451 		path->nodes[i] = NULL;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * walk down reloc tree to find relocated block of lowest level
1458  */
1459 static noinline_for_stack
1460 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1461 			 int *level)
1462 {
1463 	struct extent_buffer *eb = NULL;
1464 	int i;
1465 	u64 ptr_gen = 0;
1466 	u64 last_snapshot;
1467 	u32 nritems;
1468 
1469 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1470 
1471 	for (i = *level; i > 0; i--) {
1472 		eb = path->nodes[i];
1473 		nritems = btrfs_header_nritems(eb);
1474 		while (path->slots[i] < nritems) {
1475 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1476 			if (ptr_gen > last_snapshot)
1477 				break;
1478 			path->slots[i]++;
1479 		}
1480 		if (path->slots[i] >= nritems) {
1481 			if (i == *level)
1482 				break;
1483 			*level = i + 1;
1484 			return 0;
1485 		}
1486 		if (i == 1) {
1487 			*level = i;
1488 			return 0;
1489 		}
1490 
1491 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1492 		if (IS_ERR(eb))
1493 			return PTR_ERR(eb);
1494 		BUG_ON(btrfs_header_level(eb) != i - 1);
1495 		path->nodes[i - 1] = eb;
1496 		path->slots[i - 1] = 0;
1497 	}
1498 	return 1;
1499 }
1500 
1501 /*
1502  * invalidate extent cache for file extents whose key in range of
1503  * [min_key, max_key)
1504  */
1505 static int invalidate_extent_cache(struct btrfs_root *root,
1506 				   struct btrfs_key *min_key,
1507 				   struct btrfs_key *max_key)
1508 {
1509 	struct btrfs_fs_info *fs_info = root->fs_info;
1510 	struct inode *inode = NULL;
1511 	u64 objectid;
1512 	u64 start, end;
1513 	u64 ino;
1514 
1515 	objectid = min_key->objectid;
1516 	while (1) {
1517 		cond_resched();
1518 		iput(inode);
1519 
1520 		if (objectid > max_key->objectid)
1521 			break;
1522 
1523 		inode = find_next_inode(root, objectid);
1524 		if (!inode)
1525 			break;
1526 		ino = btrfs_ino(BTRFS_I(inode));
1527 
1528 		if (ino > max_key->objectid) {
1529 			iput(inode);
1530 			break;
1531 		}
1532 
1533 		objectid = ino + 1;
1534 		if (!S_ISREG(inode->i_mode))
1535 			continue;
1536 
1537 		if (unlikely(min_key->objectid == ino)) {
1538 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1539 				continue;
1540 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1541 				start = 0;
1542 			else {
1543 				start = min_key->offset;
1544 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1545 			}
1546 		} else {
1547 			start = 0;
1548 		}
1549 
1550 		if (unlikely(max_key->objectid == ino)) {
1551 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1552 				continue;
1553 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1554 				end = (u64)-1;
1555 			} else {
1556 				if (max_key->offset == 0)
1557 					continue;
1558 				end = max_key->offset;
1559 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1560 				end--;
1561 			}
1562 		} else {
1563 			end = (u64)-1;
1564 		}
1565 
1566 		/* the lock_extent waits for read_folio to complete */
1567 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1568 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1569 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1570 	}
1571 	return 0;
1572 }
1573 
1574 static int find_next_key(struct btrfs_path *path, int level,
1575 			 struct btrfs_key *key)
1576 
1577 {
1578 	while (level < BTRFS_MAX_LEVEL) {
1579 		if (!path->nodes[level])
1580 			break;
1581 		if (path->slots[level] + 1 <
1582 		    btrfs_header_nritems(path->nodes[level])) {
1583 			btrfs_node_key_to_cpu(path->nodes[level], key,
1584 					      path->slots[level] + 1);
1585 			return 0;
1586 		}
1587 		level++;
1588 	}
1589 	return 1;
1590 }
1591 
1592 /*
1593  * Insert current subvolume into reloc_control::dirty_subvol_roots
1594  */
1595 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1596 			       struct reloc_control *rc,
1597 			       struct btrfs_root *root)
1598 {
1599 	struct btrfs_root *reloc_root = root->reloc_root;
1600 	struct btrfs_root_item *reloc_root_item;
1601 	int ret;
1602 
1603 	/* @root must be a subvolume tree root with a valid reloc tree */
1604 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1605 	ASSERT(reloc_root);
1606 
1607 	reloc_root_item = &reloc_root->root_item;
1608 	memset(&reloc_root_item->drop_progress, 0,
1609 		sizeof(reloc_root_item->drop_progress));
1610 	btrfs_set_root_drop_level(reloc_root_item, 0);
1611 	btrfs_set_root_refs(reloc_root_item, 0);
1612 	ret = btrfs_update_reloc_root(trans, root);
1613 	if (ret)
1614 		return ret;
1615 
1616 	if (list_empty(&root->reloc_dirty_list)) {
1617 		btrfs_grab_root(root);
1618 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static int clean_dirty_subvols(struct reloc_control *rc)
1625 {
1626 	struct btrfs_root *root;
1627 	struct btrfs_root *next;
1628 	int ret = 0;
1629 	int ret2;
1630 
1631 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1632 				 reloc_dirty_list) {
1633 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1634 			/* Merged subvolume, cleanup its reloc root */
1635 			struct btrfs_root *reloc_root = root->reloc_root;
1636 
1637 			list_del_init(&root->reloc_dirty_list);
1638 			root->reloc_root = NULL;
1639 			/*
1640 			 * Need barrier to ensure clear_bit() only happens after
1641 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1642 			 */
1643 			smp_wmb();
1644 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1645 			if (reloc_root) {
1646 				/*
1647 				 * btrfs_drop_snapshot drops our ref we hold for
1648 				 * ->reloc_root.  If it fails however we must
1649 				 * drop the ref ourselves.
1650 				 */
1651 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1652 				if (ret2 < 0) {
1653 					btrfs_put_root(reloc_root);
1654 					if (!ret)
1655 						ret = ret2;
1656 				}
1657 			}
1658 			btrfs_put_root(root);
1659 		} else {
1660 			/* Orphan reloc tree, just clean it up */
1661 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1662 			if (ret2 < 0) {
1663 				btrfs_put_root(root);
1664 				if (!ret)
1665 					ret = ret2;
1666 			}
1667 		}
1668 	}
1669 	return ret;
1670 }
1671 
1672 /*
1673  * merge the relocated tree blocks in reloc tree with corresponding
1674  * fs tree.
1675  */
1676 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1677 					       struct btrfs_root *root)
1678 {
1679 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1680 	struct btrfs_key key;
1681 	struct btrfs_key next_key;
1682 	struct btrfs_trans_handle *trans = NULL;
1683 	struct btrfs_root *reloc_root;
1684 	struct btrfs_root_item *root_item;
1685 	struct btrfs_path *path;
1686 	struct extent_buffer *leaf;
1687 	int reserve_level;
1688 	int level;
1689 	int max_level;
1690 	int replaced = 0;
1691 	int ret = 0;
1692 	u32 min_reserved;
1693 
1694 	path = btrfs_alloc_path();
1695 	if (!path)
1696 		return -ENOMEM;
1697 	path->reada = READA_FORWARD;
1698 
1699 	reloc_root = root->reloc_root;
1700 	root_item = &reloc_root->root_item;
1701 
1702 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1703 		level = btrfs_root_level(root_item);
1704 		atomic_inc(&reloc_root->node->refs);
1705 		path->nodes[level] = reloc_root->node;
1706 		path->slots[level] = 0;
1707 	} else {
1708 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1709 
1710 		level = btrfs_root_drop_level(root_item);
1711 		BUG_ON(level == 0);
1712 		path->lowest_level = level;
1713 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1714 		path->lowest_level = 0;
1715 		if (ret < 0) {
1716 			btrfs_free_path(path);
1717 			return ret;
1718 		}
1719 
1720 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1721 				      path->slots[level]);
1722 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1723 
1724 		btrfs_unlock_up_safe(path, 0);
1725 	}
1726 
1727 	/*
1728 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1729 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1730 	 * block COW, we COW at most from level 1 to root level for each tree.
1731 	 *
1732 	 * Thus the needed metadata size is at most root_level * nodesize,
1733 	 * and * 2 since we have two trees to COW.
1734 	 */
1735 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1736 	min_reserved = fs_info->nodesize * reserve_level * 2;
1737 	memset(&next_key, 0, sizeof(next_key));
1738 
1739 	while (1) {
1740 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1741 					     min_reserved,
1742 					     BTRFS_RESERVE_FLUSH_LIMIT);
1743 		if (ret)
1744 			goto out;
1745 		trans = btrfs_start_transaction(root, 0);
1746 		if (IS_ERR(trans)) {
1747 			ret = PTR_ERR(trans);
1748 			trans = NULL;
1749 			goto out;
1750 		}
1751 
1752 		/*
1753 		 * At this point we no longer have a reloc_control, so we can't
1754 		 * depend on btrfs_init_reloc_root to update our last_trans.
1755 		 *
1756 		 * But that's ok, we started the trans handle on our
1757 		 * corresponding fs_root, which means it's been added to the
1758 		 * dirty list.  At commit time we'll still call
1759 		 * btrfs_update_reloc_root() and update our root item
1760 		 * appropriately.
1761 		 */
1762 		reloc_root->last_trans = trans->transid;
1763 		trans->block_rsv = rc->block_rsv;
1764 
1765 		replaced = 0;
1766 		max_level = level;
1767 
1768 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1769 		if (ret < 0)
1770 			goto out;
1771 		if (ret > 0)
1772 			break;
1773 
1774 		if (!find_next_key(path, level, &key) &&
1775 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1776 			ret = 0;
1777 		} else {
1778 			ret = replace_path(trans, rc, root, reloc_root, path,
1779 					   &next_key, level, max_level);
1780 		}
1781 		if (ret < 0)
1782 			goto out;
1783 		if (ret > 0) {
1784 			level = ret;
1785 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1786 					      path->slots[level]);
1787 			replaced = 1;
1788 		}
1789 
1790 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1791 		if (ret > 0)
1792 			break;
1793 
1794 		BUG_ON(level == 0);
1795 		/*
1796 		 * save the merging progress in the drop_progress.
1797 		 * this is OK since root refs == 1 in this case.
1798 		 */
1799 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1800 			       path->slots[level]);
1801 		btrfs_set_root_drop_level(root_item, level);
1802 
1803 		btrfs_end_transaction_throttle(trans);
1804 		trans = NULL;
1805 
1806 		btrfs_btree_balance_dirty(fs_info);
1807 
1808 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1809 			invalidate_extent_cache(root, &key, &next_key);
1810 	}
1811 
1812 	/*
1813 	 * handle the case only one block in the fs tree need to be
1814 	 * relocated and the block is tree root.
1815 	 */
1816 	leaf = btrfs_lock_root_node(root);
1817 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1818 			      BTRFS_NESTING_COW);
1819 	btrfs_tree_unlock(leaf);
1820 	free_extent_buffer(leaf);
1821 out:
1822 	btrfs_free_path(path);
1823 
1824 	if (ret == 0) {
1825 		ret = insert_dirty_subvol(trans, rc, root);
1826 		if (ret)
1827 			btrfs_abort_transaction(trans, ret);
1828 	}
1829 
1830 	if (trans)
1831 		btrfs_end_transaction_throttle(trans);
1832 
1833 	btrfs_btree_balance_dirty(fs_info);
1834 
1835 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1836 		invalidate_extent_cache(root, &key, &next_key);
1837 
1838 	return ret;
1839 }
1840 
1841 static noinline_for_stack
1842 int prepare_to_merge(struct reloc_control *rc, int err)
1843 {
1844 	struct btrfs_root *root = rc->extent_root;
1845 	struct btrfs_fs_info *fs_info = root->fs_info;
1846 	struct btrfs_root *reloc_root;
1847 	struct btrfs_trans_handle *trans;
1848 	LIST_HEAD(reloc_roots);
1849 	u64 num_bytes = 0;
1850 	int ret;
1851 
1852 	mutex_lock(&fs_info->reloc_mutex);
1853 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1854 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1855 	mutex_unlock(&fs_info->reloc_mutex);
1856 
1857 again:
1858 	if (!err) {
1859 		num_bytes = rc->merging_rsv_size;
1860 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1861 					  BTRFS_RESERVE_FLUSH_ALL);
1862 		if (ret)
1863 			err = ret;
1864 	}
1865 
1866 	trans = btrfs_join_transaction(rc->extent_root);
1867 	if (IS_ERR(trans)) {
1868 		if (!err)
1869 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1870 						num_bytes, NULL);
1871 		return PTR_ERR(trans);
1872 	}
1873 
1874 	if (!err) {
1875 		if (num_bytes != rc->merging_rsv_size) {
1876 			btrfs_end_transaction(trans);
1877 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1878 						num_bytes, NULL);
1879 			goto again;
1880 		}
1881 	}
1882 
1883 	rc->merge_reloc_tree = 1;
1884 
1885 	while (!list_empty(&rc->reloc_roots)) {
1886 		reloc_root = list_entry(rc->reloc_roots.next,
1887 					struct btrfs_root, root_list);
1888 		list_del_init(&reloc_root->root_list);
1889 
1890 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1891 				false);
1892 		if (IS_ERR(root)) {
1893 			/*
1894 			 * Even if we have an error we need this reloc root
1895 			 * back on our list so we can clean up properly.
1896 			 */
1897 			list_add(&reloc_root->root_list, &reloc_roots);
1898 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1899 			if (!err)
1900 				err = PTR_ERR(root);
1901 			break;
1902 		}
1903 		ASSERT(root->reloc_root == reloc_root);
1904 
1905 		/*
1906 		 * set reference count to 1, so btrfs_recover_relocation
1907 		 * knows it should resumes merging
1908 		 */
1909 		if (!err)
1910 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1911 		ret = btrfs_update_reloc_root(trans, root);
1912 
1913 		/*
1914 		 * Even if we have an error we need this reloc root back on our
1915 		 * list so we can clean up properly.
1916 		 */
1917 		list_add(&reloc_root->root_list, &reloc_roots);
1918 		btrfs_put_root(root);
1919 
1920 		if (ret) {
1921 			btrfs_abort_transaction(trans, ret);
1922 			if (!err)
1923 				err = ret;
1924 			break;
1925 		}
1926 	}
1927 
1928 	list_splice(&reloc_roots, &rc->reloc_roots);
1929 
1930 	if (!err)
1931 		err = btrfs_commit_transaction(trans);
1932 	else
1933 		btrfs_end_transaction(trans);
1934 	return err;
1935 }
1936 
1937 static noinline_for_stack
1938 void free_reloc_roots(struct list_head *list)
1939 {
1940 	struct btrfs_root *reloc_root, *tmp;
1941 
1942 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1943 		__del_reloc_root(reloc_root);
1944 }
1945 
1946 static noinline_for_stack
1947 void merge_reloc_roots(struct reloc_control *rc)
1948 {
1949 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1950 	struct btrfs_root *root;
1951 	struct btrfs_root *reloc_root;
1952 	LIST_HEAD(reloc_roots);
1953 	int found = 0;
1954 	int ret = 0;
1955 again:
1956 	root = rc->extent_root;
1957 
1958 	/*
1959 	 * this serializes us with btrfs_record_root_in_transaction,
1960 	 * we have to make sure nobody is in the middle of
1961 	 * adding their roots to the list while we are
1962 	 * doing this splice
1963 	 */
1964 	mutex_lock(&fs_info->reloc_mutex);
1965 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1966 	mutex_unlock(&fs_info->reloc_mutex);
1967 
1968 	while (!list_empty(&reloc_roots)) {
1969 		found = 1;
1970 		reloc_root = list_entry(reloc_roots.next,
1971 					struct btrfs_root, root_list);
1972 
1973 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1974 					 false);
1975 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1976 			if (IS_ERR(root)) {
1977 				/*
1978 				 * For recovery we read the fs roots on mount,
1979 				 * and if we didn't find the root then we marked
1980 				 * the reloc root as a garbage root.  For normal
1981 				 * relocation obviously the root should exist in
1982 				 * memory.  However there's no reason we can't
1983 				 * handle the error properly here just in case.
1984 				 */
1985 				ASSERT(0);
1986 				ret = PTR_ERR(root);
1987 				goto out;
1988 			}
1989 			if (root->reloc_root != reloc_root) {
1990 				/*
1991 				 * This is actually impossible without something
1992 				 * going really wrong (like weird race condition
1993 				 * or cosmic rays).
1994 				 */
1995 				ASSERT(0);
1996 				ret = -EINVAL;
1997 				goto out;
1998 			}
1999 			ret = merge_reloc_root(rc, root);
2000 			btrfs_put_root(root);
2001 			if (ret) {
2002 				if (list_empty(&reloc_root->root_list))
2003 					list_add_tail(&reloc_root->root_list,
2004 						      &reloc_roots);
2005 				goto out;
2006 			}
2007 		} else {
2008 			if (!IS_ERR(root)) {
2009 				if (root->reloc_root == reloc_root) {
2010 					root->reloc_root = NULL;
2011 					btrfs_put_root(reloc_root);
2012 				}
2013 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2014 					  &root->state);
2015 				btrfs_put_root(root);
2016 			}
2017 
2018 			list_del_init(&reloc_root->root_list);
2019 			/* Don't forget to queue this reloc root for cleanup */
2020 			list_add_tail(&reloc_root->reloc_dirty_list,
2021 				      &rc->dirty_subvol_roots);
2022 		}
2023 	}
2024 
2025 	if (found) {
2026 		found = 0;
2027 		goto again;
2028 	}
2029 out:
2030 	if (ret) {
2031 		btrfs_handle_fs_error(fs_info, ret, NULL);
2032 		free_reloc_roots(&reloc_roots);
2033 
2034 		/* new reloc root may be added */
2035 		mutex_lock(&fs_info->reloc_mutex);
2036 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2037 		mutex_unlock(&fs_info->reloc_mutex);
2038 		free_reloc_roots(&reloc_roots);
2039 	}
2040 
2041 	/*
2042 	 * We used to have
2043 	 *
2044 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2045 	 *
2046 	 * here, but it's wrong.  If we fail to start the transaction in
2047 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2048 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2049 	 * fine because we're bailing here, and we hold a reference on the root
2050 	 * for the list that holds it, so these roots will be cleaned up when we
2051 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2052 	 * will be cleaned up on unmount.
2053 	 *
2054 	 * The remaining nodes will be cleaned up by free_reloc_control.
2055 	 */
2056 }
2057 
2058 static void free_block_list(struct rb_root *blocks)
2059 {
2060 	struct tree_block *block;
2061 	struct rb_node *rb_node;
2062 	while ((rb_node = rb_first(blocks))) {
2063 		block = rb_entry(rb_node, struct tree_block, rb_node);
2064 		rb_erase(rb_node, blocks);
2065 		kfree(block);
2066 	}
2067 }
2068 
2069 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2070 				      struct btrfs_root *reloc_root)
2071 {
2072 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2073 	struct btrfs_root *root;
2074 	int ret;
2075 
2076 	if (reloc_root->last_trans == trans->transid)
2077 		return 0;
2078 
2079 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2080 
2081 	/*
2082 	 * This should succeed, since we can't have a reloc root without having
2083 	 * already looked up the actual root and created the reloc root for this
2084 	 * root.
2085 	 *
2086 	 * However if there's some sort of corruption where we have a ref to a
2087 	 * reloc root without a corresponding root this could return ENOENT.
2088 	 */
2089 	if (IS_ERR(root)) {
2090 		ASSERT(0);
2091 		return PTR_ERR(root);
2092 	}
2093 	if (root->reloc_root != reloc_root) {
2094 		ASSERT(0);
2095 		btrfs_err(fs_info,
2096 			  "root %llu has two reloc roots associated with it",
2097 			  reloc_root->root_key.offset);
2098 		btrfs_put_root(root);
2099 		return -EUCLEAN;
2100 	}
2101 	ret = btrfs_record_root_in_trans(trans, root);
2102 	btrfs_put_root(root);
2103 
2104 	return ret;
2105 }
2106 
2107 static noinline_for_stack
2108 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2109 				     struct reloc_control *rc,
2110 				     struct btrfs_backref_node *node,
2111 				     struct btrfs_backref_edge *edges[])
2112 {
2113 	struct btrfs_backref_node *next;
2114 	struct btrfs_root *root;
2115 	int index = 0;
2116 	int ret;
2117 
2118 	next = node;
2119 	while (1) {
2120 		cond_resched();
2121 		next = walk_up_backref(next, edges, &index);
2122 		root = next->root;
2123 
2124 		/*
2125 		 * If there is no root, then our references for this block are
2126 		 * incomplete, as we should be able to walk all the way up to a
2127 		 * block that is owned by a root.
2128 		 *
2129 		 * This path is only for SHAREABLE roots, so if we come upon a
2130 		 * non-SHAREABLE root then we have backrefs that resolve
2131 		 * improperly.
2132 		 *
2133 		 * Both of these cases indicate file system corruption, or a bug
2134 		 * in the backref walking code.
2135 		 */
2136 		if (!root) {
2137 			ASSERT(0);
2138 			btrfs_err(trans->fs_info,
2139 		"bytenr %llu doesn't have a backref path ending in a root",
2140 				  node->bytenr);
2141 			return ERR_PTR(-EUCLEAN);
2142 		}
2143 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2144 			ASSERT(0);
2145 			btrfs_err(trans->fs_info,
2146 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2147 				  node->bytenr);
2148 			return ERR_PTR(-EUCLEAN);
2149 		}
2150 
2151 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2152 			ret = record_reloc_root_in_trans(trans, root);
2153 			if (ret)
2154 				return ERR_PTR(ret);
2155 			break;
2156 		}
2157 
2158 		ret = btrfs_record_root_in_trans(trans, root);
2159 		if (ret)
2160 			return ERR_PTR(ret);
2161 		root = root->reloc_root;
2162 
2163 		/*
2164 		 * We could have raced with another thread which failed, so
2165 		 * root->reloc_root may not be set, return ENOENT in this case.
2166 		 */
2167 		if (!root)
2168 			return ERR_PTR(-ENOENT);
2169 
2170 		if (next->new_bytenr != root->node->start) {
2171 			/*
2172 			 * We just created the reloc root, so we shouldn't have
2173 			 * ->new_bytenr set and this shouldn't be in the changed
2174 			 *  list.  If it is then we have multiple roots pointing
2175 			 *  at the same bytenr which indicates corruption, or
2176 			 *  we've made a mistake in the backref walking code.
2177 			 */
2178 			ASSERT(next->new_bytenr == 0);
2179 			ASSERT(list_empty(&next->list));
2180 			if (next->new_bytenr || !list_empty(&next->list)) {
2181 				btrfs_err(trans->fs_info,
2182 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2183 					  node->bytenr, next->bytenr);
2184 				return ERR_PTR(-EUCLEAN);
2185 			}
2186 
2187 			next->new_bytenr = root->node->start;
2188 			btrfs_put_root(next->root);
2189 			next->root = btrfs_grab_root(root);
2190 			ASSERT(next->root);
2191 			list_add_tail(&next->list,
2192 				      &rc->backref_cache.changed);
2193 			mark_block_processed(rc, next);
2194 			break;
2195 		}
2196 
2197 		WARN_ON(1);
2198 		root = NULL;
2199 		next = walk_down_backref(edges, &index);
2200 		if (!next || next->level <= node->level)
2201 			break;
2202 	}
2203 	if (!root) {
2204 		/*
2205 		 * This can happen if there's fs corruption or if there's a bug
2206 		 * in the backref lookup code.
2207 		 */
2208 		ASSERT(0);
2209 		return ERR_PTR(-ENOENT);
2210 	}
2211 
2212 	next = node;
2213 	/* setup backref node path for btrfs_reloc_cow_block */
2214 	while (1) {
2215 		rc->backref_cache.path[next->level] = next;
2216 		if (--index < 0)
2217 			break;
2218 		next = edges[index]->node[UPPER];
2219 	}
2220 	return root;
2221 }
2222 
2223 /*
2224  * Select a tree root for relocation.
2225  *
2226  * Return NULL if the block is not shareable. We should use do_relocation() in
2227  * this case.
2228  *
2229  * Return a tree root pointer if the block is shareable.
2230  * Return -ENOENT if the block is root of reloc tree.
2231  */
2232 static noinline_for_stack
2233 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2234 {
2235 	struct btrfs_backref_node *next;
2236 	struct btrfs_root *root;
2237 	struct btrfs_root *fs_root = NULL;
2238 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2239 	int index = 0;
2240 
2241 	next = node;
2242 	while (1) {
2243 		cond_resched();
2244 		next = walk_up_backref(next, edges, &index);
2245 		root = next->root;
2246 
2247 		/*
2248 		 * This can occur if we have incomplete extent refs leading all
2249 		 * the way up a particular path, in this case return -EUCLEAN.
2250 		 */
2251 		if (!root)
2252 			return ERR_PTR(-EUCLEAN);
2253 
2254 		/* No other choice for non-shareable tree */
2255 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2256 			return root;
2257 
2258 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2259 			fs_root = root;
2260 
2261 		if (next != node)
2262 			return NULL;
2263 
2264 		next = walk_down_backref(edges, &index);
2265 		if (!next || next->level <= node->level)
2266 			break;
2267 	}
2268 
2269 	if (!fs_root)
2270 		return ERR_PTR(-ENOENT);
2271 	return fs_root;
2272 }
2273 
2274 static noinline_for_stack
2275 u64 calcu_metadata_size(struct reloc_control *rc,
2276 			struct btrfs_backref_node *node, int reserve)
2277 {
2278 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2279 	struct btrfs_backref_node *next = node;
2280 	struct btrfs_backref_edge *edge;
2281 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2282 	u64 num_bytes = 0;
2283 	int index = 0;
2284 
2285 	BUG_ON(reserve && node->processed);
2286 
2287 	while (next) {
2288 		cond_resched();
2289 		while (1) {
2290 			if (next->processed && (reserve || next != node))
2291 				break;
2292 
2293 			num_bytes += fs_info->nodesize;
2294 
2295 			if (list_empty(&next->upper))
2296 				break;
2297 
2298 			edge = list_entry(next->upper.next,
2299 					struct btrfs_backref_edge, list[LOWER]);
2300 			edges[index++] = edge;
2301 			next = edge->node[UPPER];
2302 		}
2303 		next = walk_down_backref(edges, &index);
2304 	}
2305 	return num_bytes;
2306 }
2307 
2308 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2309 				  struct reloc_control *rc,
2310 				  struct btrfs_backref_node *node)
2311 {
2312 	struct btrfs_root *root = rc->extent_root;
2313 	struct btrfs_fs_info *fs_info = root->fs_info;
2314 	u64 num_bytes;
2315 	int ret;
2316 	u64 tmp;
2317 
2318 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2319 
2320 	trans->block_rsv = rc->block_rsv;
2321 	rc->reserved_bytes += num_bytes;
2322 
2323 	/*
2324 	 * We are under a transaction here so we can only do limited flushing.
2325 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2326 	 * transaction and try to refill when we can flush all the things.
2327 	 */
2328 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2329 				     BTRFS_RESERVE_FLUSH_LIMIT);
2330 	if (ret) {
2331 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2332 		while (tmp <= rc->reserved_bytes)
2333 			tmp <<= 1;
2334 		/*
2335 		 * only one thread can access block_rsv at this point,
2336 		 * so we don't need hold lock to protect block_rsv.
2337 		 * we expand more reservation size here to allow enough
2338 		 * space for relocation and we will return earlier in
2339 		 * enospc case.
2340 		 */
2341 		rc->block_rsv->size = tmp + fs_info->nodesize *
2342 				      RELOCATION_RESERVED_NODES;
2343 		return -EAGAIN;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * relocate a block tree, and then update pointers in upper level
2351  * blocks that reference the block to point to the new location.
2352  *
2353  * if called by link_to_upper, the block has already been relocated.
2354  * in that case this function just updates pointers.
2355  */
2356 static int do_relocation(struct btrfs_trans_handle *trans,
2357 			 struct reloc_control *rc,
2358 			 struct btrfs_backref_node *node,
2359 			 struct btrfs_key *key,
2360 			 struct btrfs_path *path, int lowest)
2361 {
2362 	struct btrfs_backref_node *upper;
2363 	struct btrfs_backref_edge *edge;
2364 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2365 	struct btrfs_root *root;
2366 	struct extent_buffer *eb;
2367 	u32 blocksize;
2368 	u64 bytenr;
2369 	int slot;
2370 	int ret = 0;
2371 
2372 	/*
2373 	 * If we are lowest then this is the first time we're processing this
2374 	 * block, and thus shouldn't have an eb associated with it yet.
2375 	 */
2376 	ASSERT(!lowest || !node->eb);
2377 
2378 	path->lowest_level = node->level + 1;
2379 	rc->backref_cache.path[node->level] = node;
2380 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2381 		struct btrfs_ref ref = { 0 };
2382 
2383 		cond_resched();
2384 
2385 		upper = edge->node[UPPER];
2386 		root = select_reloc_root(trans, rc, upper, edges);
2387 		if (IS_ERR(root)) {
2388 			ret = PTR_ERR(root);
2389 			goto next;
2390 		}
2391 
2392 		if (upper->eb && !upper->locked) {
2393 			if (!lowest) {
2394 				ret = btrfs_bin_search(upper->eb, key, &slot);
2395 				if (ret < 0)
2396 					goto next;
2397 				BUG_ON(ret);
2398 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2399 				if (node->eb->start == bytenr)
2400 					goto next;
2401 			}
2402 			btrfs_backref_drop_node_buffer(upper);
2403 		}
2404 
2405 		if (!upper->eb) {
2406 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2407 			if (ret) {
2408 				if (ret > 0)
2409 					ret = -ENOENT;
2410 
2411 				btrfs_release_path(path);
2412 				break;
2413 			}
2414 
2415 			if (!upper->eb) {
2416 				upper->eb = path->nodes[upper->level];
2417 				path->nodes[upper->level] = NULL;
2418 			} else {
2419 				BUG_ON(upper->eb != path->nodes[upper->level]);
2420 			}
2421 
2422 			upper->locked = 1;
2423 			path->locks[upper->level] = 0;
2424 
2425 			slot = path->slots[upper->level];
2426 			btrfs_release_path(path);
2427 		} else {
2428 			ret = btrfs_bin_search(upper->eb, key, &slot);
2429 			if (ret < 0)
2430 				goto next;
2431 			BUG_ON(ret);
2432 		}
2433 
2434 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2435 		if (lowest) {
2436 			if (bytenr != node->bytenr) {
2437 				btrfs_err(root->fs_info,
2438 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2439 					  bytenr, node->bytenr, slot,
2440 					  upper->eb->start);
2441 				ret = -EIO;
2442 				goto next;
2443 			}
2444 		} else {
2445 			if (node->eb->start == bytenr)
2446 				goto next;
2447 		}
2448 
2449 		blocksize = root->fs_info->nodesize;
2450 		eb = btrfs_read_node_slot(upper->eb, slot);
2451 		if (IS_ERR(eb)) {
2452 			ret = PTR_ERR(eb);
2453 			goto next;
2454 		}
2455 		btrfs_tree_lock(eb);
2456 
2457 		if (!node->eb) {
2458 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2459 					      slot, &eb, BTRFS_NESTING_COW);
2460 			btrfs_tree_unlock(eb);
2461 			free_extent_buffer(eb);
2462 			if (ret < 0)
2463 				goto next;
2464 			/*
2465 			 * We've just COWed this block, it should have updated
2466 			 * the correct backref node entry.
2467 			 */
2468 			ASSERT(node->eb == eb);
2469 		} else {
2470 			btrfs_set_node_blockptr(upper->eb, slot,
2471 						node->eb->start);
2472 			btrfs_set_node_ptr_generation(upper->eb, slot,
2473 						      trans->transid);
2474 			btrfs_mark_buffer_dirty(upper->eb);
2475 
2476 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2477 					       node->eb->start, blocksize,
2478 					       upper->eb->start);
2479 			btrfs_init_tree_ref(&ref, node->level,
2480 					    btrfs_header_owner(upper->eb),
2481 					    root->root_key.objectid, false);
2482 			ret = btrfs_inc_extent_ref(trans, &ref);
2483 			if (!ret)
2484 				ret = btrfs_drop_subtree(trans, root, eb,
2485 							 upper->eb);
2486 			if (ret)
2487 				btrfs_abort_transaction(trans, ret);
2488 		}
2489 next:
2490 		if (!upper->pending)
2491 			btrfs_backref_drop_node_buffer(upper);
2492 		else
2493 			btrfs_backref_unlock_node_buffer(upper);
2494 		if (ret)
2495 			break;
2496 	}
2497 
2498 	if (!ret && node->pending) {
2499 		btrfs_backref_drop_node_buffer(node);
2500 		list_move_tail(&node->list, &rc->backref_cache.changed);
2501 		node->pending = 0;
2502 	}
2503 
2504 	path->lowest_level = 0;
2505 
2506 	/*
2507 	 * We should have allocated all of our space in the block rsv and thus
2508 	 * shouldn't ENOSPC.
2509 	 */
2510 	ASSERT(ret != -ENOSPC);
2511 	return ret;
2512 }
2513 
2514 static int link_to_upper(struct btrfs_trans_handle *trans,
2515 			 struct reloc_control *rc,
2516 			 struct btrfs_backref_node *node,
2517 			 struct btrfs_path *path)
2518 {
2519 	struct btrfs_key key;
2520 
2521 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2522 	return do_relocation(trans, rc, node, &key, path, 0);
2523 }
2524 
2525 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2526 				struct reloc_control *rc,
2527 				struct btrfs_path *path, int err)
2528 {
2529 	LIST_HEAD(list);
2530 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2531 	struct btrfs_backref_node *node;
2532 	int level;
2533 	int ret;
2534 
2535 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2536 		while (!list_empty(&cache->pending[level])) {
2537 			node = list_entry(cache->pending[level].next,
2538 					  struct btrfs_backref_node, list);
2539 			list_move_tail(&node->list, &list);
2540 			BUG_ON(!node->pending);
2541 
2542 			if (!err) {
2543 				ret = link_to_upper(trans, rc, node, path);
2544 				if (ret < 0)
2545 					err = ret;
2546 			}
2547 		}
2548 		list_splice_init(&list, &cache->pending[level]);
2549 	}
2550 	return err;
2551 }
2552 
2553 /*
2554  * mark a block and all blocks directly/indirectly reference the block
2555  * as processed.
2556  */
2557 static void update_processed_blocks(struct reloc_control *rc,
2558 				    struct btrfs_backref_node *node)
2559 {
2560 	struct btrfs_backref_node *next = node;
2561 	struct btrfs_backref_edge *edge;
2562 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2563 	int index = 0;
2564 
2565 	while (next) {
2566 		cond_resched();
2567 		while (1) {
2568 			if (next->processed)
2569 				break;
2570 
2571 			mark_block_processed(rc, next);
2572 
2573 			if (list_empty(&next->upper))
2574 				break;
2575 
2576 			edge = list_entry(next->upper.next,
2577 					struct btrfs_backref_edge, list[LOWER]);
2578 			edges[index++] = edge;
2579 			next = edge->node[UPPER];
2580 		}
2581 		next = walk_down_backref(edges, &index);
2582 	}
2583 }
2584 
2585 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2586 {
2587 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2588 
2589 	if (test_range_bit(&rc->processed_blocks, bytenr,
2590 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2591 		return 1;
2592 	return 0;
2593 }
2594 
2595 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2596 			      struct tree_block *block)
2597 {
2598 	struct extent_buffer *eb;
2599 
2600 	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2601 			     block->key.offset, block->level, NULL);
2602 	if (IS_ERR(eb))
2603 		return PTR_ERR(eb);
2604 	if (!extent_buffer_uptodate(eb)) {
2605 		free_extent_buffer(eb);
2606 		return -EIO;
2607 	}
2608 	if (block->level == 0)
2609 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2610 	else
2611 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2612 	free_extent_buffer(eb);
2613 	block->key_ready = 1;
2614 	return 0;
2615 }
2616 
2617 /*
2618  * helper function to relocate a tree block
2619  */
2620 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2621 				struct reloc_control *rc,
2622 				struct btrfs_backref_node *node,
2623 				struct btrfs_key *key,
2624 				struct btrfs_path *path)
2625 {
2626 	struct btrfs_root *root;
2627 	int ret = 0;
2628 
2629 	if (!node)
2630 		return 0;
2631 
2632 	/*
2633 	 * If we fail here we want to drop our backref_node because we are going
2634 	 * to start over and regenerate the tree for it.
2635 	 */
2636 	ret = reserve_metadata_space(trans, rc, node);
2637 	if (ret)
2638 		goto out;
2639 
2640 	BUG_ON(node->processed);
2641 	root = select_one_root(node);
2642 	if (IS_ERR(root)) {
2643 		ret = PTR_ERR(root);
2644 
2645 		/* See explanation in select_one_root for the -EUCLEAN case. */
2646 		ASSERT(ret == -ENOENT);
2647 		if (ret == -ENOENT) {
2648 			ret = 0;
2649 			update_processed_blocks(rc, node);
2650 		}
2651 		goto out;
2652 	}
2653 
2654 	if (root) {
2655 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2656 			/*
2657 			 * This block was the root block of a root, and this is
2658 			 * the first time we're processing the block and thus it
2659 			 * should not have had the ->new_bytenr modified and
2660 			 * should have not been included on the changed list.
2661 			 *
2662 			 * However in the case of corruption we could have
2663 			 * multiple refs pointing to the same block improperly,
2664 			 * and thus we would trip over these checks.  ASSERT()
2665 			 * for the developer case, because it could indicate a
2666 			 * bug in the backref code, however error out for a
2667 			 * normal user in the case of corruption.
2668 			 */
2669 			ASSERT(node->new_bytenr == 0);
2670 			ASSERT(list_empty(&node->list));
2671 			if (node->new_bytenr || !list_empty(&node->list)) {
2672 				btrfs_err(root->fs_info,
2673 				  "bytenr %llu has improper references to it",
2674 					  node->bytenr);
2675 				ret = -EUCLEAN;
2676 				goto out;
2677 			}
2678 			ret = btrfs_record_root_in_trans(trans, root);
2679 			if (ret)
2680 				goto out;
2681 			/*
2682 			 * Another thread could have failed, need to check if we
2683 			 * have reloc_root actually set.
2684 			 */
2685 			if (!root->reloc_root) {
2686 				ret = -ENOENT;
2687 				goto out;
2688 			}
2689 			root = root->reloc_root;
2690 			node->new_bytenr = root->node->start;
2691 			btrfs_put_root(node->root);
2692 			node->root = btrfs_grab_root(root);
2693 			ASSERT(node->root);
2694 			list_add_tail(&node->list, &rc->backref_cache.changed);
2695 		} else {
2696 			path->lowest_level = node->level;
2697 			if (root == root->fs_info->chunk_root)
2698 				btrfs_reserve_chunk_metadata(trans, false);
2699 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2700 			btrfs_release_path(path);
2701 			if (root == root->fs_info->chunk_root)
2702 				btrfs_trans_release_chunk_metadata(trans);
2703 			if (ret > 0)
2704 				ret = 0;
2705 		}
2706 		if (!ret)
2707 			update_processed_blocks(rc, node);
2708 	} else {
2709 		ret = do_relocation(trans, rc, node, key, path, 1);
2710 	}
2711 out:
2712 	if (ret || node->level == 0 || node->cowonly)
2713 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2714 	return ret;
2715 }
2716 
2717 /*
2718  * relocate a list of blocks
2719  */
2720 static noinline_for_stack
2721 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2722 			 struct reloc_control *rc, struct rb_root *blocks)
2723 {
2724 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2725 	struct btrfs_backref_node *node;
2726 	struct btrfs_path *path;
2727 	struct tree_block *block;
2728 	struct tree_block *next;
2729 	int ret;
2730 	int err = 0;
2731 
2732 	path = btrfs_alloc_path();
2733 	if (!path) {
2734 		err = -ENOMEM;
2735 		goto out_free_blocks;
2736 	}
2737 
2738 	/* Kick in readahead for tree blocks with missing keys */
2739 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740 		if (!block->key_ready)
2741 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2742 						   block->owner, 0,
2743 						   block->level);
2744 	}
2745 
2746 	/* Get first keys */
2747 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2748 		if (!block->key_ready) {
2749 			err = get_tree_block_key(fs_info, block);
2750 			if (err)
2751 				goto out_free_path;
2752 		}
2753 	}
2754 
2755 	/* Do tree relocation */
2756 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2757 		node = build_backref_tree(rc, &block->key,
2758 					  block->level, block->bytenr);
2759 		if (IS_ERR(node)) {
2760 			err = PTR_ERR(node);
2761 			goto out;
2762 		}
2763 
2764 		ret = relocate_tree_block(trans, rc, node, &block->key,
2765 					  path);
2766 		if (ret < 0) {
2767 			err = ret;
2768 			break;
2769 		}
2770 	}
2771 out:
2772 	err = finish_pending_nodes(trans, rc, path, err);
2773 
2774 out_free_path:
2775 	btrfs_free_path(path);
2776 out_free_blocks:
2777 	free_block_list(blocks);
2778 	return err;
2779 }
2780 
2781 static noinline_for_stack int prealloc_file_extent_cluster(
2782 				struct btrfs_inode *inode,
2783 				struct file_extent_cluster *cluster)
2784 {
2785 	u64 alloc_hint = 0;
2786 	u64 start;
2787 	u64 end;
2788 	u64 offset = inode->index_cnt;
2789 	u64 num_bytes;
2790 	int nr;
2791 	int ret = 0;
2792 	u64 i_size = i_size_read(&inode->vfs_inode);
2793 	u64 prealloc_start = cluster->start - offset;
2794 	u64 prealloc_end = cluster->end - offset;
2795 	u64 cur_offset = prealloc_start;
2796 
2797 	/*
2798 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2799 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2800 	 * btrfs_do_readpage() call of previously relocated file cluster.
2801 	 *
2802 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2803 	 * will skip the read, and relocate_one_page() will later writeback
2804 	 * the padding zeros as new data, causing data corruption.
2805 	 *
2806 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2807 	 */
2808 	if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2809 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2810 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2811 		const u32 sectorsize = fs_info->sectorsize;
2812 		struct page *page;
2813 
2814 		ASSERT(sectorsize < PAGE_SIZE);
2815 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2816 
2817 		/*
2818 		 * Subpage can't handle page with DIRTY but without UPTODATE
2819 		 * bit as it can lead to the following deadlock:
2820 		 *
2821 		 * btrfs_read_folio()
2822 		 * | Page already *locked*
2823 		 * |- btrfs_lock_and_flush_ordered_range()
2824 		 *    |- btrfs_start_ordered_extent()
2825 		 *       |- extent_write_cache_pages()
2826 		 *          |- lock_page()
2827 		 *             We try to lock the page we already hold.
2828 		 *
2829 		 * Here we just writeback the whole data reloc inode, so that
2830 		 * we will be ensured to have no dirty range in the page, and
2831 		 * are safe to clear the uptodate bits.
2832 		 *
2833 		 * This shouldn't cause too much overhead, as we need to write
2834 		 * the data back anyway.
2835 		 */
2836 		ret = filemap_write_and_wait(mapping);
2837 		if (ret < 0)
2838 			return ret;
2839 
2840 		clear_extent_bits(&inode->io_tree, i_size,
2841 				  round_up(i_size, PAGE_SIZE) - 1,
2842 				  EXTENT_UPTODATE);
2843 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2844 		/*
2845 		 * If page is freed we don't need to do anything then, as we
2846 		 * will re-read the whole page anyway.
2847 		 */
2848 		if (page) {
2849 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2850 					round_up(i_size, PAGE_SIZE) - i_size);
2851 			unlock_page(page);
2852 			put_page(page);
2853 		}
2854 	}
2855 
2856 	BUG_ON(cluster->start != cluster->boundary[0]);
2857 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2858 					      prealloc_end + 1 - prealloc_start);
2859 	if (ret)
2860 		return ret;
2861 
2862 	btrfs_inode_lock(&inode->vfs_inode, 0);
2863 	for (nr = 0; nr < cluster->nr; nr++) {
2864 		start = cluster->boundary[nr] - offset;
2865 		if (nr + 1 < cluster->nr)
2866 			end = cluster->boundary[nr + 1] - 1 - offset;
2867 		else
2868 			end = cluster->end - offset;
2869 
2870 		lock_extent(&inode->io_tree, start, end);
2871 		num_bytes = end + 1 - start;
2872 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2873 						num_bytes, num_bytes,
2874 						end + 1, &alloc_hint);
2875 		cur_offset = end + 1;
2876 		unlock_extent(&inode->io_tree, start, end);
2877 		if (ret)
2878 			break;
2879 	}
2880 	btrfs_inode_unlock(&inode->vfs_inode, 0);
2881 
2882 	if (cur_offset < prealloc_end)
2883 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2884 					       prealloc_end + 1 - cur_offset);
2885 	return ret;
2886 }
2887 
2888 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2889 				u64 start, u64 end, u64 block_start)
2890 {
2891 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2892 	struct extent_map *em;
2893 	int ret = 0;
2894 
2895 	em = alloc_extent_map();
2896 	if (!em)
2897 		return -ENOMEM;
2898 
2899 	em->start = start;
2900 	em->len = end + 1 - start;
2901 	em->block_len = em->len;
2902 	em->block_start = block_start;
2903 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2904 
2905 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2906 	while (1) {
2907 		write_lock(&em_tree->lock);
2908 		ret = add_extent_mapping(em_tree, em, 0);
2909 		write_unlock(&em_tree->lock);
2910 		if (ret != -EEXIST) {
2911 			free_extent_map(em);
2912 			break;
2913 		}
2914 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2915 	}
2916 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2917 	return ret;
2918 }
2919 
2920 /*
2921  * Allow error injection to test balance/relocation cancellation
2922  */
2923 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2924 {
2925 	return atomic_read(&fs_info->balance_cancel_req) ||
2926 		atomic_read(&fs_info->reloc_cancel_req) ||
2927 		fatal_signal_pending(current);
2928 }
2929 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2930 
2931 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2932 				    int cluster_nr)
2933 {
2934 	/* Last extent, use cluster end directly */
2935 	if (cluster_nr >= cluster->nr - 1)
2936 		return cluster->end;
2937 
2938 	/* Use next boundary start*/
2939 	return cluster->boundary[cluster_nr + 1] - 1;
2940 }
2941 
2942 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2943 			     struct file_extent_cluster *cluster,
2944 			     int *cluster_nr, unsigned long page_index)
2945 {
2946 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2947 	u64 offset = BTRFS_I(inode)->index_cnt;
2948 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2949 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2950 	struct page *page;
2951 	u64 page_start;
2952 	u64 page_end;
2953 	u64 cur;
2954 	int ret;
2955 
2956 	ASSERT(page_index <= last_index);
2957 	page = find_lock_page(inode->i_mapping, page_index);
2958 	if (!page) {
2959 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2960 				page_index, last_index + 1 - page_index);
2961 		page = find_or_create_page(inode->i_mapping, page_index, mask);
2962 		if (!page)
2963 			return -ENOMEM;
2964 	}
2965 	ret = set_page_extent_mapped(page);
2966 	if (ret < 0)
2967 		goto release_page;
2968 
2969 	if (PageReadahead(page))
2970 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2971 				page_folio(page), page_index,
2972 				last_index + 1 - page_index);
2973 
2974 	if (!PageUptodate(page)) {
2975 		btrfs_read_folio(NULL, page_folio(page));
2976 		lock_page(page);
2977 		if (!PageUptodate(page)) {
2978 			ret = -EIO;
2979 			goto release_page;
2980 		}
2981 	}
2982 
2983 	page_start = page_offset(page);
2984 	page_end = page_start + PAGE_SIZE - 1;
2985 
2986 	/*
2987 	 * Start from the cluster, as for subpage case, the cluster can start
2988 	 * inside the page.
2989 	 */
2990 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2991 	while (cur <= page_end) {
2992 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2993 		u64 extent_end = get_cluster_boundary_end(cluster,
2994 						*cluster_nr) - offset;
2995 		u64 clamped_start = max(page_start, extent_start);
2996 		u64 clamped_end = min(page_end, extent_end);
2997 		u32 clamped_len = clamped_end + 1 - clamped_start;
2998 
2999 		/* Reserve metadata for this range */
3000 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3001 						      clamped_len, clamped_len,
3002 						      false);
3003 		if (ret)
3004 			goto release_page;
3005 
3006 		/* Mark the range delalloc and dirty for later writeback */
3007 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3008 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3009 						clamped_end, 0, NULL);
3010 		if (ret) {
3011 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3012 					clamped_start, clamped_end,
3013 					EXTENT_LOCKED | EXTENT_BOUNDARY);
3014 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3015 							clamped_len, true);
3016 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3017 						       clamped_len);
3018 			goto release_page;
3019 		}
3020 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3021 
3022 		/*
3023 		 * Set the boundary if it's inside the page.
3024 		 * Data relocation requires the destination extents to have the
3025 		 * same size as the source.
3026 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3027 		 * with previous extent.
3028 		 */
3029 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3030 			     page_start, PAGE_SIZE)) {
3031 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3032 						offset;
3033 			u64 boundary_end = boundary_start +
3034 					   fs_info->sectorsize - 1;
3035 
3036 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3037 					boundary_start, boundary_end,
3038 					EXTENT_BOUNDARY);
3039 		}
3040 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3041 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3042 		cur += clamped_len;
3043 
3044 		/* Crossed extent end, go to next extent */
3045 		if (cur >= extent_end) {
3046 			(*cluster_nr)++;
3047 			/* Just finished the last extent of the cluster, exit. */
3048 			if (*cluster_nr >= cluster->nr)
3049 				break;
3050 		}
3051 	}
3052 	unlock_page(page);
3053 	put_page(page);
3054 
3055 	balance_dirty_pages_ratelimited(inode->i_mapping);
3056 	btrfs_throttle(fs_info);
3057 	if (btrfs_should_cancel_balance(fs_info))
3058 		ret = -ECANCELED;
3059 	return ret;
3060 
3061 release_page:
3062 	unlock_page(page);
3063 	put_page(page);
3064 	return ret;
3065 }
3066 
3067 static int relocate_file_extent_cluster(struct inode *inode,
3068 					struct file_extent_cluster *cluster)
3069 {
3070 	u64 offset = BTRFS_I(inode)->index_cnt;
3071 	unsigned long index;
3072 	unsigned long last_index;
3073 	struct file_ra_state *ra;
3074 	int cluster_nr = 0;
3075 	int ret = 0;
3076 
3077 	if (!cluster->nr)
3078 		return 0;
3079 
3080 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3081 	if (!ra)
3082 		return -ENOMEM;
3083 
3084 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3085 	if (ret)
3086 		goto out;
3087 
3088 	file_ra_state_init(ra, inode->i_mapping);
3089 
3090 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3091 				   cluster->end - offset, cluster->start);
3092 	if (ret)
3093 		goto out;
3094 
3095 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3096 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3097 	     index <= last_index && !ret; index++)
3098 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3099 	if (ret == 0)
3100 		WARN_ON(cluster_nr != cluster->nr);
3101 out:
3102 	kfree(ra);
3103 	return ret;
3104 }
3105 
3106 static noinline_for_stack
3107 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3108 			 struct file_extent_cluster *cluster)
3109 {
3110 	int ret;
3111 
3112 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3113 		ret = relocate_file_extent_cluster(inode, cluster);
3114 		if (ret)
3115 			return ret;
3116 		cluster->nr = 0;
3117 	}
3118 
3119 	if (!cluster->nr)
3120 		cluster->start = extent_key->objectid;
3121 	else
3122 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3123 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3124 	cluster->boundary[cluster->nr] = extent_key->objectid;
3125 	cluster->nr++;
3126 
3127 	if (cluster->nr >= MAX_EXTENTS) {
3128 		ret = relocate_file_extent_cluster(inode, cluster);
3129 		if (ret)
3130 			return ret;
3131 		cluster->nr = 0;
3132 	}
3133 	return 0;
3134 }
3135 
3136 /*
3137  * helper to add a tree block to the list.
3138  * the major work is getting the generation and level of the block
3139  */
3140 static int add_tree_block(struct reloc_control *rc,
3141 			  struct btrfs_key *extent_key,
3142 			  struct btrfs_path *path,
3143 			  struct rb_root *blocks)
3144 {
3145 	struct extent_buffer *eb;
3146 	struct btrfs_extent_item *ei;
3147 	struct btrfs_tree_block_info *bi;
3148 	struct tree_block *block;
3149 	struct rb_node *rb_node;
3150 	u32 item_size;
3151 	int level = -1;
3152 	u64 generation;
3153 	u64 owner = 0;
3154 
3155 	eb =  path->nodes[0];
3156 	item_size = btrfs_item_size(eb, path->slots[0]);
3157 
3158 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3159 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3160 		unsigned long ptr = 0, end;
3161 
3162 		ei = btrfs_item_ptr(eb, path->slots[0],
3163 				struct btrfs_extent_item);
3164 		end = (unsigned long)ei + item_size;
3165 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3166 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3167 			level = btrfs_tree_block_level(eb, bi);
3168 			ptr = (unsigned long)(bi + 1);
3169 		} else {
3170 			level = (int)extent_key->offset;
3171 			ptr = (unsigned long)(ei + 1);
3172 		}
3173 		generation = btrfs_extent_generation(eb, ei);
3174 
3175 		/*
3176 		 * We're reading random blocks without knowing their owner ahead
3177 		 * of time.  This is ok most of the time, as all reloc roots and
3178 		 * fs roots have the same lock type.  However normal trees do
3179 		 * not, and the only way to know ahead of time is to read the
3180 		 * inline ref offset.  We know it's an fs root if
3181 		 *
3182 		 * 1. There's more than one ref.
3183 		 * 2. There's a SHARED_DATA_REF_KEY set.
3184 		 * 3. FULL_BACKREF is set on the flags.
3185 		 *
3186 		 * Otherwise it's safe to assume that the ref offset == the
3187 		 * owner of this block, so we can use that when calling
3188 		 * read_tree_block.
3189 		 */
3190 		if (btrfs_extent_refs(eb, ei) == 1 &&
3191 		    !(btrfs_extent_flags(eb, ei) &
3192 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3193 		    ptr < end) {
3194 			struct btrfs_extent_inline_ref *iref;
3195 			int type;
3196 
3197 			iref = (struct btrfs_extent_inline_ref *)ptr;
3198 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3199 							BTRFS_REF_TYPE_BLOCK);
3200 			if (type == BTRFS_REF_TYPE_INVALID)
3201 				return -EINVAL;
3202 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3203 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3204 		}
3205 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3206 		btrfs_print_v0_err(eb->fs_info);
3207 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3208 		return -EINVAL;
3209 	} else {
3210 		BUG();
3211 	}
3212 
3213 	btrfs_release_path(path);
3214 
3215 	BUG_ON(level == -1);
3216 
3217 	block = kmalloc(sizeof(*block), GFP_NOFS);
3218 	if (!block)
3219 		return -ENOMEM;
3220 
3221 	block->bytenr = extent_key->objectid;
3222 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3223 	block->key.offset = generation;
3224 	block->level = level;
3225 	block->key_ready = 0;
3226 	block->owner = owner;
3227 
3228 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3229 	if (rb_node)
3230 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3231 				    -EEXIST);
3232 
3233 	return 0;
3234 }
3235 
3236 /*
3237  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3238  */
3239 static int __add_tree_block(struct reloc_control *rc,
3240 			    u64 bytenr, u32 blocksize,
3241 			    struct rb_root *blocks)
3242 {
3243 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3244 	struct btrfs_path *path;
3245 	struct btrfs_key key;
3246 	int ret;
3247 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3248 
3249 	if (tree_block_processed(bytenr, rc))
3250 		return 0;
3251 
3252 	if (rb_simple_search(blocks, bytenr))
3253 		return 0;
3254 
3255 	path = btrfs_alloc_path();
3256 	if (!path)
3257 		return -ENOMEM;
3258 again:
3259 	key.objectid = bytenr;
3260 	if (skinny) {
3261 		key.type = BTRFS_METADATA_ITEM_KEY;
3262 		key.offset = (u64)-1;
3263 	} else {
3264 		key.type = BTRFS_EXTENT_ITEM_KEY;
3265 		key.offset = blocksize;
3266 	}
3267 
3268 	path->search_commit_root = 1;
3269 	path->skip_locking = 1;
3270 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3271 	if (ret < 0)
3272 		goto out;
3273 
3274 	if (ret > 0 && skinny) {
3275 		if (path->slots[0]) {
3276 			path->slots[0]--;
3277 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3278 					      path->slots[0]);
3279 			if (key.objectid == bytenr &&
3280 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3281 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3282 			      key.offset == blocksize)))
3283 				ret = 0;
3284 		}
3285 
3286 		if (ret) {
3287 			skinny = false;
3288 			btrfs_release_path(path);
3289 			goto again;
3290 		}
3291 	}
3292 	if (ret) {
3293 		ASSERT(ret == 1);
3294 		btrfs_print_leaf(path->nodes[0]);
3295 		btrfs_err(fs_info,
3296 	     "tree block extent item (%llu) is not found in extent tree",
3297 		     bytenr);
3298 		WARN_ON(1);
3299 		ret = -EINVAL;
3300 		goto out;
3301 	}
3302 
3303 	ret = add_tree_block(rc, &key, path, blocks);
3304 out:
3305 	btrfs_free_path(path);
3306 	return ret;
3307 }
3308 
3309 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3310 				    struct btrfs_block_group *block_group,
3311 				    struct inode *inode,
3312 				    u64 ino)
3313 {
3314 	struct btrfs_root *root = fs_info->tree_root;
3315 	struct btrfs_trans_handle *trans;
3316 	int ret = 0;
3317 
3318 	if (inode)
3319 		goto truncate;
3320 
3321 	inode = btrfs_iget(fs_info->sb, ino, root);
3322 	if (IS_ERR(inode))
3323 		return -ENOENT;
3324 
3325 truncate:
3326 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3327 						 &fs_info->global_block_rsv);
3328 	if (ret)
3329 		goto out;
3330 
3331 	trans = btrfs_join_transaction(root);
3332 	if (IS_ERR(trans)) {
3333 		ret = PTR_ERR(trans);
3334 		goto out;
3335 	}
3336 
3337 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3338 
3339 	btrfs_end_transaction(trans);
3340 	btrfs_btree_balance_dirty(fs_info);
3341 out:
3342 	iput(inode);
3343 	return ret;
3344 }
3345 
3346 /*
3347  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3348  * cache inode, to avoid free space cache data extent blocking data relocation.
3349  */
3350 static int delete_v1_space_cache(struct extent_buffer *leaf,
3351 				 struct btrfs_block_group *block_group,
3352 				 u64 data_bytenr)
3353 {
3354 	u64 space_cache_ino;
3355 	struct btrfs_file_extent_item *ei;
3356 	struct btrfs_key key;
3357 	bool found = false;
3358 	int i;
3359 	int ret;
3360 
3361 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3362 		return 0;
3363 
3364 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3365 		u8 type;
3366 
3367 		btrfs_item_key_to_cpu(leaf, &key, i);
3368 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3369 			continue;
3370 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3371 		type = btrfs_file_extent_type(leaf, ei);
3372 
3373 		if ((type == BTRFS_FILE_EXTENT_REG ||
3374 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3375 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3376 			found = true;
3377 			space_cache_ino = key.objectid;
3378 			break;
3379 		}
3380 	}
3381 	if (!found)
3382 		return -ENOENT;
3383 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3384 					space_cache_ino);
3385 	return ret;
3386 }
3387 
3388 /*
3389  * helper to find all tree blocks that reference a given data extent
3390  */
3391 static noinline_for_stack
3392 int add_data_references(struct reloc_control *rc,
3393 			struct btrfs_key *extent_key,
3394 			struct btrfs_path *path,
3395 			struct rb_root *blocks)
3396 {
3397 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3398 	struct ulist *leaves = NULL;
3399 	struct ulist_iterator leaf_uiter;
3400 	struct ulist_node *ref_node = NULL;
3401 	const u32 blocksize = fs_info->nodesize;
3402 	int ret = 0;
3403 
3404 	btrfs_release_path(path);
3405 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3406 				   0, &leaves, NULL, true);
3407 	if (ret < 0)
3408 		return ret;
3409 
3410 	ULIST_ITER_INIT(&leaf_uiter);
3411 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3412 		struct extent_buffer *eb;
3413 
3414 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3415 		if (IS_ERR(eb)) {
3416 			ret = PTR_ERR(eb);
3417 			break;
3418 		}
3419 		ret = delete_v1_space_cache(eb, rc->block_group,
3420 					    extent_key->objectid);
3421 		free_extent_buffer(eb);
3422 		if (ret < 0)
3423 			break;
3424 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3425 		if (ret < 0)
3426 			break;
3427 	}
3428 	if (ret < 0)
3429 		free_block_list(blocks);
3430 	ulist_free(leaves);
3431 	return ret;
3432 }
3433 
3434 /*
3435  * helper to find next unprocessed extent
3436  */
3437 static noinline_for_stack
3438 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3439 		     struct btrfs_key *extent_key)
3440 {
3441 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3442 	struct btrfs_key key;
3443 	struct extent_buffer *leaf;
3444 	u64 start, end, last;
3445 	int ret;
3446 
3447 	last = rc->block_group->start + rc->block_group->length;
3448 	while (1) {
3449 		cond_resched();
3450 		if (rc->search_start >= last) {
3451 			ret = 1;
3452 			break;
3453 		}
3454 
3455 		key.objectid = rc->search_start;
3456 		key.type = BTRFS_EXTENT_ITEM_KEY;
3457 		key.offset = 0;
3458 
3459 		path->search_commit_root = 1;
3460 		path->skip_locking = 1;
3461 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3462 					0, 0);
3463 		if (ret < 0)
3464 			break;
3465 next:
3466 		leaf = path->nodes[0];
3467 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3468 			ret = btrfs_next_leaf(rc->extent_root, path);
3469 			if (ret != 0)
3470 				break;
3471 			leaf = path->nodes[0];
3472 		}
3473 
3474 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3475 		if (key.objectid >= last) {
3476 			ret = 1;
3477 			break;
3478 		}
3479 
3480 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3481 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3482 			path->slots[0]++;
3483 			goto next;
3484 		}
3485 
3486 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3487 		    key.objectid + key.offset <= rc->search_start) {
3488 			path->slots[0]++;
3489 			goto next;
3490 		}
3491 
3492 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3493 		    key.objectid + fs_info->nodesize <=
3494 		    rc->search_start) {
3495 			path->slots[0]++;
3496 			goto next;
3497 		}
3498 
3499 		ret = find_first_extent_bit(&rc->processed_blocks,
3500 					    key.objectid, &start, &end,
3501 					    EXTENT_DIRTY, NULL);
3502 
3503 		if (ret == 0 && start <= key.objectid) {
3504 			btrfs_release_path(path);
3505 			rc->search_start = end + 1;
3506 		} else {
3507 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3508 				rc->search_start = key.objectid + key.offset;
3509 			else
3510 				rc->search_start = key.objectid +
3511 					fs_info->nodesize;
3512 			memcpy(extent_key, &key, sizeof(key));
3513 			return 0;
3514 		}
3515 	}
3516 	btrfs_release_path(path);
3517 	return ret;
3518 }
3519 
3520 static void set_reloc_control(struct reloc_control *rc)
3521 {
3522 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3523 
3524 	mutex_lock(&fs_info->reloc_mutex);
3525 	fs_info->reloc_ctl = rc;
3526 	mutex_unlock(&fs_info->reloc_mutex);
3527 }
3528 
3529 static void unset_reloc_control(struct reloc_control *rc)
3530 {
3531 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3532 
3533 	mutex_lock(&fs_info->reloc_mutex);
3534 	fs_info->reloc_ctl = NULL;
3535 	mutex_unlock(&fs_info->reloc_mutex);
3536 }
3537 
3538 static noinline_for_stack
3539 int prepare_to_relocate(struct reloc_control *rc)
3540 {
3541 	struct btrfs_trans_handle *trans;
3542 	int ret;
3543 
3544 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3545 					      BTRFS_BLOCK_RSV_TEMP);
3546 	if (!rc->block_rsv)
3547 		return -ENOMEM;
3548 
3549 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3550 	rc->search_start = rc->block_group->start;
3551 	rc->extents_found = 0;
3552 	rc->nodes_relocated = 0;
3553 	rc->merging_rsv_size = 0;
3554 	rc->reserved_bytes = 0;
3555 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3556 			      RELOCATION_RESERVED_NODES;
3557 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3558 				     rc->block_rsv, rc->block_rsv->size,
3559 				     BTRFS_RESERVE_FLUSH_ALL);
3560 	if (ret)
3561 		return ret;
3562 
3563 	rc->create_reloc_tree = 1;
3564 	set_reloc_control(rc);
3565 
3566 	trans = btrfs_join_transaction(rc->extent_root);
3567 	if (IS_ERR(trans)) {
3568 		unset_reloc_control(rc);
3569 		/*
3570 		 * extent tree is not a ref_cow tree and has no reloc_root to
3571 		 * cleanup.  And callers are responsible to free the above
3572 		 * block rsv.
3573 		 */
3574 		return PTR_ERR(trans);
3575 	}
3576 	return btrfs_commit_transaction(trans);
3577 }
3578 
3579 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3580 {
3581 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3582 	struct rb_root blocks = RB_ROOT;
3583 	struct btrfs_key key;
3584 	struct btrfs_trans_handle *trans = NULL;
3585 	struct btrfs_path *path;
3586 	struct btrfs_extent_item *ei;
3587 	u64 flags;
3588 	int ret;
3589 	int err = 0;
3590 	int progress = 0;
3591 
3592 	path = btrfs_alloc_path();
3593 	if (!path)
3594 		return -ENOMEM;
3595 	path->reada = READA_FORWARD;
3596 
3597 	ret = prepare_to_relocate(rc);
3598 	if (ret) {
3599 		err = ret;
3600 		goto out_free;
3601 	}
3602 
3603 	while (1) {
3604 		rc->reserved_bytes = 0;
3605 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3606 					     rc->block_rsv->size,
3607 					     BTRFS_RESERVE_FLUSH_ALL);
3608 		if (ret) {
3609 			err = ret;
3610 			break;
3611 		}
3612 		progress++;
3613 		trans = btrfs_start_transaction(rc->extent_root, 0);
3614 		if (IS_ERR(trans)) {
3615 			err = PTR_ERR(trans);
3616 			trans = NULL;
3617 			break;
3618 		}
3619 restart:
3620 		if (update_backref_cache(trans, &rc->backref_cache)) {
3621 			btrfs_end_transaction(trans);
3622 			trans = NULL;
3623 			continue;
3624 		}
3625 
3626 		ret = find_next_extent(rc, path, &key);
3627 		if (ret < 0)
3628 			err = ret;
3629 		if (ret != 0)
3630 			break;
3631 
3632 		rc->extents_found++;
3633 
3634 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3635 				    struct btrfs_extent_item);
3636 		flags = btrfs_extent_flags(path->nodes[0], ei);
3637 
3638 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3639 			ret = add_tree_block(rc, &key, path, &blocks);
3640 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3641 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3642 			ret = add_data_references(rc, &key, path, &blocks);
3643 		} else {
3644 			btrfs_release_path(path);
3645 			ret = 0;
3646 		}
3647 		if (ret < 0) {
3648 			err = ret;
3649 			break;
3650 		}
3651 
3652 		if (!RB_EMPTY_ROOT(&blocks)) {
3653 			ret = relocate_tree_blocks(trans, rc, &blocks);
3654 			if (ret < 0) {
3655 				if (ret != -EAGAIN) {
3656 					err = ret;
3657 					break;
3658 				}
3659 				rc->extents_found--;
3660 				rc->search_start = key.objectid;
3661 			}
3662 		}
3663 
3664 		btrfs_end_transaction_throttle(trans);
3665 		btrfs_btree_balance_dirty(fs_info);
3666 		trans = NULL;
3667 
3668 		if (rc->stage == MOVE_DATA_EXTENTS &&
3669 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3670 			rc->found_file_extent = 1;
3671 			ret = relocate_data_extent(rc->data_inode,
3672 						   &key, &rc->cluster);
3673 			if (ret < 0) {
3674 				err = ret;
3675 				break;
3676 			}
3677 		}
3678 		if (btrfs_should_cancel_balance(fs_info)) {
3679 			err = -ECANCELED;
3680 			break;
3681 		}
3682 	}
3683 	if (trans && progress && err == -ENOSPC) {
3684 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3685 		if (ret == 1) {
3686 			err = 0;
3687 			progress = 0;
3688 			goto restart;
3689 		}
3690 	}
3691 
3692 	btrfs_release_path(path);
3693 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3694 
3695 	if (trans) {
3696 		btrfs_end_transaction_throttle(trans);
3697 		btrfs_btree_balance_dirty(fs_info);
3698 	}
3699 
3700 	if (!err) {
3701 		ret = relocate_file_extent_cluster(rc->data_inode,
3702 						   &rc->cluster);
3703 		if (ret < 0)
3704 			err = ret;
3705 	}
3706 
3707 	rc->create_reloc_tree = 0;
3708 	set_reloc_control(rc);
3709 
3710 	btrfs_backref_release_cache(&rc->backref_cache);
3711 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3712 
3713 	/*
3714 	 * Even in the case when the relocation is cancelled, we should all go
3715 	 * through prepare_to_merge() and merge_reloc_roots().
3716 	 *
3717 	 * For error (including cancelled balance), prepare_to_merge() will
3718 	 * mark all reloc trees orphan, then queue them for cleanup in
3719 	 * merge_reloc_roots()
3720 	 */
3721 	err = prepare_to_merge(rc, err);
3722 
3723 	merge_reloc_roots(rc);
3724 
3725 	rc->merge_reloc_tree = 0;
3726 	unset_reloc_control(rc);
3727 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3728 
3729 	/* get rid of pinned extents */
3730 	trans = btrfs_join_transaction(rc->extent_root);
3731 	if (IS_ERR(trans)) {
3732 		err = PTR_ERR(trans);
3733 		goto out_free;
3734 	}
3735 	ret = btrfs_commit_transaction(trans);
3736 	if (ret && !err)
3737 		err = ret;
3738 out_free:
3739 	ret = clean_dirty_subvols(rc);
3740 	if (ret < 0 && !err)
3741 		err = ret;
3742 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3743 	btrfs_free_path(path);
3744 	return err;
3745 }
3746 
3747 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3748 				 struct btrfs_root *root, u64 objectid)
3749 {
3750 	struct btrfs_path *path;
3751 	struct btrfs_inode_item *item;
3752 	struct extent_buffer *leaf;
3753 	int ret;
3754 
3755 	path = btrfs_alloc_path();
3756 	if (!path)
3757 		return -ENOMEM;
3758 
3759 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3760 	if (ret)
3761 		goto out;
3762 
3763 	leaf = path->nodes[0];
3764 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3765 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3766 	btrfs_set_inode_generation(leaf, item, 1);
3767 	btrfs_set_inode_size(leaf, item, 0);
3768 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3769 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3770 					  BTRFS_INODE_PREALLOC);
3771 	btrfs_mark_buffer_dirty(leaf);
3772 out:
3773 	btrfs_free_path(path);
3774 	return ret;
3775 }
3776 
3777 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3778 				struct btrfs_root *root, u64 objectid)
3779 {
3780 	struct btrfs_path *path;
3781 	struct btrfs_key key;
3782 	int ret = 0;
3783 
3784 	path = btrfs_alloc_path();
3785 	if (!path) {
3786 		ret = -ENOMEM;
3787 		goto out;
3788 	}
3789 
3790 	key.objectid = objectid;
3791 	key.type = BTRFS_INODE_ITEM_KEY;
3792 	key.offset = 0;
3793 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3794 	if (ret) {
3795 		if (ret > 0)
3796 			ret = -ENOENT;
3797 		goto out;
3798 	}
3799 	ret = btrfs_del_item(trans, root, path);
3800 out:
3801 	if (ret)
3802 		btrfs_abort_transaction(trans, ret);
3803 	btrfs_free_path(path);
3804 }
3805 
3806 /*
3807  * helper to create inode for data relocation.
3808  * the inode is in data relocation tree and its link count is 0
3809  */
3810 static noinline_for_stack
3811 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3812 				 struct btrfs_block_group *group)
3813 {
3814 	struct inode *inode = NULL;
3815 	struct btrfs_trans_handle *trans;
3816 	struct btrfs_root *root;
3817 	u64 objectid;
3818 	int err = 0;
3819 
3820 	root = btrfs_grab_root(fs_info->data_reloc_root);
3821 	trans = btrfs_start_transaction(root, 6);
3822 	if (IS_ERR(trans)) {
3823 		btrfs_put_root(root);
3824 		return ERR_CAST(trans);
3825 	}
3826 
3827 	err = btrfs_get_free_objectid(root, &objectid);
3828 	if (err)
3829 		goto out;
3830 
3831 	err = __insert_orphan_inode(trans, root, objectid);
3832 	if (err)
3833 		goto out;
3834 
3835 	inode = btrfs_iget(fs_info->sb, objectid, root);
3836 	if (IS_ERR(inode)) {
3837 		delete_orphan_inode(trans, root, objectid);
3838 		err = PTR_ERR(inode);
3839 		inode = NULL;
3840 		goto out;
3841 	}
3842 	BTRFS_I(inode)->index_cnt = group->start;
3843 
3844 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3845 out:
3846 	btrfs_put_root(root);
3847 	btrfs_end_transaction(trans);
3848 	btrfs_btree_balance_dirty(fs_info);
3849 	if (err) {
3850 		iput(inode);
3851 		inode = ERR_PTR(err);
3852 	}
3853 	return inode;
3854 }
3855 
3856 /*
3857  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3858  * has been requested meanwhile and don't start in that case.
3859  *
3860  * Return:
3861  *   0             success
3862  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3863  *   -ECANCELED    cancellation request was set before the operation started
3864  */
3865 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3866 {
3867 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3868 		/* This should not happen */
3869 		btrfs_err(fs_info, "reloc already running, cannot start");
3870 		return -EINPROGRESS;
3871 	}
3872 
3873 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3874 		btrfs_info(fs_info, "chunk relocation canceled on start");
3875 		/*
3876 		 * On cancel, clear all requests but let the caller mark
3877 		 * the end after cleanup operations.
3878 		 */
3879 		atomic_set(&fs_info->reloc_cancel_req, 0);
3880 		return -ECANCELED;
3881 	}
3882 	return 0;
3883 }
3884 
3885 /*
3886  * Mark end of chunk relocation that is cancellable and wake any waiters.
3887  */
3888 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3889 {
3890 	/* Requested after start, clear bit first so any waiters can continue */
3891 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3892 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3893 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3894 	atomic_set(&fs_info->reloc_cancel_req, 0);
3895 }
3896 
3897 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3898 {
3899 	struct reloc_control *rc;
3900 
3901 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3902 	if (!rc)
3903 		return NULL;
3904 
3905 	INIT_LIST_HEAD(&rc->reloc_roots);
3906 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3907 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3908 	mapping_tree_init(&rc->reloc_root_tree);
3909 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3910 			    IO_TREE_RELOC_BLOCKS, NULL);
3911 	return rc;
3912 }
3913 
3914 static void free_reloc_control(struct reloc_control *rc)
3915 {
3916 	struct mapping_node *node, *tmp;
3917 
3918 	free_reloc_roots(&rc->reloc_roots);
3919 	rbtree_postorder_for_each_entry_safe(node, tmp,
3920 			&rc->reloc_root_tree.rb_root, rb_node)
3921 		kfree(node);
3922 
3923 	kfree(rc);
3924 }
3925 
3926 /*
3927  * Print the block group being relocated
3928  */
3929 static void describe_relocation(struct btrfs_fs_info *fs_info,
3930 				struct btrfs_block_group *block_group)
3931 {
3932 	char buf[128] = {'\0'};
3933 
3934 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3935 
3936 	btrfs_info(fs_info,
3937 		   "relocating block group %llu flags %s",
3938 		   block_group->start, buf);
3939 }
3940 
3941 static const char *stage_to_string(int stage)
3942 {
3943 	if (stage == MOVE_DATA_EXTENTS)
3944 		return "move data extents";
3945 	if (stage == UPDATE_DATA_PTRS)
3946 		return "update data pointers";
3947 	return "unknown";
3948 }
3949 
3950 /*
3951  * function to relocate all extents in a block group.
3952  */
3953 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3954 {
3955 	struct btrfs_block_group *bg;
3956 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3957 	struct reloc_control *rc;
3958 	struct inode *inode;
3959 	struct btrfs_path *path;
3960 	int ret;
3961 	int rw = 0;
3962 	int err = 0;
3963 
3964 	/*
3965 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3966 	 * cannot allow relocation to start while we're still trying to clean up
3967 	 * these pending deletions.
3968 	 */
3969 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3970 	if (ret)
3971 		return ret;
3972 
3973 	/* We may have been woken up by close_ctree, so bail if we're closing. */
3974 	if (btrfs_fs_closing(fs_info))
3975 		return -EINTR;
3976 
3977 	bg = btrfs_lookup_block_group(fs_info, group_start);
3978 	if (!bg)
3979 		return -ENOENT;
3980 
3981 	/*
3982 	 * Relocation of a data block group creates ordered extents.  Without
3983 	 * sb_start_write(), we can freeze the filesystem while unfinished
3984 	 * ordered extents are left. Such ordered extents can cause a deadlock
3985 	 * e.g. when syncfs() is waiting for their completion but they can't
3986 	 * finish because they block when joining a transaction, due to the
3987 	 * fact that the freeze locks are being held in write mode.
3988 	 */
3989 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
3990 		ASSERT(sb_write_started(fs_info->sb));
3991 
3992 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3993 		btrfs_put_block_group(bg);
3994 		return -ETXTBSY;
3995 	}
3996 
3997 	rc = alloc_reloc_control(fs_info);
3998 	if (!rc) {
3999 		btrfs_put_block_group(bg);
4000 		return -ENOMEM;
4001 	}
4002 
4003 	ret = reloc_chunk_start(fs_info);
4004 	if (ret < 0) {
4005 		err = ret;
4006 		goto out_put_bg;
4007 	}
4008 
4009 	rc->extent_root = extent_root;
4010 	rc->block_group = bg;
4011 
4012 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4013 	if (ret) {
4014 		err = ret;
4015 		goto out;
4016 	}
4017 	rw = 1;
4018 
4019 	path = btrfs_alloc_path();
4020 	if (!path) {
4021 		err = -ENOMEM;
4022 		goto out;
4023 	}
4024 
4025 	inode = lookup_free_space_inode(rc->block_group, path);
4026 	btrfs_free_path(path);
4027 
4028 	if (!IS_ERR(inode))
4029 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4030 	else
4031 		ret = PTR_ERR(inode);
4032 
4033 	if (ret && ret != -ENOENT) {
4034 		err = ret;
4035 		goto out;
4036 	}
4037 
4038 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4039 	if (IS_ERR(rc->data_inode)) {
4040 		err = PTR_ERR(rc->data_inode);
4041 		rc->data_inode = NULL;
4042 		goto out;
4043 	}
4044 
4045 	describe_relocation(fs_info, rc->block_group);
4046 
4047 	btrfs_wait_block_group_reservations(rc->block_group);
4048 	btrfs_wait_nocow_writers(rc->block_group);
4049 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4050 				 rc->block_group->start,
4051 				 rc->block_group->length);
4052 
4053 	ret = btrfs_zone_finish(rc->block_group);
4054 	WARN_ON(ret && ret != -EAGAIN);
4055 
4056 	while (1) {
4057 		int finishes_stage;
4058 
4059 		mutex_lock(&fs_info->cleaner_mutex);
4060 		ret = relocate_block_group(rc);
4061 		mutex_unlock(&fs_info->cleaner_mutex);
4062 		if (ret < 0)
4063 			err = ret;
4064 
4065 		finishes_stage = rc->stage;
4066 		/*
4067 		 * We may have gotten ENOSPC after we already dirtied some
4068 		 * extents.  If writeout happens while we're relocating a
4069 		 * different block group we could end up hitting the
4070 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4071 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4072 		 * properly so we don't trip over this problem, and then break
4073 		 * out of the loop if we hit an error.
4074 		 */
4075 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4076 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4077 						       (u64)-1);
4078 			if (ret)
4079 				err = ret;
4080 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4081 						 0, -1);
4082 			rc->stage = UPDATE_DATA_PTRS;
4083 		}
4084 
4085 		if (err < 0)
4086 			goto out;
4087 
4088 		if (rc->extents_found == 0)
4089 			break;
4090 
4091 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4092 			   rc->extents_found, stage_to_string(finishes_stage));
4093 	}
4094 
4095 	WARN_ON(rc->block_group->pinned > 0);
4096 	WARN_ON(rc->block_group->reserved > 0);
4097 	WARN_ON(rc->block_group->used > 0);
4098 out:
4099 	if (err && rw)
4100 		btrfs_dec_block_group_ro(rc->block_group);
4101 	iput(rc->data_inode);
4102 out_put_bg:
4103 	btrfs_put_block_group(bg);
4104 	reloc_chunk_end(fs_info);
4105 	free_reloc_control(rc);
4106 	return err;
4107 }
4108 
4109 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4110 {
4111 	struct btrfs_fs_info *fs_info = root->fs_info;
4112 	struct btrfs_trans_handle *trans;
4113 	int ret, err;
4114 
4115 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4116 	if (IS_ERR(trans))
4117 		return PTR_ERR(trans);
4118 
4119 	memset(&root->root_item.drop_progress, 0,
4120 		sizeof(root->root_item.drop_progress));
4121 	btrfs_set_root_drop_level(&root->root_item, 0);
4122 	btrfs_set_root_refs(&root->root_item, 0);
4123 	ret = btrfs_update_root(trans, fs_info->tree_root,
4124 				&root->root_key, &root->root_item);
4125 
4126 	err = btrfs_end_transaction(trans);
4127 	if (err)
4128 		return err;
4129 	return ret;
4130 }
4131 
4132 /*
4133  * recover relocation interrupted by system crash.
4134  *
4135  * this function resumes merging reloc trees with corresponding fs trees.
4136  * this is important for keeping the sharing of tree blocks
4137  */
4138 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4139 {
4140 	LIST_HEAD(reloc_roots);
4141 	struct btrfs_key key;
4142 	struct btrfs_root *fs_root;
4143 	struct btrfs_root *reloc_root;
4144 	struct btrfs_path *path;
4145 	struct extent_buffer *leaf;
4146 	struct reloc_control *rc = NULL;
4147 	struct btrfs_trans_handle *trans;
4148 	int ret;
4149 	int err = 0;
4150 
4151 	path = btrfs_alloc_path();
4152 	if (!path)
4153 		return -ENOMEM;
4154 	path->reada = READA_BACK;
4155 
4156 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4157 	key.type = BTRFS_ROOT_ITEM_KEY;
4158 	key.offset = (u64)-1;
4159 
4160 	while (1) {
4161 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4162 					path, 0, 0);
4163 		if (ret < 0) {
4164 			err = ret;
4165 			goto out;
4166 		}
4167 		if (ret > 0) {
4168 			if (path->slots[0] == 0)
4169 				break;
4170 			path->slots[0]--;
4171 		}
4172 		leaf = path->nodes[0];
4173 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4174 		btrfs_release_path(path);
4175 
4176 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4177 		    key.type != BTRFS_ROOT_ITEM_KEY)
4178 			break;
4179 
4180 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4181 		if (IS_ERR(reloc_root)) {
4182 			err = PTR_ERR(reloc_root);
4183 			goto out;
4184 		}
4185 
4186 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4187 		list_add(&reloc_root->root_list, &reloc_roots);
4188 
4189 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4190 			fs_root = btrfs_get_fs_root(fs_info,
4191 					reloc_root->root_key.offset, false);
4192 			if (IS_ERR(fs_root)) {
4193 				ret = PTR_ERR(fs_root);
4194 				if (ret != -ENOENT) {
4195 					err = ret;
4196 					goto out;
4197 				}
4198 				ret = mark_garbage_root(reloc_root);
4199 				if (ret < 0) {
4200 					err = ret;
4201 					goto out;
4202 				}
4203 			} else {
4204 				btrfs_put_root(fs_root);
4205 			}
4206 		}
4207 
4208 		if (key.offset == 0)
4209 			break;
4210 
4211 		key.offset--;
4212 	}
4213 	btrfs_release_path(path);
4214 
4215 	if (list_empty(&reloc_roots))
4216 		goto out;
4217 
4218 	rc = alloc_reloc_control(fs_info);
4219 	if (!rc) {
4220 		err = -ENOMEM;
4221 		goto out;
4222 	}
4223 
4224 	ret = reloc_chunk_start(fs_info);
4225 	if (ret < 0) {
4226 		err = ret;
4227 		goto out_end;
4228 	}
4229 
4230 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4231 
4232 	set_reloc_control(rc);
4233 
4234 	trans = btrfs_join_transaction(rc->extent_root);
4235 	if (IS_ERR(trans)) {
4236 		err = PTR_ERR(trans);
4237 		goto out_unset;
4238 	}
4239 
4240 	rc->merge_reloc_tree = 1;
4241 
4242 	while (!list_empty(&reloc_roots)) {
4243 		reloc_root = list_entry(reloc_roots.next,
4244 					struct btrfs_root, root_list);
4245 		list_del(&reloc_root->root_list);
4246 
4247 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4248 			list_add_tail(&reloc_root->root_list,
4249 				      &rc->reloc_roots);
4250 			continue;
4251 		}
4252 
4253 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4254 					    false);
4255 		if (IS_ERR(fs_root)) {
4256 			err = PTR_ERR(fs_root);
4257 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4258 			btrfs_end_transaction(trans);
4259 			goto out_unset;
4260 		}
4261 
4262 		err = __add_reloc_root(reloc_root);
4263 		ASSERT(err != -EEXIST);
4264 		if (err) {
4265 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4266 			btrfs_put_root(fs_root);
4267 			btrfs_end_transaction(trans);
4268 			goto out_unset;
4269 		}
4270 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4271 		btrfs_put_root(fs_root);
4272 	}
4273 
4274 	err = btrfs_commit_transaction(trans);
4275 	if (err)
4276 		goto out_unset;
4277 
4278 	merge_reloc_roots(rc);
4279 
4280 	unset_reloc_control(rc);
4281 
4282 	trans = btrfs_join_transaction(rc->extent_root);
4283 	if (IS_ERR(trans)) {
4284 		err = PTR_ERR(trans);
4285 		goto out_clean;
4286 	}
4287 	err = btrfs_commit_transaction(trans);
4288 out_clean:
4289 	ret = clean_dirty_subvols(rc);
4290 	if (ret < 0 && !err)
4291 		err = ret;
4292 out_unset:
4293 	unset_reloc_control(rc);
4294 out_end:
4295 	reloc_chunk_end(fs_info);
4296 	free_reloc_control(rc);
4297 out:
4298 	free_reloc_roots(&reloc_roots);
4299 
4300 	btrfs_free_path(path);
4301 
4302 	if (err == 0) {
4303 		/* cleanup orphan inode in data relocation tree */
4304 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4305 		ASSERT(fs_root);
4306 		err = btrfs_orphan_cleanup(fs_root);
4307 		btrfs_put_root(fs_root);
4308 	}
4309 	return err;
4310 }
4311 
4312 /*
4313  * helper to add ordered checksum for data relocation.
4314  *
4315  * cloning checksum properly handles the nodatasum extents.
4316  * it also saves CPU time to re-calculate the checksum.
4317  */
4318 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4319 {
4320 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4321 	struct btrfs_root *csum_root;
4322 	struct btrfs_ordered_sum *sums;
4323 	struct btrfs_ordered_extent *ordered;
4324 	int ret;
4325 	u64 disk_bytenr;
4326 	u64 new_bytenr;
4327 	LIST_HEAD(list);
4328 
4329 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4330 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4331 
4332 	disk_bytenr = file_pos + inode->index_cnt;
4333 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4334 	ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4335 				       disk_bytenr + len - 1, &list, 0);
4336 	if (ret)
4337 		goto out;
4338 
4339 	while (!list_empty(&list)) {
4340 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4341 		list_del_init(&sums->list);
4342 
4343 		/*
4344 		 * We need to offset the new_bytenr based on where the csum is.
4345 		 * We need to do this because we will read in entire prealloc
4346 		 * extents but we may have written to say the middle of the
4347 		 * prealloc extent, so we need to make sure the csum goes with
4348 		 * the right disk offset.
4349 		 *
4350 		 * We can do this because the data reloc inode refers strictly
4351 		 * to the on disk bytes, so we don't have to worry about
4352 		 * disk_len vs real len like with real inodes since it's all
4353 		 * disk length.
4354 		 */
4355 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4356 		sums->bytenr = new_bytenr;
4357 
4358 		btrfs_add_ordered_sum(ordered, sums);
4359 	}
4360 out:
4361 	btrfs_put_ordered_extent(ordered);
4362 	return ret;
4363 }
4364 
4365 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4366 			  struct btrfs_root *root, struct extent_buffer *buf,
4367 			  struct extent_buffer *cow)
4368 {
4369 	struct btrfs_fs_info *fs_info = root->fs_info;
4370 	struct reloc_control *rc;
4371 	struct btrfs_backref_node *node;
4372 	int first_cow = 0;
4373 	int level;
4374 	int ret = 0;
4375 
4376 	rc = fs_info->reloc_ctl;
4377 	if (!rc)
4378 		return 0;
4379 
4380 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4381 
4382 	level = btrfs_header_level(buf);
4383 	if (btrfs_header_generation(buf) <=
4384 	    btrfs_root_last_snapshot(&root->root_item))
4385 		first_cow = 1;
4386 
4387 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4388 	    rc->create_reloc_tree) {
4389 		WARN_ON(!first_cow && level == 0);
4390 
4391 		node = rc->backref_cache.path[level];
4392 		BUG_ON(node->bytenr != buf->start &&
4393 		       node->new_bytenr != buf->start);
4394 
4395 		btrfs_backref_drop_node_buffer(node);
4396 		atomic_inc(&cow->refs);
4397 		node->eb = cow;
4398 		node->new_bytenr = cow->start;
4399 
4400 		if (!node->pending) {
4401 			list_move_tail(&node->list,
4402 				       &rc->backref_cache.pending[level]);
4403 			node->pending = 1;
4404 		}
4405 
4406 		if (first_cow)
4407 			mark_block_processed(rc, node);
4408 
4409 		if (first_cow && level > 0)
4410 			rc->nodes_relocated += buf->len;
4411 	}
4412 
4413 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4414 		ret = replace_file_extents(trans, rc, root, cow);
4415 	return ret;
4416 }
4417 
4418 /*
4419  * called before creating snapshot. it calculates metadata reservation
4420  * required for relocating tree blocks in the snapshot
4421  */
4422 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4423 			      u64 *bytes_to_reserve)
4424 {
4425 	struct btrfs_root *root = pending->root;
4426 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4427 
4428 	if (!rc || !have_reloc_root(root))
4429 		return;
4430 
4431 	if (!rc->merge_reloc_tree)
4432 		return;
4433 
4434 	root = root->reloc_root;
4435 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4436 	/*
4437 	 * relocation is in the stage of merging trees. the space
4438 	 * used by merging a reloc tree is twice the size of
4439 	 * relocated tree nodes in the worst case. half for cowing
4440 	 * the reloc tree, half for cowing the fs tree. the space
4441 	 * used by cowing the reloc tree will be freed after the
4442 	 * tree is dropped. if we create snapshot, cowing the fs
4443 	 * tree may use more space than it frees. so we need
4444 	 * reserve extra space.
4445 	 */
4446 	*bytes_to_reserve += rc->nodes_relocated;
4447 }
4448 
4449 /*
4450  * called after snapshot is created. migrate block reservation
4451  * and create reloc root for the newly created snapshot
4452  *
4453  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4454  * references held on the reloc_root, one for root->reloc_root and one for
4455  * rc->reloc_roots.
4456  */
4457 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4458 			       struct btrfs_pending_snapshot *pending)
4459 {
4460 	struct btrfs_root *root = pending->root;
4461 	struct btrfs_root *reloc_root;
4462 	struct btrfs_root *new_root;
4463 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4464 	int ret;
4465 
4466 	if (!rc || !have_reloc_root(root))
4467 		return 0;
4468 
4469 	rc = root->fs_info->reloc_ctl;
4470 	rc->merging_rsv_size += rc->nodes_relocated;
4471 
4472 	if (rc->merge_reloc_tree) {
4473 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4474 					      rc->block_rsv,
4475 					      rc->nodes_relocated, true);
4476 		if (ret)
4477 			return ret;
4478 	}
4479 
4480 	new_root = pending->snap;
4481 	reloc_root = create_reloc_root(trans, root->reloc_root,
4482 				       new_root->root_key.objectid);
4483 	if (IS_ERR(reloc_root))
4484 		return PTR_ERR(reloc_root);
4485 
4486 	ret = __add_reloc_root(reloc_root);
4487 	ASSERT(ret != -EEXIST);
4488 	if (ret) {
4489 		/* Pairs with create_reloc_root */
4490 		btrfs_put_root(reloc_root);
4491 		return ret;
4492 	}
4493 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4494 
4495 	if (rc->create_reloc_tree)
4496 		ret = clone_backref_node(trans, rc, root, reloc_root);
4497 	return ret;
4498 }
4499