xref: /openbmc/linux/fs/btrfs/relocation.c (revision d2999e1b)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		BUG_ON(!list_empty(&cache->pending[i]));
239 	BUG_ON(!list_empty(&cache->changed));
240 	BUG_ON(!list_empty(&cache->detached));
241 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 	BUG_ON(cache->nr_nodes);
243 	BUG_ON(cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
579 		return 1;
580 	return 0;
581 }
582 
583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
584 					u64 root_objectid)
585 {
586 	struct btrfs_key key;
587 
588 	key.objectid = root_objectid;
589 	key.type = BTRFS_ROOT_ITEM_KEY;
590 	if (is_cowonly_root(root_objectid))
591 		key.offset = 0;
592 	else
593 		key.offset = (u64)-1;
594 
595 	return btrfs_get_fs_root(fs_info, &key, false);
596 }
597 
598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
599 static noinline_for_stack
600 struct btrfs_root *find_tree_root(struct reloc_control *rc,
601 				  struct extent_buffer *leaf,
602 				  struct btrfs_extent_ref_v0 *ref0)
603 {
604 	struct btrfs_root *root;
605 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
606 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
607 
608 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
609 
610 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
611 	BUG_ON(IS_ERR(root));
612 
613 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
614 	    generation != btrfs_root_generation(&root->root_item))
615 		return NULL;
616 
617 	return root;
618 }
619 #endif
620 
621 static noinline_for_stack
622 int find_inline_backref(struct extent_buffer *leaf, int slot,
623 			unsigned long *ptr, unsigned long *end)
624 {
625 	struct btrfs_key key;
626 	struct btrfs_extent_item *ei;
627 	struct btrfs_tree_block_info *bi;
628 	u32 item_size;
629 
630 	btrfs_item_key_to_cpu(leaf, &key, slot);
631 
632 	item_size = btrfs_item_size_nr(leaf, slot);
633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
634 	if (item_size < sizeof(*ei)) {
635 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
636 		return 1;
637 	}
638 #endif
639 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
640 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
641 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
642 
643 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
644 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
645 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
646 		return 1;
647 	}
648 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
649 	    item_size <= sizeof(*ei)) {
650 		WARN_ON(item_size < sizeof(*ei));
651 		return 1;
652 	}
653 
654 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
655 		bi = (struct btrfs_tree_block_info *)(ei + 1);
656 		*ptr = (unsigned long)(bi + 1);
657 	} else {
658 		*ptr = (unsigned long)(ei + 1);
659 	}
660 	*end = (unsigned long)ei + item_size;
661 	return 0;
662 }
663 
664 /*
665  * build backref tree for a given tree block. root of the backref tree
666  * corresponds the tree block, leaves of the backref tree correspond
667  * roots of b-trees that reference the tree block.
668  *
669  * the basic idea of this function is check backrefs of a given block
670  * to find upper level blocks that refernece the block, and then check
671  * bakcrefs of these upper level blocks recursively. the recursion stop
672  * when tree root is reached or backrefs for the block is cached.
673  *
674  * NOTE: if we find backrefs for a block are cached, we know backrefs
675  * for all upper level blocks that directly/indirectly reference the
676  * block are also cached.
677  */
678 static noinline_for_stack
679 struct backref_node *build_backref_tree(struct reloc_control *rc,
680 					struct btrfs_key *node_key,
681 					int level, u64 bytenr)
682 {
683 	struct backref_cache *cache = &rc->backref_cache;
684 	struct btrfs_path *path1;
685 	struct btrfs_path *path2;
686 	struct extent_buffer *eb;
687 	struct btrfs_root *root;
688 	struct backref_node *cur;
689 	struct backref_node *upper;
690 	struct backref_node *lower;
691 	struct backref_node *node = NULL;
692 	struct backref_node *exist = NULL;
693 	struct backref_edge *edge;
694 	struct rb_node *rb_node;
695 	struct btrfs_key key;
696 	unsigned long end;
697 	unsigned long ptr;
698 	LIST_HEAD(list);
699 	LIST_HEAD(useless);
700 	int cowonly;
701 	int ret;
702 	int err = 0;
703 	bool need_check = true;
704 
705 	path1 = btrfs_alloc_path();
706 	path2 = btrfs_alloc_path();
707 	if (!path1 || !path2) {
708 		err = -ENOMEM;
709 		goto out;
710 	}
711 	path1->reada = 1;
712 	path2->reada = 2;
713 
714 	node = alloc_backref_node(cache);
715 	if (!node) {
716 		err = -ENOMEM;
717 		goto out;
718 	}
719 
720 	node->bytenr = bytenr;
721 	node->level = level;
722 	node->lowest = 1;
723 	cur = node;
724 again:
725 	end = 0;
726 	ptr = 0;
727 	key.objectid = cur->bytenr;
728 	key.type = BTRFS_METADATA_ITEM_KEY;
729 	key.offset = (u64)-1;
730 
731 	path1->search_commit_root = 1;
732 	path1->skip_locking = 1;
733 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
734 				0, 0);
735 	if (ret < 0) {
736 		err = ret;
737 		goto out;
738 	}
739 	BUG_ON(!ret || !path1->slots[0]);
740 
741 	path1->slots[0]--;
742 
743 	WARN_ON(cur->checked);
744 	if (!list_empty(&cur->upper)) {
745 		/*
746 		 * the backref was added previously when processing
747 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
748 		 */
749 		BUG_ON(!list_is_singular(&cur->upper));
750 		edge = list_entry(cur->upper.next, struct backref_edge,
751 				  list[LOWER]);
752 		BUG_ON(!list_empty(&edge->list[UPPER]));
753 		exist = edge->node[UPPER];
754 		/*
755 		 * add the upper level block to pending list if we need
756 		 * check its backrefs
757 		 */
758 		if (!exist->checked)
759 			list_add_tail(&edge->list[UPPER], &list);
760 	} else {
761 		exist = NULL;
762 	}
763 
764 	while (1) {
765 		cond_resched();
766 		eb = path1->nodes[0];
767 
768 		if (ptr >= end) {
769 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
770 				ret = btrfs_next_leaf(rc->extent_root, path1);
771 				if (ret < 0) {
772 					err = ret;
773 					goto out;
774 				}
775 				if (ret > 0)
776 					break;
777 				eb = path1->nodes[0];
778 			}
779 
780 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
781 			if (key.objectid != cur->bytenr) {
782 				WARN_ON(exist);
783 				break;
784 			}
785 
786 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
787 			    key.type == BTRFS_METADATA_ITEM_KEY) {
788 				ret = find_inline_backref(eb, path1->slots[0],
789 							  &ptr, &end);
790 				if (ret)
791 					goto next;
792 			}
793 		}
794 
795 		if (ptr < end) {
796 			/* update key for inline back ref */
797 			struct btrfs_extent_inline_ref *iref;
798 			iref = (struct btrfs_extent_inline_ref *)ptr;
799 			key.type = btrfs_extent_inline_ref_type(eb, iref);
800 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
801 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
802 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
803 		}
804 
805 		if (exist &&
806 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
807 		      exist->owner == key.offset) ||
808 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
809 		      exist->bytenr == key.offset))) {
810 			exist = NULL;
811 			goto next;
812 		}
813 
814 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
815 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
816 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
817 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
818 				struct btrfs_extent_ref_v0 *ref0;
819 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
820 						struct btrfs_extent_ref_v0);
821 				if (key.objectid == key.offset) {
822 					root = find_tree_root(rc, eb, ref0);
823 					if (root && !should_ignore_root(root))
824 						cur->root = root;
825 					else
826 						list_add(&cur->list, &useless);
827 					break;
828 				}
829 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
830 								      ref0)))
831 					cur->cowonly = 1;
832 			}
833 #else
834 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
835 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
836 #endif
837 			if (key.objectid == key.offset) {
838 				/*
839 				 * only root blocks of reloc trees use
840 				 * backref of this type.
841 				 */
842 				root = find_reloc_root(rc, cur->bytenr);
843 				BUG_ON(!root);
844 				cur->root = root;
845 				break;
846 			}
847 
848 			edge = alloc_backref_edge(cache);
849 			if (!edge) {
850 				err = -ENOMEM;
851 				goto out;
852 			}
853 			rb_node = tree_search(&cache->rb_root, key.offset);
854 			if (!rb_node) {
855 				upper = alloc_backref_node(cache);
856 				if (!upper) {
857 					free_backref_edge(cache, edge);
858 					err = -ENOMEM;
859 					goto out;
860 				}
861 				upper->bytenr = key.offset;
862 				upper->level = cur->level + 1;
863 				/*
864 				 *  backrefs for the upper level block isn't
865 				 *  cached, add the block to pending list
866 				 */
867 				list_add_tail(&edge->list[UPPER], &list);
868 			} else {
869 				upper = rb_entry(rb_node, struct backref_node,
870 						 rb_node);
871 				BUG_ON(!upper->checked);
872 				INIT_LIST_HEAD(&edge->list[UPPER]);
873 			}
874 			list_add_tail(&edge->list[LOWER], &cur->upper);
875 			edge->node[LOWER] = cur;
876 			edge->node[UPPER] = upper;
877 
878 			goto next;
879 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
880 			goto next;
881 		}
882 
883 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
884 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
885 		if (IS_ERR(root)) {
886 			err = PTR_ERR(root);
887 			goto out;
888 		}
889 
890 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
891 			cur->cowonly = 1;
892 
893 		if (btrfs_root_level(&root->root_item) == cur->level) {
894 			/* tree root */
895 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
896 			       cur->bytenr);
897 			if (should_ignore_root(root))
898 				list_add(&cur->list, &useless);
899 			else
900 				cur->root = root;
901 			break;
902 		}
903 
904 		level = cur->level + 1;
905 
906 		/*
907 		 * searching the tree to find upper level blocks
908 		 * reference the block.
909 		 */
910 		path2->search_commit_root = 1;
911 		path2->skip_locking = 1;
912 		path2->lowest_level = level;
913 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
914 		path2->lowest_level = 0;
915 		if (ret < 0) {
916 			err = ret;
917 			goto out;
918 		}
919 		if (ret > 0 && path2->slots[level] > 0)
920 			path2->slots[level]--;
921 
922 		eb = path2->nodes[level];
923 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
924 			cur->bytenr);
925 
926 		lower = cur;
927 		need_check = true;
928 		for (; level < BTRFS_MAX_LEVEL; level++) {
929 			if (!path2->nodes[level]) {
930 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
931 				       lower->bytenr);
932 				if (should_ignore_root(root))
933 					list_add(&lower->list, &useless);
934 				else
935 					lower->root = root;
936 				break;
937 			}
938 
939 			edge = alloc_backref_edge(cache);
940 			if (!edge) {
941 				err = -ENOMEM;
942 				goto out;
943 			}
944 
945 			eb = path2->nodes[level];
946 			rb_node = tree_search(&cache->rb_root, eb->start);
947 			if (!rb_node) {
948 				upper = alloc_backref_node(cache);
949 				if (!upper) {
950 					free_backref_edge(cache, edge);
951 					err = -ENOMEM;
952 					goto out;
953 				}
954 				upper->bytenr = eb->start;
955 				upper->owner = btrfs_header_owner(eb);
956 				upper->level = lower->level + 1;
957 				if (!test_bit(BTRFS_ROOT_REF_COWS,
958 					      &root->state))
959 					upper->cowonly = 1;
960 
961 				/*
962 				 * if we know the block isn't shared
963 				 * we can void checking its backrefs.
964 				 */
965 				if (btrfs_block_can_be_shared(root, eb))
966 					upper->checked = 0;
967 				else
968 					upper->checked = 1;
969 
970 				/*
971 				 * add the block to pending list if we
972 				 * need check its backrefs, we only do this once
973 				 * while walking up a tree as we will catch
974 				 * anything else later on.
975 				 */
976 				if (!upper->checked && need_check) {
977 					need_check = false;
978 					list_add_tail(&edge->list[UPPER],
979 						      &list);
980 				} else
981 					INIT_LIST_HEAD(&edge->list[UPPER]);
982 			} else {
983 				upper = rb_entry(rb_node, struct backref_node,
984 						 rb_node);
985 				BUG_ON(!upper->checked);
986 				INIT_LIST_HEAD(&edge->list[UPPER]);
987 				if (!upper->owner)
988 					upper->owner = btrfs_header_owner(eb);
989 			}
990 			list_add_tail(&edge->list[LOWER], &lower->upper);
991 			edge->node[LOWER] = lower;
992 			edge->node[UPPER] = upper;
993 
994 			if (rb_node)
995 				break;
996 			lower = upper;
997 			upper = NULL;
998 		}
999 		btrfs_release_path(path2);
1000 next:
1001 		if (ptr < end) {
1002 			ptr += btrfs_extent_inline_ref_size(key.type);
1003 			if (ptr >= end) {
1004 				WARN_ON(ptr > end);
1005 				ptr = 0;
1006 				end = 0;
1007 			}
1008 		}
1009 		if (ptr >= end)
1010 			path1->slots[0]++;
1011 	}
1012 	btrfs_release_path(path1);
1013 
1014 	cur->checked = 1;
1015 	WARN_ON(exist);
1016 
1017 	/* the pending list isn't empty, take the first block to process */
1018 	if (!list_empty(&list)) {
1019 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1020 		list_del_init(&edge->list[UPPER]);
1021 		cur = edge->node[UPPER];
1022 		goto again;
1023 	}
1024 
1025 	/*
1026 	 * everything goes well, connect backref nodes and insert backref nodes
1027 	 * into the cache.
1028 	 */
1029 	BUG_ON(!node->checked);
1030 	cowonly = node->cowonly;
1031 	if (!cowonly) {
1032 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1033 				      &node->rb_node);
1034 		if (rb_node)
1035 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1036 		list_add_tail(&node->lower, &cache->leaves);
1037 	}
1038 
1039 	list_for_each_entry(edge, &node->upper, list[LOWER])
1040 		list_add_tail(&edge->list[UPPER], &list);
1041 
1042 	while (!list_empty(&list)) {
1043 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1044 		list_del_init(&edge->list[UPPER]);
1045 		upper = edge->node[UPPER];
1046 		if (upper->detached) {
1047 			list_del(&edge->list[LOWER]);
1048 			lower = edge->node[LOWER];
1049 			free_backref_edge(cache, edge);
1050 			if (list_empty(&lower->upper))
1051 				list_add(&lower->list, &useless);
1052 			continue;
1053 		}
1054 
1055 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1056 			if (upper->lowest) {
1057 				list_del_init(&upper->lower);
1058 				upper->lowest = 0;
1059 			}
1060 
1061 			list_add_tail(&edge->list[UPPER], &upper->lower);
1062 			continue;
1063 		}
1064 
1065 		BUG_ON(!upper->checked);
1066 		BUG_ON(cowonly != upper->cowonly);
1067 		if (!cowonly) {
1068 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1069 					      &upper->rb_node);
1070 			if (rb_node)
1071 				backref_tree_panic(rb_node, -EEXIST,
1072 						   upper->bytenr);
1073 		}
1074 
1075 		list_add_tail(&edge->list[UPPER], &upper->lower);
1076 
1077 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1078 			list_add_tail(&edge->list[UPPER], &list);
1079 	}
1080 	/*
1081 	 * process useless backref nodes. backref nodes for tree leaves
1082 	 * are deleted from the cache. backref nodes for upper level
1083 	 * tree blocks are left in the cache to avoid unnecessary backref
1084 	 * lookup.
1085 	 */
1086 	while (!list_empty(&useless)) {
1087 		upper = list_entry(useless.next, struct backref_node, list);
1088 		list_del_init(&upper->list);
1089 		BUG_ON(!list_empty(&upper->upper));
1090 		if (upper == node)
1091 			node = NULL;
1092 		if (upper->lowest) {
1093 			list_del_init(&upper->lower);
1094 			upper->lowest = 0;
1095 		}
1096 		while (!list_empty(&upper->lower)) {
1097 			edge = list_entry(upper->lower.next,
1098 					  struct backref_edge, list[UPPER]);
1099 			list_del(&edge->list[UPPER]);
1100 			list_del(&edge->list[LOWER]);
1101 			lower = edge->node[LOWER];
1102 			free_backref_edge(cache, edge);
1103 
1104 			if (list_empty(&lower->upper))
1105 				list_add(&lower->list, &useless);
1106 		}
1107 		__mark_block_processed(rc, upper);
1108 		if (upper->level > 0) {
1109 			list_add(&upper->list, &cache->detached);
1110 			upper->detached = 1;
1111 		} else {
1112 			rb_erase(&upper->rb_node, &cache->rb_root);
1113 			free_backref_node(cache, upper);
1114 		}
1115 	}
1116 out:
1117 	btrfs_free_path(path1);
1118 	btrfs_free_path(path2);
1119 	if (err) {
1120 		while (!list_empty(&useless)) {
1121 			lower = list_entry(useless.next,
1122 					   struct backref_node, upper);
1123 			list_del_init(&lower->upper);
1124 		}
1125 		upper = node;
1126 		INIT_LIST_HEAD(&list);
1127 		while (upper) {
1128 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1129 				list_splice_tail(&upper->upper, &list);
1130 				free_backref_node(cache, upper);
1131 			}
1132 
1133 			if (list_empty(&list))
1134 				break;
1135 
1136 			edge = list_entry(list.next, struct backref_edge,
1137 					  list[LOWER]);
1138 			list_del(&edge->list[LOWER]);
1139 			upper = edge->node[UPPER];
1140 			free_backref_edge(cache, edge);
1141 		}
1142 		return ERR_PTR(err);
1143 	}
1144 	BUG_ON(node && node->detached);
1145 	return node;
1146 }
1147 
1148 /*
1149  * helper to add backref node for the newly created snapshot.
1150  * the backref node is created by cloning backref node that
1151  * corresponds to root of source tree
1152  */
1153 static int clone_backref_node(struct btrfs_trans_handle *trans,
1154 			      struct reloc_control *rc,
1155 			      struct btrfs_root *src,
1156 			      struct btrfs_root *dest)
1157 {
1158 	struct btrfs_root *reloc_root = src->reloc_root;
1159 	struct backref_cache *cache = &rc->backref_cache;
1160 	struct backref_node *node = NULL;
1161 	struct backref_node *new_node;
1162 	struct backref_edge *edge;
1163 	struct backref_edge *new_edge;
1164 	struct rb_node *rb_node;
1165 
1166 	if (cache->last_trans > 0)
1167 		update_backref_cache(trans, cache);
1168 
1169 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1170 	if (rb_node) {
1171 		node = rb_entry(rb_node, struct backref_node, rb_node);
1172 		if (node->detached)
1173 			node = NULL;
1174 		else
1175 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1176 	}
1177 
1178 	if (!node) {
1179 		rb_node = tree_search(&cache->rb_root,
1180 				      reloc_root->commit_root->start);
1181 		if (rb_node) {
1182 			node = rb_entry(rb_node, struct backref_node,
1183 					rb_node);
1184 			BUG_ON(node->detached);
1185 		}
1186 	}
1187 
1188 	if (!node)
1189 		return 0;
1190 
1191 	new_node = alloc_backref_node(cache);
1192 	if (!new_node)
1193 		return -ENOMEM;
1194 
1195 	new_node->bytenr = dest->node->start;
1196 	new_node->level = node->level;
1197 	new_node->lowest = node->lowest;
1198 	new_node->checked = 1;
1199 	new_node->root = dest;
1200 
1201 	if (!node->lowest) {
1202 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1203 			new_edge = alloc_backref_edge(cache);
1204 			if (!new_edge)
1205 				goto fail;
1206 
1207 			new_edge->node[UPPER] = new_node;
1208 			new_edge->node[LOWER] = edge->node[LOWER];
1209 			list_add_tail(&new_edge->list[UPPER],
1210 				      &new_node->lower);
1211 		}
1212 	} else {
1213 		list_add_tail(&new_node->lower, &cache->leaves);
1214 	}
1215 
1216 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1217 			      &new_node->rb_node);
1218 	if (rb_node)
1219 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1220 
1221 	if (!new_node->lowest) {
1222 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1223 			list_add_tail(&new_edge->list[LOWER],
1224 				      &new_edge->node[LOWER]->upper);
1225 		}
1226 	}
1227 	return 0;
1228 fail:
1229 	while (!list_empty(&new_node->lower)) {
1230 		new_edge = list_entry(new_node->lower.next,
1231 				      struct backref_edge, list[UPPER]);
1232 		list_del(&new_edge->list[UPPER]);
1233 		free_backref_edge(cache, new_edge);
1234 	}
1235 	free_backref_node(cache, new_node);
1236 	return -ENOMEM;
1237 }
1238 
1239 /*
1240  * helper to add 'address of tree root -> reloc tree' mapping
1241  */
1242 static int __must_check __add_reloc_root(struct btrfs_root *root)
1243 {
1244 	struct rb_node *rb_node;
1245 	struct mapping_node *node;
1246 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1247 
1248 	node = kmalloc(sizeof(*node), GFP_NOFS);
1249 	if (!node)
1250 		return -ENOMEM;
1251 
1252 	node->bytenr = root->node->start;
1253 	node->data = root;
1254 
1255 	spin_lock(&rc->reloc_root_tree.lock);
1256 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1257 			      node->bytenr, &node->rb_node);
1258 	spin_unlock(&rc->reloc_root_tree.lock);
1259 	if (rb_node) {
1260 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1261 			    "for start=%llu while inserting into relocation "
1262 			    "tree", node->bytenr);
1263 		kfree(node);
1264 		return -EEXIST;
1265 	}
1266 
1267 	list_add_tail(&root->root_list, &rc->reloc_roots);
1268 	return 0;
1269 }
1270 
1271 /*
1272  * helper to delete the 'address of tree root -> reloc tree'
1273  * mapping
1274  */
1275 static void __del_reloc_root(struct btrfs_root *root)
1276 {
1277 	struct rb_node *rb_node;
1278 	struct mapping_node *node = NULL;
1279 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1280 
1281 	spin_lock(&rc->reloc_root_tree.lock);
1282 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1283 			      root->node->start);
1284 	if (rb_node) {
1285 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1286 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1287 	}
1288 	spin_unlock(&rc->reloc_root_tree.lock);
1289 
1290 	if (!node)
1291 		return;
1292 	BUG_ON((struct btrfs_root *)node->data != root);
1293 
1294 	spin_lock(&root->fs_info->trans_lock);
1295 	list_del_init(&root->root_list);
1296 	spin_unlock(&root->fs_info->trans_lock);
1297 	kfree(node);
1298 }
1299 
1300 /*
1301  * helper to update the 'address of tree root -> reloc tree'
1302  * mapping
1303  */
1304 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1305 {
1306 	struct rb_node *rb_node;
1307 	struct mapping_node *node = NULL;
1308 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1309 
1310 	spin_lock(&rc->reloc_root_tree.lock);
1311 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1312 			      root->node->start);
1313 	if (rb_node) {
1314 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1315 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1316 	}
1317 	spin_unlock(&rc->reloc_root_tree.lock);
1318 
1319 	if (!node)
1320 		return 0;
1321 	BUG_ON((struct btrfs_root *)node->data != root);
1322 
1323 	spin_lock(&rc->reloc_root_tree.lock);
1324 	node->bytenr = new_bytenr;
1325 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1326 			      node->bytenr, &node->rb_node);
1327 	spin_unlock(&rc->reloc_root_tree.lock);
1328 	if (rb_node)
1329 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1330 	return 0;
1331 }
1332 
1333 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1334 					struct btrfs_root *root, u64 objectid)
1335 {
1336 	struct btrfs_root *reloc_root;
1337 	struct extent_buffer *eb;
1338 	struct btrfs_root_item *root_item;
1339 	struct btrfs_key root_key;
1340 	u64 last_snap = 0;
1341 	int ret;
1342 
1343 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1344 	BUG_ON(!root_item);
1345 
1346 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1347 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1348 	root_key.offset = objectid;
1349 
1350 	if (root->root_key.objectid == objectid) {
1351 		/* called by btrfs_init_reloc_root */
1352 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1353 				      BTRFS_TREE_RELOC_OBJECTID);
1354 		BUG_ON(ret);
1355 
1356 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1357 		btrfs_set_root_last_snapshot(&root->root_item,
1358 					     trans->transid - 1);
1359 	} else {
1360 		/*
1361 		 * called by btrfs_reloc_post_snapshot_hook.
1362 		 * the source tree is a reloc tree, all tree blocks
1363 		 * modified after it was created have RELOC flag
1364 		 * set in their headers. so it's OK to not update
1365 		 * the 'last_snapshot'.
1366 		 */
1367 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1368 				      BTRFS_TREE_RELOC_OBJECTID);
1369 		BUG_ON(ret);
1370 	}
1371 
1372 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1373 	btrfs_set_root_bytenr(root_item, eb->start);
1374 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1375 	btrfs_set_root_generation(root_item, trans->transid);
1376 
1377 	if (root->root_key.objectid == objectid) {
1378 		btrfs_set_root_refs(root_item, 0);
1379 		memset(&root_item->drop_progress, 0,
1380 		       sizeof(struct btrfs_disk_key));
1381 		root_item->drop_level = 0;
1382 		/*
1383 		 * abuse rtransid, it is safe because it is impossible to
1384 		 * receive data into a relocation tree.
1385 		 */
1386 		btrfs_set_root_rtransid(root_item, last_snap);
1387 		btrfs_set_root_otransid(root_item, trans->transid);
1388 	}
1389 
1390 	btrfs_tree_unlock(eb);
1391 	free_extent_buffer(eb);
1392 
1393 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1394 				&root_key, root_item);
1395 	BUG_ON(ret);
1396 	kfree(root_item);
1397 
1398 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1399 	BUG_ON(IS_ERR(reloc_root));
1400 	reloc_root->last_trans = trans->transid;
1401 	return reloc_root;
1402 }
1403 
1404 /*
1405  * create reloc tree for a given fs tree. reloc tree is just a
1406  * snapshot of the fs tree with special root objectid.
1407  */
1408 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1409 			  struct btrfs_root *root)
1410 {
1411 	struct btrfs_root *reloc_root;
1412 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1413 	struct btrfs_block_rsv *rsv;
1414 	int clear_rsv = 0;
1415 	int ret;
1416 
1417 	if (root->reloc_root) {
1418 		reloc_root = root->reloc_root;
1419 		reloc_root->last_trans = trans->transid;
1420 		return 0;
1421 	}
1422 
1423 	if (!rc || !rc->create_reloc_tree ||
1424 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1425 		return 0;
1426 
1427 	if (!trans->reloc_reserved) {
1428 		rsv = trans->block_rsv;
1429 		trans->block_rsv = rc->block_rsv;
1430 		clear_rsv = 1;
1431 	}
1432 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1433 	if (clear_rsv)
1434 		trans->block_rsv = rsv;
1435 
1436 	ret = __add_reloc_root(reloc_root);
1437 	BUG_ON(ret < 0);
1438 	root->reloc_root = reloc_root;
1439 	return 0;
1440 }
1441 
1442 /*
1443  * update root item of reloc tree
1444  */
1445 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1446 			    struct btrfs_root *root)
1447 {
1448 	struct btrfs_root *reloc_root;
1449 	struct btrfs_root_item *root_item;
1450 	int ret;
1451 
1452 	if (!root->reloc_root)
1453 		goto out;
1454 
1455 	reloc_root = root->reloc_root;
1456 	root_item = &reloc_root->root_item;
1457 
1458 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1459 	    btrfs_root_refs(root_item) == 0) {
1460 		root->reloc_root = NULL;
1461 		__del_reloc_root(reloc_root);
1462 	}
1463 
1464 	if (reloc_root->commit_root != reloc_root->node) {
1465 		btrfs_set_root_node(root_item, reloc_root->node);
1466 		free_extent_buffer(reloc_root->commit_root);
1467 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1468 	}
1469 
1470 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1471 				&reloc_root->root_key, root_item);
1472 	BUG_ON(ret);
1473 
1474 out:
1475 	return 0;
1476 }
1477 
1478 /*
1479  * helper to find first cached inode with inode number >= objectid
1480  * in a subvolume
1481  */
1482 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1483 {
1484 	struct rb_node *node;
1485 	struct rb_node *prev;
1486 	struct btrfs_inode *entry;
1487 	struct inode *inode;
1488 
1489 	spin_lock(&root->inode_lock);
1490 again:
1491 	node = root->inode_tree.rb_node;
1492 	prev = NULL;
1493 	while (node) {
1494 		prev = node;
1495 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1496 
1497 		if (objectid < btrfs_ino(&entry->vfs_inode))
1498 			node = node->rb_left;
1499 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1500 			node = node->rb_right;
1501 		else
1502 			break;
1503 	}
1504 	if (!node) {
1505 		while (prev) {
1506 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1507 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1508 				node = prev;
1509 				break;
1510 			}
1511 			prev = rb_next(prev);
1512 		}
1513 	}
1514 	while (node) {
1515 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1516 		inode = igrab(&entry->vfs_inode);
1517 		if (inode) {
1518 			spin_unlock(&root->inode_lock);
1519 			return inode;
1520 		}
1521 
1522 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1523 		if (cond_resched_lock(&root->inode_lock))
1524 			goto again;
1525 
1526 		node = rb_next(node);
1527 	}
1528 	spin_unlock(&root->inode_lock);
1529 	return NULL;
1530 }
1531 
1532 static int in_block_group(u64 bytenr,
1533 			  struct btrfs_block_group_cache *block_group)
1534 {
1535 	if (bytenr >= block_group->key.objectid &&
1536 	    bytenr < block_group->key.objectid + block_group->key.offset)
1537 		return 1;
1538 	return 0;
1539 }
1540 
1541 /*
1542  * get new location of data
1543  */
1544 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1545 			    u64 bytenr, u64 num_bytes)
1546 {
1547 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1548 	struct btrfs_path *path;
1549 	struct btrfs_file_extent_item *fi;
1550 	struct extent_buffer *leaf;
1551 	int ret;
1552 
1553 	path = btrfs_alloc_path();
1554 	if (!path)
1555 		return -ENOMEM;
1556 
1557 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1558 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1559 				       bytenr, 0);
1560 	if (ret < 0)
1561 		goto out;
1562 	if (ret > 0) {
1563 		ret = -ENOENT;
1564 		goto out;
1565 	}
1566 
1567 	leaf = path->nodes[0];
1568 	fi = btrfs_item_ptr(leaf, path->slots[0],
1569 			    struct btrfs_file_extent_item);
1570 
1571 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1572 	       btrfs_file_extent_compression(leaf, fi) ||
1573 	       btrfs_file_extent_encryption(leaf, fi) ||
1574 	       btrfs_file_extent_other_encoding(leaf, fi));
1575 
1576 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1577 		ret = -EINVAL;
1578 		goto out;
1579 	}
1580 
1581 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1582 	ret = 0;
1583 out:
1584 	btrfs_free_path(path);
1585 	return ret;
1586 }
1587 
1588 /*
1589  * update file extent items in the tree leaf to point to
1590  * the new locations.
1591  */
1592 static noinline_for_stack
1593 int replace_file_extents(struct btrfs_trans_handle *trans,
1594 			 struct reloc_control *rc,
1595 			 struct btrfs_root *root,
1596 			 struct extent_buffer *leaf)
1597 {
1598 	struct btrfs_key key;
1599 	struct btrfs_file_extent_item *fi;
1600 	struct inode *inode = NULL;
1601 	u64 parent;
1602 	u64 bytenr;
1603 	u64 new_bytenr = 0;
1604 	u64 num_bytes;
1605 	u64 end;
1606 	u32 nritems;
1607 	u32 i;
1608 	int ret = 0;
1609 	int first = 1;
1610 	int dirty = 0;
1611 
1612 	if (rc->stage != UPDATE_DATA_PTRS)
1613 		return 0;
1614 
1615 	/* reloc trees always use full backref */
1616 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1617 		parent = leaf->start;
1618 	else
1619 		parent = 0;
1620 
1621 	nritems = btrfs_header_nritems(leaf);
1622 	for (i = 0; i < nritems; i++) {
1623 		cond_resched();
1624 		btrfs_item_key_to_cpu(leaf, &key, i);
1625 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1626 			continue;
1627 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1628 		if (btrfs_file_extent_type(leaf, fi) ==
1629 		    BTRFS_FILE_EXTENT_INLINE)
1630 			continue;
1631 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1632 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1633 		if (bytenr == 0)
1634 			continue;
1635 		if (!in_block_group(bytenr, rc->block_group))
1636 			continue;
1637 
1638 		/*
1639 		 * if we are modifying block in fs tree, wait for readpage
1640 		 * to complete and drop the extent cache
1641 		 */
1642 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1643 			if (first) {
1644 				inode = find_next_inode(root, key.objectid);
1645 				first = 0;
1646 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1647 				btrfs_add_delayed_iput(inode);
1648 				inode = find_next_inode(root, key.objectid);
1649 			}
1650 			if (inode && btrfs_ino(inode) == key.objectid) {
1651 				end = key.offset +
1652 				      btrfs_file_extent_num_bytes(leaf, fi);
1653 				WARN_ON(!IS_ALIGNED(key.offset,
1654 						    root->sectorsize));
1655 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1656 				end--;
1657 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1658 						      key.offset, end);
1659 				if (!ret)
1660 					continue;
1661 
1662 				btrfs_drop_extent_cache(inode, key.offset, end,
1663 							1);
1664 				unlock_extent(&BTRFS_I(inode)->io_tree,
1665 					      key.offset, end);
1666 			}
1667 		}
1668 
1669 		ret = get_new_location(rc->data_inode, &new_bytenr,
1670 				       bytenr, num_bytes);
1671 		if (ret) {
1672 			/*
1673 			 * Don't have to abort since we've not changed anything
1674 			 * in the file extent yet.
1675 			 */
1676 			break;
1677 		}
1678 
1679 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1680 		dirty = 1;
1681 
1682 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1683 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1684 					   num_bytes, parent,
1685 					   btrfs_header_owner(leaf),
1686 					   key.objectid, key.offset, 1);
1687 		if (ret) {
1688 			btrfs_abort_transaction(trans, root, ret);
1689 			break;
1690 		}
1691 
1692 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1693 					parent, btrfs_header_owner(leaf),
1694 					key.objectid, key.offset, 1);
1695 		if (ret) {
1696 			btrfs_abort_transaction(trans, root, ret);
1697 			break;
1698 		}
1699 	}
1700 	if (dirty)
1701 		btrfs_mark_buffer_dirty(leaf);
1702 	if (inode)
1703 		btrfs_add_delayed_iput(inode);
1704 	return ret;
1705 }
1706 
1707 static noinline_for_stack
1708 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1709 		     struct btrfs_path *path, int level)
1710 {
1711 	struct btrfs_disk_key key1;
1712 	struct btrfs_disk_key key2;
1713 	btrfs_node_key(eb, &key1, slot);
1714 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1715 	return memcmp(&key1, &key2, sizeof(key1));
1716 }
1717 
1718 /*
1719  * try to replace tree blocks in fs tree with the new blocks
1720  * in reloc tree. tree blocks haven't been modified since the
1721  * reloc tree was create can be replaced.
1722  *
1723  * if a block was replaced, level of the block + 1 is returned.
1724  * if no block got replaced, 0 is returned. if there are other
1725  * errors, a negative error number is returned.
1726  */
1727 static noinline_for_stack
1728 int replace_path(struct btrfs_trans_handle *trans,
1729 		 struct btrfs_root *dest, struct btrfs_root *src,
1730 		 struct btrfs_path *path, struct btrfs_key *next_key,
1731 		 int lowest_level, int max_level)
1732 {
1733 	struct extent_buffer *eb;
1734 	struct extent_buffer *parent;
1735 	struct btrfs_key key;
1736 	u64 old_bytenr;
1737 	u64 new_bytenr;
1738 	u64 old_ptr_gen;
1739 	u64 new_ptr_gen;
1740 	u64 last_snapshot;
1741 	u32 blocksize;
1742 	int cow = 0;
1743 	int level;
1744 	int ret;
1745 	int slot;
1746 
1747 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1748 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1749 
1750 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1751 again:
1752 	slot = path->slots[lowest_level];
1753 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1754 
1755 	eb = btrfs_lock_root_node(dest);
1756 	btrfs_set_lock_blocking(eb);
1757 	level = btrfs_header_level(eb);
1758 
1759 	if (level < lowest_level) {
1760 		btrfs_tree_unlock(eb);
1761 		free_extent_buffer(eb);
1762 		return 0;
1763 	}
1764 
1765 	if (cow) {
1766 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1767 		BUG_ON(ret);
1768 	}
1769 	btrfs_set_lock_blocking(eb);
1770 
1771 	if (next_key) {
1772 		next_key->objectid = (u64)-1;
1773 		next_key->type = (u8)-1;
1774 		next_key->offset = (u64)-1;
1775 	}
1776 
1777 	parent = eb;
1778 	while (1) {
1779 		level = btrfs_header_level(parent);
1780 		BUG_ON(level < lowest_level);
1781 
1782 		ret = btrfs_bin_search(parent, &key, level, &slot);
1783 		if (ret && slot > 0)
1784 			slot--;
1785 
1786 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1787 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1788 
1789 		old_bytenr = btrfs_node_blockptr(parent, slot);
1790 		blocksize = btrfs_level_size(dest, level - 1);
1791 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1792 
1793 		if (level <= max_level) {
1794 			eb = path->nodes[level];
1795 			new_bytenr = btrfs_node_blockptr(eb,
1796 							path->slots[level]);
1797 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1798 							path->slots[level]);
1799 		} else {
1800 			new_bytenr = 0;
1801 			new_ptr_gen = 0;
1802 		}
1803 
1804 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1805 			ret = level;
1806 			break;
1807 		}
1808 
1809 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1810 		    memcmp_node_keys(parent, slot, path, level)) {
1811 			if (level <= lowest_level) {
1812 				ret = 0;
1813 				break;
1814 			}
1815 
1816 			eb = read_tree_block(dest, old_bytenr, blocksize,
1817 					     old_ptr_gen);
1818 			if (!eb || !extent_buffer_uptodate(eb)) {
1819 				ret = (!eb) ? -ENOMEM : -EIO;
1820 				free_extent_buffer(eb);
1821 				break;
1822 			}
1823 			btrfs_tree_lock(eb);
1824 			if (cow) {
1825 				ret = btrfs_cow_block(trans, dest, eb, parent,
1826 						      slot, &eb);
1827 				BUG_ON(ret);
1828 			}
1829 			btrfs_set_lock_blocking(eb);
1830 
1831 			btrfs_tree_unlock(parent);
1832 			free_extent_buffer(parent);
1833 
1834 			parent = eb;
1835 			continue;
1836 		}
1837 
1838 		if (!cow) {
1839 			btrfs_tree_unlock(parent);
1840 			free_extent_buffer(parent);
1841 			cow = 1;
1842 			goto again;
1843 		}
1844 
1845 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1846 				      path->slots[level]);
1847 		btrfs_release_path(path);
1848 
1849 		path->lowest_level = level;
1850 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1851 		path->lowest_level = 0;
1852 		BUG_ON(ret);
1853 
1854 		/*
1855 		 * swap blocks in fs tree and reloc tree.
1856 		 */
1857 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1858 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1859 		btrfs_mark_buffer_dirty(parent);
1860 
1861 		btrfs_set_node_blockptr(path->nodes[level],
1862 					path->slots[level], old_bytenr);
1863 		btrfs_set_node_ptr_generation(path->nodes[level],
1864 					      path->slots[level], old_ptr_gen);
1865 		btrfs_mark_buffer_dirty(path->nodes[level]);
1866 
1867 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1868 					path->nodes[level]->start,
1869 					src->root_key.objectid, level - 1, 0,
1870 					1);
1871 		BUG_ON(ret);
1872 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1873 					0, dest->root_key.objectid, level - 1,
1874 					0, 1);
1875 		BUG_ON(ret);
1876 
1877 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1878 					path->nodes[level]->start,
1879 					src->root_key.objectid, level - 1, 0,
1880 					1);
1881 		BUG_ON(ret);
1882 
1883 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1884 					0, dest->root_key.objectid, level - 1,
1885 					0, 1);
1886 		BUG_ON(ret);
1887 
1888 		btrfs_unlock_up_safe(path, 0);
1889 
1890 		ret = level;
1891 		break;
1892 	}
1893 	btrfs_tree_unlock(parent);
1894 	free_extent_buffer(parent);
1895 	return ret;
1896 }
1897 
1898 /*
1899  * helper to find next relocated block in reloc tree
1900  */
1901 static noinline_for_stack
1902 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1903 		       int *level)
1904 {
1905 	struct extent_buffer *eb;
1906 	int i;
1907 	u64 last_snapshot;
1908 	u32 nritems;
1909 
1910 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1911 
1912 	for (i = 0; i < *level; i++) {
1913 		free_extent_buffer(path->nodes[i]);
1914 		path->nodes[i] = NULL;
1915 	}
1916 
1917 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1918 		eb = path->nodes[i];
1919 		nritems = btrfs_header_nritems(eb);
1920 		while (path->slots[i] + 1 < nritems) {
1921 			path->slots[i]++;
1922 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1923 			    last_snapshot)
1924 				continue;
1925 
1926 			*level = i;
1927 			return 0;
1928 		}
1929 		free_extent_buffer(path->nodes[i]);
1930 		path->nodes[i] = NULL;
1931 	}
1932 	return 1;
1933 }
1934 
1935 /*
1936  * walk down reloc tree to find relocated block of lowest level
1937  */
1938 static noinline_for_stack
1939 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1940 			 int *level)
1941 {
1942 	struct extent_buffer *eb = NULL;
1943 	int i;
1944 	u64 bytenr;
1945 	u64 ptr_gen = 0;
1946 	u64 last_snapshot;
1947 	u32 blocksize;
1948 	u32 nritems;
1949 
1950 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1951 
1952 	for (i = *level; i > 0; i--) {
1953 		eb = path->nodes[i];
1954 		nritems = btrfs_header_nritems(eb);
1955 		while (path->slots[i] < nritems) {
1956 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1957 			if (ptr_gen > last_snapshot)
1958 				break;
1959 			path->slots[i]++;
1960 		}
1961 		if (path->slots[i] >= nritems) {
1962 			if (i == *level)
1963 				break;
1964 			*level = i + 1;
1965 			return 0;
1966 		}
1967 		if (i == 1) {
1968 			*level = i;
1969 			return 0;
1970 		}
1971 
1972 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1973 		blocksize = btrfs_level_size(root, i - 1);
1974 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1975 		if (!eb || !extent_buffer_uptodate(eb)) {
1976 			free_extent_buffer(eb);
1977 			return -EIO;
1978 		}
1979 		BUG_ON(btrfs_header_level(eb) != i - 1);
1980 		path->nodes[i - 1] = eb;
1981 		path->slots[i - 1] = 0;
1982 	}
1983 	return 1;
1984 }
1985 
1986 /*
1987  * invalidate extent cache for file extents whose key in range of
1988  * [min_key, max_key)
1989  */
1990 static int invalidate_extent_cache(struct btrfs_root *root,
1991 				   struct btrfs_key *min_key,
1992 				   struct btrfs_key *max_key)
1993 {
1994 	struct inode *inode = NULL;
1995 	u64 objectid;
1996 	u64 start, end;
1997 	u64 ino;
1998 
1999 	objectid = min_key->objectid;
2000 	while (1) {
2001 		cond_resched();
2002 		iput(inode);
2003 
2004 		if (objectid > max_key->objectid)
2005 			break;
2006 
2007 		inode = find_next_inode(root, objectid);
2008 		if (!inode)
2009 			break;
2010 		ino = btrfs_ino(inode);
2011 
2012 		if (ino > max_key->objectid) {
2013 			iput(inode);
2014 			break;
2015 		}
2016 
2017 		objectid = ino + 1;
2018 		if (!S_ISREG(inode->i_mode))
2019 			continue;
2020 
2021 		if (unlikely(min_key->objectid == ino)) {
2022 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2023 				continue;
2024 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2025 				start = 0;
2026 			else {
2027 				start = min_key->offset;
2028 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2029 			}
2030 		} else {
2031 			start = 0;
2032 		}
2033 
2034 		if (unlikely(max_key->objectid == ino)) {
2035 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2036 				continue;
2037 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2038 				end = (u64)-1;
2039 			} else {
2040 				if (max_key->offset == 0)
2041 					continue;
2042 				end = max_key->offset;
2043 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2044 				end--;
2045 			}
2046 		} else {
2047 			end = (u64)-1;
2048 		}
2049 
2050 		/* the lock_extent waits for readpage to complete */
2051 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2052 		btrfs_drop_extent_cache(inode, start, end, 1);
2053 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2054 	}
2055 	return 0;
2056 }
2057 
2058 static int find_next_key(struct btrfs_path *path, int level,
2059 			 struct btrfs_key *key)
2060 
2061 {
2062 	while (level < BTRFS_MAX_LEVEL) {
2063 		if (!path->nodes[level])
2064 			break;
2065 		if (path->slots[level] + 1 <
2066 		    btrfs_header_nritems(path->nodes[level])) {
2067 			btrfs_node_key_to_cpu(path->nodes[level], key,
2068 					      path->slots[level] + 1);
2069 			return 0;
2070 		}
2071 		level++;
2072 	}
2073 	return 1;
2074 }
2075 
2076 /*
2077  * merge the relocated tree blocks in reloc tree with corresponding
2078  * fs tree.
2079  */
2080 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2081 					       struct btrfs_root *root)
2082 {
2083 	LIST_HEAD(inode_list);
2084 	struct btrfs_key key;
2085 	struct btrfs_key next_key;
2086 	struct btrfs_trans_handle *trans = NULL;
2087 	struct btrfs_root *reloc_root;
2088 	struct btrfs_root_item *root_item;
2089 	struct btrfs_path *path;
2090 	struct extent_buffer *leaf;
2091 	int level;
2092 	int max_level;
2093 	int replaced = 0;
2094 	int ret;
2095 	int err = 0;
2096 	u32 min_reserved;
2097 
2098 	path = btrfs_alloc_path();
2099 	if (!path)
2100 		return -ENOMEM;
2101 	path->reada = 1;
2102 
2103 	reloc_root = root->reloc_root;
2104 	root_item = &reloc_root->root_item;
2105 
2106 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2107 		level = btrfs_root_level(root_item);
2108 		extent_buffer_get(reloc_root->node);
2109 		path->nodes[level] = reloc_root->node;
2110 		path->slots[level] = 0;
2111 	} else {
2112 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2113 
2114 		level = root_item->drop_level;
2115 		BUG_ON(level == 0);
2116 		path->lowest_level = level;
2117 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2118 		path->lowest_level = 0;
2119 		if (ret < 0) {
2120 			btrfs_free_path(path);
2121 			return ret;
2122 		}
2123 
2124 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2125 				      path->slots[level]);
2126 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2127 
2128 		btrfs_unlock_up_safe(path, 0);
2129 	}
2130 
2131 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2132 	memset(&next_key, 0, sizeof(next_key));
2133 
2134 	while (1) {
2135 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2136 					     BTRFS_RESERVE_FLUSH_ALL);
2137 		if (ret) {
2138 			err = ret;
2139 			goto out;
2140 		}
2141 		trans = btrfs_start_transaction(root, 0);
2142 		if (IS_ERR(trans)) {
2143 			err = PTR_ERR(trans);
2144 			trans = NULL;
2145 			goto out;
2146 		}
2147 		trans->block_rsv = rc->block_rsv;
2148 
2149 		replaced = 0;
2150 		max_level = level;
2151 
2152 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2153 		if (ret < 0) {
2154 			err = ret;
2155 			goto out;
2156 		}
2157 		if (ret > 0)
2158 			break;
2159 
2160 		if (!find_next_key(path, level, &key) &&
2161 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2162 			ret = 0;
2163 		} else {
2164 			ret = replace_path(trans, root, reloc_root, path,
2165 					   &next_key, level, max_level);
2166 		}
2167 		if (ret < 0) {
2168 			err = ret;
2169 			goto out;
2170 		}
2171 
2172 		if (ret > 0) {
2173 			level = ret;
2174 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2175 					      path->slots[level]);
2176 			replaced = 1;
2177 		}
2178 
2179 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2180 		if (ret > 0)
2181 			break;
2182 
2183 		BUG_ON(level == 0);
2184 		/*
2185 		 * save the merging progress in the drop_progress.
2186 		 * this is OK since root refs == 1 in this case.
2187 		 */
2188 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2189 			       path->slots[level]);
2190 		root_item->drop_level = level;
2191 
2192 		btrfs_end_transaction_throttle(trans, root);
2193 		trans = NULL;
2194 
2195 		btrfs_btree_balance_dirty(root);
2196 
2197 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2198 			invalidate_extent_cache(root, &key, &next_key);
2199 	}
2200 
2201 	/*
2202 	 * handle the case only one block in the fs tree need to be
2203 	 * relocated and the block is tree root.
2204 	 */
2205 	leaf = btrfs_lock_root_node(root);
2206 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2207 	btrfs_tree_unlock(leaf);
2208 	free_extent_buffer(leaf);
2209 	if (ret < 0)
2210 		err = ret;
2211 out:
2212 	btrfs_free_path(path);
2213 
2214 	if (err == 0) {
2215 		memset(&root_item->drop_progress, 0,
2216 		       sizeof(root_item->drop_progress));
2217 		root_item->drop_level = 0;
2218 		btrfs_set_root_refs(root_item, 0);
2219 		btrfs_update_reloc_root(trans, root);
2220 	}
2221 
2222 	if (trans)
2223 		btrfs_end_transaction_throttle(trans, root);
2224 
2225 	btrfs_btree_balance_dirty(root);
2226 
2227 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2228 		invalidate_extent_cache(root, &key, &next_key);
2229 
2230 	return err;
2231 }
2232 
2233 static noinline_for_stack
2234 int prepare_to_merge(struct reloc_control *rc, int err)
2235 {
2236 	struct btrfs_root *root = rc->extent_root;
2237 	struct btrfs_root *reloc_root;
2238 	struct btrfs_trans_handle *trans;
2239 	LIST_HEAD(reloc_roots);
2240 	u64 num_bytes = 0;
2241 	int ret;
2242 
2243 	mutex_lock(&root->fs_info->reloc_mutex);
2244 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2245 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2246 	mutex_unlock(&root->fs_info->reloc_mutex);
2247 
2248 again:
2249 	if (!err) {
2250 		num_bytes = rc->merging_rsv_size;
2251 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2252 					  BTRFS_RESERVE_FLUSH_ALL);
2253 		if (ret)
2254 			err = ret;
2255 	}
2256 
2257 	trans = btrfs_join_transaction(rc->extent_root);
2258 	if (IS_ERR(trans)) {
2259 		if (!err)
2260 			btrfs_block_rsv_release(rc->extent_root,
2261 						rc->block_rsv, num_bytes);
2262 		return PTR_ERR(trans);
2263 	}
2264 
2265 	if (!err) {
2266 		if (num_bytes != rc->merging_rsv_size) {
2267 			btrfs_end_transaction(trans, rc->extent_root);
2268 			btrfs_block_rsv_release(rc->extent_root,
2269 						rc->block_rsv, num_bytes);
2270 			goto again;
2271 		}
2272 	}
2273 
2274 	rc->merge_reloc_tree = 1;
2275 
2276 	while (!list_empty(&rc->reloc_roots)) {
2277 		reloc_root = list_entry(rc->reloc_roots.next,
2278 					struct btrfs_root, root_list);
2279 		list_del_init(&reloc_root->root_list);
2280 
2281 		root = read_fs_root(reloc_root->fs_info,
2282 				    reloc_root->root_key.offset);
2283 		BUG_ON(IS_ERR(root));
2284 		BUG_ON(root->reloc_root != reloc_root);
2285 
2286 		/*
2287 		 * set reference count to 1, so btrfs_recover_relocation
2288 		 * knows it should resumes merging
2289 		 */
2290 		if (!err)
2291 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2292 		btrfs_update_reloc_root(trans, root);
2293 
2294 		list_add(&reloc_root->root_list, &reloc_roots);
2295 	}
2296 
2297 	list_splice(&reloc_roots, &rc->reloc_roots);
2298 
2299 	if (!err)
2300 		btrfs_commit_transaction(trans, rc->extent_root);
2301 	else
2302 		btrfs_end_transaction(trans, rc->extent_root);
2303 	return err;
2304 }
2305 
2306 static noinline_for_stack
2307 void free_reloc_roots(struct list_head *list)
2308 {
2309 	struct btrfs_root *reloc_root;
2310 
2311 	while (!list_empty(list)) {
2312 		reloc_root = list_entry(list->next, struct btrfs_root,
2313 					root_list);
2314 		__del_reloc_root(reloc_root);
2315 	}
2316 }
2317 
2318 static noinline_for_stack
2319 int merge_reloc_roots(struct reloc_control *rc)
2320 {
2321 	struct btrfs_root *root;
2322 	struct btrfs_root *reloc_root;
2323 	u64 last_snap;
2324 	u64 otransid;
2325 	u64 objectid;
2326 	LIST_HEAD(reloc_roots);
2327 	int found = 0;
2328 	int ret = 0;
2329 again:
2330 	root = rc->extent_root;
2331 
2332 	/*
2333 	 * this serializes us with btrfs_record_root_in_transaction,
2334 	 * we have to make sure nobody is in the middle of
2335 	 * adding their roots to the list while we are
2336 	 * doing this splice
2337 	 */
2338 	mutex_lock(&root->fs_info->reloc_mutex);
2339 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2340 	mutex_unlock(&root->fs_info->reloc_mutex);
2341 
2342 	while (!list_empty(&reloc_roots)) {
2343 		found = 1;
2344 		reloc_root = list_entry(reloc_roots.next,
2345 					struct btrfs_root, root_list);
2346 
2347 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2348 			root = read_fs_root(reloc_root->fs_info,
2349 					    reloc_root->root_key.offset);
2350 			BUG_ON(IS_ERR(root));
2351 			BUG_ON(root->reloc_root != reloc_root);
2352 
2353 			ret = merge_reloc_root(rc, root);
2354 			if (ret) {
2355 				if (list_empty(&reloc_root->root_list))
2356 					list_add_tail(&reloc_root->root_list,
2357 						      &reloc_roots);
2358 				goto out;
2359 			}
2360 		} else {
2361 			list_del_init(&reloc_root->root_list);
2362 		}
2363 
2364 		/*
2365 		 * we keep the old last snapshod transid in rtranid when we
2366 		 * created the relocation tree.
2367 		 */
2368 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2369 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2370 		objectid = reloc_root->root_key.offset;
2371 
2372 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2373 		if (ret < 0) {
2374 			if (list_empty(&reloc_root->root_list))
2375 				list_add_tail(&reloc_root->root_list,
2376 					      &reloc_roots);
2377 			goto out;
2378 		}
2379 	}
2380 
2381 	if (found) {
2382 		found = 0;
2383 		goto again;
2384 	}
2385 out:
2386 	if (ret) {
2387 		btrfs_std_error(root->fs_info, ret);
2388 		if (!list_empty(&reloc_roots))
2389 			free_reloc_roots(&reloc_roots);
2390 
2391 		/* new reloc root may be added */
2392 		mutex_lock(&root->fs_info->reloc_mutex);
2393 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2394 		mutex_unlock(&root->fs_info->reloc_mutex);
2395 		if (!list_empty(&reloc_roots))
2396 			free_reloc_roots(&reloc_roots);
2397 	}
2398 
2399 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2400 	return ret;
2401 }
2402 
2403 static void free_block_list(struct rb_root *blocks)
2404 {
2405 	struct tree_block *block;
2406 	struct rb_node *rb_node;
2407 	while ((rb_node = rb_first(blocks))) {
2408 		block = rb_entry(rb_node, struct tree_block, rb_node);
2409 		rb_erase(rb_node, blocks);
2410 		kfree(block);
2411 	}
2412 }
2413 
2414 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2415 				      struct btrfs_root *reloc_root)
2416 {
2417 	struct btrfs_root *root;
2418 
2419 	if (reloc_root->last_trans == trans->transid)
2420 		return 0;
2421 
2422 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2423 	BUG_ON(IS_ERR(root));
2424 	BUG_ON(root->reloc_root != reloc_root);
2425 
2426 	return btrfs_record_root_in_trans(trans, root);
2427 }
2428 
2429 static noinline_for_stack
2430 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2431 				     struct reloc_control *rc,
2432 				     struct backref_node *node,
2433 				     struct backref_edge *edges[])
2434 {
2435 	struct backref_node *next;
2436 	struct btrfs_root *root;
2437 	int index = 0;
2438 
2439 	next = node;
2440 	while (1) {
2441 		cond_resched();
2442 		next = walk_up_backref(next, edges, &index);
2443 		root = next->root;
2444 		BUG_ON(!root);
2445 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2446 
2447 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2448 			record_reloc_root_in_trans(trans, root);
2449 			break;
2450 		}
2451 
2452 		btrfs_record_root_in_trans(trans, root);
2453 		root = root->reloc_root;
2454 
2455 		if (next->new_bytenr != root->node->start) {
2456 			BUG_ON(next->new_bytenr);
2457 			BUG_ON(!list_empty(&next->list));
2458 			next->new_bytenr = root->node->start;
2459 			next->root = root;
2460 			list_add_tail(&next->list,
2461 				      &rc->backref_cache.changed);
2462 			__mark_block_processed(rc, next);
2463 			break;
2464 		}
2465 
2466 		WARN_ON(1);
2467 		root = NULL;
2468 		next = walk_down_backref(edges, &index);
2469 		if (!next || next->level <= node->level)
2470 			break;
2471 	}
2472 	if (!root)
2473 		return NULL;
2474 
2475 	next = node;
2476 	/* setup backref node path for btrfs_reloc_cow_block */
2477 	while (1) {
2478 		rc->backref_cache.path[next->level] = next;
2479 		if (--index < 0)
2480 			break;
2481 		next = edges[index]->node[UPPER];
2482 	}
2483 	return root;
2484 }
2485 
2486 /*
2487  * select a tree root for relocation. return NULL if the block
2488  * is reference counted. we should use do_relocation() in this
2489  * case. return a tree root pointer if the block isn't reference
2490  * counted. return -ENOENT if the block is root of reloc tree.
2491  */
2492 static noinline_for_stack
2493 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2494 				   struct backref_node *node)
2495 {
2496 	struct backref_node *next;
2497 	struct btrfs_root *root;
2498 	struct btrfs_root *fs_root = NULL;
2499 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2500 	int index = 0;
2501 
2502 	next = node;
2503 	while (1) {
2504 		cond_resched();
2505 		next = walk_up_backref(next, edges, &index);
2506 		root = next->root;
2507 		BUG_ON(!root);
2508 
2509 		/* no other choice for non-references counted tree */
2510 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2511 			return root;
2512 
2513 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2514 			fs_root = root;
2515 
2516 		if (next != node)
2517 			return NULL;
2518 
2519 		next = walk_down_backref(edges, &index);
2520 		if (!next || next->level <= node->level)
2521 			break;
2522 	}
2523 
2524 	if (!fs_root)
2525 		return ERR_PTR(-ENOENT);
2526 	return fs_root;
2527 }
2528 
2529 static noinline_for_stack
2530 u64 calcu_metadata_size(struct reloc_control *rc,
2531 			struct backref_node *node, int reserve)
2532 {
2533 	struct backref_node *next = node;
2534 	struct backref_edge *edge;
2535 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2536 	u64 num_bytes = 0;
2537 	int index = 0;
2538 
2539 	BUG_ON(reserve && node->processed);
2540 
2541 	while (next) {
2542 		cond_resched();
2543 		while (1) {
2544 			if (next->processed && (reserve || next != node))
2545 				break;
2546 
2547 			num_bytes += btrfs_level_size(rc->extent_root,
2548 						      next->level);
2549 
2550 			if (list_empty(&next->upper))
2551 				break;
2552 
2553 			edge = list_entry(next->upper.next,
2554 					  struct backref_edge, list[LOWER]);
2555 			edges[index++] = edge;
2556 			next = edge->node[UPPER];
2557 		}
2558 		next = walk_down_backref(edges, &index);
2559 	}
2560 	return num_bytes;
2561 }
2562 
2563 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2564 				  struct reloc_control *rc,
2565 				  struct backref_node *node)
2566 {
2567 	struct btrfs_root *root = rc->extent_root;
2568 	u64 num_bytes;
2569 	int ret;
2570 	u64 tmp;
2571 
2572 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2573 
2574 	trans->block_rsv = rc->block_rsv;
2575 	rc->reserved_bytes += num_bytes;
2576 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2577 				BTRFS_RESERVE_FLUSH_ALL);
2578 	if (ret) {
2579 		if (ret == -EAGAIN) {
2580 			tmp = rc->extent_root->nodesize *
2581 				RELOCATION_RESERVED_NODES;
2582 			while (tmp <= rc->reserved_bytes)
2583 				tmp <<= 1;
2584 			/*
2585 			 * only one thread can access block_rsv at this point,
2586 			 * so we don't need hold lock to protect block_rsv.
2587 			 * we expand more reservation size here to allow enough
2588 			 * space for relocation and we will return eailer in
2589 			 * enospc case.
2590 			 */
2591 			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2592 					      RELOCATION_RESERVED_NODES;
2593 		}
2594 		return ret;
2595 	}
2596 
2597 	return 0;
2598 }
2599 
2600 /*
2601  * relocate a block tree, and then update pointers in upper level
2602  * blocks that reference the block to point to the new location.
2603  *
2604  * if called by link_to_upper, the block has already been relocated.
2605  * in that case this function just updates pointers.
2606  */
2607 static int do_relocation(struct btrfs_trans_handle *trans,
2608 			 struct reloc_control *rc,
2609 			 struct backref_node *node,
2610 			 struct btrfs_key *key,
2611 			 struct btrfs_path *path, int lowest)
2612 {
2613 	struct backref_node *upper;
2614 	struct backref_edge *edge;
2615 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2616 	struct btrfs_root *root;
2617 	struct extent_buffer *eb;
2618 	u32 blocksize;
2619 	u64 bytenr;
2620 	u64 generation;
2621 	int slot;
2622 	int ret;
2623 	int err = 0;
2624 
2625 	BUG_ON(lowest && node->eb);
2626 
2627 	path->lowest_level = node->level + 1;
2628 	rc->backref_cache.path[node->level] = node;
2629 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2630 		cond_resched();
2631 
2632 		upper = edge->node[UPPER];
2633 		root = select_reloc_root(trans, rc, upper, edges);
2634 		BUG_ON(!root);
2635 
2636 		if (upper->eb && !upper->locked) {
2637 			if (!lowest) {
2638 				ret = btrfs_bin_search(upper->eb, key,
2639 						       upper->level, &slot);
2640 				BUG_ON(ret);
2641 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2642 				if (node->eb->start == bytenr)
2643 					goto next;
2644 			}
2645 			drop_node_buffer(upper);
2646 		}
2647 
2648 		if (!upper->eb) {
2649 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2650 			if (ret < 0) {
2651 				err = ret;
2652 				break;
2653 			}
2654 			BUG_ON(ret > 0);
2655 
2656 			if (!upper->eb) {
2657 				upper->eb = path->nodes[upper->level];
2658 				path->nodes[upper->level] = NULL;
2659 			} else {
2660 				BUG_ON(upper->eb != path->nodes[upper->level]);
2661 			}
2662 
2663 			upper->locked = 1;
2664 			path->locks[upper->level] = 0;
2665 
2666 			slot = path->slots[upper->level];
2667 			btrfs_release_path(path);
2668 		} else {
2669 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2670 					       &slot);
2671 			BUG_ON(ret);
2672 		}
2673 
2674 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2675 		if (lowest) {
2676 			BUG_ON(bytenr != node->bytenr);
2677 		} else {
2678 			if (node->eb->start == bytenr)
2679 				goto next;
2680 		}
2681 
2682 		blocksize = btrfs_level_size(root, node->level);
2683 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2684 		eb = read_tree_block(root, bytenr, blocksize, generation);
2685 		if (!eb || !extent_buffer_uptodate(eb)) {
2686 			free_extent_buffer(eb);
2687 			err = -EIO;
2688 			goto next;
2689 		}
2690 		btrfs_tree_lock(eb);
2691 		btrfs_set_lock_blocking(eb);
2692 
2693 		if (!node->eb) {
2694 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2695 					      slot, &eb);
2696 			btrfs_tree_unlock(eb);
2697 			free_extent_buffer(eb);
2698 			if (ret < 0) {
2699 				err = ret;
2700 				goto next;
2701 			}
2702 			BUG_ON(node->eb != eb);
2703 		} else {
2704 			btrfs_set_node_blockptr(upper->eb, slot,
2705 						node->eb->start);
2706 			btrfs_set_node_ptr_generation(upper->eb, slot,
2707 						      trans->transid);
2708 			btrfs_mark_buffer_dirty(upper->eb);
2709 
2710 			ret = btrfs_inc_extent_ref(trans, root,
2711 						node->eb->start, blocksize,
2712 						upper->eb->start,
2713 						btrfs_header_owner(upper->eb),
2714 						node->level, 0, 1);
2715 			BUG_ON(ret);
2716 
2717 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2718 			BUG_ON(ret);
2719 		}
2720 next:
2721 		if (!upper->pending)
2722 			drop_node_buffer(upper);
2723 		else
2724 			unlock_node_buffer(upper);
2725 		if (err)
2726 			break;
2727 	}
2728 
2729 	if (!err && node->pending) {
2730 		drop_node_buffer(node);
2731 		list_move_tail(&node->list, &rc->backref_cache.changed);
2732 		node->pending = 0;
2733 	}
2734 
2735 	path->lowest_level = 0;
2736 	BUG_ON(err == -ENOSPC);
2737 	return err;
2738 }
2739 
2740 static int link_to_upper(struct btrfs_trans_handle *trans,
2741 			 struct reloc_control *rc,
2742 			 struct backref_node *node,
2743 			 struct btrfs_path *path)
2744 {
2745 	struct btrfs_key key;
2746 
2747 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2748 	return do_relocation(trans, rc, node, &key, path, 0);
2749 }
2750 
2751 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2752 				struct reloc_control *rc,
2753 				struct btrfs_path *path, int err)
2754 {
2755 	LIST_HEAD(list);
2756 	struct backref_cache *cache = &rc->backref_cache;
2757 	struct backref_node *node;
2758 	int level;
2759 	int ret;
2760 
2761 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2762 		while (!list_empty(&cache->pending[level])) {
2763 			node = list_entry(cache->pending[level].next,
2764 					  struct backref_node, list);
2765 			list_move_tail(&node->list, &list);
2766 			BUG_ON(!node->pending);
2767 
2768 			if (!err) {
2769 				ret = link_to_upper(trans, rc, node, path);
2770 				if (ret < 0)
2771 					err = ret;
2772 			}
2773 		}
2774 		list_splice_init(&list, &cache->pending[level]);
2775 	}
2776 	return err;
2777 }
2778 
2779 static void mark_block_processed(struct reloc_control *rc,
2780 				 u64 bytenr, u32 blocksize)
2781 {
2782 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2783 			EXTENT_DIRTY, GFP_NOFS);
2784 }
2785 
2786 static void __mark_block_processed(struct reloc_control *rc,
2787 				   struct backref_node *node)
2788 {
2789 	u32 blocksize;
2790 	if (node->level == 0 ||
2791 	    in_block_group(node->bytenr, rc->block_group)) {
2792 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2793 		mark_block_processed(rc, node->bytenr, blocksize);
2794 	}
2795 	node->processed = 1;
2796 }
2797 
2798 /*
2799  * mark a block and all blocks directly/indirectly reference the block
2800  * as processed.
2801  */
2802 static void update_processed_blocks(struct reloc_control *rc,
2803 				    struct backref_node *node)
2804 {
2805 	struct backref_node *next = node;
2806 	struct backref_edge *edge;
2807 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2808 	int index = 0;
2809 
2810 	while (next) {
2811 		cond_resched();
2812 		while (1) {
2813 			if (next->processed)
2814 				break;
2815 
2816 			__mark_block_processed(rc, next);
2817 
2818 			if (list_empty(&next->upper))
2819 				break;
2820 
2821 			edge = list_entry(next->upper.next,
2822 					  struct backref_edge, list[LOWER]);
2823 			edges[index++] = edge;
2824 			next = edge->node[UPPER];
2825 		}
2826 		next = walk_down_backref(edges, &index);
2827 	}
2828 }
2829 
2830 static int tree_block_processed(u64 bytenr, u32 blocksize,
2831 				struct reloc_control *rc)
2832 {
2833 	if (test_range_bit(&rc->processed_blocks, bytenr,
2834 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2835 		return 1;
2836 	return 0;
2837 }
2838 
2839 static int get_tree_block_key(struct reloc_control *rc,
2840 			      struct tree_block *block)
2841 {
2842 	struct extent_buffer *eb;
2843 
2844 	BUG_ON(block->key_ready);
2845 	eb = read_tree_block(rc->extent_root, block->bytenr,
2846 			     block->key.objectid, block->key.offset);
2847 	if (!eb || !extent_buffer_uptodate(eb)) {
2848 		free_extent_buffer(eb);
2849 		return -EIO;
2850 	}
2851 	WARN_ON(btrfs_header_level(eb) != block->level);
2852 	if (block->level == 0)
2853 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2854 	else
2855 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2856 	free_extent_buffer(eb);
2857 	block->key_ready = 1;
2858 	return 0;
2859 }
2860 
2861 static int reada_tree_block(struct reloc_control *rc,
2862 			    struct tree_block *block)
2863 {
2864 	BUG_ON(block->key_ready);
2865 	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2866 		readahead_tree_block(rc->extent_root, block->bytenr,
2867 				     block->key.objectid,
2868 				     rc->extent_root->leafsize);
2869 	else
2870 		readahead_tree_block(rc->extent_root, block->bytenr,
2871 				     block->key.objectid, block->key.offset);
2872 	return 0;
2873 }
2874 
2875 /*
2876  * helper function to relocate a tree block
2877  */
2878 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2879 				struct reloc_control *rc,
2880 				struct backref_node *node,
2881 				struct btrfs_key *key,
2882 				struct btrfs_path *path)
2883 {
2884 	struct btrfs_root *root;
2885 	int ret = 0;
2886 
2887 	if (!node)
2888 		return 0;
2889 
2890 	BUG_ON(node->processed);
2891 	root = select_one_root(trans, node);
2892 	if (root == ERR_PTR(-ENOENT)) {
2893 		update_processed_blocks(rc, node);
2894 		goto out;
2895 	}
2896 
2897 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2898 		ret = reserve_metadata_space(trans, rc, node);
2899 		if (ret)
2900 			goto out;
2901 	}
2902 
2903 	if (root) {
2904 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2905 			BUG_ON(node->new_bytenr);
2906 			BUG_ON(!list_empty(&node->list));
2907 			btrfs_record_root_in_trans(trans, root);
2908 			root = root->reloc_root;
2909 			node->new_bytenr = root->node->start;
2910 			node->root = root;
2911 			list_add_tail(&node->list, &rc->backref_cache.changed);
2912 		} else {
2913 			path->lowest_level = node->level;
2914 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2915 			btrfs_release_path(path);
2916 			if (ret > 0)
2917 				ret = 0;
2918 		}
2919 		if (!ret)
2920 			update_processed_blocks(rc, node);
2921 	} else {
2922 		ret = do_relocation(trans, rc, node, key, path, 1);
2923 	}
2924 out:
2925 	if (ret || node->level == 0 || node->cowonly)
2926 		remove_backref_node(&rc->backref_cache, node);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * relocate a list of blocks
2932  */
2933 static noinline_for_stack
2934 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2935 			 struct reloc_control *rc, struct rb_root *blocks)
2936 {
2937 	struct backref_node *node;
2938 	struct btrfs_path *path;
2939 	struct tree_block *block;
2940 	struct rb_node *rb_node;
2941 	int ret;
2942 	int err = 0;
2943 
2944 	path = btrfs_alloc_path();
2945 	if (!path) {
2946 		err = -ENOMEM;
2947 		goto out_free_blocks;
2948 	}
2949 
2950 	rb_node = rb_first(blocks);
2951 	while (rb_node) {
2952 		block = rb_entry(rb_node, struct tree_block, rb_node);
2953 		if (!block->key_ready)
2954 			reada_tree_block(rc, block);
2955 		rb_node = rb_next(rb_node);
2956 	}
2957 
2958 	rb_node = rb_first(blocks);
2959 	while (rb_node) {
2960 		block = rb_entry(rb_node, struct tree_block, rb_node);
2961 		if (!block->key_ready) {
2962 			err = get_tree_block_key(rc, block);
2963 			if (err)
2964 				goto out_free_path;
2965 		}
2966 		rb_node = rb_next(rb_node);
2967 	}
2968 
2969 	rb_node = rb_first(blocks);
2970 	while (rb_node) {
2971 		block = rb_entry(rb_node, struct tree_block, rb_node);
2972 
2973 		node = build_backref_tree(rc, &block->key,
2974 					  block->level, block->bytenr);
2975 		if (IS_ERR(node)) {
2976 			err = PTR_ERR(node);
2977 			goto out;
2978 		}
2979 
2980 		ret = relocate_tree_block(trans, rc, node, &block->key,
2981 					  path);
2982 		if (ret < 0) {
2983 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2984 				err = ret;
2985 			goto out;
2986 		}
2987 		rb_node = rb_next(rb_node);
2988 	}
2989 out:
2990 	err = finish_pending_nodes(trans, rc, path, err);
2991 
2992 out_free_path:
2993 	btrfs_free_path(path);
2994 out_free_blocks:
2995 	free_block_list(blocks);
2996 	return err;
2997 }
2998 
2999 static noinline_for_stack
3000 int prealloc_file_extent_cluster(struct inode *inode,
3001 				 struct file_extent_cluster *cluster)
3002 {
3003 	u64 alloc_hint = 0;
3004 	u64 start;
3005 	u64 end;
3006 	u64 offset = BTRFS_I(inode)->index_cnt;
3007 	u64 num_bytes;
3008 	int nr = 0;
3009 	int ret = 0;
3010 
3011 	BUG_ON(cluster->start != cluster->boundary[0]);
3012 	mutex_lock(&inode->i_mutex);
3013 
3014 	ret = btrfs_check_data_free_space(inode, cluster->end +
3015 					  1 - cluster->start);
3016 	if (ret)
3017 		goto out;
3018 
3019 	while (nr < cluster->nr) {
3020 		start = cluster->boundary[nr] - offset;
3021 		if (nr + 1 < cluster->nr)
3022 			end = cluster->boundary[nr + 1] - 1 - offset;
3023 		else
3024 			end = cluster->end - offset;
3025 
3026 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3027 		num_bytes = end + 1 - start;
3028 		ret = btrfs_prealloc_file_range(inode, 0, start,
3029 						num_bytes, num_bytes,
3030 						end + 1, &alloc_hint);
3031 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3032 		if (ret)
3033 			break;
3034 		nr++;
3035 	}
3036 	btrfs_free_reserved_data_space(inode, cluster->end +
3037 				       1 - cluster->start);
3038 out:
3039 	mutex_unlock(&inode->i_mutex);
3040 	return ret;
3041 }
3042 
3043 static noinline_for_stack
3044 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3045 			 u64 block_start)
3046 {
3047 	struct btrfs_root *root = BTRFS_I(inode)->root;
3048 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3049 	struct extent_map *em;
3050 	int ret = 0;
3051 
3052 	em = alloc_extent_map();
3053 	if (!em)
3054 		return -ENOMEM;
3055 
3056 	em->start = start;
3057 	em->len = end + 1 - start;
3058 	em->block_len = em->len;
3059 	em->block_start = block_start;
3060 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3061 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3062 
3063 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3064 	while (1) {
3065 		write_lock(&em_tree->lock);
3066 		ret = add_extent_mapping(em_tree, em, 0);
3067 		write_unlock(&em_tree->lock);
3068 		if (ret != -EEXIST) {
3069 			free_extent_map(em);
3070 			break;
3071 		}
3072 		btrfs_drop_extent_cache(inode, start, end, 0);
3073 	}
3074 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3075 	return ret;
3076 }
3077 
3078 static int relocate_file_extent_cluster(struct inode *inode,
3079 					struct file_extent_cluster *cluster)
3080 {
3081 	u64 page_start;
3082 	u64 page_end;
3083 	u64 offset = BTRFS_I(inode)->index_cnt;
3084 	unsigned long index;
3085 	unsigned long last_index;
3086 	struct page *page;
3087 	struct file_ra_state *ra;
3088 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3089 	int nr = 0;
3090 	int ret = 0;
3091 
3092 	if (!cluster->nr)
3093 		return 0;
3094 
3095 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3096 	if (!ra)
3097 		return -ENOMEM;
3098 
3099 	ret = prealloc_file_extent_cluster(inode, cluster);
3100 	if (ret)
3101 		goto out;
3102 
3103 	file_ra_state_init(ra, inode->i_mapping);
3104 
3105 	ret = setup_extent_mapping(inode, cluster->start - offset,
3106 				   cluster->end - offset, cluster->start);
3107 	if (ret)
3108 		goto out;
3109 
3110 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3111 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3112 	while (index <= last_index) {
3113 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3114 		if (ret)
3115 			goto out;
3116 
3117 		page = find_lock_page(inode->i_mapping, index);
3118 		if (!page) {
3119 			page_cache_sync_readahead(inode->i_mapping,
3120 						  ra, NULL, index,
3121 						  last_index + 1 - index);
3122 			page = find_or_create_page(inode->i_mapping, index,
3123 						   mask);
3124 			if (!page) {
3125 				btrfs_delalloc_release_metadata(inode,
3126 							PAGE_CACHE_SIZE);
3127 				ret = -ENOMEM;
3128 				goto out;
3129 			}
3130 		}
3131 
3132 		if (PageReadahead(page)) {
3133 			page_cache_async_readahead(inode->i_mapping,
3134 						   ra, NULL, page, index,
3135 						   last_index + 1 - index);
3136 		}
3137 
3138 		if (!PageUptodate(page)) {
3139 			btrfs_readpage(NULL, page);
3140 			lock_page(page);
3141 			if (!PageUptodate(page)) {
3142 				unlock_page(page);
3143 				page_cache_release(page);
3144 				btrfs_delalloc_release_metadata(inode,
3145 							PAGE_CACHE_SIZE);
3146 				ret = -EIO;
3147 				goto out;
3148 			}
3149 		}
3150 
3151 		page_start = page_offset(page);
3152 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3153 
3154 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3155 
3156 		set_page_extent_mapped(page);
3157 
3158 		if (nr < cluster->nr &&
3159 		    page_start + offset == cluster->boundary[nr]) {
3160 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3161 					page_start, page_end,
3162 					EXTENT_BOUNDARY, GFP_NOFS);
3163 			nr++;
3164 		}
3165 
3166 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3167 		set_page_dirty(page);
3168 
3169 		unlock_extent(&BTRFS_I(inode)->io_tree,
3170 			      page_start, page_end);
3171 		unlock_page(page);
3172 		page_cache_release(page);
3173 
3174 		index++;
3175 		balance_dirty_pages_ratelimited(inode->i_mapping);
3176 		btrfs_throttle(BTRFS_I(inode)->root);
3177 	}
3178 	WARN_ON(nr != cluster->nr);
3179 out:
3180 	kfree(ra);
3181 	return ret;
3182 }
3183 
3184 static noinline_for_stack
3185 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3186 			 struct file_extent_cluster *cluster)
3187 {
3188 	int ret;
3189 
3190 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3191 		ret = relocate_file_extent_cluster(inode, cluster);
3192 		if (ret)
3193 			return ret;
3194 		cluster->nr = 0;
3195 	}
3196 
3197 	if (!cluster->nr)
3198 		cluster->start = extent_key->objectid;
3199 	else
3200 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3201 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3202 	cluster->boundary[cluster->nr] = extent_key->objectid;
3203 	cluster->nr++;
3204 
3205 	if (cluster->nr >= MAX_EXTENTS) {
3206 		ret = relocate_file_extent_cluster(inode, cluster);
3207 		if (ret)
3208 			return ret;
3209 		cluster->nr = 0;
3210 	}
3211 	return 0;
3212 }
3213 
3214 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3215 static int get_ref_objectid_v0(struct reloc_control *rc,
3216 			       struct btrfs_path *path,
3217 			       struct btrfs_key *extent_key,
3218 			       u64 *ref_objectid, int *path_change)
3219 {
3220 	struct btrfs_key key;
3221 	struct extent_buffer *leaf;
3222 	struct btrfs_extent_ref_v0 *ref0;
3223 	int ret;
3224 	int slot;
3225 
3226 	leaf = path->nodes[0];
3227 	slot = path->slots[0];
3228 	while (1) {
3229 		if (slot >= btrfs_header_nritems(leaf)) {
3230 			ret = btrfs_next_leaf(rc->extent_root, path);
3231 			if (ret < 0)
3232 				return ret;
3233 			BUG_ON(ret > 0);
3234 			leaf = path->nodes[0];
3235 			slot = path->slots[0];
3236 			if (path_change)
3237 				*path_change = 1;
3238 		}
3239 		btrfs_item_key_to_cpu(leaf, &key, slot);
3240 		if (key.objectid != extent_key->objectid)
3241 			return -ENOENT;
3242 
3243 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3244 			slot++;
3245 			continue;
3246 		}
3247 		ref0 = btrfs_item_ptr(leaf, slot,
3248 				struct btrfs_extent_ref_v0);
3249 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3250 		break;
3251 	}
3252 	return 0;
3253 }
3254 #endif
3255 
3256 /*
3257  * helper to add a tree block to the list.
3258  * the major work is getting the generation and level of the block
3259  */
3260 static int add_tree_block(struct reloc_control *rc,
3261 			  struct btrfs_key *extent_key,
3262 			  struct btrfs_path *path,
3263 			  struct rb_root *blocks)
3264 {
3265 	struct extent_buffer *eb;
3266 	struct btrfs_extent_item *ei;
3267 	struct btrfs_tree_block_info *bi;
3268 	struct tree_block *block;
3269 	struct rb_node *rb_node;
3270 	u32 item_size;
3271 	int level = -1;
3272 	u64 generation;
3273 
3274 	eb =  path->nodes[0];
3275 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3276 
3277 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3278 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3279 		ei = btrfs_item_ptr(eb, path->slots[0],
3280 				struct btrfs_extent_item);
3281 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3282 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3283 			level = btrfs_tree_block_level(eb, bi);
3284 		} else {
3285 			level = (int)extent_key->offset;
3286 		}
3287 		generation = btrfs_extent_generation(eb, ei);
3288 	} else {
3289 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3290 		u64 ref_owner;
3291 		int ret;
3292 
3293 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3294 		ret = get_ref_objectid_v0(rc, path, extent_key,
3295 					  &ref_owner, NULL);
3296 		if (ret < 0)
3297 			return ret;
3298 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3299 		level = (int)ref_owner;
3300 		/* FIXME: get real generation */
3301 		generation = 0;
3302 #else
3303 		BUG();
3304 #endif
3305 	}
3306 
3307 	btrfs_release_path(path);
3308 
3309 	BUG_ON(level == -1);
3310 
3311 	block = kmalloc(sizeof(*block), GFP_NOFS);
3312 	if (!block)
3313 		return -ENOMEM;
3314 
3315 	block->bytenr = extent_key->objectid;
3316 	block->key.objectid = rc->extent_root->leafsize;
3317 	block->key.offset = generation;
3318 	block->level = level;
3319 	block->key_ready = 0;
3320 
3321 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3322 	if (rb_node)
3323 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3324 
3325 	return 0;
3326 }
3327 
3328 /*
3329  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3330  */
3331 static int __add_tree_block(struct reloc_control *rc,
3332 			    u64 bytenr, u32 blocksize,
3333 			    struct rb_root *blocks)
3334 {
3335 	struct btrfs_path *path;
3336 	struct btrfs_key key;
3337 	int ret;
3338 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3339 					SKINNY_METADATA);
3340 
3341 	if (tree_block_processed(bytenr, blocksize, rc))
3342 		return 0;
3343 
3344 	if (tree_search(blocks, bytenr))
3345 		return 0;
3346 
3347 	path = btrfs_alloc_path();
3348 	if (!path)
3349 		return -ENOMEM;
3350 again:
3351 	key.objectid = bytenr;
3352 	if (skinny) {
3353 		key.type = BTRFS_METADATA_ITEM_KEY;
3354 		key.offset = (u64)-1;
3355 	} else {
3356 		key.type = BTRFS_EXTENT_ITEM_KEY;
3357 		key.offset = blocksize;
3358 	}
3359 
3360 	path->search_commit_root = 1;
3361 	path->skip_locking = 1;
3362 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3363 	if (ret < 0)
3364 		goto out;
3365 
3366 	if (ret > 0 && skinny) {
3367 		if (path->slots[0]) {
3368 			path->slots[0]--;
3369 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3370 					      path->slots[0]);
3371 			if (key.objectid == bytenr &&
3372 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3373 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3374 			      key.offset == blocksize)))
3375 				ret = 0;
3376 		}
3377 
3378 		if (ret) {
3379 			skinny = false;
3380 			btrfs_release_path(path);
3381 			goto again;
3382 		}
3383 	}
3384 	BUG_ON(ret);
3385 
3386 	ret = add_tree_block(rc, &key, path, blocks);
3387 out:
3388 	btrfs_free_path(path);
3389 	return ret;
3390 }
3391 
3392 /*
3393  * helper to check if the block use full backrefs for pointers in it
3394  */
3395 static int block_use_full_backref(struct reloc_control *rc,
3396 				  struct extent_buffer *eb)
3397 {
3398 	u64 flags;
3399 	int ret;
3400 
3401 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3402 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3403 		return 1;
3404 
3405 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3406 				       eb->start, btrfs_header_level(eb), 1,
3407 				       NULL, &flags);
3408 	BUG_ON(ret);
3409 
3410 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3411 		ret = 1;
3412 	else
3413 		ret = 0;
3414 	return ret;
3415 }
3416 
3417 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3418 				    struct inode *inode, u64 ino)
3419 {
3420 	struct btrfs_key key;
3421 	struct btrfs_root *root = fs_info->tree_root;
3422 	struct btrfs_trans_handle *trans;
3423 	int ret = 0;
3424 
3425 	if (inode)
3426 		goto truncate;
3427 
3428 	key.objectid = ino;
3429 	key.type = BTRFS_INODE_ITEM_KEY;
3430 	key.offset = 0;
3431 
3432 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3433 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3434 		if (!IS_ERR(inode))
3435 			iput(inode);
3436 		return -ENOENT;
3437 	}
3438 
3439 truncate:
3440 	ret = btrfs_check_trunc_cache_free_space(root,
3441 						 &fs_info->global_block_rsv);
3442 	if (ret)
3443 		goto out;
3444 
3445 	trans = btrfs_join_transaction(root);
3446 	if (IS_ERR(trans)) {
3447 		ret = PTR_ERR(trans);
3448 		goto out;
3449 	}
3450 
3451 	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3452 
3453 	btrfs_end_transaction(trans, root);
3454 	btrfs_btree_balance_dirty(root);
3455 out:
3456 	iput(inode);
3457 	return ret;
3458 }
3459 
3460 /*
3461  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3462  * this function scans fs tree to find blocks reference the data extent
3463  */
3464 static int find_data_references(struct reloc_control *rc,
3465 				struct btrfs_key *extent_key,
3466 				struct extent_buffer *leaf,
3467 				struct btrfs_extent_data_ref *ref,
3468 				struct rb_root *blocks)
3469 {
3470 	struct btrfs_path *path;
3471 	struct tree_block *block;
3472 	struct btrfs_root *root;
3473 	struct btrfs_file_extent_item *fi;
3474 	struct rb_node *rb_node;
3475 	struct btrfs_key key;
3476 	u64 ref_root;
3477 	u64 ref_objectid;
3478 	u64 ref_offset;
3479 	u32 ref_count;
3480 	u32 nritems;
3481 	int err = 0;
3482 	int added = 0;
3483 	int counted;
3484 	int ret;
3485 
3486 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3487 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3488 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3489 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3490 
3491 	/*
3492 	 * This is an extent belonging to the free space cache, lets just delete
3493 	 * it and redo the search.
3494 	 */
3495 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3496 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3497 					       NULL, ref_objectid);
3498 		if (ret != -ENOENT)
3499 			return ret;
3500 		ret = 0;
3501 	}
3502 
3503 	path = btrfs_alloc_path();
3504 	if (!path)
3505 		return -ENOMEM;
3506 	path->reada = 1;
3507 
3508 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3509 	if (IS_ERR(root)) {
3510 		err = PTR_ERR(root);
3511 		goto out;
3512 	}
3513 
3514 	key.objectid = ref_objectid;
3515 	key.type = BTRFS_EXTENT_DATA_KEY;
3516 	if (ref_offset > ((u64)-1 << 32))
3517 		key.offset = 0;
3518 	else
3519 		key.offset = ref_offset;
3520 
3521 	path->search_commit_root = 1;
3522 	path->skip_locking = 1;
3523 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3524 	if (ret < 0) {
3525 		err = ret;
3526 		goto out;
3527 	}
3528 
3529 	leaf = path->nodes[0];
3530 	nritems = btrfs_header_nritems(leaf);
3531 	/*
3532 	 * the references in tree blocks that use full backrefs
3533 	 * are not counted in
3534 	 */
3535 	if (block_use_full_backref(rc, leaf))
3536 		counted = 0;
3537 	else
3538 		counted = 1;
3539 	rb_node = tree_search(blocks, leaf->start);
3540 	if (rb_node) {
3541 		if (counted)
3542 			added = 1;
3543 		else
3544 			path->slots[0] = nritems;
3545 	}
3546 
3547 	while (ref_count > 0) {
3548 		while (path->slots[0] >= nritems) {
3549 			ret = btrfs_next_leaf(root, path);
3550 			if (ret < 0) {
3551 				err = ret;
3552 				goto out;
3553 			}
3554 			if (WARN_ON(ret > 0))
3555 				goto out;
3556 
3557 			leaf = path->nodes[0];
3558 			nritems = btrfs_header_nritems(leaf);
3559 			added = 0;
3560 
3561 			if (block_use_full_backref(rc, leaf))
3562 				counted = 0;
3563 			else
3564 				counted = 1;
3565 			rb_node = tree_search(blocks, leaf->start);
3566 			if (rb_node) {
3567 				if (counted)
3568 					added = 1;
3569 				else
3570 					path->slots[0] = nritems;
3571 			}
3572 		}
3573 
3574 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3575 		if (WARN_ON(key.objectid != ref_objectid ||
3576 		    key.type != BTRFS_EXTENT_DATA_KEY))
3577 			break;
3578 
3579 		fi = btrfs_item_ptr(leaf, path->slots[0],
3580 				    struct btrfs_file_extent_item);
3581 
3582 		if (btrfs_file_extent_type(leaf, fi) ==
3583 		    BTRFS_FILE_EXTENT_INLINE)
3584 			goto next;
3585 
3586 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3587 		    extent_key->objectid)
3588 			goto next;
3589 
3590 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3591 		if (key.offset != ref_offset)
3592 			goto next;
3593 
3594 		if (counted)
3595 			ref_count--;
3596 		if (added)
3597 			goto next;
3598 
3599 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3600 			block = kmalloc(sizeof(*block), GFP_NOFS);
3601 			if (!block) {
3602 				err = -ENOMEM;
3603 				break;
3604 			}
3605 			block->bytenr = leaf->start;
3606 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3607 			block->level = 0;
3608 			block->key_ready = 1;
3609 			rb_node = tree_insert(blocks, block->bytenr,
3610 					      &block->rb_node);
3611 			if (rb_node)
3612 				backref_tree_panic(rb_node, -EEXIST,
3613 						   block->bytenr);
3614 		}
3615 		if (counted)
3616 			added = 1;
3617 		else
3618 			path->slots[0] = nritems;
3619 next:
3620 		path->slots[0]++;
3621 
3622 	}
3623 out:
3624 	btrfs_free_path(path);
3625 	return err;
3626 }
3627 
3628 /*
3629  * helper to find all tree blocks that reference a given data extent
3630  */
3631 static noinline_for_stack
3632 int add_data_references(struct reloc_control *rc,
3633 			struct btrfs_key *extent_key,
3634 			struct btrfs_path *path,
3635 			struct rb_root *blocks)
3636 {
3637 	struct btrfs_key key;
3638 	struct extent_buffer *eb;
3639 	struct btrfs_extent_data_ref *dref;
3640 	struct btrfs_extent_inline_ref *iref;
3641 	unsigned long ptr;
3642 	unsigned long end;
3643 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3644 	int ret = 0;
3645 	int err = 0;
3646 
3647 	eb = path->nodes[0];
3648 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3649 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3650 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3651 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3652 		ptr = end;
3653 	else
3654 #endif
3655 		ptr += sizeof(struct btrfs_extent_item);
3656 
3657 	while (ptr < end) {
3658 		iref = (struct btrfs_extent_inline_ref *)ptr;
3659 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3660 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3661 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3662 			ret = __add_tree_block(rc, key.offset, blocksize,
3663 					       blocks);
3664 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3665 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3666 			ret = find_data_references(rc, extent_key,
3667 						   eb, dref, blocks);
3668 		} else {
3669 			BUG();
3670 		}
3671 		if (ret) {
3672 			err = ret;
3673 			goto out;
3674 		}
3675 		ptr += btrfs_extent_inline_ref_size(key.type);
3676 	}
3677 	WARN_ON(ptr > end);
3678 
3679 	while (1) {
3680 		cond_resched();
3681 		eb = path->nodes[0];
3682 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3683 			ret = btrfs_next_leaf(rc->extent_root, path);
3684 			if (ret < 0) {
3685 				err = ret;
3686 				break;
3687 			}
3688 			if (ret > 0)
3689 				break;
3690 			eb = path->nodes[0];
3691 		}
3692 
3693 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3694 		if (key.objectid != extent_key->objectid)
3695 			break;
3696 
3697 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3698 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3699 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3700 #else
3701 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3702 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3703 #endif
3704 			ret = __add_tree_block(rc, key.offset, blocksize,
3705 					       blocks);
3706 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3707 			dref = btrfs_item_ptr(eb, path->slots[0],
3708 					      struct btrfs_extent_data_ref);
3709 			ret = find_data_references(rc, extent_key,
3710 						   eb, dref, blocks);
3711 		} else {
3712 			ret = 0;
3713 		}
3714 		if (ret) {
3715 			err = ret;
3716 			break;
3717 		}
3718 		path->slots[0]++;
3719 	}
3720 out:
3721 	btrfs_release_path(path);
3722 	if (err)
3723 		free_block_list(blocks);
3724 	return err;
3725 }
3726 
3727 /*
3728  * helper to find next unprocessed extent
3729  */
3730 static noinline_for_stack
3731 int find_next_extent(struct btrfs_trans_handle *trans,
3732 		     struct reloc_control *rc, struct btrfs_path *path,
3733 		     struct btrfs_key *extent_key)
3734 {
3735 	struct btrfs_key key;
3736 	struct extent_buffer *leaf;
3737 	u64 start, end, last;
3738 	int ret;
3739 
3740 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3741 	while (1) {
3742 		cond_resched();
3743 		if (rc->search_start >= last) {
3744 			ret = 1;
3745 			break;
3746 		}
3747 
3748 		key.objectid = rc->search_start;
3749 		key.type = BTRFS_EXTENT_ITEM_KEY;
3750 		key.offset = 0;
3751 
3752 		path->search_commit_root = 1;
3753 		path->skip_locking = 1;
3754 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3755 					0, 0);
3756 		if (ret < 0)
3757 			break;
3758 next:
3759 		leaf = path->nodes[0];
3760 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3761 			ret = btrfs_next_leaf(rc->extent_root, path);
3762 			if (ret != 0)
3763 				break;
3764 			leaf = path->nodes[0];
3765 		}
3766 
3767 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3768 		if (key.objectid >= last) {
3769 			ret = 1;
3770 			break;
3771 		}
3772 
3773 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3774 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3775 			path->slots[0]++;
3776 			goto next;
3777 		}
3778 
3779 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3780 		    key.objectid + key.offset <= rc->search_start) {
3781 			path->slots[0]++;
3782 			goto next;
3783 		}
3784 
3785 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3786 		    key.objectid + rc->extent_root->leafsize <=
3787 		    rc->search_start) {
3788 			path->slots[0]++;
3789 			goto next;
3790 		}
3791 
3792 		ret = find_first_extent_bit(&rc->processed_blocks,
3793 					    key.objectid, &start, &end,
3794 					    EXTENT_DIRTY, NULL);
3795 
3796 		if (ret == 0 && start <= key.objectid) {
3797 			btrfs_release_path(path);
3798 			rc->search_start = end + 1;
3799 		} else {
3800 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3801 				rc->search_start = key.objectid + key.offset;
3802 			else
3803 				rc->search_start = key.objectid +
3804 					rc->extent_root->leafsize;
3805 			memcpy(extent_key, &key, sizeof(key));
3806 			return 0;
3807 		}
3808 	}
3809 	btrfs_release_path(path);
3810 	return ret;
3811 }
3812 
3813 static void set_reloc_control(struct reloc_control *rc)
3814 {
3815 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3816 
3817 	mutex_lock(&fs_info->reloc_mutex);
3818 	fs_info->reloc_ctl = rc;
3819 	mutex_unlock(&fs_info->reloc_mutex);
3820 }
3821 
3822 static void unset_reloc_control(struct reloc_control *rc)
3823 {
3824 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3825 
3826 	mutex_lock(&fs_info->reloc_mutex);
3827 	fs_info->reloc_ctl = NULL;
3828 	mutex_unlock(&fs_info->reloc_mutex);
3829 }
3830 
3831 static int check_extent_flags(u64 flags)
3832 {
3833 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3834 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3835 		return 1;
3836 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3837 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3838 		return 1;
3839 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3840 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3841 		return 1;
3842 	return 0;
3843 }
3844 
3845 static noinline_for_stack
3846 int prepare_to_relocate(struct reloc_control *rc)
3847 {
3848 	struct btrfs_trans_handle *trans;
3849 
3850 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3851 					      BTRFS_BLOCK_RSV_TEMP);
3852 	if (!rc->block_rsv)
3853 		return -ENOMEM;
3854 
3855 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3856 	rc->search_start = rc->block_group->key.objectid;
3857 	rc->extents_found = 0;
3858 	rc->nodes_relocated = 0;
3859 	rc->merging_rsv_size = 0;
3860 	rc->reserved_bytes = 0;
3861 	rc->block_rsv->size = rc->extent_root->nodesize *
3862 			      RELOCATION_RESERVED_NODES;
3863 
3864 	rc->create_reloc_tree = 1;
3865 	set_reloc_control(rc);
3866 
3867 	trans = btrfs_join_transaction(rc->extent_root);
3868 	if (IS_ERR(trans)) {
3869 		unset_reloc_control(rc);
3870 		/*
3871 		 * extent tree is not a ref_cow tree and has no reloc_root to
3872 		 * cleanup.  And callers are responsible to free the above
3873 		 * block rsv.
3874 		 */
3875 		return PTR_ERR(trans);
3876 	}
3877 	btrfs_commit_transaction(trans, rc->extent_root);
3878 	return 0;
3879 }
3880 
3881 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3882 {
3883 	struct rb_root blocks = RB_ROOT;
3884 	struct btrfs_key key;
3885 	struct btrfs_trans_handle *trans = NULL;
3886 	struct btrfs_path *path;
3887 	struct btrfs_extent_item *ei;
3888 	u64 flags;
3889 	u32 item_size;
3890 	int ret;
3891 	int err = 0;
3892 	int progress = 0;
3893 
3894 	path = btrfs_alloc_path();
3895 	if (!path)
3896 		return -ENOMEM;
3897 	path->reada = 1;
3898 
3899 	ret = prepare_to_relocate(rc);
3900 	if (ret) {
3901 		err = ret;
3902 		goto out_free;
3903 	}
3904 
3905 	while (1) {
3906 		rc->reserved_bytes = 0;
3907 		ret = btrfs_block_rsv_refill(rc->extent_root,
3908 					rc->block_rsv, rc->block_rsv->size,
3909 					BTRFS_RESERVE_FLUSH_ALL);
3910 		if (ret) {
3911 			err = ret;
3912 			break;
3913 		}
3914 		progress++;
3915 		trans = btrfs_start_transaction(rc->extent_root, 0);
3916 		if (IS_ERR(trans)) {
3917 			err = PTR_ERR(trans);
3918 			trans = NULL;
3919 			break;
3920 		}
3921 restart:
3922 		if (update_backref_cache(trans, &rc->backref_cache)) {
3923 			btrfs_end_transaction(trans, rc->extent_root);
3924 			continue;
3925 		}
3926 
3927 		ret = find_next_extent(trans, rc, path, &key);
3928 		if (ret < 0)
3929 			err = ret;
3930 		if (ret != 0)
3931 			break;
3932 
3933 		rc->extents_found++;
3934 
3935 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3936 				    struct btrfs_extent_item);
3937 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3938 		if (item_size >= sizeof(*ei)) {
3939 			flags = btrfs_extent_flags(path->nodes[0], ei);
3940 			ret = check_extent_flags(flags);
3941 			BUG_ON(ret);
3942 
3943 		} else {
3944 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3945 			u64 ref_owner;
3946 			int path_change = 0;
3947 
3948 			BUG_ON(item_size !=
3949 			       sizeof(struct btrfs_extent_item_v0));
3950 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3951 						  &path_change);
3952 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3953 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3954 			else
3955 				flags = BTRFS_EXTENT_FLAG_DATA;
3956 
3957 			if (path_change) {
3958 				btrfs_release_path(path);
3959 
3960 				path->search_commit_root = 1;
3961 				path->skip_locking = 1;
3962 				ret = btrfs_search_slot(NULL, rc->extent_root,
3963 							&key, path, 0, 0);
3964 				if (ret < 0) {
3965 					err = ret;
3966 					break;
3967 				}
3968 				BUG_ON(ret > 0);
3969 			}
3970 #else
3971 			BUG();
3972 #endif
3973 		}
3974 
3975 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3976 			ret = add_tree_block(rc, &key, path, &blocks);
3977 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3978 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3979 			ret = add_data_references(rc, &key, path, &blocks);
3980 		} else {
3981 			btrfs_release_path(path);
3982 			ret = 0;
3983 		}
3984 		if (ret < 0) {
3985 			err = ret;
3986 			break;
3987 		}
3988 
3989 		if (!RB_EMPTY_ROOT(&blocks)) {
3990 			ret = relocate_tree_blocks(trans, rc, &blocks);
3991 			if (ret < 0) {
3992 				/*
3993 				 * if we fail to relocate tree blocks, force to update
3994 				 * backref cache when committing transaction.
3995 				 */
3996 				rc->backref_cache.last_trans = trans->transid - 1;
3997 
3998 				if (ret != -EAGAIN) {
3999 					err = ret;
4000 					break;
4001 				}
4002 				rc->extents_found--;
4003 				rc->search_start = key.objectid;
4004 			}
4005 		}
4006 
4007 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4008 		btrfs_btree_balance_dirty(rc->extent_root);
4009 		trans = NULL;
4010 
4011 		if (rc->stage == MOVE_DATA_EXTENTS &&
4012 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4013 			rc->found_file_extent = 1;
4014 			ret = relocate_data_extent(rc->data_inode,
4015 						   &key, &rc->cluster);
4016 			if (ret < 0) {
4017 				err = ret;
4018 				break;
4019 			}
4020 		}
4021 	}
4022 	if (trans && progress && err == -ENOSPC) {
4023 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4024 					      rc->block_group->flags);
4025 		if (ret == 0) {
4026 			err = 0;
4027 			progress = 0;
4028 			goto restart;
4029 		}
4030 	}
4031 
4032 	btrfs_release_path(path);
4033 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4034 			  GFP_NOFS);
4035 
4036 	if (trans) {
4037 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4038 		btrfs_btree_balance_dirty(rc->extent_root);
4039 	}
4040 
4041 	if (!err) {
4042 		ret = relocate_file_extent_cluster(rc->data_inode,
4043 						   &rc->cluster);
4044 		if (ret < 0)
4045 			err = ret;
4046 	}
4047 
4048 	rc->create_reloc_tree = 0;
4049 	set_reloc_control(rc);
4050 
4051 	backref_cache_cleanup(&rc->backref_cache);
4052 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4053 
4054 	err = prepare_to_merge(rc, err);
4055 
4056 	merge_reloc_roots(rc);
4057 
4058 	rc->merge_reloc_tree = 0;
4059 	unset_reloc_control(rc);
4060 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4061 
4062 	/* get rid of pinned extents */
4063 	trans = btrfs_join_transaction(rc->extent_root);
4064 	if (IS_ERR(trans))
4065 		err = PTR_ERR(trans);
4066 	else
4067 		btrfs_commit_transaction(trans, rc->extent_root);
4068 out_free:
4069 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4070 	btrfs_free_path(path);
4071 	return err;
4072 }
4073 
4074 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4075 				 struct btrfs_root *root, u64 objectid)
4076 {
4077 	struct btrfs_path *path;
4078 	struct btrfs_inode_item *item;
4079 	struct extent_buffer *leaf;
4080 	int ret;
4081 
4082 	path = btrfs_alloc_path();
4083 	if (!path)
4084 		return -ENOMEM;
4085 
4086 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4087 	if (ret)
4088 		goto out;
4089 
4090 	leaf = path->nodes[0];
4091 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4092 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4093 	btrfs_set_inode_generation(leaf, item, 1);
4094 	btrfs_set_inode_size(leaf, item, 0);
4095 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4096 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4097 					  BTRFS_INODE_PREALLOC);
4098 	btrfs_mark_buffer_dirty(leaf);
4099 	btrfs_release_path(path);
4100 out:
4101 	btrfs_free_path(path);
4102 	return ret;
4103 }
4104 
4105 /*
4106  * helper to create inode for data relocation.
4107  * the inode is in data relocation tree and its link count is 0
4108  */
4109 static noinline_for_stack
4110 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4111 				 struct btrfs_block_group_cache *group)
4112 {
4113 	struct inode *inode = NULL;
4114 	struct btrfs_trans_handle *trans;
4115 	struct btrfs_root *root;
4116 	struct btrfs_key key;
4117 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4118 	int err = 0;
4119 
4120 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4121 	if (IS_ERR(root))
4122 		return ERR_CAST(root);
4123 
4124 	trans = btrfs_start_transaction(root, 6);
4125 	if (IS_ERR(trans))
4126 		return ERR_CAST(trans);
4127 
4128 	err = btrfs_find_free_objectid(root, &objectid);
4129 	if (err)
4130 		goto out;
4131 
4132 	err = __insert_orphan_inode(trans, root, objectid);
4133 	BUG_ON(err);
4134 
4135 	key.objectid = objectid;
4136 	key.type = BTRFS_INODE_ITEM_KEY;
4137 	key.offset = 0;
4138 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4139 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4140 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4141 
4142 	err = btrfs_orphan_add(trans, inode);
4143 out:
4144 	btrfs_end_transaction(trans, root);
4145 	btrfs_btree_balance_dirty(root);
4146 	if (err) {
4147 		if (inode)
4148 			iput(inode);
4149 		inode = ERR_PTR(err);
4150 	}
4151 	return inode;
4152 }
4153 
4154 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4155 {
4156 	struct reloc_control *rc;
4157 
4158 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4159 	if (!rc)
4160 		return NULL;
4161 
4162 	INIT_LIST_HEAD(&rc->reloc_roots);
4163 	backref_cache_init(&rc->backref_cache);
4164 	mapping_tree_init(&rc->reloc_root_tree);
4165 	extent_io_tree_init(&rc->processed_blocks,
4166 			    fs_info->btree_inode->i_mapping);
4167 	return rc;
4168 }
4169 
4170 /*
4171  * function to relocate all extents in a block group.
4172  */
4173 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4174 {
4175 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4176 	struct reloc_control *rc;
4177 	struct inode *inode;
4178 	struct btrfs_path *path;
4179 	int ret;
4180 	int rw = 0;
4181 	int err = 0;
4182 
4183 	rc = alloc_reloc_control(fs_info);
4184 	if (!rc)
4185 		return -ENOMEM;
4186 
4187 	rc->extent_root = extent_root;
4188 
4189 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4190 	BUG_ON(!rc->block_group);
4191 
4192 	if (!rc->block_group->ro) {
4193 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4194 		if (ret) {
4195 			err = ret;
4196 			goto out;
4197 		}
4198 		rw = 1;
4199 	}
4200 
4201 	path = btrfs_alloc_path();
4202 	if (!path) {
4203 		err = -ENOMEM;
4204 		goto out;
4205 	}
4206 
4207 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4208 					path);
4209 	btrfs_free_path(path);
4210 
4211 	if (!IS_ERR(inode))
4212 		ret = delete_block_group_cache(fs_info, inode, 0);
4213 	else
4214 		ret = PTR_ERR(inode);
4215 
4216 	if (ret && ret != -ENOENT) {
4217 		err = ret;
4218 		goto out;
4219 	}
4220 
4221 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4222 	if (IS_ERR(rc->data_inode)) {
4223 		err = PTR_ERR(rc->data_inode);
4224 		rc->data_inode = NULL;
4225 		goto out;
4226 	}
4227 
4228 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4229 	       rc->block_group->key.objectid, rc->block_group->flags);
4230 
4231 	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4232 	if (ret < 0) {
4233 		err = ret;
4234 		goto out;
4235 	}
4236 	btrfs_wait_ordered_roots(fs_info, -1);
4237 
4238 	while (1) {
4239 		mutex_lock(&fs_info->cleaner_mutex);
4240 		ret = relocate_block_group(rc);
4241 		mutex_unlock(&fs_info->cleaner_mutex);
4242 		if (ret < 0) {
4243 			err = ret;
4244 			goto out;
4245 		}
4246 
4247 		if (rc->extents_found == 0)
4248 			break;
4249 
4250 		btrfs_info(extent_root->fs_info, "found %llu extents",
4251 			rc->extents_found);
4252 
4253 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4254 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4255 						       (u64)-1);
4256 			if (ret) {
4257 				err = ret;
4258 				goto out;
4259 			}
4260 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4261 						 0, -1);
4262 			rc->stage = UPDATE_DATA_PTRS;
4263 		}
4264 	}
4265 
4266 	WARN_ON(rc->block_group->pinned > 0);
4267 	WARN_ON(rc->block_group->reserved > 0);
4268 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4269 out:
4270 	if (err && rw)
4271 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4272 	iput(rc->data_inode);
4273 	btrfs_put_block_group(rc->block_group);
4274 	kfree(rc);
4275 	return err;
4276 }
4277 
4278 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4279 {
4280 	struct btrfs_trans_handle *trans;
4281 	int ret, err;
4282 
4283 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4284 	if (IS_ERR(trans))
4285 		return PTR_ERR(trans);
4286 
4287 	memset(&root->root_item.drop_progress, 0,
4288 		sizeof(root->root_item.drop_progress));
4289 	root->root_item.drop_level = 0;
4290 	btrfs_set_root_refs(&root->root_item, 0);
4291 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4292 				&root->root_key, &root->root_item);
4293 
4294 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4295 	if (err)
4296 		return err;
4297 	return ret;
4298 }
4299 
4300 /*
4301  * recover relocation interrupted by system crash.
4302  *
4303  * this function resumes merging reloc trees with corresponding fs trees.
4304  * this is important for keeping the sharing of tree blocks
4305  */
4306 int btrfs_recover_relocation(struct btrfs_root *root)
4307 {
4308 	LIST_HEAD(reloc_roots);
4309 	struct btrfs_key key;
4310 	struct btrfs_root *fs_root;
4311 	struct btrfs_root *reloc_root;
4312 	struct btrfs_path *path;
4313 	struct extent_buffer *leaf;
4314 	struct reloc_control *rc = NULL;
4315 	struct btrfs_trans_handle *trans;
4316 	int ret;
4317 	int err = 0;
4318 
4319 	path = btrfs_alloc_path();
4320 	if (!path)
4321 		return -ENOMEM;
4322 	path->reada = -1;
4323 
4324 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4325 	key.type = BTRFS_ROOT_ITEM_KEY;
4326 	key.offset = (u64)-1;
4327 
4328 	while (1) {
4329 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4330 					path, 0, 0);
4331 		if (ret < 0) {
4332 			err = ret;
4333 			goto out;
4334 		}
4335 		if (ret > 0) {
4336 			if (path->slots[0] == 0)
4337 				break;
4338 			path->slots[0]--;
4339 		}
4340 		leaf = path->nodes[0];
4341 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4342 		btrfs_release_path(path);
4343 
4344 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4345 		    key.type != BTRFS_ROOT_ITEM_KEY)
4346 			break;
4347 
4348 		reloc_root = btrfs_read_fs_root(root, &key);
4349 		if (IS_ERR(reloc_root)) {
4350 			err = PTR_ERR(reloc_root);
4351 			goto out;
4352 		}
4353 
4354 		list_add(&reloc_root->root_list, &reloc_roots);
4355 
4356 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4357 			fs_root = read_fs_root(root->fs_info,
4358 					       reloc_root->root_key.offset);
4359 			if (IS_ERR(fs_root)) {
4360 				ret = PTR_ERR(fs_root);
4361 				if (ret != -ENOENT) {
4362 					err = ret;
4363 					goto out;
4364 				}
4365 				ret = mark_garbage_root(reloc_root);
4366 				if (ret < 0) {
4367 					err = ret;
4368 					goto out;
4369 				}
4370 			}
4371 		}
4372 
4373 		if (key.offset == 0)
4374 			break;
4375 
4376 		key.offset--;
4377 	}
4378 	btrfs_release_path(path);
4379 
4380 	if (list_empty(&reloc_roots))
4381 		goto out;
4382 
4383 	rc = alloc_reloc_control(root->fs_info);
4384 	if (!rc) {
4385 		err = -ENOMEM;
4386 		goto out;
4387 	}
4388 
4389 	rc->extent_root = root->fs_info->extent_root;
4390 
4391 	set_reloc_control(rc);
4392 
4393 	trans = btrfs_join_transaction(rc->extent_root);
4394 	if (IS_ERR(trans)) {
4395 		unset_reloc_control(rc);
4396 		err = PTR_ERR(trans);
4397 		goto out_free;
4398 	}
4399 
4400 	rc->merge_reloc_tree = 1;
4401 
4402 	while (!list_empty(&reloc_roots)) {
4403 		reloc_root = list_entry(reloc_roots.next,
4404 					struct btrfs_root, root_list);
4405 		list_del(&reloc_root->root_list);
4406 
4407 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4408 			list_add_tail(&reloc_root->root_list,
4409 				      &rc->reloc_roots);
4410 			continue;
4411 		}
4412 
4413 		fs_root = read_fs_root(root->fs_info,
4414 				       reloc_root->root_key.offset);
4415 		if (IS_ERR(fs_root)) {
4416 			err = PTR_ERR(fs_root);
4417 			goto out_free;
4418 		}
4419 
4420 		err = __add_reloc_root(reloc_root);
4421 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4422 		fs_root->reloc_root = reloc_root;
4423 	}
4424 
4425 	err = btrfs_commit_transaction(trans, rc->extent_root);
4426 	if (err)
4427 		goto out_free;
4428 
4429 	merge_reloc_roots(rc);
4430 
4431 	unset_reloc_control(rc);
4432 
4433 	trans = btrfs_join_transaction(rc->extent_root);
4434 	if (IS_ERR(trans))
4435 		err = PTR_ERR(trans);
4436 	else
4437 		err = btrfs_commit_transaction(trans, rc->extent_root);
4438 out_free:
4439 	kfree(rc);
4440 out:
4441 	if (!list_empty(&reloc_roots))
4442 		free_reloc_roots(&reloc_roots);
4443 
4444 	btrfs_free_path(path);
4445 
4446 	if (err == 0) {
4447 		/* cleanup orphan inode in data relocation tree */
4448 		fs_root = read_fs_root(root->fs_info,
4449 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4450 		if (IS_ERR(fs_root))
4451 			err = PTR_ERR(fs_root);
4452 		else
4453 			err = btrfs_orphan_cleanup(fs_root);
4454 	}
4455 	return err;
4456 }
4457 
4458 /*
4459  * helper to add ordered checksum for data relocation.
4460  *
4461  * cloning checksum properly handles the nodatasum extents.
4462  * it also saves CPU time to re-calculate the checksum.
4463  */
4464 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4465 {
4466 	struct btrfs_ordered_sum *sums;
4467 	struct btrfs_ordered_extent *ordered;
4468 	struct btrfs_root *root = BTRFS_I(inode)->root;
4469 	int ret;
4470 	u64 disk_bytenr;
4471 	u64 new_bytenr;
4472 	LIST_HEAD(list);
4473 
4474 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4475 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4476 
4477 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4478 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4479 				       disk_bytenr + len - 1, &list, 0);
4480 	if (ret)
4481 		goto out;
4482 
4483 	while (!list_empty(&list)) {
4484 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4485 		list_del_init(&sums->list);
4486 
4487 		/*
4488 		 * We need to offset the new_bytenr based on where the csum is.
4489 		 * We need to do this because we will read in entire prealloc
4490 		 * extents but we may have written to say the middle of the
4491 		 * prealloc extent, so we need to make sure the csum goes with
4492 		 * the right disk offset.
4493 		 *
4494 		 * We can do this because the data reloc inode refers strictly
4495 		 * to the on disk bytes, so we don't have to worry about
4496 		 * disk_len vs real len like with real inodes since it's all
4497 		 * disk length.
4498 		 */
4499 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4500 		sums->bytenr = new_bytenr;
4501 
4502 		btrfs_add_ordered_sum(inode, ordered, sums);
4503 	}
4504 out:
4505 	btrfs_put_ordered_extent(ordered);
4506 	return ret;
4507 }
4508 
4509 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4510 			  struct btrfs_root *root, struct extent_buffer *buf,
4511 			  struct extent_buffer *cow)
4512 {
4513 	struct reloc_control *rc;
4514 	struct backref_node *node;
4515 	int first_cow = 0;
4516 	int level;
4517 	int ret = 0;
4518 
4519 	rc = root->fs_info->reloc_ctl;
4520 	if (!rc)
4521 		return 0;
4522 
4523 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4524 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4525 
4526 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4527 		if (buf == root->node)
4528 			__update_reloc_root(root, cow->start);
4529 	}
4530 
4531 	level = btrfs_header_level(buf);
4532 	if (btrfs_header_generation(buf) <=
4533 	    btrfs_root_last_snapshot(&root->root_item))
4534 		first_cow = 1;
4535 
4536 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4537 	    rc->create_reloc_tree) {
4538 		WARN_ON(!first_cow && level == 0);
4539 
4540 		node = rc->backref_cache.path[level];
4541 		BUG_ON(node->bytenr != buf->start &&
4542 		       node->new_bytenr != buf->start);
4543 
4544 		drop_node_buffer(node);
4545 		extent_buffer_get(cow);
4546 		node->eb = cow;
4547 		node->new_bytenr = cow->start;
4548 
4549 		if (!node->pending) {
4550 			list_move_tail(&node->list,
4551 				       &rc->backref_cache.pending[level]);
4552 			node->pending = 1;
4553 		}
4554 
4555 		if (first_cow)
4556 			__mark_block_processed(rc, node);
4557 
4558 		if (first_cow && level > 0)
4559 			rc->nodes_relocated += buf->len;
4560 	}
4561 
4562 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4563 		ret = replace_file_extents(trans, rc, root, cow);
4564 	return ret;
4565 }
4566 
4567 /*
4568  * called before creating snapshot. it calculates metadata reservation
4569  * requried for relocating tree blocks in the snapshot
4570  */
4571 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4572 			      struct btrfs_pending_snapshot *pending,
4573 			      u64 *bytes_to_reserve)
4574 {
4575 	struct btrfs_root *root;
4576 	struct reloc_control *rc;
4577 
4578 	root = pending->root;
4579 	if (!root->reloc_root)
4580 		return;
4581 
4582 	rc = root->fs_info->reloc_ctl;
4583 	if (!rc->merge_reloc_tree)
4584 		return;
4585 
4586 	root = root->reloc_root;
4587 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4588 	/*
4589 	 * relocation is in the stage of merging trees. the space
4590 	 * used by merging a reloc tree is twice the size of
4591 	 * relocated tree nodes in the worst case. half for cowing
4592 	 * the reloc tree, half for cowing the fs tree. the space
4593 	 * used by cowing the reloc tree will be freed after the
4594 	 * tree is dropped. if we create snapshot, cowing the fs
4595 	 * tree may use more space than it frees. so we need
4596 	 * reserve extra space.
4597 	 */
4598 	*bytes_to_reserve += rc->nodes_relocated;
4599 }
4600 
4601 /*
4602  * called after snapshot is created. migrate block reservation
4603  * and create reloc root for the newly created snapshot
4604  */
4605 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4606 			       struct btrfs_pending_snapshot *pending)
4607 {
4608 	struct btrfs_root *root = pending->root;
4609 	struct btrfs_root *reloc_root;
4610 	struct btrfs_root *new_root;
4611 	struct reloc_control *rc;
4612 	int ret;
4613 
4614 	if (!root->reloc_root)
4615 		return 0;
4616 
4617 	rc = root->fs_info->reloc_ctl;
4618 	rc->merging_rsv_size += rc->nodes_relocated;
4619 
4620 	if (rc->merge_reloc_tree) {
4621 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4622 					      rc->block_rsv,
4623 					      rc->nodes_relocated);
4624 		if (ret)
4625 			return ret;
4626 	}
4627 
4628 	new_root = pending->snap;
4629 	reloc_root = create_reloc_root(trans, root->reloc_root,
4630 				       new_root->root_key.objectid);
4631 	if (IS_ERR(reloc_root))
4632 		return PTR_ERR(reloc_root);
4633 
4634 	ret = __add_reloc_root(reloc_root);
4635 	BUG_ON(ret < 0);
4636 	new_root->reloc_root = reloc_root;
4637 
4638 	if (rc->create_reloc_tree)
4639 		ret = clone_backref_node(trans, rc, root, reloc_root);
4640 	return ret;
4641 }
4642