xref: /openbmc/linux/fs/btrfs/relocation.c (revision d0bd7f2a)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		BUG_ON(!list_empty(&cache->pending[i]));
239 	BUG_ON(!list_empty(&cache->changed));
240 	BUG_ON(!list_empty(&cache->detached));
241 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 	BUG_ON(cache->nr_nodes);
243 	BUG_ON(cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
579 		return 1;
580 	return 0;
581 }
582 
583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
584 					u64 root_objectid)
585 {
586 	struct btrfs_key key;
587 
588 	key.objectid = root_objectid;
589 	key.type = BTRFS_ROOT_ITEM_KEY;
590 	if (is_cowonly_root(root_objectid))
591 		key.offset = 0;
592 	else
593 		key.offset = (u64)-1;
594 
595 	return btrfs_get_fs_root(fs_info, &key, false);
596 }
597 
598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
599 static noinline_for_stack
600 struct btrfs_root *find_tree_root(struct reloc_control *rc,
601 				  struct extent_buffer *leaf,
602 				  struct btrfs_extent_ref_v0 *ref0)
603 {
604 	struct btrfs_root *root;
605 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
606 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
607 
608 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
609 
610 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
611 	BUG_ON(IS_ERR(root));
612 
613 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
614 	    generation != btrfs_root_generation(&root->root_item))
615 		return NULL;
616 
617 	return root;
618 }
619 #endif
620 
621 static noinline_for_stack
622 int find_inline_backref(struct extent_buffer *leaf, int slot,
623 			unsigned long *ptr, unsigned long *end)
624 {
625 	struct btrfs_key key;
626 	struct btrfs_extent_item *ei;
627 	struct btrfs_tree_block_info *bi;
628 	u32 item_size;
629 
630 	btrfs_item_key_to_cpu(leaf, &key, slot);
631 
632 	item_size = btrfs_item_size_nr(leaf, slot);
633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
634 	if (item_size < sizeof(*ei)) {
635 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
636 		return 1;
637 	}
638 #endif
639 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
640 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
641 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
642 
643 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
644 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
645 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
646 		return 1;
647 	}
648 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
649 	    item_size <= sizeof(*ei)) {
650 		WARN_ON(item_size < sizeof(*ei));
651 		return 1;
652 	}
653 
654 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
655 		bi = (struct btrfs_tree_block_info *)(ei + 1);
656 		*ptr = (unsigned long)(bi + 1);
657 	} else {
658 		*ptr = (unsigned long)(ei + 1);
659 	}
660 	*end = (unsigned long)ei + item_size;
661 	return 0;
662 }
663 
664 /*
665  * build backref tree for a given tree block. root of the backref tree
666  * corresponds the tree block, leaves of the backref tree correspond
667  * roots of b-trees that reference the tree block.
668  *
669  * the basic idea of this function is check backrefs of a given block
670  * to find upper level blocks that refernece the block, and then check
671  * bakcrefs of these upper level blocks recursively. the recursion stop
672  * when tree root is reached or backrefs for the block is cached.
673  *
674  * NOTE: if we find backrefs for a block are cached, we know backrefs
675  * for all upper level blocks that directly/indirectly reference the
676  * block are also cached.
677  */
678 static noinline_for_stack
679 struct backref_node *build_backref_tree(struct reloc_control *rc,
680 					struct btrfs_key *node_key,
681 					int level, u64 bytenr)
682 {
683 	struct backref_cache *cache = &rc->backref_cache;
684 	struct btrfs_path *path1;
685 	struct btrfs_path *path2;
686 	struct extent_buffer *eb;
687 	struct btrfs_root *root;
688 	struct backref_node *cur;
689 	struct backref_node *upper;
690 	struct backref_node *lower;
691 	struct backref_node *node = NULL;
692 	struct backref_node *exist = NULL;
693 	struct backref_edge *edge;
694 	struct rb_node *rb_node;
695 	struct btrfs_key key;
696 	unsigned long end;
697 	unsigned long ptr;
698 	LIST_HEAD(list);
699 	LIST_HEAD(useless);
700 	int cowonly;
701 	int ret;
702 	int err = 0;
703 	bool need_check = true;
704 
705 	path1 = btrfs_alloc_path();
706 	path2 = btrfs_alloc_path();
707 	if (!path1 || !path2) {
708 		err = -ENOMEM;
709 		goto out;
710 	}
711 	path1->reada = 1;
712 	path2->reada = 2;
713 
714 	node = alloc_backref_node(cache);
715 	if (!node) {
716 		err = -ENOMEM;
717 		goto out;
718 	}
719 
720 	node->bytenr = bytenr;
721 	node->level = level;
722 	node->lowest = 1;
723 	cur = node;
724 again:
725 	end = 0;
726 	ptr = 0;
727 	key.objectid = cur->bytenr;
728 	key.type = BTRFS_METADATA_ITEM_KEY;
729 	key.offset = (u64)-1;
730 
731 	path1->search_commit_root = 1;
732 	path1->skip_locking = 1;
733 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
734 				0, 0);
735 	if (ret < 0) {
736 		err = ret;
737 		goto out;
738 	}
739 	ASSERT(ret);
740 	ASSERT(path1->slots[0]);
741 
742 	path1->slots[0]--;
743 
744 	WARN_ON(cur->checked);
745 	if (!list_empty(&cur->upper)) {
746 		/*
747 		 * the backref was added previously when processing
748 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
749 		 */
750 		ASSERT(list_is_singular(&cur->upper));
751 		edge = list_entry(cur->upper.next, struct backref_edge,
752 				  list[LOWER]);
753 		ASSERT(list_empty(&edge->list[UPPER]));
754 		exist = edge->node[UPPER];
755 		/*
756 		 * add the upper level block to pending list if we need
757 		 * check its backrefs
758 		 */
759 		if (!exist->checked)
760 			list_add_tail(&edge->list[UPPER], &list);
761 	} else {
762 		exist = NULL;
763 	}
764 
765 	while (1) {
766 		cond_resched();
767 		eb = path1->nodes[0];
768 
769 		if (ptr >= end) {
770 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
771 				ret = btrfs_next_leaf(rc->extent_root, path1);
772 				if (ret < 0) {
773 					err = ret;
774 					goto out;
775 				}
776 				if (ret > 0)
777 					break;
778 				eb = path1->nodes[0];
779 			}
780 
781 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
782 			if (key.objectid != cur->bytenr) {
783 				WARN_ON(exist);
784 				break;
785 			}
786 
787 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
788 			    key.type == BTRFS_METADATA_ITEM_KEY) {
789 				ret = find_inline_backref(eb, path1->slots[0],
790 							  &ptr, &end);
791 				if (ret)
792 					goto next;
793 			}
794 		}
795 
796 		if (ptr < end) {
797 			/* update key for inline back ref */
798 			struct btrfs_extent_inline_ref *iref;
799 			iref = (struct btrfs_extent_inline_ref *)ptr;
800 			key.type = btrfs_extent_inline_ref_type(eb, iref);
801 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
802 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
803 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
804 		}
805 
806 		if (exist &&
807 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
808 		      exist->owner == key.offset) ||
809 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
810 		      exist->bytenr == key.offset))) {
811 			exist = NULL;
812 			goto next;
813 		}
814 
815 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
816 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
817 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
818 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 				struct btrfs_extent_ref_v0 *ref0;
820 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
821 						struct btrfs_extent_ref_v0);
822 				if (key.objectid == key.offset) {
823 					root = find_tree_root(rc, eb, ref0);
824 					if (root && !should_ignore_root(root))
825 						cur->root = root;
826 					else
827 						list_add(&cur->list, &useless);
828 					break;
829 				}
830 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
831 								      ref0)))
832 					cur->cowonly = 1;
833 			}
834 #else
835 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
836 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
837 #endif
838 			if (key.objectid == key.offset) {
839 				/*
840 				 * only root blocks of reloc trees use
841 				 * backref of this type.
842 				 */
843 				root = find_reloc_root(rc, cur->bytenr);
844 				ASSERT(root);
845 				cur->root = root;
846 				break;
847 			}
848 
849 			edge = alloc_backref_edge(cache);
850 			if (!edge) {
851 				err = -ENOMEM;
852 				goto out;
853 			}
854 			rb_node = tree_search(&cache->rb_root, key.offset);
855 			if (!rb_node) {
856 				upper = alloc_backref_node(cache);
857 				if (!upper) {
858 					free_backref_edge(cache, edge);
859 					err = -ENOMEM;
860 					goto out;
861 				}
862 				upper->bytenr = key.offset;
863 				upper->level = cur->level + 1;
864 				/*
865 				 *  backrefs for the upper level block isn't
866 				 *  cached, add the block to pending list
867 				 */
868 				list_add_tail(&edge->list[UPPER], &list);
869 			} else {
870 				upper = rb_entry(rb_node, struct backref_node,
871 						 rb_node);
872 				ASSERT(upper->checked);
873 				INIT_LIST_HEAD(&edge->list[UPPER]);
874 			}
875 			list_add_tail(&edge->list[LOWER], &cur->upper);
876 			edge->node[LOWER] = cur;
877 			edge->node[UPPER] = upper;
878 
879 			goto next;
880 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
881 			goto next;
882 		}
883 
884 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
885 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
886 		if (IS_ERR(root)) {
887 			err = PTR_ERR(root);
888 			goto out;
889 		}
890 
891 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
892 			cur->cowonly = 1;
893 
894 		if (btrfs_root_level(&root->root_item) == cur->level) {
895 			/* tree root */
896 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
897 			       cur->bytenr);
898 			if (should_ignore_root(root))
899 				list_add(&cur->list, &useless);
900 			else
901 				cur->root = root;
902 			break;
903 		}
904 
905 		level = cur->level + 1;
906 
907 		/*
908 		 * searching the tree to find upper level blocks
909 		 * reference the block.
910 		 */
911 		path2->search_commit_root = 1;
912 		path2->skip_locking = 1;
913 		path2->lowest_level = level;
914 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
915 		path2->lowest_level = 0;
916 		if (ret < 0) {
917 			err = ret;
918 			goto out;
919 		}
920 		if (ret > 0 && path2->slots[level] > 0)
921 			path2->slots[level]--;
922 
923 		eb = path2->nodes[level];
924 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
925 			cur->bytenr);
926 
927 		lower = cur;
928 		need_check = true;
929 		for (; level < BTRFS_MAX_LEVEL; level++) {
930 			if (!path2->nodes[level]) {
931 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
932 				       lower->bytenr);
933 				if (should_ignore_root(root))
934 					list_add(&lower->list, &useless);
935 				else
936 					lower->root = root;
937 				break;
938 			}
939 
940 			edge = alloc_backref_edge(cache);
941 			if (!edge) {
942 				err = -ENOMEM;
943 				goto out;
944 			}
945 
946 			eb = path2->nodes[level];
947 			rb_node = tree_search(&cache->rb_root, eb->start);
948 			if (!rb_node) {
949 				upper = alloc_backref_node(cache);
950 				if (!upper) {
951 					free_backref_edge(cache, edge);
952 					err = -ENOMEM;
953 					goto out;
954 				}
955 				upper->bytenr = eb->start;
956 				upper->owner = btrfs_header_owner(eb);
957 				upper->level = lower->level + 1;
958 				if (!test_bit(BTRFS_ROOT_REF_COWS,
959 					      &root->state))
960 					upper->cowonly = 1;
961 
962 				/*
963 				 * if we know the block isn't shared
964 				 * we can void checking its backrefs.
965 				 */
966 				if (btrfs_block_can_be_shared(root, eb))
967 					upper->checked = 0;
968 				else
969 					upper->checked = 1;
970 
971 				/*
972 				 * add the block to pending list if we
973 				 * need check its backrefs, we only do this once
974 				 * while walking up a tree as we will catch
975 				 * anything else later on.
976 				 */
977 				if (!upper->checked && need_check) {
978 					need_check = false;
979 					list_add_tail(&edge->list[UPPER],
980 						      &list);
981 				} else {
982 					if (upper->checked)
983 						need_check = true;
984 					INIT_LIST_HEAD(&edge->list[UPPER]);
985 				}
986 			} else {
987 				upper = rb_entry(rb_node, struct backref_node,
988 						 rb_node);
989 				ASSERT(upper->checked);
990 				INIT_LIST_HEAD(&edge->list[UPPER]);
991 				if (!upper->owner)
992 					upper->owner = btrfs_header_owner(eb);
993 			}
994 			list_add_tail(&edge->list[LOWER], &lower->upper);
995 			edge->node[LOWER] = lower;
996 			edge->node[UPPER] = upper;
997 
998 			if (rb_node)
999 				break;
1000 			lower = upper;
1001 			upper = NULL;
1002 		}
1003 		btrfs_release_path(path2);
1004 next:
1005 		if (ptr < end) {
1006 			ptr += btrfs_extent_inline_ref_size(key.type);
1007 			if (ptr >= end) {
1008 				WARN_ON(ptr > end);
1009 				ptr = 0;
1010 				end = 0;
1011 			}
1012 		}
1013 		if (ptr >= end)
1014 			path1->slots[0]++;
1015 	}
1016 	btrfs_release_path(path1);
1017 
1018 	cur->checked = 1;
1019 	WARN_ON(exist);
1020 
1021 	/* the pending list isn't empty, take the first block to process */
1022 	if (!list_empty(&list)) {
1023 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1024 		list_del_init(&edge->list[UPPER]);
1025 		cur = edge->node[UPPER];
1026 		goto again;
1027 	}
1028 
1029 	/*
1030 	 * everything goes well, connect backref nodes and insert backref nodes
1031 	 * into the cache.
1032 	 */
1033 	ASSERT(node->checked);
1034 	cowonly = node->cowonly;
1035 	if (!cowonly) {
1036 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1037 				      &node->rb_node);
1038 		if (rb_node)
1039 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1040 		list_add_tail(&node->lower, &cache->leaves);
1041 	}
1042 
1043 	list_for_each_entry(edge, &node->upper, list[LOWER])
1044 		list_add_tail(&edge->list[UPPER], &list);
1045 
1046 	while (!list_empty(&list)) {
1047 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1048 		list_del_init(&edge->list[UPPER]);
1049 		upper = edge->node[UPPER];
1050 		if (upper->detached) {
1051 			list_del(&edge->list[LOWER]);
1052 			lower = edge->node[LOWER];
1053 			free_backref_edge(cache, edge);
1054 			if (list_empty(&lower->upper))
1055 				list_add(&lower->list, &useless);
1056 			continue;
1057 		}
1058 
1059 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1060 			if (upper->lowest) {
1061 				list_del_init(&upper->lower);
1062 				upper->lowest = 0;
1063 			}
1064 
1065 			list_add_tail(&edge->list[UPPER], &upper->lower);
1066 			continue;
1067 		}
1068 
1069 		if (!upper->checked) {
1070 			/*
1071 			 * Still want to blow up for developers since this is a
1072 			 * logic bug.
1073 			 */
1074 			ASSERT(0);
1075 			err = -EINVAL;
1076 			goto out;
1077 		}
1078 		if (cowonly != upper->cowonly) {
1079 			ASSERT(0);
1080 			err = -EINVAL;
1081 			goto out;
1082 		}
1083 
1084 		if (!cowonly) {
1085 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1086 					      &upper->rb_node);
1087 			if (rb_node)
1088 				backref_tree_panic(rb_node, -EEXIST,
1089 						   upper->bytenr);
1090 		}
1091 
1092 		list_add_tail(&edge->list[UPPER], &upper->lower);
1093 
1094 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1095 			list_add_tail(&edge->list[UPPER], &list);
1096 	}
1097 	/*
1098 	 * process useless backref nodes. backref nodes for tree leaves
1099 	 * are deleted from the cache. backref nodes for upper level
1100 	 * tree blocks are left in the cache to avoid unnecessary backref
1101 	 * lookup.
1102 	 */
1103 	while (!list_empty(&useless)) {
1104 		upper = list_entry(useless.next, struct backref_node, list);
1105 		list_del_init(&upper->list);
1106 		ASSERT(list_empty(&upper->upper));
1107 		if (upper == node)
1108 			node = NULL;
1109 		if (upper->lowest) {
1110 			list_del_init(&upper->lower);
1111 			upper->lowest = 0;
1112 		}
1113 		while (!list_empty(&upper->lower)) {
1114 			edge = list_entry(upper->lower.next,
1115 					  struct backref_edge, list[UPPER]);
1116 			list_del(&edge->list[UPPER]);
1117 			list_del(&edge->list[LOWER]);
1118 			lower = edge->node[LOWER];
1119 			free_backref_edge(cache, edge);
1120 
1121 			if (list_empty(&lower->upper))
1122 				list_add(&lower->list, &useless);
1123 		}
1124 		__mark_block_processed(rc, upper);
1125 		if (upper->level > 0) {
1126 			list_add(&upper->list, &cache->detached);
1127 			upper->detached = 1;
1128 		} else {
1129 			rb_erase(&upper->rb_node, &cache->rb_root);
1130 			free_backref_node(cache, upper);
1131 		}
1132 	}
1133 out:
1134 	btrfs_free_path(path1);
1135 	btrfs_free_path(path2);
1136 	if (err) {
1137 		while (!list_empty(&useless)) {
1138 			lower = list_entry(useless.next,
1139 					   struct backref_node, list);
1140 			list_del_init(&lower->list);
1141 		}
1142 		while (!list_empty(&list)) {
1143 			edge = list_first_entry(&list, struct backref_edge,
1144 						list[UPPER]);
1145 			list_del(&edge->list[UPPER]);
1146 			list_del(&edge->list[LOWER]);
1147 			lower = edge->node[LOWER];
1148 			upper = edge->node[UPPER];
1149 			free_backref_edge(cache, edge);
1150 
1151 			/*
1152 			 * Lower is no longer linked to any upper backref nodes
1153 			 * and isn't in the cache, we can free it ourselves.
1154 			 */
1155 			if (list_empty(&lower->upper) &&
1156 			    RB_EMPTY_NODE(&lower->rb_node))
1157 				list_add(&lower->list, &useless);
1158 
1159 			if (!RB_EMPTY_NODE(&upper->rb_node))
1160 				continue;
1161 
1162 			/* Add this guy's upper edges to the list to proces */
1163 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1164 				list_add_tail(&edge->list[UPPER], &list);
1165 			if (list_empty(&upper->upper))
1166 				list_add(&upper->list, &useless);
1167 		}
1168 
1169 		while (!list_empty(&useless)) {
1170 			lower = list_entry(useless.next,
1171 					   struct backref_node, list);
1172 			list_del_init(&lower->list);
1173 			free_backref_node(cache, lower);
1174 		}
1175 		return ERR_PTR(err);
1176 	}
1177 	ASSERT(!node || !node->detached);
1178 	return node;
1179 }
1180 
1181 /*
1182  * helper to add backref node for the newly created snapshot.
1183  * the backref node is created by cloning backref node that
1184  * corresponds to root of source tree
1185  */
1186 static int clone_backref_node(struct btrfs_trans_handle *trans,
1187 			      struct reloc_control *rc,
1188 			      struct btrfs_root *src,
1189 			      struct btrfs_root *dest)
1190 {
1191 	struct btrfs_root *reloc_root = src->reloc_root;
1192 	struct backref_cache *cache = &rc->backref_cache;
1193 	struct backref_node *node = NULL;
1194 	struct backref_node *new_node;
1195 	struct backref_edge *edge;
1196 	struct backref_edge *new_edge;
1197 	struct rb_node *rb_node;
1198 
1199 	if (cache->last_trans > 0)
1200 		update_backref_cache(trans, cache);
1201 
1202 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1203 	if (rb_node) {
1204 		node = rb_entry(rb_node, struct backref_node, rb_node);
1205 		if (node->detached)
1206 			node = NULL;
1207 		else
1208 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1209 	}
1210 
1211 	if (!node) {
1212 		rb_node = tree_search(&cache->rb_root,
1213 				      reloc_root->commit_root->start);
1214 		if (rb_node) {
1215 			node = rb_entry(rb_node, struct backref_node,
1216 					rb_node);
1217 			BUG_ON(node->detached);
1218 		}
1219 	}
1220 
1221 	if (!node)
1222 		return 0;
1223 
1224 	new_node = alloc_backref_node(cache);
1225 	if (!new_node)
1226 		return -ENOMEM;
1227 
1228 	new_node->bytenr = dest->node->start;
1229 	new_node->level = node->level;
1230 	new_node->lowest = node->lowest;
1231 	new_node->checked = 1;
1232 	new_node->root = dest;
1233 
1234 	if (!node->lowest) {
1235 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1236 			new_edge = alloc_backref_edge(cache);
1237 			if (!new_edge)
1238 				goto fail;
1239 
1240 			new_edge->node[UPPER] = new_node;
1241 			new_edge->node[LOWER] = edge->node[LOWER];
1242 			list_add_tail(&new_edge->list[UPPER],
1243 				      &new_node->lower);
1244 		}
1245 	} else {
1246 		list_add_tail(&new_node->lower, &cache->leaves);
1247 	}
1248 
1249 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1250 			      &new_node->rb_node);
1251 	if (rb_node)
1252 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1253 
1254 	if (!new_node->lowest) {
1255 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1256 			list_add_tail(&new_edge->list[LOWER],
1257 				      &new_edge->node[LOWER]->upper);
1258 		}
1259 	}
1260 	return 0;
1261 fail:
1262 	while (!list_empty(&new_node->lower)) {
1263 		new_edge = list_entry(new_node->lower.next,
1264 				      struct backref_edge, list[UPPER]);
1265 		list_del(&new_edge->list[UPPER]);
1266 		free_backref_edge(cache, new_edge);
1267 	}
1268 	free_backref_node(cache, new_node);
1269 	return -ENOMEM;
1270 }
1271 
1272 /*
1273  * helper to add 'address of tree root -> reloc tree' mapping
1274  */
1275 static int __must_check __add_reloc_root(struct btrfs_root *root)
1276 {
1277 	struct rb_node *rb_node;
1278 	struct mapping_node *node;
1279 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1280 
1281 	node = kmalloc(sizeof(*node), GFP_NOFS);
1282 	if (!node)
1283 		return -ENOMEM;
1284 
1285 	node->bytenr = root->node->start;
1286 	node->data = root;
1287 
1288 	spin_lock(&rc->reloc_root_tree.lock);
1289 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1290 			      node->bytenr, &node->rb_node);
1291 	spin_unlock(&rc->reloc_root_tree.lock);
1292 	if (rb_node) {
1293 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1294 			    "for start=%llu while inserting into relocation "
1295 			    "tree", node->bytenr);
1296 		kfree(node);
1297 		return -EEXIST;
1298 	}
1299 
1300 	list_add_tail(&root->root_list, &rc->reloc_roots);
1301 	return 0;
1302 }
1303 
1304 /*
1305  * helper to delete the 'address of tree root -> reloc tree'
1306  * mapping
1307  */
1308 static void __del_reloc_root(struct btrfs_root *root)
1309 {
1310 	struct rb_node *rb_node;
1311 	struct mapping_node *node = NULL;
1312 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1313 
1314 	spin_lock(&rc->reloc_root_tree.lock);
1315 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1316 			      root->node->start);
1317 	if (rb_node) {
1318 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1319 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1320 	}
1321 	spin_unlock(&rc->reloc_root_tree.lock);
1322 
1323 	if (!node)
1324 		return;
1325 	BUG_ON((struct btrfs_root *)node->data != root);
1326 
1327 	spin_lock(&root->fs_info->trans_lock);
1328 	list_del_init(&root->root_list);
1329 	spin_unlock(&root->fs_info->trans_lock);
1330 	kfree(node);
1331 }
1332 
1333 /*
1334  * helper to update the 'address of tree root -> reloc tree'
1335  * mapping
1336  */
1337 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1338 {
1339 	struct rb_node *rb_node;
1340 	struct mapping_node *node = NULL;
1341 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1342 
1343 	spin_lock(&rc->reloc_root_tree.lock);
1344 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1345 			      root->node->start);
1346 	if (rb_node) {
1347 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1348 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1349 	}
1350 	spin_unlock(&rc->reloc_root_tree.lock);
1351 
1352 	if (!node)
1353 		return 0;
1354 	BUG_ON((struct btrfs_root *)node->data != root);
1355 
1356 	spin_lock(&rc->reloc_root_tree.lock);
1357 	node->bytenr = new_bytenr;
1358 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1359 			      node->bytenr, &node->rb_node);
1360 	spin_unlock(&rc->reloc_root_tree.lock);
1361 	if (rb_node)
1362 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1363 	return 0;
1364 }
1365 
1366 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1367 					struct btrfs_root *root, u64 objectid)
1368 {
1369 	struct btrfs_root *reloc_root;
1370 	struct extent_buffer *eb;
1371 	struct btrfs_root_item *root_item;
1372 	struct btrfs_key root_key;
1373 	u64 last_snap = 0;
1374 	int ret;
1375 
1376 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1377 	BUG_ON(!root_item);
1378 
1379 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1380 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1381 	root_key.offset = objectid;
1382 
1383 	if (root->root_key.objectid == objectid) {
1384 		/* called by btrfs_init_reloc_root */
1385 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1386 				      BTRFS_TREE_RELOC_OBJECTID);
1387 		BUG_ON(ret);
1388 
1389 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1390 		btrfs_set_root_last_snapshot(&root->root_item,
1391 					     trans->transid - 1);
1392 	} else {
1393 		/*
1394 		 * called by btrfs_reloc_post_snapshot_hook.
1395 		 * the source tree is a reloc tree, all tree blocks
1396 		 * modified after it was created have RELOC flag
1397 		 * set in their headers. so it's OK to not update
1398 		 * the 'last_snapshot'.
1399 		 */
1400 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1401 				      BTRFS_TREE_RELOC_OBJECTID);
1402 		BUG_ON(ret);
1403 	}
1404 
1405 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1406 	btrfs_set_root_bytenr(root_item, eb->start);
1407 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1408 	btrfs_set_root_generation(root_item, trans->transid);
1409 
1410 	if (root->root_key.objectid == objectid) {
1411 		btrfs_set_root_refs(root_item, 0);
1412 		memset(&root_item->drop_progress, 0,
1413 		       sizeof(struct btrfs_disk_key));
1414 		root_item->drop_level = 0;
1415 		/*
1416 		 * abuse rtransid, it is safe because it is impossible to
1417 		 * receive data into a relocation tree.
1418 		 */
1419 		btrfs_set_root_rtransid(root_item, last_snap);
1420 		btrfs_set_root_otransid(root_item, trans->transid);
1421 	}
1422 
1423 	btrfs_tree_unlock(eb);
1424 	free_extent_buffer(eb);
1425 
1426 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1427 				&root_key, root_item);
1428 	BUG_ON(ret);
1429 	kfree(root_item);
1430 
1431 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1432 	BUG_ON(IS_ERR(reloc_root));
1433 	reloc_root->last_trans = trans->transid;
1434 	return reloc_root;
1435 }
1436 
1437 /*
1438  * create reloc tree for a given fs tree. reloc tree is just a
1439  * snapshot of the fs tree with special root objectid.
1440  */
1441 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1442 			  struct btrfs_root *root)
1443 {
1444 	struct btrfs_root *reloc_root;
1445 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1446 	struct btrfs_block_rsv *rsv;
1447 	int clear_rsv = 0;
1448 	int ret;
1449 
1450 	if (root->reloc_root) {
1451 		reloc_root = root->reloc_root;
1452 		reloc_root->last_trans = trans->transid;
1453 		return 0;
1454 	}
1455 
1456 	if (!rc || !rc->create_reloc_tree ||
1457 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1458 		return 0;
1459 
1460 	if (!trans->reloc_reserved) {
1461 		rsv = trans->block_rsv;
1462 		trans->block_rsv = rc->block_rsv;
1463 		clear_rsv = 1;
1464 	}
1465 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1466 	if (clear_rsv)
1467 		trans->block_rsv = rsv;
1468 
1469 	ret = __add_reloc_root(reloc_root);
1470 	BUG_ON(ret < 0);
1471 	root->reloc_root = reloc_root;
1472 	return 0;
1473 }
1474 
1475 /*
1476  * update root item of reloc tree
1477  */
1478 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1479 			    struct btrfs_root *root)
1480 {
1481 	struct btrfs_root *reloc_root;
1482 	struct btrfs_root_item *root_item;
1483 	int ret;
1484 
1485 	if (!root->reloc_root)
1486 		goto out;
1487 
1488 	reloc_root = root->reloc_root;
1489 	root_item = &reloc_root->root_item;
1490 
1491 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1492 	    btrfs_root_refs(root_item) == 0) {
1493 		root->reloc_root = NULL;
1494 		__del_reloc_root(reloc_root);
1495 	}
1496 
1497 	if (reloc_root->commit_root != reloc_root->node) {
1498 		btrfs_set_root_node(root_item, reloc_root->node);
1499 		free_extent_buffer(reloc_root->commit_root);
1500 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1501 	}
1502 
1503 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1504 				&reloc_root->root_key, root_item);
1505 	BUG_ON(ret);
1506 
1507 out:
1508 	return 0;
1509 }
1510 
1511 /*
1512  * helper to find first cached inode with inode number >= objectid
1513  * in a subvolume
1514  */
1515 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1516 {
1517 	struct rb_node *node;
1518 	struct rb_node *prev;
1519 	struct btrfs_inode *entry;
1520 	struct inode *inode;
1521 
1522 	spin_lock(&root->inode_lock);
1523 again:
1524 	node = root->inode_tree.rb_node;
1525 	prev = NULL;
1526 	while (node) {
1527 		prev = node;
1528 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1529 
1530 		if (objectid < btrfs_ino(&entry->vfs_inode))
1531 			node = node->rb_left;
1532 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1533 			node = node->rb_right;
1534 		else
1535 			break;
1536 	}
1537 	if (!node) {
1538 		while (prev) {
1539 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1540 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1541 				node = prev;
1542 				break;
1543 			}
1544 			prev = rb_next(prev);
1545 		}
1546 	}
1547 	while (node) {
1548 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1549 		inode = igrab(&entry->vfs_inode);
1550 		if (inode) {
1551 			spin_unlock(&root->inode_lock);
1552 			return inode;
1553 		}
1554 
1555 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1556 		if (cond_resched_lock(&root->inode_lock))
1557 			goto again;
1558 
1559 		node = rb_next(node);
1560 	}
1561 	spin_unlock(&root->inode_lock);
1562 	return NULL;
1563 }
1564 
1565 static int in_block_group(u64 bytenr,
1566 			  struct btrfs_block_group_cache *block_group)
1567 {
1568 	if (bytenr >= block_group->key.objectid &&
1569 	    bytenr < block_group->key.objectid + block_group->key.offset)
1570 		return 1;
1571 	return 0;
1572 }
1573 
1574 /*
1575  * get new location of data
1576  */
1577 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1578 			    u64 bytenr, u64 num_bytes)
1579 {
1580 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1581 	struct btrfs_path *path;
1582 	struct btrfs_file_extent_item *fi;
1583 	struct extent_buffer *leaf;
1584 	int ret;
1585 
1586 	path = btrfs_alloc_path();
1587 	if (!path)
1588 		return -ENOMEM;
1589 
1590 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1591 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1592 				       bytenr, 0);
1593 	if (ret < 0)
1594 		goto out;
1595 	if (ret > 0) {
1596 		ret = -ENOENT;
1597 		goto out;
1598 	}
1599 
1600 	leaf = path->nodes[0];
1601 	fi = btrfs_item_ptr(leaf, path->slots[0],
1602 			    struct btrfs_file_extent_item);
1603 
1604 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1605 	       btrfs_file_extent_compression(leaf, fi) ||
1606 	       btrfs_file_extent_encryption(leaf, fi) ||
1607 	       btrfs_file_extent_other_encoding(leaf, fi));
1608 
1609 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1610 		ret = -EINVAL;
1611 		goto out;
1612 	}
1613 
1614 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1615 	ret = 0;
1616 out:
1617 	btrfs_free_path(path);
1618 	return ret;
1619 }
1620 
1621 /*
1622  * update file extent items in the tree leaf to point to
1623  * the new locations.
1624  */
1625 static noinline_for_stack
1626 int replace_file_extents(struct btrfs_trans_handle *trans,
1627 			 struct reloc_control *rc,
1628 			 struct btrfs_root *root,
1629 			 struct extent_buffer *leaf)
1630 {
1631 	struct btrfs_key key;
1632 	struct btrfs_file_extent_item *fi;
1633 	struct inode *inode = NULL;
1634 	u64 parent;
1635 	u64 bytenr;
1636 	u64 new_bytenr = 0;
1637 	u64 num_bytes;
1638 	u64 end;
1639 	u32 nritems;
1640 	u32 i;
1641 	int ret = 0;
1642 	int first = 1;
1643 	int dirty = 0;
1644 
1645 	if (rc->stage != UPDATE_DATA_PTRS)
1646 		return 0;
1647 
1648 	/* reloc trees always use full backref */
1649 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1650 		parent = leaf->start;
1651 	else
1652 		parent = 0;
1653 
1654 	nritems = btrfs_header_nritems(leaf);
1655 	for (i = 0; i < nritems; i++) {
1656 		cond_resched();
1657 		btrfs_item_key_to_cpu(leaf, &key, i);
1658 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1659 			continue;
1660 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1661 		if (btrfs_file_extent_type(leaf, fi) ==
1662 		    BTRFS_FILE_EXTENT_INLINE)
1663 			continue;
1664 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1665 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1666 		if (bytenr == 0)
1667 			continue;
1668 		if (!in_block_group(bytenr, rc->block_group))
1669 			continue;
1670 
1671 		/*
1672 		 * if we are modifying block in fs tree, wait for readpage
1673 		 * to complete and drop the extent cache
1674 		 */
1675 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1676 			if (first) {
1677 				inode = find_next_inode(root, key.objectid);
1678 				first = 0;
1679 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1680 				btrfs_add_delayed_iput(inode);
1681 				inode = find_next_inode(root, key.objectid);
1682 			}
1683 			if (inode && btrfs_ino(inode) == key.objectid) {
1684 				end = key.offset +
1685 				      btrfs_file_extent_num_bytes(leaf, fi);
1686 				WARN_ON(!IS_ALIGNED(key.offset,
1687 						    root->sectorsize));
1688 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1689 				end--;
1690 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1691 						      key.offset, end);
1692 				if (!ret)
1693 					continue;
1694 
1695 				btrfs_drop_extent_cache(inode, key.offset, end,
1696 							1);
1697 				unlock_extent(&BTRFS_I(inode)->io_tree,
1698 					      key.offset, end);
1699 			}
1700 		}
1701 
1702 		ret = get_new_location(rc->data_inode, &new_bytenr,
1703 				       bytenr, num_bytes);
1704 		if (ret) {
1705 			/*
1706 			 * Don't have to abort since we've not changed anything
1707 			 * in the file extent yet.
1708 			 */
1709 			break;
1710 		}
1711 
1712 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1713 		dirty = 1;
1714 
1715 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1716 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1717 					   num_bytes, parent,
1718 					   btrfs_header_owner(leaf),
1719 					   key.objectid, key.offset, 1);
1720 		if (ret) {
1721 			btrfs_abort_transaction(trans, root, ret);
1722 			break;
1723 		}
1724 
1725 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1726 					parent, btrfs_header_owner(leaf),
1727 					key.objectid, key.offset, 1);
1728 		if (ret) {
1729 			btrfs_abort_transaction(trans, root, ret);
1730 			break;
1731 		}
1732 	}
1733 	if (dirty)
1734 		btrfs_mark_buffer_dirty(leaf);
1735 	if (inode)
1736 		btrfs_add_delayed_iput(inode);
1737 	return ret;
1738 }
1739 
1740 static noinline_for_stack
1741 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1742 		     struct btrfs_path *path, int level)
1743 {
1744 	struct btrfs_disk_key key1;
1745 	struct btrfs_disk_key key2;
1746 	btrfs_node_key(eb, &key1, slot);
1747 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1748 	return memcmp(&key1, &key2, sizeof(key1));
1749 }
1750 
1751 /*
1752  * try to replace tree blocks in fs tree with the new blocks
1753  * in reloc tree. tree blocks haven't been modified since the
1754  * reloc tree was create can be replaced.
1755  *
1756  * if a block was replaced, level of the block + 1 is returned.
1757  * if no block got replaced, 0 is returned. if there are other
1758  * errors, a negative error number is returned.
1759  */
1760 static noinline_for_stack
1761 int replace_path(struct btrfs_trans_handle *trans,
1762 		 struct btrfs_root *dest, struct btrfs_root *src,
1763 		 struct btrfs_path *path, struct btrfs_key *next_key,
1764 		 int lowest_level, int max_level)
1765 {
1766 	struct extent_buffer *eb;
1767 	struct extent_buffer *parent;
1768 	struct btrfs_key key;
1769 	u64 old_bytenr;
1770 	u64 new_bytenr;
1771 	u64 old_ptr_gen;
1772 	u64 new_ptr_gen;
1773 	u64 last_snapshot;
1774 	u32 blocksize;
1775 	int cow = 0;
1776 	int level;
1777 	int ret;
1778 	int slot;
1779 
1780 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1781 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1782 
1783 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1784 again:
1785 	slot = path->slots[lowest_level];
1786 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1787 
1788 	eb = btrfs_lock_root_node(dest);
1789 	btrfs_set_lock_blocking(eb);
1790 	level = btrfs_header_level(eb);
1791 
1792 	if (level < lowest_level) {
1793 		btrfs_tree_unlock(eb);
1794 		free_extent_buffer(eb);
1795 		return 0;
1796 	}
1797 
1798 	if (cow) {
1799 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1800 		BUG_ON(ret);
1801 	}
1802 	btrfs_set_lock_blocking(eb);
1803 
1804 	if (next_key) {
1805 		next_key->objectid = (u64)-1;
1806 		next_key->type = (u8)-1;
1807 		next_key->offset = (u64)-1;
1808 	}
1809 
1810 	parent = eb;
1811 	while (1) {
1812 		level = btrfs_header_level(parent);
1813 		BUG_ON(level < lowest_level);
1814 
1815 		ret = btrfs_bin_search(parent, &key, level, &slot);
1816 		if (ret && slot > 0)
1817 			slot--;
1818 
1819 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1820 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1821 
1822 		old_bytenr = btrfs_node_blockptr(parent, slot);
1823 		blocksize = dest->nodesize;
1824 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1825 
1826 		if (level <= max_level) {
1827 			eb = path->nodes[level];
1828 			new_bytenr = btrfs_node_blockptr(eb,
1829 							path->slots[level]);
1830 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1831 							path->slots[level]);
1832 		} else {
1833 			new_bytenr = 0;
1834 			new_ptr_gen = 0;
1835 		}
1836 
1837 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1838 			ret = level;
1839 			break;
1840 		}
1841 
1842 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1843 		    memcmp_node_keys(parent, slot, path, level)) {
1844 			if (level <= lowest_level) {
1845 				ret = 0;
1846 				break;
1847 			}
1848 
1849 			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1850 			if (!eb || !extent_buffer_uptodate(eb)) {
1851 				ret = (!eb) ? -ENOMEM : -EIO;
1852 				free_extent_buffer(eb);
1853 				break;
1854 			}
1855 			btrfs_tree_lock(eb);
1856 			if (cow) {
1857 				ret = btrfs_cow_block(trans, dest, eb, parent,
1858 						      slot, &eb);
1859 				BUG_ON(ret);
1860 			}
1861 			btrfs_set_lock_blocking(eb);
1862 
1863 			btrfs_tree_unlock(parent);
1864 			free_extent_buffer(parent);
1865 
1866 			parent = eb;
1867 			continue;
1868 		}
1869 
1870 		if (!cow) {
1871 			btrfs_tree_unlock(parent);
1872 			free_extent_buffer(parent);
1873 			cow = 1;
1874 			goto again;
1875 		}
1876 
1877 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1878 				      path->slots[level]);
1879 		btrfs_release_path(path);
1880 
1881 		path->lowest_level = level;
1882 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1883 		path->lowest_level = 0;
1884 		BUG_ON(ret);
1885 
1886 		/*
1887 		 * swap blocks in fs tree and reloc tree.
1888 		 */
1889 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1890 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1891 		btrfs_mark_buffer_dirty(parent);
1892 
1893 		btrfs_set_node_blockptr(path->nodes[level],
1894 					path->slots[level], old_bytenr);
1895 		btrfs_set_node_ptr_generation(path->nodes[level],
1896 					      path->slots[level], old_ptr_gen);
1897 		btrfs_mark_buffer_dirty(path->nodes[level]);
1898 
1899 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1900 					path->nodes[level]->start,
1901 					src->root_key.objectid, level - 1, 0,
1902 					1);
1903 		BUG_ON(ret);
1904 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1905 					0, dest->root_key.objectid, level - 1,
1906 					0, 1);
1907 		BUG_ON(ret);
1908 
1909 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1910 					path->nodes[level]->start,
1911 					src->root_key.objectid, level - 1, 0,
1912 					1);
1913 		BUG_ON(ret);
1914 
1915 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1916 					0, dest->root_key.objectid, level - 1,
1917 					0, 1);
1918 		BUG_ON(ret);
1919 
1920 		btrfs_unlock_up_safe(path, 0);
1921 
1922 		ret = level;
1923 		break;
1924 	}
1925 	btrfs_tree_unlock(parent);
1926 	free_extent_buffer(parent);
1927 	return ret;
1928 }
1929 
1930 /*
1931  * helper to find next relocated block in reloc tree
1932  */
1933 static noinline_for_stack
1934 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1935 		       int *level)
1936 {
1937 	struct extent_buffer *eb;
1938 	int i;
1939 	u64 last_snapshot;
1940 	u32 nritems;
1941 
1942 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1943 
1944 	for (i = 0; i < *level; i++) {
1945 		free_extent_buffer(path->nodes[i]);
1946 		path->nodes[i] = NULL;
1947 	}
1948 
1949 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1950 		eb = path->nodes[i];
1951 		nritems = btrfs_header_nritems(eb);
1952 		while (path->slots[i] + 1 < nritems) {
1953 			path->slots[i]++;
1954 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1955 			    last_snapshot)
1956 				continue;
1957 
1958 			*level = i;
1959 			return 0;
1960 		}
1961 		free_extent_buffer(path->nodes[i]);
1962 		path->nodes[i] = NULL;
1963 	}
1964 	return 1;
1965 }
1966 
1967 /*
1968  * walk down reloc tree to find relocated block of lowest level
1969  */
1970 static noinline_for_stack
1971 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1972 			 int *level)
1973 {
1974 	struct extent_buffer *eb = NULL;
1975 	int i;
1976 	u64 bytenr;
1977 	u64 ptr_gen = 0;
1978 	u64 last_snapshot;
1979 	u32 nritems;
1980 
1981 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1982 
1983 	for (i = *level; i > 0; i--) {
1984 		eb = path->nodes[i];
1985 		nritems = btrfs_header_nritems(eb);
1986 		while (path->slots[i] < nritems) {
1987 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1988 			if (ptr_gen > last_snapshot)
1989 				break;
1990 			path->slots[i]++;
1991 		}
1992 		if (path->slots[i] >= nritems) {
1993 			if (i == *level)
1994 				break;
1995 			*level = i + 1;
1996 			return 0;
1997 		}
1998 		if (i == 1) {
1999 			*level = i;
2000 			return 0;
2001 		}
2002 
2003 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2004 		eb = read_tree_block(root, bytenr, ptr_gen);
2005 		if (!eb || !extent_buffer_uptodate(eb)) {
2006 			free_extent_buffer(eb);
2007 			return -EIO;
2008 		}
2009 		BUG_ON(btrfs_header_level(eb) != i - 1);
2010 		path->nodes[i - 1] = eb;
2011 		path->slots[i - 1] = 0;
2012 	}
2013 	return 1;
2014 }
2015 
2016 /*
2017  * invalidate extent cache for file extents whose key in range of
2018  * [min_key, max_key)
2019  */
2020 static int invalidate_extent_cache(struct btrfs_root *root,
2021 				   struct btrfs_key *min_key,
2022 				   struct btrfs_key *max_key)
2023 {
2024 	struct inode *inode = NULL;
2025 	u64 objectid;
2026 	u64 start, end;
2027 	u64 ino;
2028 
2029 	objectid = min_key->objectid;
2030 	while (1) {
2031 		cond_resched();
2032 		iput(inode);
2033 
2034 		if (objectid > max_key->objectid)
2035 			break;
2036 
2037 		inode = find_next_inode(root, objectid);
2038 		if (!inode)
2039 			break;
2040 		ino = btrfs_ino(inode);
2041 
2042 		if (ino > max_key->objectid) {
2043 			iput(inode);
2044 			break;
2045 		}
2046 
2047 		objectid = ino + 1;
2048 		if (!S_ISREG(inode->i_mode))
2049 			continue;
2050 
2051 		if (unlikely(min_key->objectid == ino)) {
2052 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2053 				continue;
2054 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2055 				start = 0;
2056 			else {
2057 				start = min_key->offset;
2058 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2059 			}
2060 		} else {
2061 			start = 0;
2062 		}
2063 
2064 		if (unlikely(max_key->objectid == ino)) {
2065 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2066 				continue;
2067 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2068 				end = (u64)-1;
2069 			} else {
2070 				if (max_key->offset == 0)
2071 					continue;
2072 				end = max_key->offset;
2073 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2074 				end--;
2075 			}
2076 		} else {
2077 			end = (u64)-1;
2078 		}
2079 
2080 		/* the lock_extent waits for readpage to complete */
2081 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2082 		btrfs_drop_extent_cache(inode, start, end, 1);
2083 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2084 	}
2085 	return 0;
2086 }
2087 
2088 static int find_next_key(struct btrfs_path *path, int level,
2089 			 struct btrfs_key *key)
2090 
2091 {
2092 	while (level < BTRFS_MAX_LEVEL) {
2093 		if (!path->nodes[level])
2094 			break;
2095 		if (path->slots[level] + 1 <
2096 		    btrfs_header_nritems(path->nodes[level])) {
2097 			btrfs_node_key_to_cpu(path->nodes[level], key,
2098 					      path->slots[level] + 1);
2099 			return 0;
2100 		}
2101 		level++;
2102 	}
2103 	return 1;
2104 }
2105 
2106 /*
2107  * merge the relocated tree blocks in reloc tree with corresponding
2108  * fs tree.
2109  */
2110 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2111 					       struct btrfs_root *root)
2112 {
2113 	LIST_HEAD(inode_list);
2114 	struct btrfs_key key;
2115 	struct btrfs_key next_key;
2116 	struct btrfs_trans_handle *trans = NULL;
2117 	struct btrfs_root *reloc_root;
2118 	struct btrfs_root_item *root_item;
2119 	struct btrfs_path *path;
2120 	struct extent_buffer *leaf;
2121 	int level;
2122 	int max_level;
2123 	int replaced = 0;
2124 	int ret;
2125 	int err = 0;
2126 	u32 min_reserved;
2127 
2128 	path = btrfs_alloc_path();
2129 	if (!path)
2130 		return -ENOMEM;
2131 	path->reada = 1;
2132 
2133 	reloc_root = root->reloc_root;
2134 	root_item = &reloc_root->root_item;
2135 
2136 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2137 		level = btrfs_root_level(root_item);
2138 		extent_buffer_get(reloc_root->node);
2139 		path->nodes[level] = reloc_root->node;
2140 		path->slots[level] = 0;
2141 	} else {
2142 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2143 
2144 		level = root_item->drop_level;
2145 		BUG_ON(level == 0);
2146 		path->lowest_level = level;
2147 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2148 		path->lowest_level = 0;
2149 		if (ret < 0) {
2150 			btrfs_free_path(path);
2151 			return ret;
2152 		}
2153 
2154 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2155 				      path->slots[level]);
2156 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2157 
2158 		btrfs_unlock_up_safe(path, 0);
2159 	}
2160 
2161 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2162 	memset(&next_key, 0, sizeof(next_key));
2163 
2164 	while (1) {
2165 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2166 					     BTRFS_RESERVE_FLUSH_ALL);
2167 		if (ret) {
2168 			err = ret;
2169 			goto out;
2170 		}
2171 		trans = btrfs_start_transaction(root, 0);
2172 		if (IS_ERR(trans)) {
2173 			err = PTR_ERR(trans);
2174 			trans = NULL;
2175 			goto out;
2176 		}
2177 		trans->block_rsv = rc->block_rsv;
2178 
2179 		replaced = 0;
2180 		max_level = level;
2181 
2182 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2183 		if (ret < 0) {
2184 			err = ret;
2185 			goto out;
2186 		}
2187 		if (ret > 0)
2188 			break;
2189 
2190 		if (!find_next_key(path, level, &key) &&
2191 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2192 			ret = 0;
2193 		} else {
2194 			ret = replace_path(trans, root, reloc_root, path,
2195 					   &next_key, level, max_level);
2196 		}
2197 		if (ret < 0) {
2198 			err = ret;
2199 			goto out;
2200 		}
2201 
2202 		if (ret > 0) {
2203 			level = ret;
2204 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2205 					      path->slots[level]);
2206 			replaced = 1;
2207 		}
2208 
2209 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2210 		if (ret > 0)
2211 			break;
2212 
2213 		BUG_ON(level == 0);
2214 		/*
2215 		 * save the merging progress in the drop_progress.
2216 		 * this is OK since root refs == 1 in this case.
2217 		 */
2218 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2219 			       path->slots[level]);
2220 		root_item->drop_level = level;
2221 
2222 		btrfs_end_transaction_throttle(trans, root);
2223 		trans = NULL;
2224 
2225 		btrfs_btree_balance_dirty(root);
2226 
2227 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2228 			invalidate_extent_cache(root, &key, &next_key);
2229 	}
2230 
2231 	/*
2232 	 * handle the case only one block in the fs tree need to be
2233 	 * relocated and the block is tree root.
2234 	 */
2235 	leaf = btrfs_lock_root_node(root);
2236 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2237 	btrfs_tree_unlock(leaf);
2238 	free_extent_buffer(leaf);
2239 	if (ret < 0)
2240 		err = ret;
2241 out:
2242 	btrfs_free_path(path);
2243 
2244 	if (err == 0) {
2245 		memset(&root_item->drop_progress, 0,
2246 		       sizeof(root_item->drop_progress));
2247 		root_item->drop_level = 0;
2248 		btrfs_set_root_refs(root_item, 0);
2249 		btrfs_update_reloc_root(trans, root);
2250 	}
2251 
2252 	if (trans)
2253 		btrfs_end_transaction_throttle(trans, root);
2254 
2255 	btrfs_btree_balance_dirty(root);
2256 
2257 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2258 		invalidate_extent_cache(root, &key, &next_key);
2259 
2260 	return err;
2261 }
2262 
2263 static noinline_for_stack
2264 int prepare_to_merge(struct reloc_control *rc, int err)
2265 {
2266 	struct btrfs_root *root = rc->extent_root;
2267 	struct btrfs_root *reloc_root;
2268 	struct btrfs_trans_handle *trans;
2269 	LIST_HEAD(reloc_roots);
2270 	u64 num_bytes = 0;
2271 	int ret;
2272 
2273 	mutex_lock(&root->fs_info->reloc_mutex);
2274 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2275 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2276 	mutex_unlock(&root->fs_info->reloc_mutex);
2277 
2278 again:
2279 	if (!err) {
2280 		num_bytes = rc->merging_rsv_size;
2281 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2282 					  BTRFS_RESERVE_FLUSH_ALL);
2283 		if (ret)
2284 			err = ret;
2285 	}
2286 
2287 	trans = btrfs_join_transaction(rc->extent_root);
2288 	if (IS_ERR(trans)) {
2289 		if (!err)
2290 			btrfs_block_rsv_release(rc->extent_root,
2291 						rc->block_rsv, num_bytes);
2292 		return PTR_ERR(trans);
2293 	}
2294 
2295 	if (!err) {
2296 		if (num_bytes != rc->merging_rsv_size) {
2297 			btrfs_end_transaction(trans, rc->extent_root);
2298 			btrfs_block_rsv_release(rc->extent_root,
2299 						rc->block_rsv, num_bytes);
2300 			goto again;
2301 		}
2302 	}
2303 
2304 	rc->merge_reloc_tree = 1;
2305 
2306 	while (!list_empty(&rc->reloc_roots)) {
2307 		reloc_root = list_entry(rc->reloc_roots.next,
2308 					struct btrfs_root, root_list);
2309 		list_del_init(&reloc_root->root_list);
2310 
2311 		root = read_fs_root(reloc_root->fs_info,
2312 				    reloc_root->root_key.offset);
2313 		BUG_ON(IS_ERR(root));
2314 		BUG_ON(root->reloc_root != reloc_root);
2315 
2316 		/*
2317 		 * set reference count to 1, so btrfs_recover_relocation
2318 		 * knows it should resumes merging
2319 		 */
2320 		if (!err)
2321 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2322 		btrfs_update_reloc_root(trans, root);
2323 
2324 		list_add(&reloc_root->root_list, &reloc_roots);
2325 	}
2326 
2327 	list_splice(&reloc_roots, &rc->reloc_roots);
2328 
2329 	if (!err)
2330 		btrfs_commit_transaction(trans, rc->extent_root);
2331 	else
2332 		btrfs_end_transaction(trans, rc->extent_root);
2333 	return err;
2334 }
2335 
2336 static noinline_for_stack
2337 void free_reloc_roots(struct list_head *list)
2338 {
2339 	struct btrfs_root *reloc_root;
2340 
2341 	while (!list_empty(list)) {
2342 		reloc_root = list_entry(list->next, struct btrfs_root,
2343 					root_list);
2344 		__del_reloc_root(reloc_root);
2345 	}
2346 }
2347 
2348 static noinline_for_stack
2349 void merge_reloc_roots(struct reloc_control *rc)
2350 {
2351 	struct btrfs_root *root;
2352 	struct btrfs_root *reloc_root;
2353 	u64 last_snap;
2354 	u64 otransid;
2355 	u64 objectid;
2356 	LIST_HEAD(reloc_roots);
2357 	int found = 0;
2358 	int ret = 0;
2359 again:
2360 	root = rc->extent_root;
2361 
2362 	/*
2363 	 * this serializes us with btrfs_record_root_in_transaction,
2364 	 * we have to make sure nobody is in the middle of
2365 	 * adding their roots to the list while we are
2366 	 * doing this splice
2367 	 */
2368 	mutex_lock(&root->fs_info->reloc_mutex);
2369 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2370 	mutex_unlock(&root->fs_info->reloc_mutex);
2371 
2372 	while (!list_empty(&reloc_roots)) {
2373 		found = 1;
2374 		reloc_root = list_entry(reloc_roots.next,
2375 					struct btrfs_root, root_list);
2376 
2377 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2378 			root = read_fs_root(reloc_root->fs_info,
2379 					    reloc_root->root_key.offset);
2380 			BUG_ON(IS_ERR(root));
2381 			BUG_ON(root->reloc_root != reloc_root);
2382 
2383 			ret = merge_reloc_root(rc, root);
2384 			if (ret) {
2385 				if (list_empty(&reloc_root->root_list))
2386 					list_add_tail(&reloc_root->root_list,
2387 						      &reloc_roots);
2388 				goto out;
2389 			}
2390 		} else {
2391 			list_del_init(&reloc_root->root_list);
2392 		}
2393 
2394 		/*
2395 		 * we keep the old last snapshod transid in rtranid when we
2396 		 * created the relocation tree.
2397 		 */
2398 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2399 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2400 		objectid = reloc_root->root_key.offset;
2401 
2402 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2403 		if (ret < 0) {
2404 			if (list_empty(&reloc_root->root_list))
2405 				list_add_tail(&reloc_root->root_list,
2406 					      &reloc_roots);
2407 			goto out;
2408 		}
2409 	}
2410 
2411 	if (found) {
2412 		found = 0;
2413 		goto again;
2414 	}
2415 out:
2416 	if (ret) {
2417 		btrfs_std_error(root->fs_info, ret);
2418 		if (!list_empty(&reloc_roots))
2419 			free_reloc_roots(&reloc_roots);
2420 
2421 		/* new reloc root may be added */
2422 		mutex_lock(&root->fs_info->reloc_mutex);
2423 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2424 		mutex_unlock(&root->fs_info->reloc_mutex);
2425 		if (!list_empty(&reloc_roots))
2426 			free_reloc_roots(&reloc_roots);
2427 	}
2428 
2429 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2430 }
2431 
2432 static void free_block_list(struct rb_root *blocks)
2433 {
2434 	struct tree_block *block;
2435 	struct rb_node *rb_node;
2436 	while ((rb_node = rb_first(blocks))) {
2437 		block = rb_entry(rb_node, struct tree_block, rb_node);
2438 		rb_erase(rb_node, blocks);
2439 		kfree(block);
2440 	}
2441 }
2442 
2443 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2444 				      struct btrfs_root *reloc_root)
2445 {
2446 	struct btrfs_root *root;
2447 
2448 	if (reloc_root->last_trans == trans->transid)
2449 		return 0;
2450 
2451 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2452 	BUG_ON(IS_ERR(root));
2453 	BUG_ON(root->reloc_root != reloc_root);
2454 
2455 	return btrfs_record_root_in_trans(trans, root);
2456 }
2457 
2458 static noinline_for_stack
2459 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2460 				     struct reloc_control *rc,
2461 				     struct backref_node *node,
2462 				     struct backref_edge *edges[])
2463 {
2464 	struct backref_node *next;
2465 	struct btrfs_root *root;
2466 	int index = 0;
2467 
2468 	next = node;
2469 	while (1) {
2470 		cond_resched();
2471 		next = walk_up_backref(next, edges, &index);
2472 		root = next->root;
2473 		BUG_ON(!root);
2474 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2475 
2476 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2477 			record_reloc_root_in_trans(trans, root);
2478 			break;
2479 		}
2480 
2481 		btrfs_record_root_in_trans(trans, root);
2482 		root = root->reloc_root;
2483 
2484 		if (next->new_bytenr != root->node->start) {
2485 			BUG_ON(next->new_bytenr);
2486 			BUG_ON(!list_empty(&next->list));
2487 			next->new_bytenr = root->node->start;
2488 			next->root = root;
2489 			list_add_tail(&next->list,
2490 				      &rc->backref_cache.changed);
2491 			__mark_block_processed(rc, next);
2492 			break;
2493 		}
2494 
2495 		WARN_ON(1);
2496 		root = NULL;
2497 		next = walk_down_backref(edges, &index);
2498 		if (!next || next->level <= node->level)
2499 			break;
2500 	}
2501 	if (!root)
2502 		return NULL;
2503 
2504 	next = node;
2505 	/* setup backref node path for btrfs_reloc_cow_block */
2506 	while (1) {
2507 		rc->backref_cache.path[next->level] = next;
2508 		if (--index < 0)
2509 			break;
2510 		next = edges[index]->node[UPPER];
2511 	}
2512 	return root;
2513 }
2514 
2515 /*
2516  * select a tree root for relocation. return NULL if the block
2517  * is reference counted. we should use do_relocation() in this
2518  * case. return a tree root pointer if the block isn't reference
2519  * counted. return -ENOENT if the block is root of reloc tree.
2520  */
2521 static noinline_for_stack
2522 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2523 				   struct backref_node *node)
2524 {
2525 	struct backref_node *next;
2526 	struct btrfs_root *root;
2527 	struct btrfs_root *fs_root = NULL;
2528 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2529 	int index = 0;
2530 
2531 	next = node;
2532 	while (1) {
2533 		cond_resched();
2534 		next = walk_up_backref(next, edges, &index);
2535 		root = next->root;
2536 		BUG_ON(!root);
2537 
2538 		/* no other choice for non-references counted tree */
2539 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2540 			return root;
2541 
2542 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2543 			fs_root = root;
2544 
2545 		if (next != node)
2546 			return NULL;
2547 
2548 		next = walk_down_backref(edges, &index);
2549 		if (!next || next->level <= node->level)
2550 			break;
2551 	}
2552 
2553 	if (!fs_root)
2554 		return ERR_PTR(-ENOENT);
2555 	return fs_root;
2556 }
2557 
2558 static noinline_for_stack
2559 u64 calcu_metadata_size(struct reloc_control *rc,
2560 			struct backref_node *node, int reserve)
2561 {
2562 	struct backref_node *next = node;
2563 	struct backref_edge *edge;
2564 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2565 	u64 num_bytes = 0;
2566 	int index = 0;
2567 
2568 	BUG_ON(reserve && node->processed);
2569 
2570 	while (next) {
2571 		cond_resched();
2572 		while (1) {
2573 			if (next->processed && (reserve || next != node))
2574 				break;
2575 
2576 			num_bytes += rc->extent_root->nodesize;
2577 
2578 			if (list_empty(&next->upper))
2579 				break;
2580 
2581 			edge = list_entry(next->upper.next,
2582 					  struct backref_edge, list[LOWER]);
2583 			edges[index++] = edge;
2584 			next = edge->node[UPPER];
2585 		}
2586 		next = walk_down_backref(edges, &index);
2587 	}
2588 	return num_bytes;
2589 }
2590 
2591 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2592 				  struct reloc_control *rc,
2593 				  struct backref_node *node)
2594 {
2595 	struct btrfs_root *root = rc->extent_root;
2596 	u64 num_bytes;
2597 	int ret;
2598 	u64 tmp;
2599 
2600 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2601 
2602 	trans->block_rsv = rc->block_rsv;
2603 	rc->reserved_bytes += num_bytes;
2604 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2605 				BTRFS_RESERVE_FLUSH_ALL);
2606 	if (ret) {
2607 		if (ret == -EAGAIN) {
2608 			tmp = rc->extent_root->nodesize *
2609 				RELOCATION_RESERVED_NODES;
2610 			while (tmp <= rc->reserved_bytes)
2611 				tmp <<= 1;
2612 			/*
2613 			 * only one thread can access block_rsv at this point,
2614 			 * so we don't need hold lock to protect block_rsv.
2615 			 * we expand more reservation size here to allow enough
2616 			 * space for relocation and we will return eailer in
2617 			 * enospc case.
2618 			 */
2619 			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2620 					      RELOCATION_RESERVED_NODES;
2621 		}
2622 		return ret;
2623 	}
2624 
2625 	return 0;
2626 }
2627 
2628 /*
2629  * relocate a block tree, and then update pointers in upper level
2630  * blocks that reference the block to point to the new location.
2631  *
2632  * if called by link_to_upper, the block has already been relocated.
2633  * in that case this function just updates pointers.
2634  */
2635 static int do_relocation(struct btrfs_trans_handle *trans,
2636 			 struct reloc_control *rc,
2637 			 struct backref_node *node,
2638 			 struct btrfs_key *key,
2639 			 struct btrfs_path *path, int lowest)
2640 {
2641 	struct backref_node *upper;
2642 	struct backref_edge *edge;
2643 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2644 	struct btrfs_root *root;
2645 	struct extent_buffer *eb;
2646 	u32 blocksize;
2647 	u64 bytenr;
2648 	u64 generation;
2649 	int slot;
2650 	int ret;
2651 	int err = 0;
2652 
2653 	BUG_ON(lowest && node->eb);
2654 
2655 	path->lowest_level = node->level + 1;
2656 	rc->backref_cache.path[node->level] = node;
2657 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2658 		cond_resched();
2659 
2660 		upper = edge->node[UPPER];
2661 		root = select_reloc_root(trans, rc, upper, edges);
2662 		BUG_ON(!root);
2663 
2664 		if (upper->eb && !upper->locked) {
2665 			if (!lowest) {
2666 				ret = btrfs_bin_search(upper->eb, key,
2667 						       upper->level, &slot);
2668 				BUG_ON(ret);
2669 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2670 				if (node->eb->start == bytenr)
2671 					goto next;
2672 			}
2673 			drop_node_buffer(upper);
2674 		}
2675 
2676 		if (!upper->eb) {
2677 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2678 			if (ret < 0) {
2679 				err = ret;
2680 				break;
2681 			}
2682 			BUG_ON(ret > 0);
2683 
2684 			if (!upper->eb) {
2685 				upper->eb = path->nodes[upper->level];
2686 				path->nodes[upper->level] = NULL;
2687 			} else {
2688 				BUG_ON(upper->eb != path->nodes[upper->level]);
2689 			}
2690 
2691 			upper->locked = 1;
2692 			path->locks[upper->level] = 0;
2693 
2694 			slot = path->slots[upper->level];
2695 			btrfs_release_path(path);
2696 		} else {
2697 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2698 					       &slot);
2699 			BUG_ON(ret);
2700 		}
2701 
2702 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2703 		if (lowest) {
2704 			BUG_ON(bytenr != node->bytenr);
2705 		} else {
2706 			if (node->eb->start == bytenr)
2707 				goto next;
2708 		}
2709 
2710 		blocksize = root->nodesize;
2711 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2712 		eb = read_tree_block(root, bytenr, generation);
2713 		if (!eb || !extent_buffer_uptodate(eb)) {
2714 			free_extent_buffer(eb);
2715 			err = -EIO;
2716 			goto next;
2717 		}
2718 		btrfs_tree_lock(eb);
2719 		btrfs_set_lock_blocking(eb);
2720 
2721 		if (!node->eb) {
2722 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2723 					      slot, &eb);
2724 			btrfs_tree_unlock(eb);
2725 			free_extent_buffer(eb);
2726 			if (ret < 0) {
2727 				err = ret;
2728 				goto next;
2729 			}
2730 			BUG_ON(node->eb != eb);
2731 		} else {
2732 			btrfs_set_node_blockptr(upper->eb, slot,
2733 						node->eb->start);
2734 			btrfs_set_node_ptr_generation(upper->eb, slot,
2735 						      trans->transid);
2736 			btrfs_mark_buffer_dirty(upper->eb);
2737 
2738 			ret = btrfs_inc_extent_ref(trans, root,
2739 						node->eb->start, blocksize,
2740 						upper->eb->start,
2741 						btrfs_header_owner(upper->eb),
2742 						node->level, 0, 1);
2743 			BUG_ON(ret);
2744 
2745 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2746 			BUG_ON(ret);
2747 		}
2748 next:
2749 		if (!upper->pending)
2750 			drop_node_buffer(upper);
2751 		else
2752 			unlock_node_buffer(upper);
2753 		if (err)
2754 			break;
2755 	}
2756 
2757 	if (!err && node->pending) {
2758 		drop_node_buffer(node);
2759 		list_move_tail(&node->list, &rc->backref_cache.changed);
2760 		node->pending = 0;
2761 	}
2762 
2763 	path->lowest_level = 0;
2764 	BUG_ON(err == -ENOSPC);
2765 	return err;
2766 }
2767 
2768 static int link_to_upper(struct btrfs_trans_handle *trans,
2769 			 struct reloc_control *rc,
2770 			 struct backref_node *node,
2771 			 struct btrfs_path *path)
2772 {
2773 	struct btrfs_key key;
2774 
2775 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2776 	return do_relocation(trans, rc, node, &key, path, 0);
2777 }
2778 
2779 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2780 				struct reloc_control *rc,
2781 				struct btrfs_path *path, int err)
2782 {
2783 	LIST_HEAD(list);
2784 	struct backref_cache *cache = &rc->backref_cache;
2785 	struct backref_node *node;
2786 	int level;
2787 	int ret;
2788 
2789 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2790 		while (!list_empty(&cache->pending[level])) {
2791 			node = list_entry(cache->pending[level].next,
2792 					  struct backref_node, list);
2793 			list_move_tail(&node->list, &list);
2794 			BUG_ON(!node->pending);
2795 
2796 			if (!err) {
2797 				ret = link_to_upper(trans, rc, node, path);
2798 				if (ret < 0)
2799 					err = ret;
2800 			}
2801 		}
2802 		list_splice_init(&list, &cache->pending[level]);
2803 	}
2804 	return err;
2805 }
2806 
2807 static void mark_block_processed(struct reloc_control *rc,
2808 				 u64 bytenr, u32 blocksize)
2809 {
2810 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2811 			EXTENT_DIRTY, GFP_NOFS);
2812 }
2813 
2814 static void __mark_block_processed(struct reloc_control *rc,
2815 				   struct backref_node *node)
2816 {
2817 	u32 blocksize;
2818 	if (node->level == 0 ||
2819 	    in_block_group(node->bytenr, rc->block_group)) {
2820 		blocksize = rc->extent_root->nodesize;
2821 		mark_block_processed(rc, node->bytenr, blocksize);
2822 	}
2823 	node->processed = 1;
2824 }
2825 
2826 /*
2827  * mark a block and all blocks directly/indirectly reference the block
2828  * as processed.
2829  */
2830 static void update_processed_blocks(struct reloc_control *rc,
2831 				    struct backref_node *node)
2832 {
2833 	struct backref_node *next = node;
2834 	struct backref_edge *edge;
2835 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2836 	int index = 0;
2837 
2838 	while (next) {
2839 		cond_resched();
2840 		while (1) {
2841 			if (next->processed)
2842 				break;
2843 
2844 			__mark_block_processed(rc, next);
2845 
2846 			if (list_empty(&next->upper))
2847 				break;
2848 
2849 			edge = list_entry(next->upper.next,
2850 					  struct backref_edge, list[LOWER]);
2851 			edges[index++] = edge;
2852 			next = edge->node[UPPER];
2853 		}
2854 		next = walk_down_backref(edges, &index);
2855 	}
2856 }
2857 
2858 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2859 {
2860 	u32 blocksize = rc->extent_root->nodesize;
2861 
2862 	if (test_range_bit(&rc->processed_blocks, bytenr,
2863 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2864 		return 1;
2865 	return 0;
2866 }
2867 
2868 static int get_tree_block_key(struct reloc_control *rc,
2869 			      struct tree_block *block)
2870 {
2871 	struct extent_buffer *eb;
2872 
2873 	BUG_ON(block->key_ready);
2874 	eb = read_tree_block(rc->extent_root, block->bytenr,
2875 			     block->key.offset);
2876 	if (!eb || !extent_buffer_uptodate(eb)) {
2877 		free_extent_buffer(eb);
2878 		return -EIO;
2879 	}
2880 	WARN_ON(btrfs_header_level(eb) != block->level);
2881 	if (block->level == 0)
2882 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2883 	else
2884 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2885 	free_extent_buffer(eb);
2886 	block->key_ready = 1;
2887 	return 0;
2888 }
2889 
2890 /*
2891  * helper function to relocate a tree block
2892  */
2893 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2894 				struct reloc_control *rc,
2895 				struct backref_node *node,
2896 				struct btrfs_key *key,
2897 				struct btrfs_path *path)
2898 {
2899 	struct btrfs_root *root;
2900 	int ret = 0;
2901 
2902 	if (!node)
2903 		return 0;
2904 
2905 	BUG_ON(node->processed);
2906 	root = select_one_root(trans, node);
2907 	if (root == ERR_PTR(-ENOENT)) {
2908 		update_processed_blocks(rc, node);
2909 		goto out;
2910 	}
2911 
2912 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2913 		ret = reserve_metadata_space(trans, rc, node);
2914 		if (ret)
2915 			goto out;
2916 	}
2917 
2918 	if (root) {
2919 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2920 			BUG_ON(node->new_bytenr);
2921 			BUG_ON(!list_empty(&node->list));
2922 			btrfs_record_root_in_trans(trans, root);
2923 			root = root->reloc_root;
2924 			node->new_bytenr = root->node->start;
2925 			node->root = root;
2926 			list_add_tail(&node->list, &rc->backref_cache.changed);
2927 		} else {
2928 			path->lowest_level = node->level;
2929 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2930 			btrfs_release_path(path);
2931 			if (ret > 0)
2932 				ret = 0;
2933 		}
2934 		if (!ret)
2935 			update_processed_blocks(rc, node);
2936 	} else {
2937 		ret = do_relocation(trans, rc, node, key, path, 1);
2938 	}
2939 out:
2940 	if (ret || node->level == 0 || node->cowonly)
2941 		remove_backref_node(&rc->backref_cache, node);
2942 	return ret;
2943 }
2944 
2945 /*
2946  * relocate a list of blocks
2947  */
2948 static noinline_for_stack
2949 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2950 			 struct reloc_control *rc, struct rb_root *blocks)
2951 {
2952 	struct backref_node *node;
2953 	struct btrfs_path *path;
2954 	struct tree_block *block;
2955 	struct rb_node *rb_node;
2956 	int ret;
2957 	int err = 0;
2958 
2959 	path = btrfs_alloc_path();
2960 	if (!path) {
2961 		err = -ENOMEM;
2962 		goto out_free_blocks;
2963 	}
2964 
2965 	rb_node = rb_first(blocks);
2966 	while (rb_node) {
2967 		block = rb_entry(rb_node, struct tree_block, rb_node);
2968 		if (!block->key_ready)
2969 			readahead_tree_block(rc->extent_root, block->bytenr);
2970 		rb_node = rb_next(rb_node);
2971 	}
2972 
2973 	rb_node = rb_first(blocks);
2974 	while (rb_node) {
2975 		block = rb_entry(rb_node, struct tree_block, rb_node);
2976 		if (!block->key_ready) {
2977 			err = get_tree_block_key(rc, block);
2978 			if (err)
2979 				goto out_free_path;
2980 		}
2981 		rb_node = rb_next(rb_node);
2982 	}
2983 
2984 	rb_node = rb_first(blocks);
2985 	while (rb_node) {
2986 		block = rb_entry(rb_node, struct tree_block, rb_node);
2987 
2988 		node = build_backref_tree(rc, &block->key,
2989 					  block->level, block->bytenr);
2990 		if (IS_ERR(node)) {
2991 			err = PTR_ERR(node);
2992 			goto out;
2993 		}
2994 
2995 		ret = relocate_tree_block(trans, rc, node, &block->key,
2996 					  path);
2997 		if (ret < 0) {
2998 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2999 				err = ret;
3000 			goto out;
3001 		}
3002 		rb_node = rb_next(rb_node);
3003 	}
3004 out:
3005 	err = finish_pending_nodes(trans, rc, path, err);
3006 
3007 out_free_path:
3008 	btrfs_free_path(path);
3009 out_free_blocks:
3010 	free_block_list(blocks);
3011 	return err;
3012 }
3013 
3014 static noinline_for_stack
3015 int prealloc_file_extent_cluster(struct inode *inode,
3016 				 struct file_extent_cluster *cluster)
3017 {
3018 	u64 alloc_hint = 0;
3019 	u64 start;
3020 	u64 end;
3021 	u64 offset = BTRFS_I(inode)->index_cnt;
3022 	u64 num_bytes;
3023 	int nr = 0;
3024 	int ret = 0;
3025 
3026 	BUG_ON(cluster->start != cluster->boundary[0]);
3027 	mutex_lock(&inode->i_mutex);
3028 
3029 	ret = btrfs_check_data_free_space(inode, cluster->end +
3030 					  1 - cluster->start, 0);
3031 	if (ret)
3032 		goto out;
3033 
3034 	while (nr < cluster->nr) {
3035 		start = cluster->boundary[nr] - offset;
3036 		if (nr + 1 < cluster->nr)
3037 			end = cluster->boundary[nr + 1] - 1 - offset;
3038 		else
3039 			end = cluster->end - offset;
3040 
3041 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3042 		num_bytes = end + 1 - start;
3043 		ret = btrfs_prealloc_file_range(inode, 0, start,
3044 						num_bytes, num_bytes,
3045 						end + 1, &alloc_hint);
3046 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3047 		if (ret)
3048 			break;
3049 		nr++;
3050 	}
3051 	btrfs_free_reserved_data_space(inode, cluster->end +
3052 				       1 - cluster->start);
3053 out:
3054 	mutex_unlock(&inode->i_mutex);
3055 	return ret;
3056 }
3057 
3058 static noinline_for_stack
3059 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3060 			 u64 block_start)
3061 {
3062 	struct btrfs_root *root = BTRFS_I(inode)->root;
3063 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3064 	struct extent_map *em;
3065 	int ret = 0;
3066 
3067 	em = alloc_extent_map();
3068 	if (!em)
3069 		return -ENOMEM;
3070 
3071 	em->start = start;
3072 	em->len = end + 1 - start;
3073 	em->block_len = em->len;
3074 	em->block_start = block_start;
3075 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3076 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3077 
3078 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3079 	while (1) {
3080 		write_lock(&em_tree->lock);
3081 		ret = add_extent_mapping(em_tree, em, 0);
3082 		write_unlock(&em_tree->lock);
3083 		if (ret != -EEXIST) {
3084 			free_extent_map(em);
3085 			break;
3086 		}
3087 		btrfs_drop_extent_cache(inode, start, end, 0);
3088 	}
3089 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3090 	return ret;
3091 }
3092 
3093 static int relocate_file_extent_cluster(struct inode *inode,
3094 					struct file_extent_cluster *cluster)
3095 {
3096 	u64 page_start;
3097 	u64 page_end;
3098 	u64 offset = BTRFS_I(inode)->index_cnt;
3099 	unsigned long index;
3100 	unsigned long last_index;
3101 	struct page *page;
3102 	struct file_ra_state *ra;
3103 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3104 	int nr = 0;
3105 	int ret = 0;
3106 
3107 	if (!cluster->nr)
3108 		return 0;
3109 
3110 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3111 	if (!ra)
3112 		return -ENOMEM;
3113 
3114 	ret = prealloc_file_extent_cluster(inode, cluster);
3115 	if (ret)
3116 		goto out;
3117 
3118 	file_ra_state_init(ra, inode->i_mapping);
3119 
3120 	ret = setup_extent_mapping(inode, cluster->start - offset,
3121 				   cluster->end - offset, cluster->start);
3122 	if (ret)
3123 		goto out;
3124 
3125 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3126 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3127 	while (index <= last_index) {
3128 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3129 		if (ret)
3130 			goto out;
3131 
3132 		page = find_lock_page(inode->i_mapping, index);
3133 		if (!page) {
3134 			page_cache_sync_readahead(inode->i_mapping,
3135 						  ra, NULL, index,
3136 						  last_index + 1 - index);
3137 			page = find_or_create_page(inode->i_mapping, index,
3138 						   mask);
3139 			if (!page) {
3140 				btrfs_delalloc_release_metadata(inode,
3141 							PAGE_CACHE_SIZE);
3142 				ret = -ENOMEM;
3143 				goto out;
3144 			}
3145 		}
3146 
3147 		if (PageReadahead(page)) {
3148 			page_cache_async_readahead(inode->i_mapping,
3149 						   ra, NULL, page, index,
3150 						   last_index + 1 - index);
3151 		}
3152 
3153 		if (!PageUptodate(page)) {
3154 			btrfs_readpage(NULL, page);
3155 			lock_page(page);
3156 			if (!PageUptodate(page)) {
3157 				unlock_page(page);
3158 				page_cache_release(page);
3159 				btrfs_delalloc_release_metadata(inode,
3160 							PAGE_CACHE_SIZE);
3161 				ret = -EIO;
3162 				goto out;
3163 			}
3164 		}
3165 
3166 		page_start = page_offset(page);
3167 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3168 
3169 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3170 
3171 		set_page_extent_mapped(page);
3172 
3173 		if (nr < cluster->nr &&
3174 		    page_start + offset == cluster->boundary[nr]) {
3175 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3176 					page_start, page_end,
3177 					EXTENT_BOUNDARY, GFP_NOFS);
3178 			nr++;
3179 		}
3180 
3181 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3182 		set_page_dirty(page);
3183 
3184 		unlock_extent(&BTRFS_I(inode)->io_tree,
3185 			      page_start, page_end);
3186 		unlock_page(page);
3187 		page_cache_release(page);
3188 
3189 		index++;
3190 		balance_dirty_pages_ratelimited(inode->i_mapping);
3191 		btrfs_throttle(BTRFS_I(inode)->root);
3192 	}
3193 	WARN_ON(nr != cluster->nr);
3194 out:
3195 	kfree(ra);
3196 	return ret;
3197 }
3198 
3199 static noinline_for_stack
3200 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3201 			 struct file_extent_cluster *cluster)
3202 {
3203 	int ret;
3204 
3205 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3206 		ret = relocate_file_extent_cluster(inode, cluster);
3207 		if (ret)
3208 			return ret;
3209 		cluster->nr = 0;
3210 	}
3211 
3212 	if (!cluster->nr)
3213 		cluster->start = extent_key->objectid;
3214 	else
3215 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3216 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3217 	cluster->boundary[cluster->nr] = extent_key->objectid;
3218 	cluster->nr++;
3219 
3220 	if (cluster->nr >= MAX_EXTENTS) {
3221 		ret = relocate_file_extent_cluster(inode, cluster);
3222 		if (ret)
3223 			return ret;
3224 		cluster->nr = 0;
3225 	}
3226 	return 0;
3227 }
3228 
3229 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3230 static int get_ref_objectid_v0(struct reloc_control *rc,
3231 			       struct btrfs_path *path,
3232 			       struct btrfs_key *extent_key,
3233 			       u64 *ref_objectid, int *path_change)
3234 {
3235 	struct btrfs_key key;
3236 	struct extent_buffer *leaf;
3237 	struct btrfs_extent_ref_v0 *ref0;
3238 	int ret;
3239 	int slot;
3240 
3241 	leaf = path->nodes[0];
3242 	slot = path->slots[0];
3243 	while (1) {
3244 		if (slot >= btrfs_header_nritems(leaf)) {
3245 			ret = btrfs_next_leaf(rc->extent_root, path);
3246 			if (ret < 0)
3247 				return ret;
3248 			BUG_ON(ret > 0);
3249 			leaf = path->nodes[0];
3250 			slot = path->slots[0];
3251 			if (path_change)
3252 				*path_change = 1;
3253 		}
3254 		btrfs_item_key_to_cpu(leaf, &key, slot);
3255 		if (key.objectid != extent_key->objectid)
3256 			return -ENOENT;
3257 
3258 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3259 			slot++;
3260 			continue;
3261 		}
3262 		ref0 = btrfs_item_ptr(leaf, slot,
3263 				struct btrfs_extent_ref_v0);
3264 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3265 		break;
3266 	}
3267 	return 0;
3268 }
3269 #endif
3270 
3271 /*
3272  * helper to add a tree block to the list.
3273  * the major work is getting the generation and level of the block
3274  */
3275 static int add_tree_block(struct reloc_control *rc,
3276 			  struct btrfs_key *extent_key,
3277 			  struct btrfs_path *path,
3278 			  struct rb_root *blocks)
3279 {
3280 	struct extent_buffer *eb;
3281 	struct btrfs_extent_item *ei;
3282 	struct btrfs_tree_block_info *bi;
3283 	struct tree_block *block;
3284 	struct rb_node *rb_node;
3285 	u32 item_size;
3286 	int level = -1;
3287 	u64 generation;
3288 
3289 	eb =  path->nodes[0];
3290 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3291 
3292 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3293 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3294 		ei = btrfs_item_ptr(eb, path->slots[0],
3295 				struct btrfs_extent_item);
3296 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3297 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3298 			level = btrfs_tree_block_level(eb, bi);
3299 		} else {
3300 			level = (int)extent_key->offset;
3301 		}
3302 		generation = btrfs_extent_generation(eb, ei);
3303 	} else {
3304 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3305 		u64 ref_owner;
3306 		int ret;
3307 
3308 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3309 		ret = get_ref_objectid_v0(rc, path, extent_key,
3310 					  &ref_owner, NULL);
3311 		if (ret < 0)
3312 			return ret;
3313 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3314 		level = (int)ref_owner;
3315 		/* FIXME: get real generation */
3316 		generation = 0;
3317 #else
3318 		BUG();
3319 #endif
3320 	}
3321 
3322 	btrfs_release_path(path);
3323 
3324 	BUG_ON(level == -1);
3325 
3326 	block = kmalloc(sizeof(*block), GFP_NOFS);
3327 	if (!block)
3328 		return -ENOMEM;
3329 
3330 	block->bytenr = extent_key->objectid;
3331 	block->key.objectid = rc->extent_root->nodesize;
3332 	block->key.offset = generation;
3333 	block->level = level;
3334 	block->key_ready = 0;
3335 
3336 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3337 	if (rb_node)
3338 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3339 
3340 	return 0;
3341 }
3342 
3343 /*
3344  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3345  */
3346 static int __add_tree_block(struct reloc_control *rc,
3347 			    u64 bytenr, u32 blocksize,
3348 			    struct rb_root *blocks)
3349 {
3350 	struct btrfs_path *path;
3351 	struct btrfs_key key;
3352 	int ret;
3353 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3354 					SKINNY_METADATA);
3355 
3356 	if (tree_block_processed(bytenr, rc))
3357 		return 0;
3358 
3359 	if (tree_search(blocks, bytenr))
3360 		return 0;
3361 
3362 	path = btrfs_alloc_path();
3363 	if (!path)
3364 		return -ENOMEM;
3365 again:
3366 	key.objectid = bytenr;
3367 	if (skinny) {
3368 		key.type = BTRFS_METADATA_ITEM_KEY;
3369 		key.offset = (u64)-1;
3370 	} else {
3371 		key.type = BTRFS_EXTENT_ITEM_KEY;
3372 		key.offset = blocksize;
3373 	}
3374 
3375 	path->search_commit_root = 1;
3376 	path->skip_locking = 1;
3377 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3378 	if (ret < 0)
3379 		goto out;
3380 
3381 	if (ret > 0 && skinny) {
3382 		if (path->slots[0]) {
3383 			path->slots[0]--;
3384 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3385 					      path->slots[0]);
3386 			if (key.objectid == bytenr &&
3387 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3388 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3389 			      key.offset == blocksize)))
3390 				ret = 0;
3391 		}
3392 
3393 		if (ret) {
3394 			skinny = false;
3395 			btrfs_release_path(path);
3396 			goto again;
3397 		}
3398 	}
3399 	BUG_ON(ret);
3400 
3401 	ret = add_tree_block(rc, &key, path, blocks);
3402 out:
3403 	btrfs_free_path(path);
3404 	return ret;
3405 }
3406 
3407 /*
3408  * helper to check if the block use full backrefs for pointers in it
3409  */
3410 static int block_use_full_backref(struct reloc_control *rc,
3411 				  struct extent_buffer *eb)
3412 {
3413 	u64 flags;
3414 	int ret;
3415 
3416 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3417 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3418 		return 1;
3419 
3420 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3421 				       eb->start, btrfs_header_level(eb), 1,
3422 				       NULL, &flags);
3423 	BUG_ON(ret);
3424 
3425 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3426 		ret = 1;
3427 	else
3428 		ret = 0;
3429 	return ret;
3430 }
3431 
3432 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3433 				    struct btrfs_block_group_cache *block_group,
3434 				    struct inode *inode,
3435 				    u64 ino)
3436 {
3437 	struct btrfs_key key;
3438 	struct btrfs_root *root = fs_info->tree_root;
3439 	struct btrfs_trans_handle *trans;
3440 	int ret = 0;
3441 
3442 	if (inode)
3443 		goto truncate;
3444 
3445 	key.objectid = ino;
3446 	key.type = BTRFS_INODE_ITEM_KEY;
3447 	key.offset = 0;
3448 
3449 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3450 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3451 		if (!IS_ERR(inode))
3452 			iput(inode);
3453 		return -ENOENT;
3454 	}
3455 
3456 truncate:
3457 	ret = btrfs_check_trunc_cache_free_space(root,
3458 						 &fs_info->global_block_rsv);
3459 	if (ret)
3460 		goto out;
3461 
3462 	trans = btrfs_join_transaction(root);
3463 	if (IS_ERR(trans)) {
3464 		ret = PTR_ERR(trans);
3465 		goto out;
3466 	}
3467 
3468 	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3469 
3470 	btrfs_end_transaction(trans, root);
3471 	btrfs_btree_balance_dirty(root);
3472 out:
3473 	iput(inode);
3474 	return ret;
3475 }
3476 
3477 /*
3478  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3479  * this function scans fs tree to find blocks reference the data extent
3480  */
3481 static int find_data_references(struct reloc_control *rc,
3482 				struct btrfs_key *extent_key,
3483 				struct extent_buffer *leaf,
3484 				struct btrfs_extent_data_ref *ref,
3485 				struct rb_root *blocks)
3486 {
3487 	struct btrfs_path *path;
3488 	struct tree_block *block;
3489 	struct btrfs_root *root;
3490 	struct btrfs_file_extent_item *fi;
3491 	struct rb_node *rb_node;
3492 	struct btrfs_key key;
3493 	u64 ref_root;
3494 	u64 ref_objectid;
3495 	u64 ref_offset;
3496 	u32 ref_count;
3497 	u32 nritems;
3498 	int err = 0;
3499 	int added = 0;
3500 	int counted;
3501 	int ret;
3502 
3503 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3504 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3505 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3506 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3507 
3508 	/*
3509 	 * This is an extent belonging to the free space cache, lets just delete
3510 	 * it and redo the search.
3511 	 */
3512 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3513 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3514 					       rc->block_group,
3515 					       NULL, ref_objectid);
3516 		if (ret != -ENOENT)
3517 			return ret;
3518 		ret = 0;
3519 	}
3520 
3521 	path = btrfs_alloc_path();
3522 	if (!path)
3523 		return -ENOMEM;
3524 	path->reada = 1;
3525 
3526 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3527 	if (IS_ERR(root)) {
3528 		err = PTR_ERR(root);
3529 		goto out;
3530 	}
3531 
3532 	key.objectid = ref_objectid;
3533 	key.type = BTRFS_EXTENT_DATA_KEY;
3534 	if (ref_offset > ((u64)-1 << 32))
3535 		key.offset = 0;
3536 	else
3537 		key.offset = ref_offset;
3538 
3539 	path->search_commit_root = 1;
3540 	path->skip_locking = 1;
3541 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3542 	if (ret < 0) {
3543 		err = ret;
3544 		goto out;
3545 	}
3546 
3547 	leaf = path->nodes[0];
3548 	nritems = btrfs_header_nritems(leaf);
3549 	/*
3550 	 * the references in tree blocks that use full backrefs
3551 	 * are not counted in
3552 	 */
3553 	if (block_use_full_backref(rc, leaf))
3554 		counted = 0;
3555 	else
3556 		counted = 1;
3557 	rb_node = tree_search(blocks, leaf->start);
3558 	if (rb_node) {
3559 		if (counted)
3560 			added = 1;
3561 		else
3562 			path->slots[0] = nritems;
3563 	}
3564 
3565 	while (ref_count > 0) {
3566 		while (path->slots[0] >= nritems) {
3567 			ret = btrfs_next_leaf(root, path);
3568 			if (ret < 0) {
3569 				err = ret;
3570 				goto out;
3571 			}
3572 			if (WARN_ON(ret > 0))
3573 				goto out;
3574 
3575 			leaf = path->nodes[0];
3576 			nritems = btrfs_header_nritems(leaf);
3577 			added = 0;
3578 
3579 			if (block_use_full_backref(rc, leaf))
3580 				counted = 0;
3581 			else
3582 				counted = 1;
3583 			rb_node = tree_search(blocks, leaf->start);
3584 			if (rb_node) {
3585 				if (counted)
3586 					added = 1;
3587 				else
3588 					path->slots[0] = nritems;
3589 			}
3590 		}
3591 
3592 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3593 		if (WARN_ON(key.objectid != ref_objectid ||
3594 		    key.type != BTRFS_EXTENT_DATA_KEY))
3595 			break;
3596 
3597 		fi = btrfs_item_ptr(leaf, path->slots[0],
3598 				    struct btrfs_file_extent_item);
3599 
3600 		if (btrfs_file_extent_type(leaf, fi) ==
3601 		    BTRFS_FILE_EXTENT_INLINE)
3602 			goto next;
3603 
3604 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3605 		    extent_key->objectid)
3606 			goto next;
3607 
3608 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3609 		if (key.offset != ref_offset)
3610 			goto next;
3611 
3612 		if (counted)
3613 			ref_count--;
3614 		if (added)
3615 			goto next;
3616 
3617 		if (!tree_block_processed(leaf->start, rc)) {
3618 			block = kmalloc(sizeof(*block), GFP_NOFS);
3619 			if (!block) {
3620 				err = -ENOMEM;
3621 				break;
3622 			}
3623 			block->bytenr = leaf->start;
3624 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3625 			block->level = 0;
3626 			block->key_ready = 1;
3627 			rb_node = tree_insert(blocks, block->bytenr,
3628 					      &block->rb_node);
3629 			if (rb_node)
3630 				backref_tree_panic(rb_node, -EEXIST,
3631 						   block->bytenr);
3632 		}
3633 		if (counted)
3634 			added = 1;
3635 		else
3636 			path->slots[0] = nritems;
3637 next:
3638 		path->slots[0]++;
3639 
3640 	}
3641 out:
3642 	btrfs_free_path(path);
3643 	return err;
3644 }
3645 
3646 /*
3647  * helper to find all tree blocks that reference a given data extent
3648  */
3649 static noinline_for_stack
3650 int add_data_references(struct reloc_control *rc,
3651 			struct btrfs_key *extent_key,
3652 			struct btrfs_path *path,
3653 			struct rb_root *blocks)
3654 {
3655 	struct btrfs_key key;
3656 	struct extent_buffer *eb;
3657 	struct btrfs_extent_data_ref *dref;
3658 	struct btrfs_extent_inline_ref *iref;
3659 	unsigned long ptr;
3660 	unsigned long end;
3661 	u32 blocksize = rc->extent_root->nodesize;
3662 	int ret = 0;
3663 	int err = 0;
3664 
3665 	eb = path->nodes[0];
3666 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3667 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3668 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3669 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3670 		ptr = end;
3671 	else
3672 #endif
3673 		ptr += sizeof(struct btrfs_extent_item);
3674 
3675 	while (ptr < end) {
3676 		iref = (struct btrfs_extent_inline_ref *)ptr;
3677 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3678 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3679 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3680 			ret = __add_tree_block(rc, key.offset, blocksize,
3681 					       blocks);
3682 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3683 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3684 			ret = find_data_references(rc, extent_key,
3685 						   eb, dref, blocks);
3686 		} else {
3687 			BUG();
3688 		}
3689 		if (ret) {
3690 			err = ret;
3691 			goto out;
3692 		}
3693 		ptr += btrfs_extent_inline_ref_size(key.type);
3694 	}
3695 	WARN_ON(ptr > end);
3696 
3697 	while (1) {
3698 		cond_resched();
3699 		eb = path->nodes[0];
3700 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3701 			ret = btrfs_next_leaf(rc->extent_root, path);
3702 			if (ret < 0) {
3703 				err = ret;
3704 				break;
3705 			}
3706 			if (ret > 0)
3707 				break;
3708 			eb = path->nodes[0];
3709 		}
3710 
3711 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3712 		if (key.objectid != extent_key->objectid)
3713 			break;
3714 
3715 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3716 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3717 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3718 #else
3719 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3720 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3721 #endif
3722 			ret = __add_tree_block(rc, key.offset, blocksize,
3723 					       blocks);
3724 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3725 			dref = btrfs_item_ptr(eb, path->slots[0],
3726 					      struct btrfs_extent_data_ref);
3727 			ret = find_data_references(rc, extent_key,
3728 						   eb, dref, blocks);
3729 		} else {
3730 			ret = 0;
3731 		}
3732 		if (ret) {
3733 			err = ret;
3734 			break;
3735 		}
3736 		path->slots[0]++;
3737 	}
3738 out:
3739 	btrfs_release_path(path);
3740 	if (err)
3741 		free_block_list(blocks);
3742 	return err;
3743 }
3744 
3745 /*
3746  * helper to find next unprocessed extent
3747  */
3748 static noinline_for_stack
3749 int find_next_extent(struct btrfs_trans_handle *trans,
3750 		     struct reloc_control *rc, struct btrfs_path *path,
3751 		     struct btrfs_key *extent_key)
3752 {
3753 	struct btrfs_key key;
3754 	struct extent_buffer *leaf;
3755 	u64 start, end, last;
3756 	int ret;
3757 
3758 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3759 	while (1) {
3760 		cond_resched();
3761 		if (rc->search_start >= last) {
3762 			ret = 1;
3763 			break;
3764 		}
3765 
3766 		key.objectid = rc->search_start;
3767 		key.type = BTRFS_EXTENT_ITEM_KEY;
3768 		key.offset = 0;
3769 
3770 		path->search_commit_root = 1;
3771 		path->skip_locking = 1;
3772 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3773 					0, 0);
3774 		if (ret < 0)
3775 			break;
3776 next:
3777 		leaf = path->nodes[0];
3778 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3779 			ret = btrfs_next_leaf(rc->extent_root, path);
3780 			if (ret != 0)
3781 				break;
3782 			leaf = path->nodes[0];
3783 		}
3784 
3785 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3786 		if (key.objectid >= last) {
3787 			ret = 1;
3788 			break;
3789 		}
3790 
3791 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3792 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3793 			path->slots[0]++;
3794 			goto next;
3795 		}
3796 
3797 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3798 		    key.objectid + key.offset <= rc->search_start) {
3799 			path->slots[0]++;
3800 			goto next;
3801 		}
3802 
3803 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3804 		    key.objectid + rc->extent_root->nodesize <=
3805 		    rc->search_start) {
3806 			path->slots[0]++;
3807 			goto next;
3808 		}
3809 
3810 		ret = find_first_extent_bit(&rc->processed_blocks,
3811 					    key.objectid, &start, &end,
3812 					    EXTENT_DIRTY, NULL);
3813 
3814 		if (ret == 0 && start <= key.objectid) {
3815 			btrfs_release_path(path);
3816 			rc->search_start = end + 1;
3817 		} else {
3818 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3819 				rc->search_start = key.objectid + key.offset;
3820 			else
3821 				rc->search_start = key.objectid +
3822 					rc->extent_root->nodesize;
3823 			memcpy(extent_key, &key, sizeof(key));
3824 			return 0;
3825 		}
3826 	}
3827 	btrfs_release_path(path);
3828 	return ret;
3829 }
3830 
3831 static void set_reloc_control(struct reloc_control *rc)
3832 {
3833 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3834 
3835 	mutex_lock(&fs_info->reloc_mutex);
3836 	fs_info->reloc_ctl = rc;
3837 	mutex_unlock(&fs_info->reloc_mutex);
3838 }
3839 
3840 static void unset_reloc_control(struct reloc_control *rc)
3841 {
3842 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3843 
3844 	mutex_lock(&fs_info->reloc_mutex);
3845 	fs_info->reloc_ctl = NULL;
3846 	mutex_unlock(&fs_info->reloc_mutex);
3847 }
3848 
3849 static int check_extent_flags(u64 flags)
3850 {
3851 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3852 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3853 		return 1;
3854 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3855 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3856 		return 1;
3857 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3858 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3859 		return 1;
3860 	return 0;
3861 }
3862 
3863 static noinline_for_stack
3864 int prepare_to_relocate(struct reloc_control *rc)
3865 {
3866 	struct btrfs_trans_handle *trans;
3867 
3868 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3869 					      BTRFS_BLOCK_RSV_TEMP);
3870 	if (!rc->block_rsv)
3871 		return -ENOMEM;
3872 
3873 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3874 	rc->search_start = rc->block_group->key.objectid;
3875 	rc->extents_found = 0;
3876 	rc->nodes_relocated = 0;
3877 	rc->merging_rsv_size = 0;
3878 	rc->reserved_bytes = 0;
3879 	rc->block_rsv->size = rc->extent_root->nodesize *
3880 			      RELOCATION_RESERVED_NODES;
3881 
3882 	rc->create_reloc_tree = 1;
3883 	set_reloc_control(rc);
3884 
3885 	trans = btrfs_join_transaction(rc->extent_root);
3886 	if (IS_ERR(trans)) {
3887 		unset_reloc_control(rc);
3888 		/*
3889 		 * extent tree is not a ref_cow tree and has no reloc_root to
3890 		 * cleanup.  And callers are responsible to free the above
3891 		 * block rsv.
3892 		 */
3893 		return PTR_ERR(trans);
3894 	}
3895 	btrfs_commit_transaction(trans, rc->extent_root);
3896 	return 0;
3897 }
3898 
3899 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3900 {
3901 	struct rb_root blocks = RB_ROOT;
3902 	struct btrfs_key key;
3903 	struct btrfs_trans_handle *trans = NULL;
3904 	struct btrfs_path *path;
3905 	struct btrfs_extent_item *ei;
3906 	u64 flags;
3907 	u32 item_size;
3908 	int ret;
3909 	int err = 0;
3910 	int progress = 0;
3911 
3912 	path = btrfs_alloc_path();
3913 	if (!path)
3914 		return -ENOMEM;
3915 	path->reada = 1;
3916 
3917 	ret = prepare_to_relocate(rc);
3918 	if (ret) {
3919 		err = ret;
3920 		goto out_free;
3921 	}
3922 
3923 	while (1) {
3924 		rc->reserved_bytes = 0;
3925 		ret = btrfs_block_rsv_refill(rc->extent_root,
3926 					rc->block_rsv, rc->block_rsv->size,
3927 					BTRFS_RESERVE_FLUSH_ALL);
3928 		if (ret) {
3929 			err = ret;
3930 			break;
3931 		}
3932 		progress++;
3933 		trans = btrfs_start_transaction(rc->extent_root, 0);
3934 		if (IS_ERR(trans)) {
3935 			err = PTR_ERR(trans);
3936 			trans = NULL;
3937 			break;
3938 		}
3939 restart:
3940 		if (update_backref_cache(trans, &rc->backref_cache)) {
3941 			btrfs_end_transaction(trans, rc->extent_root);
3942 			continue;
3943 		}
3944 
3945 		ret = find_next_extent(trans, rc, path, &key);
3946 		if (ret < 0)
3947 			err = ret;
3948 		if (ret != 0)
3949 			break;
3950 
3951 		rc->extents_found++;
3952 
3953 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3954 				    struct btrfs_extent_item);
3955 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3956 		if (item_size >= sizeof(*ei)) {
3957 			flags = btrfs_extent_flags(path->nodes[0], ei);
3958 			ret = check_extent_flags(flags);
3959 			BUG_ON(ret);
3960 
3961 		} else {
3962 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3963 			u64 ref_owner;
3964 			int path_change = 0;
3965 
3966 			BUG_ON(item_size !=
3967 			       sizeof(struct btrfs_extent_item_v0));
3968 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3969 						  &path_change);
3970 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3971 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3972 			else
3973 				flags = BTRFS_EXTENT_FLAG_DATA;
3974 
3975 			if (path_change) {
3976 				btrfs_release_path(path);
3977 
3978 				path->search_commit_root = 1;
3979 				path->skip_locking = 1;
3980 				ret = btrfs_search_slot(NULL, rc->extent_root,
3981 							&key, path, 0, 0);
3982 				if (ret < 0) {
3983 					err = ret;
3984 					break;
3985 				}
3986 				BUG_ON(ret > 0);
3987 			}
3988 #else
3989 			BUG();
3990 #endif
3991 		}
3992 
3993 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3994 			ret = add_tree_block(rc, &key, path, &blocks);
3995 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3996 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3997 			ret = add_data_references(rc, &key, path, &blocks);
3998 		} else {
3999 			btrfs_release_path(path);
4000 			ret = 0;
4001 		}
4002 		if (ret < 0) {
4003 			err = ret;
4004 			break;
4005 		}
4006 
4007 		if (!RB_EMPTY_ROOT(&blocks)) {
4008 			ret = relocate_tree_blocks(trans, rc, &blocks);
4009 			if (ret < 0) {
4010 				/*
4011 				 * if we fail to relocate tree blocks, force to update
4012 				 * backref cache when committing transaction.
4013 				 */
4014 				rc->backref_cache.last_trans = trans->transid - 1;
4015 
4016 				if (ret != -EAGAIN) {
4017 					err = ret;
4018 					break;
4019 				}
4020 				rc->extents_found--;
4021 				rc->search_start = key.objectid;
4022 			}
4023 		}
4024 
4025 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4026 		btrfs_btree_balance_dirty(rc->extent_root);
4027 		trans = NULL;
4028 
4029 		if (rc->stage == MOVE_DATA_EXTENTS &&
4030 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4031 			rc->found_file_extent = 1;
4032 			ret = relocate_data_extent(rc->data_inode,
4033 						   &key, &rc->cluster);
4034 			if (ret < 0) {
4035 				err = ret;
4036 				break;
4037 			}
4038 		}
4039 	}
4040 	if (trans && progress && err == -ENOSPC) {
4041 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4042 					      rc->block_group->flags);
4043 		if (ret == 0) {
4044 			err = 0;
4045 			progress = 0;
4046 			goto restart;
4047 		}
4048 	}
4049 
4050 	btrfs_release_path(path);
4051 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4052 			  GFP_NOFS);
4053 
4054 	if (trans) {
4055 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4056 		btrfs_btree_balance_dirty(rc->extent_root);
4057 	}
4058 
4059 	if (!err) {
4060 		ret = relocate_file_extent_cluster(rc->data_inode,
4061 						   &rc->cluster);
4062 		if (ret < 0)
4063 			err = ret;
4064 	}
4065 
4066 	rc->create_reloc_tree = 0;
4067 	set_reloc_control(rc);
4068 
4069 	backref_cache_cleanup(&rc->backref_cache);
4070 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4071 
4072 	err = prepare_to_merge(rc, err);
4073 
4074 	merge_reloc_roots(rc);
4075 
4076 	rc->merge_reloc_tree = 0;
4077 	unset_reloc_control(rc);
4078 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4079 
4080 	/* get rid of pinned extents */
4081 	trans = btrfs_join_transaction(rc->extent_root);
4082 	if (IS_ERR(trans))
4083 		err = PTR_ERR(trans);
4084 	else
4085 		btrfs_commit_transaction(trans, rc->extent_root);
4086 out_free:
4087 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4088 	btrfs_free_path(path);
4089 	return err;
4090 }
4091 
4092 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4093 				 struct btrfs_root *root, u64 objectid)
4094 {
4095 	struct btrfs_path *path;
4096 	struct btrfs_inode_item *item;
4097 	struct extent_buffer *leaf;
4098 	int ret;
4099 
4100 	path = btrfs_alloc_path();
4101 	if (!path)
4102 		return -ENOMEM;
4103 
4104 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4105 	if (ret)
4106 		goto out;
4107 
4108 	leaf = path->nodes[0];
4109 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4110 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4111 	btrfs_set_inode_generation(leaf, item, 1);
4112 	btrfs_set_inode_size(leaf, item, 0);
4113 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4114 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4115 					  BTRFS_INODE_PREALLOC);
4116 	btrfs_mark_buffer_dirty(leaf);
4117 out:
4118 	btrfs_free_path(path);
4119 	return ret;
4120 }
4121 
4122 /*
4123  * helper to create inode for data relocation.
4124  * the inode is in data relocation tree and its link count is 0
4125  */
4126 static noinline_for_stack
4127 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4128 				 struct btrfs_block_group_cache *group)
4129 {
4130 	struct inode *inode = NULL;
4131 	struct btrfs_trans_handle *trans;
4132 	struct btrfs_root *root;
4133 	struct btrfs_key key;
4134 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4135 	int err = 0;
4136 
4137 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4138 	if (IS_ERR(root))
4139 		return ERR_CAST(root);
4140 
4141 	trans = btrfs_start_transaction(root, 6);
4142 	if (IS_ERR(trans))
4143 		return ERR_CAST(trans);
4144 
4145 	err = btrfs_find_free_objectid(root, &objectid);
4146 	if (err)
4147 		goto out;
4148 
4149 	err = __insert_orphan_inode(trans, root, objectid);
4150 	BUG_ON(err);
4151 
4152 	key.objectid = objectid;
4153 	key.type = BTRFS_INODE_ITEM_KEY;
4154 	key.offset = 0;
4155 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4156 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4157 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4158 
4159 	err = btrfs_orphan_add(trans, inode);
4160 out:
4161 	btrfs_end_transaction(trans, root);
4162 	btrfs_btree_balance_dirty(root);
4163 	if (err) {
4164 		if (inode)
4165 			iput(inode);
4166 		inode = ERR_PTR(err);
4167 	}
4168 	return inode;
4169 }
4170 
4171 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4172 {
4173 	struct reloc_control *rc;
4174 
4175 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4176 	if (!rc)
4177 		return NULL;
4178 
4179 	INIT_LIST_HEAD(&rc->reloc_roots);
4180 	backref_cache_init(&rc->backref_cache);
4181 	mapping_tree_init(&rc->reloc_root_tree);
4182 	extent_io_tree_init(&rc->processed_blocks,
4183 			    fs_info->btree_inode->i_mapping);
4184 	return rc;
4185 }
4186 
4187 /*
4188  * function to relocate all extents in a block group.
4189  */
4190 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4191 {
4192 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4193 	struct reloc_control *rc;
4194 	struct inode *inode;
4195 	struct btrfs_path *path;
4196 	int ret;
4197 	int rw = 0;
4198 	int err = 0;
4199 
4200 	rc = alloc_reloc_control(fs_info);
4201 	if (!rc)
4202 		return -ENOMEM;
4203 
4204 	rc->extent_root = extent_root;
4205 
4206 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4207 	BUG_ON(!rc->block_group);
4208 
4209 	if (!rc->block_group->ro) {
4210 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4211 		if (ret) {
4212 			err = ret;
4213 			goto out;
4214 		}
4215 		rw = 1;
4216 	}
4217 
4218 	path = btrfs_alloc_path();
4219 	if (!path) {
4220 		err = -ENOMEM;
4221 		goto out;
4222 	}
4223 
4224 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4225 					path);
4226 	btrfs_free_path(path);
4227 
4228 	if (!IS_ERR(inode))
4229 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4230 	else
4231 		ret = PTR_ERR(inode);
4232 
4233 	if (ret && ret != -ENOENT) {
4234 		err = ret;
4235 		goto out;
4236 	}
4237 
4238 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4239 	if (IS_ERR(rc->data_inode)) {
4240 		err = PTR_ERR(rc->data_inode);
4241 		rc->data_inode = NULL;
4242 		goto out;
4243 	}
4244 
4245 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4246 	       rc->block_group->key.objectid, rc->block_group->flags);
4247 
4248 	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4249 	if (ret < 0) {
4250 		err = ret;
4251 		goto out;
4252 	}
4253 	btrfs_wait_ordered_roots(fs_info, -1);
4254 
4255 	while (1) {
4256 		mutex_lock(&fs_info->cleaner_mutex);
4257 		ret = relocate_block_group(rc);
4258 		mutex_unlock(&fs_info->cleaner_mutex);
4259 		if (ret < 0) {
4260 			err = ret;
4261 			goto out;
4262 		}
4263 
4264 		if (rc->extents_found == 0)
4265 			break;
4266 
4267 		btrfs_info(extent_root->fs_info, "found %llu extents",
4268 			rc->extents_found);
4269 
4270 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4271 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4272 						       (u64)-1);
4273 			if (ret) {
4274 				err = ret;
4275 				goto out;
4276 			}
4277 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4278 						 0, -1);
4279 			rc->stage = UPDATE_DATA_PTRS;
4280 		}
4281 	}
4282 
4283 	WARN_ON(rc->block_group->pinned > 0);
4284 	WARN_ON(rc->block_group->reserved > 0);
4285 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4286 out:
4287 	if (err && rw)
4288 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4289 	iput(rc->data_inode);
4290 	btrfs_put_block_group(rc->block_group);
4291 	kfree(rc);
4292 	return err;
4293 }
4294 
4295 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4296 {
4297 	struct btrfs_trans_handle *trans;
4298 	int ret, err;
4299 
4300 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4301 	if (IS_ERR(trans))
4302 		return PTR_ERR(trans);
4303 
4304 	memset(&root->root_item.drop_progress, 0,
4305 		sizeof(root->root_item.drop_progress));
4306 	root->root_item.drop_level = 0;
4307 	btrfs_set_root_refs(&root->root_item, 0);
4308 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4309 				&root->root_key, &root->root_item);
4310 
4311 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4312 	if (err)
4313 		return err;
4314 	return ret;
4315 }
4316 
4317 /*
4318  * recover relocation interrupted by system crash.
4319  *
4320  * this function resumes merging reloc trees with corresponding fs trees.
4321  * this is important for keeping the sharing of tree blocks
4322  */
4323 int btrfs_recover_relocation(struct btrfs_root *root)
4324 {
4325 	LIST_HEAD(reloc_roots);
4326 	struct btrfs_key key;
4327 	struct btrfs_root *fs_root;
4328 	struct btrfs_root *reloc_root;
4329 	struct btrfs_path *path;
4330 	struct extent_buffer *leaf;
4331 	struct reloc_control *rc = NULL;
4332 	struct btrfs_trans_handle *trans;
4333 	int ret;
4334 	int err = 0;
4335 
4336 	path = btrfs_alloc_path();
4337 	if (!path)
4338 		return -ENOMEM;
4339 	path->reada = -1;
4340 
4341 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4342 	key.type = BTRFS_ROOT_ITEM_KEY;
4343 	key.offset = (u64)-1;
4344 
4345 	while (1) {
4346 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4347 					path, 0, 0);
4348 		if (ret < 0) {
4349 			err = ret;
4350 			goto out;
4351 		}
4352 		if (ret > 0) {
4353 			if (path->slots[0] == 0)
4354 				break;
4355 			path->slots[0]--;
4356 		}
4357 		leaf = path->nodes[0];
4358 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4359 		btrfs_release_path(path);
4360 
4361 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4362 		    key.type != BTRFS_ROOT_ITEM_KEY)
4363 			break;
4364 
4365 		reloc_root = btrfs_read_fs_root(root, &key);
4366 		if (IS_ERR(reloc_root)) {
4367 			err = PTR_ERR(reloc_root);
4368 			goto out;
4369 		}
4370 
4371 		list_add(&reloc_root->root_list, &reloc_roots);
4372 
4373 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4374 			fs_root = read_fs_root(root->fs_info,
4375 					       reloc_root->root_key.offset);
4376 			if (IS_ERR(fs_root)) {
4377 				ret = PTR_ERR(fs_root);
4378 				if (ret != -ENOENT) {
4379 					err = ret;
4380 					goto out;
4381 				}
4382 				ret = mark_garbage_root(reloc_root);
4383 				if (ret < 0) {
4384 					err = ret;
4385 					goto out;
4386 				}
4387 			}
4388 		}
4389 
4390 		if (key.offset == 0)
4391 			break;
4392 
4393 		key.offset--;
4394 	}
4395 	btrfs_release_path(path);
4396 
4397 	if (list_empty(&reloc_roots))
4398 		goto out;
4399 
4400 	rc = alloc_reloc_control(root->fs_info);
4401 	if (!rc) {
4402 		err = -ENOMEM;
4403 		goto out;
4404 	}
4405 
4406 	rc->extent_root = root->fs_info->extent_root;
4407 
4408 	set_reloc_control(rc);
4409 
4410 	trans = btrfs_join_transaction(rc->extent_root);
4411 	if (IS_ERR(trans)) {
4412 		unset_reloc_control(rc);
4413 		err = PTR_ERR(trans);
4414 		goto out_free;
4415 	}
4416 
4417 	rc->merge_reloc_tree = 1;
4418 
4419 	while (!list_empty(&reloc_roots)) {
4420 		reloc_root = list_entry(reloc_roots.next,
4421 					struct btrfs_root, root_list);
4422 		list_del(&reloc_root->root_list);
4423 
4424 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4425 			list_add_tail(&reloc_root->root_list,
4426 				      &rc->reloc_roots);
4427 			continue;
4428 		}
4429 
4430 		fs_root = read_fs_root(root->fs_info,
4431 				       reloc_root->root_key.offset);
4432 		if (IS_ERR(fs_root)) {
4433 			err = PTR_ERR(fs_root);
4434 			goto out_free;
4435 		}
4436 
4437 		err = __add_reloc_root(reloc_root);
4438 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4439 		fs_root->reloc_root = reloc_root;
4440 	}
4441 
4442 	err = btrfs_commit_transaction(trans, rc->extent_root);
4443 	if (err)
4444 		goto out_free;
4445 
4446 	merge_reloc_roots(rc);
4447 
4448 	unset_reloc_control(rc);
4449 
4450 	trans = btrfs_join_transaction(rc->extent_root);
4451 	if (IS_ERR(trans))
4452 		err = PTR_ERR(trans);
4453 	else
4454 		err = btrfs_commit_transaction(trans, rc->extent_root);
4455 out_free:
4456 	kfree(rc);
4457 out:
4458 	if (!list_empty(&reloc_roots))
4459 		free_reloc_roots(&reloc_roots);
4460 
4461 	btrfs_free_path(path);
4462 
4463 	if (err == 0) {
4464 		/* cleanup orphan inode in data relocation tree */
4465 		fs_root = read_fs_root(root->fs_info,
4466 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4467 		if (IS_ERR(fs_root))
4468 			err = PTR_ERR(fs_root);
4469 		else
4470 			err = btrfs_orphan_cleanup(fs_root);
4471 	}
4472 	return err;
4473 }
4474 
4475 /*
4476  * helper to add ordered checksum for data relocation.
4477  *
4478  * cloning checksum properly handles the nodatasum extents.
4479  * it also saves CPU time to re-calculate the checksum.
4480  */
4481 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4482 {
4483 	struct btrfs_ordered_sum *sums;
4484 	struct btrfs_ordered_extent *ordered;
4485 	struct btrfs_root *root = BTRFS_I(inode)->root;
4486 	int ret;
4487 	u64 disk_bytenr;
4488 	u64 new_bytenr;
4489 	LIST_HEAD(list);
4490 
4491 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4492 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4493 
4494 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4495 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4496 				       disk_bytenr + len - 1, &list, 0);
4497 	if (ret)
4498 		goto out;
4499 
4500 	while (!list_empty(&list)) {
4501 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4502 		list_del_init(&sums->list);
4503 
4504 		/*
4505 		 * We need to offset the new_bytenr based on where the csum is.
4506 		 * We need to do this because we will read in entire prealloc
4507 		 * extents but we may have written to say the middle of the
4508 		 * prealloc extent, so we need to make sure the csum goes with
4509 		 * the right disk offset.
4510 		 *
4511 		 * We can do this because the data reloc inode refers strictly
4512 		 * to the on disk bytes, so we don't have to worry about
4513 		 * disk_len vs real len like with real inodes since it's all
4514 		 * disk length.
4515 		 */
4516 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4517 		sums->bytenr = new_bytenr;
4518 
4519 		btrfs_add_ordered_sum(inode, ordered, sums);
4520 	}
4521 out:
4522 	btrfs_put_ordered_extent(ordered);
4523 	return ret;
4524 }
4525 
4526 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4527 			  struct btrfs_root *root, struct extent_buffer *buf,
4528 			  struct extent_buffer *cow)
4529 {
4530 	struct reloc_control *rc;
4531 	struct backref_node *node;
4532 	int first_cow = 0;
4533 	int level;
4534 	int ret = 0;
4535 
4536 	rc = root->fs_info->reloc_ctl;
4537 	if (!rc)
4538 		return 0;
4539 
4540 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4541 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4542 
4543 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4544 		if (buf == root->node)
4545 			__update_reloc_root(root, cow->start);
4546 	}
4547 
4548 	level = btrfs_header_level(buf);
4549 	if (btrfs_header_generation(buf) <=
4550 	    btrfs_root_last_snapshot(&root->root_item))
4551 		first_cow = 1;
4552 
4553 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4554 	    rc->create_reloc_tree) {
4555 		WARN_ON(!first_cow && level == 0);
4556 
4557 		node = rc->backref_cache.path[level];
4558 		BUG_ON(node->bytenr != buf->start &&
4559 		       node->new_bytenr != buf->start);
4560 
4561 		drop_node_buffer(node);
4562 		extent_buffer_get(cow);
4563 		node->eb = cow;
4564 		node->new_bytenr = cow->start;
4565 
4566 		if (!node->pending) {
4567 			list_move_tail(&node->list,
4568 				       &rc->backref_cache.pending[level]);
4569 			node->pending = 1;
4570 		}
4571 
4572 		if (first_cow)
4573 			__mark_block_processed(rc, node);
4574 
4575 		if (first_cow && level > 0)
4576 			rc->nodes_relocated += buf->len;
4577 	}
4578 
4579 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4580 		ret = replace_file_extents(trans, rc, root, cow);
4581 	return ret;
4582 }
4583 
4584 /*
4585  * called before creating snapshot. it calculates metadata reservation
4586  * requried for relocating tree blocks in the snapshot
4587  */
4588 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4589 			      struct btrfs_pending_snapshot *pending,
4590 			      u64 *bytes_to_reserve)
4591 {
4592 	struct btrfs_root *root;
4593 	struct reloc_control *rc;
4594 
4595 	root = pending->root;
4596 	if (!root->reloc_root)
4597 		return;
4598 
4599 	rc = root->fs_info->reloc_ctl;
4600 	if (!rc->merge_reloc_tree)
4601 		return;
4602 
4603 	root = root->reloc_root;
4604 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4605 	/*
4606 	 * relocation is in the stage of merging trees. the space
4607 	 * used by merging a reloc tree is twice the size of
4608 	 * relocated tree nodes in the worst case. half for cowing
4609 	 * the reloc tree, half for cowing the fs tree. the space
4610 	 * used by cowing the reloc tree will be freed after the
4611 	 * tree is dropped. if we create snapshot, cowing the fs
4612 	 * tree may use more space than it frees. so we need
4613 	 * reserve extra space.
4614 	 */
4615 	*bytes_to_reserve += rc->nodes_relocated;
4616 }
4617 
4618 /*
4619  * called after snapshot is created. migrate block reservation
4620  * and create reloc root for the newly created snapshot
4621  */
4622 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4623 			       struct btrfs_pending_snapshot *pending)
4624 {
4625 	struct btrfs_root *root = pending->root;
4626 	struct btrfs_root *reloc_root;
4627 	struct btrfs_root *new_root;
4628 	struct reloc_control *rc;
4629 	int ret;
4630 
4631 	if (!root->reloc_root)
4632 		return 0;
4633 
4634 	rc = root->fs_info->reloc_ctl;
4635 	rc->merging_rsv_size += rc->nodes_relocated;
4636 
4637 	if (rc->merge_reloc_tree) {
4638 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4639 					      rc->block_rsv,
4640 					      rc->nodes_relocated);
4641 		if (ret)
4642 			return ret;
4643 	}
4644 
4645 	new_root = pending->snap;
4646 	reloc_root = create_reloc_root(trans, root->reloc_root,
4647 				       new_root->root_key.objectid);
4648 	if (IS_ERR(reloc_root))
4649 		return PTR_ERR(reloc_root);
4650 
4651 	ret = __add_reloc_root(reloc_root);
4652 	BUG_ON(ret < 0);
4653 	new_root->reloc_root = reloc_root;
4654 
4655 	if (rc->create_reloc_tree)
4656 		ret = clone_backref_node(trans, rc, root, reloc_root);
4657 	return ret;
4658 }
4659