1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "locking.h" 17 #include "btrfs_inode.h" 18 #include "async-thread.h" 19 #include "free-space-cache.h" 20 #include "inode-map.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 24 /* 25 * backref_node, mapping_node and tree_block start with this 26 */ 27 struct tree_entry { 28 struct rb_node rb_node; 29 u64 bytenr; 30 }; 31 32 /* 33 * present a tree block in the backref cache 34 */ 35 struct backref_node { 36 struct rb_node rb_node; 37 u64 bytenr; 38 39 u64 new_bytenr; 40 /* objectid of tree block owner, can be not uptodate */ 41 u64 owner; 42 /* link to pending, changed or detached list */ 43 struct list_head list; 44 /* list of upper level blocks reference this block */ 45 struct list_head upper; 46 /* list of child blocks in the cache */ 47 struct list_head lower; 48 /* NULL if this node is not tree root */ 49 struct btrfs_root *root; 50 /* extent buffer got by COW the block */ 51 struct extent_buffer *eb; 52 /* level of tree block */ 53 unsigned int level:8; 54 /* is the block in non-reference counted tree */ 55 unsigned int cowonly:1; 56 /* 1 if no child node in the cache */ 57 unsigned int lowest:1; 58 /* is the extent buffer locked */ 59 unsigned int locked:1; 60 /* has the block been processed */ 61 unsigned int processed:1; 62 /* have backrefs of this block been checked */ 63 unsigned int checked:1; 64 /* 65 * 1 if corresponding block has been cowed but some upper 66 * level block pointers may not point to the new location 67 */ 68 unsigned int pending:1; 69 /* 70 * 1 if the backref node isn't connected to any other 71 * backref node. 72 */ 73 unsigned int detached:1; 74 }; 75 76 /* 77 * present a block pointer in the backref cache 78 */ 79 struct backref_edge { 80 struct list_head list[2]; 81 struct backref_node *node[2]; 82 }; 83 84 #define LOWER 0 85 #define UPPER 1 86 #define RELOCATION_RESERVED_NODES 256 87 88 struct backref_cache { 89 /* red black tree of all backref nodes in the cache */ 90 struct rb_root rb_root; 91 /* for passing backref nodes to btrfs_reloc_cow_block */ 92 struct backref_node *path[BTRFS_MAX_LEVEL]; 93 /* 94 * list of blocks that have been cowed but some block 95 * pointers in upper level blocks may not reflect the 96 * new location 97 */ 98 struct list_head pending[BTRFS_MAX_LEVEL]; 99 /* list of backref nodes with no child node */ 100 struct list_head leaves; 101 /* list of blocks that have been cowed in current transaction */ 102 struct list_head changed; 103 /* list of detached backref node. */ 104 struct list_head detached; 105 106 u64 last_trans; 107 108 int nr_nodes; 109 int nr_edges; 110 }; 111 112 /* 113 * map address of tree root to tree 114 */ 115 struct mapping_node { 116 struct rb_node rb_node; 117 u64 bytenr; 118 void *data; 119 }; 120 121 struct mapping_tree { 122 struct rb_root rb_root; 123 spinlock_t lock; 124 }; 125 126 /* 127 * present a tree block to process 128 */ 129 struct tree_block { 130 struct rb_node rb_node; 131 u64 bytenr; 132 struct btrfs_key key; 133 unsigned int level:8; 134 unsigned int key_ready:1; 135 }; 136 137 #define MAX_EXTENTS 128 138 139 struct file_extent_cluster { 140 u64 start; 141 u64 end; 142 u64 boundary[MAX_EXTENTS]; 143 unsigned int nr; 144 }; 145 146 struct reloc_control { 147 /* block group to relocate */ 148 struct btrfs_block_group_cache *block_group; 149 /* extent tree */ 150 struct btrfs_root *extent_root; 151 /* inode for moving data */ 152 struct inode *data_inode; 153 154 struct btrfs_block_rsv *block_rsv; 155 156 struct backref_cache backref_cache; 157 158 struct file_extent_cluster cluster; 159 /* tree blocks have been processed */ 160 struct extent_io_tree processed_blocks; 161 /* map start of tree root to corresponding reloc tree */ 162 struct mapping_tree reloc_root_tree; 163 /* list of reloc trees */ 164 struct list_head reloc_roots; 165 /* size of metadata reservation for merging reloc trees */ 166 u64 merging_rsv_size; 167 /* size of relocated tree nodes */ 168 u64 nodes_relocated; 169 /* reserved size for block group relocation*/ 170 u64 reserved_bytes; 171 172 u64 search_start; 173 u64 extents_found; 174 175 unsigned int stage:8; 176 unsigned int create_reloc_tree:1; 177 unsigned int merge_reloc_tree:1; 178 unsigned int found_file_extent:1; 179 }; 180 181 /* stages of data relocation */ 182 #define MOVE_DATA_EXTENTS 0 183 #define UPDATE_DATA_PTRS 1 184 185 static void remove_backref_node(struct backref_cache *cache, 186 struct backref_node *node); 187 static void __mark_block_processed(struct reloc_control *rc, 188 struct backref_node *node); 189 190 static void mapping_tree_init(struct mapping_tree *tree) 191 { 192 tree->rb_root = RB_ROOT; 193 spin_lock_init(&tree->lock); 194 } 195 196 static void backref_cache_init(struct backref_cache *cache) 197 { 198 int i; 199 cache->rb_root = RB_ROOT; 200 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 201 INIT_LIST_HEAD(&cache->pending[i]); 202 INIT_LIST_HEAD(&cache->changed); 203 INIT_LIST_HEAD(&cache->detached); 204 INIT_LIST_HEAD(&cache->leaves); 205 } 206 207 static void backref_cache_cleanup(struct backref_cache *cache) 208 { 209 struct backref_node *node; 210 int i; 211 212 while (!list_empty(&cache->detached)) { 213 node = list_entry(cache->detached.next, 214 struct backref_node, list); 215 remove_backref_node(cache, node); 216 } 217 218 while (!list_empty(&cache->leaves)) { 219 node = list_entry(cache->leaves.next, 220 struct backref_node, lower); 221 remove_backref_node(cache, node); 222 } 223 224 cache->last_trans = 0; 225 226 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 227 ASSERT(list_empty(&cache->pending[i])); 228 ASSERT(list_empty(&cache->changed)); 229 ASSERT(list_empty(&cache->detached)); 230 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 231 ASSERT(!cache->nr_nodes); 232 ASSERT(!cache->nr_edges); 233 } 234 235 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 236 { 237 struct backref_node *node; 238 239 node = kzalloc(sizeof(*node), GFP_NOFS); 240 if (node) { 241 INIT_LIST_HEAD(&node->list); 242 INIT_LIST_HEAD(&node->upper); 243 INIT_LIST_HEAD(&node->lower); 244 RB_CLEAR_NODE(&node->rb_node); 245 cache->nr_nodes++; 246 } 247 return node; 248 } 249 250 static void free_backref_node(struct backref_cache *cache, 251 struct backref_node *node) 252 { 253 if (node) { 254 cache->nr_nodes--; 255 kfree(node); 256 } 257 } 258 259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 260 { 261 struct backref_edge *edge; 262 263 edge = kzalloc(sizeof(*edge), GFP_NOFS); 264 if (edge) 265 cache->nr_edges++; 266 return edge; 267 } 268 269 static void free_backref_edge(struct backref_cache *cache, 270 struct backref_edge *edge) 271 { 272 if (edge) { 273 cache->nr_edges--; 274 kfree(edge); 275 } 276 } 277 278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 279 struct rb_node *node) 280 { 281 struct rb_node **p = &root->rb_node; 282 struct rb_node *parent = NULL; 283 struct tree_entry *entry; 284 285 while (*p) { 286 parent = *p; 287 entry = rb_entry(parent, struct tree_entry, rb_node); 288 289 if (bytenr < entry->bytenr) 290 p = &(*p)->rb_left; 291 else if (bytenr > entry->bytenr) 292 p = &(*p)->rb_right; 293 else 294 return parent; 295 } 296 297 rb_link_node(node, parent, p); 298 rb_insert_color(node, root); 299 return NULL; 300 } 301 302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 303 { 304 struct rb_node *n = root->rb_node; 305 struct tree_entry *entry; 306 307 while (n) { 308 entry = rb_entry(n, struct tree_entry, rb_node); 309 310 if (bytenr < entry->bytenr) 311 n = n->rb_left; 312 else if (bytenr > entry->bytenr) 313 n = n->rb_right; 314 else 315 return n; 316 } 317 return NULL; 318 } 319 320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 321 { 322 323 struct btrfs_fs_info *fs_info = NULL; 324 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 325 rb_node); 326 if (bnode->root) 327 fs_info = bnode->root->fs_info; 328 btrfs_panic(fs_info, errno, 329 "Inconsistency in backref cache found at offset %llu", 330 bytenr); 331 } 332 333 /* 334 * walk up backref nodes until reach node presents tree root 335 */ 336 static struct backref_node *walk_up_backref(struct backref_node *node, 337 struct backref_edge *edges[], 338 int *index) 339 { 340 struct backref_edge *edge; 341 int idx = *index; 342 343 while (!list_empty(&node->upper)) { 344 edge = list_entry(node->upper.next, 345 struct backref_edge, list[LOWER]); 346 edges[idx++] = edge; 347 node = edge->node[UPPER]; 348 } 349 BUG_ON(node->detached); 350 *index = idx; 351 return node; 352 } 353 354 /* 355 * walk down backref nodes to find start of next reference path 356 */ 357 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 358 int *index) 359 { 360 struct backref_edge *edge; 361 struct backref_node *lower; 362 int idx = *index; 363 364 while (idx > 0) { 365 edge = edges[idx - 1]; 366 lower = edge->node[LOWER]; 367 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 368 idx--; 369 continue; 370 } 371 edge = list_entry(edge->list[LOWER].next, 372 struct backref_edge, list[LOWER]); 373 edges[idx - 1] = edge; 374 *index = idx; 375 return edge->node[UPPER]; 376 } 377 *index = 0; 378 return NULL; 379 } 380 381 static void unlock_node_buffer(struct backref_node *node) 382 { 383 if (node->locked) { 384 btrfs_tree_unlock(node->eb); 385 node->locked = 0; 386 } 387 } 388 389 static void drop_node_buffer(struct backref_node *node) 390 { 391 if (node->eb) { 392 unlock_node_buffer(node); 393 free_extent_buffer(node->eb); 394 node->eb = NULL; 395 } 396 } 397 398 static void drop_backref_node(struct backref_cache *tree, 399 struct backref_node *node) 400 { 401 BUG_ON(!list_empty(&node->upper)); 402 403 drop_node_buffer(node); 404 list_del(&node->list); 405 list_del(&node->lower); 406 if (!RB_EMPTY_NODE(&node->rb_node)) 407 rb_erase(&node->rb_node, &tree->rb_root); 408 free_backref_node(tree, node); 409 } 410 411 /* 412 * remove a backref node from the backref cache 413 */ 414 static void remove_backref_node(struct backref_cache *cache, 415 struct backref_node *node) 416 { 417 struct backref_node *upper; 418 struct backref_edge *edge; 419 420 if (!node) 421 return; 422 423 BUG_ON(!node->lowest && !node->detached); 424 while (!list_empty(&node->upper)) { 425 edge = list_entry(node->upper.next, struct backref_edge, 426 list[LOWER]); 427 upper = edge->node[UPPER]; 428 list_del(&edge->list[LOWER]); 429 list_del(&edge->list[UPPER]); 430 free_backref_edge(cache, edge); 431 432 if (RB_EMPTY_NODE(&upper->rb_node)) { 433 BUG_ON(!list_empty(&node->upper)); 434 drop_backref_node(cache, node); 435 node = upper; 436 node->lowest = 1; 437 continue; 438 } 439 /* 440 * add the node to leaf node list if no other 441 * child block cached. 442 */ 443 if (list_empty(&upper->lower)) { 444 list_add_tail(&upper->lower, &cache->leaves); 445 upper->lowest = 1; 446 } 447 } 448 449 drop_backref_node(cache, node); 450 } 451 452 static void update_backref_node(struct backref_cache *cache, 453 struct backref_node *node, u64 bytenr) 454 { 455 struct rb_node *rb_node; 456 rb_erase(&node->rb_node, &cache->rb_root); 457 node->bytenr = bytenr; 458 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 459 if (rb_node) 460 backref_tree_panic(rb_node, -EEXIST, bytenr); 461 } 462 463 /* 464 * update backref cache after a transaction commit 465 */ 466 static int update_backref_cache(struct btrfs_trans_handle *trans, 467 struct backref_cache *cache) 468 { 469 struct backref_node *node; 470 int level = 0; 471 472 if (cache->last_trans == 0) { 473 cache->last_trans = trans->transid; 474 return 0; 475 } 476 477 if (cache->last_trans == trans->transid) 478 return 0; 479 480 /* 481 * detached nodes are used to avoid unnecessary backref 482 * lookup. transaction commit changes the extent tree. 483 * so the detached nodes are no longer useful. 484 */ 485 while (!list_empty(&cache->detached)) { 486 node = list_entry(cache->detached.next, 487 struct backref_node, list); 488 remove_backref_node(cache, node); 489 } 490 491 while (!list_empty(&cache->changed)) { 492 node = list_entry(cache->changed.next, 493 struct backref_node, list); 494 list_del_init(&node->list); 495 BUG_ON(node->pending); 496 update_backref_node(cache, node, node->new_bytenr); 497 } 498 499 /* 500 * some nodes can be left in the pending list if there were 501 * errors during processing the pending nodes. 502 */ 503 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 504 list_for_each_entry(node, &cache->pending[level], list) { 505 BUG_ON(!node->pending); 506 if (node->bytenr == node->new_bytenr) 507 continue; 508 update_backref_node(cache, node, node->new_bytenr); 509 } 510 } 511 512 cache->last_trans = 0; 513 return 1; 514 } 515 516 517 static int should_ignore_root(struct btrfs_root *root) 518 { 519 struct btrfs_root *reloc_root; 520 521 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 522 return 0; 523 524 reloc_root = root->reloc_root; 525 if (!reloc_root) 526 return 0; 527 528 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 529 root->fs_info->running_transaction->transid - 1) 530 return 0; 531 /* 532 * if there is reloc tree and it was created in previous 533 * transaction backref lookup can find the reloc tree, 534 * so backref node for the fs tree root is useless for 535 * relocation. 536 */ 537 return 1; 538 } 539 /* 540 * find reloc tree by address of tree root 541 */ 542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 543 u64 bytenr) 544 { 545 struct rb_node *rb_node; 546 struct mapping_node *node; 547 struct btrfs_root *root = NULL; 548 549 spin_lock(&rc->reloc_root_tree.lock); 550 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 551 if (rb_node) { 552 node = rb_entry(rb_node, struct mapping_node, rb_node); 553 root = (struct btrfs_root *)node->data; 554 } 555 spin_unlock(&rc->reloc_root_tree.lock); 556 return root; 557 } 558 559 static int is_cowonly_root(u64 root_objectid) 560 { 561 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 562 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 563 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 564 root_objectid == BTRFS_DEV_TREE_OBJECTID || 565 root_objectid == BTRFS_TREE_LOG_OBJECTID || 566 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 567 root_objectid == BTRFS_UUID_TREE_OBJECTID || 568 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 569 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 570 return 1; 571 return 0; 572 } 573 574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 575 u64 root_objectid) 576 { 577 struct btrfs_key key; 578 579 key.objectid = root_objectid; 580 key.type = BTRFS_ROOT_ITEM_KEY; 581 if (is_cowonly_root(root_objectid)) 582 key.offset = 0; 583 else 584 key.offset = (u64)-1; 585 586 return btrfs_get_fs_root(fs_info, &key, false); 587 } 588 589 static noinline_for_stack 590 int find_inline_backref(struct extent_buffer *leaf, int slot, 591 unsigned long *ptr, unsigned long *end) 592 { 593 struct btrfs_key key; 594 struct btrfs_extent_item *ei; 595 struct btrfs_tree_block_info *bi; 596 u32 item_size; 597 598 btrfs_item_key_to_cpu(leaf, &key, slot); 599 600 item_size = btrfs_item_size_nr(leaf, slot); 601 if (item_size < sizeof(*ei)) { 602 btrfs_print_v0_err(leaf->fs_info); 603 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL); 604 return 1; 605 } 606 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 607 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 608 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 609 610 if (key.type == BTRFS_EXTENT_ITEM_KEY && 611 item_size <= sizeof(*ei) + sizeof(*bi)) { 612 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 613 return 1; 614 } 615 if (key.type == BTRFS_METADATA_ITEM_KEY && 616 item_size <= sizeof(*ei)) { 617 WARN_ON(item_size < sizeof(*ei)); 618 return 1; 619 } 620 621 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 622 bi = (struct btrfs_tree_block_info *)(ei + 1); 623 *ptr = (unsigned long)(bi + 1); 624 } else { 625 *ptr = (unsigned long)(ei + 1); 626 } 627 *end = (unsigned long)ei + item_size; 628 return 0; 629 } 630 631 /* 632 * build backref tree for a given tree block. root of the backref tree 633 * corresponds the tree block, leaves of the backref tree correspond 634 * roots of b-trees that reference the tree block. 635 * 636 * the basic idea of this function is check backrefs of a given block 637 * to find upper level blocks that reference the block, and then check 638 * backrefs of these upper level blocks recursively. the recursion stop 639 * when tree root is reached or backrefs for the block is cached. 640 * 641 * NOTE: if we find backrefs for a block are cached, we know backrefs 642 * for all upper level blocks that directly/indirectly reference the 643 * block are also cached. 644 */ 645 static noinline_for_stack 646 struct backref_node *build_backref_tree(struct reloc_control *rc, 647 struct btrfs_key *node_key, 648 int level, u64 bytenr) 649 { 650 struct backref_cache *cache = &rc->backref_cache; 651 struct btrfs_path *path1; /* For searching extent root */ 652 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */ 653 struct extent_buffer *eb; 654 struct btrfs_root *root; 655 struct backref_node *cur; 656 struct backref_node *upper; 657 struct backref_node *lower; 658 struct backref_node *node = NULL; 659 struct backref_node *exist = NULL; 660 struct backref_edge *edge; 661 struct rb_node *rb_node; 662 struct btrfs_key key; 663 unsigned long end; 664 unsigned long ptr; 665 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */ 666 LIST_HEAD(useless); 667 int cowonly; 668 int ret; 669 int err = 0; 670 bool need_check = true; 671 672 path1 = btrfs_alloc_path(); 673 path2 = btrfs_alloc_path(); 674 if (!path1 || !path2) { 675 err = -ENOMEM; 676 goto out; 677 } 678 path1->reada = READA_FORWARD; 679 path2->reada = READA_FORWARD; 680 681 node = alloc_backref_node(cache); 682 if (!node) { 683 err = -ENOMEM; 684 goto out; 685 } 686 687 node->bytenr = bytenr; 688 node->level = level; 689 node->lowest = 1; 690 cur = node; 691 again: 692 end = 0; 693 ptr = 0; 694 key.objectid = cur->bytenr; 695 key.type = BTRFS_METADATA_ITEM_KEY; 696 key.offset = (u64)-1; 697 698 path1->search_commit_root = 1; 699 path1->skip_locking = 1; 700 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 701 0, 0); 702 if (ret < 0) { 703 err = ret; 704 goto out; 705 } 706 ASSERT(ret); 707 ASSERT(path1->slots[0]); 708 709 path1->slots[0]--; 710 711 WARN_ON(cur->checked); 712 if (!list_empty(&cur->upper)) { 713 /* 714 * the backref was added previously when processing 715 * backref of type BTRFS_TREE_BLOCK_REF_KEY 716 */ 717 ASSERT(list_is_singular(&cur->upper)); 718 edge = list_entry(cur->upper.next, struct backref_edge, 719 list[LOWER]); 720 ASSERT(list_empty(&edge->list[UPPER])); 721 exist = edge->node[UPPER]; 722 /* 723 * add the upper level block to pending list if we need 724 * check its backrefs 725 */ 726 if (!exist->checked) 727 list_add_tail(&edge->list[UPPER], &list); 728 } else { 729 exist = NULL; 730 } 731 732 while (1) { 733 cond_resched(); 734 eb = path1->nodes[0]; 735 736 if (ptr >= end) { 737 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 738 ret = btrfs_next_leaf(rc->extent_root, path1); 739 if (ret < 0) { 740 err = ret; 741 goto out; 742 } 743 if (ret > 0) 744 break; 745 eb = path1->nodes[0]; 746 } 747 748 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 749 if (key.objectid != cur->bytenr) { 750 WARN_ON(exist); 751 break; 752 } 753 754 if (key.type == BTRFS_EXTENT_ITEM_KEY || 755 key.type == BTRFS_METADATA_ITEM_KEY) { 756 ret = find_inline_backref(eb, path1->slots[0], 757 &ptr, &end); 758 if (ret) 759 goto next; 760 } 761 } 762 763 if (ptr < end) { 764 /* update key for inline back ref */ 765 struct btrfs_extent_inline_ref *iref; 766 int type; 767 iref = (struct btrfs_extent_inline_ref *)ptr; 768 type = btrfs_get_extent_inline_ref_type(eb, iref, 769 BTRFS_REF_TYPE_BLOCK); 770 if (type == BTRFS_REF_TYPE_INVALID) { 771 err = -EUCLEAN; 772 goto out; 773 } 774 key.type = type; 775 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 776 777 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 778 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 779 } 780 781 /* 782 * Parent node found and matches current inline ref, no need to 783 * rebuild this node for this inline ref. 784 */ 785 if (exist && 786 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 787 exist->owner == key.offset) || 788 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 789 exist->bytenr == key.offset))) { 790 exist = NULL; 791 goto next; 792 } 793 794 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 795 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 796 if (key.objectid == key.offset) { 797 /* 798 * Only root blocks of reloc trees use backref 799 * pointing to itself. 800 */ 801 root = find_reloc_root(rc, cur->bytenr); 802 ASSERT(root); 803 cur->root = root; 804 break; 805 } 806 807 edge = alloc_backref_edge(cache); 808 if (!edge) { 809 err = -ENOMEM; 810 goto out; 811 } 812 rb_node = tree_search(&cache->rb_root, key.offset); 813 if (!rb_node) { 814 upper = alloc_backref_node(cache); 815 if (!upper) { 816 free_backref_edge(cache, edge); 817 err = -ENOMEM; 818 goto out; 819 } 820 upper->bytenr = key.offset; 821 upper->level = cur->level + 1; 822 /* 823 * backrefs for the upper level block isn't 824 * cached, add the block to pending list 825 */ 826 list_add_tail(&edge->list[UPPER], &list); 827 } else { 828 upper = rb_entry(rb_node, struct backref_node, 829 rb_node); 830 ASSERT(upper->checked); 831 INIT_LIST_HEAD(&edge->list[UPPER]); 832 } 833 list_add_tail(&edge->list[LOWER], &cur->upper); 834 edge->node[LOWER] = cur; 835 edge->node[UPPER] = upper; 836 837 goto next; 838 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 839 err = -EINVAL; 840 btrfs_print_v0_err(rc->extent_root->fs_info); 841 btrfs_handle_fs_error(rc->extent_root->fs_info, err, 842 NULL); 843 goto out; 844 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 845 goto next; 846 } 847 848 /* 849 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 850 * means the root objectid. We need to search the tree to get 851 * its parent bytenr. 852 */ 853 root = read_fs_root(rc->extent_root->fs_info, key.offset); 854 if (IS_ERR(root)) { 855 err = PTR_ERR(root); 856 goto out; 857 } 858 859 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 860 cur->cowonly = 1; 861 862 if (btrfs_root_level(&root->root_item) == cur->level) { 863 /* tree root */ 864 ASSERT(btrfs_root_bytenr(&root->root_item) == 865 cur->bytenr); 866 if (should_ignore_root(root)) 867 list_add(&cur->list, &useless); 868 else 869 cur->root = root; 870 break; 871 } 872 873 level = cur->level + 1; 874 875 /* Search the tree to find parent blocks referring the block. */ 876 path2->search_commit_root = 1; 877 path2->skip_locking = 1; 878 path2->lowest_level = level; 879 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 880 path2->lowest_level = 0; 881 if (ret < 0) { 882 err = ret; 883 goto out; 884 } 885 if (ret > 0 && path2->slots[level] > 0) 886 path2->slots[level]--; 887 888 eb = path2->nodes[level]; 889 if (btrfs_node_blockptr(eb, path2->slots[level]) != 890 cur->bytenr) { 891 btrfs_err(root->fs_info, 892 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 893 cur->bytenr, level - 1, 894 root->root_key.objectid, 895 node_key->objectid, node_key->type, 896 node_key->offset); 897 err = -ENOENT; 898 goto out; 899 } 900 lower = cur; 901 need_check = true; 902 903 /* Add all nodes and edges in the path */ 904 for (; level < BTRFS_MAX_LEVEL; level++) { 905 if (!path2->nodes[level]) { 906 ASSERT(btrfs_root_bytenr(&root->root_item) == 907 lower->bytenr); 908 if (should_ignore_root(root)) 909 list_add(&lower->list, &useless); 910 else 911 lower->root = root; 912 break; 913 } 914 915 edge = alloc_backref_edge(cache); 916 if (!edge) { 917 err = -ENOMEM; 918 goto out; 919 } 920 921 eb = path2->nodes[level]; 922 rb_node = tree_search(&cache->rb_root, eb->start); 923 if (!rb_node) { 924 upper = alloc_backref_node(cache); 925 if (!upper) { 926 free_backref_edge(cache, edge); 927 err = -ENOMEM; 928 goto out; 929 } 930 upper->bytenr = eb->start; 931 upper->owner = btrfs_header_owner(eb); 932 upper->level = lower->level + 1; 933 if (!test_bit(BTRFS_ROOT_REF_COWS, 934 &root->state)) 935 upper->cowonly = 1; 936 937 /* 938 * if we know the block isn't shared 939 * we can void checking its backrefs. 940 */ 941 if (btrfs_block_can_be_shared(root, eb)) 942 upper->checked = 0; 943 else 944 upper->checked = 1; 945 946 /* 947 * add the block to pending list if we 948 * need check its backrefs, we only do this once 949 * while walking up a tree as we will catch 950 * anything else later on. 951 */ 952 if (!upper->checked && need_check) { 953 need_check = false; 954 list_add_tail(&edge->list[UPPER], 955 &list); 956 } else { 957 if (upper->checked) 958 need_check = true; 959 INIT_LIST_HEAD(&edge->list[UPPER]); 960 } 961 } else { 962 upper = rb_entry(rb_node, struct backref_node, 963 rb_node); 964 ASSERT(upper->checked); 965 INIT_LIST_HEAD(&edge->list[UPPER]); 966 if (!upper->owner) 967 upper->owner = btrfs_header_owner(eb); 968 } 969 list_add_tail(&edge->list[LOWER], &lower->upper); 970 edge->node[LOWER] = lower; 971 edge->node[UPPER] = upper; 972 973 if (rb_node) 974 break; 975 lower = upper; 976 upper = NULL; 977 } 978 btrfs_release_path(path2); 979 next: 980 if (ptr < end) { 981 ptr += btrfs_extent_inline_ref_size(key.type); 982 if (ptr >= end) { 983 WARN_ON(ptr > end); 984 ptr = 0; 985 end = 0; 986 } 987 } 988 if (ptr >= end) 989 path1->slots[0]++; 990 } 991 btrfs_release_path(path1); 992 993 cur->checked = 1; 994 WARN_ON(exist); 995 996 /* the pending list isn't empty, take the first block to process */ 997 if (!list_empty(&list)) { 998 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 999 list_del_init(&edge->list[UPPER]); 1000 cur = edge->node[UPPER]; 1001 goto again; 1002 } 1003 1004 /* 1005 * everything goes well, connect backref nodes and insert backref nodes 1006 * into the cache. 1007 */ 1008 ASSERT(node->checked); 1009 cowonly = node->cowonly; 1010 if (!cowonly) { 1011 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1012 &node->rb_node); 1013 if (rb_node) 1014 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1015 list_add_tail(&node->lower, &cache->leaves); 1016 } 1017 1018 list_for_each_entry(edge, &node->upper, list[LOWER]) 1019 list_add_tail(&edge->list[UPPER], &list); 1020 1021 while (!list_empty(&list)) { 1022 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1023 list_del_init(&edge->list[UPPER]); 1024 upper = edge->node[UPPER]; 1025 if (upper->detached) { 1026 list_del(&edge->list[LOWER]); 1027 lower = edge->node[LOWER]; 1028 free_backref_edge(cache, edge); 1029 if (list_empty(&lower->upper)) 1030 list_add(&lower->list, &useless); 1031 continue; 1032 } 1033 1034 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1035 if (upper->lowest) { 1036 list_del_init(&upper->lower); 1037 upper->lowest = 0; 1038 } 1039 1040 list_add_tail(&edge->list[UPPER], &upper->lower); 1041 continue; 1042 } 1043 1044 if (!upper->checked) { 1045 /* 1046 * Still want to blow up for developers since this is a 1047 * logic bug. 1048 */ 1049 ASSERT(0); 1050 err = -EINVAL; 1051 goto out; 1052 } 1053 if (cowonly != upper->cowonly) { 1054 ASSERT(0); 1055 err = -EINVAL; 1056 goto out; 1057 } 1058 1059 if (!cowonly) { 1060 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1061 &upper->rb_node); 1062 if (rb_node) 1063 backref_tree_panic(rb_node, -EEXIST, 1064 upper->bytenr); 1065 } 1066 1067 list_add_tail(&edge->list[UPPER], &upper->lower); 1068 1069 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1070 list_add_tail(&edge->list[UPPER], &list); 1071 } 1072 /* 1073 * process useless backref nodes. backref nodes for tree leaves 1074 * are deleted from the cache. backref nodes for upper level 1075 * tree blocks are left in the cache to avoid unnecessary backref 1076 * lookup. 1077 */ 1078 while (!list_empty(&useless)) { 1079 upper = list_entry(useless.next, struct backref_node, list); 1080 list_del_init(&upper->list); 1081 ASSERT(list_empty(&upper->upper)); 1082 if (upper == node) 1083 node = NULL; 1084 if (upper->lowest) { 1085 list_del_init(&upper->lower); 1086 upper->lowest = 0; 1087 } 1088 while (!list_empty(&upper->lower)) { 1089 edge = list_entry(upper->lower.next, 1090 struct backref_edge, list[UPPER]); 1091 list_del(&edge->list[UPPER]); 1092 list_del(&edge->list[LOWER]); 1093 lower = edge->node[LOWER]; 1094 free_backref_edge(cache, edge); 1095 1096 if (list_empty(&lower->upper)) 1097 list_add(&lower->list, &useless); 1098 } 1099 __mark_block_processed(rc, upper); 1100 if (upper->level > 0) { 1101 list_add(&upper->list, &cache->detached); 1102 upper->detached = 1; 1103 } else { 1104 rb_erase(&upper->rb_node, &cache->rb_root); 1105 free_backref_node(cache, upper); 1106 } 1107 } 1108 out: 1109 btrfs_free_path(path1); 1110 btrfs_free_path(path2); 1111 if (err) { 1112 while (!list_empty(&useless)) { 1113 lower = list_entry(useless.next, 1114 struct backref_node, list); 1115 list_del_init(&lower->list); 1116 } 1117 while (!list_empty(&list)) { 1118 edge = list_first_entry(&list, struct backref_edge, 1119 list[UPPER]); 1120 list_del(&edge->list[UPPER]); 1121 list_del(&edge->list[LOWER]); 1122 lower = edge->node[LOWER]; 1123 upper = edge->node[UPPER]; 1124 free_backref_edge(cache, edge); 1125 1126 /* 1127 * Lower is no longer linked to any upper backref nodes 1128 * and isn't in the cache, we can free it ourselves. 1129 */ 1130 if (list_empty(&lower->upper) && 1131 RB_EMPTY_NODE(&lower->rb_node)) 1132 list_add(&lower->list, &useless); 1133 1134 if (!RB_EMPTY_NODE(&upper->rb_node)) 1135 continue; 1136 1137 /* Add this guy's upper edges to the list to process */ 1138 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1139 list_add_tail(&edge->list[UPPER], &list); 1140 if (list_empty(&upper->upper)) 1141 list_add(&upper->list, &useless); 1142 } 1143 1144 while (!list_empty(&useless)) { 1145 lower = list_entry(useless.next, 1146 struct backref_node, list); 1147 list_del_init(&lower->list); 1148 if (lower == node) 1149 node = NULL; 1150 free_backref_node(cache, lower); 1151 } 1152 1153 free_backref_node(cache, node); 1154 return ERR_PTR(err); 1155 } 1156 ASSERT(!node || !node->detached); 1157 return node; 1158 } 1159 1160 /* 1161 * helper to add backref node for the newly created snapshot. 1162 * the backref node is created by cloning backref node that 1163 * corresponds to root of source tree 1164 */ 1165 static int clone_backref_node(struct btrfs_trans_handle *trans, 1166 struct reloc_control *rc, 1167 struct btrfs_root *src, 1168 struct btrfs_root *dest) 1169 { 1170 struct btrfs_root *reloc_root = src->reloc_root; 1171 struct backref_cache *cache = &rc->backref_cache; 1172 struct backref_node *node = NULL; 1173 struct backref_node *new_node; 1174 struct backref_edge *edge; 1175 struct backref_edge *new_edge; 1176 struct rb_node *rb_node; 1177 1178 if (cache->last_trans > 0) 1179 update_backref_cache(trans, cache); 1180 1181 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1182 if (rb_node) { 1183 node = rb_entry(rb_node, struct backref_node, rb_node); 1184 if (node->detached) 1185 node = NULL; 1186 else 1187 BUG_ON(node->new_bytenr != reloc_root->node->start); 1188 } 1189 1190 if (!node) { 1191 rb_node = tree_search(&cache->rb_root, 1192 reloc_root->commit_root->start); 1193 if (rb_node) { 1194 node = rb_entry(rb_node, struct backref_node, 1195 rb_node); 1196 BUG_ON(node->detached); 1197 } 1198 } 1199 1200 if (!node) 1201 return 0; 1202 1203 new_node = alloc_backref_node(cache); 1204 if (!new_node) 1205 return -ENOMEM; 1206 1207 new_node->bytenr = dest->node->start; 1208 new_node->level = node->level; 1209 new_node->lowest = node->lowest; 1210 new_node->checked = 1; 1211 new_node->root = dest; 1212 1213 if (!node->lowest) { 1214 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1215 new_edge = alloc_backref_edge(cache); 1216 if (!new_edge) 1217 goto fail; 1218 1219 new_edge->node[UPPER] = new_node; 1220 new_edge->node[LOWER] = edge->node[LOWER]; 1221 list_add_tail(&new_edge->list[UPPER], 1222 &new_node->lower); 1223 } 1224 } else { 1225 list_add_tail(&new_node->lower, &cache->leaves); 1226 } 1227 1228 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1229 &new_node->rb_node); 1230 if (rb_node) 1231 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1232 1233 if (!new_node->lowest) { 1234 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1235 list_add_tail(&new_edge->list[LOWER], 1236 &new_edge->node[LOWER]->upper); 1237 } 1238 } 1239 return 0; 1240 fail: 1241 while (!list_empty(&new_node->lower)) { 1242 new_edge = list_entry(new_node->lower.next, 1243 struct backref_edge, list[UPPER]); 1244 list_del(&new_edge->list[UPPER]); 1245 free_backref_edge(cache, new_edge); 1246 } 1247 free_backref_node(cache, new_node); 1248 return -ENOMEM; 1249 } 1250 1251 /* 1252 * helper to add 'address of tree root -> reloc tree' mapping 1253 */ 1254 static int __must_check __add_reloc_root(struct btrfs_root *root) 1255 { 1256 struct btrfs_fs_info *fs_info = root->fs_info; 1257 struct rb_node *rb_node; 1258 struct mapping_node *node; 1259 struct reloc_control *rc = fs_info->reloc_ctl; 1260 1261 node = kmalloc(sizeof(*node), GFP_NOFS); 1262 if (!node) 1263 return -ENOMEM; 1264 1265 node->bytenr = root->node->start; 1266 node->data = root; 1267 1268 spin_lock(&rc->reloc_root_tree.lock); 1269 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1270 node->bytenr, &node->rb_node); 1271 spin_unlock(&rc->reloc_root_tree.lock); 1272 if (rb_node) { 1273 btrfs_panic(fs_info, -EEXIST, 1274 "Duplicate root found for start=%llu while inserting into relocation tree", 1275 node->bytenr); 1276 } 1277 1278 list_add_tail(&root->root_list, &rc->reloc_roots); 1279 return 0; 1280 } 1281 1282 /* 1283 * helper to delete the 'address of tree root -> reloc tree' 1284 * mapping 1285 */ 1286 static void __del_reloc_root(struct btrfs_root *root) 1287 { 1288 struct btrfs_fs_info *fs_info = root->fs_info; 1289 struct rb_node *rb_node; 1290 struct mapping_node *node = NULL; 1291 struct reloc_control *rc = fs_info->reloc_ctl; 1292 1293 if (rc && root->node) { 1294 spin_lock(&rc->reloc_root_tree.lock); 1295 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1296 root->node->start); 1297 if (rb_node) { 1298 node = rb_entry(rb_node, struct mapping_node, rb_node); 1299 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1300 } 1301 spin_unlock(&rc->reloc_root_tree.lock); 1302 if (!node) 1303 return; 1304 BUG_ON((struct btrfs_root *)node->data != root); 1305 } 1306 1307 spin_lock(&fs_info->trans_lock); 1308 list_del_init(&root->root_list); 1309 spin_unlock(&fs_info->trans_lock); 1310 kfree(node); 1311 } 1312 1313 /* 1314 * helper to update the 'address of tree root -> reloc tree' 1315 * mapping 1316 */ 1317 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1318 { 1319 struct btrfs_fs_info *fs_info = root->fs_info; 1320 struct rb_node *rb_node; 1321 struct mapping_node *node = NULL; 1322 struct reloc_control *rc = fs_info->reloc_ctl; 1323 1324 spin_lock(&rc->reloc_root_tree.lock); 1325 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1326 root->node->start); 1327 if (rb_node) { 1328 node = rb_entry(rb_node, struct mapping_node, rb_node); 1329 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1330 } 1331 spin_unlock(&rc->reloc_root_tree.lock); 1332 1333 if (!node) 1334 return 0; 1335 BUG_ON((struct btrfs_root *)node->data != root); 1336 1337 spin_lock(&rc->reloc_root_tree.lock); 1338 node->bytenr = new_bytenr; 1339 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1340 node->bytenr, &node->rb_node); 1341 spin_unlock(&rc->reloc_root_tree.lock); 1342 if (rb_node) 1343 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1344 return 0; 1345 } 1346 1347 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1348 struct btrfs_root *root, u64 objectid) 1349 { 1350 struct btrfs_fs_info *fs_info = root->fs_info; 1351 struct btrfs_root *reloc_root; 1352 struct extent_buffer *eb; 1353 struct btrfs_root_item *root_item; 1354 struct btrfs_key root_key; 1355 int ret; 1356 1357 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1358 BUG_ON(!root_item); 1359 1360 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1361 root_key.type = BTRFS_ROOT_ITEM_KEY; 1362 root_key.offset = objectid; 1363 1364 if (root->root_key.objectid == objectid) { 1365 u64 commit_root_gen; 1366 1367 /* called by btrfs_init_reloc_root */ 1368 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1369 BTRFS_TREE_RELOC_OBJECTID); 1370 BUG_ON(ret); 1371 /* 1372 * Set the last_snapshot field to the generation of the commit 1373 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1374 * correctly (returns true) when the relocation root is created 1375 * either inside the critical section of a transaction commit 1376 * (through transaction.c:qgroup_account_snapshot()) and when 1377 * it's created before the transaction commit is started. 1378 */ 1379 commit_root_gen = btrfs_header_generation(root->commit_root); 1380 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1381 } else { 1382 /* 1383 * called by btrfs_reloc_post_snapshot_hook. 1384 * the source tree is a reloc tree, all tree blocks 1385 * modified after it was created have RELOC flag 1386 * set in their headers. so it's OK to not update 1387 * the 'last_snapshot'. 1388 */ 1389 ret = btrfs_copy_root(trans, root, root->node, &eb, 1390 BTRFS_TREE_RELOC_OBJECTID); 1391 BUG_ON(ret); 1392 } 1393 1394 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1395 btrfs_set_root_bytenr(root_item, eb->start); 1396 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1397 btrfs_set_root_generation(root_item, trans->transid); 1398 1399 if (root->root_key.objectid == objectid) { 1400 btrfs_set_root_refs(root_item, 0); 1401 memset(&root_item->drop_progress, 0, 1402 sizeof(struct btrfs_disk_key)); 1403 root_item->drop_level = 0; 1404 } 1405 1406 btrfs_tree_unlock(eb); 1407 free_extent_buffer(eb); 1408 1409 ret = btrfs_insert_root(trans, fs_info->tree_root, 1410 &root_key, root_item); 1411 BUG_ON(ret); 1412 kfree(root_item); 1413 1414 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1415 BUG_ON(IS_ERR(reloc_root)); 1416 reloc_root->last_trans = trans->transid; 1417 return reloc_root; 1418 } 1419 1420 /* 1421 * create reloc tree for a given fs tree. reloc tree is just a 1422 * snapshot of the fs tree with special root objectid. 1423 */ 1424 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1425 struct btrfs_root *root) 1426 { 1427 struct btrfs_fs_info *fs_info = root->fs_info; 1428 struct btrfs_root *reloc_root; 1429 struct reloc_control *rc = fs_info->reloc_ctl; 1430 struct btrfs_block_rsv *rsv; 1431 int clear_rsv = 0; 1432 int ret; 1433 1434 if (root->reloc_root) { 1435 reloc_root = root->reloc_root; 1436 reloc_root->last_trans = trans->transid; 1437 return 0; 1438 } 1439 1440 if (!rc || !rc->create_reloc_tree || 1441 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1442 return 0; 1443 1444 if (!trans->reloc_reserved) { 1445 rsv = trans->block_rsv; 1446 trans->block_rsv = rc->block_rsv; 1447 clear_rsv = 1; 1448 } 1449 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1450 if (clear_rsv) 1451 trans->block_rsv = rsv; 1452 1453 ret = __add_reloc_root(reloc_root); 1454 BUG_ON(ret < 0); 1455 root->reloc_root = reloc_root; 1456 return 0; 1457 } 1458 1459 /* 1460 * update root item of reloc tree 1461 */ 1462 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1463 struct btrfs_root *root) 1464 { 1465 struct btrfs_fs_info *fs_info = root->fs_info; 1466 struct btrfs_root *reloc_root; 1467 struct btrfs_root_item *root_item; 1468 int ret; 1469 1470 if (!root->reloc_root) 1471 goto out; 1472 1473 reloc_root = root->reloc_root; 1474 root_item = &reloc_root->root_item; 1475 1476 if (fs_info->reloc_ctl->merge_reloc_tree && 1477 btrfs_root_refs(root_item) == 0) { 1478 root->reloc_root = NULL; 1479 __del_reloc_root(reloc_root); 1480 } 1481 1482 if (reloc_root->commit_root != reloc_root->node) { 1483 btrfs_set_root_node(root_item, reloc_root->node); 1484 free_extent_buffer(reloc_root->commit_root); 1485 reloc_root->commit_root = btrfs_root_node(reloc_root); 1486 } 1487 1488 ret = btrfs_update_root(trans, fs_info->tree_root, 1489 &reloc_root->root_key, root_item); 1490 BUG_ON(ret); 1491 1492 out: 1493 return 0; 1494 } 1495 1496 /* 1497 * helper to find first cached inode with inode number >= objectid 1498 * in a subvolume 1499 */ 1500 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1501 { 1502 struct rb_node *node; 1503 struct rb_node *prev; 1504 struct btrfs_inode *entry; 1505 struct inode *inode; 1506 1507 spin_lock(&root->inode_lock); 1508 again: 1509 node = root->inode_tree.rb_node; 1510 prev = NULL; 1511 while (node) { 1512 prev = node; 1513 entry = rb_entry(node, struct btrfs_inode, rb_node); 1514 1515 if (objectid < btrfs_ino(entry)) 1516 node = node->rb_left; 1517 else if (objectid > btrfs_ino(entry)) 1518 node = node->rb_right; 1519 else 1520 break; 1521 } 1522 if (!node) { 1523 while (prev) { 1524 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1525 if (objectid <= btrfs_ino(entry)) { 1526 node = prev; 1527 break; 1528 } 1529 prev = rb_next(prev); 1530 } 1531 } 1532 while (node) { 1533 entry = rb_entry(node, struct btrfs_inode, rb_node); 1534 inode = igrab(&entry->vfs_inode); 1535 if (inode) { 1536 spin_unlock(&root->inode_lock); 1537 return inode; 1538 } 1539 1540 objectid = btrfs_ino(entry) + 1; 1541 if (cond_resched_lock(&root->inode_lock)) 1542 goto again; 1543 1544 node = rb_next(node); 1545 } 1546 spin_unlock(&root->inode_lock); 1547 return NULL; 1548 } 1549 1550 static int in_block_group(u64 bytenr, 1551 struct btrfs_block_group_cache *block_group) 1552 { 1553 if (bytenr >= block_group->key.objectid && 1554 bytenr < block_group->key.objectid + block_group->key.offset) 1555 return 1; 1556 return 0; 1557 } 1558 1559 /* 1560 * get new location of data 1561 */ 1562 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1563 u64 bytenr, u64 num_bytes) 1564 { 1565 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1566 struct btrfs_path *path; 1567 struct btrfs_file_extent_item *fi; 1568 struct extent_buffer *leaf; 1569 int ret; 1570 1571 path = btrfs_alloc_path(); 1572 if (!path) 1573 return -ENOMEM; 1574 1575 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1576 ret = btrfs_lookup_file_extent(NULL, root, path, 1577 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1578 if (ret < 0) 1579 goto out; 1580 if (ret > 0) { 1581 ret = -ENOENT; 1582 goto out; 1583 } 1584 1585 leaf = path->nodes[0]; 1586 fi = btrfs_item_ptr(leaf, path->slots[0], 1587 struct btrfs_file_extent_item); 1588 1589 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1590 btrfs_file_extent_compression(leaf, fi) || 1591 btrfs_file_extent_encryption(leaf, fi) || 1592 btrfs_file_extent_other_encoding(leaf, fi)); 1593 1594 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1595 ret = -EINVAL; 1596 goto out; 1597 } 1598 1599 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1600 ret = 0; 1601 out: 1602 btrfs_free_path(path); 1603 return ret; 1604 } 1605 1606 /* 1607 * update file extent items in the tree leaf to point to 1608 * the new locations. 1609 */ 1610 static noinline_for_stack 1611 int replace_file_extents(struct btrfs_trans_handle *trans, 1612 struct reloc_control *rc, 1613 struct btrfs_root *root, 1614 struct extent_buffer *leaf) 1615 { 1616 struct btrfs_fs_info *fs_info = root->fs_info; 1617 struct btrfs_key key; 1618 struct btrfs_file_extent_item *fi; 1619 struct inode *inode = NULL; 1620 u64 parent; 1621 u64 bytenr; 1622 u64 new_bytenr = 0; 1623 u64 num_bytes; 1624 u64 end; 1625 u32 nritems; 1626 u32 i; 1627 int ret = 0; 1628 int first = 1; 1629 int dirty = 0; 1630 1631 if (rc->stage != UPDATE_DATA_PTRS) 1632 return 0; 1633 1634 /* reloc trees always use full backref */ 1635 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1636 parent = leaf->start; 1637 else 1638 parent = 0; 1639 1640 nritems = btrfs_header_nritems(leaf); 1641 for (i = 0; i < nritems; i++) { 1642 cond_resched(); 1643 btrfs_item_key_to_cpu(leaf, &key, i); 1644 if (key.type != BTRFS_EXTENT_DATA_KEY) 1645 continue; 1646 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1647 if (btrfs_file_extent_type(leaf, fi) == 1648 BTRFS_FILE_EXTENT_INLINE) 1649 continue; 1650 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1651 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1652 if (bytenr == 0) 1653 continue; 1654 if (!in_block_group(bytenr, rc->block_group)) 1655 continue; 1656 1657 /* 1658 * if we are modifying block in fs tree, wait for readpage 1659 * to complete and drop the extent cache 1660 */ 1661 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1662 if (first) { 1663 inode = find_next_inode(root, key.objectid); 1664 first = 0; 1665 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1666 btrfs_add_delayed_iput(inode); 1667 inode = find_next_inode(root, key.objectid); 1668 } 1669 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1670 end = key.offset + 1671 btrfs_file_extent_num_bytes(leaf, fi); 1672 WARN_ON(!IS_ALIGNED(key.offset, 1673 fs_info->sectorsize)); 1674 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1675 end--; 1676 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1677 key.offset, end); 1678 if (!ret) 1679 continue; 1680 1681 btrfs_drop_extent_cache(BTRFS_I(inode), 1682 key.offset, end, 1); 1683 unlock_extent(&BTRFS_I(inode)->io_tree, 1684 key.offset, end); 1685 } 1686 } 1687 1688 ret = get_new_location(rc->data_inode, &new_bytenr, 1689 bytenr, num_bytes); 1690 if (ret) { 1691 /* 1692 * Don't have to abort since we've not changed anything 1693 * in the file extent yet. 1694 */ 1695 break; 1696 } 1697 1698 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1699 dirty = 1; 1700 1701 key.offset -= btrfs_file_extent_offset(leaf, fi); 1702 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1703 num_bytes, parent, 1704 btrfs_header_owner(leaf), 1705 key.objectid, key.offset); 1706 if (ret) { 1707 btrfs_abort_transaction(trans, ret); 1708 break; 1709 } 1710 1711 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1712 parent, btrfs_header_owner(leaf), 1713 key.objectid, key.offset); 1714 if (ret) { 1715 btrfs_abort_transaction(trans, ret); 1716 break; 1717 } 1718 } 1719 if (dirty) 1720 btrfs_mark_buffer_dirty(leaf); 1721 if (inode) 1722 btrfs_add_delayed_iput(inode); 1723 return ret; 1724 } 1725 1726 static noinline_for_stack 1727 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1728 struct btrfs_path *path, int level) 1729 { 1730 struct btrfs_disk_key key1; 1731 struct btrfs_disk_key key2; 1732 btrfs_node_key(eb, &key1, slot); 1733 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1734 return memcmp(&key1, &key2, sizeof(key1)); 1735 } 1736 1737 /* 1738 * try to replace tree blocks in fs tree with the new blocks 1739 * in reloc tree. tree blocks haven't been modified since the 1740 * reloc tree was create can be replaced. 1741 * 1742 * if a block was replaced, level of the block + 1 is returned. 1743 * if no block got replaced, 0 is returned. if there are other 1744 * errors, a negative error number is returned. 1745 */ 1746 static noinline_for_stack 1747 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1748 struct btrfs_root *dest, struct btrfs_root *src, 1749 struct btrfs_path *path, struct btrfs_key *next_key, 1750 int lowest_level, int max_level) 1751 { 1752 struct btrfs_fs_info *fs_info = dest->fs_info; 1753 struct extent_buffer *eb; 1754 struct extent_buffer *parent; 1755 struct btrfs_key key; 1756 u64 old_bytenr; 1757 u64 new_bytenr; 1758 u64 old_ptr_gen; 1759 u64 new_ptr_gen; 1760 u64 last_snapshot; 1761 u32 blocksize; 1762 int cow = 0; 1763 int level; 1764 int ret; 1765 int slot; 1766 1767 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1768 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1769 1770 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1771 again: 1772 slot = path->slots[lowest_level]; 1773 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1774 1775 eb = btrfs_lock_root_node(dest); 1776 btrfs_set_lock_blocking(eb); 1777 level = btrfs_header_level(eb); 1778 1779 if (level < lowest_level) { 1780 btrfs_tree_unlock(eb); 1781 free_extent_buffer(eb); 1782 return 0; 1783 } 1784 1785 if (cow) { 1786 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1787 BUG_ON(ret); 1788 } 1789 btrfs_set_lock_blocking(eb); 1790 1791 if (next_key) { 1792 next_key->objectid = (u64)-1; 1793 next_key->type = (u8)-1; 1794 next_key->offset = (u64)-1; 1795 } 1796 1797 parent = eb; 1798 while (1) { 1799 struct btrfs_key first_key; 1800 1801 level = btrfs_header_level(parent); 1802 BUG_ON(level < lowest_level); 1803 1804 ret = btrfs_bin_search(parent, &key, level, &slot); 1805 if (ret && slot > 0) 1806 slot--; 1807 1808 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1809 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1810 1811 old_bytenr = btrfs_node_blockptr(parent, slot); 1812 blocksize = fs_info->nodesize; 1813 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1814 btrfs_node_key_to_cpu(parent, &first_key, slot); 1815 1816 if (level <= max_level) { 1817 eb = path->nodes[level]; 1818 new_bytenr = btrfs_node_blockptr(eb, 1819 path->slots[level]); 1820 new_ptr_gen = btrfs_node_ptr_generation(eb, 1821 path->slots[level]); 1822 } else { 1823 new_bytenr = 0; 1824 new_ptr_gen = 0; 1825 } 1826 1827 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1828 ret = level; 1829 break; 1830 } 1831 1832 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1833 memcmp_node_keys(parent, slot, path, level)) { 1834 if (level <= lowest_level) { 1835 ret = 0; 1836 break; 1837 } 1838 1839 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1840 level - 1, &first_key); 1841 if (IS_ERR(eb)) { 1842 ret = PTR_ERR(eb); 1843 break; 1844 } else if (!extent_buffer_uptodate(eb)) { 1845 ret = -EIO; 1846 free_extent_buffer(eb); 1847 break; 1848 } 1849 btrfs_tree_lock(eb); 1850 if (cow) { 1851 ret = btrfs_cow_block(trans, dest, eb, parent, 1852 slot, &eb); 1853 BUG_ON(ret); 1854 } 1855 btrfs_set_lock_blocking(eb); 1856 1857 btrfs_tree_unlock(parent); 1858 free_extent_buffer(parent); 1859 1860 parent = eb; 1861 continue; 1862 } 1863 1864 if (!cow) { 1865 btrfs_tree_unlock(parent); 1866 free_extent_buffer(parent); 1867 cow = 1; 1868 goto again; 1869 } 1870 1871 btrfs_node_key_to_cpu(path->nodes[level], &key, 1872 path->slots[level]); 1873 btrfs_release_path(path); 1874 1875 path->lowest_level = level; 1876 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1877 path->lowest_level = 0; 1878 BUG_ON(ret); 1879 1880 /* 1881 * Info qgroup to trace both subtrees. 1882 * 1883 * We must trace both trees. 1884 * 1) Tree reloc subtree 1885 * If not traced, we will leak data numbers 1886 * 2) Fs subtree 1887 * If not traced, we will double count old data 1888 * and tree block numbers, if current trans doesn't free 1889 * data reloc tree inode. 1890 */ 1891 ret = btrfs_qgroup_trace_subtree_swap(trans, rc->block_group, 1892 parent, slot, path->nodes[level], 1893 path->slots[level], last_snapshot); 1894 if (ret < 0) 1895 break; 1896 1897 /* 1898 * swap blocks in fs tree and reloc tree. 1899 */ 1900 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1901 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1902 btrfs_mark_buffer_dirty(parent); 1903 1904 btrfs_set_node_blockptr(path->nodes[level], 1905 path->slots[level], old_bytenr); 1906 btrfs_set_node_ptr_generation(path->nodes[level], 1907 path->slots[level], old_ptr_gen); 1908 btrfs_mark_buffer_dirty(path->nodes[level]); 1909 1910 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, 1911 blocksize, path->nodes[level]->start, 1912 src->root_key.objectid, level - 1, 0); 1913 BUG_ON(ret); 1914 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, 1915 blocksize, 0, dest->root_key.objectid, 1916 level - 1, 0); 1917 BUG_ON(ret); 1918 1919 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1920 path->nodes[level]->start, 1921 src->root_key.objectid, level - 1, 0); 1922 BUG_ON(ret); 1923 1924 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1925 0, dest->root_key.objectid, level - 1, 1926 0); 1927 BUG_ON(ret); 1928 1929 btrfs_unlock_up_safe(path, 0); 1930 1931 ret = level; 1932 break; 1933 } 1934 btrfs_tree_unlock(parent); 1935 free_extent_buffer(parent); 1936 return ret; 1937 } 1938 1939 /* 1940 * helper to find next relocated block in reloc tree 1941 */ 1942 static noinline_for_stack 1943 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1944 int *level) 1945 { 1946 struct extent_buffer *eb; 1947 int i; 1948 u64 last_snapshot; 1949 u32 nritems; 1950 1951 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1952 1953 for (i = 0; i < *level; i++) { 1954 free_extent_buffer(path->nodes[i]); 1955 path->nodes[i] = NULL; 1956 } 1957 1958 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1959 eb = path->nodes[i]; 1960 nritems = btrfs_header_nritems(eb); 1961 while (path->slots[i] + 1 < nritems) { 1962 path->slots[i]++; 1963 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1964 last_snapshot) 1965 continue; 1966 1967 *level = i; 1968 return 0; 1969 } 1970 free_extent_buffer(path->nodes[i]); 1971 path->nodes[i] = NULL; 1972 } 1973 return 1; 1974 } 1975 1976 /* 1977 * walk down reloc tree to find relocated block of lowest level 1978 */ 1979 static noinline_for_stack 1980 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1981 int *level) 1982 { 1983 struct btrfs_fs_info *fs_info = root->fs_info; 1984 struct extent_buffer *eb = NULL; 1985 int i; 1986 u64 bytenr; 1987 u64 ptr_gen = 0; 1988 u64 last_snapshot; 1989 u32 nritems; 1990 1991 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1992 1993 for (i = *level; i > 0; i--) { 1994 struct btrfs_key first_key; 1995 1996 eb = path->nodes[i]; 1997 nritems = btrfs_header_nritems(eb); 1998 while (path->slots[i] < nritems) { 1999 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2000 if (ptr_gen > last_snapshot) 2001 break; 2002 path->slots[i]++; 2003 } 2004 if (path->slots[i] >= nritems) { 2005 if (i == *level) 2006 break; 2007 *level = i + 1; 2008 return 0; 2009 } 2010 if (i == 1) { 2011 *level = i; 2012 return 0; 2013 } 2014 2015 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2016 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2017 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2018 &first_key); 2019 if (IS_ERR(eb)) { 2020 return PTR_ERR(eb); 2021 } else if (!extent_buffer_uptodate(eb)) { 2022 free_extent_buffer(eb); 2023 return -EIO; 2024 } 2025 BUG_ON(btrfs_header_level(eb) != i - 1); 2026 path->nodes[i - 1] = eb; 2027 path->slots[i - 1] = 0; 2028 } 2029 return 1; 2030 } 2031 2032 /* 2033 * invalidate extent cache for file extents whose key in range of 2034 * [min_key, max_key) 2035 */ 2036 static int invalidate_extent_cache(struct btrfs_root *root, 2037 struct btrfs_key *min_key, 2038 struct btrfs_key *max_key) 2039 { 2040 struct btrfs_fs_info *fs_info = root->fs_info; 2041 struct inode *inode = NULL; 2042 u64 objectid; 2043 u64 start, end; 2044 u64 ino; 2045 2046 objectid = min_key->objectid; 2047 while (1) { 2048 cond_resched(); 2049 iput(inode); 2050 2051 if (objectid > max_key->objectid) 2052 break; 2053 2054 inode = find_next_inode(root, objectid); 2055 if (!inode) 2056 break; 2057 ino = btrfs_ino(BTRFS_I(inode)); 2058 2059 if (ino > max_key->objectid) { 2060 iput(inode); 2061 break; 2062 } 2063 2064 objectid = ino + 1; 2065 if (!S_ISREG(inode->i_mode)) 2066 continue; 2067 2068 if (unlikely(min_key->objectid == ino)) { 2069 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2070 continue; 2071 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2072 start = 0; 2073 else { 2074 start = min_key->offset; 2075 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2076 } 2077 } else { 2078 start = 0; 2079 } 2080 2081 if (unlikely(max_key->objectid == ino)) { 2082 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2083 continue; 2084 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2085 end = (u64)-1; 2086 } else { 2087 if (max_key->offset == 0) 2088 continue; 2089 end = max_key->offset; 2090 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2091 end--; 2092 } 2093 } else { 2094 end = (u64)-1; 2095 } 2096 2097 /* the lock_extent waits for readpage to complete */ 2098 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2099 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2100 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2101 } 2102 return 0; 2103 } 2104 2105 static int find_next_key(struct btrfs_path *path, int level, 2106 struct btrfs_key *key) 2107 2108 { 2109 while (level < BTRFS_MAX_LEVEL) { 2110 if (!path->nodes[level]) 2111 break; 2112 if (path->slots[level] + 1 < 2113 btrfs_header_nritems(path->nodes[level])) { 2114 btrfs_node_key_to_cpu(path->nodes[level], key, 2115 path->slots[level] + 1); 2116 return 0; 2117 } 2118 level++; 2119 } 2120 return 1; 2121 } 2122 2123 /* 2124 * merge the relocated tree blocks in reloc tree with corresponding 2125 * fs tree. 2126 */ 2127 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2128 struct btrfs_root *root) 2129 { 2130 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2131 LIST_HEAD(inode_list); 2132 struct btrfs_key key; 2133 struct btrfs_key next_key; 2134 struct btrfs_trans_handle *trans = NULL; 2135 struct btrfs_root *reloc_root; 2136 struct btrfs_root_item *root_item; 2137 struct btrfs_path *path; 2138 struct extent_buffer *leaf; 2139 int level; 2140 int max_level; 2141 int replaced = 0; 2142 int ret; 2143 int err = 0; 2144 u32 min_reserved; 2145 2146 path = btrfs_alloc_path(); 2147 if (!path) 2148 return -ENOMEM; 2149 path->reada = READA_FORWARD; 2150 2151 reloc_root = root->reloc_root; 2152 root_item = &reloc_root->root_item; 2153 2154 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2155 level = btrfs_root_level(root_item); 2156 extent_buffer_get(reloc_root->node); 2157 path->nodes[level] = reloc_root->node; 2158 path->slots[level] = 0; 2159 } else { 2160 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2161 2162 level = root_item->drop_level; 2163 BUG_ON(level == 0); 2164 path->lowest_level = level; 2165 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2166 path->lowest_level = 0; 2167 if (ret < 0) { 2168 btrfs_free_path(path); 2169 return ret; 2170 } 2171 2172 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2173 path->slots[level]); 2174 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2175 2176 btrfs_unlock_up_safe(path, 0); 2177 } 2178 2179 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2180 memset(&next_key, 0, sizeof(next_key)); 2181 2182 while (1) { 2183 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2184 BTRFS_RESERVE_FLUSH_ALL); 2185 if (ret) { 2186 err = ret; 2187 goto out; 2188 } 2189 trans = btrfs_start_transaction(root, 0); 2190 if (IS_ERR(trans)) { 2191 err = PTR_ERR(trans); 2192 trans = NULL; 2193 goto out; 2194 } 2195 trans->block_rsv = rc->block_rsv; 2196 2197 replaced = 0; 2198 max_level = level; 2199 2200 ret = walk_down_reloc_tree(reloc_root, path, &level); 2201 if (ret < 0) { 2202 err = ret; 2203 goto out; 2204 } 2205 if (ret > 0) 2206 break; 2207 2208 if (!find_next_key(path, level, &key) && 2209 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2210 ret = 0; 2211 } else { 2212 ret = replace_path(trans, rc, root, reloc_root, path, 2213 &next_key, level, max_level); 2214 } 2215 if (ret < 0) { 2216 err = ret; 2217 goto out; 2218 } 2219 2220 if (ret > 0) { 2221 level = ret; 2222 btrfs_node_key_to_cpu(path->nodes[level], &key, 2223 path->slots[level]); 2224 replaced = 1; 2225 } 2226 2227 ret = walk_up_reloc_tree(reloc_root, path, &level); 2228 if (ret > 0) 2229 break; 2230 2231 BUG_ON(level == 0); 2232 /* 2233 * save the merging progress in the drop_progress. 2234 * this is OK since root refs == 1 in this case. 2235 */ 2236 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2237 path->slots[level]); 2238 root_item->drop_level = level; 2239 2240 btrfs_end_transaction_throttle(trans); 2241 trans = NULL; 2242 2243 btrfs_btree_balance_dirty(fs_info); 2244 2245 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2246 invalidate_extent_cache(root, &key, &next_key); 2247 } 2248 2249 /* 2250 * handle the case only one block in the fs tree need to be 2251 * relocated and the block is tree root. 2252 */ 2253 leaf = btrfs_lock_root_node(root); 2254 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2255 btrfs_tree_unlock(leaf); 2256 free_extent_buffer(leaf); 2257 if (ret < 0) 2258 err = ret; 2259 out: 2260 btrfs_free_path(path); 2261 2262 if (err == 0) { 2263 memset(&root_item->drop_progress, 0, 2264 sizeof(root_item->drop_progress)); 2265 root_item->drop_level = 0; 2266 btrfs_set_root_refs(root_item, 0); 2267 btrfs_update_reloc_root(trans, root); 2268 } 2269 2270 if (trans) 2271 btrfs_end_transaction_throttle(trans); 2272 2273 btrfs_btree_balance_dirty(fs_info); 2274 2275 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2276 invalidate_extent_cache(root, &key, &next_key); 2277 2278 return err; 2279 } 2280 2281 static noinline_for_stack 2282 int prepare_to_merge(struct reloc_control *rc, int err) 2283 { 2284 struct btrfs_root *root = rc->extent_root; 2285 struct btrfs_fs_info *fs_info = root->fs_info; 2286 struct btrfs_root *reloc_root; 2287 struct btrfs_trans_handle *trans; 2288 LIST_HEAD(reloc_roots); 2289 u64 num_bytes = 0; 2290 int ret; 2291 2292 mutex_lock(&fs_info->reloc_mutex); 2293 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2294 rc->merging_rsv_size += rc->nodes_relocated * 2; 2295 mutex_unlock(&fs_info->reloc_mutex); 2296 2297 again: 2298 if (!err) { 2299 num_bytes = rc->merging_rsv_size; 2300 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2301 BTRFS_RESERVE_FLUSH_ALL); 2302 if (ret) 2303 err = ret; 2304 } 2305 2306 trans = btrfs_join_transaction(rc->extent_root); 2307 if (IS_ERR(trans)) { 2308 if (!err) 2309 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2310 num_bytes); 2311 return PTR_ERR(trans); 2312 } 2313 2314 if (!err) { 2315 if (num_bytes != rc->merging_rsv_size) { 2316 btrfs_end_transaction(trans); 2317 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2318 num_bytes); 2319 goto again; 2320 } 2321 } 2322 2323 rc->merge_reloc_tree = 1; 2324 2325 while (!list_empty(&rc->reloc_roots)) { 2326 reloc_root = list_entry(rc->reloc_roots.next, 2327 struct btrfs_root, root_list); 2328 list_del_init(&reloc_root->root_list); 2329 2330 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2331 BUG_ON(IS_ERR(root)); 2332 BUG_ON(root->reloc_root != reloc_root); 2333 2334 /* 2335 * set reference count to 1, so btrfs_recover_relocation 2336 * knows it should resumes merging 2337 */ 2338 if (!err) 2339 btrfs_set_root_refs(&reloc_root->root_item, 1); 2340 btrfs_update_reloc_root(trans, root); 2341 2342 list_add(&reloc_root->root_list, &reloc_roots); 2343 } 2344 2345 list_splice(&reloc_roots, &rc->reloc_roots); 2346 2347 if (!err) 2348 btrfs_commit_transaction(trans); 2349 else 2350 btrfs_end_transaction(trans); 2351 return err; 2352 } 2353 2354 static noinline_for_stack 2355 void free_reloc_roots(struct list_head *list) 2356 { 2357 struct btrfs_root *reloc_root; 2358 2359 while (!list_empty(list)) { 2360 reloc_root = list_entry(list->next, struct btrfs_root, 2361 root_list); 2362 __del_reloc_root(reloc_root); 2363 free_extent_buffer(reloc_root->node); 2364 free_extent_buffer(reloc_root->commit_root); 2365 reloc_root->node = NULL; 2366 reloc_root->commit_root = NULL; 2367 } 2368 } 2369 2370 static noinline_for_stack 2371 void merge_reloc_roots(struct reloc_control *rc) 2372 { 2373 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2374 struct btrfs_root *root; 2375 struct btrfs_root *reloc_root; 2376 LIST_HEAD(reloc_roots); 2377 int found = 0; 2378 int ret = 0; 2379 again: 2380 root = rc->extent_root; 2381 2382 /* 2383 * this serializes us with btrfs_record_root_in_transaction, 2384 * we have to make sure nobody is in the middle of 2385 * adding their roots to the list while we are 2386 * doing this splice 2387 */ 2388 mutex_lock(&fs_info->reloc_mutex); 2389 list_splice_init(&rc->reloc_roots, &reloc_roots); 2390 mutex_unlock(&fs_info->reloc_mutex); 2391 2392 while (!list_empty(&reloc_roots)) { 2393 found = 1; 2394 reloc_root = list_entry(reloc_roots.next, 2395 struct btrfs_root, root_list); 2396 2397 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2398 root = read_fs_root(fs_info, 2399 reloc_root->root_key.offset); 2400 BUG_ON(IS_ERR(root)); 2401 BUG_ON(root->reloc_root != reloc_root); 2402 2403 ret = merge_reloc_root(rc, root); 2404 if (ret) { 2405 if (list_empty(&reloc_root->root_list)) 2406 list_add_tail(&reloc_root->root_list, 2407 &reloc_roots); 2408 goto out; 2409 } 2410 } else { 2411 list_del_init(&reloc_root->root_list); 2412 } 2413 2414 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2415 if (ret < 0) { 2416 if (list_empty(&reloc_root->root_list)) 2417 list_add_tail(&reloc_root->root_list, 2418 &reloc_roots); 2419 goto out; 2420 } 2421 } 2422 2423 if (found) { 2424 found = 0; 2425 goto again; 2426 } 2427 out: 2428 if (ret) { 2429 btrfs_handle_fs_error(fs_info, ret, NULL); 2430 if (!list_empty(&reloc_roots)) 2431 free_reloc_roots(&reloc_roots); 2432 2433 /* new reloc root may be added */ 2434 mutex_lock(&fs_info->reloc_mutex); 2435 list_splice_init(&rc->reloc_roots, &reloc_roots); 2436 mutex_unlock(&fs_info->reloc_mutex); 2437 if (!list_empty(&reloc_roots)) 2438 free_reloc_roots(&reloc_roots); 2439 } 2440 2441 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2442 } 2443 2444 static void free_block_list(struct rb_root *blocks) 2445 { 2446 struct tree_block *block; 2447 struct rb_node *rb_node; 2448 while ((rb_node = rb_first(blocks))) { 2449 block = rb_entry(rb_node, struct tree_block, rb_node); 2450 rb_erase(rb_node, blocks); 2451 kfree(block); 2452 } 2453 } 2454 2455 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2456 struct btrfs_root *reloc_root) 2457 { 2458 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2459 struct btrfs_root *root; 2460 2461 if (reloc_root->last_trans == trans->transid) 2462 return 0; 2463 2464 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2465 BUG_ON(IS_ERR(root)); 2466 BUG_ON(root->reloc_root != reloc_root); 2467 2468 return btrfs_record_root_in_trans(trans, root); 2469 } 2470 2471 static noinline_for_stack 2472 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2473 struct reloc_control *rc, 2474 struct backref_node *node, 2475 struct backref_edge *edges[]) 2476 { 2477 struct backref_node *next; 2478 struct btrfs_root *root; 2479 int index = 0; 2480 2481 next = node; 2482 while (1) { 2483 cond_resched(); 2484 next = walk_up_backref(next, edges, &index); 2485 root = next->root; 2486 BUG_ON(!root); 2487 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2488 2489 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2490 record_reloc_root_in_trans(trans, root); 2491 break; 2492 } 2493 2494 btrfs_record_root_in_trans(trans, root); 2495 root = root->reloc_root; 2496 2497 if (next->new_bytenr != root->node->start) { 2498 BUG_ON(next->new_bytenr); 2499 BUG_ON(!list_empty(&next->list)); 2500 next->new_bytenr = root->node->start; 2501 next->root = root; 2502 list_add_tail(&next->list, 2503 &rc->backref_cache.changed); 2504 __mark_block_processed(rc, next); 2505 break; 2506 } 2507 2508 WARN_ON(1); 2509 root = NULL; 2510 next = walk_down_backref(edges, &index); 2511 if (!next || next->level <= node->level) 2512 break; 2513 } 2514 if (!root) 2515 return NULL; 2516 2517 next = node; 2518 /* setup backref node path for btrfs_reloc_cow_block */ 2519 while (1) { 2520 rc->backref_cache.path[next->level] = next; 2521 if (--index < 0) 2522 break; 2523 next = edges[index]->node[UPPER]; 2524 } 2525 return root; 2526 } 2527 2528 /* 2529 * select a tree root for relocation. return NULL if the block 2530 * is reference counted. we should use do_relocation() in this 2531 * case. return a tree root pointer if the block isn't reference 2532 * counted. return -ENOENT if the block is root of reloc tree. 2533 */ 2534 static noinline_for_stack 2535 struct btrfs_root *select_one_root(struct backref_node *node) 2536 { 2537 struct backref_node *next; 2538 struct btrfs_root *root; 2539 struct btrfs_root *fs_root = NULL; 2540 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2541 int index = 0; 2542 2543 next = node; 2544 while (1) { 2545 cond_resched(); 2546 next = walk_up_backref(next, edges, &index); 2547 root = next->root; 2548 BUG_ON(!root); 2549 2550 /* no other choice for non-references counted tree */ 2551 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2552 return root; 2553 2554 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2555 fs_root = root; 2556 2557 if (next != node) 2558 return NULL; 2559 2560 next = walk_down_backref(edges, &index); 2561 if (!next || next->level <= node->level) 2562 break; 2563 } 2564 2565 if (!fs_root) 2566 return ERR_PTR(-ENOENT); 2567 return fs_root; 2568 } 2569 2570 static noinline_for_stack 2571 u64 calcu_metadata_size(struct reloc_control *rc, 2572 struct backref_node *node, int reserve) 2573 { 2574 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2575 struct backref_node *next = node; 2576 struct backref_edge *edge; 2577 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2578 u64 num_bytes = 0; 2579 int index = 0; 2580 2581 BUG_ON(reserve && node->processed); 2582 2583 while (next) { 2584 cond_resched(); 2585 while (1) { 2586 if (next->processed && (reserve || next != node)) 2587 break; 2588 2589 num_bytes += fs_info->nodesize; 2590 2591 if (list_empty(&next->upper)) 2592 break; 2593 2594 edge = list_entry(next->upper.next, 2595 struct backref_edge, list[LOWER]); 2596 edges[index++] = edge; 2597 next = edge->node[UPPER]; 2598 } 2599 next = walk_down_backref(edges, &index); 2600 } 2601 return num_bytes; 2602 } 2603 2604 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2605 struct reloc_control *rc, 2606 struct backref_node *node) 2607 { 2608 struct btrfs_root *root = rc->extent_root; 2609 struct btrfs_fs_info *fs_info = root->fs_info; 2610 u64 num_bytes; 2611 int ret; 2612 u64 tmp; 2613 2614 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2615 2616 trans->block_rsv = rc->block_rsv; 2617 rc->reserved_bytes += num_bytes; 2618 2619 /* 2620 * We are under a transaction here so we can only do limited flushing. 2621 * If we get an enospc just kick back -EAGAIN so we know to drop the 2622 * transaction and try to refill when we can flush all the things. 2623 */ 2624 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2625 BTRFS_RESERVE_FLUSH_LIMIT); 2626 if (ret) { 2627 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2628 while (tmp <= rc->reserved_bytes) 2629 tmp <<= 1; 2630 /* 2631 * only one thread can access block_rsv at this point, 2632 * so we don't need hold lock to protect block_rsv. 2633 * we expand more reservation size here to allow enough 2634 * space for relocation and we will return earlier in 2635 * enospc case. 2636 */ 2637 rc->block_rsv->size = tmp + fs_info->nodesize * 2638 RELOCATION_RESERVED_NODES; 2639 return -EAGAIN; 2640 } 2641 2642 return 0; 2643 } 2644 2645 /* 2646 * relocate a block tree, and then update pointers in upper level 2647 * blocks that reference the block to point to the new location. 2648 * 2649 * if called by link_to_upper, the block has already been relocated. 2650 * in that case this function just updates pointers. 2651 */ 2652 static int do_relocation(struct btrfs_trans_handle *trans, 2653 struct reloc_control *rc, 2654 struct backref_node *node, 2655 struct btrfs_key *key, 2656 struct btrfs_path *path, int lowest) 2657 { 2658 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2659 struct backref_node *upper; 2660 struct backref_edge *edge; 2661 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2662 struct btrfs_root *root; 2663 struct extent_buffer *eb; 2664 u32 blocksize; 2665 u64 bytenr; 2666 u64 generation; 2667 int slot; 2668 int ret; 2669 int err = 0; 2670 2671 BUG_ON(lowest && node->eb); 2672 2673 path->lowest_level = node->level + 1; 2674 rc->backref_cache.path[node->level] = node; 2675 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2676 struct btrfs_key first_key; 2677 2678 cond_resched(); 2679 2680 upper = edge->node[UPPER]; 2681 root = select_reloc_root(trans, rc, upper, edges); 2682 BUG_ON(!root); 2683 2684 if (upper->eb && !upper->locked) { 2685 if (!lowest) { 2686 ret = btrfs_bin_search(upper->eb, key, 2687 upper->level, &slot); 2688 BUG_ON(ret); 2689 bytenr = btrfs_node_blockptr(upper->eb, slot); 2690 if (node->eb->start == bytenr) 2691 goto next; 2692 } 2693 drop_node_buffer(upper); 2694 } 2695 2696 if (!upper->eb) { 2697 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2698 if (ret) { 2699 if (ret < 0) 2700 err = ret; 2701 else 2702 err = -ENOENT; 2703 2704 btrfs_release_path(path); 2705 break; 2706 } 2707 2708 if (!upper->eb) { 2709 upper->eb = path->nodes[upper->level]; 2710 path->nodes[upper->level] = NULL; 2711 } else { 2712 BUG_ON(upper->eb != path->nodes[upper->level]); 2713 } 2714 2715 upper->locked = 1; 2716 path->locks[upper->level] = 0; 2717 2718 slot = path->slots[upper->level]; 2719 btrfs_release_path(path); 2720 } else { 2721 ret = btrfs_bin_search(upper->eb, key, upper->level, 2722 &slot); 2723 BUG_ON(ret); 2724 } 2725 2726 bytenr = btrfs_node_blockptr(upper->eb, slot); 2727 if (lowest) { 2728 if (bytenr != node->bytenr) { 2729 btrfs_err(root->fs_info, 2730 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2731 bytenr, node->bytenr, slot, 2732 upper->eb->start); 2733 err = -EIO; 2734 goto next; 2735 } 2736 } else { 2737 if (node->eb->start == bytenr) 2738 goto next; 2739 } 2740 2741 blocksize = root->fs_info->nodesize; 2742 generation = btrfs_node_ptr_generation(upper->eb, slot); 2743 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2744 eb = read_tree_block(fs_info, bytenr, generation, 2745 upper->level - 1, &first_key); 2746 if (IS_ERR(eb)) { 2747 err = PTR_ERR(eb); 2748 goto next; 2749 } else if (!extent_buffer_uptodate(eb)) { 2750 free_extent_buffer(eb); 2751 err = -EIO; 2752 goto next; 2753 } 2754 btrfs_tree_lock(eb); 2755 btrfs_set_lock_blocking(eb); 2756 2757 if (!node->eb) { 2758 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2759 slot, &eb); 2760 btrfs_tree_unlock(eb); 2761 free_extent_buffer(eb); 2762 if (ret < 0) { 2763 err = ret; 2764 goto next; 2765 } 2766 BUG_ON(node->eb != eb); 2767 } else { 2768 btrfs_set_node_blockptr(upper->eb, slot, 2769 node->eb->start); 2770 btrfs_set_node_ptr_generation(upper->eb, slot, 2771 trans->transid); 2772 btrfs_mark_buffer_dirty(upper->eb); 2773 2774 ret = btrfs_inc_extent_ref(trans, root, 2775 node->eb->start, blocksize, 2776 upper->eb->start, 2777 btrfs_header_owner(upper->eb), 2778 node->level, 0); 2779 BUG_ON(ret); 2780 2781 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2782 BUG_ON(ret); 2783 } 2784 next: 2785 if (!upper->pending) 2786 drop_node_buffer(upper); 2787 else 2788 unlock_node_buffer(upper); 2789 if (err) 2790 break; 2791 } 2792 2793 if (!err && node->pending) { 2794 drop_node_buffer(node); 2795 list_move_tail(&node->list, &rc->backref_cache.changed); 2796 node->pending = 0; 2797 } 2798 2799 path->lowest_level = 0; 2800 BUG_ON(err == -ENOSPC); 2801 return err; 2802 } 2803 2804 static int link_to_upper(struct btrfs_trans_handle *trans, 2805 struct reloc_control *rc, 2806 struct backref_node *node, 2807 struct btrfs_path *path) 2808 { 2809 struct btrfs_key key; 2810 2811 btrfs_node_key_to_cpu(node->eb, &key, 0); 2812 return do_relocation(trans, rc, node, &key, path, 0); 2813 } 2814 2815 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2816 struct reloc_control *rc, 2817 struct btrfs_path *path, int err) 2818 { 2819 LIST_HEAD(list); 2820 struct backref_cache *cache = &rc->backref_cache; 2821 struct backref_node *node; 2822 int level; 2823 int ret; 2824 2825 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2826 while (!list_empty(&cache->pending[level])) { 2827 node = list_entry(cache->pending[level].next, 2828 struct backref_node, list); 2829 list_move_tail(&node->list, &list); 2830 BUG_ON(!node->pending); 2831 2832 if (!err) { 2833 ret = link_to_upper(trans, rc, node, path); 2834 if (ret < 0) 2835 err = ret; 2836 } 2837 } 2838 list_splice_init(&list, &cache->pending[level]); 2839 } 2840 return err; 2841 } 2842 2843 static void mark_block_processed(struct reloc_control *rc, 2844 u64 bytenr, u32 blocksize) 2845 { 2846 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2847 EXTENT_DIRTY); 2848 } 2849 2850 static void __mark_block_processed(struct reloc_control *rc, 2851 struct backref_node *node) 2852 { 2853 u32 blocksize; 2854 if (node->level == 0 || 2855 in_block_group(node->bytenr, rc->block_group)) { 2856 blocksize = rc->extent_root->fs_info->nodesize; 2857 mark_block_processed(rc, node->bytenr, blocksize); 2858 } 2859 node->processed = 1; 2860 } 2861 2862 /* 2863 * mark a block and all blocks directly/indirectly reference the block 2864 * as processed. 2865 */ 2866 static void update_processed_blocks(struct reloc_control *rc, 2867 struct backref_node *node) 2868 { 2869 struct backref_node *next = node; 2870 struct backref_edge *edge; 2871 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2872 int index = 0; 2873 2874 while (next) { 2875 cond_resched(); 2876 while (1) { 2877 if (next->processed) 2878 break; 2879 2880 __mark_block_processed(rc, next); 2881 2882 if (list_empty(&next->upper)) 2883 break; 2884 2885 edge = list_entry(next->upper.next, 2886 struct backref_edge, list[LOWER]); 2887 edges[index++] = edge; 2888 next = edge->node[UPPER]; 2889 } 2890 next = walk_down_backref(edges, &index); 2891 } 2892 } 2893 2894 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2895 { 2896 u32 blocksize = rc->extent_root->fs_info->nodesize; 2897 2898 if (test_range_bit(&rc->processed_blocks, bytenr, 2899 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2900 return 1; 2901 return 0; 2902 } 2903 2904 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2905 struct tree_block *block) 2906 { 2907 struct extent_buffer *eb; 2908 2909 BUG_ON(block->key_ready); 2910 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2911 block->level, NULL); 2912 if (IS_ERR(eb)) { 2913 return PTR_ERR(eb); 2914 } else if (!extent_buffer_uptodate(eb)) { 2915 free_extent_buffer(eb); 2916 return -EIO; 2917 } 2918 if (block->level == 0) 2919 btrfs_item_key_to_cpu(eb, &block->key, 0); 2920 else 2921 btrfs_node_key_to_cpu(eb, &block->key, 0); 2922 free_extent_buffer(eb); 2923 block->key_ready = 1; 2924 return 0; 2925 } 2926 2927 /* 2928 * helper function to relocate a tree block 2929 */ 2930 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2931 struct reloc_control *rc, 2932 struct backref_node *node, 2933 struct btrfs_key *key, 2934 struct btrfs_path *path) 2935 { 2936 struct btrfs_root *root; 2937 int ret = 0; 2938 2939 if (!node) 2940 return 0; 2941 2942 BUG_ON(node->processed); 2943 root = select_one_root(node); 2944 if (root == ERR_PTR(-ENOENT)) { 2945 update_processed_blocks(rc, node); 2946 goto out; 2947 } 2948 2949 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2950 ret = reserve_metadata_space(trans, rc, node); 2951 if (ret) 2952 goto out; 2953 } 2954 2955 if (root) { 2956 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2957 BUG_ON(node->new_bytenr); 2958 BUG_ON(!list_empty(&node->list)); 2959 btrfs_record_root_in_trans(trans, root); 2960 root = root->reloc_root; 2961 node->new_bytenr = root->node->start; 2962 node->root = root; 2963 list_add_tail(&node->list, &rc->backref_cache.changed); 2964 } else { 2965 path->lowest_level = node->level; 2966 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2967 btrfs_release_path(path); 2968 if (ret > 0) 2969 ret = 0; 2970 } 2971 if (!ret) 2972 update_processed_blocks(rc, node); 2973 } else { 2974 ret = do_relocation(trans, rc, node, key, path, 1); 2975 } 2976 out: 2977 if (ret || node->level == 0 || node->cowonly) 2978 remove_backref_node(&rc->backref_cache, node); 2979 return ret; 2980 } 2981 2982 /* 2983 * relocate a list of blocks 2984 */ 2985 static noinline_for_stack 2986 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2987 struct reloc_control *rc, struct rb_root *blocks) 2988 { 2989 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2990 struct backref_node *node; 2991 struct btrfs_path *path; 2992 struct tree_block *block; 2993 struct tree_block *next; 2994 int ret; 2995 int err = 0; 2996 2997 path = btrfs_alloc_path(); 2998 if (!path) { 2999 err = -ENOMEM; 3000 goto out_free_blocks; 3001 } 3002 3003 /* Kick in readahead for tree blocks with missing keys */ 3004 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3005 if (!block->key_ready) 3006 readahead_tree_block(fs_info, block->bytenr); 3007 } 3008 3009 /* Get first keys */ 3010 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3011 if (!block->key_ready) { 3012 err = get_tree_block_key(fs_info, block); 3013 if (err) 3014 goto out_free_path; 3015 } 3016 } 3017 3018 /* Do tree relocation */ 3019 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3020 node = build_backref_tree(rc, &block->key, 3021 block->level, block->bytenr); 3022 if (IS_ERR(node)) { 3023 err = PTR_ERR(node); 3024 goto out; 3025 } 3026 3027 ret = relocate_tree_block(trans, rc, node, &block->key, 3028 path); 3029 if (ret < 0) { 3030 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks)) 3031 err = ret; 3032 goto out; 3033 } 3034 } 3035 out: 3036 err = finish_pending_nodes(trans, rc, path, err); 3037 3038 out_free_path: 3039 btrfs_free_path(path); 3040 out_free_blocks: 3041 free_block_list(blocks); 3042 return err; 3043 } 3044 3045 static noinline_for_stack 3046 int prealloc_file_extent_cluster(struct inode *inode, 3047 struct file_extent_cluster *cluster) 3048 { 3049 u64 alloc_hint = 0; 3050 u64 start; 3051 u64 end; 3052 u64 offset = BTRFS_I(inode)->index_cnt; 3053 u64 num_bytes; 3054 int nr = 0; 3055 int ret = 0; 3056 u64 prealloc_start = cluster->start - offset; 3057 u64 prealloc_end = cluster->end - offset; 3058 u64 cur_offset; 3059 struct extent_changeset *data_reserved = NULL; 3060 3061 BUG_ON(cluster->start != cluster->boundary[0]); 3062 inode_lock(inode); 3063 3064 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3065 prealloc_end + 1 - prealloc_start); 3066 if (ret) 3067 goto out; 3068 3069 cur_offset = prealloc_start; 3070 while (nr < cluster->nr) { 3071 start = cluster->boundary[nr] - offset; 3072 if (nr + 1 < cluster->nr) 3073 end = cluster->boundary[nr + 1] - 1 - offset; 3074 else 3075 end = cluster->end - offset; 3076 3077 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3078 num_bytes = end + 1 - start; 3079 if (cur_offset < start) 3080 btrfs_free_reserved_data_space(inode, data_reserved, 3081 cur_offset, start - cur_offset); 3082 ret = btrfs_prealloc_file_range(inode, 0, start, 3083 num_bytes, num_bytes, 3084 end + 1, &alloc_hint); 3085 cur_offset = end + 1; 3086 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3087 if (ret) 3088 break; 3089 nr++; 3090 } 3091 if (cur_offset < prealloc_end) 3092 btrfs_free_reserved_data_space(inode, data_reserved, 3093 cur_offset, prealloc_end + 1 - cur_offset); 3094 out: 3095 inode_unlock(inode); 3096 extent_changeset_free(data_reserved); 3097 return ret; 3098 } 3099 3100 static noinline_for_stack 3101 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3102 u64 block_start) 3103 { 3104 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3105 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3106 struct extent_map *em; 3107 int ret = 0; 3108 3109 em = alloc_extent_map(); 3110 if (!em) 3111 return -ENOMEM; 3112 3113 em->start = start; 3114 em->len = end + 1 - start; 3115 em->block_len = em->len; 3116 em->block_start = block_start; 3117 em->bdev = fs_info->fs_devices->latest_bdev; 3118 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3119 3120 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3121 while (1) { 3122 write_lock(&em_tree->lock); 3123 ret = add_extent_mapping(em_tree, em, 0); 3124 write_unlock(&em_tree->lock); 3125 if (ret != -EEXIST) { 3126 free_extent_map(em); 3127 break; 3128 } 3129 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3130 } 3131 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3132 return ret; 3133 } 3134 3135 static int relocate_file_extent_cluster(struct inode *inode, 3136 struct file_extent_cluster *cluster) 3137 { 3138 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3139 u64 page_start; 3140 u64 page_end; 3141 u64 offset = BTRFS_I(inode)->index_cnt; 3142 unsigned long index; 3143 unsigned long last_index; 3144 struct page *page; 3145 struct file_ra_state *ra; 3146 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3147 int nr = 0; 3148 int ret = 0; 3149 3150 if (!cluster->nr) 3151 return 0; 3152 3153 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3154 if (!ra) 3155 return -ENOMEM; 3156 3157 ret = prealloc_file_extent_cluster(inode, cluster); 3158 if (ret) 3159 goto out; 3160 3161 file_ra_state_init(ra, inode->i_mapping); 3162 3163 ret = setup_extent_mapping(inode, cluster->start - offset, 3164 cluster->end - offset, cluster->start); 3165 if (ret) 3166 goto out; 3167 3168 index = (cluster->start - offset) >> PAGE_SHIFT; 3169 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3170 while (index <= last_index) { 3171 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3172 PAGE_SIZE); 3173 if (ret) 3174 goto out; 3175 3176 page = find_lock_page(inode->i_mapping, index); 3177 if (!page) { 3178 page_cache_sync_readahead(inode->i_mapping, 3179 ra, NULL, index, 3180 last_index + 1 - index); 3181 page = find_or_create_page(inode->i_mapping, index, 3182 mask); 3183 if (!page) { 3184 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3185 PAGE_SIZE, true); 3186 ret = -ENOMEM; 3187 goto out; 3188 } 3189 } 3190 3191 if (PageReadahead(page)) { 3192 page_cache_async_readahead(inode->i_mapping, 3193 ra, NULL, page, index, 3194 last_index + 1 - index); 3195 } 3196 3197 if (!PageUptodate(page)) { 3198 btrfs_readpage(NULL, page); 3199 lock_page(page); 3200 if (!PageUptodate(page)) { 3201 unlock_page(page); 3202 put_page(page); 3203 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3204 PAGE_SIZE, true); 3205 btrfs_delalloc_release_extents(BTRFS_I(inode), 3206 PAGE_SIZE, true); 3207 ret = -EIO; 3208 goto out; 3209 } 3210 } 3211 3212 page_start = page_offset(page); 3213 page_end = page_start + PAGE_SIZE - 1; 3214 3215 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3216 3217 set_page_extent_mapped(page); 3218 3219 if (nr < cluster->nr && 3220 page_start + offset == cluster->boundary[nr]) { 3221 set_extent_bits(&BTRFS_I(inode)->io_tree, 3222 page_start, page_end, 3223 EXTENT_BOUNDARY); 3224 nr++; 3225 } 3226 3227 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3228 NULL, 0); 3229 if (ret) { 3230 unlock_page(page); 3231 put_page(page); 3232 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3233 PAGE_SIZE, true); 3234 btrfs_delalloc_release_extents(BTRFS_I(inode), 3235 PAGE_SIZE, true); 3236 3237 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3238 page_start, page_end, 3239 EXTENT_LOCKED | EXTENT_BOUNDARY); 3240 goto out; 3241 3242 } 3243 set_page_dirty(page); 3244 3245 unlock_extent(&BTRFS_I(inode)->io_tree, 3246 page_start, page_end); 3247 unlock_page(page); 3248 put_page(page); 3249 3250 index++; 3251 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, 3252 false); 3253 balance_dirty_pages_ratelimited(inode->i_mapping); 3254 btrfs_throttle(fs_info); 3255 } 3256 WARN_ON(nr != cluster->nr); 3257 out: 3258 kfree(ra); 3259 return ret; 3260 } 3261 3262 static noinline_for_stack 3263 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3264 struct file_extent_cluster *cluster) 3265 { 3266 int ret; 3267 3268 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3269 ret = relocate_file_extent_cluster(inode, cluster); 3270 if (ret) 3271 return ret; 3272 cluster->nr = 0; 3273 } 3274 3275 if (!cluster->nr) 3276 cluster->start = extent_key->objectid; 3277 else 3278 BUG_ON(cluster->nr >= MAX_EXTENTS); 3279 cluster->end = extent_key->objectid + extent_key->offset - 1; 3280 cluster->boundary[cluster->nr] = extent_key->objectid; 3281 cluster->nr++; 3282 3283 if (cluster->nr >= MAX_EXTENTS) { 3284 ret = relocate_file_extent_cluster(inode, cluster); 3285 if (ret) 3286 return ret; 3287 cluster->nr = 0; 3288 } 3289 return 0; 3290 } 3291 3292 /* 3293 * helper to add a tree block to the list. 3294 * the major work is getting the generation and level of the block 3295 */ 3296 static int add_tree_block(struct reloc_control *rc, 3297 struct btrfs_key *extent_key, 3298 struct btrfs_path *path, 3299 struct rb_root *blocks) 3300 { 3301 struct extent_buffer *eb; 3302 struct btrfs_extent_item *ei; 3303 struct btrfs_tree_block_info *bi; 3304 struct tree_block *block; 3305 struct rb_node *rb_node; 3306 u32 item_size; 3307 int level = -1; 3308 u64 generation; 3309 3310 eb = path->nodes[0]; 3311 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3312 3313 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3314 item_size >= sizeof(*ei) + sizeof(*bi)) { 3315 ei = btrfs_item_ptr(eb, path->slots[0], 3316 struct btrfs_extent_item); 3317 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3318 bi = (struct btrfs_tree_block_info *)(ei + 1); 3319 level = btrfs_tree_block_level(eb, bi); 3320 } else { 3321 level = (int)extent_key->offset; 3322 } 3323 generation = btrfs_extent_generation(eb, ei); 3324 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3325 btrfs_print_v0_err(eb->fs_info); 3326 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3327 return -EINVAL; 3328 } else { 3329 BUG(); 3330 } 3331 3332 btrfs_release_path(path); 3333 3334 BUG_ON(level == -1); 3335 3336 block = kmalloc(sizeof(*block), GFP_NOFS); 3337 if (!block) 3338 return -ENOMEM; 3339 3340 block->bytenr = extent_key->objectid; 3341 block->key.objectid = rc->extent_root->fs_info->nodesize; 3342 block->key.offset = generation; 3343 block->level = level; 3344 block->key_ready = 0; 3345 3346 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3347 if (rb_node) 3348 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3349 3350 return 0; 3351 } 3352 3353 /* 3354 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3355 */ 3356 static int __add_tree_block(struct reloc_control *rc, 3357 u64 bytenr, u32 blocksize, 3358 struct rb_root *blocks) 3359 { 3360 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3361 struct btrfs_path *path; 3362 struct btrfs_key key; 3363 int ret; 3364 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3365 3366 if (tree_block_processed(bytenr, rc)) 3367 return 0; 3368 3369 if (tree_search(blocks, bytenr)) 3370 return 0; 3371 3372 path = btrfs_alloc_path(); 3373 if (!path) 3374 return -ENOMEM; 3375 again: 3376 key.objectid = bytenr; 3377 if (skinny) { 3378 key.type = BTRFS_METADATA_ITEM_KEY; 3379 key.offset = (u64)-1; 3380 } else { 3381 key.type = BTRFS_EXTENT_ITEM_KEY; 3382 key.offset = blocksize; 3383 } 3384 3385 path->search_commit_root = 1; 3386 path->skip_locking = 1; 3387 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3388 if (ret < 0) 3389 goto out; 3390 3391 if (ret > 0 && skinny) { 3392 if (path->slots[0]) { 3393 path->slots[0]--; 3394 btrfs_item_key_to_cpu(path->nodes[0], &key, 3395 path->slots[0]); 3396 if (key.objectid == bytenr && 3397 (key.type == BTRFS_METADATA_ITEM_KEY || 3398 (key.type == BTRFS_EXTENT_ITEM_KEY && 3399 key.offset == blocksize))) 3400 ret = 0; 3401 } 3402 3403 if (ret) { 3404 skinny = false; 3405 btrfs_release_path(path); 3406 goto again; 3407 } 3408 } 3409 if (ret) { 3410 ASSERT(ret == 1); 3411 btrfs_print_leaf(path->nodes[0]); 3412 btrfs_err(fs_info, 3413 "tree block extent item (%llu) is not found in extent tree", 3414 bytenr); 3415 WARN_ON(1); 3416 ret = -EINVAL; 3417 goto out; 3418 } 3419 3420 ret = add_tree_block(rc, &key, path, blocks); 3421 out: 3422 btrfs_free_path(path); 3423 return ret; 3424 } 3425 3426 /* 3427 * helper to check if the block use full backrefs for pointers in it 3428 */ 3429 static int block_use_full_backref(struct reloc_control *rc, 3430 struct extent_buffer *eb) 3431 { 3432 u64 flags; 3433 int ret; 3434 3435 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3436 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3437 return 1; 3438 3439 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3440 eb->start, btrfs_header_level(eb), 1, 3441 NULL, &flags); 3442 BUG_ON(ret); 3443 3444 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3445 ret = 1; 3446 else 3447 ret = 0; 3448 return ret; 3449 } 3450 3451 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3452 struct btrfs_block_group_cache *block_group, 3453 struct inode *inode, 3454 u64 ino) 3455 { 3456 struct btrfs_key key; 3457 struct btrfs_root *root = fs_info->tree_root; 3458 struct btrfs_trans_handle *trans; 3459 int ret = 0; 3460 3461 if (inode) 3462 goto truncate; 3463 3464 key.objectid = ino; 3465 key.type = BTRFS_INODE_ITEM_KEY; 3466 key.offset = 0; 3467 3468 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3469 if (IS_ERR(inode)) 3470 return -ENOENT; 3471 3472 truncate: 3473 ret = btrfs_check_trunc_cache_free_space(fs_info, 3474 &fs_info->global_block_rsv); 3475 if (ret) 3476 goto out; 3477 3478 trans = btrfs_join_transaction(root); 3479 if (IS_ERR(trans)) { 3480 ret = PTR_ERR(trans); 3481 goto out; 3482 } 3483 3484 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3485 3486 btrfs_end_transaction(trans); 3487 btrfs_btree_balance_dirty(fs_info); 3488 out: 3489 iput(inode); 3490 return ret; 3491 } 3492 3493 /* 3494 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3495 * this function scans fs tree to find blocks reference the data extent 3496 */ 3497 static int find_data_references(struct reloc_control *rc, 3498 struct btrfs_key *extent_key, 3499 struct extent_buffer *leaf, 3500 struct btrfs_extent_data_ref *ref, 3501 struct rb_root *blocks) 3502 { 3503 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3504 struct btrfs_path *path; 3505 struct tree_block *block; 3506 struct btrfs_root *root; 3507 struct btrfs_file_extent_item *fi; 3508 struct rb_node *rb_node; 3509 struct btrfs_key key; 3510 u64 ref_root; 3511 u64 ref_objectid; 3512 u64 ref_offset; 3513 u32 ref_count; 3514 u32 nritems; 3515 int err = 0; 3516 int added = 0; 3517 int counted; 3518 int ret; 3519 3520 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3521 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3522 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3523 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3524 3525 /* 3526 * This is an extent belonging to the free space cache, lets just delete 3527 * it and redo the search. 3528 */ 3529 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3530 ret = delete_block_group_cache(fs_info, rc->block_group, 3531 NULL, ref_objectid); 3532 if (ret != -ENOENT) 3533 return ret; 3534 ret = 0; 3535 } 3536 3537 path = btrfs_alloc_path(); 3538 if (!path) 3539 return -ENOMEM; 3540 path->reada = READA_FORWARD; 3541 3542 root = read_fs_root(fs_info, ref_root); 3543 if (IS_ERR(root)) { 3544 err = PTR_ERR(root); 3545 goto out; 3546 } 3547 3548 key.objectid = ref_objectid; 3549 key.type = BTRFS_EXTENT_DATA_KEY; 3550 if (ref_offset > ((u64)-1 << 32)) 3551 key.offset = 0; 3552 else 3553 key.offset = ref_offset; 3554 3555 path->search_commit_root = 1; 3556 path->skip_locking = 1; 3557 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3558 if (ret < 0) { 3559 err = ret; 3560 goto out; 3561 } 3562 3563 leaf = path->nodes[0]; 3564 nritems = btrfs_header_nritems(leaf); 3565 /* 3566 * the references in tree blocks that use full backrefs 3567 * are not counted in 3568 */ 3569 if (block_use_full_backref(rc, leaf)) 3570 counted = 0; 3571 else 3572 counted = 1; 3573 rb_node = tree_search(blocks, leaf->start); 3574 if (rb_node) { 3575 if (counted) 3576 added = 1; 3577 else 3578 path->slots[0] = nritems; 3579 } 3580 3581 while (ref_count > 0) { 3582 while (path->slots[0] >= nritems) { 3583 ret = btrfs_next_leaf(root, path); 3584 if (ret < 0) { 3585 err = ret; 3586 goto out; 3587 } 3588 if (WARN_ON(ret > 0)) 3589 goto out; 3590 3591 leaf = path->nodes[0]; 3592 nritems = btrfs_header_nritems(leaf); 3593 added = 0; 3594 3595 if (block_use_full_backref(rc, leaf)) 3596 counted = 0; 3597 else 3598 counted = 1; 3599 rb_node = tree_search(blocks, leaf->start); 3600 if (rb_node) { 3601 if (counted) 3602 added = 1; 3603 else 3604 path->slots[0] = nritems; 3605 } 3606 } 3607 3608 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3609 if (WARN_ON(key.objectid != ref_objectid || 3610 key.type != BTRFS_EXTENT_DATA_KEY)) 3611 break; 3612 3613 fi = btrfs_item_ptr(leaf, path->slots[0], 3614 struct btrfs_file_extent_item); 3615 3616 if (btrfs_file_extent_type(leaf, fi) == 3617 BTRFS_FILE_EXTENT_INLINE) 3618 goto next; 3619 3620 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3621 extent_key->objectid) 3622 goto next; 3623 3624 key.offset -= btrfs_file_extent_offset(leaf, fi); 3625 if (key.offset != ref_offset) 3626 goto next; 3627 3628 if (counted) 3629 ref_count--; 3630 if (added) 3631 goto next; 3632 3633 if (!tree_block_processed(leaf->start, rc)) { 3634 block = kmalloc(sizeof(*block), GFP_NOFS); 3635 if (!block) { 3636 err = -ENOMEM; 3637 break; 3638 } 3639 block->bytenr = leaf->start; 3640 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3641 block->level = 0; 3642 block->key_ready = 1; 3643 rb_node = tree_insert(blocks, block->bytenr, 3644 &block->rb_node); 3645 if (rb_node) 3646 backref_tree_panic(rb_node, -EEXIST, 3647 block->bytenr); 3648 } 3649 if (counted) 3650 added = 1; 3651 else 3652 path->slots[0] = nritems; 3653 next: 3654 path->slots[0]++; 3655 3656 } 3657 out: 3658 btrfs_free_path(path); 3659 return err; 3660 } 3661 3662 /* 3663 * helper to find all tree blocks that reference a given data extent 3664 */ 3665 static noinline_for_stack 3666 int add_data_references(struct reloc_control *rc, 3667 struct btrfs_key *extent_key, 3668 struct btrfs_path *path, 3669 struct rb_root *blocks) 3670 { 3671 struct btrfs_key key; 3672 struct extent_buffer *eb; 3673 struct btrfs_extent_data_ref *dref; 3674 struct btrfs_extent_inline_ref *iref; 3675 unsigned long ptr; 3676 unsigned long end; 3677 u32 blocksize = rc->extent_root->fs_info->nodesize; 3678 int ret = 0; 3679 int err = 0; 3680 3681 eb = path->nodes[0]; 3682 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3683 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3684 ptr += sizeof(struct btrfs_extent_item); 3685 3686 while (ptr < end) { 3687 iref = (struct btrfs_extent_inline_ref *)ptr; 3688 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3689 BTRFS_REF_TYPE_DATA); 3690 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3691 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3692 ret = __add_tree_block(rc, key.offset, blocksize, 3693 blocks); 3694 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3695 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3696 ret = find_data_references(rc, extent_key, 3697 eb, dref, blocks); 3698 } else { 3699 ret = -EUCLEAN; 3700 btrfs_err(rc->extent_root->fs_info, 3701 "extent %llu slot %d has an invalid inline ref type", 3702 eb->start, path->slots[0]); 3703 } 3704 if (ret) { 3705 err = ret; 3706 goto out; 3707 } 3708 ptr += btrfs_extent_inline_ref_size(key.type); 3709 } 3710 WARN_ON(ptr > end); 3711 3712 while (1) { 3713 cond_resched(); 3714 eb = path->nodes[0]; 3715 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3716 ret = btrfs_next_leaf(rc->extent_root, path); 3717 if (ret < 0) { 3718 err = ret; 3719 break; 3720 } 3721 if (ret > 0) 3722 break; 3723 eb = path->nodes[0]; 3724 } 3725 3726 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3727 if (key.objectid != extent_key->objectid) 3728 break; 3729 3730 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3731 ret = __add_tree_block(rc, key.offset, blocksize, 3732 blocks); 3733 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3734 dref = btrfs_item_ptr(eb, path->slots[0], 3735 struct btrfs_extent_data_ref); 3736 ret = find_data_references(rc, extent_key, 3737 eb, dref, blocks); 3738 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3739 btrfs_print_v0_err(eb->fs_info); 3740 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3741 ret = -EINVAL; 3742 } else { 3743 ret = 0; 3744 } 3745 if (ret) { 3746 err = ret; 3747 break; 3748 } 3749 path->slots[0]++; 3750 } 3751 out: 3752 btrfs_release_path(path); 3753 if (err) 3754 free_block_list(blocks); 3755 return err; 3756 } 3757 3758 /* 3759 * helper to find next unprocessed extent 3760 */ 3761 static noinline_for_stack 3762 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3763 struct btrfs_key *extent_key) 3764 { 3765 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3766 struct btrfs_key key; 3767 struct extent_buffer *leaf; 3768 u64 start, end, last; 3769 int ret; 3770 3771 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3772 while (1) { 3773 cond_resched(); 3774 if (rc->search_start >= last) { 3775 ret = 1; 3776 break; 3777 } 3778 3779 key.objectid = rc->search_start; 3780 key.type = BTRFS_EXTENT_ITEM_KEY; 3781 key.offset = 0; 3782 3783 path->search_commit_root = 1; 3784 path->skip_locking = 1; 3785 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3786 0, 0); 3787 if (ret < 0) 3788 break; 3789 next: 3790 leaf = path->nodes[0]; 3791 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3792 ret = btrfs_next_leaf(rc->extent_root, path); 3793 if (ret != 0) 3794 break; 3795 leaf = path->nodes[0]; 3796 } 3797 3798 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3799 if (key.objectid >= last) { 3800 ret = 1; 3801 break; 3802 } 3803 3804 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3805 key.type != BTRFS_METADATA_ITEM_KEY) { 3806 path->slots[0]++; 3807 goto next; 3808 } 3809 3810 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3811 key.objectid + key.offset <= rc->search_start) { 3812 path->slots[0]++; 3813 goto next; 3814 } 3815 3816 if (key.type == BTRFS_METADATA_ITEM_KEY && 3817 key.objectid + fs_info->nodesize <= 3818 rc->search_start) { 3819 path->slots[0]++; 3820 goto next; 3821 } 3822 3823 ret = find_first_extent_bit(&rc->processed_blocks, 3824 key.objectid, &start, &end, 3825 EXTENT_DIRTY, NULL); 3826 3827 if (ret == 0 && start <= key.objectid) { 3828 btrfs_release_path(path); 3829 rc->search_start = end + 1; 3830 } else { 3831 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3832 rc->search_start = key.objectid + key.offset; 3833 else 3834 rc->search_start = key.objectid + 3835 fs_info->nodesize; 3836 memcpy(extent_key, &key, sizeof(key)); 3837 return 0; 3838 } 3839 } 3840 btrfs_release_path(path); 3841 return ret; 3842 } 3843 3844 static void set_reloc_control(struct reloc_control *rc) 3845 { 3846 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3847 3848 mutex_lock(&fs_info->reloc_mutex); 3849 fs_info->reloc_ctl = rc; 3850 mutex_unlock(&fs_info->reloc_mutex); 3851 } 3852 3853 static void unset_reloc_control(struct reloc_control *rc) 3854 { 3855 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3856 3857 mutex_lock(&fs_info->reloc_mutex); 3858 fs_info->reloc_ctl = NULL; 3859 mutex_unlock(&fs_info->reloc_mutex); 3860 } 3861 3862 static int check_extent_flags(u64 flags) 3863 { 3864 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3865 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3866 return 1; 3867 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3868 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3869 return 1; 3870 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3871 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3872 return 1; 3873 return 0; 3874 } 3875 3876 static noinline_for_stack 3877 int prepare_to_relocate(struct reloc_control *rc) 3878 { 3879 struct btrfs_trans_handle *trans; 3880 int ret; 3881 3882 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3883 BTRFS_BLOCK_RSV_TEMP); 3884 if (!rc->block_rsv) 3885 return -ENOMEM; 3886 3887 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3888 rc->search_start = rc->block_group->key.objectid; 3889 rc->extents_found = 0; 3890 rc->nodes_relocated = 0; 3891 rc->merging_rsv_size = 0; 3892 rc->reserved_bytes = 0; 3893 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3894 RELOCATION_RESERVED_NODES; 3895 ret = btrfs_block_rsv_refill(rc->extent_root, 3896 rc->block_rsv, rc->block_rsv->size, 3897 BTRFS_RESERVE_FLUSH_ALL); 3898 if (ret) 3899 return ret; 3900 3901 rc->create_reloc_tree = 1; 3902 set_reloc_control(rc); 3903 3904 trans = btrfs_join_transaction(rc->extent_root); 3905 if (IS_ERR(trans)) { 3906 unset_reloc_control(rc); 3907 /* 3908 * extent tree is not a ref_cow tree and has no reloc_root to 3909 * cleanup. And callers are responsible to free the above 3910 * block rsv. 3911 */ 3912 return PTR_ERR(trans); 3913 } 3914 btrfs_commit_transaction(trans); 3915 return 0; 3916 } 3917 3918 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3919 { 3920 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3921 struct rb_root blocks = RB_ROOT; 3922 struct btrfs_key key; 3923 struct btrfs_trans_handle *trans = NULL; 3924 struct btrfs_path *path; 3925 struct btrfs_extent_item *ei; 3926 u64 flags; 3927 u32 item_size; 3928 int ret; 3929 int err = 0; 3930 int progress = 0; 3931 3932 path = btrfs_alloc_path(); 3933 if (!path) 3934 return -ENOMEM; 3935 path->reada = READA_FORWARD; 3936 3937 ret = prepare_to_relocate(rc); 3938 if (ret) { 3939 err = ret; 3940 goto out_free; 3941 } 3942 3943 while (1) { 3944 rc->reserved_bytes = 0; 3945 ret = btrfs_block_rsv_refill(rc->extent_root, 3946 rc->block_rsv, rc->block_rsv->size, 3947 BTRFS_RESERVE_FLUSH_ALL); 3948 if (ret) { 3949 err = ret; 3950 break; 3951 } 3952 progress++; 3953 trans = btrfs_start_transaction(rc->extent_root, 0); 3954 if (IS_ERR(trans)) { 3955 err = PTR_ERR(trans); 3956 trans = NULL; 3957 break; 3958 } 3959 restart: 3960 if (update_backref_cache(trans, &rc->backref_cache)) { 3961 btrfs_end_transaction(trans); 3962 trans = NULL; 3963 continue; 3964 } 3965 3966 ret = find_next_extent(rc, path, &key); 3967 if (ret < 0) 3968 err = ret; 3969 if (ret != 0) 3970 break; 3971 3972 rc->extents_found++; 3973 3974 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3975 struct btrfs_extent_item); 3976 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3977 if (item_size >= sizeof(*ei)) { 3978 flags = btrfs_extent_flags(path->nodes[0], ei); 3979 ret = check_extent_flags(flags); 3980 BUG_ON(ret); 3981 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3982 err = -EINVAL; 3983 btrfs_print_v0_err(trans->fs_info); 3984 btrfs_abort_transaction(trans, err); 3985 break; 3986 } else { 3987 BUG(); 3988 } 3989 3990 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3991 ret = add_tree_block(rc, &key, path, &blocks); 3992 } else if (rc->stage == UPDATE_DATA_PTRS && 3993 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3994 ret = add_data_references(rc, &key, path, &blocks); 3995 } else { 3996 btrfs_release_path(path); 3997 ret = 0; 3998 } 3999 if (ret < 0) { 4000 err = ret; 4001 break; 4002 } 4003 4004 if (!RB_EMPTY_ROOT(&blocks)) { 4005 ret = relocate_tree_blocks(trans, rc, &blocks); 4006 if (ret < 0) { 4007 /* 4008 * if we fail to relocate tree blocks, force to update 4009 * backref cache when committing transaction. 4010 */ 4011 rc->backref_cache.last_trans = trans->transid - 1; 4012 4013 if (ret != -EAGAIN) { 4014 err = ret; 4015 break; 4016 } 4017 rc->extents_found--; 4018 rc->search_start = key.objectid; 4019 } 4020 } 4021 4022 btrfs_end_transaction_throttle(trans); 4023 btrfs_btree_balance_dirty(fs_info); 4024 trans = NULL; 4025 4026 if (rc->stage == MOVE_DATA_EXTENTS && 4027 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4028 rc->found_file_extent = 1; 4029 ret = relocate_data_extent(rc->data_inode, 4030 &key, &rc->cluster); 4031 if (ret < 0) { 4032 err = ret; 4033 break; 4034 } 4035 } 4036 } 4037 if (trans && progress && err == -ENOSPC) { 4038 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 4039 if (ret == 1) { 4040 err = 0; 4041 progress = 0; 4042 goto restart; 4043 } 4044 } 4045 4046 btrfs_release_path(path); 4047 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4048 4049 if (trans) { 4050 btrfs_end_transaction_throttle(trans); 4051 btrfs_btree_balance_dirty(fs_info); 4052 } 4053 4054 if (!err) { 4055 ret = relocate_file_extent_cluster(rc->data_inode, 4056 &rc->cluster); 4057 if (ret < 0) 4058 err = ret; 4059 } 4060 4061 rc->create_reloc_tree = 0; 4062 set_reloc_control(rc); 4063 4064 backref_cache_cleanup(&rc->backref_cache); 4065 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4066 4067 err = prepare_to_merge(rc, err); 4068 4069 merge_reloc_roots(rc); 4070 4071 rc->merge_reloc_tree = 0; 4072 unset_reloc_control(rc); 4073 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4074 4075 /* get rid of pinned extents */ 4076 trans = btrfs_join_transaction(rc->extent_root); 4077 if (IS_ERR(trans)) { 4078 err = PTR_ERR(trans); 4079 goto out_free; 4080 } 4081 btrfs_commit_transaction(trans); 4082 out_free: 4083 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4084 btrfs_free_path(path); 4085 return err; 4086 } 4087 4088 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4089 struct btrfs_root *root, u64 objectid) 4090 { 4091 struct btrfs_path *path; 4092 struct btrfs_inode_item *item; 4093 struct extent_buffer *leaf; 4094 int ret; 4095 4096 path = btrfs_alloc_path(); 4097 if (!path) 4098 return -ENOMEM; 4099 4100 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4101 if (ret) 4102 goto out; 4103 4104 leaf = path->nodes[0]; 4105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4106 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4107 btrfs_set_inode_generation(leaf, item, 1); 4108 btrfs_set_inode_size(leaf, item, 0); 4109 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4110 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4111 BTRFS_INODE_PREALLOC); 4112 btrfs_mark_buffer_dirty(leaf); 4113 out: 4114 btrfs_free_path(path); 4115 return ret; 4116 } 4117 4118 /* 4119 * helper to create inode for data relocation. 4120 * the inode is in data relocation tree and its link count is 0 4121 */ 4122 static noinline_for_stack 4123 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4124 struct btrfs_block_group_cache *group) 4125 { 4126 struct inode *inode = NULL; 4127 struct btrfs_trans_handle *trans; 4128 struct btrfs_root *root; 4129 struct btrfs_key key; 4130 u64 objectid; 4131 int err = 0; 4132 4133 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4134 if (IS_ERR(root)) 4135 return ERR_CAST(root); 4136 4137 trans = btrfs_start_transaction(root, 6); 4138 if (IS_ERR(trans)) 4139 return ERR_CAST(trans); 4140 4141 err = btrfs_find_free_objectid(root, &objectid); 4142 if (err) 4143 goto out; 4144 4145 err = __insert_orphan_inode(trans, root, objectid); 4146 BUG_ON(err); 4147 4148 key.objectid = objectid; 4149 key.type = BTRFS_INODE_ITEM_KEY; 4150 key.offset = 0; 4151 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4152 BUG_ON(IS_ERR(inode)); 4153 BTRFS_I(inode)->index_cnt = group->key.objectid; 4154 4155 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4156 out: 4157 btrfs_end_transaction(trans); 4158 btrfs_btree_balance_dirty(fs_info); 4159 if (err) { 4160 if (inode) 4161 iput(inode); 4162 inode = ERR_PTR(err); 4163 } 4164 return inode; 4165 } 4166 4167 static struct reloc_control *alloc_reloc_control(void) 4168 { 4169 struct reloc_control *rc; 4170 4171 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4172 if (!rc) 4173 return NULL; 4174 4175 INIT_LIST_HEAD(&rc->reloc_roots); 4176 backref_cache_init(&rc->backref_cache); 4177 mapping_tree_init(&rc->reloc_root_tree); 4178 extent_io_tree_init(&rc->processed_blocks, NULL); 4179 return rc; 4180 } 4181 4182 /* 4183 * Print the block group being relocated 4184 */ 4185 static void describe_relocation(struct btrfs_fs_info *fs_info, 4186 struct btrfs_block_group_cache *block_group) 4187 { 4188 char buf[128] = {'\0'}; 4189 4190 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4191 4192 btrfs_info(fs_info, 4193 "relocating block group %llu flags %s", 4194 block_group->key.objectid, buf); 4195 } 4196 4197 /* 4198 * function to relocate all extents in a block group. 4199 */ 4200 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4201 { 4202 struct btrfs_block_group_cache *bg; 4203 struct btrfs_root *extent_root = fs_info->extent_root; 4204 struct reloc_control *rc; 4205 struct inode *inode; 4206 struct btrfs_path *path; 4207 int ret; 4208 int rw = 0; 4209 int err = 0; 4210 4211 bg = btrfs_lookup_block_group(fs_info, group_start); 4212 if (!bg) 4213 return -ENOENT; 4214 4215 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4216 btrfs_put_block_group(bg); 4217 return -ETXTBSY; 4218 } 4219 4220 rc = alloc_reloc_control(); 4221 if (!rc) { 4222 btrfs_put_block_group(bg); 4223 return -ENOMEM; 4224 } 4225 4226 rc->extent_root = extent_root; 4227 rc->block_group = bg; 4228 4229 ret = btrfs_inc_block_group_ro(rc->block_group); 4230 if (ret) { 4231 err = ret; 4232 goto out; 4233 } 4234 rw = 1; 4235 4236 path = btrfs_alloc_path(); 4237 if (!path) { 4238 err = -ENOMEM; 4239 goto out; 4240 } 4241 4242 inode = lookup_free_space_inode(fs_info, rc->block_group, path); 4243 btrfs_free_path(path); 4244 4245 if (!IS_ERR(inode)) 4246 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4247 else 4248 ret = PTR_ERR(inode); 4249 4250 if (ret && ret != -ENOENT) { 4251 err = ret; 4252 goto out; 4253 } 4254 4255 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4256 if (IS_ERR(rc->data_inode)) { 4257 err = PTR_ERR(rc->data_inode); 4258 rc->data_inode = NULL; 4259 goto out; 4260 } 4261 4262 describe_relocation(fs_info, rc->block_group); 4263 4264 btrfs_wait_block_group_reservations(rc->block_group); 4265 btrfs_wait_nocow_writers(rc->block_group); 4266 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4267 rc->block_group->key.objectid, 4268 rc->block_group->key.offset); 4269 4270 while (1) { 4271 mutex_lock(&fs_info->cleaner_mutex); 4272 ret = relocate_block_group(rc); 4273 mutex_unlock(&fs_info->cleaner_mutex); 4274 if (ret < 0) { 4275 err = ret; 4276 goto out; 4277 } 4278 4279 if (rc->extents_found == 0) 4280 break; 4281 4282 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4283 4284 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4285 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4286 (u64)-1); 4287 if (ret) { 4288 err = ret; 4289 goto out; 4290 } 4291 invalidate_mapping_pages(rc->data_inode->i_mapping, 4292 0, -1); 4293 rc->stage = UPDATE_DATA_PTRS; 4294 } 4295 } 4296 4297 WARN_ON(rc->block_group->pinned > 0); 4298 WARN_ON(rc->block_group->reserved > 0); 4299 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4300 out: 4301 if (err && rw) 4302 btrfs_dec_block_group_ro(rc->block_group); 4303 iput(rc->data_inode); 4304 btrfs_put_block_group(rc->block_group); 4305 kfree(rc); 4306 return err; 4307 } 4308 4309 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4310 { 4311 struct btrfs_fs_info *fs_info = root->fs_info; 4312 struct btrfs_trans_handle *trans; 4313 int ret, err; 4314 4315 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4316 if (IS_ERR(trans)) 4317 return PTR_ERR(trans); 4318 4319 memset(&root->root_item.drop_progress, 0, 4320 sizeof(root->root_item.drop_progress)); 4321 root->root_item.drop_level = 0; 4322 btrfs_set_root_refs(&root->root_item, 0); 4323 ret = btrfs_update_root(trans, fs_info->tree_root, 4324 &root->root_key, &root->root_item); 4325 4326 err = btrfs_end_transaction(trans); 4327 if (err) 4328 return err; 4329 return ret; 4330 } 4331 4332 /* 4333 * recover relocation interrupted by system crash. 4334 * 4335 * this function resumes merging reloc trees with corresponding fs trees. 4336 * this is important for keeping the sharing of tree blocks 4337 */ 4338 int btrfs_recover_relocation(struct btrfs_root *root) 4339 { 4340 struct btrfs_fs_info *fs_info = root->fs_info; 4341 LIST_HEAD(reloc_roots); 4342 struct btrfs_key key; 4343 struct btrfs_root *fs_root; 4344 struct btrfs_root *reloc_root; 4345 struct btrfs_path *path; 4346 struct extent_buffer *leaf; 4347 struct reloc_control *rc = NULL; 4348 struct btrfs_trans_handle *trans; 4349 int ret; 4350 int err = 0; 4351 4352 path = btrfs_alloc_path(); 4353 if (!path) 4354 return -ENOMEM; 4355 path->reada = READA_BACK; 4356 4357 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4358 key.type = BTRFS_ROOT_ITEM_KEY; 4359 key.offset = (u64)-1; 4360 4361 while (1) { 4362 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4363 path, 0, 0); 4364 if (ret < 0) { 4365 err = ret; 4366 goto out; 4367 } 4368 if (ret > 0) { 4369 if (path->slots[0] == 0) 4370 break; 4371 path->slots[0]--; 4372 } 4373 leaf = path->nodes[0]; 4374 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4375 btrfs_release_path(path); 4376 4377 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4378 key.type != BTRFS_ROOT_ITEM_KEY) 4379 break; 4380 4381 reloc_root = btrfs_read_fs_root(root, &key); 4382 if (IS_ERR(reloc_root)) { 4383 err = PTR_ERR(reloc_root); 4384 goto out; 4385 } 4386 4387 list_add(&reloc_root->root_list, &reloc_roots); 4388 4389 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4390 fs_root = read_fs_root(fs_info, 4391 reloc_root->root_key.offset); 4392 if (IS_ERR(fs_root)) { 4393 ret = PTR_ERR(fs_root); 4394 if (ret != -ENOENT) { 4395 err = ret; 4396 goto out; 4397 } 4398 ret = mark_garbage_root(reloc_root); 4399 if (ret < 0) { 4400 err = ret; 4401 goto out; 4402 } 4403 } 4404 } 4405 4406 if (key.offset == 0) 4407 break; 4408 4409 key.offset--; 4410 } 4411 btrfs_release_path(path); 4412 4413 if (list_empty(&reloc_roots)) 4414 goto out; 4415 4416 rc = alloc_reloc_control(); 4417 if (!rc) { 4418 err = -ENOMEM; 4419 goto out; 4420 } 4421 4422 rc->extent_root = fs_info->extent_root; 4423 4424 set_reloc_control(rc); 4425 4426 trans = btrfs_join_transaction(rc->extent_root); 4427 if (IS_ERR(trans)) { 4428 unset_reloc_control(rc); 4429 err = PTR_ERR(trans); 4430 goto out_free; 4431 } 4432 4433 rc->merge_reloc_tree = 1; 4434 4435 while (!list_empty(&reloc_roots)) { 4436 reloc_root = list_entry(reloc_roots.next, 4437 struct btrfs_root, root_list); 4438 list_del(&reloc_root->root_list); 4439 4440 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4441 list_add_tail(&reloc_root->root_list, 4442 &rc->reloc_roots); 4443 continue; 4444 } 4445 4446 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4447 if (IS_ERR(fs_root)) { 4448 err = PTR_ERR(fs_root); 4449 goto out_free; 4450 } 4451 4452 err = __add_reloc_root(reloc_root); 4453 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4454 fs_root->reloc_root = reloc_root; 4455 } 4456 4457 err = btrfs_commit_transaction(trans); 4458 if (err) 4459 goto out_free; 4460 4461 merge_reloc_roots(rc); 4462 4463 unset_reloc_control(rc); 4464 4465 trans = btrfs_join_transaction(rc->extent_root); 4466 if (IS_ERR(trans)) { 4467 err = PTR_ERR(trans); 4468 goto out_free; 4469 } 4470 err = btrfs_commit_transaction(trans); 4471 out_free: 4472 kfree(rc); 4473 out: 4474 if (!list_empty(&reloc_roots)) 4475 free_reloc_roots(&reloc_roots); 4476 4477 btrfs_free_path(path); 4478 4479 if (err == 0) { 4480 /* cleanup orphan inode in data relocation tree */ 4481 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4482 if (IS_ERR(fs_root)) 4483 err = PTR_ERR(fs_root); 4484 else 4485 err = btrfs_orphan_cleanup(fs_root); 4486 } 4487 return err; 4488 } 4489 4490 /* 4491 * helper to add ordered checksum for data relocation. 4492 * 4493 * cloning checksum properly handles the nodatasum extents. 4494 * it also saves CPU time to re-calculate the checksum. 4495 */ 4496 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4497 { 4498 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4499 struct btrfs_ordered_sum *sums; 4500 struct btrfs_ordered_extent *ordered; 4501 int ret; 4502 u64 disk_bytenr; 4503 u64 new_bytenr; 4504 LIST_HEAD(list); 4505 4506 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4507 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4508 4509 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4510 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4511 disk_bytenr + len - 1, &list, 0); 4512 if (ret) 4513 goto out; 4514 4515 while (!list_empty(&list)) { 4516 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4517 list_del_init(&sums->list); 4518 4519 /* 4520 * We need to offset the new_bytenr based on where the csum is. 4521 * We need to do this because we will read in entire prealloc 4522 * extents but we may have written to say the middle of the 4523 * prealloc extent, so we need to make sure the csum goes with 4524 * the right disk offset. 4525 * 4526 * We can do this because the data reloc inode refers strictly 4527 * to the on disk bytes, so we don't have to worry about 4528 * disk_len vs real len like with real inodes since it's all 4529 * disk length. 4530 */ 4531 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4532 sums->bytenr = new_bytenr; 4533 4534 btrfs_add_ordered_sum(inode, ordered, sums); 4535 } 4536 out: 4537 btrfs_put_ordered_extent(ordered); 4538 return ret; 4539 } 4540 4541 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4542 struct btrfs_root *root, struct extent_buffer *buf, 4543 struct extent_buffer *cow) 4544 { 4545 struct btrfs_fs_info *fs_info = root->fs_info; 4546 struct reloc_control *rc; 4547 struct backref_node *node; 4548 int first_cow = 0; 4549 int level; 4550 int ret = 0; 4551 4552 rc = fs_info->reloc_ctl; 4553 if (!rc) 4554 return 0; 4555 4556 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4557 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4558 4559 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4560 if (buf == root->node) 4561 __update_reloc_root(root, cow->start); 4562 } 4563 4564 level = btrfs_header_level(buf); 4565 if (btrfs_header_generation(buf) <= 4566 btrfs_root_last_snapshot(&root->root_item)) 4567 first_cow = 1; 4568 4569 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4570 rc->create_reloc_tree) { 4571 WARN_ON(!first_cow && level == 0); 4572 4573 node = rc->backref_cache.path[level]; 4574 BUG_ON(node->bytenr != buf->start && 4575 node->new_bytenr != buf->start); 4576 4577 drop_node_buffer(node); 4578 extent_buffer_get(cow); 4579 node->eb = cow; 4580 node->new_bytenr = cow->start; 4581 4582 if (!node->pending) { 4583 list_move_tail(&node->list, 4584 &rc->backref_cache.pending[level]); 4585 node->pending = 1; 4586 } 4587 4588 if (first_cow) 4589 __mark_block_processed(rc, node); 4590 4591 if (first_cow && level > 0) 4592 rc->nodes_relocated += buf->len; 4593 } 4594 4595 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4596 ret = replace_file_extents(trans, rc, root, cow); 4597 return ret; 4598 } 4599 4600 /* 4601 * called before creating snapshot. it calculates metadata reservation 4602 * required for relocating tree blocks in the snapshot 4603 */ 4604 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4605 u64 *bytes_to_reserve) 4606 { 4607 struct btrfs_root *root; 4608 struct reloc_control *rc; 4609 4610 root = pending->root; 4611 if (!root->reloc_root) 4612 return; 4613 4614 rc = root->fs_info->reloc_ctl; 4615 if (!rc->merge_reloc_tree) 4616 return; 4617 4618 root = root->reloc_root; 4619 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4620 /* 4621 * relocation is in the stage of merging trees. the space 4622 * used by merging a reloc tree is twice the size of 4623 * relocated tree nodes in the worst case. half for cowing 4624 * the reloc tree, half for cowing the fs tree. the space 4625 * used by cowing the reloc tree will be freed after the 4626 * tree is dropped. if we create snapshot, cowing the fs 4627 * tree may use more space than it frees. so we need 4628 * reserve extra space. 4629 */ 4630 *bytes_to_reserve += rc->nodes_relocated; 4631 } 4632 4633 /* 4634 * called after snapshot is created. migrate block reservation 4635 * and create reloc root for the newly created snapshot 4636 */ 4637 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4638 struct btrfs_pending_snapshot *pending) 4639 { 4640 struct btrfs_root *root = pending->root; 4641 struct btrfs_root *reloc_root; 4642 struct btrfs_root *new_root; 4643 struct reloc_control *rc; 4644 int ret; 4645 4646 if (!root->reloc_root) 4647 return 0; 4648 4649 rc = root->fs_info->reloc_ctl; 4650 rc->merging_rsv_size += rc->nodes_relocated; 4651 4652 if (rc->merge_reloc_tree) { 4653 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4654 rc->block_rsv, 4655 rc->nodes_relocated, true); 4656 if (ret) 4657 return ret; 4658 } 4659 4660 new_root = pending->snap; 4661 reloc_root = create_reloc_root(trans, root->reloc_root, 4662 new_root->root_key.objectid); 4663 if (IS_ERR(reloc_root)) 4664 return PTR_ERR(reloc_root); 4665 4666 ret = __add_reloc_root(reloc_root); 4667 BUG_ON(ret < 0); 4668 new_root->reloc_root = reloc_root; 4669 4670 if (rc->create_reloc_tree) 4671 ret = clone_backref_node(trans, rc, root, reloc_root); 4672 return ret; 4673 } 4674