1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 #define RELOCATION_RESERVED_NODES 256 98 99 struct backref_cache { 100 /* red black tree of all backref nodes in the cache */ 101 struct rb_root rb_root; 102 /* for passing backref nodes to btrfs_reloc_cow_block */ 103 struct backref_node *path[BTRFS_MAX_LEVEL]; 104 /* 105 * list of blocks that have been cowed but some block 106 * pointers in upper level blocks may not reflect the 107 * new location 108 */ 109 struct list_head pending[BTRFS_MAX_LEVEL]; 110 /* list of backref nodes with no child node */ 111 struct list_head leaves; 112 /* list of blocks that have been cowed in current transaction */ 113 struct list_head changed; 114 /* list of detached backref node. */ 115 struct list_head detached; 116 117 u64 last_trans; 118 119 int nr_nodes; 120 int nr_edges; 121 }; 122 123 /* 124 * map address of tree root to tree 125 */ 126 struct mapping_node { 127 struct rb_node rb_node; 128 u64 bytenr; 129 void *data; 130 }; 131 132 struct mapping_tree { 133 struct rb_root rb_root; 134 spinlock_t lock; 135 }; 136 137 /* 138 * present a tree block to process 139 */ 140 struct tree_block { 141 struct rb_node rb_node; 142 u64 bytenr; 143 struct btrfs_key key; 144 unsigned int level:8; 145 unsigned int key_ready:1; 146 }; 147 148 #define MAX_EXTENTS 128 149 150 struct file_extent_cluster { 151 u64 start; 152 u64 end; 153 u64 boundary[MAX_EXTENTS]; 154 unsigned int nr; 155 }; 156 157 struct reloc_control { 158 /* block group to relocate */ 159 struct btrfs_block_group_cache *block_group; 160 /* extent tree */ 161 struct btrfs_root *extent_root; 162 /* inode for moving data */ 163 struct inode *data_inode; 164 165 struct btrfs_block_rsv *block_rsv; 166 167 struct backref_cache backref_cache; 168 169 struct file_extent_cluster cluster; 170 /* tree blocks have been processed */ 171 struct extent_io_tree processed_blocks; 172 /* map start of tree root to corresponding reloc tree */ 173 struct mapping_tree reloc_root_tree; 174 /* list of reloc trees */ 175 struct list_head reloc_roots; 176 /* size of metadata reservation for merging reloc trees */ 177 u64 merging_rsv_size; 178 /* size of relocated tree nodes */ 179 u64 nodes_relocated; 180 /* reserved size for block group relocation*/ 181 u64 reserved_bytes; 182 183 u64 search_start; 184 u64 extents_found; 185 186 unsigned int stage:8; 187 unsigned int create_reloc_tree:1; 188 unsigned int merge_reloc_tree:1; 189 unsigned int found_file_extent:1; 190 }; 191 192 /* stages of data relocation */ 193 #define MOVE_DATA_EXTENTS 0 194 #define UPDATE_DATA_PTRS 1 195 196 static void remove_backref_node(struct backref_cache *cache, 197 struct backref_node *node); 198 static void __mark_block_processed(struct reloc_control *rc, 199 struct backref_node *node); 200 201 static void mapping_tree_init(struct mapping_tree *tree) 202 { 203 tree->rb_root = RB_ROOT; 204 spin_lock_init(&tree->lock); 205 } 206 207 static void backref_cache_init(struct backref_cache *cache) 208 { 209 int i; 210 cache->rb_root = RB_ROOT; 211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 212 INIT_LIST_HEAD(&cache->pending[i]); 213 INIT_LIST_HEAD(&cache->changed); 214 INIT_LIST_HEAD(&cache->detached); 215 INIT_LIST_HEAD(&cache->leaves); 216 } 217 218 static void backref_cache_cleanup(struct backref_cache *cache) 219 { 220 struct backref_node *node; 221 int i; 222 223 while (!list_empty(&cache->detached)) { 224 node = list_entry(cache->detached.next, 225 struct backref_node, list); 226 remove_backref_node(cache, node); 227 } 228 229 while (!list_empty(&cache->leaves)) { 230 node = list_entry(cache->leaves.next, 231 struct backref_node, lower); 232 remove_backref_node(cache, node); 233 } 234 235 cache->last_trans = 0; 236 237 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 238 BUG_ON(!list_empty(&cache->pending[i])); 239 BUG_ON(!list_empty(&cache->changed)); 240 BUG_ON(!list_empty(&cache->detached)); 241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 242 BUG_ON(cache->nr_nodes); 243 BUG_ON(cache->nr_edges); 244 } 245 246 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 247 { 248 struct backref_node *node; 249 250 node = kzalloc(sizeof(*node), GFP_NOFS); 251 if (node) { 252 INIT_LIST_HEAD(&node->list); 253 INIT_LIST_HEAD(&node->upper); 254 INIT_LIST_HEAD(&node->lower); 255 RB_CLEAR_NODE(&node->rb_node); 256 cache->nr_nodes++; 257 } 258 return node; 259 } 260 261 static void free_backref_node(struct backref_cache *cache, 262 struct backref_node *node) 263 { 264 if (node) { 265 cache->nr_nodes--; 266 kfree(node); 267 } 268 } 269 270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 271 { 272 struct backref_edge *edge; 273 274 edge = kzalloc(sizeof(*edge), GFP_NOFS); 275 if (edge) 276 cache->nr_edges++; 277 return edge; 278 } 279 280 static void free_backref_edge(struct backref_cache *cache, 281 struct backref_edge *edge) 282 { 283 if (edge) { 284 cache->nr_edges--; 285 kfree(edge); 286 } 287 } 288 289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 290 struct rb_node *node) 291 { 292 struct rb_node **p = &root->rb_node; 293 struct rb_node *parent = NULL; 294 struct tree_entry *entry; 295 296 while (*p) { 297 parent = *p; 298 entry = rb_entry(parent, struct tree_entry, rb_node); 299 300 if (bytenr < entry->bytenr) 301 p = &(*p)->rb_left; 302 else if (bytenr > entry->bytenr) 303 p = &(*p)->rb_right; 304 else 305 return parent; 306 } 307 308 rb_link_node(node, parent, p); 309 rb_insert_color(node, root); 310 return NULL; 311 } 312 313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 314 { 315 struct rb_node *n = root->rb_node; 316 struct tree_entry *entry; 317 318 while (n) { 319 entry = rb_entry(n, struct tree_entry, rb_node); 320 321 if (bytenr < entry->bytenr) 322 n = n->rb_left; 323 else if (bytenr > entry->bytenr) 324 n = n->rb_right; 325 else 326 return n; 327 } 328 return NULL; 329 } 330 331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 332 { 333 334 struct btrfs_fs_info *fs_info = NULL; 335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 336 rb_node); 337 if (bnode->root) 338 fs_info = bnode->root->fs_info; 339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 340 "found at offset %llu", bytenr); 341 } 342 343 /* 344 * walk up backref nodes until reach node presents tree root 345 */ 346 static struct backref_node *walk_up_backref(struct backref_node *node, 347 struct backref_edge *edges[], 348 int *index) 349 { 350 struct backref_edge *edge; 351 int idx = *index; 352 353 while (!list_empty(&node->upper)) { 354 edge = list_entry(node->upper.next, 355 struct backref_edge, list[LOWER]); 356 edges[idx++] = edge; 357 node = edge->node[UPPER]; 358 } 359 BUG_ON(node->detached); 360 *index = idx; 361 return node; 362 } 363 364 /* 365 * walk down backref nodes to find start of next reference path 366 */ 367 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 368 int *index) 369 { 370 struct backref_edge *edge; 371 struct backref_node *lower; 372 int idx = *index; 373 374 while (idx > 0) { 375 edge = edges[idx - 1]; 376 lower = edge->node[LOWER]; 377 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 378 idx--; 379 continue; 380 } 381 edge = list_entry(edge->list[LOWER].next, 382 struct backref_edge, list[LOWER]); 383 edges[idx - 1] = edge; 384 *index = idx; 385 return edge->node[UPPER]; 386 } 387 *index = 0; 388 return NULL; 389 } 390 391 static void unlock_node_buffer(struct backref_node *node) 392 { 393 if (node->locked) { 394 btrfs_tree_unlock(node->eb); 395 node->locked = 0; 396 } 397 } 398 399 static void drop_node_buffer(struct backref_node *node) 400 { 401 if (node->eb) { 402 unlock_node_buffer(node); 403 free_extent_buffer(node->eb); 404 node->eb = NULL; 405 } 406 } 407 408 static void drop_backref_node(struct backref_cache *tree, 409 struct backref_node *node) 410 { 411 BUG_ON(!list_empty(&node->upper)); 412 413 drop_node_buffer(node); 414 list_del(&node->list); 415 list_del(&node->lower); 416 if (!RB_EMPTY_NODE(&node->rb_node)) 417 rb_erase(&node->rb_node, &tree->rb_root); 418 free_backref_node(tree, node); 419 } 420 421 /* 422 * remove a backref node from the backref cache 423 */ 424 static void remove_backref_node(struct backref_cache *cache, 425 struct backref_node *node) 426 { 427 struct backref_node *upper; 428 struct backref_edge *edge; 429 430 if (!node) 431 return; 432 433 BUG_ON(!node->lowest && !node->detached); 434 while (!list_empty(&node->upper)) { 435 edge = list_entry(node->upper.next, struct backref_edge, 436 list[LOWER]); 437 upper = edge->node[UPPER]; 438 list_del(&edge->list[LOWER]); 439 list_del(&edge->list[UPPER]); 440 free_backref_edge(cache, edge); 441 442 if (RB_EMPTY_NODE(&upper->rb_node)) { 443 BUG_ON(!list_empty(&node->upper)); 444 drop_backref_node(cache, node); 445 node = upper; 446 node->lowest = 1; 447 continue; 448 } 449 /* 450 * add the node to leaf node list if no other 451 * child block cached. 452 */ 453 if (list_empty(&upper->lower)) { 454 list_add_tail(&upper->lower, &cache->leaves); 455 upper->lowest = 1; 456 } 457 } 458 459 drop_backref_node(cache, node); 460 } 461 462 static void update_backref_node(struct backref_cache *cache, 463 struct backref_node *node, u64 bytenr) 464 { 465 struct rb_node *rb_node; 466 rb_erase(&node->rb_node, &cache->rb_root); 467 node->bytenr = bytenr; 468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 469 if (rb_node) 470 backref_tree_panic(rb_node, -EEXIST, bytenr); 471 } 472 473 /* 474 * update backref cache after a transaction commit 475 */ 476 static int update_backref_cache(struct btrfs_trans_handle *trans, 477 struct backref_cache *cache) 478 { 479 struct backref_node *node; 480 int level = 0; 481 482 if (cache->last_trans == 0) { 483 cache->last_trans = trans->transid; 484 return 0; 485 } 486 487 if (cache->last_trans == trans->transid) 488 return 0; 489 490 /* 491 * detached nodes are used to avoid unnecessary backref 492 * lookup. transaction commit changes the extent tree. 493 * so the detached nodes are no longer useful. 494 */ 495 while (!list_empty(&cache->detached)) { 496 node = list_entry(cache->detached.next, 497 struct backref_node, list); 498 remove_backref_node(cache, node); 499 } 500 501 while (!list_empty(&cache->changed)) { 502 node = list_entry(cache->changed.next, 503 struct backref_node, list); 504 list_del_init(&node->list); 505 BUG_ON(node->pending); 506 update_backref_node(cache, node, node->new_bytenr); 507 } 508 509 /* 510 * some nodes can be left in the pending list if there were 511 * errors during processing the pending nodes. 512 */ 513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 514 list_for_each_entry(node, &cache->pending[level], list) { 515 BUG_ON(!node->pending); 516 if (node->bytenr == node->new_bytenr) 517 continue; 518 update_backref_node(cache, node, node->new_bytenr); 519 } 520 } 521 522 cache->last_trans = 0; 523 return 1; 524 } 525 526 527 static int should_ignore_root(struct btrfs_root *root) 528 { 529 struct btrfs_root *reloc_root; 530 531 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 532 return 0; 533 534 reloc_root = root->reloc_root; 535 if (!reloc_root) 536 return 0; 537 538 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 539 root->fs_info->running_transaction->transid - 1) 540 return 0; 541 /* 542 * if there is reloc tree and it was created in previous 543 * transaction backref lookup can find the reloc tree, 544 * so backref node for the fs tree root is useless for 545 * relocation. 546 */ 547 return 1; 548 } 549 /* 550 * find reloc tree by address of tree root 551 */ 552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 553 u64 bytenr) 554 { 555 struct rb_node *rb_node; 556 struct mapping_node *node; 557 struct btrfs_root *root = NULL; 558 559 spin_lock(&rc->reloc_root_tree.lock); 560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 561 if (rb_node) { 562 node = rb_entry(rb_node, struct mapping_node, rb_node); 563 root = (struct btrfs_root *)node->data; 564 } 565 spin_unlock(&rc->reloc_root_tree.lock); 566 return root; 567 } 568 569 static int is_cowonly_root(u64 root_objectid) 570 { 571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 574 root_objectid == BTRFS_DEV_TREE_OBJECTID || 575 root_objectid == BTRFS_TREE_LOG_OBJECTID || 576 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 577 root_objectid == BTRFS_UUID_TREE_OBJECTID || 578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID) 579 return 1; 580 return 0; 581 } 582 583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 584 u64 root_objectid) 585 { 586 struct btrfs_key key; 587 588 key.objectid = root_objectid; 589 key.type = BTRFS_ROOT_ITEM_KEY; 590 if (is_cowonly_root(root_objectid)) 591 key.offset = 0; 592 else 593 key.offset = (u64)-1; 594 595 return btrfs_get_fs_root(fs_info, &key, false); 596 } 597 598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 599 static noinline_for_stack 600 struct btrfs_root *find_tree_root(struct reloc_control *rc, 601 struct extent_buffer *leaf, 602 struct btrfs_extent_ref_v0 *ref0) 603 { 604 struct btrfs_root *root; 605 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 606 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 607 608 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 609 610 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 611 BUG_ON(IS_ERR(root)); 612 613 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 614 generation != btrfs_root_generation(&root->root_item)) 615 return NULL; 616 617 return root; 618 } 619 #endif 620 621 static noinline_for_stack 622 int find_inline_backref(struct extent_buffer *leaf, int slot, 623 unsigned long *ptr, unsigned long *end) 624 { 625 struct btrfs_key key; 626 struct btrfs_extent_item *ei; 627 struct btrfs_tree_block_info *bi; 628 u32 item_size; 629 630 btrfs_item_key_to_cpu(leaf, &key, slot); 631 632 item_size = btrfs_item_size_nr(leaf, slot); 633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 634 if (item_size < sizeof(*ei)) { 635 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 636 return 1; 637 } 638 #endif 639 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 640 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 641 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 642 643 if (key.type == BTRFS_EXTENT_ITEM_KEY && 644 item_size <= sizeof(*ei) + sizeof(*bi)) { 645 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 646 return 1; 647 } 648 if (key.type == BTRFS_METADATA_ITEM_KEY && 649 item_size <= sizeof(*ei)) { 650 WARN_ON(item_size < sizeof(*ei)); 651 return 1; 652 } 653 654 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 655 bi = (struct btrfs_tree_block_info *)(ei + 1); 656 *ptr = (unsigned long)(bi + 1); 657 } else { 658 *ptr = (unsigned long)(ei + 1); 659 } 660 *end = (unsigned long)ei + item_size; 661 return 0; 662 } 663 664 /* 665 * build backref tree for a given tree block. root of the backref tree 666 * corresponds the tree block, leaves of the backref tree correspond 667 * roots of b-trees that reference the tree block. 668 * 669 * the basic idea of this function is check backrefs of a given block 670 * to find upper level blocks that refernece the block, and then check 671 * bakcrefs of these upper level blocks recursively. the recursion stop 672 * when tree root is reached or backrefs for the block is cached. 673 * 674 * NOTE: if we find backrefs for a block are cached, we know backrefs 675 * for all upper level blocks that directly/indirectly reference the 676 * block are also cached. 677 */ 678 static noinline_for_stack 679 struct backref_node *build_backref_tree(struct reloc_control *rc, 680 struct btrfs_key *node_key, 681 int level, u64 bytenr) 682 { 683 struct backref_cache *cache = &rc->backref_cache; 684 struct btrfs_path *path1; 685 struct btrfs_path *path2; 686 struct extent_buffer *eb; 687 struct btrfs_root *root; 688 struct backref_node *cur; 689 struct backref_node *upper; 690 struct backref_node *lower; 691 struct backref_node *node = NULL; 692 struct backref_node *exist = NULL; 693 struct backref_edge *edge; 694 struct rb_node *rb_node; 695 struct btrfs_key key; 696 unsigned long end; 697 unsigned long ptr; 698 LIST_HEAD(list); 699 LIST_HEAD(useless); 700 int cowonly; 701 int ret; 702 int err = 0; 703 bool need_check = true; 704 705 path1 = btrfs_alloc_path(); 706 path2 = btrfs_alloc_path(); 707 if (!path1 || !path2) { 708 err = -ENOMEM; 709 goto out; 710 } 711 path1->reada = 1; 712 path2->reada = 2; 713 714 node = alloc_backref_node(cache); 715 if (!node) { 716 err = -ENOMEM; 717 goto out; 718 } 719 720 node->bytenr = bytenr; 721 node->level = level; 722 node->lowest = 1; 723 cur = node; 724 again: 725 end = 0; 726 ptr = 0; 727 key.objectid = cur->bytenr; 728 key.type = BTRFS_METADATA_ITEM_KEY; 729 key.offset = (u64)-1; 730 731 path1->search_commit_root = 1; 732 path1->skip_locking = 1; 733 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 734 0, 0); 735 if (ret < 0) { 736 err = ret; 737 goto out; 738 } 739 BUG_ON(!ret || !path1->slots[0]); 740 741 path1->slots[0]--; 742 743 WARN_ON(cur->checked); 744 if (!list_empty(&cur->upper)) { 745 /* 746 * the backref was added previously when processing 747 * backref of type BTRFS_TREE_BLOCK_REF_KEY 748 */ 749 BUG_ON(!list_is_singular(&cur->upper)); 750 edge = list_entry(cur->upper.next, struct backref_edge, 751 list[LOWER]); 752 BUG_ON(!list_empty(&edge->list[UPPER])); 753 exist = edge->node[UPPER]; 754 /* 755 * add the upper level block to pending list if we need 756 * check its backrefs 757 */ 758 if (!exist->checked) 759 list_add_tail(&edge->list[UPPER], &list); 760 } else { 761 exist = NULL; 762 } 763 764 while (1) { 765 cond_resched(); 766 eb = path1->nodes[0]; 767 768 if (ptr >= end) { 769 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 770 ret = btrfs_next_leaf(rc->extent_root, path1); 771 if (ret < 0) { 772 err = ret; 773 goto out; 774 } 775 if (ret > 0) 776 break; 777 eb = path1->nodes[0]; 778 } 779 780 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 781 if (key.objectid != cur->bytenr) { 782 WARN_ON(exist); 783 break; 784 } 785 786 if (key.type == BTRFS_EXTENT_ITEM_KEY || 787 key.type == BTRFS_METADATA_ITEM_KEY) { 788 ret = find_inline_backref(eb, path1->slots[0], 789 &ptr, &end); 790 if (ret) 791 goto next; 792 } 793 } 794 795 if (ptr < end) { 796 /* update key for inline back ref */ 797 struct btrfs_extent_inline_ref *iref; 798 iref = (struct btrfs_extent_inline_ref *)ptr; 799 key.type = btrfs_extent_inline_ref_type(eb, iref); 800 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 801 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 802 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 803 } 804 805 if (exist && 806 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 807 exist->owner == key.offset) || 808 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 809 exist->bytenr == key.offset))) { 810 exist = NULL; 811 goto next; 812 } 813 814 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 815 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 816 key.type == BTRFS_EXTENT_REF_V0_KEY) { 817 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 818 struct btrfs_extent_ref_v0 *ref0; 819 ref0 = btrfs_item_ptr(eb, path1->slots[0], 820 struct btrfs_extent_ref_v0); 821 if (key.objectid == key.offset) { 822 root = find_tree_root(rc, eb, ref0); 823 if (root && !should_ignore_root(root)) 824 cur->root = root; 825 else 826 list_add(&cur->list, &useless); 827 break; 828 } 829 if (is_cowonly_root(btrfs_ref_root_v0(eb, 830 ref0))) 831 cur->cowonly = 1; 832 } 833 #else 834 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 835 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 836 #endif 837 if (key.objectid == key.offset) { 838 /* 839 * only root blocks of reloc trees use 840 * backref of this type. 841 */ 842 root = find_reloc_root(rc, cur->bytenr); 843 BUG_ON(!root); 844 cur->root = root; 845 break; 846 } 847 848 edge = alloc_backref_edge(cache); 849 if (!edge) { 850 err = -ENOMEM; 851 goto out; 852 } 853 rb_node = tree_search(&cache->rb_root, key.offset); 854 if (!rb_node) { 855 upper = alloc_backref_node(cache); 856 if (!upper) { 857 free_backref_edge(cache, edge); 858 err = -ENOMEM; 859 goto out; 860 } 861 upper->bytenr = key.offset; 862 upper->level = cur->level + 1; 863 /* 864 * backrefs for the upper level block isn't 865 * cached, add the block to pending list 866 */ 867 list_add_tail(&edge->list[UPPER], &list); 868 } else { 869 upper = rb_entry(rb_node, struct backref_node, 870 rb_node); 871 BUG_ON(!upper->checked); 872 INIT_LIST_HEAD(&edge->list[UPPER]); 873 } 874 list_add_tail(&edge->list[LOWER], &cur->upper); 875 edge->node[LOWER] = cur; 876 edge->node[UPPER] = upper; 877 878 goto next; 879 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 880 goto next; 881 } 882 883 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 884 root = read_fs_root(rc->extent_root->fs_info, key.offset); 885 if (IS_ERR(root)) { 886 err = PTR_ERR(root); 887 goto out; 888 } 889 890 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 891 cur->cowonly = 1; 892 893 if (btrfs_root_level(&root->root_item) == cur->level) { 894 /* tree root */ 895 BUG_ON(btrfs_root_bytenr(&root->root_item) != 896 cur->bytenr); 897 if (should_ignore_root(root)) 898 list_add(&cur->list, &useless); 899 else 900 cur->root = root; 901 break; 902 } 903 904 level = cur->level + 1; 905 906 /* 907 * searching the tree to find upper level blocks 908 * reference the block. 909 */ 910 path2->search_commit_root = 1; 911 path2->skip_locking = 1; 912 path2->lowest_level = level; 913 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 914 path2->lowest_level = 0; 915 if (ret < 0) { 916 err = ret; 917 goto out; 918 } 919 if (ret > 0 && path2->slots[level] > 0) 920 path2->slots[level]--; 921 922 eb = path2->nodes[level]; 923 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 924 cur->bytenr); 925 926 lower = cur; 927 need_check = true; 928 for (; level < BTRFS_MAX_LEVEL; level++) { 929 if (!path2->nodes[level]) { 930 BUG_ON(btrfs_root_bytenr(&root->root_item) != 931 lower->bytenr); 932 if (should_ignore_root(root)) 933 list_add(&lower->list, &useless); 934 else 935 lower->root = root; 936 break; 937 } 938 939 edge = alloc_backref_edge(cache); 940 if (!edge) { 941 err = -ENOMEM; 942 goto out; 943 } 944 945 eb = path2->nodes[level]; 946 rb_node = tree_search(&cache->rb_root, eb->start); 947 if (!rb_node) { 948 upper = alloc_backref_node(cache); 949 if (!upper) { 950 free_backref_edge(cache, edge); 951 err = -ENOMEM; 952 goto out; 953 } 954 upper->bytenr = eb->start; 955 upper->owner = btrfs_header_owner(eb); 956 upper->level = lower->level + 1; 957 if (!test_bit(BTRFS_ROOT_REF_COWS, 958 &root->state)) 959 upper->cowonly = 1; 960 961 /* 962 * if we know the block isn't shared 963 * we can void checking its backrefs. 964 */ 965 if (btrfs_block_can_be_shared(root, eb)) 966 upper->checked = 0; 967 else 968 upper->checked = 1; 969 970 /* 971 * add the block to pending list if we 972 * need check its backrefs, we only do this once 973 * while walking up a tree as we will catch 974 * anything else later on. 975 */ 976 if (!upper->checked && need_check) { 977 need_check = false; 978 list_add_tail(&edge->list[UPPER], 979 &list); 980 } else 981 INIT_LIST_HEAD(&edge->list[UPPER]); 982 } else { 983 upper = rb_entry(rb_node, struct backref_node, 984 rb_node); 985 BUG_ON(!upper->checked); 986 INIT_LIST_HEAD(&edge->list[UPPER]); 987 if (!upper->owner) 988 upper->owner = btrfs_header_owner(eb); 989 } 990 list_add_tail(&edge->list[LOWER], &lower->upper); 991 edge->node[LOWER] = lower; 992 edge->node[UPPER] = upper; 993 994 if (rb_node) 995 break; 996 lower = upper; 997 upper = NULL; 998 } 999 btrfs_release_path(path2); 1000 next: 1001 if (ptr < end) { 1002 ptr += btrfs_extent_inline_ref_size(key.type); 1003 if (ptr >= end) { 1004 WARN_ON(ptr > end); 1005 ptr = 0; 1006 end = 0; 1007 } 1008 } 1009 if (ptr >= end) 1010 path1->slots[0]++; 1011 } 1012 btrfs_release_path(path1); 1013 1014 cur->checked = 1; 1015 WARN_ON(exist); 1016 1017 /* the pending list isn't empty, take the first block to process */ 1018 if (!list_empty(&list)) { 1019 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1020 list_del_init(&edge->list[UPPER]); 1021 cur = edge->node[UPPER]; 1022 goto again; 1023 } 1024 1025 /* 1026 * everything goes well, connect backref nodes and insert backref nodes 1027 * into the cache. 1028 */ 1029 BUG_ON(!node->checked); 1030 cowonly = node->cowonly; 1031 if (!cowonly) { 1032 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1033 &node->rb_node); 1034 if (rb_node) 1035 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1036 list_add_tail(&node->lower, &cache->leaves); 1037 } 1038 1039 list_for_each_entry(edge, &node->upper, list[LOWER]) 1040 list_add_tail(&edge->list[UPPER], &list); 1041 1042 while (!list_empty(&list)) { 1043 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1044 list_del_init(&edge->list[UPPER]); 1045 upper = edge->node[UPPER]; 1046 if (upper->detached) { 1047 list_del(&edge->list[LOWER]); 1048 lower = edge->node[LOWER]; 1049 free_backref_edge(cache, edge); 1050 if (list_empty(&lower->upper)) 1051 list_add(&lower->list, &useless); 1052 continue; 1053 } 1054 1055 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1056 if (upper->lowest) { 1057 list_del_init(&upper->lower); 1058 upper->lowest = 0; 1059 } 1060 1061 list_add_tail(&edge->list[UPPER], &upper->lower); 1062 continue; 1063 } 1064 1065 BUG_ON(!upper->checked); 1066 BUG_ON(cowonly != upper->cowonly); 1067 if (!cowonly) { 1068 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1069 &upper->rb_node); 1070 if (rb_node) 1071 backref_tree_panic(rb_node, -EEXIST, 1072 upper->bytenr); 1073 } 1074 1075 list_add_tail(&edge->list[UPPER], &upper->lower); 1076 1077 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1078 list_add_tail(&edge->list[UPPER], &list); 1079 } 1080 /* 1081 * process useless backref nodes. backref nodes for tree leaves 1082 * are deleted from the cache. backref nodes for upper level 1083 * tree blocks are left in the cache to avoid unnecessary backref 1084 * lookup. 1085 */ 1086 while (!list_empty(&useless)) { 1087 upper = list_entry(useless.next, struct backref_node, list); 1088 list_del_init(&upper->list); 1089 BUG_ON(!list_empty(&upper->upper)); 1090 if (upper == node) 1091 node = NULL; 1092 if (upper->lowest) { 1093 list_del_init(&upper->lower); 1094 upper->lowest = 0; 1095 } 1096 while (!list_empty(&upper->lower)) { 1097 edge = list_entry(upper->lower.next, 1098 struct backref_edge, list[UPPER]); 1099 list_del(&edge->list[UPPER]); 1100 list_del(&edge->list[LOWER]); 1101 lower = edge->node[LOWER]; 1102 free_backref_edge(cache, edge); 1103 1104 if (list_empty(&lower->upper)) 1105 list_add(&lower->list, &useless); 1106 } 1107 __mark_block_processed(rc, upper); 1108 if (upper->level > 0) { 1109 list_add(&upper->list, &cache->detached); 1110 upper->detached = 1; 1111 } else { 1112 rb_erase(&upper->rb_node, &cache->rb_root); 1113 free_backref_node(cache, upper); 1114 } 1115 } 1116 out: 1117 btrfs_free_path(path1); 1118 btrfs_free_path(path2); 1119 if (err) { 1120 while (!list_empty(&useless)) { 1121 lower = list_entry(useless.next, 1122 struct backref_node, upper); 1123 list_del_init(&lower->upper); 1124 } 1125 upper = node; 1126 INIT_LIST_HEAD(&list); 1127 while (upper) { 1128 if (RB_EMPTY_NODE(&upper->rb_node)) { 1129 list_splice_tail(&upper->upper, &list); 1130 free_backref_node(cache, upper); 1131 } 1132 1133 if (list_empty(&list)) 1134 break; 1135 1136 edge = list_entry(list.next, struct backref_edge, 1137 list[LOWER]); 1138 list_del(&edge->list[LOWER]); 1139 upper = edge->node[UPPER]; 1140 free_backref_edge(cache, edge); 1141 } 1142 return ERR_PTR(err); 1143 } 1144 BUG_ON(node && node->detached); 1145 return node; 1146 } 1147 1148 /* 1149 * helper to add backref node for the newly created snapshot. 1150 * the backref node is created by cloning backref node that 1151 * corresponds to root of source tree 1152 */ 1153 static int clone_backref_node(struct btrfs_trans_handle *trans, 1154 struct reloc_control *rc, 1155 struct btrfs_root *src, 1156 struct btrfs_root *dest) 1157 { 1158 struct btrfs_root *reloc_root = src->reloc_root; 1159 struct backref_cache *cache = &rc->backref_cache; 1160 struct backref_node *node = NULL; 1161 struct backref_node *new_node; 1162 struct backref_edge *edge; 1163 struct backref_edge *new_edge; 1164 struct rb_node *rb_node; 1165 1166 if (cache->last_trans > 0) 1167 update_backref_cache(trans, cache); 1168 1169 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1170 if (rb_node) { 1171 node = rb_entry(rb_node, struct backref_node, rb_node); 1172 if (node->detached) 1173 node = NULL; 1174 else 1175 BUG_ON(node->new_bytenr != reloc_root->node->start); 1176 } 1177 1178 if (!node) { 1179 rb_node = tree_search(&cache->rb_root, 1180 reloc_root->commit_root->start); 1181 if (rb_node) { 1182 node = rb_entry(rb_node, struct backref_node, 1183 rb_node); 1184 BUG_ON(node->detached); 1185 } 1186 } 1187 1188 if (!node) 1189 return 0; 1190 1191 new_node = alloc_backref_node(cache); 1192 if (!new_node) 1193 return -ENOMEM; 1194 1195 new_node->bytenr = dest->node->start; 1196 new_node->level = node->level; 1197 new_node->lowest = node->lowest; 1198 new_node->checked = 1; 1199 new_node->root = dest; 1200 1201 if (!node->lowest) { 1202 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1203 new_edge = alloc_backref_edge(cache); 1204 if (!new_edge) 1205 goto fail; 1206 1207 new_edge->node[UPPER] = new_node; 1208 new_edge->node[LOWER] = edge->node[LOWER]; 1209 list_add_tail(&new_edge->list[UPPER], 1210 &new_node->lower); 1211 } 1212 } else { 1213 list_add_tail(&new_node->lower, &cache->leaves); 1214 } 1215 1216 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1217 &new_node->rb_node); 1218 if (rb_node) 1219 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1220 1221 if (!new_node->lowest) { 1222 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1223 list_add_tail(&new_edge->list[LOWER], 1224 &new_edge->node[LOWER]->upper); 1225 } 1226 } 1227 return 0; 1228 fail: 1229 while (!list_empty(&new_node->lower)) { 1230 new_edge = list_entry(new_node->lower.next, 1231 struct backref_edge, list[UPPER]); 1232 list_del(&new_edge->list[UPPER]); 1233 free_backref_edge(cache, new_edge); 1234 } 1235 free_backref_node(cache, new_node); 1236 return -ENOMEM; 1237 } 1238 1239 /* 1240 * helper to add 'address of tree root -> reloc tree' mapping 1241 */ 1242 static int __must_check __add_reloc_root(struct btrfs_root *root) 1243 { 1244 struct rb_node *rb_node; 1245 struct mapping_node *node; 1246 struct reloc_control *rc = root->fs_info->reloc_ctl; 1247 1248 node = kmalloc(sizeof(*node), GFP_NOFS); 1249 if (!node) 1250 return -ENOMEM; 1251 1252 node->bytenr = root->node->start; 1253 node->data = root; 1254 1255 spin_lock(&rc->reloc_root_tree.lock); 1256 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1257 node->bytenr, &node->rb_node); 1258 spin_unlock(&rc->reloc_root_tree.lock); 1259 if (rb_node) { 1260 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1261 "for start=%llu while inserting into relocation " 1262 "tree", node->bytenr); 1263 kfree(node); 1264 return -EEXIST; 1265 } 1266 1267 list_add_tail(&root->root_list, &rc->reloc_roots); 1268 return 0; 1269 } 1270 1271 /* 1272 * helper to delete the 'address of tree root -> reloc tree' 1273 * mapping 1274 */ 1275 static void __del_reloc_root(struct btrfs_root *root) 1276 { 1277 struct rb_node *rb_node; 1278 struct mapping_node *node = NULL; 1279 struct reloc_control *rc = root->fs_info->reloc_ctl; 1280 1281 spin_lock(&rc->reloc_root_tree.lock); 1282 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1283 root->node->start); 1284 if (rb_node) { 1285 node = rb_entry(rb_node, struct mapping_node, rb_node); 1286 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1287 } 1288 spin_unlock(&rc->reloc_root_tree.lock); 1289 1290 if (!node) 1291 return; 1292 BUG_ON((struct btrfs_root *)node->data != root); 1293 1294 spin_lock(&root->fs_info->trans_lock); 1295 list_del_init(&root->root_list); 1296 spin_unlock(&root->fs_info->trans_lock); 1297 kfree(node); 1298 } 1299 1300 /* 1301 * helper to update the 'address of tree root -> reloc tree' 1302 * mapping 1303 */ 1304 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1305 { 1306 struct rb_node *rb_node; 1307 struct mapping_node *node = NULL; 1308 struct reloc_control *rc = root->fs_info->reloc_ctl; 1309 1310 spin_lock(&rc->reloc_root_tree.lock); 1311 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1312 root->node->start); 1313 if (rb_node) { 1314 node = rb_entry(rb_node, struct mapping_node, rb_node); 1315 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1316 } 1317 spin_unlock(&rc->reloc_root_tree.lock); 1318 1319 if (!node) 1320 return 0; 1321 BUG_ON((struct btrfs_root *)node->data != root); 1322 1323 spin_lock(&rc->reloc_root_tree.lock); 1324 node->bytenr = new_bytenr; 1325 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1326 node->bytenr, &node->rb_node); 1327 spin_unlock(&rc->reloc_root_tree.lock); 1328 if (rb_node) 1329 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1330 return 0; 1331 } 1332 1333 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1334 struct btrfs_root *root, u64 objectid) 1335 { 1336 struct btrfs_root *reloc_root; 1337 struct extent_buffer *eb; 1338 struct btrfs_root_item *root_item; 1339 struct btrfs_key root_key; 1340 u64 last_snap = 0; 1341 int ret; 1342 1343 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1344 BUG_ON(!root_item); 1345 1346 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1347 root_key.type = BTRFS_ROOT_ITEM_KEY; 1348 root_key.offset = objectid; 1349 1350 if (root->root_key.objectid == objectid) { 1351 /* called by btrfs_init_reloc_root */ 1352 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1353 BTRFS_TREE_RELOC_OBJECTID); 1354 BUG_ON(ret); 1355 1356 last_snap = btrfs_root_last_snapshot(&root->root_item); 1357 btrfs_set_root_last_snapshot(&root->root_item, 1358 trans->transid - 1); 1359 } else { 1360 /* 1361 * called by btrfs_reloc_post_snapshot_hook. 1362 * the source tree is a reloc tree, all tree blocks 1363 * modified after it was created have RELOC flag 1364 * set in their headers. so it's OK to not update 1365 * the 'last_snapshot'. 1366 */ 1367 ret = btrfs_copy_root(trans, root, root->node, &eb, 1368 BTRFS_TREE_RELOC_OBJECTID); 1369 BUG_ON(ret); 1370 } 1371 1372 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1373 btrfs_set_root_bytenr(root_item, eb->start); 1374 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1375 btrfs_set_root_generation(root_item, trans->transid); 1376 1377 if (root->root_key.objectid == objectid) { 1378 btrfs_set_root_refs(root_item, 0); 1379 memset(&root_item->drop_progress, 0, 1380 sizeof(struct btrfs_disk_key)); 1381 root_item->drop_level = 0; 1382 /* 1383 * abuse rtransid, it is safe because it is impossible to 1384 * receive data into a relocation tree. 1385 */ 1386 btrfs_set_root_rtransid(root_item, last_snap); 1387 btrfs_set_root_otransid(root_item, trans->transid); 1388 } 1389 1390 btrfs_tree_unlock(eb); 1391 free_extent_buffer(eb); 1392 1393 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1394 &root_key, root_item); 1395 BUG_ON(ret); 1396 kfree(root_item); 1397 1398 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1399 BUG_ON(IS_ERR(reloc_root)); 1400 reloc_root->last_trans = trans->transid; 1401 return reloc_root; 1402 } 1403 1404 /* 1405 * create reloc tree for a given fs tree. reloc tree is just a 1406 * snapshot of the fs tree with special root objectid. 1407 */ 1408 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1409 struct btrfs_root *root) 1410 { 1411 struct btrfs_root *reloc_root; 1412 struct reloc_control *rc = root->fs_info->reloc_ctl; 1413 struct btrfs_block_rsv *rsv; 1414 int clear_rsv = 0; 1415 int ret; 1416 1417 if (root->reloc_root) { 1418 reloc_root = root->reloc_root; 1419 reloc_root->last_trans = trans->transid; 1420 return 0; 1421 } 1422 1423 if (!rc || !rc->create_reloc_tree || 1424 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1425 return 0; 1426 1427 if (!trans->reloc_reserved) { 1428 rsv = trans->block_rsv; 1429 trans->block_rsv = rc->block_rsv; 1430 clear_rsv = 1; 1431 } 1432 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1433 if (clear_rsv) 1434 trans->block_rsv = rsv; 1435 1436 ret = __add_reloc_root(reloc_root); 1437 BUG_ON(ret < 0); 1438 root->reloc_root = reloc_root; 1439 return 0; 1440 } 1441 1442 /* 1443 * update root item of reloc tree 1444 */ 1445 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1446 struct btrfs_root *root) 1447 { 1448 struct btrfs_root *reloc_root; 1449 struct btrfs_root_item *root_item; 1450 int ret; 1451 1452 if (!root->reloc_root) 1453 goto out; 1454 1455 reloc_root = root->reloc_root; 1456 root_item = &reloc_root->root_item; 1457 1458 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1459 btrfs_root_refs(root_item) == 0) { 1460 root->reloc_root = NULL; 1461 __del_reloc_root(reloc_root); 1462 } 1463 1464 if (reloc_root->commit_root != reloc_root->node) { 1465 btrfs_set_root_node(root_item, reloc_root->node); 1466 free_extent_buffer(reloc_root->commit_root); 1467 reloc_root->commit_root = btrfs_root_node(reloc_root); 1468 } 1469 1470 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1471 &reloc_root->root_key, root_item); 1472 BUG_ON(ret); 1473 1474 out: 1475 return 0; 1476 } 1477 1478 /* 1479 * helper to find first cached inode with inode number >= objectid 1480 * in a subvolume 1481 */ 1482 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1483 { 1484 struct rb_node *node; 1485 struct rb_node *prev; 1486 struct btrfs_inode *entry; 1487 struct inode *inode; 1488 1489 spin_lock(&root->inode_lock); 1490 again: 1491 node = root->inode_tree.rb_node; 1492 prev = NULL; 1493 while (node) { 1494 prev = node; 1495 entry = rb_entry(node, struct btrfs_inode, rb_node); 1496 1497 if (objectid < btrfs_ino(&entry->vfs_inode)) 1498 node = node->rb_left; 1499 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1500 node = node->rb_right; 1501 else 1502 break; 1503 } 1504 if (!node) { 1505 while (prev) { 1506 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1507 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1508 node = prev; 1509 break; 1510 } 1511 prev = rb_next(prev); 1512 } 1513 } 1514 while (node) { 1515 entry = rb_entry(node, struct btrfs_inode, rb_node); 1516 inode = igrab(&entry->vfs_inode); 1517 if (inode) { 1518 spin_unlock(&root->inode_lock); 1519 return inode; 1520 } 1521 1522 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1523 if (cond_resched_lock(&root->inode_lock)) 1524 goto again; 1525 1526 node = rb_next(node); 1527 } 1528 spin_unlock(&root->inode_lock); 1529 return NULL; 1530 } 1531 1532 static int in_block_group(u64 bytenr, 1533 struct btrfs_block_group_cache *block_group) 1534 { 1535 if (bytenr >= block_group->key.objectid && 1536 bytenr < block_group->key.objectid + block_group->key.offset) 1537 return 1; 1538 return 0; 1539 } 1540 1541 /* 1542 * get new location of data 1543 */ 1544 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1545 u64 bytenr, u64 num_bytes) 1546 { 1547 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1548 struct btrfs_path *path; 1549 struct btrfs_file_extent_item *fi; 1550 struct extent_buffer *leaf; 1551 int ret; 1552 1553 path = btrfs_alloc_path(); 1554 if (!path) 1555 return -ENOMEM; 1556 1557 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1558 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1559 bytenr, 0); 1560 if (ret < 0) 1561 goto out; 1562 if (ret > 0) { 1563 ret = -ENOENT; 1564 goto out; 1565 } 1566 1567 leaf = path->nodes[0]; 1568 fi = btrfs_item_ptr(leaf, path->slots[0], 1569 struct btrfs_file_extent_item); 1570 1571 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1572 btrfs_file_extent_compression(leaf, fi) || 1573 btrfs_file_extent_encryption(leaf, fi) || 1574 btrfs_file_extent_other_encoding(leaf, fi)); 1575 1576 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1577 ret = -EINVAL; 1578 goto out; 1579 } 1580 1581 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1582 ret = 0; 1583 out: 1584 btrfs_free_path(path); 1585 return ret; 1586 } 1587 1588 /* 1589 * update file extent items in the tree leaf to point to 1590 * the new locations. 1591 */ 1592 static noinline_for_stack 1593 int replace_file_extents(struct btrfs_trans_handle *trans, 1594 struct reloc_control *rc, 1595 struct btrfs_root *root, 1596 struct extent_buffer *leaf) 1597 { 1598 struct btrfs_key key; 1599 struct btrfs_file_extent_item *fi; 1600 struct inode *inode = NULL; 1601 u64 parent; 1602 u64 bytenr; 1603 u64 new_bytenr = 0; 1604 u64 num_bytes; 1605 u64 end; 1606 u32 nritems; 1607 u32 i; 1608 int ret = 0; 1609 int first = 1; 1610 int dirty = 0; 1611 1612 if (rc->stage != UPDATE_DATA_PTRS) 1613 return 0; 1614 1615 /* reloc trees always use full backref */ 1616 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1617 parent = leaf->start; 1618 else 1619 parent = 0; 1620 1621 nritems = btrfs_header_nritems(leaf); 1622 for (i = 0; i < nritems; i++) { 1623 cond_resched(); 1624 btrfs_item_key_to_cpu(leaf, &key, i); 1625 if (key.type != BTRFS_EXTENT_DATA_KEY) 1626 continue; 1627 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1628 if (btrfs_file_extent_type(leaf, fi) == 1629 BTRFS_FILE_EXTENT_INLINE) 1630 continue; 1631 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1632 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1633 if (bytenr == 0) 1634 continue; 1635 if (!in_block_group(bytenr, rc->block_group)) 1636 continue; 1637 1638 /* 1639 * if we are modifying block in fs tree, wait for readpage 1640 * to complete and drop the extent cache 1641 */ 1642 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1643 if (first) { 1644 inode = find_next_inode(root, key.objectid); 1645 first = 0; 1646 } else if (inode && btrfs_ino(inode) < key.objectid) { 1647 btrfs_add_delayed_iput(inode); 1648 inode = find_next_inode(root, key.objectid); 1649 } 1650 if (inode && btrfs_ino(inode) == key.objectid) { 1651 end = key.offset + 1652 btrfs_file_extent_num_bytes(leaf, fi); 1653 WARN_ON(!IS_ALIGNED(key.offset, 1654 root->sectorsize)); 1655 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1656 end--; 1657 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1658 key.offset, end); 1659 if (!ret) 1660 continue; 1661 1662 btrfs_drop_extent_cache(inode, key.offset, end, 1663 1); 1664 unlock_extent(&BTRFS_I(inode)->io_tree, 1665 key.offset, end); 1666 } 1667 } 1668 1669 ret = get_new_location(rc->data_inode, &new_bytenr, 1670 bytenr, num_bytes); 1671 if (ret) { 1672 /* 1673 * Don't have to abort since we've not changed anything 1674 * in the file extent yet. 1675 */ 1676 break; 1677 } 1678 1679 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1680 dirty = 1; 1681 1682 key.offset -= btrfs_file_extent_offset(leaf, fi); 1683 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1684 num_bytes, parent, 1685 btrfs_header_owner(leaf), 1686 key.objectid, key.offset, 1); 1687 if (ret) { 1688 btrfs_abort_transaction(trans, root, ret); 1689 break; 1690 } 1691 1692 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1693 parent, btrfs_header_owner(leaf), 1694 key.objectid, key.offset, 1); 1695 if (ret) { 1696 btrfs_abort_transaction(trans, root, ret); 1697 break; 1698 } 1699 } 1700 if (dirty) 1701 btrfs_mark_buffer_dirty(leaf); 1702 if (inode) 1703 btrfs_add_delayed_iput(inode); 1704 return ret; 1705 } 1706 1707 static noinline_for_stack 1708 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1709 struct btrfs_path *path, int level) 1710 { 1711 struct btrfs_disk_key key1; 1712 struct btrfs_disk_key key2; 1713 btrfs_node_key(eb, &key1, slot); 1714 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1715 return memcmp(&key1, &key2, sizeof(key1)); 1716 } 1717 1718 /* 1719 * try to replace tree blocks in fs tree with the new blocks 1720 * in reloc tree. tree blocks haven't been modified since the 1721 * reloc tree was create can be replaced. 1722 * 1723 * if a block was replaced, level of the block + 1 is returned. 1724 * if no block got replaced, 0 is returned. if there are other 1725 * errors, a negative error number is returned. 1726 */ 1727 static noinline_for_stack 1728 int replace_path(struct btrfs_trans_handle *trans, 1729 struct btrfs_root *dest, struct btrfs_root *src, 1730 struct btrfs_path *path, struct btrfs_key *next_key, 1731 int lowest_level, int max_level) 1732 { 1733 struct extent_buffer *eb; 1734 struct extent_buffer *parent; 1735 struct btrfs_key key; 1736 u64 old_bytenr; 1737 u64 new_bytenr; 1738 u64 old_ptr_gen; 1739 u64 new_ptr_gen; 1740 u64 last_snapshot; 1741 u32 blocksize; 1742 int cow = 0; 1743 int level; 1744 int ret; 1745 int slot; 1746 1747 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1748 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1749 1750 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1751 again: 1752 slot = path->slots[lowest_level]; 1753 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1754 1755 eb = btrfs_lock_root_node(dest); 1756 btrfs_set_lock_blocking(eb); 1757 level = btrfs_header_level(eb); 1758 1759 if (level < lowest_level) { 1760 btrfs_tree_unlock(eb); 1761 free_extent_buffer(eb); 1762 return 0; 1763 } 1764 1765 if (cow) { 1766 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1767 BUG_ON(ret); 1768 } 1769 btrfs_set_lock_blocking(eb); 1770 1771 if (next_key) { 1772 next_key->objectid = (u64)-1; 1773 next_key->type = (u8)-1; 1774 next_key->offset = (u64)-1; 1775 } 1776 1777 parent = eb; 1778 while (1) { 1779 level = btrfs_header_level(parent); 1780 BUG_ON(level < lowest_level); 1781 1782 ret = btrfs_bin_search(parent, &key, level, &slot); 1783 if (ret && slot > 0) 1784 slot--; 1785 1786 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1787 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1788 1789 old_bytenr = btrfs_node_blockptr(parent, slot); 1790 blocksize = btrfs_level_size(dest, level - 1); 1791 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1792 1793 if (level <= max_level) { 1794 eb = path->nodes[level]; 1795 new_bytenr = btrfs_node_blockptr(eb, 1796 path->slots[level]); 1797 new_ptr_gen = btrfs_node_ptr_generation(eb, 1798 path->slots[level]); 1799 } else { 1800 new_bytenr = 0; 1801 new_ptr_gen = 0; 1802 } 1803 1804 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1805 ret = level; 1806 break; 1807 } 1808 1809 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1810 memcmp_node_keys(parent, slot, path, level)) { 1811 if (level <= lowest_level) { 1812 ret = 0; 1813 break; 1814 } 1815 1816 eb = read_tree_block(dest, old_bytenr, blocksize, 1817 old_ptr_gen); 1818 if (!eb || !extent_buffer_uptodate(eb)) { 1819 ret = (!eb) ? -ENOMEM : -EIO; 1820 free_extent_buffer(eb); 1821 break; 1822 } 1823 btrfs_tree_lock(eb); 1824 if (cow) { 1825 ret = btrfs_cow_block(trans, dest, eb, parent, 1826 slot, &eb); 1827 BUG_ON(ret); 1828 } 1829 btrfs_set_lock_blocking(eb); 1830 1831 btrfs_tree_unlock(parent); 1832 free_extent_buffer(parent); 1833 1834 parent = eb; 1835 continue; 1836 } 1837 1838 if (!cow) { 1839 btrfs_tree_unlock(parent); 1840 free_extent_buffer(parent); 1841 cow = 1; 1842 goto again; 1843 } 1844 1845 btrfs_node_key_to_cpu(path->nodes[level], &key, 1846 path->slots[level]); 1847 btrfs_release_path(path); 1848 1849 path->lowest_level = level; 1850 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1851 path->lowest_level = 0; 1852 BUG_ON(ret); 1853 1854 /* 1855 * swap blocks in fs tree and reloc tree. 1856 */ 1857 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1858 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1859 btrfs_mark_buffer_dirty(parent); 1860 1861 btrfs_set_node_blockptr(path->nodes[level], 1862 path->slots[level], old_bytenr); 1863 btrfs_set_node_ptr_generation(path->nodes[level], 1864 path->slots[level], old_ptr_gen); 1865 btrfs_mark_buffer_dirty(path->nodes[level]); 1866 1867 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1868 path->nodes[level]->start, 1869 src->root_key.objectid, level - 1, 0, 1870 1); 1871 BUG_ON(ret); 1872 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1873 0, dest->root_key.objectid, level - 1, 1874 0, 1); 1875 BUG_ON(ret); 1876 1877 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1878 path->nodes[level]->start, 1879 src->root_key.objectid, level - 1, 0, 1880 1); 1881 BUG_ON(ret); 1882 1883 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1884 0, dest->root_key.objectid, level - 1, 1885 0, 1); 1886 BUG_ON(ret); 1887 1888 btrfs_unlock_up_safe(path, 0); 1889 1890 ret = level; 1891 break; 1892 } 1893 btrfs_tree_unlock(parent); 1894 free_extent_buffer(parent); 1895 return ret; 1896 } 1897 1898 /* 1899 * helper to find next relocated block in reloc tree 1900 */ 1901 static noinline_for_stack 1902 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1903 int *level) 1904 { 1905 struct extent_buffer *eb; 1906 int i; 1907 u64 last_snapshot; 1908 u32 nritems; 1909 1910 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1911 1912 for (i = 0; i < *level; i++) { 1913 free_extent_buffer(path->nodes[i]); 1914 path->nodes[i] = NULL; 1915 } 1916 1917 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1918 eb = path->nodes[i]; 1919 nritems = btrfs_header_nritems(eb); 1920 while (path->slots[i] + 1 < nritems) { 1921 path->slots[i]++; 1922 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1923 last_snapshot) 1924 continue; 1925 1926 *level = i; 1927 return 0; 1928 } 1929 free_extent_buffer(path->nodes[i]); 1930 path->nodes[i] = NULL; 1931 } 1932 return 1; 1933 } 1934 1935 /* 1936 * walk down reloc tree to find relocated block of lowest level 1937 */ 1938 static noinline_for_stack 1939 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1940 int *level) 1941 { 1942 struct extent_buffer *eb = NULL; 1943 int i; 1944 u64 bytenr; 1945 u64 ptr_gen = 0; 1946 u64 last_snapshot; 1947 u32 blocksize; 1948 u32 nritems; 1949 1950 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1951 1952 for (i = *level; i > 0; i--) { 1953 eb = path->nodes[i]; 1954 nritems = btrfs_header_nritems(eb); 1955 while (path->slots[i] < nritems) { 1956 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1957 if (ptr_gen > last_snapshot) 1958 break; 1959 path->slots[i]++; 1960 } 1961 if (path->slots[i] >= nritems) { 1962 if (i == *level) 1963 break; 1964 *level = i + 1; 1965 return 0; 1966 } 1967 if (i == 1) { 1968 *level = i; 1969 return 0; 1970 } 1971 1972 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1973 blocksize = btrfs_level_size(root, i - 1); 1974 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1975 if (!eb || !extent_buffer_uptodate(eb)) { 1976 free_extent_buffer(eb); 1977 return -EIO; 1978 } 1979 BUG_ON(btrfs_header_level(eb) != i - 1); 1980 path->nodes[i - 1] = eb; 1981 path->slots[i - 1] = 0; 1982 } 1983 return 1; 1984 } 1985 1986 /* 1987 * invalidate extent cache for file extents whose key in range of 1988 * [min_key, max_key) 1989 */ 1990 static int invalidate_extent_cache(struct btrfs_root *root, 1991 struct btrfs_key *min_key, 1992 struct btrfs_key *max_key) 1993 { 1994 struct inode *inode = NULL; 1995 u64 objectid; 1996 u64 start, end; 1997 u64 ino; 1998 1999 objectid = min_key->objectid; 2000 while (1) { 2001 cond_resched(); 2002 iput(inode); 2003 2004 if (objectid > max_key->objectid) 2005 break; 2006 2007 inode = find_next_inode(root, objectid); 2008 if (!inode) 2009 break; 2010 ino = btrfs_ino(inode); 2011 2012 if (ino > max_key->objectid) { 2013 iput(inode); 2014 break; 2015 } 2016 2017 objectid = ino + 1; 2018 if (!S_ISREG(inode->i_mode)) 2019 continue; 2020 2021 if (unlikely(min_key->objectid == ino)) { 2022 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2023 continue; 2024 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2025 start = 0; 2026 else { 2027 start = min_key->offset; 2028 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2029 } 2030 } else { 2031 start = 0; 2032 } 2033 2034 if (unlikely(max_key->objectid == ino)) { 2035 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2036 continue; 2037 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2038 end = (u64)-1; 2039 } else { 2040 if (max_key->offset == 0) 2041 continue; 2042 end = max_key->offset; 2043 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2044 end--; 2045 } 2046 } else { 2047 end = (u64)-1; 2048 } 2049 2050 /* the lock_extent waits for readpage to complete */ 2051 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2052 btrfs_drop_extent_cache(inode, start, end, 1); 2053 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2054 } 2055 return 0; 2056 } 2057 2058 static int find_next_key(struct btrfs_path *path, int level, 2059 struct btrfs_key *key) 2060 2061 { 2062 while (level < BTRFS_MAX_LEVEL) { 2063 if (!path->nodes[level]) 2064 break; 2065 if (path->slots[level] + 1 < 2066 btrfs_header_nritems(path->nodes[level])) { 2067 btrfs_node_key_to_cpu(path->nodes[level], key, 2068 path->slots[level] + 1); 2069 return 0; 2070 } 2071 level++; 2072 } 2073 return 1; 2074 } 2075 2076 /* 2077 * merge the relocated tree blocks in reloc tree with corresponding 2078 * fs tree. 2079 */ 2080 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2081 struct btrfs_root *root) 2082 { 2083 LIST_HEAD(inode_list); 2084 struct btrfs_key key; 2085 struct btrfs_key next_key; 2086 struct btrfs_trans_handle *trans = NULL; 2087 struct btrfs_root *reloc_root; 2088 struct btrfs_root_item *root_item; 2089 struct btrfs_path *path; 2090 struct extent_buffer *leaf; 2091 int level; 2092 int max_level; 2093 int replaced = 0; 2094 int ret; 2095 int err = 0; 2096 u32 min_reserved; 2097 2098 path = btrfs_alloc_path(); 2099 if (!path) 2100 return -ENOMEM; 2101 path->reada = 1; 2102 2103 reloc_root = root->reloc_root; 2104 root_item = &reloc_root->root_item; 2105 2106 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2107 level = btrfs_root_level(root_item); 2108 extent_buffer_get(reloc_root->node); 2109 path->nodes[level] = reloc_root->node; 2110 path->slots[level] = 0; 2111 } else { 2112 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2113 2114 level = root_item->drop_level; 2115 BUG_ON(level == 0); 2116 path->lowest_level = level; 2117 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2118 path->lowest_level = 0; 2119 if (ret < 0) { 2120 btrfs_free_path(path); 2121 return ret; 2122 } 2123 2124 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2125 path->slots[level]); 2126 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2127 2128 btrfs_unlock_up_safe(path, 0); 2129 } 2130 2131 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2132 memset(&next_key, 0, sizeof(next_key)); 2133 2134 while (1) { 2135 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2136 BTRFS_RESERVE_FLUSH_ALL); 2137 if (ret) { 2138 err = ret; 2139 goto out; 2140 } 2141 trans = btrfs_start_transaction(root, 0); 2142 if (IS_ERR(trans)) { 2143 err = PTR_ERR(trans); 2144 trans = NULL; 2145 goto out; 2146 } 2147 trans->block_rsv = rc->block_rsv; 2148 2149 replaced = 0; 2150 max_level = level; 2151 2152 ret = walk_down_reloc_tree(reloc_root, path, &level); 2153 if (ret < 0) { 2154 err = ret; 2155 goto out; 2156 } 2157 if (ret > 0) 2158 break; 2159 2160 if (!find_next_key(path, level, &key) && 2161 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2162 ret = 0; 2163 } else { 2164 ret = replace_path(trans, root, reloc_root, path, 2165 &next_key, level, max_level); 2166 } 2167 if (ret < 0) { 2168 err = ret; 2169 goto out; 2170 } 2171 2172 if (ret > 0) { 2173 level = ret; 2174 btrfs_node_key_to_cpu(path->nodes[level], &key, 2175 path->slots[level]); 2176 replaced = 1; 2177 } 2178 2179 ret = walk_up_reloc_tree(reloc_root, path, &level); 2180 if (ret > 0) 2181 break; 2182 2183 BUG_ON(level == 0); 2184 /* 2185 * save the merging progress in the drop_progress. 2186 * this is OK since root refs == 1 in this case. 2187 */ 2188 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2189 path->slots[level]); 2190 root_item->drop_level = level; 2191 2192 btrfs_end_transaction_throttle(trans, root); 2193 trans = NULL; 2194 2195 btrfs_btree_balance_dirty(root); 2196 2197 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2198 invalidate_extent_cache(root, &key, &next_key); 2199 } 2200 2201 /* 2202 * handle the case only one block in the fs tree need to be 2203 * relocated and the block is tree root. 2204 */ 2205 leaf = btrfs_lock_root_node(root); 2206 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2207 btrfs_tree_unlock(leaf); 2208 free_extent_buffer(leaf); 2209 if (ret < 0) 2210 err = ret; 2211 out: 2212 btrfs_free_path(path); 2213 2214 if (err == 0) { 2215 memset(&root_item->drop_progress, 0, 2216 sizeof(root_item->drop_progress)); 2217 root_item->drop_level = 0; 2218 btrfs_set_root_refs(root_item, 0); 2219 btrfs_update_reloc_root(trans, root); 2220 } 2221 2222 if (trans) 2223 btrfs_end_transaction_throttle(trans, root); 2224 2225 btrfs_btree_balance_dirty(root); 2226 2227 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2228 invalidate_extent_cache(root, &key, &next_key); 2229 2230 return err; 2231 } 2232 2233 static noinline_for_stack 2234 int prepare_to_merge(struct reloc_control *rc, int err) 2235 { 2236 struct btrfs_root *root = rc->extent_root; 2237 struct btrfs_root *reloc_root; 2238 struct btrfs_trans_handle *trans; 2239 LIST_HEAD(reloc_roots); 2240 u64 num_bytes = 0; 2241 int ret; 2242 2243 mutex_lock(&root->fs_info->reloc_mutex); 2244 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2245 rc->merging_rsv_size += rc->nodes_relocated * 2; 2246 mutex_unlock(&root->fs_info->reloc_mutex); 2247 2248 again: 2249 if (!err) { 2250 num_bytes = rc->merging_rsv_size; 2251 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2252 BTRFS_RESERVE_FLUSH_ALL); 2253 if (ret) 2254 err = ret; 2255 } 2256 2257 trans = btrfs_join_transaction(rc->extent_root); 2258 if (IS_ERR(trans)) { 2259 if (!err) 2260 btrfs_block_rsv_release(rc->extent_root, 2261 rc->block_rsv, num_bytes); 2262 return PTR_ERR(trans); 2263 } 2264 2265 if (!err) { 2266 if (num_bytes != rc->merging_rsv_size) { 2267 btrfs_end_transaction(trans, rc->extent_root); 2268 btrfs_block_rsv_release(rc->extent_root, 2269 rc->block_rsv, num_bytes); 2270 goto again; 2271 } 2272 } 2273 2274 rc->merge_reloc_tree = 1; 2275 2276 while (!list_empty(&rc->reloc_roots)) { 2277 reloc_root = list_entry(rc->reloc_roots.next, 2278 struct btrfs_root, root_list); 2279 list_del_init(&reloc_root->root_list); 2280 2281 root = read_fs_root(reloc_root->fs_info, 2282 reloc_root->root_key.offset); 2283 BUG_ON(IS_ERR(root)); 2284 BUG_ON(root->reloc_root != reloc_root); 2285 2286 /* 2287 * set reference count to 1, so btrfs_recover_relocation 2288 * knows it should resumes merging 2289 */ 2290 if (!err) 2291 btrfs_set_root_refs(&reloc_root->root_item, 1); 2292 btrfs_update_reloc_root(trans, root); 2293 2294 list_add(&reloc_root->root_list, &reloc_roots); 2295 } 2296 2297 list_splice(&reloc_roots, &rc->reloc_roots); 2298 2299 if (!err) 2300 btrfs_commit_transaction(trans, rc->extent_root); 2301 else 2302 btrfs_end_transaction(trans, rc->extent_root); 2303 return err; 2304 } 2305 2306 static noinline_for_stack 2307 void free_reloc_roots(struct list_head *list) 2308 { 2309 struct btrfs_root *reloc_root; 2310 2311 while (!list_empty(list)) { 2312 reloc_root = list_entry(list->next, struct btrfs_root, 2313 root_list); 2314 __del_reloc_root(reloc_root); 2315 } 2316 } 2317 2318 static noinline_for_stack 2319 int merge_reloc_roots(struct reloc_control *rc) 2320 { 2321 struct btrfs_root *root; 2322 struct btrfs_root *reloc_root; 2323 u64 last_snap; 2324 u64 otransid; 2325 u64 objectid; 2326 LIST_HEAD(reloc_roots); 2327 int found = 0; 2328 int ret = 0; 2329 again: 2330 root = rc->extent_root; 2331 2332 /* 2333 * this serializes us with btrfs_record_root_in_transaction, 2334 * we have to make sure nobody is in the middle of 2335 * adding their roots to the list while we are 2336 * doing this splice 2337 */ 2338 mutex_lock(&root->fs_info->reloc_mutex); 2339 list_splice_init(&rc->reloc_roots, &reloc_roots); 2340 mutex_unlock(&root->fs_info->reloc_mutex); 2341 2342 while (!list_empty(&reloc_roots)) { 2343 found = 1; 2344 reloc_root = list_entry(reloc_roots.next, 2345 struct btrfs_root, root_list); 2346 2347 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2348 root = read_fs_root(reloc_root->fs_info, 2349 reloc_root->root_key.offset); 2350 BUG_ON(IS_ERR(root)); 2351 BUG_ON(root->reloc_root != reloc_root); 2352 2353 ret = merge_reloc_root(rc, root); 2354 if (ret) { 2355 if (list_empty(&reloc_root->root_list)) 2356 list_add_tail(&reloc_root->root_list, 2357 &reloc_roots); 2358 goto out; 2359 } 2360 } else { 2361 list_del_init(&reloc_root->root_list); 2362 } 2363 2364 /* 2365 * we keep the old last snapshod transid in rtranid when we 2366 * created the relocation tree. 2367 */ 2368 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2369 otransid = btrfs_root_otransid(&reloc_root->root_item); 2370 objectid = reloc_root->root_key.offset; 2371 2372 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2373 if (ret < 0) { 2374 if (list_empty(&reloc_root->root_list)) 2375 list_add_tail(&reloc_root->root_list, 2376 &reloc_roots); 2377 goto out; 2378 } 2379 } 2380 2381 if (found) { 2382 found = 0; 2383 goto again; 2384 } 2385 out: 2386 if (ret) { 2387 btrfs_std_error(root->fs_info, ret); 2388 if (!list_empty(&reloc_roots)) 2389 free_reloc_roots(&reloc_roots); 2390 2391 /* new reloc root may be added */ 2392 mutex_lock(&root->fs_info->reloc_mutex); 2393 list_splice_init(&rc->reloc_roots, &reloc_roots); 2394 mutex_unlock(&root->fs_info->reloc_mutex); 2395 if (!list_empty(&reloc_roots)) 2396 free_reloc_roots(&reloc_roots); 2397 } 2398 2399 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2400 return ret; 2401 } 2402 2403 static void free_block_list(struct rb_root *blocks) 2404 { 2405 struct tree_block *block; 2406 struct rb_node *rb_node; 2407 while ((rb_node = rb_first(blocks))) { 2408 block = rb_entry(rb_node, struct tree_block, rb_node); 2409 rb_erase(rb_node, blocks); 2410 kfree(block); 2411 } 2412 } 2413 2414 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2415 struct btrfs_root *reloc_root) 2416 { 2417 struct btrfs_root *root; 2418 2419 if (reloc_root->last_trans == trans->transid) 2420 return 0; 2421 2422 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2423 BUG_ON(IS_ERR(root)); 2424 BUG_ON(root->reloc_root != reloc_root); 2425 2426 return btrfs_record_root_in_trans(trans, root); 2427 } 2428 2429 static noinline_for_stack 2430 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2431 struct reloc_control *rc, 2432 struct backref_node *node, 2433 struct backref_edge *edges[]) 2434 { 2435 struct backref_node *next; 2436 struct btrfs_root *root; 2437 int index = 0; 2438 2439 next = node; 2440 while (1) { 2441 cond_resched(); 2442 next = walk_up_backref(next, edges, &index); 2443 root = next->root; 2444 BUG_ON(!root); 2445 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2446 2447 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2448 record_reloc_root_in_trans(trans, root); 2449 break; 2450 } 2451 2452 btrfs_record_root_in_trans(trans, root); 2453 root = root->reloc_root; 2454 2455 if (next->new_bytenr != root->node->start) { 2456 BUG_ON(next->new_bytenr); 2457 BUG_ON(!list_empty(&next->list)); 2458 next->new_bytenr = root->node->start; 2459 next->root = root; 2460 list_add_tail(&next->list, 2461 &rc->backref_cache.changed); 2462 __mark_block_processed(rc, next); 2463 break; 2464 } 2465 2466 WARN_ON(1); 2467 root = NULL; 2468 next = walk_down_backref(edges, &index); 2469 if (!next || next->level <= node->level) 2470 break; 2471 } 2472 if (!root) 2473 return NULL; 2474 2475 next = node; 2476 /* setup backref node path for btrfs_reloc_cow_block */ 2477 while (1) { 2478 rc->backref_cache.path[next->level] = next; 2479 if (--index < 0) 2480 break; 2481 next = edges[index]->node[UPPER]; 2482 } 2483 return root; 2484 } 2485 2486 /* 2487 * select a tree root for relocation. return NULL if the block 2488 * is reference counted. we should use do_relocation() in this 2489 * case. return a tree root pointer if the block isn't reference 2490 * counted. return -ENOENT if the block is root of reloc tree. 2491 */ 2492 static noinline_for_stack 2493 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2494 struct backref_node *node) 2495 { 2496 struct backref_node *next; 2497 struct btrfs_root *root; 2498 struct btrfs_root *fs_root = NULL; 2499 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2500 int index = 0; 2501 2502 next = node; 2503 while (1) { 2504 cond_resched(); 2505 next = walk_up_backref(next, edges, &index); 2506 root = next->root; 2507 BUG_ON(!root); 2508 2509 /* no other choice for non-references counted tree */ 2510 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2511 return root; 2512 2513 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2514 fs_root = root; 2515 2516 if (next != node) 2517 return NULL; 2518 2519 next = walk_down_backref(edges, &index); 2520 if (!next || next->level <= node->level) 2521 break; 2522 } 2523 2524 if (!fs_root) 2525 return ERR_PTR(-ENOENT); 2526 return fs_root; 2527 } 2528 2529 static noinline_for_stack 2530 u64 calcu_metadata_size(struct reloc_control *rc, 2531 struct backref_node *node, int reserve) 2532 { 2533 struct backref_node *next = node; 2534 struct backref_edge *edge; 2535 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2536 u64 num_bytes = 0; 2537 int index = 0; 2538 2539 BUG_ON(reserve && node->processed); 2540 2541 while (next) { 2542 cond_resched(); 2543 while (1) { 2544 if (next->processed && (reserve || next != node)) 2545 break; 2546 2547 num_bytes += btrfs_level_size(rc->extent_root, 2548 next->level); 2549 2550 if (list_empty(&next->upper)) 2551 break; 2552 2553 edge = list_entry(next->upper.next, 2554 struct backref_edge, list[LOWER]); 2555 edges[index++] = edge; 2556 next = edge->node[UPPER]; 2557 } 2558 next = walk_down_backref(edges, &index); 2559 } 2560 return num_bytes; 2561 } 2562 2563 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2564 struct reloc_control *rc, 2565 struct backref_node *node) 2566 { 2567 struct btrfs_root *root = rc->extent_root; 2568 u64 num_bytes; 2569 int ret; 2570 u64 tmp; 2571 2572 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2573 2574 trans->block_rsv = rc->block_rsv; 2575 rc->reserved_bytes += num_bytes; 2576 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2577 BTRFS_RESERVE_FLUSH_ALL); 2578 if (ret) { 2579 if (ret == -EAGAIN) { 2580 tmp = rc->extent_root->nodesize * 2581 RELOCATION_RESERVED_NODES; 2582 while (tmp <= rc->reserved_bytes) 2583 tmp <<= 1; 2584 /* 2585 * only one thread can access block_rsv at this point, 2586 * so we don't need hold lock to protect block_rsv. 2587 * we expand more reservation size here to allow enough 2588 * space for relocation and we will return eailer in 2589 * enospc case. 2590 */ 2591 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2592 RELOCATION_RESERVED_NODES; 2593 } 2594 return ret; 2595 } 2596 2597 return 0; 2598 } 2599 2600 /* 2601 * relocate a block tree, and then update pointers in upper level 2602 * blocks that reference the block to point to the new location. 2603 * 2604 * if called by link_to_upper, the block has already been relocated. 2605 * in that case this function just updates pointers. 2606 */ 2607 static int do_relocation(struct btrfs_trans_handle *trans, 2608 struct reloc_control *rc, 2609 struct backref_node *node, 2610 struct btrfs_key *key, 2611 struct btrfs_path *path, int lowest) 2612 { 2613 struct backref_node *upper; 2614 struct backref_edge *edge; 2615 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2616 struct btrfs_root *root; 2617 struct extent_buffer *eb; 2618 u32 blocksize; 2619 u64 bytenr; 2620 u64 generation; 2621 int slot; 2622 int ret; 2623 int err = 0; 2624 2625 BUG_ON(lowest && node->eb); 2626 2627 path->lowest_level = node->level + 1; 2628 rc->backref_cache.path[node->level] = node; 2629 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2630 cond_resched(); 2631 2632 upper = edge->node[UPPER]; 2633 root = select_reloc_root(trans, rc, upper, edges); 2634 BUG_ON(!root); 2635 2636 if (upper->eb && !upper->locked) { 2637 if (!lowest) { 2638 ret = btrfs_bin_search(upper->eb, key, 2639 upper->level, &slot); 2640 BUG_ON(ret); 2641 bytenr = btrfs_node_blockptr(upper->eb, slot); 2642 if (node->eb->start == bytenr) 2643 goto next; 2644 } 2645 drop_node_buffer(upper); 2646 } 2647 2648 if (!upper->eb) { 2649 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2650 if (ret < 0) { 2651 err = ret; 2652 break; 2653 } 2654 BUG_ON(ret > 0); 2655 2656 if (!upper->eb) { 2657 upper->eb = path->nodes[upper->level]; 2658 path->nodes[upper->level] = NULL; 2659 } else { 2660 BUG_ON(upper->eb != path->nodes[upper->level]); 2661 } 2662 2663 upper->locked = 1; 2664 path->locks[upper->level] = 0; 2665 2666 slot = path->slots[upper->level]; 2667 btrfs_release_path(path); 2668 } else { 2669 ret = btrfs_bin_search(upper->eb, key, upper->level, 2670 &slot); 2671 BUG_ON(ret); 2672 } 2673 2674 bytenr = btrfs_node_blockptr(upper->eb, slot); 2675 if (lowest) { 2676 BUG_ON(bytenr != node->bytenr); 2677 } else { 2678 if (node->eb->start == bytenr) 2679 goto next; 2680 } 2681 2682 blocksize = btrfs_level_size(root, node->level); 2683 generation = btrfs_node_ptr_generation(upper->eb, slot); 2684 eb = read_tree_block(root, bytenr, blocksize, generation); 2685 if (!eb || !extent_buffer_uptodate(eb)) { 2686 free_extent_buffer(eb); 2687 err = -EIO; 2688 goto next; 2689 } 2690 btrfs_tree_lock(eb); 2691 btrfs_set_lock_blocking(eb); 2692 2693 if (!node->eb) { 2694 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2695 slot, &eb); 2696 btrfs_tree_unlock(eb); 2697 free_extent_buffer(eb); 2698 if (ret < 0) { 2699 err = ret; 2700 goto next; 2701 } 2702 BUG_ON(node->eb != eb); 2703 } else { 2704 btrfs_set_node_blockptr(upper->eb, slot, 2705 node->eb->start); 2706 btrfs_set_node_ptr_generation(upper->eb, slot, 2707 trans->transid); 2708 btrfs_mark_buffer_dirty(upper->eb); 2709 2710 ret = btrfs_inc_extent_ref(trans, root, 2711 node->eb->start, blocksize, 2712 upper->eb->start, 2713 btrfs_header_owner(upper->eb), 2714 node->level, 0, 1); 2715 BUG_ON(ret); 2716 2717 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2718 BUG_ON(ret); 2719 } 2720 next: 2721 if (!upper->pending) 2722 drop_node_buffer(upper); 2723 else 2724 unlock_node_buffer(upper); 2725 if (err) 2726 break; 2727 } 2728 2729 if (!err && node->pending) { 2730 drop_node_buffer(node); 2731 list_move_tail(&node->list, &rc->backref_cache.changed); 2732 node->pending = 0; 2733 } 2734 2735 path->lowest_level = 0; 2736 BUG_ON(err == -ENOSPC); 2737 return err; 2738 } 2739 2740 static int link_to_upper(struct btrfs_trans_handle *trans, 2741 struct reloc_control *rc, 2742 struct backref_node *node, 2743 struct btrfs_path *path) 2744 { 2745 struct btrfs_key key; 2746 2747 btrfs_node_key_to_cpu(node->eb, &key, 0); 2748 return do_relocation(trans, rc, node, &key, path, 0); 2749 } 2750 2751 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2752 struct reloc_control *rc, 2753 struct btrfs_path *path, int err) 2754 { 2755 LIST_HEAD(list); 2756 struct backref_cache *cache = &rc->backref_cache; 2757 struct backref_node *node; 2758 int level; 2759 int ret; 2760 2761 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2762 while (!list_empty(&cache->pending[level])) { 2763 node = list_entry(cache->pending[level].next, 2764 struct backref_node, list); 2765 list_move_tail(&node->list, &list); 2766 BUG_ON(!node->pending); 2767 2768 if (!err) { 2769 ret = link_to_upper(trans, rc, node, path); 2770 if (ret < 0) 2771 err = ret; 2772 } 2773 } 2774 list_splice_init(&list, &cache->pending[level]); 2775 } 2776 return err; 2777 } 2778 2779 static void mark_block_processed(struct reloc_control *rc, 2780 u64 bytenr, u32 blocksize) 2781 { 2782 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2783 EXTENT_DIRTY, GFP_NOFS); 2784 } 2785 2786 static void __mark_block_processed(struct reloc_control *rc, 2787 struct backref_node *node) 2788 { 2789 u32 blocksize; 2790 if (node->level == 0 || 2791 in_block_group(node->bytenr, rc->block_group)) { 2792 blocksize = btrfs_level_size(rc->extent_root, node->level); 2793 mark_block_processed(rc, node->bytenr, blocksize); 2794 } 2795 node->processed = 1; 2796 } 2797 2798 /* 2799 * mark a block and all blocks directly/indirectly reference the block 2800 * as processed. 2801 */ 2802 static void update_processed_blocks(struct reloc_control *rc, 2803 struct backref_node *node) 2804 { 2805 struct backref_node *next = node; 2806 struct backref_edge *edge; 2807 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2808 int index = 0; 2809 2810 while (next) { 2811 cond_resched(); 2812 while (1) { 2813 if (next->processed) 2814 break; 2815 2816 __mark_block_processed(rc, next); 2817 2818 if (list_empty(&next->upper)) 2819 break; 2820 2821 edge = list_entry(next->upper.next, 2822 struct backref_edge, list[LOWER]); 2823 edges[index++] = edge; 2824 next = edge->node[UPPER]; 2825 } 2826 next = walk_down_backref(edges, &index); 2827 } 2828 } 2829 2830 static int tree_block_processed(u64 bytenr, u32 blocksize, 2831 struct reloc_control *rc) 2832 { 2833 if (test_range_bit(&rc->processed_blocks, bytenr, 2834 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2835 return 1; 2836 return 0; 2837 } 2838 2839 static int get_tree_block_key(struct reloc_control *rc, 2840 struct tree_block *block) 2841 { 2842 struct extent_buffer *eb; 2843 2844 BUG_ON(block->key_ready); 2845 eb = read_tree_block(rc->extent_root, block->bytenr, 2846 block->key.objectid, block->key.offset); 2847 if (!eb || !extent_buffer_uptodate(eb)) { 2848 free_extent_buffer(eb); 2849 return -EIO; 2850 } 2851 WARN_ON(btrfs_header_level(eb) != block->level); 2852 if (block->level == 0) 2853 btrfs_item_key_to_cpu(eb, &block->key, 0); 2854 else 2855 btrfs_node_key_to_cpu(eb, &block->key, 0); 2856 free_extent_buffer(eb); 2857 block->key_ready = 1; 2858 return 0; 2859 } 2860 2861 static int reada_tree_block(struct reloc_control *rc, 2862 struct tree_block *block) 2863 { 2864 BUG_ON(block->key_ready); 2865 if (block->key.type == BTRFS_METADATA_ITEM_KEY) 2866 readahead_tree_block(rc->extent_root, block->bytenr, 2867 block->key.objectid, 2868 rc->extent_root->leafsize); 2869 else 2870 readahead_tree_block(rc->extent_root, block->bytenr, 2871 block->key.objectid, block->key.offset); 2872 return 0; 2873 } 2874 2875 /* 2876 * helper function to relocate a tree block 2877 */ 2878 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2879 struct reloc_control *rc, 2880 struct backref_node *node, 2881 struct btrfs_key *key, 2882 struct btrfs_path *path) 2883 { 2884 struct btrfs_root *root; 2885 int ret = 0; 2886 2887 if (!node) 2888 return 0; 2889 2890 BUG_ON(node->processed); 2891 root = select_one_root(trans, node); 2892 if (root == ERR_PTR(-ENOENT)) { 2893 update_processed_blocks(rc, node); 2894 goto out; 2895 } 2896 2897 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2898 ret = reserve_metadata_space(trans, rc, node); 2899 if (ret) 2900 goto out; 2901 } 2902 2903 if (root) { 2904 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2905 BUG_ON(node->new_bytenr); 2906 BUG_ON(!list_empty(&node->list)); 2907 btrfs_record_root_in_trans(trans, root); 2908 root = root->reloc_root; 2909 node->new_bytenr = root->node->start; 2910 node->root = root; 2911 list_add_tail(&node->list, &rc->backref_cache.changed); 2912 } else { 2913 path->lowest_level = node->level; 2914 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2915 btrfs_release_path(path); 2916 if (ret > 0) 2917 ret = 0; 2918 } 2919 if (!ret) 2920 update_processed_blocks(rc, node); 2921 } else { 2922 ret = do_relocation(trans, rc, node, key, path, 1); 2923 } 2924 out: 2925 if (ret || node->level == 0 || node->cowonly) 2926 remove_backref_node(&rc->backref_cache, node); 2927 return ret; 2928 } 2929 2930 /* 2931 * relocate a list of blocks 2932 */ 2933 static noinline_for_stack 2934 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2935 struct reloc_control *rc, struct rb_root *blocks) 2936 { 2937 struct backref_node *node; 2938 struct btrfs_path *path; 2939 struct tree_block *block; 2940 struct rb_node *rb_node; 2941 int ret; 2942 int err = 0; 2943 2944 path = btrfs_alloc_path(); 2945 if (!path) { 2946 err = -ENOMEM; 2947 goto out_free_blocks; 2948 } 2949 2950 rb_node = rb_first(blocks); 2951 while (rb_node) { 2952 block = rb_entry(rb_node, struct tree_block, rb_node); 2953 if (!block->key_ready) 2954 reada_tree_block(rc, block); 2955 rb_node = rb_next(rb_node); 2956 } 2957 2958 rb_node = rb_first(blocks); 2959 while (rb_node) { 2960 block = rb_entry(rb_node, struct tree_block, rb_node); 2961 if (!block->key_ready) { 2962 err = get_tree_block_key(rc, block); 2963 if (err) 2964 goto out_free_path; 2965 } 2966 rb_node = rb_next(rb_node); 2967 } 2968 2969 rb_node = rb_first(blocks); 2970 while (rb_node) { 2971 block = rb_entry(rb_node, struct tree_block, rb_node); 2972 2973 node = build_backref_tree(rc, &block->key, 2974 block->level, block->bytenr); 2975 if (IS_ERR(node)) { 2976 err = PTR_ERR(node); 2977 goto out; 2978 } 2979 2980 ret = relocate_tree_block(trans, rc, node, &block->key, 2981 path); 2982 if (ret < 0) { 2983 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2984 err = ret; 2985 goto out; 2986 } 2987 rb_node = rb_next(rb_node); 2988 } 2989 out: 2990 err = finish_pending_nodes(trans, rc, path, err); 2991 2992 out_free_path: 2993 btrfs_free_path(path); 2994 out_free_blocks: 2995 free_block_list(blocks); 2996 return err; 2997 } 2998 2999 static noinline_for_stack 3000 int prealloc_file_extent_cluster(struct inode *inode, 3001 struct file_extent_cluster *cluster) 3002 { 3003 u64 alloc_hint = 0; 3004 u64 start; 3005 u64 end; 3006 u64 offset = BTRFS_I(inode)->index_cnt; 3007 u64 num_bytes; 3008 int nr = 0; 3009 int ret = 0; 3010 3011 BUG_ON(cluster->start != cluster->boundary[0]); 3012 mutex_lock(&inode->i_mutex); 3013 3014 ret = btrfs_check_data_free_space(inode, cluster->end + 3015 1 - cluster->start); 3016 if (ret) 3017 goto out; 3018 3019 while (nr < cluster->nr) { 3020 start = cluster->boundary[nr] - offset; 3021 if (nr + 1 < cluster->nr) 3022 end = cluster->boundary[nr + 1] - 1 - offset; 3023 else 3024 end = cluster->end - offset; 3025 3026 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3027 num_bytes = end + 1 - start; 3028 ret = btrfs_prealloc_file_range(inode, 0, start, 3029 num_bytes, num_bytes, 3030 end + 1, &alloc_hint); 3031 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3032 if (ret) 3033 break; 3034 nr++; 3035 } 3036 btrfs_free_reserved_data_space(inode, cluster->end + 3037 1 - cluster->start); 3038 out: 3039 mutex_unlock(&inode->i_mutex); 3040 return ret; 3041 } 3042 3043 static noinline_for_stack 3044 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3045 u64 block_start) 3046 { 3047 struct btrfs_root *root = BTRFS_I(inode)->root; 3048 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3049 struct extent_map *em; 3050 int ret = 0; 3051 3052 em = alloc_extent_map(); 3053 if (!em) 3054 return -ENOMEM; 3055 3056 em->start = start; 3057 em->len = end + 1 - start; 3058 em->block_len = em->len; 3059 em->block_start = block_start; 3060 em->bdev = root->fs_info->fs_devices->latest_bdev; 3061 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3062 3063 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3064 while (1) { 3065 write_lock(&em_tree->lock); 3066 ret = add_extent_mapping(em_tree, em, 0); 3067 write_unlock(&em_tree->lock); 3068 if (ret != -EEXIST) { 3069 free_extent_map(em); 3070 break; 3071 } 3072 btrfs_drop_extent_cache(inode, start, end, 0); 3073 } 3074 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3075 return ret; 3076 } 3077 3078 static int relocate_file_extent_cluster(struct inode *inode, 3079 struct file_extent_cluster *cluster) 3080 { 3081 u64 page_start; 3082 u64 page_end; 3083 u64 offset = BTRFS_I(inode)->index_cnt; 3084 unsigned long index; 3085 unsigned long last_index; 3086 struct page *page; 3087 struct file_ra_state *ra; 3088 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3089 int nr = 0; 3090 int ret = 0; 3091 3092 if (!cluster->nr) 3093 return 0; 3094 3095 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3096 if (!ra) 3097 return -ENOMEM; 3098 3099 ret = prealloc_file_extent_cluster(inode, cluster); 3100 if (ret) 3101 goto out; 3102 3103 file_ra_state_init(ra, inode->i_mapping); 3104 3105 ret = setup_extent_mapping(inode, cluster->start - offset, 3106 cluster->end - offset, cluster->start); 3107 if (ret) 3108 goto out; 3109 3110 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3111 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3112 while (index <= last_index) { 3113 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3114 if (ret) 3115 goto out; 3116 3117 page = find_lock_page(inode->i_mapping, index); 3118 if (!page) { 3119 page_cache_sync_readahead(inode->i_mapping, 3120 ra, NULL, index, 3121 last_index + 1 - index); 3122 page = find_or_create_page(inode->i_mapping, index, 3123 mask); 3124 if (!page) { 3125 btrfs_delalloc_release_metadata(inode, 3126 PAGE_CACHE_SIZE); 3127 ret = -ENOMEM; 3128 goto out; 3129 } 3130 } 3131 3132 if (PageReadahead(page)) { 3133 page_cache_async_readahead(inode->i_mapping, 3134 ra, NULL, page, index, 3135 last_index + 1 - index); 3136 } 3137 3138 if (!PageUptodate(page)) { 3139 btrfs_readpage(NULL, page); 3140 lock_page(page); 3141 if (!PageUptodate(page)) { 3142 unlock_page(page); 3143 page_cache_release(page); 3144 btrfs_delalloc_release_metadata(inode, 3145 PAGE_CACHE_SIZE); 3146 ret = -EIO; 3147 goto out; 3148 } 3149 } 3150 3151 page_start = page_offset(page); 3152 page_end = page_start + PAGE_CACHE_SIZE - 1; 3153 3154 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3155 3156 set_page_extent_mapped(page); 3157 3158 if (nr < cluster->nr && 3159 page_start + offset == cluster->boundary[nr]) { 3160 set_extent_bits(&BTRFS_I(inode)->io_tree, 3161 page_start, page_end, 3162 EXTENT_BOUNDARY, GFP_NOFS); 3163 nr++; 3164 } 3165 3166 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3167 set_page_dirty(page); 3168 3169 unlock_extent(&BTRFS_I(inode)->io_tree, 3170 page_start, page_end); 3171 unlock_page(page); 3172 page_cache_release(page); 3173 3174 index++; 3175 balance_dirty_pages_ratelimited(inode->i_mapping); 3176 btrfs_throttle(BTRFS_I(inode)->root); 3177 } 3178 WARN_ON(nr != cluster->nr); 3179 out: 3180 kfree(ra); 3181 return ret; 3182 } 3183 3184 static noinline_for_stack 3185 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3186 struct file_extent_cluster *cluster) 3187 { 3188 int ret; 3189 3190 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3191 ret = relocate_file_extent_cluster(inode, cluster); 3192 if (ret) 3193 return ret; 3194 cluster->nr = 0; 3195 } 3196 3197 if (!cluster->nr) 3198 cluster->start = extent_key->objectid; 3199 else 3200 BUG_ON(cluster->nr >= MAX_EXTENTS); 3201 cluster->end = extent_key->objectid + extent_key->offset - 1; 3202 cluster->boundary[cluster->nr] = extent_key->objectid; 3203 cluster->nr++; 3204 3205 if (cluster->nr >= MAX_EXTENTS) { 3206 ret = relocate_file_extent_cluster(inode, cluster); 3207 if (ret) 3208 return ret; 3209 cluster->nr = 0; 3210 } 3211 return 0; 3212 } 3213 3214 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3215 static int get_ref_objectid_v0(struct reloc_control *rc, 3216 struct btrfs_path *path, 3217 struct btrfs_key *extent_key, 3218 u64 *ref_objectid, int *path_change) 3219 { 3220 struct btrfs_key key; 3221 struct extent_buffer *leaf; 3222 struct btrfs_extent_ref_v0 *ref0; 3223 int ret; 3224 int slot; 3225 3226 leaf = path->nodes[0]; 3227 slot = path->slots[0]; 3228 while (1) { 3229 if (slot >= btrfs_header_nritems(leaf)) { 3230 ret = btrfs_next_leaf(rc->extent_root, path); 3231 if (ret < 0) 3232 return ret; 3233 BUG_ON(ret > 0); 3234 leaf = path->nodes[0]; 3235 slot = path->slots[0]; 3236 if (path_change) 3237 *path_change = 1; 3238 } 3239 btrfs_item_key_to_cpu(leaf, &key, slot); 3240 if (key.objectid != extent_key->objectid) 3241 return -ENOENT; 3242 3243 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3244 slot++; 3245 continue; 3246 } 3247 ref0 = btrfs_item_ptr(leaf, slot, 3248 struct btrfs_extent_ref_v0); 3249 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3250 break; 3251 } 3252 return 0; 3253 } 3254 #endif 3255 3256 /* 3257 * helper to add a tree block to the list. 3258 * the major work is getting the generation and level of the block 3259 */ 3260 static int add_tree_block(struct reloc_control *rc, 3261 struct btrfs_key *extent_key, 3262 struct btrfs_path *path, 3263 struct rb_root *blocks) 3264 { 3265 struct extent_buffer *eb; 3266 struct btrfs_extent_item *ei; 3267 struct btrfs_tree_block_info *bi; 3268 struct tree_block *block; 3269 struct rb_node *rb_node; 3270 u32 item_size; 3271 int level = -1; 3272 u64 generation; 3273 3274 eb = path->nodes[0]; 3275 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3276 3277 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3278 item_size >= sizeof(*ei) + sizeof(*bi)) { 3279 ei = btrfs_item_ptr(eb, path->slots[0], 3280 struct btrfs_extent_item); 3281 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3282 bi = (struct btrfs_tree_block_info *)(ei + 1); 3283 level = btrfs_tree_block_level(eb, bi); 3284 } else { 3285 level = (int)extent_key->offset; 3286 } 3287 generation = btrfs_extent_generation(eb, ei); 3288 } else { 3289 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3290 u64 ref_owner; 3291 int ret; 3292 3293 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3294 ret = get_ref_objectid_v0(rc, path, extent_key, 3295 &ref_owner, NULL); 3296 if (ret < 0) 3297 return ret; 3298 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3299 level = (int)ref_owner; 3300 /* FIXME: get real generation */ 3301 generation = 0; 3302 #else 3303 BUG(); 3304 #endif 3305 } 3306 3307 btrfs_release_path(path); 3308 3309 BUG_ON(level == -1); 3310 3311 block = kmalloc(sizeof(*block), GFP_NOFS); 3312 if (!block) 3313 return -ENOMEM; 3314 3315 block->bytenr = extent_key->objectid; 3316 block->key.objectid = rc->extent_root->leafsize; 3317 block->key.offset = generation; 3318 block->level = level; 3319 block->key_ready = 0; 3320 3321 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3322 if (rb_node) 3323 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3324 3325 return 0; 3326 } 3327 3328 /* 3329 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3330 */ 3331 static int __add_tree_block(struct reloc_control *rc, 3332 u64 bytenr, u32 blocksize, 3333 struct rb_root *blocks) 3334 { 3335 struct btrfs_path *path; 3336 struct btrfs_key key; 3337 int ret; 3338 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3339 SKINNY_METADATA); 3340 3341 if (tree_block_processed(bytenr, blocksize, rc)) 3342 return 0; 3343 3344 if (tree_search(blocks, bytenr)) 3345 return 0; 3346 3347 path = btrfs_alloc_path(); 3348 if (!path) 3349 return -ENOMEM; 3350 again: 3351 key.objectid = bytenr; 3352 if (skinny) { 3353 key.type = BTRFS_METADATA_ITEM_KEY; 3354 key.offset = (u64)-1; 3355 } else { 3356 key.type = BTRFS_EXTENT_ITEM_KEY; 3357 key.offset = blocksize; 3358 } 3359 3360 path->search_commit_root = 1; 3361 path->skip_locking = 1; 3362 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3363 if (ret < 0) 3364 goto out; 3365 3366 if (ret > 0 && skinny) { 3367 if (path->slots[0]) { 3368 path->slots[0]--; 3369 btrfs_item_key_to_cpu(path->nodes[0], &key, 3370 path->slots[0]); 3371 if (key.objectid == bytenr && 3372 (key.type == BTRFS_METADATA_ITEM_KEY || 3373 (key.type == BTRFS_EXTENT_ITEM_KEY && 3374 key.offset == blocksize))) 3375 ret = 0; 3376 } 3377 3378 if (ret) { 3379 skinny = false; 3380 btrfs_release_path(path); 3381 goto again; 3382 } 3383 } 3384 BUG_ON(ret); 3385 3386 ret = add_tree_block(rc, &key, path, blocks); 3387 out: 3388 btrfs_free_path(path); 3389 return ret; 3390 } 3391 3392 /* 3393 * helper to check if the block use full backrefs for pointers in it 3394 */ 3395 static int block_use_full_backref(struct reloc_control *rc, 3396 struct extent_buffer *eb) 3397 { 3398 u64 flags; 3399 int ret; 3400 3401 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3402 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3403 return 1; 3404 3405 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3406 eb->start, btrfs_header_level(eb), 1, 3407 NULL, &flags); 3408 BUG_ON(ret); 3409 3410 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3411 ret = 1; 3412 else 3413 ret = 0; 3414 return ret; 3415 } 3416 3417 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3418 struct inode *inode, u64 ino) 3419 { 3420 struct btrfs_key key; 3421 struct btrfs_root *root = fs_info->tree_root; 3422 struct btrfs_trans_handle *trans; 3423 int ret = 0; 3424 3425 if (inode) 3426 goto truncate; 3427 3428 key.objectid = ino; 3429 key.type = BTRFS_INODE_ITEM_KEY; 3430 key.offset = 0; 3431 3432 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3433 if (IS_ERR(inode) || is_bad_inode(inode)) { 3434 if (!IS_ERR(inode)) 3435 iput(inode); 3436 return -ENOENT; 3437 } 3438 3439 truncate: 3440 ret = btrfs_check_trunc_cache_free_space(root, 3441 &fs_info->global_block_rsv); 3442 if (ret) 3443 goto out; 3444 3445 trans = btrfs_join_transaction(root); 3446 if (IS_ERR(trans)) { 3447 ret = PTR_ERR(trans); 3448 goto out; 3449 } 3450 3451 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3452 3453 btrfs_end_transaction(trans, root); 3454 btrfs_btree_balance_dirty(root); 3455 out: 3456 iput(inode); 3457 return ret; 3458 } 3459 3460 /* 3461 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3462 * this function scans fs tree to find blocks reference the data extent 3463 */ 3464 static int find_data_references(struct reloc_control *rc, 3465 struct btrfs_key *extent_key, 3466 struct extent_buffer *leaf, 3467 struct btrfs_extent_data_ref *ref, 3468 struct rb_root *blocks) 3469 { 3470 struct btrfs_path *path; 3471 struct tree_block *block; 3472 struct btrfs_root *root; 3473 struct btrfs_file_extent_item *fi; 3474 struct rb_node *rb_node; 3475 struct btrfs_key key; 3476 u64 ref_root; 3477 u64 ref_objectid; 3478 u64 ref_offset; 3479 u32 ref_count; 3480 u32 nritems; 3481 int err = 0; 3482 int added = 0; 3483 int counted; 3484 int ret; 3485 3486 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3487 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3488 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3489 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3490 3491 /* 3492 * This is an extent belonging to the free space cache, lets just delete 3493 * it and redo the search. 3494 */ 3495 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3496 ret = delete_block_group_cache(rc->extent_root->fs_info, 3497 NULL, ref_objectid); 3498 if (ret != -ENOENT) 3499 return ret; 3500 ret = 0; 3501 } 3502 3503 path = btrfs_alloc_path(); 3504 if (!path) 3505 return -ENOMEM; 3506 path->reada = 1; 3507 3508 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3509 if (IS_ERR(root)) { 3510 err = PTR_ERR(root); 3511 goto out; 3512 } 3513 3514 key.objectid = ref_objectid; 3515 key.type = BTRFS_EXTENT_DATA_KEY; 3516 if (ref_offset > ((u64)-1 << 32)) 3517 key.offset = 0; 3518 else 3519 key.offset = ref_offset; 3520 3521 path->search_commit_root = 1; 3522 path->skip_locking = 1; 3523 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3524 if (ret < 0) { 3525 err = ret; 3526 goto out; 3527 } 3528 3529 leaf = path->nodes[0]; 3530 nritems = btrfs_header_nritems(leaf); 3531 /* 3532 * the references in tree blocks that use full backrefs 3533 * are not counted in 3534 */ 3535 if (block_use_full_backref(rc, leaf)) 3536 counted = 0; 3537 else 3538 counted = 1; 3539 rb_node = tree_search(blocks, leaf->start); 3540 if (rb_node) { 3541 if (counted) 3542 added = 1; 3543 else 3544 path->slots[0] = nritems; 3545 } 3546 3547 while (ref_count > 0) { 3548 while (path->slots[0] >= nritems) { 3549 ret = btrfs_next_leaf(root, path); 3550 if (ret < 0) { 3551 err = ret; 3552 goto out; 3553 } 3554 if (WARN_ON(ret > 0)) 3555 goto out; 3556 3557 leaf = path->nodes[0]; 3558 nritems = btrfs_header_nritems(leaf); 3559 added = 0; 3560 3561 if (block_use_full_backref(rc, leaf)) 3562 counted = 0; 3563 else 3564 counted = 1; 3565 rb_node = tree_search(blocks, leaf->start); 3566 if (rb_node) { 3567 if (counted) 3568 added = 1; 3569 else 3570 path->slots[0] = nritems; 3571 } 3572 } 3573 3574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3575 if (WARN_ON(key.objectid != ref_objectid || 3576 key.type != BTRFS_EXTENT_DATA_KEY)) 3577 break; 3578 3579 fi = btrfs_item_ptr(leaf, path->slots[0], 3580 struct btrfs_file_extent_item); 3581 3582 if (btrfs_file_extent_type(leaf, fi) == 3583 BTRFS_FILE_EXTENT_INLINE) 3584 goto next; 3585 3586 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3587 extent_key->objectid) 3588 goto next; 3589 3590 key.offset -= btrfs_file_extent_offset(leaf, fi); 3591 if (key.offset != ref_offset) 3592 goto next; 3593 3594 if (counted) 3595 ref_count--; 3596 if (added) 3597 goto next; 3598 3599 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3600 block = kmalloc(sizeof(*block), GFP_NOFS); 3601 if (!block) { 3602 err = -ENOMEM; 3603 break; 3604 } 3605 block->bytenr = leaf->start; 3606 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3607 block->level = 0; 3608 block->key_ready = 1; 3609 rb_node = tree_insert(blocks, block->bytenr, 3610 &block->rb_node); 3611 if (rb_node) 3612 backref_tree_panic(rb_node, -EEXIST, 3613 block->bytenr); 3614 } 3615 if (counted) 3616 added = 1; 3617 else 3618 path->slots[0] = nritems; 3619 next: 3620 path->slots[0]++; 3621 3622 } 3623 out: 3624 btrfs_free_path(path); 3625 return err; 3626 } 3627 3628 /* 3629 * helper to find all tree blocks that reference a given data extent 3630 */ 3631 static noinline_for_stack 3632 int add_data_references(struct reloc_control *rc, 3633 struct btrfs_key *extent_key, 3634 struct btrfs_path *path, 3635 struct rb_root *blocks) 3636 { 3637 struct btrfs_key key; 3638 struct extent_buffer *eb; 3639 struct btrfs_extent_data_ref *dref; 3640 struct btrfs_extent_inline_ref *iref; 3641 unsigned long ptr; 3642 unsigned long end; 3643 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3644 int ret = 0; 3645 int err = 0; 3646 3647 eb = path->nodes[0]; 3648 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3649 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3650 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3651 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3652 ptr = end; 3653 else 3654 #endif 3655 ptr += sizeof(struct btrfs_extent_item); 3656 3657 while (ptr < end) { 3658 iref = (struct btrfs_extent_inline_ref *)ptr; 3659 key.type = btrfs_extent_inline_ref_type(eb, iref); 3660 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3661 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3662 ret = __add_tree_block(rc, key.offset, blocksize, 3663 blocks); 3664 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3665 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3666 ret = find_data_references(rc, extent_key, 3667 eb, dref, blocks); 3668 } else { 3669 BUG(); 3670 } 3671 if (ret) { 3672 err = ret; 3673 goto out; 3674 } 3675 ptr += btrfs_extent_inline_ref_size(key.type); 3676 } 3677 WARN_ON(ptr > end); 3678 3679 while (1) { 3680 cond_resched(); 3681 eb = path->nodes[0]; 3682 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3683 ret = btrfs_next_leaf(rc->extent_root, path); 3684 if (ret < 0) { 3685 err = ret; 3686 break; 3687 } 3688 if (ret > 0) 3689 break; 3690 eb = path->nodes[0]; 3691 } 3692 3693 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3694 if (key.objectid != extent_key->objectid) 3695 break; 3696 3697 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3698 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3699 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3700 #else 3701 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3702 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3703 #endif 3704 ret = __add_tree_block(rc, key.offset, blocksize, 3705 blocks); 3706 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3707 dref = btrfs_item_ptr(eb, path->slots[0], 3708 struct btrfs_extent_data_ref); 3709 ret = find_data_references(rc, extent_key, 3710 eb, dref, blocks); 3711 } else { 3712 ret = 0; 3713 } 3714 if (ret) { 3715 err = ret; 3716 break; 3717 } 3718 path->slots[0]++; 3719 } 3720 out: 3721 btrfs_release_path(path); 3722 if (err) 3723 free_block_list(blocks); 3724 return err; 3725 } 3726 3727 /* 3728 * helper to find next unprocessed extent 3729 */ 3730 static noinline_for_stack 3731 int find_next_extent(struct btrfs_trans_handle *trans, 3732 struct reloc_control *rc, struct btrfs_path *path, 3733 struct btrfs_key *extent_key) 3734 { 3735 struct btrfs_key key; 3736 struct extent_buffer *leaf; 3737 u64 start, end, last; 3738 int ret; 3739 3740 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3741 while (1) { 3742 cond_resched(); 3743 if (rc->search_start >= last) { 3744 ret = 1; 3745 break; 3746 } 3747 3748 key.objectid = rc->search_start; 3749 key.type = BTRFS_EXTENT_ITEM_KEY; 3750 key.offset = 0; 3751 3752 path->search_commit_root = 1; 3753 path->skip_locking = 1; 3754 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3755 0, 0); 3756 if (ret < 0) 3757 break; 3758 next: 3759 leaf = path->nodes[0]; 3760 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3761 ret = btrfs_next_leaf(rc->extent_root, path); 3762 if (ret != 0) 3763 break; 3764 leaf = path->nodes[0]; 3765 } 3766 3767 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3768 if (key.objectid >= last) { 3769 ret = 1; 3770 break; 3771 } 3772 3773 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3774 key.type != BTRFS_METADATA_ITEM_KEY) { 3775 path->slots[0]++; 3776 goto next; 3777 } 3778 3779 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3780 key.objectid + key.offset <= rc->search_start) { 3781 path->slots[0]++; 3782 goto next; 3783 } 3784 3785 if (key.type == BTRFS_METADATA_ITEM_KEY && 3786 key.objectid + rc->extent_root->leafsize <= 3787 rc->search_start) { 3788 path->slots[0]++; 3789 goto next; 3790 } 3791 3792 ret = find_first_extent_bit(&rc->processed_blocks, 3793 key.objectid, &start, &end, 3794 EXTENT_DIRTY, NULL); 3795 3796 if (ret == 0 && start <= key.objectid) { 3797 btrfs_release_path(path); 3798 rc->search_start = end + 1; 3799 } else { 3800 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3801 rc->search_start = key.objectid + key.offset; 3802 else 3803 rc->search_start = key.objectid + 3804 rc->extent_root->leafsize; 3805 memcpy(extent_key, &key, sizeof(key)); 3806 return 0; 3807 } 3808 } 3809 btrfs_release_path(path); 3810 return ret; 3811 } 3812 3813 static void set_reloc_control(struct reloc_control *rc) 3814 { 3815 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3816 3817 mutex_lock(&fs_info->reloc_mutex); 3818 fs_info->reloc_ctl = rc; 3819 mutex_unlock(&fs_info->reloc_mutex); 3820 } 3821 3822 static void unset_reloc_control(struct reloc_control *rc) 3823 { 3824 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3825 3826 mutex_lock(&fs_info->reloc_mutex); 3827 fs_info->reloc_ctl = NULL; 3828 mutex_unlock(&fs_info->reloc_mutex); 3829 } 3830 3831 static int check_extent_flags(u64 flags) 3832 { 3833 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3834 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3835 return 1; 3836 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3837 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3838 return 1; 3839 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3840 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3841 return 1; 3842 return 0; 3843 } 3844 3845 static noinline_for_stack 3846 int prepare_to_relocate(struct reloc_control *rc) 3847 { 3848 struct btrfs_trans_handle *trans; 3849 3850 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3851 BTRFS_BLOCK_RSV_TEMP); 3852 if (!rc->block_rsv) 3853 return -ENOMEM; 3854 3855 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3856 rc->search_start = rc->block_group->key.objectid; 3857 rc->extents_found = 0; 3858 rc->nodes_relocated = 0; 3859 rc->merging_rsv_size = 0; 3860 rc->reserved_bytes = 0; 3861 rc->block_rsv->size = rc->extent_root->nodesize * 3862 RELOCATION_RESERVED_NODES; 3863 3864 rc->create_reloc_tree = 1; 3865 set_reloc_control(rc); 3866 3867 trans = btrfs_join_transaction(rc->extent_root); 3868 if (IS_ERR(trans)) { 3869 unset_reloc_control(rc); 3870 /* 3871 * extent tree is not a ref_cow tree and has no reloc_root to 3872 * cleanup. And callers are responsible to free the above 3873 * block rsv. 3874 */ 3875 return PTR_ERR(trans); 3876 } 3877 btrfs_commit_transaction(trans, rc->extent_root); 3878 return 0; 3879 } 3880 3881 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3882 { 3883 struct rb_root blocks = RB_ROOT; 3884 struct btrfs_key key; 3885 struct btrfs_trans_handle *trans = NULL; 3886 struct btrfs_path *path; 3887 struct btrfs_extent_item *ei; 3888 u64 flags; 3889 u32 item_size; 3890 int ret; 3891 int err = 0; 3892 int progress = 0; 3893 3894 path = btrfs_alloc_path(); 3895 if (!path) 3896 return -ENOMEM; 3897 path->reada = 1; 3898 3899 ret = prepare_to_relocate(rc); 3900 if (ret) { 3901 err = ret; 3902 goto out_free; 3903 } 3904 3905 while (1) { 3906 rc->reserved_bytes = 0; 3907 ret = btrfs_block_rsv_refill(rc->extent_root, 3908 rc->block_rsv, rc->block_rsv->size, 3909 BTRFS_RESERVE_FLUSH_ALL); 3910 if (ret) { 3911 err = ret; 3912 break; 3913 } 3914 progress++; 3915 trans = btrfs_start_transaction(rc->extent_root, 0); 3916 if (IS_ERR(trans)) { 3917 err = PTR_ERR(trans); 3918 trans = NULL; 3919 break; 3920 } 3921 restart: 3922 if (update_backref_cache(trans, &rc->backref_cache)) { 3923 btrfs_end_transaction(trans, rc->extent_root); 3924 continue; 3925 } 3926 3927 ret = find_next_extent(trans, rc, path, &key); 3928 if (ret < 0) 3929 err = ret; 3930 if (ret != 0) 3931 break; 3932 3933 rc->extents_found++; 3934 3935 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3936 struct btrfs_extent_item); 3937 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3938 if (item_size >= sizeof(*ei)) { 3939 flags = btrfs_extent_flags(path->nodes[0], ei); 3940 ret = check_extent_flags(flags); 3941 BUG_ON(ret); 3942 3943 } else { 3944 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3945 u64 ref_owner; 3946 int path_change = 0; 3947 3948 BUG_ON(item_size != 3949 sizeof(struct btrfs_extent_item_v0)); 3950 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3951 &path_change); 3952 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3953 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3954 else 3955 flags = BTRFS_EXTENT_FLAG_DATA; 3956 3957 if (path_change) { 3958 btrfs_release_path(path); 3959 3960 path->search_commit_root = 1; 3961 path->skip_locking = 1; 3962 ret = btrfs_search_slot(NULL, rc->extent_root, 3963 &key, path, 0, 0); 3964 if (ret < 0) { 3965 err = ret; 3966 break; 3967 } 3968 BUG_ON(ret > 0); 3969 } 3970 #else 3971 BUG(); 3972 #endif 3973 } 3974 3975 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3976 ret = add_tree_block(rc, &key, path, &blocks); 3977 } else if (rc->stage == UPDATE_DATA_PTRS && 3978 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3979 ret = add_data_references(rc, &key, path, &blocks); 3980 } else { 3981 btrfs_release_path(path); 3982 ret = 0; 3983 } 3984 if (ret < 0) { 3985 err = ret; 3986 break; 3987 } 3988 3989 if (!RB_EMPTY_ROOT(&blocks)) { 3990 ret = relocate_tree_blocks(trans, rc, &blocks); 3991 if (ret < 0) { 3992 /* 3993 * if we fail to relocate tree blocks, force to update 3994 * backref cache when committing transaction. 3995 */ 3996 rc->backref_cache.last_trans = trans->transid - 1; 3997 3998 if (ret != -EAGAIN) { 3999 err = ret; 4000 break; 4001 } 4002 rc->extents_found--; 4003 rc->search_start = key.objectid; 4004 } 4005 } 4006 4007 btrfs_end_transaction_throttle(trans, rc->extent_root); 4008 btrfs_btree_balance_dirty(rc->extent_root); 4009 trans = NULL; 4010 4011 if (rc->stage == MOVE_DATA_EXTENTS && 4012 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4013 rc->found_file_extent = 1; 4014 ret = relocate_data_extent(rc->data_inode, 4015 &key, &rc->cluster); 4016 if (ret < 0) { 4017 err = ret; 4018 break; 4019 } 4020 } 4021 } 4022 if (trans && progress && err == -ENOSPC) { 4023 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4024 rc->block_group->flags); 4025 if (ret == 0) { 4026 err = 0; 4027 progress = 0; 4028 goto restart; 4029 } 4030 } 4031 4032 btrfs_release_path(path); 4033 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4034 GFP_NOFS); 4035 4036 if (trans) { 4037 btrfs_end_transaction_throttle(trans, rc->extent_root); 4038 btrfs_btree_balance_dirty(rc->extent_root); 4039 } 4040 4041 if (!err) { 4042 ret = relocate_file_extent_cluster(rc->data_inode, 4043 &rc->cluster); 4044 if (ret < 0) 4045 err = ret; 4046 } 4047 4048 rc->create_reloc_tree = 0; 4049 set_reloc_control(rc); 4050 4051 backref_cache_cleanup(&rc->backref_cache); 4052 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4053 4054 err = prepare_to_merge(rc, err); 4055 4056 merge_reloc_roots(rc); 4057 4058 rc->merge_reloc_tree = 0; 4059 unset_reloc_control(rc); 4060 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4061 4062 /* get rid of pinned extents */ 4063 trans = btrfs_join_transaction(rc->extent_root); 4064 if (IS_ERR(trans)) 4065 err = PTR_ERR(trans); 4066 else 4067 btrfs_commit_transaction(trans, rc->extent_root); 4068 out_free: 4069 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4070 btrfs_free_path(path); 4071 return err; 4072 } 4073 4074 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4075 struct btrfs_root *root, u64 objectid) 4076 { 4077 struct btrfs_path *path; 4078 struct btrfs_inode_item *item; 4079 struct extent_buffer *leaf; 4080 int ret; 4081 4082 path = btrfs_alloc_path(); 4083 if (!path) 4084 return -ENOMEM; 4085 4086 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4087 if (ret) 4088 goto out; 4089 4090 leaf = path->nodes[0]; 4091 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4092 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4093 btrfs_set_inode_generation(leaf, item, 1); 4094 btrfs_set_inode_size(leaf, item, 0); 4095 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4096 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4097 BTRFS_INODE_PREALLOC); 4098 btrfs_mark_buffer_dirty(leaf); 4099 btrfs_release_path(path); 4100 out: 4101 btrfs_free_path(path); 4102 return ret; 4103 } 4104 4105 /* 4106 * helper to create inode for data relocation. 4107 * the inode is in data relocation tree and its link count is 0 4108 */ 4109 static noinline_for_stack 4110 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4111 struct btrfs_block_group_cache *group) 4112 { 4113 struct inode *inode = NULL; 4114 struct btrfs_trans_handle *trans; 4115 struct btrfs_root *root; 4116 struct btrfs_key key; 4117 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4118 int err = 0; 4119 4120 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4121 if (IS_ERR(root)) 4122 return ERR_CAST(root); 4123 4124 trans = btrfs_start_transaction(root, 6); 4125 if (IS_ERR(trans)) 4126 return ERR_CAST(trans); 4127 4128 err = btrfs_find_free_objectid(root, &objectid); 4129 if (err) 4130 goto out; 4131 4132 err = __insert_orphan_inode(trans, root, objectid); 4133 BUG_ON(err); 4134 4135 key.objectid = objectid; 4136 key.type = BTRFS_INODE_ITEM_KEY; 4137 key.offset = 0; 4138 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4139 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4140 BTRFS_I(inode)->index_cnt = group->key.objectid; 4141 4142 err = btrfs_orphan_add(trans, inode); 4143 out: 4144 btrfs_end_transaction(trans, root); 4145 btrfs_btree_balance_dirty(root); 4146 if (err) { 4147 if (inode) 4148 iput(inode); 4149 inode = ERR_PTR(err); 4150 } 4151 return inode; 4152 } 4153 4154 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4155 { 4156 struct reloc_control *rc; 4157 4158 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4159 if (!rc) 4160 return NULL; 4161 4162 INIT_LIST_HEAD(&rc->reloc_roots); 4163 backref_cache_init(&rc->backref_cache); 4164 mapping_tree_init(&rc->reloc_root_tree); 4165 extent_io_tree_init(&rc->processed_blocks, 4166 fs_info->btree_inode->i_mapping); 4167 return rc; 4168 } 4169 4170 /* 4171 * function to relocate all extents in a block group. 4172 */ 4173 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4174 { 4175 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4176 struct reloc_control *rc; 4177 struct inode *inode; 4178 struct btrfs_path *path; 4179 int ret; 4180 int rw = 0; 4181 int err = 0; 4182 4183 rc = alloc_reloc_control(fs_info); 4184 if (!rc) 4185 return -ENOMEM; 4186 4187 rc->extent_root = extent_root; 4188 4189 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4190 BUG_ON(!rc->block_group); 4191 4192 if (!rc->block_group->ro) { 4193 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4194 if (ret) { 4195 err = ret; 4196 goto out; 4197 } 4198 rw = 1; 4199 } 4200 4201 path = btrfs_alloc_path(); 4202 if (!path) { 4203 err = -ENOMEM; 4204 goto out; 4205 } 4206 4207 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4208 path); 4209 btrfs_free_path(path); 4210 4211 if (!IS_ERR(inode)) 4212 ret = delete_block_group_cache(fs_info, inode, 0); 4213 else 4214 ret = PTR_ERR(inode); 4215 4216 if (ret && ret != -ENOENT) { 4217 err = ret; 4218 goto out; 4219 } 4220 4221 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4222 if (IS_ERR(rc->data_inode)) { 4223 err = PTR_ERR(rc->data_inode); 4224 rc->data_inode = NULL; 4225 goto out; 4226 } 4227 4228 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu", 4229 rc->block_group->key.objectid, rc->block_group->flags); 4230 4231 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 4232 if (ret < 0) { 4233 err = ret; 4234 goto out; 4235 } 4236 btrfs_wait_ordered_roots(fs_info, -1); 4237 4238 while (1) { 4239 mutex_lock(&fs_info->cleaner_mutex); 4240 ret = relocate_block_group(rc); 4241 mutex_unlock(&fs_info->cleaner_mutex); 4242 if (ret < 0) { 4243 err = ret; 4244 goto out; 4245 } 4246 4247 if (rc->extents_found == 0) 4248 break; 4249 4250 btrfs_info(extent_root->fs_info, "found %llu extents", 4251 rc->extents_found); 4252 4253 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4254 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4255 (u64)-1); 4256 if (ret) { 4257 err = ret; 4258 goto out; 4259 } 4260 invalidate_mapping_pages(rc->data_inode->i_mapping, 4261 0, -1); 4262 rc->stage = UPDATE_DATA_PTRS; 4263 } 4264 } 4265 4266 WARN_ON(rc->block_group->pinned > 0); 4267 WARN_ON(rc->block_group->reserved > 0); 4268 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4269 out: 4270 if (err && rw) 4271 btrfs_set_block_group_rw(extent_root, rc->block_group); 4272 iput(rc->data_inode); 4273 btrfs_put_block_group(rc->block_group); 4274 kfree(rc); 4275 return err; 4276 } 4277 4278 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4279 { 4280 struct btrfs_trans_handle *trans; 4281 int ret, err; 4282 4283 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4284 if (IS_ERR(trans)) 4285 return PTR_ERR(trans); 4286 4287 memset(&root->root_item.drop_progress, 0, 4288 sizeof(root->root_item.drop_progress)); 4289 root->root_item.drop_level = 0; 4290 btrfs_set_root_refs(&root->root_item, 0); 4291 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4292 &root->root_key, &root->root_item); 4293 4294 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4295 if (err) 4296 return err; 4297 return ret; 4298 } 4299 4300 /* 4301 * recover relocation interrupted by system crash. 4302 * 4303 * this function resumes merging reloc trees with corresponding fs trees. 4304 * this is important for keeping the sharing of tree blocks 4305 */ 4306 int btrfs_recover_relocation(struct btrfs_root *root) 4307 { 4308 LIST_HEAD(reloc_roots); 4309 struct btrfs_key key; 4310 struct btrfs_root *fs_root; 4311 struct btrfs_root *reloc_root; 4312 struct btrfs_path *path; 4313 struct extent_buffer *leaf; 4314 struct reloc_control *rc = NULL; 4315 struct btrfs_trans_handle *trans; 4316 int ret; 4317 int err = 0; 4318 4319 path = btrfs_alloc_path(); 4320 if (!path) 4321 return -ENOMEM; 4322 path->reada = -1; 4323 4324 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4325 key.type = BTRFS_ROOT_ITEM_KEY; 4326 key.offset = (u64)-1; 4327 4328 while (1) { 4329 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4330 path, 0, 0); 4331 if (ret < 0) { 4332 err = ret; 4333 goto out; 4334 } 4335 if (ret > 0) { 4336 if (path->slots[0] == 0) 4337 break; 4338 path->slots[0]--; 4339 } 4340 leaf = path->nodes[0]; 4341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4342 btrfs_release_path(path); 4343 4344 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4345 key.type != BTRFS_ROOT_ITEM_KEY) 4346 break; 4347 4348 reloc_root = btrfs_read_fs_root(root, &key); 4349 if (IS_ERR(reloc_root)) { 4350 err = PTR_ERR(reloc_root); 4351 goto out; 4352 } 4353 4354 list_add(&reloc_root->root_list, &reloc_roots); 4355 4356 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4357 fs_root = read_fs_root(root->fs_info, 4358 reloc_root->root_key.offset); 4359 if (IS_ERR(fs_root)) { 4360 ret = PTR_ERR(fs_root); 4361 if (ret != -ENOENT) { 4362 err = ret; 4363 goto out; 4364 } 4365 ret = mark_garbage_root(reloc_root); 4366 if (ret < 0) { 4367 err = ret; 4368 goto out; 4369 } 4370 } 4371 } 4372 4373 if (key.offset == 0) 4374 break; 4375 4376 key.offset--; 4377 } 4378 btrfs_release_path(path); 4379 4380 if (list_empty(&reloc_roots)) 4381 goto out; 4382 4383 rc = alloc_reloc_control(root->fs_info); 4384 if (!rc) { 4385 err = -ENOMEM; 4386 goto out; 4387 } 4388 4389 rc->extent_root = root->fs_info->extent_root; 4390 4391 set_reloc_control(rc); 4392 4393 trans = btrfs_join_transaction(rc->extent_root); 4394 if (IS_ERR(trans)) { 4395 unset_reloc_control(rc); 4396 err = PTR_ERR(trans); 4397 goto out_free; 4398 } 4399 4400 rc->merge_reloc_tree = 1; 4401 4402 while (!list_empty(&reloc_roots)) { 4403 reloc_root = list_entry(reloc_roots.next, 4404 struct btrfs_root, root_list); 4405 list_del(&reloc_root->root_list); 4406 4407 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4408 list_add_tail(&reloc_root->root_list, 4409 &rc->reloc_roots); 4410 continue; 4411 } 4412 4413 fs_root = read_fs_root(root->fs_info, 4414 reloc_root->root_key.offset); 4415 if (IS_ERR(fs_root)) { 4416 err = PTR_ERR(fs_root); 4417 goto out_free; 4418 } 4419 4420 err = __add_reloc_root(reloc_root); 4421 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4422 fs_root->reloc_root = reloc_root; 4423 } 4424 4425 err = btrfs_commit_transaction(trans, rc->extent_root); 4426 if (err) 4427 goto out_free; 4428 4429 merge_reloc_roots(rc); 4430 4431 unset_reloc_control(rc); 4432 4433 trans = btrfs_join_transaction(rc->extent_root); 4434 if (IS_ERR(trans)) 4435 err = PTR_ERR(trans); 4436 else 4437 err = btrfs_commit_transaction(trans, rc->extent_root); 4438 out_free: 4439 kfree(rc); 4440 out: 4441 if (!list_empty(&reloc_roots)) 4442 free_reloc_roots(&reloc_roots); 4443 4444 btrfs_free_path(path); 4445 4446 if (err == 0) { 4447 /* cleanup orphan inode in data relocation tree */ 4448 fs_root = read_fs_root(root->fs_info, 4449 BTRFS_DATA_RELOC_TREE_OBJECTID); 4450 if (IS_ERR(fs_root)) 4451 err = PTR_ERR(fs_root); 4452 else 4453 err = btrfs_orphan_cleanup(fs_root); 4454 } 4455 return err; 4456 } 4457 4458 /* 4459 * helper to add ordered checksum for data relocation. 4460 * 4461 * cloning checksum properly handles the nodatasum extents. 4462 * it also saves CPU time to re-calculate the checksum. 4463 */ 4464 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4465 { 4466 struct btrfs_ordered_sum *sums; 4467 struct btrfs_ordered_extent *ordered; 4468 struct btrfs_root *root = BTRFS_I(inode)->root; 4469 int ret; 4470 u64 disk_bytenr; 4471 u64 new_bytenr; 4472 LIST_HEAD(list); 4473 4474 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4475 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4476 4477 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4478 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4479 disk_bytenr + len - 1, &list, 0); 4480 if (ret) 4481 goto out; 4482 4483 while (!list_empty(&list)) { 4484 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4485 list_del_init(&sums->list); 4486 4487 /* 4488 * We need to offset the new_bytenr based on where the csum is. 4489 * We need to do this because we will read in entire prealloc 4490 * extents but we may have written to say the middle of the 4491 * prealloc extent, so we need to make sure the csum goes with 4492 * the right disk offset. 4493 * 4494 * We can do this because the data reloc inode refers strictly 4495 * to the on disk bytes, so we don't have to worry about 4496 * disk_len vs real len like with real inodes since it's all 4497 * disk length. 4498 */ 4499 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4500 sums->bytenr = new_bytenr; 4501 4502 btrfs_add_ordered_sum(inode, ordered, sums); 4503 } 4504 out: 4505 btrfs_put_ordered_extent(ordered); 4506 return ret; 4507 } 4508 4509 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4510 struct btrfs_root *root, struct extent_buffer *buf, 4511 struct extent_buffer *cow) 4512 { 4513 struct reloc_control *rc; 4514 struct backref_node *node; 4515 int first_cow = 0; 4516 int level; 4517 int ret = 0; 4518 4519 rc = root->fs_info->reloc_ctl; 4520 if (!rc) 4521 return 0; 4522 4523 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4524 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4525 4526 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4527 if (buf == root->node) 4528 __update_reloc_root(root, cow->start); 4529 } 4530 4531 level = btrfs_header_level(buf); 4532 if (btrfs_header_generation(buf) <= 4533 btrfs_root_last_snapshot(&root->root_item)) 4534 first_cow = 1; 4535 4536 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4537 rc->create_reloc_tree) { 4538 WARN_ON(!first_cow && level == 0); 4539 4540 node = rc->backref_cache.path[level]; 4541 BUG_ON(node->bytenr != buf->start && 4542 node->new_bytenr != buf->start); 4543 4544 drop_node_buffer(node); 4545 extent_buffer_get(cow); 4546 node->eb = cow; 4547 node->new_bytenr = cow->start; 4548 4549 if (!node->pending) { 4550 list_move_tail(&node->list, 4551 &rc->backref_cache.pending[level]); 4552 node->pending = 1; 4553 } 4554 4555 if (first_cow) 4556 __mark_block_processed(rc, node); 4557 4558 if (first_cow && level > 0) 4559 rc->nodes_relocated += buf->len; 4560 } 4561 4562 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4563 ret = replace_file_extents(trans, rc, root, cow); 4564 return ret; 4565 } 4566 4567 /* 4568 * called before creating snapshot. it calculates metadata reservation 4569 * requried for relocating tree blocks in the snapshot 4570 */ 4571 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4572 struct btrfs_pending_snapshot *pending, 4573 u64 *bytes_to_reserve) 4574 { 4575 struct btrfs_root *root; 4576 struct reloc_control *rc; 4577 4578 root = pending->root; 4579 if (!root->reloc_root) 4580 return; 4581 4582 rc = root->fs_info->reloc_ctl; 4583 if (!rc->merge_reloc_tree) 4584 return; 4585 4586 root = root->reloc_root; 4587 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4588 /* 4589 * relocation is in the stage of merging trees. the space 4590 * used by merging a reloc tree is twice the size of 4591 * relocated tree nodes in the worst case. half for cowing 4592 * the reloc tree, half for cowing the fs tree. the space 4593 * used by cowing the reloc tree will be freed after the 4594 * tree is dropped. if we create snapshot, cowing the fs 4595 * tree may use more space than it frees. so we need 4596 * reserve extra space. 4597 */ 4598 *bytes_to_reserve += rc->nodes_relocated; 4599 } 4600 4601 /* 4602 * called after snapshot is created. migrate block reservation 4603 * and create reloc root for the newly created snapshot 4604 */ 4605 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4606 struct btrfs_pending_snapshot *pending) 4607 { 4608 struct btrfs_root *root = pending->root; 4609 struct btrfs_root *reloc_root; 4610 struct btrfs_root *new_root; 4611 struct reloc_control *rc; 4612 int ret; 4613 4614 if (!root->reloc_root) 4615 return 0; 4616 4617 rc = root->fs_info->reloc_ctl; 4618 rc->merging_rsv_size += rc->nodes_relocated; 4619 4620 if (rc->merge_reloc_tree) { 4621 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4622 rc->block_rsv, 4623 rc->nodes_relocated); 4624 if (ret) 4625 return ret; 4626 } 4627 4628 new_root = pending->snap; 4629 reloc_root = create_reloc_root(trans, root->reloc_root, 4630 new_root->root_key.objectid); 4631 if (IS_ERR(reloc_root)) 4632 return PTR_ERR(reloc_root); 4633 4634 ret = __add_reloc_root(reloc_root); 4635 BUG_ON(ret < 0); 4636 new_root->reloc_root = reloc_root; 4637 4638 if (rc->create_reloc_tree) 4639 ret = clone_backref_node(trans, rc, root, reloc_root); 4640 return ret; 4641 } 4642