xref: /openbmc/linux/fs/btrfs/relocation.c (revision d623f60d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 
24 /*
25  * backref_node, mapping_node and tree_block start with this
26  */
27 struct tree_entry {
28 	struct rb_node rb_node;
29 	u64 bytenr;
30 };
31 
32 /*
33  * present a tree block in the backref cache
34  */
35 struct backref_node {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 
39 	u64 new_bytenr;
40 	/* objectid of tree block owner, can be not uptodate */
41 	u64 owner;
42 	/* link to pending, changed or detached list */
43 	struct list_head list;
44 	/* list of upper level blocks reference this block */
45 	struct list_head upper;
46 	/* list of child blocks in the cache */
47 	struct list_head lower;
48 	/* NULL if this node is not tree root */
49 	struct btrfs_root *root;
50 	/* extent buffer got by COW the block */
51 	struct extent_buffer *eb;
52 	/* level of tree block */
53 	unsigned int level:8;
54 	/* is the block in non-reference counted tree */
55 	unsigned int cowonly:1;
56 	/* 1 if no child node in the cache */
57 	unsigned int lowest:1;
58 	/* is the extent buffer locked */
59 	unsigned int locked:1;
60 	/* has the block been processed */
61 	unsigned int processed:1;
62 	/* have backrefs of this block been checked */
63 	unsigned int checked:1;
64 	/*
65 	 * 1 if corresponding block has been cowed but some upper
66 	 * level block pointers may not point to the new location
67 	 */
68 	unsigned int pending:1;
69 	/*
70 	 * 1 if the backref node isn't connected to any other
71 	 * backref node.
72 	 */
73 	unsigned int detached:1;
74 };
75 
76 /*
77  * present a block pointer in the backref cache
78  */
79 struct backref_edge {
80 	struct list_head list[2];
81 	struct backref_node *node[2];
82 };
83 
84 #define LOWER	0
85 #define UPPER	1
86 #define RELOCATION_RESERVED_NODES	256
87 
88 struct backref_cache {
89 	/* red black tree of all backref nodes in the cache */
90 	struct rb_root rb_root;
91 	/* for passing backref nodes to btrfs_reloc_cow_block */
92 	struct backref_node *path[BTRFS_MAX_LEVEL];
93 	/*
94 	 * list of blocks that have been cowed but some block
95 	 * pointers in upper level blocks may not reflect the
96 	 * new location
97 	 */
98 	struct list_head pending[BTRFS_MAX_LEVEL];
99 	/* list of backref nodes with no child node */
100 	struct list_head leaves;
101 	/* list of blocks that have been cowed in current transaction */
102 	struct list_head changed;
103 	/* list of detached backref node. */
104 	struct list_head detached;
105 
106 	u64 last_trans;
107 
108 	int nr_nodes;
109 	int nr_edges;
110 };
111 
112 /*
113  * map address of tree root to tree
114  */
115 struct mapping_node {
116 	struct rb_node rb_node;
117 	u64 bytenr;
118 	void *data;
119 };
120 
121 struct mapping_tree {
122 	struct rb_root rb_root;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * present a tree block to process
128  */
129 struct tree_block {
130 	struct rb_node rb_node;
131 	u64 bytenr;
132 	struct btrfs_key key;
133 	unsigned int level:8;
134 	unsigned int key_ready:1;
135 };
136 
137 #define MAX_EXTENTS 128
138 
139 struct file_extent_cluster {
140 	u64 start;
141 	u64 end;
142 	u64 boundary[MAX_EXTENTS];
143 	unsigned int nr;
144 };
145 
146 struct reloc_control {
147 	/* block group to relocate */
148 	struct btrfs_block_group_cache *block_group;
149 	/* extent tree */
150 	struct btrfs_root *extent_root;
151 	/* inode for moving data */
152 	struct inode *data_inode;
153 
154 	struct btrfs_block_rsv *block_rsv;
155 
156 	struct backref_cache backref_cache;
157 
158 	struct file_extent_cluster cluster;
159 	/* tree blocks have been processed */
160 	struct extent_io_tree processed_blocks;
161 	/* map start of tree root to corresponding reloc tree */
162 	struct mapping_tree reloc_root_tree;
163 	/* list of reloc trees */
164 	struct list_head reloc_roots;
165 	/* size of metadata reservation for merging reloc trees */
166 	u64 merging_rsv_size;
167 	/* size of relocated tree nodes */
168 	u64 nodes_relocated;
169 	/* reserved size for block group relocation*/
170 	u64 reserved_bytes;
171 
172 	u64 search_start;
173 	u64 extents_found;
174 
175 	unsigned int stage:8;
176 	unsigned int create_reloc_tree:1;
177 	unsigned int merge_reloc_tree:1;
178 	unsigned int found_file_extent:1;
179 };
180 
181 /* stages of data relocation */
182 #define MOVE_DATA_EXTENTS	0
183 #define UPDATE_DATA_PTRS	1
184 
185 static void remove_backref_node(struct backref_cache *cache,
186 				struct backref_node *node);
187 static void __mark_block_processed(struct reloc_control *rc,
188 				   struct backref_node *node);
189 
190 static void mapping_tree_init(struct mapping_tree *tree)
191 {
192 	tree->rb_root = RB_ROOT;
193 	spin_lock_init(&tree->lock);
194 }
195 
196 static void backref_cache_init(struct backref_cache *cache)
197 {
198 	int i;
199 	cache->rb_root = RB_ROOT;
200 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
201 		INIT_LIST_HEAD(&cache->pending[i]);
202 	INIT_LIST_HEAD(&cache->changed);
203 	INIT_LIST_HEAD(&cache->detached);
204 	INIT_LIST_HEAD(&cache->leaves);
205 }
206 
207 static void backref_cache_cleanup(struct backref_cache *cache)
208 {
209 	struct backref_node *node;
210 	int i;
211 
212 	while (!list_empty(&cache->detached)) {
213 		node = list_entry(cache->detached.next,
214 				  struct backref_node, list);
215 		remove_backref_node(cache, node);
216 	}
217 
218 	while (!list_empty(&cache->leaves)) {
219 		node = list_entry(cache->leaves.next,
220 				  struct backref_node, lower);
221 		remove_backref_node(cache, node);
222 	}
223 
224 	cache->last_trans = 0;
225 
226 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 		ASSERT(list_empty(&cache->pending[i]));
228 	ASSERT(list_empty(&cache->changed));
229 	ASSERT(list_empty(&cache->detached));
230 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
231 	ASSERT(!cache->nr_nodes);
232 	ASSERT(!cache->nr_edges);
233 }
234 
235 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
236 {
237 	struct backref_node *node;
238 
239 	node = kzalloc(sizeof(*node), GFP_NOFS);
240 	if (node) {
241 		INIT_LIST_HEAD(&node->list);
242 		INIT_LIST_HEAD(&node->upper);
243 		INIT_LIST_HEAD(&node->lower);
244 		RB_CLEAR_NODE(&node->rb_node);
245 		cache->nr_nodes++;
246 	}
247 	return node;
248 }
249 
250 static void free_backref_node(struct backref_cache *cache,
251 			      struct backref_node *node)
252 {
253 	if (node) {
254 		cache->nr_nodes--;
255 		kfree(node);
256 	}
257 }
258 
259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
260 {
261 	struct backref_edge *edge;
262 
263 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
264 	if (edge)
265 		cache->nr_edges++;
266 	return edge;
267 }
268 
269 static void free_backref_edge(struct backref_cache *cache,
270 			      struct backref_edge *edge)
271 {
272 	if (edge) {
273 		cache->nr_edges--;
274 		kfree(edge);
275 	}
276 }
277 
278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
279 				   struct rb_node *node)
280 {
281 	struct rb_node **p = &root->rb_node;
282 	struct rb_node *parent = NULL;
283 	struct tree_entry *entry;
284 
285 	while (*p) {
286 		parent = *p;
287 		entry = rb_entry(parent, struct tree_entry, rb_node);
288 
289 		if (bytenr < entry->bytenr)
290 			p = &(*p)->rb_left;
291 		else if (bytenr > entry->bytenr)
292 			p = &(*p)->rb_right;
293 		else
294 			return parent;
295 	}
296 
297 	rb_link_node(node, parent, p);
298 	rb_insert_color(node, root);
299 	return NULL;
300 }
301 
302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
303 {
304 	struct rb_node *n = root->rb_node;
305 	struct tree_entry *entry;
306 
307 	while (n) {
308 		entry = rb_entry(n, struct tree_entry, rb_node);
309 
310 		if (bytenr < entry->bytenr)
311 			n = n->rb_left;
312 		else if (bytenr > entry->bytenr)
313 			n = n->rb_right;
314 		else
315 			return n;
316 	}
317 	return NULL;
318 }
319 
320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 {
322 
323 	struct btrfs_fs_info *fs_info = NULL;
324 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
325 					      rb_node);
326 	if (bnode->root)
327 		fs_info = bnode->root->fs_info;
328 	btrfs_panic(fs_info, errno,
329 		    "Inconsistency in backref cache found at offset %llu",
330 		    bytenr);
331 }
332 
333 /*
334  * walk up backref nodes until reach node presents tree root
335  */
336 static struct backref_node *walk_up_backref(struct backref_node *node,
337 					    struct backref_edge *edges[],
338 					    int *index)
339 {
340 	struct backref_edge *edge;
341 	int idx = *index;
342 
343 	while (!list_empty(&node->upper)) {
344 		edge = list_entry(node->upper.next,
345 				  struct backref_edge, list[LOWER]);
346 		edges[idx++] = edge;
347 		node = edge->node[UPPER];
348 	}
349 	BUG_ON(node->detached);
350 	*index = idx;
351 	return node;
352 }
353 
354 /*
355  * walk down backref nodes to find start of next reference path
356  */
357 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
358 					      int *index)
359 {
360 	struct backref_edge *edge;
361 	struct backref_node *lower;
362 	int idx = *index;
363 
364 	while (idx > 0) {
365 		edge = edges[idx - 1];
366 		lower = edge->node[LOWER];
367 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
368 			idx--;
369 			continue;
370 		}
371 		edge = list_entry(edge->list[LOWER].next,
372 				  struct backref_edge, list[LOWER]);
373 		edges[idx - 1] = edge;
374 		*index = idx;
375 		return edge->node[UPPER];
376 	}
377 	*index = 0;
378 	return NULL;
379 }
380 
381 static void unlock_node_buffer(struct backref_node *node)
382 {
383 	if (node->locked) {
384 		btrfs_tree_unlock(node->eb);
385 		node->locked = 0;
386 	}
387 }
388 
389 static void drop_node_buffer(struct backref_node *node)
390 {
391 	if (node->eb) {
392 		unlock_node_buffer(node);
393 		free_extent_buffer(node->eb);
394 		node->eb = NULL;
395 	}
396 }
397 
398 static void drop_backref_node(struct backref_cache *tree,
399 			      struct backref_node *node)
400 {
401 	BUG_ON(!list_empty(&node->upper));
402 
403 	drop_node_buffer(node);
404 	list_del(&node->list);
405 	list_del(&node->lower);
406 	if (!RB_EMPTY_NODE(&node->rb_node))
407 		rb_erase(&node->rb_node, &tree->rb_root);
408 	free_backref_node(tree, node);
409 }
410 
411 /*
412  * remove a backref node from the backref cache
413  */
414 static void remove_backref_node(struct backref_cache *cache,
415 				struct backref_node *node)
416 {
417 	struct backref_node *upper;
418 	struct backref_edge *edge;
419 
420 	if (!node)
421 		return;
422 
423 	BUG_ON(!node->lowest && !node->detached);
424 	while (!list_empty(&node->upper)) {
425 		edge = list_entry(node->upper.next, struct backref_edge,
426 				  list[LOWER]);
427 		upper = edge->node[UPPER];
428 		list_del(&edge->list[LOWER]);
429 		list_del(&edge->list[UPPER]);
430 		free_backref_edge(cache, edge);
431 
432 		if (RB_EMPTY_NODE(&upper->rb_node)) {
433 			BUG_ON(!list_empty(&node->upper));
434 			drop_backref_node(cache, node);
435 			node = upper;
436 			node->lowest = 1;
437 			continue;
438 		}
439 		/*
440 		 * add the node to leaf node list if no other
441 		 * child block cached.
442 		 */
443 		if (list_empty(&upper->lower)) {
444 			list_add_tail(&upper->lower, &cache->leaves);
445 			upper->lowest = 1;
446 		}
447 	}
448 
449 	drop_backref_node(cache, node);
450 }
451 
452 static void update_backref_node(struct backref_cache *cache,
453 				struct backref_node *node, u64 bytenr)
454 {
455 	struct rb_node *rb_node;
456 	rb_erase(&node->rb_node, &cache->rb_root);
457 	node->bytenr = bytenr;
458 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 	if (rb_node)
460 		backref_tree_panic(rb_node, -EEXIST, bytenr);
461 }
462 
463 /*
464  * update backref cache after a transaction commit
465  */
466 static int update_backref_cache(struct btrfs_trans_handle *trans,
467 				struct backref_cache *cache)
468 {
469 	struct backref_node *node;
470 	int level = 0;
471 
472 	if (cache->last_trans == 0) {
473 		cache->last_trans = trans->transid;
474 		return 0;
475 	}
476 
477 	if (cache->last_trans == trans->transid)
478 		return 0;
479 
480 	/*
481 	 * detached nodes are used to avoid unnecessary backref
482 	 * lookup. transaction commit changes the extent tree.
483 	 * so the detached nodes are no longer useful.
484 	 */
485 	while (!list_empty(&cache->detached)) {
486 		node = list_entry(cache->detached.next,
487 				  struct backref_node, list);
488 		remove_backref_node(cache, node);
489 	}
490 
491 	while (!list_empty(&cache->changed)) {
492 		node = list_entry(cache->changed.next,
493 				  struct backref_node, list);
494 		list_del_init(&node->list);
495 		BUG_ON(node->pending);
496 		update_backref_node(cache, node, node->new_bytenr);
497 	}
498 
499 	/*
500 	 * some nodes can be left in the pending list if there were
501 	 * errors during processing the pending nodes.
502 	 */
503 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
504 		list_for_each_entry(node, &cache->pending[level], list) {
505 			BUG_ON(!node->pending);
506 			if (node->bytenr == node->new_bytenr)
507 				continue;
508 			update_backref_node(cache, node, node->new_bytenr);
509 		}
510 	}
511 
512 	cache->last_trans = 0;
513 	return 1;
514 }
515 
516 
517 static int should_ignore_root(struct btrfs_root *root)
518 {
519 	struct btrfs_root *reloc_root;
520 
521 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 		return 0;
523 
524 	reloc_root = root->reloc_root;
525 	if (!reloc_root)
526 		return 0;
527 
528 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
529 	    root->fs_info->running_transaction->transid - 1)
530 		return 0;
531 	/*
532 	 * if there is reloc tree and it was created in previous
533 	 * transaction backref lookup can find the reloc tree,
534 	 * so backref node for the fs tree root is useless for
535 	 * relocation.
536 	 */
537 	return 1;
538 }
539 /*
540  * find reloc tree by address of tree root
541  */
542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
543 					  u64 bytenr)
544 {
545 	struct rb_node *rb_node;
546 	struct mapping_node *node;
547 	struct btrfs_root *root = NULL;
548 
549 	spin_lock(&rc->reloc_root_tree.lock);
550 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
551 	if (rb_node) {
552 		node = rb_entry(rb_node, struct mapping_node, rb_node);
553 		root = (struct btrfs_root *)node->data;
554 	}
555 	spin_unlock(&rc->reloc_root_tree.lock);
556 	return root;
557 }
558 
559 static int is_cowonly_root(u64 root_objectid)
560 {
561 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
562 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
563 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
564 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
565 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 		return 1;
571 	return 0;
572 }
573 
574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
575 					u64 root_objectid)
576 {
577 	struct btrfs_key key;
578 
579 	key.objectid = root_objectid;
580 	key.type = BTRFS_ROOT_ITEM_KEY;
581 	if (is_cowonly_root(root_objectid))
582 		key.offset = 0;
583 	else
584 		key.offset = (u64)-1;
585 
586 	return btrfs_get_fs_root(fs_info, &key, false);
587 }
588 
589 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
590 static noinline_for_stack
591 struct btrfs_root *find_tree_root(struct reloc_control *rc,
592 				  struct extent_buffer *leaf,
593 				  struct btrfs_extent_ref_v0 *ref0)
594 {
595 	struct btrfs_root *root;
596 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
597 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
598 
599 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
600 
601 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
602 	BUG_ON(IS_ERR(root));
603 
604 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
605 	    generation != btrfs_root_generation(&root->root_item))
606 		return NULL;
607 
608 	return root;
609 }
610 #endif
611 
612 static noinline_for_stack
613 int find_inline_backref(struct extent_buffer *leaf, int slot,
614 			unsigned long *ptr, unsigned long *end)
615 {
616 	struct btrfs_key key;
617 	struct btrfs_extent_item *ei;
618 	struct btrfs_tree_block_info *bi;
619 	u32 item_size;
620 
621 	btrfs_item_key_to_cpu(leaf, &key, slot);
622 
623 	item_size = btrfs_item_size_nr(leaf, slot);
624 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
625 	if (item_size < sizeof(*ei)) {
626 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
627 		return 1;
628 	}
629 #endif
630 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
631 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
632 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
633 
634 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
635 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
636 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
637 		return 1;
638 	}
639 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
640 	    item_size <= sizeof(*ei)) {
641 		WARN_ON(item_size < sizeof(*ei));
642 		return 1;
643 	}
644 
645 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
646 		bi = (struct btrfs_tree_block_info *)(ei + 1);
647 		*ptr = (unsigned long)(bi + 1);
648 	} else {
649 		*ptr = (unsigned long)(ei + 1);
650 	}
651 	*end = (unsigned long)ei + item_size;
652 	return 0;
653 }
654 
655 /*
656  * build backref tree for a given tree block. root of the backref tree
657  * corresponds the tree block, leaves of the backref tree correspond
658  * roots of b-trees that reference the tree block.
659  *
660  * the basic idea of this function is check backrefs of a given block
661  * to find upper level blocks that reference the block, and then check
662  * backrefs of these upper level blocks recursively. the recursion stop
663  * when tree root is reached or backrefs for the block is cached.
664  *
665  * NOTE: if we find backrefs for a block are cached, we know backrefs
666  * for all upper level blocks that directly/indirectly reference the
667  * block are also cached.
668  */
669 static noinline_for_stack
670 struct backref_node *build_backref_tree(struct reloc_control *rc,
671 					struct btrfs_key *node_key,
672 					int level, u64 bytenr)
673 {
674 	struct backref_cache *cache = &rc->backref_cache;
675 	struct btrfs_path *path1;
676 	struct btrfs_path *path2;
677 	struct extent_buffer *eb;
678 	struct btrfs_root *root;
679 	struct backref_node *cur;
680 	struct backref_node *upper;
681 	struct backref_node *lower;
682 	struct backref_node *node = NULL;
683 	struct backref_node *exist = NULL;
684 	struct backref_edge *edge;
685 	struct rb_node *rb_node;
686 	struct btrfs_key key;
687 	unsigned long end;
688 	unsigned long ptr;
689 	LIST_HEAD(list);
690 	LIST_HEAD(useless);
691 	int cowonly;
692 	int ret;
693 	int err = 0;
694 	bool need_check = true;
695 
696 	path1 = btrfs_alloc_path();
697 	path2 = btrfs_alloc_path();
698 	if (!path1 || !path2) {
699 		err = -ENOMEM;
700 		goto out;
701 	}
702 	path1->reada = READA_FORWARD;
703 	path2->reada = READA_FORWARD;
704 
705 	node = alloc_backref_node(cache);
706 	if (!node) {
707 		err = -ENOMEM;
708 		goto out;
709 	}
710 
711 	node->bytenr = bytenr;
712 	node->level = level;
713 	node->lowest = 1;
714 	cur = node;
715 again:
716 	end = 0;
717 	ptr = 0;
718 	key.objectid = cur->bytenr;
719 	key.type = BTRFS_METADATA_ITEM_KEY;
720 	key.offset = (u64)-1;
721 
722 	path1->search_commit_root = 1;
723 	path1->skip_locking = 1;
724 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
725 				0, 0);
726 	if (ret < 0) {
727 		err = ret;
728 		goto out;
729 	}
730 	ASSERT(ret);
731 	ASSERT(path1->slots[0]);
732 
733 	path1->slots[0]--;
734 
735 	WARN_ON(cur->checked);
736 	if (!list_empty(&cur->upper)) {
737 		/*
738 		 * the backref was added previously when processing
739 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
740 		 */
741 		ASSERT(list_is_singular(&cur->upper));
742 		edge = list_entry(cur->upper.next, struct backref_edge,
743 				  list[LOWER]);
744 		ASSERT(list_empty(&edge->list[UPPER]));
745 		exist = edge->node[UPPER];
746 		/*
747 		 * add the upper level block to pending list if we need
748 		 * check its backrefs
749 		 */
750 		if (!exist->checked)
751 			list_add_tail(&edge->list[UPPER], &list);
752 	} else {
753 		exist = NULL;
754 	}
755 
756 	while (1) {
757 		cond_resched();
758 		eb = path1->nodes[0];
759 
760 		if (ptr >= end) {
761 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
762 				ret = btrfs_next_leaf(rc->extent_root, path1);
763 				if (ret < 0) {
764 					err = ret;
765 					goto out;
766 				}
767 				if (ret > 0)
768 					break;
769 				eb = path1->nodes[0];
770 			}
771 
772 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
773 			if (key.objectid != cur->bytenr) {
774 				WARN_ON(exist);
775 				break;
776 			}
777 
778 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
779 			    key.type == BTRFS_METADATA_ITEM_KEY) {
780 				ret = find_inline_backref(eb, path1->slots[0],
781 							  &ptr, &end);
782 				if (ret)
783 					goto next;
784 			}
785 		}
786 
787 		if (ptr < end) {
788 			/* update key for inline back ref */
789 			struct btrfs_extent_inline_ref *iref;
790 			int type;
791 			iref = (struct btrfs_extent_inline_ref *)ptr;
792 			type = btrfs_get_extent_inline_ref_type(eb, iref,
793 							BTRFS_REF_TYPE_BLOCK);
794 			if (type == BTRFS_REF_TYPE_INVALID) {
795 				err = -EINVAL;
796 				goto out;
797 			}
798 			key.type = type;
799 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
800 
801 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
802 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
803 		}
804 
805 		if (exist &&
806 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
807 		      exist->owner == key.offset) ||
808 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
809 		      exist->bytenr == key.offset))) {
810 			exist = NULL;
811 			goto next;
812 		}
813 
814 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
815 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
816 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
817 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
818 				struct btrfs_extent_ref_v0 *ref0;
819 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
820 						struct btrfs_extent_ref_v0);
821 				if (key.objectid == key.offset) {
822 					root = find_tree_root(rc, eb, ref0);
823 					if (root && !should_ignore_root(root))
824 						cur->root = root;
825 					else
826 						list_add(&cur->list, &useless);
827 					break;
828 				}
829 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
830 								      ref0)))
831 					cur->cowonly = 1;
832 			}
833 #else
834 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
835 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
836 #endif
837 			if (key.objectid == key.offset) {
838 				/*
839 				 * only root blocks of reloc trees use
840 				 * backref of this type.
841 				 */
842 				root = find_reloc_root(rc, cur->bytenr);
843 				ASSERT(root);
844 				cur->root = root;
845 				break;
846 			}
847 
848 			edge = alloc_backref_edge(cache);
849 			if (!edge) {
850 				err = -ENOMEM;
851 				goto out;
852 			}
853 			rb_node = tree_search(&cache->rb_root, key.offset);
854 			if (!rb_node) {
855 				upper = alloc_backref_node(cache);
856 				if (!upper) {
857 					free_backref_edge(cache, edge);
858 					err = -ENOMEM;
859 					goto out;
860 				}
861 				upper->bytenr = key.offset;
862 				upper->level = cur->level + 1;
863 				/*
864 				 *  backrefs for the upper level block isn't
865 				 *  cached, add the block to pending list
866 				 */
867 				list_add_tail(&edge->list[UPPER], &list);
868 			} else {
869 				upper = rb_entry(rb_node, struct backref_node,
870 						 rb_node);
871 				ASSERT(upper->checked);
872 				INIT_LIST_HEAD(&edge->list[UPPER]);
873 			}
874 			list_add_tail(&edge->list[LOWER], &cur->upper);
875 			edge->node[LOWER] = cur;
876 			edge->node[UPPER] = upper;
877 
878 			goto next;
879 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
880 			goto next;
881 		}
882 
883 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
884 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
885 		if (IS_ERR(root)) {
886 			err = PTR_ERR(root);
887 			goto out;
888 		}
889 
890 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
891 			cur->cowonly = 1;
892 
893 		if (btrfs_root_level(&root->root_item) == cur->level) {
894 			/* tree root */
895 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
896 			       cur->bytenr);
897 			if (should_ignore_root(root))
898 				list_add(&cur->list, &useless);
899 			else
900 				cur->root = root;
901 			break;
902 		}
903 
904 		level = cur->level + 1;
905 
906 		/*
907 		 * searching the tree to find upper level blocks
908 		 * reference the block.
909 		 */
910 		path2->search_commit_root = 1;
911 		path2->skip_locking = 1;
912 		path2->lowest_level = level;
913 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
914 		path2->lowest_level = 0;
915 		if (ret < 0) {
916 			err = ret;
917 			goto out;
918 		}
919 		if (ret > 0 && path2->slots[level] > 0)
920 			path2->slots[level]--;
921 
922 		eb = path2->nodes[level];
923 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
924 		    cur->bytenr) {
925 			btrfs_err(root->fs_info,
926 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
927 				  cur->bytenr, level - 1, root->objectid,
928 				  node_key->objectid, node_key->type,
929 				  node_key->offset);
930 			err = -ENOENT;
931 			goto out;
932 		}
933 		lower = cur;
934 		need_check = true;
935 		for (; level < BTRFS_MAX_LEVEL; level++) {
936 			if (!path2->nodes[level]) {
937 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
938 				       lower->bytenr);
939 				if (should_ignore_root(root))
940 					list_add(&lower->list, &useless);
941 				else
942 					lower->root = root;
943 				break;
944 			}
945 
946 			edge = alloc_backref_edge(cache);
947 			if (!edge) {
948 				err = -ENOMEM;
949 				goto out;
950 			}
951 
952 			eb = path2->nodes[level];
953 			rb_node = tree_search(&cache->rb_root, eb->start);
954 			if (!rb_node) {
955 				upper = alloc_backref_node(cache);
956 				if (!upper) {
957 					free_backref_edge(cache, edge);
958 					err = -ENOMEM;
959 					goto out;
960 				}
961 				upper->bytenr = eb->start;
962 				upper->owner = btrfs_header_owner(eb);
963 				upper->level = lower->level + 1;
964 				if (!test_bit(BTRFS_ROOT_REF_COWS,
965 					      &root->state))
966 					upper->cowonly = 1;
967 
968 				/*
969 				 * if we know the block isn't shared
970 				 * we can void checking its backrefs.
971 				 */
972 				if (btrfs_block_can_be_shared(root, eb))
973 					upper->checked = 0;
974 				else
975 					upper->checked = 1;
976 
977 				/*
978 				 * add the block to pending list if we
979 				 * need check its backrefs, we only do this once
980 				 * while walking up a tree as we will catch
981 				 * anything else later on.
982 				 */
983 				if (!upper->checked && need_check) {
984 					need_check = false;
985 					list_add_tail(&edge->list[UPPER],
986 						      &list);
987 				} else {
988 					if (upper->checked)
989 						need_check = true;
990 					INIT_LIST_HEAD(&edge->list[UPPER]);
991 				}
992 			} else {
993 				upper = rb_entry(rb_node, struct backref_node,
994 						 rb_node);
995 				ASSERT(upper->checked);
996 				INIT_LIST_HEAD(&edge->list[UPPER]);
997 				if (!upper->owner)
998 					upper->owner = btrfs_header_owner(eb);
999 			}
1000 			list_add_tail(&edge->list[LOWER], &lower->upper);
1001 			edge->node[LOWER] = lower;
1002 			edge->node[UPPER] = upper;
1003 
1004 			if (rb_node)
1005 				break;
1006 			lower = upper;
1007 			upper = NULL;
1008 		}
1009 		btrfs_release_path(path2);
1010 next:
1011 		if (ptr < end) {
1012 			ptr += btrfs_extent_inline_ref_size(key.type);
1013 			if (ptr >= end) {
1014 				WARN_ON(ptr > end);
1015 				ptr = 0;
1016 				end = 0;
1017 			}
1018 		}
1019 		if (ptr >= end)
1020 			path1->slots[0]++;
1021 	}
1022 	btrfs_release_path(path1);
1023 
1024 	cur->checked = 1;
1025 	WARN_ON(exist);
1026 
1027 	/* the pending list isn't empty, take the first block to process */
1028 	if (!list_empty(&list)) {
1029 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1030 		list_del_init(&edge->list[UPPER]);
1031 		cur = edge->node[UPPER];
1032 		goto again;
1033 	}
1034 
1035 	/*
1036 	 * everything goes well, connect backref nodes and insert backref nodes
1037 	 * into the cache.
1038 	 */
1039 	ASSERT(node->checked);
1040 	cowonly = node->cowonly;
1041 	if (!cowonly) {
1042 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1043 				      &node->rb_node);
1044 		if (rb_node)
1045 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1046 		list_add_tail(&node->lower, &cache->leaves);
1047 	}
1048 
1049 	list_for_each_entry(edge, &node->upper, list[LOWER])
1050 		list_add_tail(&edge->list[UPPER], &list);
1051 
1052 	while (!list_empty(&list)) {
1053 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1054 		list_del_init(&edge->list[UPPER]);
1055 		upper = edge->node[UPPER];
1056 		if (upper->detached) {
1057 			list_del(&edge->list[LOWER]);
1058 			lower = edge->node[LOWER];
1059 			free_backref_edge(cache, edge);
1060 			if (list_empty(&lower->upper))
1061 				list_add(&lower->list, &useless);
1062 			continue;
1063 		}
1064 
1065 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1066 			if (upper->lowest) {
1067 				list_del_init(&upper->lower);
1068 				upper->lowest = 0;
1069 			}
1070 
1071 			list_add_tail(&edge->list[UPPER], &upper->lower);
1072 			continue;
1073 		}
1074 
1075 		if (!upper->checked) {
1076 			/*
1077 			 * Still want to blow up for developers since this is a
1078 			 * logic bug.
1079 			 */
1080 			ASSERT(0);
1081 			err = -EINVAL;
1082 			goto out;
1083 		}
1084 		if (cowonly != upper->cowonly) {
1085 			ASSERT(0);
1086 			err = -EINVAL;
1087 			goto out;
1088 		}
1089 
1090 		if (!cowonly) {
1091 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1092 					      &upper->rb_node);
1093 			if (rb_node)
1094 				backref_tree_panic(rb_node, -EEXIST,
1095 						   upper->bytenr);
1096 		}
1097 
1098 		list_add_tail(&edge->list[UPPER], &upper->lower);
1099 
1100 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1101 			list_add_tail(&edge->list[UPPER], &list);
1102 	}
1103 	/*
1104 	 * process useless backref nodes. backref nodes for tree leaves
1105 	 * are deleted from the cache. backref nodes for upper level
1106 	 * tree blocks are left in the cache to avoid unnecessary backref
1107 	 * lookup.
1108 	 */
1109 	while (!list_empty(&useless)) {
1110 		upper = list_entry(useless.next, struct backref_node, list);
1111 		list_del_init(&upper->list);
1112 		ASSERT(list_empty(&upper->upper));
1113 		if (upper == node)
1114 			node = NULL;
1115 		if (upper->lowest) {
1116 			list_del_init(&upper->lower);
1117 			upper->lowest = 0;
1118 		}
1119 		while (!list_empty(&upper->lower)) {
1120 			edge = list_entry(upper->lower.next,
1121 					  struct backref_edge, list[UPPER]);
1122 			list_del(&edge->list[UPPER]);
1123 			list_del(&edge->list[LOWER]);
1124 			lower = edge->node[LOWER];
1125 			free_backref_edge(cache, edge);
1126 
1127 			if (list_empty(&lower->upper))
1128 				list_add(&lower->list, &useless);
1129 		}
1130 		__mark_block_processed(rc, upper);
1131 		if (upper->level > 0) {
1132 			list_add(&upper->list, &cache->detached);
1133 			upper->detached = 1;
1134 		} else {
1135 			rb_erase(&upper->rb_node, &cache->rb_root);
1136 			free_backref_node(cache, upper);
1137 		}
1138 	}
1139 out:
1140 	btrfs_free_path(path1);
1141 	btrfs_free_path(path2);
1142 	if (err) {
1143 		while (!list_empty(&useless)) {
1144 			lower = list_entry(useless.next,
1145 					   struct backref_node, list);
1146 			list_del_init(&lower->list);
1147 		}
1148 		while (!list_empty(&list)) {
1149 			edge = list_first_entry(&list, struct backref_edge,
1150 						list[UPPER]);
1151 			list_del(&edge->list[UPPER]);
1152 			list_del(&edge->list[LOWER]);
1153 			lower = edge->node[LOWER];
1154 			upper = edge->node[UPPER];
1155 			free_backref_edge(cache, edge);
1156 
1157 			/*
1158 			 * Lower is no longer linked to any upper backref nodes
1159 			 * and isn't in the cache, we can free it ourselves.
1160 			 */
1161 			if (list_empty(&lower->upper) &&
1162 			    RB_EMPTY_NODE(&lower->rb_node))
1163 				list_add(&lower->list, &useless);
1164 
1165 			if (!RB_EMPTY_NODE(&upper->rb_node))
1166 				continue;
1167 
1168 			/* Add this guy's upper edges to the list to process */
1169 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1170 				list_add_tail(&edge->list[UPPER], &list);
1171 			if (list_empty(&upper->upper))
1172 				list_add(&upper->list, &useless);
1173 		}
1174 
1175 		while (!list_empty(&useless)) {
1176 			lower = list_entry(useless.next,
1177 					   struct backref_node, list);
1178 			list_del_init(&lower->list);
1179 			if (lower == node)
1180 				node = NULL;
1181 			free_backref_node(cache, lower);
1182 		}
1183 
1184 		free_backref_node(cache, node);
1185 		return ERR_PTR(err);
1186 	}
1187 	ASSERT(!node || !node->detached);
1188 	return node;
1189 }
1190 
1191 /*
1192  * helper to add backref node for the newly created snapshot.
1193  * the backref node is created by cloning backref node that
1194  * corresponds to root of source tree
1195  */
1196 static int clone_backref_node(struct btrfs_trans_handle *trans,
1197 			      struct reloc_control *rc,
1198 			      struct btrfs_root *src,
1199 			      struct btrfs_root *dest)
1200 {
1201 	struct btrfs_root *reloc_root = src->reloc_root;
1202 	struct backref_cache *cache = &rc->backref_cache;
1203 	struct backref_node *node = NULL;
1204 	struct backref_node *new_node;
1205 	struct backref_edge *edge;
1206 	struct backref_edge *new_edge;
1207 	struct rb_node *rb_node;
1208 
1209 	if (cache->last_trans > 0)
1210 		update_backref_cache(trans, cache);
1211 
1212 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1213 	if (rb_node) {
1214 		node = rb_entry(rb_node, struct backref_node, rb_node);
1215 		if (node->detached)
1216 			node = NULL;
1217 		else
1218 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1219 	}
1220 
1221 	if (!node) {
1222 		rb_node = tree_search(&cache->rb_root,
1223 				      reloc_root->commit_root->start);
1224 		if (rb_node) {
1225 			node = rb_entry(rb_node, struct backref_node,
1226 					rb_node);
1227 			BUG_ON(node->detached);
1228 		}
1229 	}
1230 
1231 	if (!node)
1232 		return 0;
1233 
1234 	new_node = alloc_backref_node(cache);
1235 	if (!new_node)
1236 		return -ENOMEM;
1237 
1238 	new_node->bytenr = dest->node->start;
1239 	new_node->level = node->level;
1240 	new_node->lowest = node->lowest;
1241 	new_node->checked = 1;
1242 	new_node->root = dest;
1243 
1244 	if (!node->lowest) {
1245 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1246 			new_edge = alloc_backref_edge(cache);
1247 			if (!new_edge)
1248 				goto fail;
1249 
1250 			new_edge->node[UPPER] = new_node;
1251 			new_edge->node[LOWER] = edge->node[LOWER];
1252 			list_add_tail(&new_edge->list[UPPER],
1253 				      &new_node->lower);
1254 		}
1255 	} else {
1256 		list_add_tail(&new_node->lower, &cache->leaves);
1257 	}
1258 
1259 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1260 			      &new_node->rb_node);
1261 	if (rb_node)
1262 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1263 
1264 	if (!new_node->lowest) {
1265 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1266 			list_add_tail(&new_edge->list[LOWER],
1267 				      &new_edge->node[LOWER]->upper);
1268 		}
1269 	}
1270 	return 0;
1271 fail:
1272 	while (!list_empty(&new_node->lower)) {
1273 		new_edge = list_entry(new_node->lower.next,
1274 				      struct backref_edge, list[UPPER]);
1275 		list_del(&new_edge->list[UPPER]);
1276 		free_backref_edge(cache, new_edge);
1277 	}
1278 	free_backref_node(cache, new_node);
1279 	return -ENOMEM;
1280 }
1281 
1282 /*
1283  * helper to add 'address of tree root -> reloc tree' mapping
1284  */
1285 static int __must_check __add_reloc_root(struct btrfs_root *root)
1286 {
1287 	struct btrfs_fs_info *fs_info = root->fs_info;
1288 	struct rb_node *rb_node;
1289 	struct mapping_node *node;
1290 	struct reloc_control *rc = fs_info->reloc_ctl;
1291 
1292 	node = kmalloc(sizeof(*node), GFP_NOFS);
1293 	if (!node)
1294 		return -ENOMEM;
1295 
1296 	node->bytenr = root->node->start;
1297 	node->data = root;
1298 
1299 	spin_lock(&rc->reloc_root_tree.lock);
1300 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1301 			      node->bytenr, &node->rb_node);
1302 	spin_unlock(&rc->reloc_root_tree.lock);
1303 	if (rb_node) {
1304 		btrfs_panic(fs_info, -EEXIST,
1305 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1306 			    node->bytenr);
1307 	}
1308 
1309 	list_add_tail(&root->root_list, &rc->reloc_roots);
1310 	return 0;
1311 }
1312 
1313 /*
1314  * helper to delete the 'address of tree root -> reloc tree'
1315  * mapping
1316  */
1317 static void __del_reloc_root(struct btrfs_root *root)
1318 {
1319 	struct btrfs_fs_info *fs_info = root->fs_info;
1320 	struct rb_node *rb_node;
1321 	struct mapping_node *node = NULL;
1322 	struct reloc_control *rc = fs_info->reloc_ctl;
1323 
1324 	spin_lock(&rc->reloc_root_tree.lock);
1325 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1326 			      root->node->start);
1327 	if (rb_node) {
1328 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1329 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1330 	}
1331 	spin_unlock(&rc->reloc_root_tree.lock);
1332 
1333 	if (!node)
1334 		return;
1335 	BUG_ON((struct btrfs_root *)node->data != root);
1336 
1337 	spin_lock(&fs_info->trans_lock);
1338 	list_del_init(&root->root_list);
1339 	spin_unlock(&fs_info->trans_lock);
1340 	kfree(node);
1341 }
1342 
1343 /*
1344  * helper to update the 'address of tree root -> reloc tree'
1345  * mapping
1346  */
1347 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1348 {
1349 	struct btrfs_fs_info *fs_info = root->fs_info;
1350 	struct rb_node *rb_node;
1351 	struct mapping_node *node = NULL;
1352 	struct reloc_control *rc = fs_info->reloc_ctl;
1353 
1354 	spin_lock(&rc->reloc_root_tree.lock);
1355 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1356 			      root->node->start);
1357 	if (rb_node) {
1358 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1359 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1360 	}
1361 	spin_unlock(&rc->reloc_root_tree.lock);
1362 
1363 	if (!node)
1364 		return 0;
1365 	BUG_ON((struct btrfs_root *)node->data != root);
1366 
1367 	spin_lock(&rc->reloc_root_tree.lock);
1368 	node->bytenr = new_bytenr;
1369 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1370 			      node->bytenr, &node->rb_node);
1371 	spin_unlock(&rc->reloc_root_tree.lock);
1372 	if (rb_node)
1373 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1374 	return 0;
1375 }
1376 
1377 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1378 					struct btrfs_root *root, u64 objectid)
1379 {
1380 	struct btrfs_fs_info *fs_info = root->fs_info;
1381 	struct btrfs_root *reloc_root;
1382 	struct extent_buffer *eb;
1383 	struct btrfs_root_item *root_item;
1384 	struct btrfs_key root_key;
1385 	int ret;
1386 
1387 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1388 	BUG_ON(!root_item);
1389 
1390 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1391 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1392 	root_key.offset = objectid;
1393 
1394 	if (root->root_key.objectid == objectid) {
1395 		u64 commit_root_gen;
1396 
1397 		/* called by btrfs_init_reloc_root */
1398 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1399 				      BTRFS_TREE_RELOC_OBJECTID);
1400 		BUG_ON(ret);
1401 		/*
1402 		 * Set the last_snapshot field to the generation of the commit
1403 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1404 		 * correctly (returns true) when the relocation root is created
1405 		 * either inside the critical section of a transaction commit
1406 		 * (through transaction.c:qgroup_account_snapshot()) and when
1407 		 * it's created before the transaction commit is started.
1408 		 */
1409 		commit_root_gen = btrfs_header_generation(root->commit_root);
1410 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1411 	} else {
1412 		/*
1413 		 * called by btrfs_reloc_post_snapshot_hook.
1414 		 * the source tree is a reloc tree, all tree blocks
1415 		 * modified after it was created have RELOC flag
1416 		 * set in their headers. so it's OK to not update
1417 		 * the 'last_snapshot'.
1418 		 */
1419 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1420 				      BTRFS_TREE_RELOC_OBJECTID);
1421 		BUG_ON(ret);
1422 	}
1423 
1424 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1425 	btrfs_set_root_bytenr(root_item, eb->start);
1426 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1427 	btrfs_set_root_generation(root_item, trans->transid);
1428 
1429 	if (root->root_key.objectid == objectid) {
1430 		btrfs_set_root_refs(root_item, 0);
1431 		memset(&root_item->drop_progress, 0,
1432 		       sizeof(struct btrfs_disk_key));
1433 		root_item->drop_level = 0;
1434 	}
1435 
1436 	btrfs_tree_unlock(eb);
1437 	free_extent_buffer(eb);
1438 
1439 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1440 				&root_key, root_item);
1441 	BUG_ON(ret);
1442 	kfree(root_item);
1443 
1444 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1445 	BUG_ON(IS_ERR(reloc_root));
1446 	reloc_root->last_trans = trans->transid;
1447 	return reloc_root;
1448 }
1449 
1450 /*
1451  * create reloc tree for a given fs tree. reloc tree is just a
1452  * snapshot of the fs tree with special root objectid.
1453  */
1454 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1455 			  struct btrfs_root *root)
1456 {
1457 	struct btrfs_fs_info *fs_info = root->fs_info;
1458 	struct btrfs_root *reloc_root;
1459 	struct reloc_control *rc = fs_info->reloc_ctl;
1460 	struct btrfs_block_rsv *rsv;
1461 	int clear_rsv = 0;
1462 	int ret;
1463 
1464 	if (root->reloc_root) {
1465 		reloc_root = root->reloc_root;
1466 		reloc_root->last_trans = trans->transid;
1467 		return 0;
1468 	}
1469 
1470 	if (!rc || !rc->create_reloc_tree ||
1471 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1472 		return 0;
1473 
1474 	if (!trans->reloc_reserved) {
1475 		rsv = trans->block_rsv;
1476 		trans->block_rsv = rc->block_rsv;
1477 		clear_rsv = 1;
1478 	}
1479 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1480 	if (clear_rsv)
1481 		trans->block_rsv = rsv;
1482 
1483 	ret = __add_reloc_root(reloc_root);
1484 	BUG_ON(ret < 0);
1485 	root->reloc_root = reloc_root;
1486 	return 0;
1487 }
1488 
1489 /*
1490  * update root item of reloc tree
1491  */
1492 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1493 			    struct btrfs_root *root)
1494 {
1495 	struct btrfs_fs_info *fs_info = root->fs_info;
1496 	struct btrfs_root *reloc_root;
1497 	struct btrfs_root_item *root_item;
1498 	int ret;
1499 
1500 	if (!root->reloc_root)
1501 		goto out;
1502 
1503 	reloc_root = root->reloc_root;
1504 	root_item = &reloc_root->root_item;
1505 
1506 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1507 	    btrfs_root_refs(root_item) == 0) {
1508 		root->reloc_root = NULL;
1509 		__del_reloc_root(reloc_root);
1510 	}
1511 
1512 	if (reloc_root->commit_root != reloc_root->node) {
1513 		btrfs_set_root_node(root_item, reloc_root->node);
1514 		free_extent_buffer(reloc_root->commit_root);
1515 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1516 	}
1517 
1518 	ret = btrfs_update_root(trans, fs_info->tree_root,
1519 				&reloc_root->root_key, root_item);
1520 	BUG_ON(ret);
1521 
1522 out:
1523 	return 0;
1524 }
1525 
1526 /*
1527  * helper to find first cached inode with inode number >= objectid
1528  * in a subvolume
1529  */
1530 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1531 {
1532 	struct rb_node *node;
1533 	struct rb_node *prev;
1534 	struct btrfs_inode *entry;
1535 	struct inode *inode;
1536 
1537 	spin_lock(&root->inode_lock);
1538 again:
1539 	node = root->inode_tree.rb_node;
1540 	prev = NULL;
1541 	while (node) {
1542 		prev = node;
1543 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1544 
1545 		if (objectid < btrfs_ino(entry))
1546 			node = node->rb_left;
1547 		else if (objectid > btrfs_ino(entry))
1548 			node = node->rb_right;
1549 		else
1550 			break;
1551 	}
1552 	if (!node) {
1553 		while (prev) {
1554 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1555 			if (objectid <= btrfs_ino(entry)) {
1556 				node = prev;
1557 				break;
1558 			}
1559 			prev = rb_next(prev);
1560 		}
1561 	}
1562 	while (node) {
1563 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1564 		inode = igrab(&entry->vfs_inode);
1565 		if (inode) {
1566 			spin_unlock(&root->inode_lock);
1567 			return inode;
1568 		}
1569 
1570 		objectid = btrfs_ino(entry) + 1;
1571 		if (cond_resched_lock(&root->inode_lock))
1572 			goto again;
1573 
1574 		node = rb_next(node);
1575 	}
1576 	spin_unlock(&root->inode_lock);
1577 	return NULL;
1578 }
1579 
1580 static int in_block_group(u64 bytenr,
1581 			  struct btrfs_block_group_cache *block_group)
1582 {
1583 	if (bytenr >= block_group->key.objectid &&
1584 	    bytenr < block_group->key.objectid + block_group->key.offset)
1585 		return 1;
1586 	return 0;
1587 }
1588 
1589 /*
1590  * get new location of data
1591  */
1592 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1593 			    u64 bytenr, u64 num_bytes)
1594 {
1595 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1596 	struct btrfs_path *path;
1597 	struct btrfs_file_extent_item *fi;
1598 	struct extent_buffer *leaf;
1599 	int ret;
1600 
1601 	path = btrfs_alloc_path();
1602 	if (!path)
1603 		return -ENOMEM;
1604 
1605 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1606 	ret = btrfs_lookup_file_extent(NULL, root, path,
1607 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1608 	if (ret < 0)
1609 		goto out;
1610 	if (ret > 0) {
1611 		ret = -ENOENT;
1612 		goto out;
1613 	}
1614 
1615 	leaf = path->nodes[0];
1616 	fi = btrfs_item_ptr(leaf, path->slots[0],
1617 			    struct btrfs_file_extent_item);
1618 
1619 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1620 	       btrfs_file_extent_compression(leaf, fi) ||
1621 	       btrfs_file_extent_encryption(leaf, fi) ||
1622 	       btrfs_file_extent_other_encoding(leaf, fi));
1623 
1624 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1625 		ret = -EINVAL;
1626 		goto out;
1627 	}
1628 
1629 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1630 	ret = 0;
1631 out:
1632 	btrfs_free_path(path);
1633 	return ret;
1634 }
1635 
1636 /*
1637  * update file extent items in the tree leaf to point to
1638  * the new locations.
1639  */
1640 static noinline_for_stack
1641 int replace_file_extents(struct btrfs_trans_handle *trans,
1642 			 struct reloc_control *rc,
1643 			 struct btrfs_root *root,
1644 			 struct extent_buffer *leaf)
1645 {
1646 	struct btrfs_fs_info *fs_info = root->fs_info;
1647 	struct btrfs_key key;
1648 	struct btrfs_file_extent_item *fi;
1649 	struct inode *inode = NULL;
1650 	u64 parent;
1651 	u64 bytenr;
1652 	u64 new_bytenr = 0;
1653 	u64 num_bytes;
1654 	u64 end;
1655 	u32 nritems;
1656 	u32 i;
1657 	int ret = 0;
1658 	int first = 1;
1659 	int dirty = 0;
1660 
1661 	if (rc->stage != UPDATE_DATA_PTRS)
1662 		return 0;
1663 
1664 	/* reloc trees always use full backref */
1665 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1666 		parent = leaf->start;
1667 	else
1668 		parent = 0;
1669 
1670 	nritems = btrfs_header_nritems(leaf);
1671 	for (i = 0; i < nritems; i++) {
1672 		cond_resched();
1673 		btrfs_item_key_to_cpu(leaf, &key, i);
1674 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1675 			continue;
1676 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1677 		if (btrfs_file_extent_type(leaf, fi) ==
1678 		    BTRFS_FILE_EXTENT_INLINE)
1679 			continue;
1680 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1681 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1682 		if (bytenr == 0)
1683 			continue;
1684 		if (!in_block_group(bytenr, rc->block_group))
1685 			continue;
1686 
1687 		/*
1688 		 * if we are modifying block in fs tree, wait for readpage
1689 		 * to complete and drop the extent cache
1690 		 */
1691 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1692 			if (first) {
1693 				inode = find_next_inode(root, key.objectid);
1694 				first = 0;
1695 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1696 				btrfs_add_delayed_iput(inode);
1697 				inode = find_next_inode(root, key.objectid);
1698 			}
1699 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1700 				end = key.offset +
1701 				      btrfs_file_extent_num_bytes(leaf, fi);
1702 				WARN_ON(!IS_ALIGNED(key.offset,
1703 						    fs_info->sectorsize));
1704 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1705 				end--;
1706 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1707 						      key.offset, end);
1708 				if (!ret)
1709 					continue;
1710 
1711 				btrfs_drop_extent_cache(BTRFS_I(inode),
1712 						key.offset,	end, 1);
1713 				unlock_extent(&BTRFS_I(inode)->io_tree,
1714 					      key.offset, end);
1715 			}
1716 		}
1717 
1718 		ret = get_new_location(rc->data_inode, &new_bytenr,
1719 				       bytenr, num_bytes);
1720 		if (ret) {
1721 			/*
1722 			 * Don't have to abort since we've not changed anything
1723 			 * in the file extent yet.
1724 			 */
1725 			break;
1726 		}
1727 
1728 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1729 		dirty = 1;
1730 
1731 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1732 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1733 					   num_bytes, parent,
1734 					   btrfs_header_owner(leaf),
1735 					   key.objectid, key.offset);
1736 		if (ret) {
1737 			btrfs_abort_transaction(trans, ret);
1738 			break;
1739 		}
1740 
1741 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1742 					parent, btrfs_header_owner(leaf),
1743 					key.objectid, key.offset);
1744 		if (ret) {
1745 			btrfs_abort_transaction(trans, ret);
1746 			break;
1747 		}
1748 	}
1749 	if (dirty)
1750 		btrfs_mark_buffer_dirty(leaf);
1751 	if (inode)
1752 		btrfs_add_delayed_iput(inode);
1753 	return ret;
1754 }
1755 
1756 static noinline_for_stack
1757 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1758 		     struct btrfs_path *path, int level)
1759 {
1760 	struct btrfs_disk_key key1;
1761 	struct btrfs_disk_key key2;
1762 	btrfs_node_key(eb, &key1, slot);
1763 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1764 	return memcmp(&key1, &key2, sizeof(key1));
1765 }
1766 
1767 /*
1768  * try to replace tree blocks in fs tree with the new blocks
1769  * in reloc tree. tree blocks haven't been modified since the
1770  * reloc tree was create can be replaced.
1771  *
1772  * if a block was replaced, level of the block + 1 is returned.
1773  * if no block got replaced, 0 is returned. if there are other
1774  * errors, a negative error number is returned.
1775  */
1776 static noinline_for_stack
1777 int replace_path(struct btrfs_trans_handle *trans,
1778 		 struct btrfs_root *dest, struct btrfs_root *src,
1779 		 struct btrfs_path *path, struct btrfs_key *next_key,
1780 		 int lowest_level, int max_level)
1781 {
1782 	struct btrfs_fs_info *fs_info = dest->fs_info;
1783 	struct extent_buffer *eb;
1784 	struct extent_buffer *parent;
1785 	struct btrfs_key key;
1786 	u64 old_bytenr;
1787 	u64 new_bytenr;
1788 	u64 old_ptr_gen;
1789 	u64 new_ptr_gen;
1790 	u64 last_snapshot;
1791 	u32 blocksize;
1792 	int cow = 0;
1793 	int level;
1794 	int ret;
1795 	int slot;
1796 
1797 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1798 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1799 
1800 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1801 again:
1802 	slot = path->slots[lowest_level];
1803 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1804 
1805 	eb = btrfs_lock_root_node(dest);
1806 	btrfs_set_lock_blocking(eb);
1807 	level = btrfs_header_level(eb);
1808 
1809 	if (level < lowest_level) {
1810 		btrfs_tree_unlock(eb);
1811 		free_extent_buffer(eb);
1812 		return 0;
1813 	}
1814 
1815 	if (cow) {
1816 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1817 		BUG_ON(ret);
1818 	}
1819 	btrfs_set_lock_blocking(eb);
1820 
1821 	if (next_key) {
1822 		next_key->objectid = (u64)-1;
1823 		next_key->type = (u8)-1;
1824 		next_key->offset = (u64)-1;
1825 	}
1826 
1827 	parent = eb;
1828 	while (1) {
1829 		struct btrfs_key first_key;
1830 
1831 		level = btrfs_header_level(parent);
1832 		BUG_ON(level < lowest_level);
1833 
1834 		ret = btrfs_bin_search(parent, &key, level, &slot);
1835 		if (ret && slot > 0)
1836 			slot--;
1837 
1838 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1839 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1840 
1841 		old_bytenr = btrfs_node_blockptr(parent, slot);
1842 		blocksize = fs_info->nodesize;
1843 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1844 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1845 
1846 		if (level <= max_level) {
1847 			eb = path->nodes[level];
1848 			new_bytenr = btrfs_node_blockptr(eb,
1849 							path->slots[level]);
1850 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1851 							path->slots[level]);
1852 		} else {
1853 			new_bytenr = 0;
1854 			new_ptr_gen = 0;
1855 		}
1856 
1857 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1858 			ret = level;
1859 			break;
1860 		}
1861 
1862 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1863 		    memcmp_node_keys(parent, slot, path, level)) {
1864 			if (level <= lowest_level) {
1865 				ret = 0;
1866 				break;
1867 			}
1868 
1869 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1870 					     level - 1, &first_key);
1871 			if (IS_ERR(eb)) {
1872 				ret = PTR_ERR(eb);
1873 				break;
1874 			} else if (!extent_buffer_uptodate(eb)) {
1875 				ret = -EIO;
1876 				free_extent_buffer(eb);
1877 				break;
1878 			}
1879 			btrfs_tree_lock(eb);
1880 			if (cow) {
1881 				ret = btrfs_cow_block(trans, dest, eb, parent,
1882 						      slot, &eb);
1883 				BUG_ON(ret);
1884 			}
1885 			btrfs_set_lock_blocking(eb);
1886 
1887 			btrfs_tree_unlock(parent);
1888 			free_extent_buffer(parent);
1889 
1890 			parent = eb;
1891 			continue;
1892 		}
1893 
1894 		if (!cow) {
1895 			btrfs_tree_unlock(parent);
1896 			free_extent_buffer(parent);
1897 			cow = 1;
1898 			goto again;
1899 		}
1900 
1901 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1902 				      path->slots[level]);
1903 		btrfs_release_path(path);
1904 
1905 		path->lowest_level = level;
1906 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1907 		path->lowest_level = 0;
1908 		BUG_ON(ret);
1909 
1910 		/*
1911 		 * Info qgroup to trace both subtrees.
1912 		 *
1913 		 * We must trace both trees.
1914 		 * 1) Tree reloc subtree
1915 		 *    If not traced, we will leak data numbers
1916 		 * 2) Fs subtree
1917 		 *    If not traced, we will double count old data
1918 		 *    and tree block numbers, if current trans doesn't free
1919 		 *    data reloc tree inode.
1920 		 */
1921 		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1922 				btrfs_header_generation(parent),
1923 				btrfs_header_level(parent));
1924 		if (ret < 0)
1925 			break;
1926 		ret = btrfs_qgroup_trace_subtree(trans, dest,
1927 				path->nodes[level],
1928 				btrfs_header_generation(path->nodes[level]),
1929 				btrfs_header_level(path->nodes[level]));
1930 		if (ret < 0)
1931 			break;
1932 
1933 		/*
1934 		 * swap blocks in fs tree and reloc tree.
1935 		 */
1936 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1937 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1938 		btrfs_mark_buffer_dirty(parent);
1939 
1940 		btrfs_set_node_blockptr(path->nodes[level],
1941 					path->slots[level], old_bytenr);
1942 		btrfs_set_node_ptr_generation(path->nodes[level],
1943 					      path->slots[level], old_ptr_gen);
1944 		btrfs_mark_buffer_dirty(path->nodes[level]);
1945 
1946 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1947 					blocksize, path->nodes[level]->start,
1948 					src->root_key.objectid, level - 1, 0);
1949 		BUG_ON(ret);
1950 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1951 					blocksize, 0, dest->root_key.objectid,
1952 					level - 1, 0);
1953 		BUG_ON(ret);
1954 
1955 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1956 					path->nodes[level]->start,
1957 					src->root_key.objectid, level - 1, 0);
1958 		BUG_ON(ret);
1959 
1960 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1961 					0, dest->root_key.objectid, level - 1,
1962 					0);
1963 		BUG_ON(ret);
1964 
1965 		btrfs_unlock_up_safe(path, 0);
1966 
1967 		ret = level;
1968 		break;
1969 	}
1970 	btrfs_tree_unlock(parent);
1971 	free_extent_buffer(parent);
1972 	return ret;
1973 }
1974 
1975 /*
1976  * helper to find next relocated block in reloc tree
1977  */
1978 static noinline_for_stack
1979 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1980 		       int *level)
1981 {
1982 	struct extent_buffer *eb;
1983 	int i;
1984 	u64 last_snapshot;
1985 	u32 nritems;
1986 
1987 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988 
1989 	for (i = 0; i < *level; i++) {
1990 		free_extent_buffer(path->nodes[i]);
1991 		path->nodes[i] = NULL;
1992 	}
1993 
1994 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1995 		eb = path->nodes[i];
1996 		nritems = btrfs_header_nritems(eb);
1997 		while (path->slots[i] + 1 < nritems) {
1998 			path->slots[i]++;
1999 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2000 			    last_snapshot)
2001 				continue;
2002 
2003 			*level = i;
2004 			return 0;
2005 		}
2006 		free_extent_buffer(path->nodes[i]);
2007 		path->nodes[i] = NULL;
2008 	}
2009 	return 1;
2010 }
2011 
2012 /*
2013  * walk down reloc tree to find relocated block of lowest level
2014  */
2015 static noinline_for_stack
2016 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2017 			 int *level)
2018 {
2019 	struct btrfs_fs_info *fs_info = root->fs_info;
2020 	struct extent_buffer *eb = NULL;
2021 	int i;
2022 	u64 bytenr;
2023 	u64 ptr_gen = 0;
2024 	u64 last_snapshot;
2025 	u32 nritems;
2026 
2027 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2028 
2029 	for (i = *level; i > 0; i--) {
2030 		struct btrfs_key first_key;
2031 
2032 		eb = path->nodes[i];
2033 		nritems = btrfs_header_nritems(eb);
2034 		while (path->slots[i] < nritems) {
2035 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2036 			if (ptr_gen > last_snapshot)
2037 				break;
2038 			path->slots[i]++;
2039 		}
2040 		if (path->slots[i] >= nritems) {
2041 			if (i == *level)
2042 				break;
2043 			*level = i + 1;
2044 			return 0;
2045 		}
2046 		if (i == 1) {
2047 			*level = i;
2048 			return 0;
2049 		}
2050 
2051 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2052 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2053 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2054 				     &first_key);
2055 		if (IS_ERR(eb)) {
2056 			return PTR_ERR(eb);
2057 		} else if (!extent_buffer_uptodate(eb)) {
2058 			free_extent_buffer(eb);
2059 			return -EIO;
2060 		}
2061 		BUG_ON(btrfs_header_level(eb) != i - 1);
2062 		path->nodes[i - 1] = eb;
2063 		path->slots[i - 1] = 0;
2064 	}
2065 	return 1;
2066 }
2067 
2068 /*
2069  * invalidate extent cache for file extents whose key in range of
2070  * [min_key, max_key)
2071  */
2072 static int invalidate_extent_cache(struct btrfs_root *root,
2073 				   struct btrfs_key *min_key,
2074 				   struct btrfs_key *max_key)
2075 {
2076 	struct btrfs_fs_info *fs_info = root->fs_info;
2077 	struct inode *inode = NULL;
2078 	u64 objectid;
2079 	u64 start, end;
2080 	u64 ino;
2081 
2082 	objectid = min_key->objectid;
2083 	while (1) {
2084 		cond_resched();
2085 		iput(inode);
2086 
2087 		if (objectid > max_key->objectid)
2088 			break;
2089 
2090 		inode = find_next_inode(root, objectid);
2091 		if (!inode)
2092 			break;
2093 		ino = btrfs_ino(BTRFS_I(inode));
2094 
2095 		if (ino > max_key->objectid) {
2096 			iput(inode);
2097 			break;
2098 		}
2099 
2100 		objectid = ino + 1;
2101 		if (!S_ISREG(inode->i_mode))
2102 			continue;
2103 
2104 		if (unlikely(min_key->objectid == ino)) {
2105 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2106 				continue;
2107 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2108 				start = 0;
2109 			else {
2110 				start = min_key->offset;
2111 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2112 			}
2113 		} else {
2114 			start = 0;
2115 		}
2116 
2117 		if (unlikely(max_key->objectid == ino)) {
2118 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2119 				continue;
2120 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2121 				end = (u64)-1;
2122 			} else {
2123 				if (max_key->offset == 0)
2124 					continue;
2125 				end = max_key->offset;
2126 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2127 				end--;
2128 			}
2129 		} else {
2130 			end = (u64)-1;
2131 		}
2132 
2133 		/* the lock_extent waits for readpage to complete */
2134 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2135 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2136 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2137 	}
2138 	return 0;
2139 }
2140 
2141 static int find_next_key(struct btrfs_path *path, int level,
2142 			 struct btrfs_key *key)
2143 
2144 {
2145 	while (level < BTRFS_MAX_LEVEL) {
2146 		if (!path->nodes[level])
2147 			break;
2148 		if (path->slots[level] + 1 <
2149 		    btrfs_header_nritems(path->nodes[level])) {
2150 			btrfs_node_key_to_cpu(path->nodes[level], key,
2151 					      path->slots[level] + 1);
2152 			return 0;
2153 		}
2154 		level++;
2155 	}
2156 	return 1;
2157 }
2158 
2159 /*
2160  * merge the relocated tree blocks in reloc tree with corresponding
2161  * fs tree.
2162  */
2163 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2164 					       struct btrfs_root *root)
2165 {
2166 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2167 	LIST_HEAD(inode_list);
2168 	struct btrfs_key key;
2169 	struct btrfs_key next_key;
2170 	struct btrfs_trans_handle *trans = NULL;
2171 	struct btrfs_root *reloc_root;
2172 	struct btrfs_root_item *root_item;
2173 	struct btrfs_path *path;
2174 	struct extent_buffer *leaf;
2175 	int level;
2176 	int max_level;
2177 	int replaced = 0;
2178 	int ret;
2179 	int err = 0;
2180 	u32 min_reserved;
2181 
2182 	path = btrfs_alloc_path();
2183 	if (!path)
2184 		return -ENOMEM;
2185 	path->reada = READA_FORWARD;
2186 
2187 	reloc_root = root->reloc_root;
2188 	root_item = &reloc_root->root_item;
2189 
2190 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2191 		level = btrfs_root_level(root_item);
2192 		extent_buffer_get(reloc_root->node);
2193 		path->nodes[level] = reloc_root->node;
2194 		path->slots[level] = 0;
2195 	} else {
2196 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2197 
2198 		level = root_item->drop_level;
2199 		BUG_ON(level == 0);
2200 		path->lowest_level = level;
2201 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2202 		path->lowest_level = 0;
2203 		if (ret < 0) {
2204 			btrfs_free_path(path);
2205 			return ret;
2206 		}
2207 
2208 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2209 				      path->slots[level]);
2210 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2211 
2212 		btrfs_unlock_up_safe(path, 0);
2213 	}
2214 
2215 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2216 	memset(&next_key, 0, sizeof(next_key));
2217 
2218 	while (1) {
2219 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2220 					     BTRFS_RESERVE_FLUSH_ALL);
2221 		if (ret) {
2222 			err = ret;
2223 			goto out;
2224 		}
2225 		trans = btrfs_start_transaction(root, 0);
2226 		if (IS_ERR(trans)) {
2227 			err = PTR_ERR(trans);
2228 			trans = NULL;
2229 			goto out;
2230 		}
2231 		trans->block_rsv = rc->block_rsv;
2232 
2233 		replaced = 0;
2234 		max_level = level;
2235 
2236 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2237 		if (ret < 0) {
2238 			err = ret;
2239 			goto out;
2240 		}
2241 		if (ret > 0)
2242 			break;
2243 
2244 		if (!find_next_key(path, level, &key) &&
2245 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2246 			ret = 0;
2247 		} else {
2248 			ret = replace_path(trans, root, reloc_root, path,
2249 					   &next_key, level, max_level);
2250 		}
2251 		if (ret < 0) {
2252 			err = ret;
2253 			goto out;
2254 		}
2255 
2256 		if (ret > 0) {
2257 			level = ret;
2258 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2259 					      path->slots[level]);
2260 			replaced = 1;
2261 		}
2262 
2263 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2264 		if (ret > 0)
2265 			break;
2266 
2267 		BUG_ON(level == 0);
2268 		/*
2269 		 * save the merging progress in the drop_progress.
2270 		 * this is OK since root refs == 1 in this case.
2271 		 */
2272 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2273 			       path->slots[level]);
2274 		root_item->drop_level = level;
2275 
2276 		btrfs_end_transaction_throttle(trans);
2277 		trans = NULL;
2278 
2279 		btrfs_btree_balance_dirty(fs_info);
2280 
2281 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2282 			invalidate_extent_cache(root, &key, &next_key);
2283 	}
2284 
2285 	/*
2286 	 * handle the case only one block in the fs tree need to be
2287 	 * relocated and the block is tree root.
2288 	 */
2289 	leaf = btrfs_lock_root_node(root);
2290 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2291 	btrfs_tree_unlock(leaf);
2292 	free_extent_buffer(leaf);
2293 	if (ret < 0)
2294 		err = ret;
2295 out:
2296 	btrfs_free_path(path);
2297 
2298 	if (err == 0) {
2299 		memset(&root_item->drop_progress, 0,
2300 		       sizeof(root_item->drop_progress));
2301 		root_item->drop_level = 0;
2302 		btrfs_set_root_refs(root_item, 0);
2303 		btrfs_update_reloc_root(trans, root);
2304 	}
2305 
2306 	if (trans)
2307 		btrfs_end_transaction_throttle(trans);
2308 
2309 	btrfs_btree_balance_dirty(fs_info);
2310 
2311 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2312 		invalidate_extent_cache(root, &key, &next_key);
2313 
2314 	return err;
2315 }
2316 
2317 static noinline_for_stack
2318 int prepare_to_merge(struct reloc_control *rc, int err)
2319 {
2320 	struct btrfs_root *root = rc->extent_root;
2321 	struct btrfs_fs_info *fs_info = root->fs_info;
2322 	struct btrfs_root *reloc_root;
2323 	struct btrfs_trans_handle *trans;
2324 	LIST_HEAD(reloc_roots);
2325 	u64 num_bytes = 0;
2326 	int ret;
2327 
2328 	mutex_lock(&fs_info->reloc_mutex);
2329 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2330 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2331 	mutex_unlock(&fs_info->reloc_mutex);
2332 
2333 again:
2334 	if (!err) {
2335 		num_bytes = rc->merging_rsv_size;
2336 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2337 					  BTRFS_RESERVE_FLUSH_ALL);
2338 		if (ret)
2339 			err = ret;
2340 	}
2341 
2342 	trans = btrfs_join_transaction(rc->extent_root);
2343 	if (IS_ERR(trans)) {
2344 		if (!err)
2345 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2346 						num_bytes);
2347 		return PTR_ERR(trans);
2348 	}
2349 
2350 	if (!err) {
2351 		if (num_bytes != rc->merging_rsv_size) {
2352 			btrfs_end_transaction(trans);
2353 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2354 						num_bytes);
2355 			goto again;
2356 		}
2357 	}
2358 
2359 	rc->merge_reloc_tree = 1;
2360 
2361 	while (!list_empty(&rc->reloc_roots)) {
2362 		reloc_root = list_entry(rc->reloc_roots.next,
2363 					struct btrfs_root, root_list);
2364 		list_del_init(&reloc_root->root_list);
2365 
2366 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2367 		BUG_ON(IS_ERR(root));
2368 		BUG_ON(root->reloc_root != reloc_root);
2369 
2370 		/*
2371 		 * set reference count to 1, so btrfs_recover_relocation
2372 		 * knows it should resumes merging
2373 		 */
2374 		if (!err)
2375 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2376 		btrfs_update_reloc_root(trans, root);
2377 
2378 		list_add(&reloc_root->root_list, &reloc_roots);
2379 	}
2380 
2381 	list_splice(&reloc_roots, &rc->reloc_roots);
2382 
2383 	if (!err)
2384 		btrfs_commit_transaction(trans);
2385 	else
2386 		btrfs_end_transaction(trans);
2387 	return err;
2388 }
2389 
2390 static noinline_for_stack
2391 void free_reloc_roots(struct list_head *list)
2392 {
2393 	struct btrfs_root *reloc_root;
2394 
2395 	while (!list_empty(list)) {
2396 		reloc_root = list_entry(list->next, struct btrfs_root,
2397 					root_list);
2398 		__del_reloc_root(reloc_root);
2399 		free_extent_buffer(reloc_root->node);
2400 		free_extent_buffer(reloc_root->commit_root);
2401 		reloc_root->node = NULL;
2402 		reloc_root->commit_root = NULL;
2403 	}
2404 }
2405 
2406 static noinline_for_stack
2407 void merge_reloc_roots(struct reloc_control *rc)
2408 {
2409 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2410 	struct btrfs_root *root;
2411 	struct btrfs_root *reloc_root;
2412 	LIST_HEAD(reloc_roots);
2413 	int found = 0;
2414 	int ret = 0;
2415 again:
2416 	root = rc->extent_root;
2417 
2418 	/*
2419 	 * this serializes us with btrfs_record_root_in_transaction,
2420 	 * we have to make sure nobody is in the middle of
2421 	 * adding their roots to the list while we are
2422 	 * doing this splice
2423 	 */
2424 	mutex_lock(&fs_info->reloc_mutex);
2425 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2426 	mutex_unlock(&fs_info->reloc_mutex);
2427 
2428 	while (!list_empty(&reloc_roots)) {
2429 		found = 1;
2430 		reloc_root = list_entry(reloc_roots.next,
2431 					struct btrfs_root, root_list);
2432 
2433 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2434 			root = read_fs_root(fs_info,
2435 					    reloc_root->root_key.offset);
2436 			BUG_ON(IS_ERR(root));
2437 			BUG_ON(root->reloc_root != reloc_root);
2438 
2439 			ret = merge_reloc_root(rc, root);
2440 			if (ret) {
2441 				if (list_empty(&reloc_root->root_list))
2442 					list_add_tail(&reloc_root->root_list,
2443 						      &reloc_roots);
2444 				goto out;
2445 			}
2446 		} else {
2447 			list_del_init(&reloc_root->root_list);
2448 		}
2449 
2450 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2451 		if (ret < 0) {
2452 			if (list_empty(&reloc_root->root_list))
2453 				list_add_tail(&reloc_root->root_list,
2454 					      &reloc_roots);
2455 			goto out;
2456 		}
2457 	}
2458 
2459 	if (found) {
2460 		found = 0;
2461 		goto again;
2462 	}
2463 out:
2464 	if (ret) {
2465 		btrfs_handle_fs_error(fs_info, ret, NULL);
2466 		if (!list_empty(&reloc_roots))
2467 			free_reloc_roots(&reloc_roots);
2468 
2469 		/* new reloc root may be added */
2470 		mutex_lock(&fs_info->reloc_mutex);
2471 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2472 		mutex_unlock(&fs_info->reloc_mutex);
2473 		if (!list_empty(&reloc_roots))
2474 			free_reloc_roots(&reloc_roots);
2475 	}
2476 
2477 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2478 }
2479 
2480 static void free_block_list(struct rb_root *blocks)
2481 {
2482 	struct tree_block *block;
2483 	struct rb_node *rb_node;
2484 	while ((rb_node = rb_first(blocks))) {
2485 		block = rb_entry(rb_node, struct tree_block, rb_node);
2486 		rb_erase(rb_node, blocks);
2487 		kfree(block);
2488 	}
2489 }
2490 
2491 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2492 				      struct btrfs_root *reloc_root)
2493 {
2494 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2495 	struct btrfs_root *root;
2496 
2497 	if (reloc_root->last_trans == trans->transid)
2498 		return 0;
2499 
2500 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2501 	BUG_ON(IS_ERR(root));
2502 	BUG_ON(root->reloc_root != reloc_root);
2503 
2504 	return btrfs_record_root_in_trans(trans, root);
2505 }
2506 
2507 static noinline_for_stack
2508 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2509 				     struct reloc_control *rc,
2510 				     struct backref_node *node,
2511 				     struct backref_edge *edges[])
2512 {
2513 	struct backref_node *next;
2514 	struct btrfs_root *root;
2515 	int index = 0;
2516 
2517 	next = node;
2518 	while (1) {
2519 		cond_resched();
2520 		next = walk_up_backref(next, edges, &index);
2521 		root = next->root;
2522 		BUG_ON(!root);
2523 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2524 
2525 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2526 			record_reloc_root_in_trans(trans, root);
2527 			break;
2528 		}
2529 
2530 		btrfs_record_root_in_trans(trans, root);
2531 		root = root->reloc_root;
2532 
2533 		if (next->new_bytenr != root->node->start) {
2534 			BUG_ON(next->new_bytenr);
2535 			BUG_ON(!list_empty(&next->list));
2536 			next->new_bytenr = root->node->start;
2537 			next->root = root;
2538 			list_add_tail(&next->list,
2539 				      &rc->backref_cache.changed);
2540 			__mark_block_processed(rc, next);
2541 			break;
2542 		}
2543 
2544 		WARN_ON(1);
2545 		root = NULL;
2546 		next = walk_down_backref(edges, &index);
2547 		if (!next || next->level <= node->level)
2548 			break;
2549 	}
2550 	if (!root)
2551 		return NULL;
2552 
2553 	next = node;
2554 	/* setup backref node path for btrfs_reloc_cow_block */
2555 	while (1) {
2556 		rc->backref_cache.path[next->level] = next;
2557 		if (--index < 0)
2558 			break;
2559 		next = edges[index]->node[UPPER];
2560 	}
2561 	return root;
2562 }
2563 
2564 /*
2565  * select a tree root for relocation. return NULL if the block
2566  * is reference counted. we should use do_relocation() in this
2567  * case. return a tree root pointer if the block isn't reference
2568  * counted. return -ENOENT if the block is root of reloc tree.
2569  */
2570 static noinline_for_stack
2571 struct btrfs_root *select_one_root(struct backref_node *node)
2572 {
2573 	struct backref_node *next;
2574 	struct btrfs_root *root;
2575 	struct btrfs_root *fs_root = NULL;
2576 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2577 	int index = 0;
2578 
2579 	next = node;
2580 	while (1) {
2581 		cond_resched();
2582 		next = walk_up_backref(next, edges, &index);
2583 		root = next->root;
2584 		BUG_ON(!root);
2585 
2586 		/* no other choice for non-references counted tree */
2587 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2588 			return root;
2589 
2590 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2591 			fs_root = root;
2592 
2593 		if (next != node)
2594 			return NULL;
2595 
2596 		next = walk_down_backref(edges, &index);
2597 		if (!next || next->level <= node->level)
2598 			break;
2599 	}
2600 
2601 	if (!fs_root)
2602 		return ERR_PTR(-ENOENT);
2603 	return fs_root;
2604 }
2605 
2606 static noinline_for_stack
2607 u64 calcu_metadata_size(struct reloc_control *rc,
2608 			struct backref_node *node, int reserve)
2609 {
2610 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2611 	struct backref_node *next = node;
2612 	struct backref_edge *edge;
2613 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2614 	u64 num_bytes = 0;
2615 	int index = 0;
2616 
2617 	BUG_ON(reserve && node->processed);
2618 
2619 	while (next) {
2620 		cond_resched();
2621 		while (1) {
2622 			if (next->processed && (reserve || next != node))
2623 				break;
2624 
2625 			num_bytes += fs_info->nodesize;
2626 
2627 			if (list_empty(&next->upper))
2628 				break;
2629 
2630 			edge = list_entry(next->upper.next,
2631 					  struct backref_edge, list[LOWER]);
2632 			edges[index++] = edge;
2633 			next = edge->node[UPPER];
2634 		}
2635 		next = walk_down_backref(edges, &index);
2636 	}
2637 	return num_bytes;
2638 }
2639 
2640 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2641 				  struct reloc_control *rc,
2642 				  struct backref_node *node)
2643 {
2644 	struct btrfs_root *root = rc->extent_root;
2645 	struct btrfs_fs_info *fs_info = root->fs_info;
2646 	u64 num_bytes;
2647 	int ret;
2648 	u64 tmp;
2649 
2650 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2651 
2652 	trans->block_rsv = rc->block_rsv;
2653 	rc->reserved_bytes += num_bytes;
2654 
2655 	/*
2656 	 * We are under a transaction here so we can only do limited flushing.
2657 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2658 	 * transaction and try to refill when we can flush all the things.
2659 	 */
2660 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2661 				BTRFS_RESERVE_FLUSH_LIMIT);
2662 	if (ret) {
2663 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2664 		while (tmp <= rc->reserved_bytes)
2665 			tmp <<= 1;
2666 		/*
2667 		 * only one thread can access block_rsv at this point,
2668 		 * so we don't need hold lock to protect block_rsv.
2669 		 * we expand more reservation size here to allow enough
2670 		 * space for relocation and we will return eailer in
2671 		 * enospc case.
2672 		 */
2673 		rc->block_rsv->size = tmp + fs_info->nodesize *
2674 				      RELOCATION_RESERVED_NODES;
2675 		return -EAGAIN;
2676 	}
2677 
2678 	return 0;
2679 }
2680 
2681 /*
2682  * relocate a block tree, and then update pointers in upper level
2683  * blocks that reference the block to point to the new location.
2684  *
2685  * if called by link_to_upper, the block has already been relocated.
2686  * in that case this function just updates pointers.
2687  */
2688 static int do_relocation(struct btrfs_trans_handle *trans,
2689 			 struct reloc_control *rc,
2690 			 struct backref_node *node,
2691 			 struct btrfs_key *key,
2692 			 struct btrfs_path *path, int lowest)
2693 {
2694 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2695 	struct backref_node *upper;
2696 	struct backref_edge *edge;
2697 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2698 	struct btrfs_root *root;
2699 	struct extent_buffer *eb;
2700 	u32 blocksize;
2701 	u64 bytenr;
2702 	u64 generation;
2703 	int slot;
2704 	int ret;
2705 	int err = 0;
2706 
2707 	BUG_ON(lowest && node->eb);
2708 
2709 	path->lowest_level = node->level + 1;
2710 	rc->backref_cache.path[node->level] = node;
2711 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2712 		struct btrfs_key first_key;
2713 
2714 		cond_resched();
2715 
2716 		upper = edge->node[UPPER];
2717 		root = select_reloc_root(trans, rc, upper, edges);
2718 		BUG_ON(!root);
2719 
2720 		if (upper->eb && !upper->locked) {
2721 			if (!lowest) {
2722 				ret = btrfs_bin_search(upper->eb, key,
2723 						       upper->level, &slot);
2724 				BUG_ON(ret);
2725 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2726 				if (node->eb->start == bytenr)
2727 					goto next;
2728 			}
2729 			drop_node_buffer(upper);
2730 		}
2731 
2732 		if (!upper->eb) {
2733 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2734 			if (ret) {
2735 				if (ret < 0)
2736 					err = ret;
2737 				else
2738 					err = -ENOENT;
2739 
2740 				btrfs_release_path(path);
2741 				break;
2742 			}
2743 
2744 			if (!upper->eb) {
2745 				upper->eb = path->nodes[upper->level];
2746 				path->nodes[upper->level] = NULL;
2747 			} else {
2748 				BUG_ON(upper->eb != path->nodes[upper->level]);
2749 			}
2750 
2751 			upper->locked = 1;
2752 			path->locks[upper->level] = 0;
2753 
2754 			slot = path->slots[upper->level];
2755 			btrfs_release_path(path);
2756 		} else {
2757 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2758 					       &slot);
2759 			BUG_ON(ret);
2760 		}
2761 
2762 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2763 		if (lowest) {
2764 			if (bytenr != node->bytenr) {
2765 				btrfs_err(root->fs_info,
2766 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2767 					  bytenr, node->bytenr, slot,
2768 					  upper->eb->start);
2769 				err = -EIO;
2770 				goto next;
2771 			}
2772 		} else {
2773 			if (node->eb->start == bytenr)
2774 				goto next;
2775 		}
2776 
2777 		blocksize = root->fs_info->nodesize;
2778 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2779 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2780 		eb = read_tree_block(fs_info, bytenr, generation,
2781 				     upper->level - 1, &first_key);
2782 		if (IS_ERR(eb)) {
2783 			err = PTR_ERR(eb);
2784 			goto next;
2785 		} else if (!extent_buffer_uptodate(eb)) {
2786 			free_extent_buffer(eb);
2787 			err = -EIO;
2788 			goto next;
2789 		}
2790 		btrfs_tree_lock(eb);
2791 		btrfs_set_lock_blocking(eb);
2792 
2793 		if (!node->eb) {
2794 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2795 					      slot, &eb);
2796 			btrfs_tree_unlock(eb);
2797 			free_extent_buffer(eb);
2798 			if (ret < 0) {
2799 				err = ret;
2800 				goto next;
2801 			}
2802 			BUG_ON(node->eb != eb);
2803 		} else {
2804 			btrfs_set_node_blockptr(upper->eb, slot,
2805 						node->eb->start);
2806 			btrfs_set_node_ptr_generation(upper->eb, slot,
2807 						      trans->transid);
2808 			btrfs_mark_buffer_dirty(upper->eb);
2809 
2810 			ret = btrfs_inc_extent_ref(trans, root,
2811 						node->eb->start, blocksize,
2812 						upper->eb->start,
2813 						btrfs_header_owner(upper->eb),
2814 						node->level, 0);
2815 			BUG_ON(ret);
2816 
2817 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2818 			BUG_ON(ret);
2819 		}
2820 next:
2821 		if (!upper->pending)
2822 			drop_node_buffer(upper);
2823 		else
2824 			unlock_node_buffer(upper);
2825 		if (err)
2826 			break;
2827 	}
2828 
2829 	if (!err && node->pending) {
2830 		drop_node_buffer(node);
2831 		list_move_tail(&node->list, &rc->backref_cache.changed);
2832 		node->pending = 0;
2833 	}
2834 
2835 	path->lowest_level = 0;
2836 	BUG_ON(err == -ENOSPC);
2837 	return err;
2838 }
2839 
2840 static int link_to_upper(struct btrfs_trans_handle *trans,
2841 			 struct reloc_control *rc,
2842 			 struct backref_node *node,
2843 			 struct btrfs_path *path)
2844 {
2845 	struct btrfs_key key;
2846 
2847 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2848 	return do_relocation(trans, rc, node, &key, path, 0);
2849 }
2850 
2851 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2852 				struct reloc_control *rc,
2853 				struct btrfs_path *path, int err)
2854 {
2855 	LIST_HEAD(list);
2856 	struct backref_cache *cache = &rc->backref_cache;
2857 	struct backref_node *node;
2858 	int level;
2859 	int ret;
2860 
2861 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2862 		while (!list_empty(&cache->pending[level])) {
2863 			node = list_entry(cache->pending[level].next,
2864 					  struct backref_node, list);
2865 			list_move_tail(&node->list, &list);
2866 			BUG_ON(!node->pending);
2867 
2868 			if (!err) {
2869 				ret = link_to_upper(trans, rc, node, path);
2870 				if (ret < 0)
2871 					err = ret;
2872 			}
2873 		}
2874 		list_splice_init(&list, &cache->pending[level]);
2875 	}
2876 	return err;
2877 }
2878 
2879 static void mark_block_processed(struct reloc_control *rc,
2880 				 u64 bytenr, u32 blocksize)
2881 {
2882 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2883 			EXTENT_DIRTY);
2884 }
2885 
2886 static void __mark_block_processed(struct reloc_control *rc,
2887 				   struct backref_node *node)
2888 {
2889 	u32 blocksize;
2890 	if (node->level == 0 ||
2891 	    in_block_group(node->bytenr, rc->block_group)) {
2892 		blocksize = rc->extent_root->fs_info->nodesize;
2893 		mark_block_processed(rc, node->bytenr, blocksize);
2894 	}
2895 	node->processed = 1;
2896 }
2897 
2898 /*
2899  * mark a block and all blocks directly/indirectly reference the block
2900  * as processed.
2901  */
2902 static void update_processed_blocks(struct reloc_control *rc,
2903 				    struct backref_node *node)
2904 {
2905 	struct backref_node *next = node;
2906 	struct backref_edge *edge;
2907 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2908 	int index = 0;
2909 
2910 	while (next) {
2911 		cond_resched();
2912 		while (1) {
2913 			if (next->processed)
2914 				break;
2915 
2916 			__mark_block_processed(rc, next);
2917 
2918 			if (list_empty(&next->upper))
2919 				break;
2920 
2921 			edge = list_entry(next->upper.next,
2922 					  struct backref_edge, list[LOWER]);
2923 			edges[index++] = edge;
2924 			next = edge->node[UPPER];
2925 		}
2926 		next = walk_down_backref(edges, &index);
2927 	}
2928 }
2929 
2930 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2931 {
2932 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2933 
2934 	if (test_range_bit(&rc->processed_blocks, bytenr,
2935 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2936 		return 1;
2937 	return 0;
2938 }
2939 
2940 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2941 			      struct tree_block *block)
2942 {
2943 	struct extent_buffer *eb;
2944 
2945 	BUG_ON(block->key_ready);
2946 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2947 			     block->level, NULL);
2948 	if (IS_ERR(eb)) {
2949 		return PTR_ERR(eb);
2950 	} else if (!extent_buffer_uptodate(eb)) {
2951 		free_extent_buffer(eb);
2952 		return -EIO;
2953 	}
2954 	WARN_ON(btrfs_header_level(eb) != block->level);
2955 	if (block->level == 0)
2956 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2957 	else
2958 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2959 	free_extent_buffer(eb);
2960 	block->key_ready = 1;
2961 	return 0;
2962 }
2963 
2964 /*
2965  * helper function to relocate a tree block
2966  */
2967 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2968 				struct reloc_control *rc,
2969 				struct backref_node *node,
2970 				struct btrfs_key *key,
2971 				struct btrfs_path *path)
2972 {
2973 	struct btrfs_root *root;
2974 	int ret = 0;
2975 
2976 	if (!node)
2977 		return 0;
2978 
2979 	BUG_ON(node->processed);
2980 	root = select_one_root(node);
2981 	if (root == ERR_PTR(-ENOENT)) {
2982 		update_processed_blocks(rc, node);
2983 		goto out;
2984 	}
2985 
2986 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987 		ret = reserve_metadata_space(trans, rc, node);
2988 		if (ret)
2989 			goto out;
2990 	}
2991 
2992 	if (root) {
2993 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2994 			BUG_ON(node->new_bytenr);
2995 			BUG_ON(!list_empty(&node->list));
2996 			btrfs_record_root_in_trans(trans, root);
2997 			root = root->reloc_root;
2998 			node->new_bytenr = root->node->start;
2999 			node->root = root;
3000 			list_add_tail(&node->list, &rc->backref_cache.changed);
3001 		} else {
3002 			path->lowest_level = node->level;
3003 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3004 			btrfs_release_path(path);
3005 			if (ret > 0)
3006 				ret = 0;
3007 		}
3008 		if (!ret)
3009 			update_processed_blocks(rc, node);
3010 	} else {
3011 		ret = do_relocation(trans, rc, node, key, path, 1);
3012 	}
3013 out:
3014 	if (ret || node->level == 0 || node->cowonly)
3015 		remove_backref_node(&rc->backref_cache, node);
3016 	return ret;
3017 }
3018 
3019 /*
3020  * relocate a list of blocks
3021  */
3022 static noinline_for_stack
3023 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3024 			 struct reloc_control *rc, struct rb_root *blocks)
3025 {
3026 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3027 	struct backref_node *node;
3028 	struct btrfs_path *path;
3029 	struct tree_block *block;
3030 	struct rb_node *rb_node;
3031 	int ret;
3032 	int err = 0;
3033 
3034 	path = btrfs_alloc_path();
3035 	if (!path) {
3036 		err = -ENOMEM;
3037 		goto out_free_blocks;
3038 	}
3039 
3040 	rb_node = rb_first(blocks);
3041 	while (rb_node) {
3042 		block = rb_entry(rb_node, struct tree_block, rb_node);
3043 		if (!block->key_ready)
3044 			readahead_tree_block(fs_info, block->bytenr);
3045 		rb_node = rb_next(rb_node);
3046 	}
3047 
3048 	rb_node = rb_first(blocks);
3049 	while (rb_node) {
3050 		block = rb_entry(rb_node, struct tree_block, rb_node);
3051 		if (!block->key_ready) {
3052 			err = get_tree_block_key(fs_info, block);
3053 			if (err)
3054 				goto out_free_path;
3055 		}
3056 		rb_node = rb_next(rb_node);
3057 	}
3058 
3059 	rb_node = rb_first(blocks);
3060 	while (rb_node) {
3061 		block = rb_entry(rb_node, struct tree_block, rb_node);
3062 
3063 		node = build_backref_tree(rc, &block->key,
3064 					  block->level, block->bytenr);
3065 		if (IS_ERR(node)) {
3066 			err = PTR_ERR(node);
3067 			goto out;
3068 		}
3069 
3070 		ret = relocate_tree_block(trans, rc, node, &block->key,
3071 					  path);
3072 		if (ret < 0) {
3073 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3074 				err = ret;
3075 			goto out;
3076 		}
3077 		rb_node = rb_next(rb_node);
3078 	}
3079 out:
3080 	err = finish_pending_nodes(trans, rc, path, err);
3081 
3082 out_free_path:
3083 	btrfs_free_path(path);
3084 out_free_blocks:
3085 	free_block_list(blocks);
3086 	return err;
3087 }
3088 
3089 static noinline_for_stack
3090 int prealloc_file_extent_cluster(struct inode *inode,
3091 				 struct file_extent_cluster *cluster)
3092 {
3093 	u64 alloc_hint = 0;
3094 	u64 start;
3095 	u64 end;
3096 	u64 offset = BTRFS_I(inode)->index_cnt;
3097 	u64 num_bytes;
3098 	int nr = 0;
3099 	int ret = 0;
3100 	u64 prealloc_start = cluster->start - offset;
3101 	u64 prealloc_end = cluster->end - offset;
3102 	u64 cur_offset;
3103 	struct extent_changeset *data_reserved = NULL;
3104 
3105 	BUG_ON(cluster->start != cluster->boundary[0]);
3106 	inode_lock(inode);
3107 
3108 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3109 					  prealloc_end + 1 - prealloc_start);
3110 	if (ret)
3111 		goto out;
3112 
3113 	cur_offset = prealloc_start;
3114 	while (nr < cluster->nr) {
3115 		start = cluster->boundary[nr] - offset;
3116 		if (nr + 1 < cluster->nr)
3117 			end = cluster->boundary[nr + 1] - 1 - offset;
3118 		else
3119 			end = cluster->end - offset;
3120 
3121 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3122 		num_bytes = end + 1 - start;
3123 		if (cur_offset < start)
3124 			btrfs_free_reserved_data_space(inode, data_reserved,
3125 					cur_offset, start - cur_offset);
3126 		ret = btrfs_prealloc_file_range(inode, 0, start,
3127 						num_bytes, num_bytes,
3128 						end + 1, &alloc_hint);
3129 		cur_offset = end + 1;
3130 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3131 		if (ret)
3132 			break;
3133 		nr++;
3134 	}
3135 	if (cur_offset < prealloc_end)
3136 		btrfs_free_reserved_data_space(inode, data_reserved,
3137 				cur_offset, prealloc_end + 1 - cur_offset);
3138 out:
3139 	inode_unlock(inode);
3140 	extent_changeset_free(data_reserved);
3141 	return ret;
3142 }
3143 
3144 static noinline_for_stack
3145 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3146 			 u64 block_start)
3147 {
3148 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3149 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3150 	struct extent_map *em;
3151 	int ret = 0;
3152 
3153 	em = alloc_extent_map();
3154 	if (!em)
3155 		return -ENOMEM;
3156 
3157 	em->start = start;
3158 	em->len = end + 1 - start;
3159 	em->block_len = em->len;
3160 	em->block_start = block_start;
3161 	em->bdev = fs_info->fs_devices->latest_bdev;
3162 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3163 
3164 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3165 	while (1) {
3166 		write_lock(&em_tree->lock);
3167 		ret = add_extent_mapping(em_tree, em, 0);
3168 		write_unlock(&em_tree->lock);
3169 		if (ret != -EEXIST) {
3170 			free_extent_map(em);
3171 			break;
3172 		}
3173 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3174 	}
3175 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3176 	return ret;
3177 }
3178 
3179 static int relocate_file_extent_cluster(struct inode *inode,
3180 					struct file_extent_cluster *cluster)
3181 {
3182 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3183 	u64 page_start;
3184 	u64 page_end;
3185 	u64 offset = BTRFS_I(inode)->index_cnt;
3186 	unsigned long index;
3187 	unsigned long last_index;
3188 	struct page *page;
3189 	struct file_ra_state *ra;
3190 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3191 	int nr = 0;
3192 	int ret = 0;
3193 
3194 	if (!cluster->nr)
3195 		return 0;
3196 
3197 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3198 	if (!ra)
3199 		return -ENOMEM;
3200 
3201 	ret = prealloc_file_extent_cluster(inode, cluster);
3202 	if (ret)
3203 		goto out;
3204 
3205 	file_ra_state_init(ra, inode->i_mapping);
3206 
3207 	ret = setup_extent_mapping(inode, cluster->start - offset,
3208 				   cluster->end - offset, cluster->start);
3209 	if (ret)
3210 		goto out;
3211 
3212 	index = (cluster->start - offset) >> PAGE_SHIFT;
3213 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3214 	while (index <= last_index) {
3215 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3216 				PAGE_SIZE);
3217 		if (ret)
3218 			goto out;
3219 
3220 		page = find_lock_page(inode->i_mapping, index);
3221 		if (!page) {
3222 			page_cache_sync_readahead(inode->i_mapping,
3223 						  ra, NULL, index,
3224 						  last_index + 1 - index);
3225 			page = find_or_create_page(inode->i_mapping, index,
3226 						   mask);
3227 			if (!page) {
3228 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3229 							PAGE_SIZE, true);
3230 				ret = -ENOMEM;
3231 				goto out;
3232 			}
3233 		}
3234 
3235 		if (PageReadahead(page)) {
3236 			page_cache_async_readahead(inode->i_mapping,
3237 						   ra, NULL, page, index,
3238 						   last_index + 1 - index);
3239 		}
3240 
3241 		if (!PageUptodate(page)) {
3242 			btrfs_readpage(NULL, page);
3243 			lock_page(page);
3244 			if (!PageUptodate(page)) {
3245 				unlock_page(page);
3246 				put_page(page);
3247 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3248 							PAGE_SIZE, true);
3249 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3250 							       PAGE_SIZE, true);
3251 				ret = -EIO;
3252 				goto out;
3253 			}
3254 		}
3255 
3256 		page_start = page_offset(page);
3257 		page_end = page_start + PAGE_SIZE - 1;
3258 
3259 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3260 
3261 		set_page_extent_mapped(page);
3262 
3263 		if (nr < cluster->nr &&
3264 		    page_start + offset == cluster->boundary[nr]) {
3265 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3266 					page_start, page_end,
3267 					EXTENT_BOUNDARY);
3268 			nr++;
3269 		}
3270 
3271 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3272 						NULL, 0);
3273 		if (ret) {
3274 			unlock_page(page);
3275 			put_page(page);
3276 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3277 							 PAGE_SIZE, true);
3278 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3279 			                               PAGE_SIZE, true);
3280 
3281 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3282 					  page_start, page_end,
3283 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3284 			goto out;
3285 
3286 		}
3287 		set_page_dirty(page);
3288 
3289 		unlock_extent(&BTRFS_I(inode)->io_tree,
3290 			      page_start, page_end);
3291 		unlock_page(page);
3292 		put_page(page);
3293 
3294 		index++;
3295 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3296 					       false);
3297 		balance_dirty_pages_ratelimited(inode->i_mapping);
3298 		btrfs_throttle(fs_info);
3299 	}
3300 	WARN_ON(nr != cluster->nr);
3301 out:
3302 	kfree(ra);
3303 	return ret;
3304 }
3305 
3306 static noinline_for_stack
3307 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3308 			 struct file_extent_cluster *cluster)
3309 {
3310 	int ret;
3311 
3312 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3313 		ret = relocate_file_extent_cluster(inode, cluster);
3314 		if (ret)
3315 			return ret;
3316 		cluster->nr = 0;
3317 	}
3318 
3319 	if (!cluster->nr)
3320 		cluster->start = extent_key->objectid;
3321 	else
3322 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3323 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3324 	cluster->boundary[cluster->nr] = extent_key->objectid;
3325 	cluster->nr++;
3326 
3327 	if (cluster->nr >= MAX_EXTENTS) {
3328 		ret = relocate_file_extent_cluster(inode, cluster);
3329 		if (ret)
3330 			return ret;
3331 		cluster->nr = 0;
3332 	}
3333 	return 0;
3334 }
3335 
3336 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3337 static int get_ref_objectid_v0(struct reloc_control *rc,
3338 			       struct btrfs_path *path,
3339 			       struct btrfs_key *extent_key,
3340 			       u64 *ref_objectid, int *path_change)
3341 {
3342 	struct btrfs_key key;
3343 	struct extent_buffer *leaf;
3344 	struct btrfs_extent_ref_v0 *ref0;
3345 	int ret;
3346 	int slot;
3347 
3348 	leaf = path->nodes[0];
3349 	slot = path->slots[0];
3350 	while (1) {
3351 		if (slot >= btrfs_header_nritems(leaf)) {
3352 			ret = btrfs_next_leaf(rc->extent_root, path);
3353 			if (ret < 0)
3354 				return ret;
3355 			BUG_ON(ret > 0);
3356 			leaf = path->nodes[0];
3357 			slot = path->slots[0];
3358 			if (path_change)
3359 				*path_change = 1;
3360 		}
3361 		btrfs_item_key_to_cpu(leaf, &key, slot);
3362 		if (key.objectid != extent_key->objectid)
3363 			return -ENOENT;
3364 
3365 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3366 			slot++;
3367 			continue;
3368 		}
3369 		ref0 = btrfs_item_ptr(leaf, slot,
3370 				struct btrfs_extent_ref_v0);
3371 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3372 		break;
3373 	}
3374 	return 0;
3375 }
3376 #endif
3377 
3378 /*
3379  * helper to add a tree block to the list.
3380  * the major work is getting the generation and level of the block
3381  */
3382 static int add_tree_block(struct reloc_control *rc,
3383 			  struct btrfs_key *extent_key,
3384 			  struct btrfs_path *path,
3385 			  struct rb_root *blocks)
3386 {
3387 	struct extent_buffer *eb;
3388 	struct btrfs_extent_item *ei;
3389 	struct btrfs_tree_block_info *bi;
3390 	struct tree_block *block;
3391 	struct rb_node *rb_node;
3392 	u32 item_size;
3393 	int level = -1;
3394 	u64 generation;
3395 
3396 	eb =  path->nodes[0];
3397 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3398 
3399 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3400 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3401 		ei = btrfs_item_ptr(eb, path->slots[0],
3402 				struct btrfs_extent_item);
3403 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3404 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3405 			level = btrfs_tree_block_level(eb, bi);
3406 		} else {
3407 			level = (int)extent_key->offset;
3408 		}
3409 		generation = btrfs_extent_generation(eb, ei);
3410 	} else {
3411 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3412 		u64 ref_owner;
3413 		int ret;
3414 
3415 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3416 		ret = get_ref_objectid_v0(rc, path, extent_key,
3417 					  &ref_owner, NULL);
3418 		if (ret < 0)
3419 			return ret;
3420 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3421 		level = (int)ref_owner;
3422 		/* FIXME: get real generation */
3423 		generation = 0;
3424 #else
3425 		BUG();
3426 #endif
3427 	}
3428 
3429 	btrfs_release_path(path);
3430 
3431 	BUG_ON(level == -1);
3432 
3433 	block = kmalloc(sizeof(*block), GFP_NOFS);
3434 	if (!block)
3435 		return -ENOMEM;
3436 
3437 	block->bytenr = extent_key->objectid;
3438 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3439 	block->key.offset = generation;
3440 	block->level = level;
3441 	block->key_ready = 0;
3442 
3443 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3444 	if (rb_node)
3445 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3446 
3447 	return 0;
3448 }
3449 
3450 /*
3451  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3452  */
3453 static int __add_tree_block(struct reloc_control *rc,
3454 			    u64 bytenr, u32 blocksize,
3455 			    struct rb_root *blocks)
3456 {
3457 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3458 	struct btrfs_path *path;
3459 	struct btrfs_key key;
3460 	int ret;
3461 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3462 
3463 	if (tree_block_processed(bytenr, rc))
3464 		return 0;
3465 
3466 	if (tree_search(blocks, bytenr))
3467 		return 0;
3468 
3469 	path = btrfs_alloc_path();
3470 	if (!path)
3471 		return -ENOMEM;
3472 again:
3473 	key.objectid = bytenr;
3474 	if (skinny) {
3475 		key.type = BTRFS_METADATA_ITEM_KEY;
3476 		key.offset = (u64)-1;
3477 	} else {
3478 		key.type = BTRFS_EXTENT_ITEM_KEY;
3479 		key.offset = blocksize;
3480 	}
3481 
3482 	path->search_commit_root = 1;
3483 	path->skip_locking = 1;
3484 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3485 	if (ret < 0)
3486 		goto out;
3487 
3488 	if (ret > 0 && skinny) {
3489 		if (path->slots[0]) {
3490 			path->slots[0]--;
3491 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3492 					      path->slots[0]);
3493 			if (key.objectid == bytenr &&
3494 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3495 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3496 			      key.offset == blocksize)))
3497 				ret = 0;
3498 		}
3499 
3500 		if (ret) {
3501 			skinny = false;
3502 			btrfs_release_path(path);
3503 			goto again;
3504 		}
3505 	}
3506 	if (ret) {
3507 		ASSERT(ret == 1);
3508 		btrfs_print_leaf(path->nodes[0]);
3509 		btrfs_err(fs_info,
3510 	     "tree block extent item (%llu) is not found in extent tree",
3511 		     bytenr);
3512 		WARN_ON(1);
3513 		ret = -EINVAL;
3514 		goto out;
3515 	}
3516 
3517 	ret = add_tree_block(rc, &key, path, blocks);
3518 out:
3519 	btrfs_free_path(path);
3520 	return ret;
3521 }
3522 
3523 /*
3524  * helper to check if the block use full backrefs for pointers in it
3525  */
3526 static int block_use_full_backref(struct reloc_control *rc,
3527 				  struct extent_buffer *eb)
3528 {
3529 	u64 flags;
3530 	int ret;
3531 
3532 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3533 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3534 		return 1;
3535 
3536 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3537 				       eb->start, btrfs_header_level(eb), 1,
3538 				       NULL, &flags);
3539 	BUG_ON(ret);
3540 
3541 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3542 		ret = 1;
3543 	else
3544 		ret = 0;
3545 	return ret;
3546 }
3547 
3548 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3549 				    struct btrfs_block_group_cache *block_group,
3550 				    struct inode *inode,
3551 				    u64 ino)
3552 {
3553 	struct btrfs_key key;
3554 	struct btrfs_root *root = fs_info->tree_root;
3555 	struct btrfs_trans_handle *trans;
3556 	int ret = 0;
3557 
3558 	if (inode)
3559 		goto truncate;
3560 
3561 	key.objectid = ino;
3562 	key.type = BTRFS_INODE_ITEM_KEY;
3563 	key.offset = 0;
3564 
3565 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3566 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3567 		if (!IS_ERR(inode))
3568 			iput(inode);
3569 		return -ENOENT;
3570 	}
3571 
3572 truncate:
3573 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3574 						 &fs_info->global_block_rsv);
3575 	if (ret)
3576 		goto out;
3577 
3578 	trans = btrfs_join_transaction(root);
3579 	if (IS_ERR(trans)) {
3580 		ret = PTR_ERR(trans);
3581 		goto out;
3582 	}
3583 
3584 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3585 
3586 	btrfs_end_transaction(trans);
3587 	btrfs_btree_balance_dirty(fs_info);
3588 out:
3589 	iput(inode);
3590 	return ret;
3591 }
3592 
3593 /*
3594  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3595  * this function scans fs tree to find blocks reference the data extent
3596  */
3597 static int find_data_references(struct reloc_control *rc,
3598 				struct btrfs_key *extent_key,
3599 				struct extent_buffer *leaf,
3600 				struct btrfs_extent_data_ref *ref,
3601 				struct rb_root *blocks)
3602 {
3603 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3604 	struct btrfs_path *path;
3605 	struct tree_block *block;
3606 	struct btrfs_root *root;
3607 	struct btrfs_file_extent_item *fi;
3608 	struct rb_node *rb_node;
3609 	struct btrfs_key key;
3610 	u64 ref_root;
3611 	u64 ref_objectid;
3612 	u64 ref_offset;
3613 	u32 ref_count;
3614 	u32 nritems;
3615 	int err = 0;
3616 	int added = 0;
3617 	int counted;
3618 	int ret;
3619 
3620 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3621 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3622 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3623 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3624 
3625 	/*
3626 	 * This is an extent belonging to the free space cache, lets just delete
3627 	 * it and redo the search.
3628 	 */
3629 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3630 		ret = delete_block_group_cache(fs_info, rc->block_group,
3631 					       NULL, ref_objectid);
3632 		if (ret != -ENOENT)
3633 			return ret;
3634 		ret = 0;
3635 	}
3636 
3637 	path = btrfs_alloc_path();
3638 	if (!path)
3639 		return -ENOMEM;
3640 	path->reada = READA_FORWARD;
3641 
3642 	root = read_fs_root(fs_info, ref_root);
3643 	if (IS_ERR(root)) {
3644 		err = PTR_ERR(root);
3645 		goto out;
3646 	}
3647 
3648 	key.objectid = ref_objectid;
3649 	key.type = BTRFS_EXTENT_DATA_KEY;
3650 	if (ref_offset > ((u64)-1 << 32))
3651 		key.offset = 0;
3652 	else
3653 		key.offset = ref_offset;
3654 
3655 	path->search_commit_root = 1;
3656 	path->skip_locking = 1;
3657 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3658 	if (ret < 0) {
3659 		err = ret;
3660 		goto out;
3661 	}
3662 
3663 	leaf = path->nodes[0];
3664 	nritems = btrfs_header_nritems(leaf);
3665 	/*
3666 	 * the references in tree blocks that use full backrefs
3667 	 * are not counted in
3668 	 */
3669 	if (block_use_full_backref(rc, leaf))
3670 		counted = 0;
3671 	else
3672 		counted = 1;
3673 	rb_node = tree_search(blocks, leaf->start);
3674 	if (rb_node) {
3675 		if (counted)
3676 			added = 1;
3677 		else
3678 			path->slots[0] = nritems;
3679 	}
3680 
3681 	while (ref_count > 0) {
3682 		while (path->slots[0] >= nritems) {
3683 			ret = btrfs_next_leaf(root, path);
3684 			if (ret < 0) {
3685 				err = ret;
3686 				goto out;
3687 			}
3688 			if (WARN_ON(ret > 0))
3689 				goto out;
3690 
3691 			leaf = path->nodes[0];
3692 			nritems = btrfs_header_nritems(leaf);
3693 			added = 0;
3694 
3695 			if (block_use_full_backref(rc, leaf))
3696 				counted = 0;
3697 			else
3698 				counted = 1;
3699 			rb_node = tree_search(blocks, leaf->start);
3700 			if (rb_node) {
3701 				if (counted)
3702 					added = 1;
3703 				else
3704 					path->slots[0] = nritems;
3705 			}
3706 		}
3707 
3708 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3709 		if (WARN_ON(key.objectid != ref_objectid ||
3710 		    key.type != BTRFS_EXTENT_DATA_KEY))
3711 			break;
3712 
3713 		fi = btrfs_item_ptr(leaf, path->slots[0],
3714 				    struct btrfs_file_extent_item);
3715 
3716 		if (btrfs_file_extent_type(leaf, fi) ==
3717 		    BTRFS_FILE_EXTENT_INLINE)
3718 			goto next;
3719 
3720 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3721 		    extent_key->objectid)
3722 			goto next;
3723 
3724 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3725 		if (key.offset != ref_offset)
3726 			goto next;
3727 
3728 		if (counted)
3729 			ref_count--;
3730 		if (added)
3731 			goto next;
3732 
3733 		if (!tree_block_processed(leaf->start, rc)) {
3734 			block = kmalloc(sizeof(*block), GFP_NOFS);
3735 			if (!block) {
3736 				err = -ENOMEM;
3737 				break;
3738 			}
3739 			block->bytenr = leaf->start;
3740 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3741 			block->level = 0;
3742 			block->key_ready = 1;
3743 			rb_node = tree_insert(blocks, block->bytenr,
3744 					      &block->rb_node);
3745 			if (rb_node)
3746 				backref_tree_panic(rb_node, -EEXIST,
3747 						   block->bytenr);
3748 		}
3749 		if (counted)
3750 			added = 1;
3751 		else
3752 			path->slots[0] = nritems;
3753 next:
3754 		path->slots[0]++;
3755 
3756 	}
3757 out:
3758 	btrfs_free_path(path);
3759 	return err;
3760 }
3761 
3762 /*
3763  * helper to find all tree blocks that reference a given data extent
3764  */
3765 static noinline_for_stack
3766 int add_data_references(struct reloc_control *rc,
3767 			struct btrfs_key *extent_key,
3768 			struct btrfs_path *path,
3769 			struct rb_root *blocks)
3770 {
3771 	struct btrfs_key key;
3772 	struct extent_buffer *eb;
3773 	struct btrfs_extent_data_ref *dref;
3774 	struct btrfs_extent_inline_ref *iref;
3775 	unsigned long ptr;
3776 	unsigned long end;
3777 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3778 	int ret = 0;
3779 	int err = 0;
3780 
3781 	eb = path->nodes[0];
3782 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3783 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3784 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3785 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3786 		ptr = end;
3787 	else
3788 #endif
3789 		ptr += sizeof(struct btrfs_extent_item);
3790 
3791 	while (ptr < end) {
3792 		iref = (struct btrfs_extent_inline_ref *)ptr;
3793 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3794 							BTRFS_REF_TYPE_DATA);
3795 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3796 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3797 			ret = __add_tree_block(rc, key.offset, blocksize,
3798 					       blocks);
3799 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3800 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3801 			ret = find_data_references(rc, extent_key,
3802 						   eb, dref, blocks);
3803 		} else {
3804 			ret = -EINVAL;
3805 			btrfs_err(rc->extent_root->fs_info,
3806 		     "extent %llu slot %d has an invalid inline ref type",
3807 			     eb->start, path->slots[0]);
3808 		}
3809 		if (ret) {
3810 			err = ret;
3811 			goto out;
3812 		}
3813 		ptr += btrfs_extent_inline_ref_size(key.type);
3814 	}
3815 	WARN_ON(ptr > end);
3816 
3817 	while (1) {
3818 		cond_resched();
3819 		eb = path->nodes[0];
3820 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3821 			ret = btrfs_next_leaf(rc->extent_root, path);
3822 			if (ret < 0) {
3823 				err = ret;
3824 				break;
3825 			}
3826 			if (ret > 0)
3827 				break;
3828 			eb = path->nodes[0];
3829 		}
3830 
3831 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3832 		if (key.objectid != extent_key->objectid)
3833 			break;
3834 
3835 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3836 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3837 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3838 #else
3839 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3840 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3841 #endif
3842 			ret = __add_tree_block(rc, key.offset, blocksize,
3843 					       blocks);
3844 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3845 			dref = btrfs_item_ptr(eb, path->slots[0],
3846 					      struct btrfs_extent_data_ref);
3847 			ret = find_data_references(rc, extent_key,
3848 						   eb, dref, blocks);
3849 		} else {
3850 			ret = 0;
3851 		}
3852 		if (ret) {
3853 			err = ret;
3854 			break;
3855 		}
3856 		path->slots[0]++;
3857 	}
3858 out:
3859 	btrfs_release_path(path);
3860 	if (err)
3861 		free_block_list(blocks);
3862 	return err;
3863 }
3864 
3865 /*
3866  * helper to find next unprocessed extent
3867  */
3868 static noinline_for_stack
3869 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3870 		     struct btrfs_key *extent_key)
3871 {
3872 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3873 	struct btrfs_key key;
3874 	struct extent_buffer *leaf;
3875 	u64 start, end, last;
3876 	int ret;
3877 
3878 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3879 	while (1) {
3880 		cond_resched();
3881 		if (rc->search_start >= last) {
3882 			ret = 1;
3883 			break;
3884 		}
3885 
3886 		key.objectid = rc->search_start;
3887 		key.type = BTRFS_EXTENT_ITEM_KEY;
3888 		key.offset = 0;
3889 
3890 		path->search_commit_root = 1;
3891 		path->skip_locking = 1;
3892 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3893 					0, 0);
3894 		if (ret < 0)
3895 			break;
3896 next:
3897 		leaf = path->nodes[0];
3898 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3899 			ret = btrfs_next_leaf(rc->extent_root, path);
3900 			if (ret != 0)
3901 				break;
3902 			leaf = path->nodes[0];
3903 		}
3904 
3905 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3906 		if (key.objectid >= last) {
3907 			ret = 1;
3908 			break;
3909 		}
3910 
3911 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3912 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3913 			path->slots[0]++;
3914 			goto next;
3915 		}
3916 
3917 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3918 		    key.objectid + key.offset <= rc->search_start) {
3919 			path->slots[0]++;
3920 			goto next;
3921 		}
3922 
3923 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3924 		    key.objectid + fs_info->nodesize <=
3925 		    rc->search_start) {
3926 			path->slots[0]++;
3927 			goto next;
3928 		}
3929 
3930 		ret = find_first_extent_bit(&rc->processed_blocks,
3931 					    key.objectid, &start, &end,
3932 					    EXTENT_DIRTY, NULL);
3933 
3934 		if (ret == 0 && start <= key.objectid) {
3935 			btrfs_release_path(path);
3936 			rc->search_start = end + 1;
3937 		} else {
3938 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3939 				rc->search_start = key.objectid + key.offset;
3940 			else
3941 				rc->search_start = key.objectid +
3942 					fs_info->nodesize;
3943 			memcpy(extent_key, &key, sizeof(key));
3944 			return 0;
3945 		}
3946 	}
3947 	btrfs_release_path(path);
3948 	return ret;
3949 }
3950 
3951 static void set_reloc_control(struct reloc_control *rc)
3952 {
3953 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3954 
3955 	mutex_lock(&fs_info->reloc_mutex);
3956 	fs_info->reloc_ctl = rc;
3957 	mutex_unlock(&fs_info->reloc_mutex);
3958 }
3959 
3960 static void unset_reloc_control(struct reloc_control *rc)
3961 {
3962 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3963 
3964 	mutex_lock(&fs_info->reloc_mutex);
3965 	fs_info->reloc_ctl = NULL;
3966 	mutex_unlock(&fs_info->reloc_mutex);
3967 }
3968 
3969 static int check_extent_flags(u64 flags)
3970 {
3971 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3972 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3973 		return 1;
3974 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3975 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3976 		return 1;
3977 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3978 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3979 		return 1;
3980 	return 0;
3981 }
3982 
3983 static noinline_for_stack
3984 int prepare_to_relocate(struct reloc_control *rc)
3985 {
3986 	struct btrfs_trans_handle *trans;
3987 	int ret;
3988 
3989 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3990 					      BTRFS_BLOCK_RSV_TEMP);
3991 	if (!rc->block_rsv)
3992 		return -ENOMEM;
3993 
3994 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3995 	rc->search_start = rc->block_group->key.objectid;
3996 	rc->extents_found = 0;
3997 	rc->nodes_relocated = 0;
3998 	rc->merging_rsv_size = 0;
3999 	rc->reserved_bytes = 0;
4000 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
4001 			      RELOCATION_RESERVED_NODES;
4002 	ret = btrfs_block_rsv_refill(rc->extent_root,
4003 				     rc->block_rsv, rc->block_rsv->size,
4004 				     BTRFS_RESERVE_FLUSH_ALL);
4005 	if (ret)
4006 		return ret;
4007 
4008 	rc->create_reloc_tree = 1;
4009 	set_reloc_control(rc);
4010 
4011 	trans = btrfs_join_transaction(rc->extent_root);
4012 	if (IS_ERR(trans)) {
4013 		unset_reloc_control(rc);
4014 		/*
4015 		 * extent tree is not a ref_cow tree and has no reloc_root to
4016 		 * cleanup.  And callers are responsible to free the above
4017 		 * block rsv.
4018 		 */
4019 		return PTR_ERR(trans);
4020 	}
4021 	btrfs_commit_transaction(trans);
4022 	return 0;
4023 }
4024 
4025 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4026 {
4027 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4028 	struct rb_root blocks = RB_ROOT;
4029 	struct btrfs_key key;
4030 	struct btrfs_trans_handle *trans = NULL;
4031 	struct btrfs_path *path;
4032 	struct btrfs_extent_item *ei;
4033 	u64 flags;
4034 	u32 item_size;
4035 	int ret;
4036 	int err = 0;
4037 	int progress = 0;
4038 
4039 	path = btrfs_alloc_path();
4040 	if (!path)
4041 		return -ENOMEM;
4042 	path->reada = READA_FORWARD;
4043 
4044 	ret = prepare_to_relocate(rc);
4045 	if (ret) {
4046 		err = ret;
4047 		goto out_free;
4048 	}
4049 
4050 	while (1) {
4051 		rc->reserved_bytes = 0;
4052 		ret = btrfs_block_rsv_refill(rc->extent_root,
4053 					rc->block_rsv, rc->block_rsv->size,
4054 					BTRFS_RESERVE_FLUSH_ALL);
4055 		if (ret) {
4056 			err = ret;
4057 			break;
4058 		}
4059 		progress++;
4060 		trans = btrfs_start_transaction(rc->extent_root, 0);
4061 		if (IS_ERR(trans)) {
4062 			err = PTR_ERR(trans);
4063 			trans = NULL;
4064 			break;
4065 		}
4066 restart:
4067 		if (update_backref_cache(trans, &rc->backref_cache)) {
4068 			btrfs_end_transaction(trans);
4069 			continue;
4070 		}
4071 
4072 		ret = find_next_extent(rc, path, &key);
4073 		if (ret < 0)
4074 			err = ret;
4075 		if (ret != 0)
4076 			break;
4077 
4078 		rc->extents_found++;
4079 
4080 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4081 				    struct btrfs_extent_item);
4082 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4083 		if (item_size >= sizeof(*ei)) {
4084 			flags = btrfs_extent_flags(path->nodes[0], ei);
4085 			ret = check_extent_flags(flags);
4086 			BUG_ON(ret);
4087 
4088 		} else {
4089 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4090 			u64 ref_owner;
4091 			int path_change = 0;
4092 
4093 			BUG_ON(item_size !=
4094 			       sizeof(struct btrfs_extent_item_v0));
4095 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4096 						  &path_change);
4097 			if (ret < 0) {
4098 				err = ret;
4099 				break;
4100 			}
4101 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4102 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4103 			else
4104 				flags = BTRFS_EXTENT_FLAG_DATA;
4105 
4106 			if (path_change) {
4107 				btrfs_release_path(path);
4108 
4109 				path->search_commit_root = 1;
4110 				path->skip_locking = 1;
4111 				ret = btrfs_search_slot(NULL, rc->extent_root,
4112 							&key, path, 0, 0);
4113 				if (ret < 0) {
4114 					err = ret;
4115 					break;
4116 				}
4117 				BUG_ON(ret > 0);
4118 			}
4119 #else
4120 			BUG();
4121 #endif
4122 		}
4123 
4124 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4125 			ret = add_tree_block(rc, &key, path, &blocks);
4126 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4127 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4128 			ret = add_data_references(rc, &key, path, &blocks);
4129 		} else {
4130 			btrfs_release_path(path);
4131 			ret = 0;
4132 		}
4133 		if (ret < 0) {
4134 			err = ret;
4135 			break;
4136 		}
4137 
4138 		if (!RB_EMPTY_ROOT(&blocks)) {
4139 			ret = relocate_tree_blocks(trans, rc, &blocks);
4140 			if (ret < 0) {
4141 				/*
4142 				 * if we fail to relocate tree blocks, force to update
4143 				 * backref cache when committing transaction.
4144 				 */
4145 				rc->backref_cache.last_trans = trans->transid - 1;
4146 
4147 				if (ret != -EAGAIN) {
4148 					err = ret;
4149 					break;
4150 				}
4151 				rc->extents_found--;
4152 				rc->search_start = key.objectid;
4153 			}
4154 		}
4155 
4156 		btrfs_end_transaction_throttle(trans);
4157 		btrfs_btree_balance_dirty(fs_info);
4158 		trans = NULL;
4159 
4160 		if (rc->stage == MOVE_DATA_EXTENTS &&
4161 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4162 			rc->found_file_extent = 1;
4163 			ret = relocate_data_extent(rc->data_inode,
4164 						   &key, &rc->cluster);
4165 			if (ret < 0) {
4166 				err = ret;
4167 				break;
4168 			}
4169 		}
4170 	}
4171 	if (trans && progress && err == -ENOSPC) {
4172 		ret = btrfs_force_chunk_alloc(trans, fs_info,
4173 					      rc->block_group->flags);
4174 		if (ret == 1) {
4175 			err = 0;
4176 			progress = 0;
4177 			goto restart;
4178 		}
4179 	}
4180 
4181 	btrfs_release_path(path);
4182 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4183 
4184 	if (trans) {
4185 		btrfs_end_transaction_throttle(trans);
4186 		btrfs_btree_balance_dirty(fs_info);
4187 	}
4188 
4189 	if (!err) {
4190 		ret = relocate_file_extent_cluster(rc->data_inode,
4191 						   &rc->cluster);
4192 		if (ret < 0)
4193 			err = ret;
4194 	}
4195 
4196 	rc->create_reloc_tree = 0;
4197 	set_reloc_control(rc);
4198 
4199 	backref_cache_cleanup(&rc->backref_cache);
4200 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4201 
4202 	err = prepare_to_merge(rc, err);
4203 
4204 	merge_reloc_roots(rc);
4205 
4206 	rc->merge_reloc_tree = 0;
4207 	unset_reloc_control(rc);
4208 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4209 
4210 	/* get rid of pinned extents */
4211 	trans = btrfs_join_transaction(rc->extent_root);
4212 	if (IS_ERR(trans)) {
4213 		err = PTR_ERR(trans);
4214 		goto out_free;
4215 	}
4216 	btrfs_commit_transaction(trans);
4217 out_free:
4218 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4219 	btrfs_free_path(path);
4220 	return err;
4221 }
4222 
4223 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4224 				 struct btrfs_root *root, u64 objectid)
4225 {
4226 	struct btrfs_path *path;
4227 	struct btrfs_inode_item *item;
4228 	struct extent_buffer *leaf;
4229 	int ret;
4230 
4231 	path = btrfs_alloc_path();
4232 	if (!path)
4233 		return -ENOMEM;
4234 
4235 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4236 	if (ret)
4237 		goto out;
4238 
4239 	leaf = path->nodes[0];
4240 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4241 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4242 	btrfs_set_inode_generation(leaf, item, 1);
4243 	btrfs_set_inode_size(leaf, item, 0);
4244 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4245 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4246 					  BTRFS_INODE_PREALLOC);
4247 	btrfs_mark_buffer_dirty(leaf);
4248 out:
4249 	btrfs_free_path(path);
4250 	return ret;
4251 }
4252 
4253 /*
4254  * helper to create inode for data relocation.
4255  * the inode is in data relocation tree and its link count is 0
4256  */
4257 static noinline_for_stack
4258 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4259 				 struct btrfs_block_group_cache *group)
4260 {
4261 	struct inode *inode = NULL;
4262 	struct btrfs_trans_handle *trans;
4263 	struct btrfs_root *root;
4264 	struct btrfs_key key;
4265 	u64 objectid;
4266 	int err = 0;
4267 
4268 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4269 	if (IS_ERR(root))
4270 		return ERR_CAST(root);
4271 
4272 	trans = btrfs_start_transaction(root, 6);
4273 	if (IS_ERR(trans))
4274 		return ERR_CAST(trans);
4275 
4276 	err = btrfs_find_free_objectid(root, &objectid);
4277 	if (err)
4278 		goto out;
4279 
4280 	err = __insert_orphan_inode(trans, root, objectid);
4281 	BUG_ON(err);
4282 
4283 	key.objectid = objectid;
4284 	key.type = BTRFS_INODE_ITEM_KEY;
4285 	key.offset = 0;
4286 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4287 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4288 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4289 
4290 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4291 out:
4292 	btrfs_end_transaction(trans);
4293 	btrfs_btree_balance_dirty(fs_info);
4294 	if (err) {
4295 		if (inode)
4296 			iput(inode);
4297 		inode = ERR_PTR(err);
4298 	}
4299 	return inode;
4300 }
4301 
4302 static struct reloc_control *alloc_reloc_control(void)
4303 {
4304 	struct reloc_control *rc;
4305 
4306 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4307 	if (!rc)
4308 		return NULL;
4309 
4310 	INIT_LIST_HEAD(&rc->reloc_roots);
4311 	backref_cache_init(&rc->backref_cache);
4312 	mapping_tree_init(&rc->reloc_root_tree);
4313 	extent_io_tree_init(&rc->processed_blocks, NULL);
4314 	return rc;
4315 }
4316 
4317 /*
4318  * Print the block group being relocated
4319  */
4320 static void describe_relocation(struct btrfs_fs_info *fs_info,
4321 				struct btrfs_block_group_cache *block_group)
4322 {
4323 	char buf[128];		/* prefixed by a '|' that'll be dropped */
4324 	u64 flags = block_group->flags;
4325 
4326 	/* Shouldn't happen */
4327 	if (!flags) {
4328 		strcpy(buf, "|NONE");
4329 	} else {
4330 		char *bp = buf;
4331 
4332 #define DESCRIBE_FLAG(f, d) \
4333 		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4334 			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4335 			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4336 		}
4337 		DESCRIBE_FLAG(DATA,     "data");
4338 		DESCRIBE_FLAG(SYSTEM,   "system");
4339 		DESCRIBE_FLAG(METADATA, "metadata");
4340 		DESCRIBE_FLAG(RAID0,    "raid0");
4341 		DESCRIBE_FLAG(RAID1,    "raid1");
4342 		DESCRIBE_FLAG(DUP,      "dup");
4343 		DESCRIBE_FLAG(RAID10,   "raid10");
4344 		DESCRIBE_FLAG(RAID5,    "raid5");
4345 		DESCRIBE_FLAG(RAID6,    "raid6");
4346 		if (flags)
4347 			snprintf(bp, buf - bp + sizeof(buf), "|0x%llx", flags);
4348 #undef DESCRIBE_FLAG
4349 	}
4350 
4351 	btrfs_info(fs_info,
4352 		   "relocating block group %llu flags %s",
4353 		   block_group->key.objectid, buf + 1);
4354 }
4355 
4356 /*
4357  * function to relocate all extents in a block group.
4358  */
4359 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4360 {
4361 	struct btrfs_root *extent_root = fs_info->extent_root;
4362 	struct reloc_control *rc;
4363 	struct inode *inode;
4364 	struct btrfs_path *path;
4365 	int ret;
4366 	int rw = 0;
4367 	int err = 0;
4368 
4369 	rc = alloc_reloc_control();
4370 	if (!rc)
4371 		return -ENOMEM;
4372 
4373 	rc->extent_root = extent_root;
4374 
4375 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4376 	BUG_ON(!rc->block_group);
4377 
4378 	ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
4379 	if (ret) {
4380 		err = ret;
4381 		goto out;
4382 	}
4383 	rw = 1;
4384 
4385 	path = btrfs_alloc_path();
4386 	if (!path) {
4387 		err = -ENOMEM;
4388 		goto out;
4389 	}
4390 
4391 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4392 	btrfs_free_path(path);
4393 
4394 	if (!IS_ERR(inode))
4395 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4396 	else
4397 		ret = PTR_ERR(inode);
4398 
4399 	if (ret && ret != -ENOENT) {
4400 		err = ret;
4401 		goto out;
4402 	}
4403 
4404 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4405 	if (IS_ERR(rc->data_inode)) {
4406 		err = PTR_ERR(rc->data_inode);
4407 		rc->data_inode = NULL;
4408 		goto out;
4409 	}
4410 
4411 	describe_relocation(fs_info, rc->block_group);
4412 
4413 	btrfs_wait_block_group_reservations(rc->block_group);
4414 	btrfs_wait_nocow_writers(rc->block_group);
4415 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4416 				 rc->block_group->key.objectid,
4417 				 rc->block_group->key.offset);
4418 
4419 	while (1) {
4420 		mutex_lock(&fs_info->cleaner_mutex);
4421 		ret = relocate_block_group(rc);
4422 		mutex_unlock(&fs_info->cleaner_mutex);
4423 		if (ret < 0) {
4424 			err = ret;
4425 			goto out;
4426 		}
4427 
4428 		if (rc->extents_found == 0)
4429 			break;
4430 
4431 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4432 
4433 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4434 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4435 						       (u64)-1);
4436 			if (ret) {
4437 				err = ret;
4438 				goto out;
4439 			}
4440 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4441 						 0, -1);
4442 			rc->stage = UPDATE_DATA_PTRS;
4443 		}
4444 	}
4445 
4446 	WARN_ON(rc->block_group->pinned > 0);
4447 	WARN_ON(rc->block_group->reserved > 0);
4448 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4449 out:
4450 	if (err && rw)
4451 		btrfs_dec_block_group_ro(rc->block_group);
4452 	iput(rc->data_inode);
4453 	btrfs_put_block_group(rc->block_group);
4454 	kfree(rc);
4455 	return err;
4456 }
4457 
4458 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4459 {
4460 	struct btrfs_fs_info *fs_info = root->fs_info;
4461 	struct btrfs_trans_handle *trans;
4462 	int ret, err;
4463 
4464 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4465 	if (IS_ERR(trans))
4466 		return PTR_ERR(trans);
4467 
4468 	memset(&root->root_item.drop_progress, 0,
4469 		sizeof(root->root_item.drop_progress));
4470 	root->root_item.drop_level = 0;
4471 	btrfs_set_root_refs(&root->root_item, 0);
4472 	ret = btrfs_update_root(trans, fs_info->tree_root,
4473 				&root->root_key, &root->root_item);
4474 
4475 	err = btrfs_end_transaction(trans);
4476 	if (err)
4477 		return err;
4478 	return ret;
4479 }
4480 
4481 /*
4482  * recover relocation interrupted by system crash.
4483  *
4484  * this function resumes merging reloc trees with corresponding fs trees.
4485  * this is important for keeping the sharing of tree blocks
4486  */
4487 int btrfs_recover_relocation(struct btrfs_root *root)
4488 {
4489 	struct btrfs_fs_info *fs_info = root->fs_info;
4490 	LIST_HEAD(reloc_roots);
4491 	struct btrfs_key key;
4492 	struct btrfs_root *fs_root;
4493 	struct btrfs_root *reloc_root;
4494 	struct btrfs_path *path;
4495 	struct extent_buffer *leaf;
4496 	struct reloc_control *rc = NULL;
4497 	struct btrfs_trans_handle *trans;
4498 	int ret;
4499 	int err = 0;
4500 
4501 	path = btrfs_alloc_path();
4502 	if (!path)
4503 		return -ENOMEM;
4504 	path->reada = READA_BACK;
4505 
4506 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4507 	key.type = BTRFS_ROOT_ITEM_KEY;
4508 	key.offset = (u64)-1;
4509 
4510 	while (1) {
4511 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4512 					path, 0, 0);
4513 		if (ret < 0) {
4514 			err = ret;
4515 			goto out;
4516 		}
4517 		if (ret > 0) {
4518 			if (path->slots[0] == 0)
4519 				break;
4520 			path->slots[0]--;
4521 		}
4522 		leaf = path->nodes[0];
4523 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4524 		btrfs_release_path(path);
4525 
4526 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4527 		    key.type != BTRFS_ROOT_ITEM_KEY)
4528 			break;
4529 
4530 		reloc_root = btrfs_read_fs_root(root, &key);
4531 		if (IS_ERR(reloc_root)) {
4532 			err = PTR_ERR(reloc_root);
4533 			goto out;
4534 		}
4535 
4536 		list_add(&reloc_root->root_list, &reloc_roots);
4537 
4538 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4539 			fs_root = read_fs_root(fs_info,
4540 					       reloc_root->root_key.offset);
4541 			if (IS_ERR(fs_root)) {
4542 				ret = PTR_ERR(fs_root);
4543 				if (ret != -ENOENT) {
4544 					err = ret;
4545 					goto out;
4546 				}
4547 				ret = mark_garbage_root(reloc_root);
4548 				if (ret < 0) {
4549 					err = ret;
4550 					goto out;
4551 				}
4552 			}
4553 		}
4554 
4555 		if (key.offset == 0)
4556 			break;
4557 
4558 		key.offset--;
4559 	}
4560 	btrfs_release_path(path);
4561 
4562 	if (list_empty(&reloc_roots))
4563 		goto out;
4564 
4565 	rc = alloc_reloc_control();
4566 	if (!rc) {
4567 		err = -ENOMEM;
4568 		goto out;
4569 	}
4570 
4571 	rc->extent_root = fs_info->extent_root;
4572 
4573 	set_reloc_control(rc);
4574 
4575 	trans = btrfs_join_transaction(rc->extent_root);
4576 	if (IS_ERR(trans)) {
4577 		unset_reloc_control(rc);
4578 		err = PTR_ERR(trans);
4579 		goto out_free;
4580 	}
4581 
4582 	rc->merge_reloc_tree = 1;
4583 
4584 	while (!list_empty(&reloc_roots)) {
4585 		reloc_root = list_entry(reloc_roots.next,
4586 					struct btrfs_root, root_list);
4587 		list_del(&reloc_root->root_list);
4588 
4589 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4590 			list_add_tail(&reloc_root->root_list,
4591 				      &rc->reloc_roots);
4592 			continue;
4593 		}
4594 
4595 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4596 		if (IS_ERR(fs_root)) {
4597 			err = PTR_ERR(fs_root);
4598 			goto out_free;
4599 		}
4600 
4601 		err = __add_reloc_root(reloc_root);
4602 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4603 		fs_root->reloc_root = reloc_root;
4604 	}
4605 
4606 	err = btrfs_commit_transaction(trans);
4607 	if (err)
4608 		goto out_free;
4609 
4610 	merge_reloc_roots(rc);
4611 
4612 	unset_reloc_control(rc);
4613 
4614 	trans = btrfs_join_transaction(rc->extent_root);
4615 	if (IS_ERR(trans)) {
4616 		err = PTR_ERR(trans);
4617 		goto out_free;
4618 	}
4619 	err = btrfs_commit_transaction(trans);
4620 out_free:
4621 	kfree(rc);
4622 out:
4623 	if (!list_empty(&reloc_roots))
4624 		free_reloc_roots(&reloc_roots);
4625 
4626 	btrfs_free_path(path);
4627 
4628 	if (err == 0) {
4629 		/* cleanup orphan inode in data relocation tree */
4630 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4631 		if (IS_ERR(fs_root))
4632 			err = PTR_ERR(fs_root);
4633 		else
4634 			err = btrfs_orphan_cleanup(fs_root);
4635 	}
4636 	return err;
4637 }
4638 
4639 /*
4640  * helper to add ordered checksum for data relocation.
4641  *
4642  * cloning checksum properly handles the nodatasum extents.
4643  * it also saves CPU time to re-calculate the checksum.
4644  */
4645 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4646 {
4647 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4648 	struct btrfs_ordered_sum *sums;
4649 	struct btrfs_ordered_extent *ordered;
4650 	int ret;
4651 	u64 disk_bytenr;
4652 	u64 new_bytenr;
4653 	LIST_HEAD(list);
4654 
4655 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4656 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4657 
4658 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4659 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4660 				       disk_bytenr + len - 1, &list, 0);
4661 	if (ret)
4662 		goto out;
4663 
4664 	while (!list_empty(&list)) {
4665 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4666 		list_del_init(&sums->list);
4667 
4668 		/*
4669 		 * We need to offset the new_bytenr based on where the csum is.
4670 		 * We need to do this because we will read in entire prealloc
4671 		 * extents but we may have written to say the middle of the
4672 		 * prealloc extent, so we need to make sure the csum goes with
4673 		 * the right disk offset.
4674 		 *
4675 		 * We can do this because the data reloc inode refers strictly
4676 		 * to the on disk bytes, so we don't have to worry about
4677 		 * disk_len vs real len like with real inodes since it's all
4678 		 * disk length.
4679 		 */
4680 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4681 		sums->bytenr = new_bytenr;
4682 
4683 		btrfs_add_ordered_sum(inode, ordered, sums);
4684 	}
4685 out:
4686 	btrfs_put_ordered_extent(ordered);
4687 	return ret;
4688 }
4689 
4690 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4691 			  struct btrfs_root *root, struct extent_buffer *buf,
4692 			  struct extent_buffer *cow)
4693 {
4694 	struct btrfs_fs_info *fs_info = root->fs_info;
4695 	struct reloc_control *rc;
4696 	struct backref_node *node;
4697 	int first_cow = 0;
4698 	int level;
4699 	int ret = 0;
4700 
4701 	rc = fs_info->reloc_ctl;
4702 	if (!rc)
4703 		return 0;
4704 
4705 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4706 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4707 
4708 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4709 		if (buf == root->node)
4710 			__update_reloc_root(root, cow->start);
4711 	}
4712 
4713 	level = btrfs_header_level(buf);
4714 	if (btrfs_header_generation(buf) <=
4715 	    btrfs_root_last_snapshot(&root->root_item))
4716 		first_cow = 1;
4717 
4718 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4719 	    rc->create_reloc_tree) {
4720 		WARN_ON(!first_cow && level == 0);
4721 
4722 		node = rc->backref_cache.path[level];
4723 		BUG_ON(node->bytenr != buf->start &&
4724 		       node->new_bytenr != buf->start);
4725 
4726 		drop_node_buffer(node);
4727 		extent_buffer_get(cow);
4728 		node->eb = cow;
4729 		node->new_bytenr = cow->start;
4730 
4731 		if (!node->pending) {
4732 			list_move_tail(&node->list,
4733 				       &rc->backref_cache.pending[level]);
4734 			node->pending = 1;
4735 		}
4736 
4737 		if (first_cow)
4738 			__mark_block_processed(rc, node);
4739 
4740 		if (first_cow && level > 0)
4741 			rc->nodes_relocated += buf->len;
4742 	}
4743 
4744 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4745 		ret = replace_file_extents(trans, rc, root, cow);
4746 	return ret;
4747 }
4748 
4749 /*
4750  * called before creating snapshot. it calculates metadata reservation
4751  * required for relocating tree blocks in the snapshot
4752  */
4753 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4754 			      u64 *bytes_to_reserve)
4755 {
4756 	struct btrfs_root *root;
4757 	struct reloc_control *rc;
4758 
4759 	root = pending->root;
4760 	if (!root->reloc_root)
4761 		return;
4762 
4763 	rc = root->fs_info->reloc_ctl;
4764 	if (!rc->merge_reloc_tree)
4765 		return;
4766 
4767 	root = root->reloc_root;
4768 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4769 	/*
4770 	 * relocation is in the stage of merging trees. the space
4771 	 * used by merging a reloc tree is twice the size of
4772 	 * relocated tree nodes in the worst case. half for cowing
4773 	 * the reloc tree, half for cowing the fs tree. the space
4774 	 * used by cowing the reloc tree will be freed after the
4775 	 * tree is dropped. if we create snapshot, cowing the fs
4776 	 * tree may use more space than it frees. so we need
4777 	 * reserve extra space.
4778 	 */
4779 	*bytes_to_reserve += rc->nodes_relocated;
4780 }
4781 
4782 /*
4783  * called after snapshot is created. migrate block reservation
4784  * and create reloc root for the newly created snapshot
4785  */
4786 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4787 			       struct btrfs_pending_snapshot *pending)
4788 {
4789 	struct btrfs_root *root = pending->root;
4790 	struct btrfs_root *reloc_root;
4791 	struct btrfs_root *new_root;
4792 	struct reloc_control *rc;
4793 	int ret;
4794 
4795 	if (!root->reloc_root)
4796 		return 0;
4797 
4798 	rc = root->fs_info->reloc_ctl;
4799 	rc->merging_rsv_size += rc->nodes_relocated;
4800 
4801 	if (rc->merge_reloc_tree) {
4802 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4803 					      rc->block_rsv,
4804 					      rc->nodes_relocated, 1);
4805 		if (ret)
4806 			return ret;
4807 	}
4808 
4809 	new_root = pending->snap;
4810 	reloc_root = create_reloc_root(trans, root->reloc_root,
4811 				       new_root->root_key.objectid);
4812 	if (IS_ERR(reloc_root))
4813 		return PTR_ERR(reloc_root);
4814 
4815 	ret = __add_reloc_root(reloc_root);
4816 	BUG_ON(ret < 0);
4817 	new_root->reloc_root = reloc_root;
4818 
4819 	if (rc->create_reloc_tree)
4820 		ret = clone_backref_node(trans, rc, root, reloc_root);
4821 	return ret;
4822 }
4823