1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 330 { 331 332 struct btrfs_fs_info *fs_info = NULL; 333 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 334 rb_node); 335 if (bnode->root) 336 fs_info = bnode->root->fs_info; 337 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 338 "found at offset %llu\n", (unsigned long long)bytenr); 339 } 340 341 /* 342 * walk up backref nodes until reach node presents tree root 343 */ 344 static struct backref_node *walk_up_backref(struct backref_node *node, 345 struct backref_edge *edges[], 346 int *index) 347 { 348 struct backref_edge *edge; 349 int idx = *index; 350 351 while (!list_empty(&node->upper)) { 352 edge = list_entry(node->upper.next, 353 struct backref_edge, list[LOWER]); 354 edges[idx++] = edge; 355 node = edge->node[UPPER]; 356 } 357 BUG_ON(node->detached); 358 *index = idx; 359 return node; 360 } 361 362 /* 363 * walk down backref nodes to find start of next reference path 364 */ 365 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 366 int *index) 367 { 368 struct backref_edge *edge; 369 struct backref_node *lower; 370 int idx = *index; 371 372 while (idx > 0) { 373 edge = edges[idx - 1]; 374 lower = edge->node[LOWER]; 375 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 376 idx--; 377 continue; 378 } 379 edge = list_entry(edge->list[LOWER].next, 380 struct backref_edge, list[LOWER]); 381 edges[idx - 1] = edge; 382 *index = idx; 383 return edge->node[UPPER]; 384 } 385 *index = 0; 386 return NULL; 387 } 388 389 static void unlock_node_buffer(struct backref_node *node) 390 { 391 if (node->locked) { 392 btrfs_tree_unlock(node->eb); 393 node->locked = 0; 394 } 395 } 396 397 static void drop_node_buffer(struct backref_node *node) 398 { 399 if (node->eb) { 400 unlock_node_buffer(node); 401 free_extent_buffer(node->eb); 402 node->eb = NULL; 403 } 404 } 405 406 static void drop_backref_node(struct backref_cache *tree, 407 struct backref_node *node) 408 { 409 BUG_ON(!list_empty(&node->upper)); 410 411 drop_node_buffer(node); 412 list_del(&node->list); 413 list_del(&node->lower); 414 if (!RB_EMPTY_NODE(&node->rb_node)) 415 rb_erase(&node->rb_node, &tree->rb_root); 416 free_backref_node(tree, node); 417 } 418 419 /* 420 * remove a backref node from the backref cache 421 */ 422 static void remove_backref_node(struct backref_cache *cache, 423 struct backref_node *node) 424 { 425 struct backref_node *upper; 426 struct backref_edge *edge; 427 428 if (!node) 429 return; 430 431 BUG_ON(!node->lowest && !node->detached); 432 while (!list_empty(&node->upper)) { 433 edge = list_entry(node->upper.next, struct backref_edge, 434 list[LOWER]); 435 upper = edge->node[UPPER]; 436 list_del(&edge->list[LOWER]); 437 list_del(&edge->list[UPPER]); 438 free_backref_edge(cache, edge); 439 440 if (RB_EMPTY_NODE(&upper->rb_node)) { 441 BUG_ON(!list_empty(&node->upper)); 442 drop_backref_node(cache, node); 443 node = upper; 444 node->lowest = 1; 445 continue; 446 } 447 /* 448 * add the node to leaf node list if no other 449 * child block cached. 450 */ 451 if (list_empty(&upper->lower)) { 452 list_add_tail(&upper->lower, &cache->leaves); 453 upper->lowest = 1; 454 } 455 } 456 457 drop_backref_node(cache, node); 458 } 459 460 static void update_backref_node(struct backref_cache *cache, 461 struct backref_node *node, u64 bytenr) 462 { 463 struct rb_node *rb_node; 464 rb_erase(&node->rb_node, &cache->rb_root); 465 node->bytenr = bytenr; 466 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 467 if (rb_node) 468 backref_tree_panic(rb_node, -EEXIST, bytenr); 469 } 470 471 /* 472 * update backref cache after a transaction commit 473 */ 474 static int update_backref_cache(struct btrfs_trans_handle *trans, 475 struct backref_cache *cache) 476 { 477 struct backref_node *node; 478 int level = 0; 479 480 if (cache->last_trans == 0) { 481 cache->last_trans = trans->transid; 482 return 0; 483 } 484 485 if (cache->last_trans == trans->transid) 486 return 0; 487 488 /* 489 * detached nodes are used to avoid unnecessary backref 490 * lookup. transaction commit changes the extent tree. 491 * so the detached nodes are no longer useful. 492 */ 493 while (!list_empty(&cache->detached)) { 494 node = list_entry(cache->detached.next, 495 struct backref_node, list); 496 remove_backref_node(cache, node); 497 } 498 499 while (!list_empty(&cache->changed)) { 500 node = list_entry(cache->changed.next, 501 struct backref_node, list); 502 list_del_init(&node->list); 503 BUG_ON(node->pending); 504 update_backref_node(cache, node, node->new_bytenr); 505 } 506 507 /* 508 * some nodes can be left in the pending list if there were 509 * errors during processing the pending nodes. 510 */ 511 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 512 list_for_each_entry(node, &cache->pending[level], list) { 513 BUG_ON(!node->pending); 514 if (node->bytenr == node->new_bytenr) 515 continue; 516 update_backref_node(cache, node, node->new_bytenr); 517 } 518 } 519 520 cache->last_trans = 0; 521 return 1; 522 } 523 524 525 static int should_ignore_root(struct btrfs_root *root) 526 { 527 struct btrfs_root *reloc_root; 528 529 if (!root->ref_cows) 530 return 0; 531 532 reloc_root = root->reloc_root; 533 if (!reloc_root) 534 return 0; 535 536 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 537 root->fs_info->running_transaction->transid - 1) 538 return 0; 539 /* 540 * if there is reloc tree and it was created in previous 541 * transaction backref lookup can find the reloc tree, 542 * so backref node for the fs tree root is useless for 543 * relocation. 544 */ 545 return 1; 546 } 547 /* 548 * find reloc tree by address of tree root 549 */ 550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 551 u64 bytenr) 552 { 553 struct rb_node *rb_node; 554 struct mapping_node *node; 555 struct btrfs_root *root = NULL; 556 557 spin_lock(&rc->reloc_root_tree.lock); 558 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 559 if (rb_node) { 560 node = rb_entry(rb_node, struct mapping_node, rb_node); 561 root = (struct btrfs_root *)node->data; 562 } 563 spin_unlock(&rc->reloc_root_tree.lock); 564 return root; 565 } 566 567 static int is_cowonly_root(u64 root_objectid) 568 { 569 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 570 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 571 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 572 root_objectid == BTRFS_DEV_TREE_OBJECTID || 573 root_objectid == BTRFS_TREE_LOG_OBJECTID || 574 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 575 return 1; 576 return 0; 577 } 578 579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 580 u64 root_objectid) 581 { 582 struct btrfs_key key; 583 584 key.objectid = root_objectid; 585 key.type = BTRFS_ROOT_ITEM_KEY; 586 if (is_cowonly_root(root_objectid)) 587 key.offset = 0; 588 else 589 key.offset = (u64)-1; 590 591 return btrfs_read_fs_root_no_name(fs_info, &key); 592 } 593 594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 595 static noinline_for_stack 596 struct btrfs_root *find_tree_root(struct reloc_control *rc, 597 struct extent_buffer *leaf, 598 struct btrfs_extent_ref_v0 *ref0) 599 { 600 struct btrfs_root *root; 601 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 602 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 603 604 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 605 606 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 607 BUG_ON(IS_ERR(root)); 608 609 if (root->ref_cows && 610 generation != btrfs_root_generation(&root->root_item)) 611 return NULL; 612 613 return root; 614 } 615 #endif 616 617 static noinline_for_stack 618 int find_inline_backref(struct extent_buffer *leaf, int slot, 619 unsigned long *ptr, unsigned long *end) 620 { 621 struct btrfs_key key; 622 struct btrfs_extent_item *ei; 623 struct btrfs_tree_block_info *bi; 624 u32 item_size; 625 626 btrfs_item_key_to_cpu(leaf, &key, slot); 627 628 item_size = btrfs_item_size_nr(leaf, slot); 629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 630 if (item_size < sizeof(*ei)) { 631 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 632 return 1; 633 } 634 #endif 635 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 636 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 637 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 638 639 if (key.type == BTRFS_EXTENT_ITEM_KEY && 640 item_size <= sizeof(*ei) + sizeof(*bi)) { 641 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 642 return 1; 643 } 644 645 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 646 bi = (struct btrfs_tree_block_info *)(ei + 1); 647 *ptr = (unsigned long)(bi + 1); 648 } else { 649 *ptr = (unsigned long)(ei + 1); 650 } 651 *end = (unsigned long)ei + item_size; 652 return 0; 653 } 654 655 /* 656 * build backref tree for a given tree block. root of the backref tree 657 * corresponds the tree block, leaves of the backref tree correspond 658 * roots of b-trees that reference the tree block. 659 * 660 * the basic idea of this function is check backrefs of a given block 661 * to find upper level blocks that refernece the block, and then check 662 * bakcrefs of these upper level blocks recursively. the recursion stop 663 * when tree root is reached or backrefs for the block is cached. 664 * 665 * NOTE: if we find backrefs for a block are cached, we know backrefs 666 * for all upper level blocks that directly/indirectly reference the 667 * block are also cached. 668 */ 669 static noinline_for_stack 670 struct backref_node *build_backref_tree(struct reloc_control *rc, 671 struct btrfs_key *node_key, 672 int level, u64 bytenr) 673 { 674 struct backref_cache *cache = &rc->backref_cache; 675 struct btrfs_path *path1; 676 struct btrfs_path *path2; 677 struct extent_buffer *eb; 678 struct btrfs_root *root; 679 struct backref_node *cur; 680 struct backref_node *upper; 681 struct backref_node *lower; 682 struct backref_node *node = NULL; 683 struct backref_node *exist = NULL; 684 struct backref_edge *edge; 685 struct rb_node *rb_node; 686 struct btrfs_key key; 687 unsigned long end; 688 unsigned long ptr; 689 LIST_HEAD(list); 690 LIST_HEAD(useless); 691 int cowonly; 692 int ret; 693 int err = 0; 694 695 path1 = btrfs_alloc_path(); 696 path2 = btrfs_alloc_path(); 697 if (!path1 || !path2) { 698 err = -ENOMEM; 699 goto out; 700 } 701 path1->reada = 1; 702 path2->reada = 2; 703 704 node = alloc_backref_node(cache); 705 if (!node) { 706 err = -ENOMEM; 707 goto out; 708 } 709 710 node->bytenr = bytenr; 711 node->level = level; 712 node->lowest = 1; 713 cur = node; 714 again: 715 end = 0; 716 ptr = 0; 717 key.objectid = cur->bytenr; 718 key.type = BTRFS_METADATA_ITEM_KEY; 719 key.offset = (u64)-1; 720 721 path1->search_commit_root = 1; 722 path1->skip_locking = 1; 723 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 724 0, 0); 725 if (ret < 0) { 726 err = ret; 727 goto out; 728 } 729 BUG_ON(!ret || !path1->slots[0]); 730 731 path1->slots[0]--; 732 733 WARN_ON(cur->checked); 734 if (!list_empty(&cur->upper)) { 735 /* 736 * the backref was added previously when processing 737 * backref of type BTRFS_TREE_BLOCK_REF_KEY 738 */ 739 BUG_ON(!list_is_singular(&cur->upper)); 740 edge = list_entry(cur->upper.next, struct backref_edge, 741 list[LOWER]); 742 BUG_ON(!list_empty(&edge->list[UPPER])); 743 exist = edge->node[UPPER]; 744 /* 745 * add the upper level block to pending list if we need 746 * check its backrefs 747 */ 748 if (!exist->checked) 749 list_add_tail(&edge->list[UPPER], &list); 750 } else { 751 exist = NULL; 752 } 753 754 while (1) { 755 cond_resched(); 756 eb = path1->nodes[0]; 757 758 if (ptr >= end) { 759 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 760 ret = btrfs_next_leaf(rc->extent_root, path1); 761 if (ret < 0) { 762 err = ret; 763 goto out; 764 } 765 if (ret > 0) 766 break; 767 eb = path1->nodes[0]; 768 } 769 770 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 771 if (key.objectid != cur->bytenr) { 772 WARN_ON(exist); 773 break; 774 } 775 776 if (key.type == BTRFS_EXTENT_ITEM_KEY || 777 key.type == BTRFS_METADATA_ITEM_KEY) { 778 ret = find_inline_backref(eb, path1->slots[0], 779 &ptr, &end); 780 if (ret) 781 goto next; 782 } 783 } 784 785 if (ptr < end) { 786 /* update key for inline back ref */ 787 struct btrfs_extent_inline_ref *iref; 788 iref = (struct btrfs_extent_inline_ref *)ptr; 789 key.type = btrfs_extent_inline_ref_type(eb, iref); 790 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 791 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 792 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 793 } 794 795 if (exist && 796 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 797 exist->owner == key.offset) || 798 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 799 exist->bytenr == key.offset))) { 800 exist = NULL; 801 goto next; 802 } 803 804 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 805 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 806 key.type == BTRFS_EXTENT_REF_V0_KEY) { 807 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 808 struct btrfs_extent_ref_v0 *ref0; 809 ref0 = btrfs_item_ptr(eb, path1->slots[0], 810 struct btrfs_extent_ref_v0); 811 if (key.objectid == key.offset) { 812 root = find_tree_root(rc, eb, ref0); 813 if (root && !should_ignore_root(root)) 814 cur->root = root; 815 else 816 list_add(&cur->list, &useless); 817 break; 818 } 819 if (is_cowonly_root(btrfs_ref_root_v0(eb, 820 ref0))) 821 cur->cowonly = 1; 822 } 823 #else 824 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 825 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 826 #endif 827 if (key.objectid == key.offset) { 828 /* 829 * only root blocks of reloc trees use 830 * backref of this type. 831 */ 832 root = find_reloc_root(rc, cur->bytenr); 833 BUG_ON(!root); 834 cur->root = root; 835 break; 836 } 837 838 edge = alloc_backref_edge(cache); 839 if (!edge) { 840 err = -ENOMEM; 841 goto out; 842 } 843 rb_node = tree_search(&cache->rb_root, key.offset); 844 if (!rb_node) { 845 upper = alloc_backref_node(cache); 846 if (!upper) { 847 free_backref_edge(cache, edge); 848 err = -ENOMEM; 849 goto out; 850 } 851 upper->bytenr = key.offset; 852 upper->level = cur->level + 1; 853 /* 854 * backrefs for the upper level block isn't 855 * cached, add the block to pending list 856 */ 857 list_add_tail(&edge->list[UPPER], &list); 858 } else { 859 upper = rb_entry(rb_node, struct backref_node, 860 rb_node); 861 BUG_ON(!upper->checked); 862 INIT_LIST_HEAD(&edge->list[UPPER]); 863 } 864 list_add_tail(&edge->list[LOWER], &cur->upper); 865 edge->node[LOWER] = cur; 866 edge->node[UPPER] = upper; 867 868 goto next; 869 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 870 goto next; 871 } 872 873 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 874 root = read_fs_root(rc->extent_root->fs_info, key.offset); 875 if (IS_ERR(root)) { 876 err = PTR_ERR(root); 877 goto out; 878 } 879 880 if (!root->ref_cows) 881 cur->cowonly = 1; 882 883 if (btrfs_root_level(&root->root_item) == cur->level) { 884 /* tree root */ 885 BUG_ON(btrfs_root_bytenr(&root->root_item) != 886 cur->bytenr); 887 if (should_ignore_root(root)) 888 list_add(&cur->list, &useless); 889 else 890 cur->root = root; 891 break; 892 } 893 894 level = cur->level + 1; 895 896 /* 897 * searching the tree to find upper level blocks 898 * reference the block. 899 */ 900 path2->search_commit_root = 1; 901 path2->skip_locking = 1; 902 path2->lowest_level = level; 903 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 904 path2->lowest_level = 0; 905 if (ret < 0) { 906 err = ret; 907 goto out; 908 } 909 if (ret > 0 && path2->slots[level] > 0) 910 path2->slots[level]--; 911 912 eb = path2->nodes[level]; 913 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 914 cur->bytenr); 915 916 lower = cur; 917 for (; level < BTRFS_MAX_LEVEL; level++) { 918 if (!path2->nodes[level]) { 919 BUG_ON(btrfs_root_bytenr(&root->root_item) != 920 lower->bytenr); 921 if (should_ignore_root(root)) 922 list_add(&lower->list, &useless); 923 else 924 lower->root = root; 925 break; 926 } 927 928 edge = alloc_backref_edge(cache); 929 if (!edge) { 930 err = -ENOMEM; 931 goto out; 932 } 933 934 eb = path2->nodes[level]; 935 rb_node = tree_search(&cache->rb_root, eb->start); 936 if (!rb_node) { 937 upper = alloc_backref_node(cache); 938 if (!upper) { 939 free_backref_edge(cache, edge); 940 err = -ENOMEM; 941 goto out; 942 } 943 upper->bytenr = eb->start; 944 upper->owner = btrfs_header_owner(eb); 945 upper->level = lower->level + 1; 946 if (!root->ref_cows) 947 upper->cowonly = 1; 948 949 /* 950 * if we know the block isn't shared 951 * we can void checking its backrefs. 952 */ 953 if (btrfs_block_can_be_shared(root, eb)) 954 upper->checked = 0; 955 else 956 upper->checked = 1; 957 958 /* 959 * add the block to pending list if we 960 * need check its backrefs. only block 961 * at 'cur->level + 1' is added to the 962 * tail of pending list. this guarantees 963 * we check backrefs from lower level 964 * blocks to upper level blocks. 965 */ 966 if (!upper->checked && 967 level == cur->level + 1) { 968 list_add_tail(&edge->list[UPPER], 969 &list); 970 } else 971 INIT_LIST_HEAD(&edge->list[UPPER]); 972 } else { 973 upper = rb_entry(rb_node, struct backref_node, 974 rb_node); 975 BUG_ON(!upper->checked); 976 INIT_LIST_HEAD(&edge->list[UPPER]); 977 if (!upper->owner) 978 upper->owner = btrfs_header_owner(eb); 979 } 980 list_add_tail(&edge->list[LOWER], &lower->upper); 981 edge->node[LOWER] = lower; 982 edge->node[UPPER] = upper; 983 984 if (rb_node) 985 break; 986 lower = upper; 987 upper = NULL; 988 } 989 btrfs_release_path(path2); 990 next: 991 if (ptr < end) { 992 ptr += btrfs_extent_inline_ref_size(key.type); 993 if (ptr >= end) { 994 WARN_ON(ptr > end); 995 ptr = 0; 996 end = 0; 997 } 998 } 999 if (ptr >= end) 1000 path1->slots[0]++; 1001 } 1002 btrfs_release_path(path1); 1003 1004 cur->checked = 1; 1005 WARN_ON(exist); 1006 1007 /* the pending list isn't empty, take the first block to process */ 1008 if (!list_empty(&list)) { 1009 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1010 list_del_init(&edge->list[UPPER]); 1011 cur = edge->node[UPPER]; 1012 goto again; 1013 } 1014 1015 /* 1016 * everything goes well, connect backref nodes and insert backref nodes 1017 * into the cache. 1018 */ 1019 BUG_ON(!node->checked); 1020 cowonly = node->cowonly; 1021 if (!cowonly) { 1022 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1023 &node->rb_node); 1024 if (rb_node) 1025 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1026 list_add_tail(&node->lower, &cache->leaves); 1027 } 1028 1029 list_for_each_entry(edge, &node->upper, list[LOWER]) 1030 list_add_tail(&edge->list[UPPER], &list); 1031 1032 while (!list_empty(&list)) { 1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1034 list_del_init(&edge->list[UPPER]); 1035 upper = edge->node[UPPER]; 1036 if (upper->detached) { 1037 list_del(&edge->list[LOWER]); 1038 lower = edge->node[LOWER]; 1039 free_backref_edge(cache, edge); 1040 if (list_empty(&lower->upper)) 1041 list_add(&lower->list, &useless); 1042 continue; 1043 } 1044 1045 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1046 if (upper->lowest) { 1047 list_del_init(&upper->lower); 1048 upper->lowest = 0; 1049 } 1050 1051 list_add_tail(&edge->list[UPPER], &upper->lower); 1052 continue; 1053 } 1054 1055 BUG_ON(!upper->checked); 1056 BUG_ON(cowonly != upper->cowonly); 1057 if (!cowonly) { 1058 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1059 &upper->rb_node); 1060 if (rb_node) 1061 backref_tree_panic(rb_node, -EEXIST, 1062 upper->bytenr); 1063 } 1064 1065 list_add_tail(&edge->list[UPPER], &upper->lower); 1066 1067 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1068 list_add_tail(&edge->list[UPPER], &list); 1069 } 1070 /* 1071 * process useless backref nodes. backref nodes for tree leaves 1072 * are deleted from the cache. backref nodes for upper level 1073 * tree blocks are left in the cache to avoid unnecessary backref 1074 * lookup. 1075 */ 1076 while (!list_empty(&useless)) { 1077 upper = list_entry(useless.next, struct backref_node, list); 1078 list_del_init(&upper->list); 1079 BUG_ON(!list_empty(&upper->upper)); 1080 if (upper == node) 1081 node = NULL; 1082 if (upper->lowest) { 1083 list_del_init(&upper->lower); 1084 upper->lowest = 0; 1085 } 1086 while (!list_empty(&upper->lower)) { 1087 edge = list_entry(upper->lower.next, 1088 struct backref_edge, list[UPPER]); 1089 list_del(&edge->list[UPPER]); 1090 list_del(&edge->list[LOWER]); 1091 lower = edge->node[LOWER]; 1092 free_backref_edge(cache, edge); 1093 1094 if (list_empty(&lower->upper)) 1095 list_add(&lower->list, &useless); 1096 } 1097 __mark_block_processed(rc, upper); 1098 if (upper->level > 0) { 1099 list_add(&upper->list, &cache->detached); 1100 upper->detached = 1; 1101 } else { 1102 rb_erase(&upper->rb_node, &cache->rb_root); 1103 free_backref_node(cache, upper); 1104 } 1105 } 1106 out: 1107 btrfs_free_path(path1); 1108 btrfs_free_path(path2); 1109 if (err) { 1110 while (!list_empty(&useless)) { 1111 lower = list_entry(useless.next, 1112 struct backref_node, upper); 1113 list_del_init(&lower->upper); 1114 } 1115 upper = node; 1116 INIT_LIST_HEAD(&list); 1117 while (upper) { 1118 if (RB_EMPTY_NODE(&upper->rb_node)) { 1119 list_splice_tail(&upper->upper, &list); 1120 free_backref_node(cache, upper); 1121 } 1122 1123 if (list_empty(&list)) 1124 break; 1125 1126 edge = list_entry(list.next, struct backref_edge, 1127 list[LOWER]); 1128 list_del(&edge->list[LOWER]); 1129 upper = edge->node[UPPER]; 1130 free_backref_edge(cache, edge); 1131 } 1132 return ERR_PTR(err); 1133 } 1134 BUG_ON(node && node->detached); 1135 return node; 1136 } 1137 1138 /* 1139 * helper to add backref node for the newly created snapshot. 1140 * the backref node is created by cloning backref node that 1141 * corresponds to root of source tree 1142 */ 1143 static int clone_backref_node(struct btrfs_trans_handle *trans, 1144 struct reloc_control *rc, 1145 struct btrfs_root *src, 1146 struct btrfs_root *dest) 1147 { 1148 struct btrfs_root *reloc_root = src->reloc_root; 1149 struct backref_cache *cache = &rc->backref_cache; 1150 struct backref_node *node = NULL; 1151 struct backref_node *new_node; 1152 struct backref_edge *edge; 1153 struct backref_edge *new_edge; 1154 struct rb_node *rb_node; 1155 1156 if (cache->last_trans > 0) 1157 update_backref_cache(trans, cache); 1158 1159 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1160 if (rb_node) { 1161 node = rb_entry(rb_node, struct backref_node, rb_node); 1162 if (node->detached) 1163 node = NULL; 1164 else 1165 BUG_ON(node->new_bytenr != reloc_root->node->start); 1166 } 1167 1168 if (!node) { 1169 rb_node = tree_search(&cache->rb_root, 1170 reloc_root->commit_root->start); 1171 if (rb_node) { 1172 node = rb_entry(rb_node, struct backref_node, 1173 rb_node); 1174 BUG_ON(node->detached); 1175 } 1176 } 1177 1178 if (!node) 1179 return 0; 1180 1181 new_node = alloc_backref_node(cache); 1182 if (!new_node) 1183 return -ENOMEM; 1184 1185 new_node->bytenr = dest->node->start; 1186 new_node->level = node->level; 1187 new_node->lowest = node->lowest; 1188 new_node->checked = 1; 1189 new_node->root = dest; 1190 1191 if (!node->lowest) { 1192 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1193 new_edge = alloc_backref_edge(cache); 1194 if (!new_edge) 1195 goto fail; 1196 1197 new_edge->node[UPPER] = new_node; 1198 new_edge->node[LOWER] = edge->node[LOWER]; 1199 list_add_tail(&new_edge->list[UPPER], 1200 &new_node->lower); 1201 } 1202 } else { 1203 list_add_tail(&new_node->lower, &cache->leaves); 1204 } 1205 1206 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1207 &new_node->rb_node); 1208 if (rb_node) 1209 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1210 1211 if (!new_node->lowest) { 1212 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1213 list_add_tail(&new_edge->list[LOWER], 1214 &new_edge->node[LOWER]->upper); 1215 } 1216 } 1217 return 0; 1218 fail: 1219 while (!list_empty(&new_node->lower)) { 1220 new_edge = list_entry(new_node->lower.next, 1221 struct backref_edge, list[UPPER]); 1222 list_del(&new_edge->list[UPPER]); 1223 free_backref_edge(cache, new_edge); 1224 } 1225 free_backref_node(cache, new_node); 1226 return -ENOMEM; 1227 } 1228 1229 /* 1230 * helper to add 'address of tree root -> reloc tree' mapping 1231 */ 1232 static int __must_check __add_reloc_root(struct btrfs_root *root) 1233 { 1234 struct rb_node *rb_node; 1235 struct mapping_node *node; 1236 struct reloc_control *rc = root->fs_info->reloc_ctl; 1237 1238 node = kmalloc(sizeof(*node), GFP_NOFS); 1239 if (!node) 1240 return -ENOMEM; 1241 1242 node->bytenr = root->node->start; 1243 node->data = root; 1244 1245 spin_lock(&rc->reloc_root_tree.lock); 1246 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1247 node->bytenr, &node->rb_node); 1248 spin_unlock(&rc->reloc_root_tree.lock); 1249 if (rb_node) { 1250 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1251 "for start=%llu while inserting into relocation " 1252 "tree\n", node->bytenr); 1253 kfree(node); 1254 return -EEXIST; 1255 } 1256 1257 list_add_tail(&root->root_list, &rc->reloc_roots); 1258 return 0; 1259 } 1260 1261 /* 1262 * helper to update/delete the 'address of tree root -> reloc tree' 1263 * mapping 1264 */ 1265 static int __update_reloc_root(struct btrfs_root *root, int del) 1266 { 1267 struct rb_node *rb_node; 1268 struct mapping_node *node = NULL; 1269 struct reloc_control *rc = root->fs_info->reloc_ctl; 1270 1271 spin_lock(&rc->reloc_root_tree.lock); 1272 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1273 root->commit_root->start); 1274 if (rb_node) { 1275 node = rb_entry(rb_node, struct mapping_node, rb_node); 1276 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1277 } 1278 spin_unlock(&rc->reloc_root_tree.lock); 1279 1280 if (!node) 1281 return 0; 1282 BUG_ON((struct btrfs_root *)node->data != root); 1283 1284 if (!del) { 1285 spin_lock(&rc->reloc_root_tree.lock); 1286 node->bytenr = root->node->start; 1287 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1288 node->bytenr, &node->rb_node); 1289 spin_unlock(&rc->reloc_root_tree.lock); 1290 if (rb_node) 1291 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1292 } else { 1293 spin_lock(&root->fs_info->trans_lock); 1294 list_del_init(&root->root_list); 1295 spin_unlock(&root->fs_info->trans_lock); 1296 kfree(node); 1297 } 1298 return 0; 1299 } 1300 1301 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1302 struct btrfs_root *root, u64 objectid) 1303 { 1304 struct btrfs_root *reloc_root; 1305 struct extent_buffer *eb; 1306 struct btrfs_root_item *root_item; 1307 struct btrfs_key root_key; 1308 int ret; 1309 1310 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1311 BUG_ON(!root_item); 1312 1313 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1314 root_key.type = BTRFS_ROOT_ITEM_KEY; 1315 root_key.offset = objectid; 1316 1317 if (root->root_key.objectid == objectid) { 1318 /* called by btrfs_init_reloc_root */ 1319 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1320 BTRFS_TREE_RELOC_OBJECTID); 1321 BUG_ON(ret); 1322 1323 btrfs_set_root_last_snapshot(&root->root_item, 1324 trans->transid - 1); 1325 } else { 1326 /* 1327 * called by btrfs_reloc_post_snapshot_hook. 1328 * the source tree is a reloc tree, all tree blocks 1329 * modified after it was created have RELOC flag 1330 * set in their headers. so it's OK to not update 1331 * the 'last_snapshot'. 1332 */ 1333 ret = btrfs_copy_root(trans, root, root->node, &eb, 1334 BTRFS_TREE_RELOC_OBJECTID); 1335 BUG_ON(ret); 1336 } 1337 1338 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1339 btrfs_set_root_bytenr(root_item, eb->start); 1340 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1341 btrfs_set_root_generation(root_item, trans->transid); 1342 1343 if (root->root_key.objectid == objectid) { 1344 btrfs_set_root_refs(root_item, 0); 1345 memset(&root_item->drop_progress, 0, 1346 sizeof(struct btrfs_disk_key)); 1347 root_item->drop_level = 0; 1348 } 1349 1350 btrfs_tree_unlock(eb); 1351 free_extent_buffer(eb); 1352 1353 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1354 &root_key, root_item); 1355 BUG_ON(ret); 1356 kfree(root_item); 1357 1358 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 1359 &root_key); 1360 BUG_ON(IS_ERR(reloc_root)); 1361 reloc_root->last_trans = trans->transid; 1362 return reloc_root; 1363 } 1364 1365 /* 1366 * create reloc tree for a given fs tree. reloc tree is just a 1367 * snapshot of the fs tree with special root objectid. 1368 */ 1369 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1370 struct btrfs_root *root) 1371 { 1372 struct btrfs_root *reloc_root; 1373 struct reloc_control *rc = root->fs_info->reloc_ctl; 1374 int clear_rsv = 0; 1375 int ret; 1376 1377 if (root->reloc_root) { 1378 reloc_root = root->reloc_root; 1379 reloc_root->last_trans = trans->transid; 1380 return 0; 1381 } 1382 1383 if (!rc || !rc->create_reloc_tree || 1384 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1385 return 0; 1386 1387 if (!trans->block_rsv) { 1388 trans->block_rsv = rc->block_rsv; 1389 clear_rsv = 1; 1390 } 1391 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1392 if (clear_rsv) 1393 trans->block_rsv = NULL; 1394 1395 ret = __add_reloc_root(reloc_root); 1396 BUG_ON(ret < 0); 1397 root->reloc_root = reloc_root; 1398 return 0; 1399 } 1400 1401 /* 1402 * update root item of reloc tree 1403 */ 1404 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1405 struct btrfs_root *root) 1406 { 1407 struct btrfs_root *reloc_root; 1408 struct btrfs_root_item *root_item; 1409 int del = 0; 1410 int ret; 1411 1412 if (!root->reloc_root) 1413 goto out; 1414 1415 reloc_root = root->reloc_root; 1416 root_item = &reloc_root->root_item; 1417 1418 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1419 btrfs_root_refs(root_item) == 0) { 1420 root->reloc_root = NULL; 1421 del = 1; 1422 } 1423 1424 __update_reloc_root(reloc_root, del); 1425 1426 if (reloc_root->commit_root != reloc_root->node) { 1427 btrfs_set_root_node(root_item, reloc_root->node); 1428 free_extent_buffer(reloc_root->commit_root); 1429 reloc_root->commit_root = btrfs_root_node(reloc_root); 1430 } 1431 1432 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1433 &reloc_root->root_key, root_item); 1434 BUG_ON(ret); 1435 1436 out: 1437 return 0; 1438 } 1439 1440 /* 1441 * helper to find first cached inode with inode number >= objectid 1442 * in a subvolume 1443 */ 1444 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1445 { 1446 struct rb_node *node; 1447 struct rb_node *prev; 1448 struct btrfs_inode *entry; 1449 struct inode *inode; 1450 1451 spin_lock(&root->inode_lock); 1452 again: 1453 node = root->inode_tree.rb_node; 1454 prev = NULL; 1455 while (node) { 1456 prev = node; 1457 entry = rb_entry(node, struct btrfs_inode, rb_node); 1458 1459 if (objectid < btrfs_ino(&entry->vfs_inode)) 1460 node = node->rb_left; 1461 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1462 node = node->rb_right; 1463 else 1464 break; 1465 } 1466 if (!node) { 1467 while (prev) { 1468 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1469 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1470 node = prev; 1471 break; 1472 } 1473 prev = rb_next(prev); 1474 } 1475 } 1476 while (node) { 1477 entry = rb_entry(node, struct btrfs_inode, rb_node); 1478 inode = igrab(&entry->vfs_inode); 1479 if (inode) { 1480 spin_unlock(&root->inode_lock); 1481 return inode; 1482 } 1483 1484 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1485 if (cond_resched_lock(&root->inode_lock)) 1486 goto again; 1487 1488 node = rb_next(node); 1489 } 1490 spin_unlock(&root->inode_lock); 1491 return NULL; 1492 } 1493 1494 static int in_block_group(u64 bytenr, 1495 struct btrfs_block_group_cache *block_group) 1496 { 1497 if (bytenr >= block_group->key.objectid && 1498 bytenr < block_group->key.objectid + block_group->key.offset) 1499 return 1; 1500 return 0; 1501 } 1502 1503 /* 1504 * get new location of data 1505 */ 1506 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1507 u64 bytenr, u64 num_bytes) 1508 { 1509 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1510 struct btrfs_path *path; 1511 struct btrfs_file_extent_item *fi; 1512 struct extent_buffer *leaf; 1513 int ret; 1514 1515 path = btrfs_alloc_path(); 1516 if (!path) 1517 return -ENOMEM; 1518 1519 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1520 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1521 bytenr, 0); 1522 if (ret < 0) 1523 goto out; 1524 if (ret > 0) { 1525 ret = -ENOENT; 1526 goto out; 1527 } 1528 1529 leaf = path->nodes[0]; 1530 fi = btrfs_item_ptr(leaf, path->slots[0], 1531 struct btrfs_file_extent_item); 1532 1533 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1534 btrfs_file_extent_compression(leaf, fi) || 1535 btrfs_file_extent_encryption(leaf, fi) || 1536 btrfs_file_extent_other_encoding(leaf, fi)); 1537 1538 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1539 ret = 1; 1540 goto out; 1541 } 1542 1543 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1544 ret = 0; 1545 out: 1546 btrfs_free_path(path); 1547 return ret; 1548 } 1549 1550 /* 1551 * update file extent items in the tree leaf to point to 1552 * the new locations. 1553 */ 1554 static noinline_for_stack 1555 int replace_file_extents(struct btrfs_trans_handle *trans, 1556 struct reloc_control *rc, 1557 struct btrfs_root *root, 1558 struct extent_buffer *leaf) 1559 { 1560 struct btrfs_key key; 1561 struct btrfs_file_extent_item *fi; 1562 struct inode *inode = NULL; 1563 u64 parent; 1564 u64 bytenr; 1565 u64 new_bytenr = 0; 1566 u64 num_bytes; 1567 u64 end; 1568 u32 nritems; 1569 u32 i; 1570 int ret; 1571 int first = 1; 1572 int dirty = 0; 1573 1574 if (rc->stage != UPDATE_DATA_PTRS) 1575 return 0; 1576 1577 /* reloc trees always use full backref */ 1578 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1579 parent = leaf->start; 1580 else 1581 parent = 0; 1582 1583 nritems = btrfs_header_nritems(leaf); 1584 for (i = 0; i < nritems; i++) { 1585 cond_resched(); 1586 btrfs_item_key_to_cpu(leaf, &key, i); 1587 if (key.type != BTRFS_EXTENT_DATA_KEY) 1588 continue; 1589 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1590 if (btrfs_file_extent_type(leaf, fi) == 1591 BTRFS_FILE_EXTENT_INLINE) 1592 continue; 1593 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1594 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1595 if (bytenr == 0) 1596 continue; 1597 if (!in_block_group(bytenr, rc->block_group)) 1598 continue; 1599 1600 /* 1601 * if we are modifying block in fs tree, wait for readpage 1602 * to complete and drop the extent cache 1603 */ 1604 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1605 if (first) { 1606 inode = find_next_inode(root, key.objectid); 1607 first = 0; 1608 } else if (inode && btrfs_ino(inode) < key.objectid) { 1609 btrfs_add_delayed_iput(inode); 1610 inode = find_next_inode(root, key.objectid); 1611 } 1612 if (inode && btrfs_ino(inode) == key.objectid) { 1613 end = key.offset + 1614 btrfs_file_extent_num_bytes(leaf, fi); 1615 WARN_ON(!IS_ALIGNED(key.offset, 1616 root->sectorsize)); 1617 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1618 end--; 1619 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1620 key.offset, end); 1621 if (!ret) 1622 continue; 1623 1624 btrfs_drop_extent_cache(inode, key.offset, end, 1625 1); 1626 unlock_extent(&BTRFS_I(inode)->io_tree, 1627 key.offset, end); 1628 } 1629 } 1630 1631 ret = get_new_location(rc->data_inode, &new_bytenr, 1632 bytenr, num_bytes); 1633 if (ret > 0) { 1634 WARN_ON(1); 1635 continue; 1636 } 1637 BUG_ON(ret < 0); 1638 1639 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1640 dirty = 1; 1641 1642 key.offset -= btrfs_file_extent_offset(leaf, fi); 1643 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1644 num_bytes, parent, 1645 btrfs_header_owner(leaf), 1646 key.objectid, key.offset, 1); 1647 BUG_ON(ret); 1648 1649 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1650 parent, btrfs_header_owner(leaf), 1651 key.objectid, key.offset, 1); 1652 BUG_ON(ret); 1653 } 1654 if (dirty) 1655 btrfs_mark_buffer_dirty(leaf); 1656 if (inode) 1657 btrfs_add_delayed_iput(inode); 1658 return 0; 1659 } 1660 1661 static noinline_for_stack 1662 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1663 struct btrfs_path *path, int level) 1664 { 1665 struct btrfs_disk_key key1; 1666 struct btrfs_disk_key key2; 1667 btrfs_node_key(eb, &key1, slot); 1668 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1669 return memcmp(&key1, &key2, sizeof(key1)); 1670 } 1671 1672 /* 1673 * try to replace tree blocks in fs tree with the new blocks 1674 * in reloc tree. tree blocks haven't been modified since the 1675 * reloc tree was create can be replaced. 1676 * 1677 * if a block was replaced, level of the block + 1 is returned. 1678 * if no block got replaced, 0 is returned. if there are other 1679 * errors, a negative error number is returned. 1680 */ 1681 static noinline_for_stack 1682 int replace_path(struct btrfs_trans_handle *trans, 1683 struct btrfs_root *dest, struct btrfs_root *src, 1684 struct btrfs_path *path, struct btrfs_key *next_key, 1685 int lowest_level, int max_level) 1686 { 1687 struct extent_buffer *eb; 1688 struct extent_buffer *parent; 1689 struct btrfs_key key; 1690 u64 old_bytenr; 1691 u64 new_bytenr; 1692 u64 old_ptr_gen; 1693 u64 new_ptr_gen; 1694 u64 last_snapshot; 1695 u32 blocksize; 1696 int cow = 0; 1697 int level; 1698 int ret; 1699 int slot; 1700 1701 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1702 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1703 1704 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1705 again: 1706 slot = path->slots[lowest_level]; 1707 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1708 1709 eb = btrfs_lock_root_node(dest); 1710 btrfs_set_lock_blocking(eb); 1711 level = btrfs_header_level(eb); 1712 1713 if (level < lowest_level) { 1714 btrfs_tree_unlock(eb); 1715 free_extent_buffer(eb); 1716 return 0; 1717 } 1718 1719 if (cow) { 1720 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1721 BUG_ON(ret); 1722 } 1723 btrfs_set_lock_blocking(eb); 1724 1725 if (next_key) { 1726 next_key->objectid = (u64)-1; 1727 next_key->type = (u8)-1; 1728 next_key->offset = (u64)-1; 1729 } 1730 1731 parent = eb; 1732 while (1) { 1733 level = btrfs_header_level(parent); 1734 BUG_ON(level < lowest_level); 1735 1736 ret = btrfs_bin_search(parent, &key, level, &slot); 1737 if (ret && slot > 0) 1738 slot--; 1739 1740 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1741 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1742 1743 old_bytenr = btrfs_node_blockptr(parent, slot); 1744 blocksize = btrfs_level_size(dest, level - 1); 1745 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1746 1747 if (level <= max_level) { 1748 eb = path->nodes[level]; 1749 new_bytenr = btrfs_node_blockptr(eb, 1750 path->slots[level]); 1751 new_ptr_gen = btrfs_node_ptr_generation(eb, 1752 path->slots[level]); 1753 } else { 1754 new_bytenr = 0; 1755 new_ptr_gen = 0; 1756 } 1757 1758 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1759 WARN_ON(1); 1760 ret = level; 1761 break; 1762 } 1763 1764 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1765 memcmp_node_keys(parent, slot, path, level)) { 1766 if (level <= lowest_level) { 1767 ret = 0; 1768 break; 1769 } 1770 1771 eb = read_tree_block(dest, old_bytenr, blocksize, 1772 old_ptr_gen); 1773 if (!eb || !extent_buffer_uptodate(eb)) { 1774 ret = (!eb) ? -ENOMEM : -EIO; 1775 free_extent_buffer(eb); 1776 break; 1777 } 1778 btrfs_tree_lock(eb); 1779 if (cow) { 1780 ret = btrfs_cow_block(trans, dest, eb, parent, 1781 slot, &eb); 1782 BUG_ON(ret); 1783 } 1784 btrfs_set_lock_blocking(eb); 1785 1786 btrfs_tree_unlock(parent); 1787 free_extent_buffer(parent); 1788 1789 parent = eb; 1790 continue; 1791 } 1792 1793 if (!cow) { 1794 btrfs_tree_unlock(parent); 1795 free_extent_buffer(parent); 1796 cow = 1; 1797 goto again; 1798 } 1799 1800 btrfs_node_key_to_cpu(path->nodes[level], &key, 1801 path->slots[level]); 1802 btrfs_release_path(path); 1803 1804 path->lowest_level = level; 1805 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1806 path->lowest_level = 0; 1807 BUG_ON(ret); 1808 1809 /* 1810 * swap blocks in fs tree and reloc tree. 1811 */ 1812 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1813 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1814 btrfs_mark_buffer_dirty(parent); 1815 1816 btrfs_set_node_blockptr(path->nodes[level], 1817 path->slots[level], old_bytenr); 1818 btrfs_set_node_ptr_generation(path->nodes[level], 1819 path->slots[level], old_ptr_gen); 1820 btrfs_mark_buffer_dirty(path->nodes[level]); 1821 1822 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1823 path->nodes[level]->start, 1824 src->root_key.objectid, level - 1, 0, 1825 1); 1826 BUG_ON(ret); 1827 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1828 0, dest->root_key.objectid, level - 1, 1829 0, 1); 1830 BUG_ON(ret); 1831 1832 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1833 path->nodes[level]->start, 1834 src->root_key.objectid, level - 1, 0, 1835 1); 1836 BUG_ON(ret); 1837 1838 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1839 0, dest->root_key.objectid, level - 1, 1840 0, 1); 1841 BUG_ON(ret); 1842 1843 btrfs_unlock_up_safe(path, 0); 1844 1845 ret = level; 1846 break; 1847 } 1848 btrfs_tree_unlock(parent); 1849 free_extent_buffer(parent); 1850 return ret; 1851 } 1852 1853 /* 1854 * helper to find next relocated block in reloc tree 1855 */ 1856 static noinline_for_stack 1857 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1858 int *level) 1859 { 1860 struct extent_buffer *eb; 1861 int i; 1862 u64 last_snapshot; 1863 u32 nritems; 1864 1865 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1866 1867 for (i = 0; i < *level; i++) { 1868 free_extent_buffer(path->nodes[i]); 1869 path->nodes[i] = NULL; 1870 } 1871 1872 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1873 eb = path->nodes[i]; 1874 nritems = btrfs_header_nritems(eb); 1875 while (path->slots[i] + 1 < nritems) { 1876 path->slots[i]++; 1877 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1878 last_snapshot) 1879 continue; 1880 1881 *level = i; 1882 return 0; 1883 } 1884 free_extent_buffer(path->nodes[i]); 1885 path->nodes[i] = NULL; 1886 } 1887 return 1; 1888 } 1889 1890 /* 1891 * walk down reloc tree to find relocated block of lowest level 1892 */ 1893 static noinline_for_stack 1894 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1895 int *level) 1896 { 1897 struct extent_buffer *eb = NULL; 1898 int i; 1899 u64 bytenr; 1900 u64 ptr_gen = 0; 1901 u64 last_snapshot; 1902 u32 blocksize; 1903 u32 nritems; 1904 1905 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1906 1907 for (i = *level; i > 0; i--) { 1908 eb = path->nodes[i]; 1909 nritems = btrfs_header_nritems(eb); 1910 while (path->slots[i] < nritems) { 1911 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1912 if (ptr_gen > last_snapshot) 1913 break; 1914 path->slots[i]++; 1915 } 1916 if (path->slots[i] >= nritems) { 1917 if (i == *level) 1918 break; 1919 *level = i + 1; 1920 return 0; 1921 } 1922 if (i == 1) { 1923 *level = i; 1924 return 0; 1925 } 1926 1927 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1928 blocksize = btrfs_level_size(root, i - 1); 1929 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1930 if (!eb || !extent_buffer_uptodate(eb)) { 1931 free_extent_buffer(eb); 1932 return -EIO; 1933 } 1934 BUG_ON(btrfs_header_level(eb) != i - 1); 1935 path->nodes[i - 1] = eb; 1936 path->slots[i - 1] = 0; 1937 } 1938 return 1; 1939 } 1940 1941 /* 1942 * invalidate extent cache for file extents whose key in range of 1943 * [min_key, max_key) 1944 */ 1945 static int invalidate_extent_cache(struct btrfs_root *root, 1946 struct btrfs_key *min_key, 1947 struct btrfs_key *max_key) 1948 { 1949 struct inode *inode = NULL; 1950 u64 objectid; 1951 u64 start, end; 1952 u64 ino; 1953 1954 objectid = min_key->objectid; 1955 while (1) { 1956 cond_resched(); 1957 iput(inode); 1958 1959 if (objectid > max_key->objectid) 1960 break; 1961 1962 inode = find_next_inode(root, objectid); 1963 if (!inode) 1964 break; 1965 ino = btrfs_ino(inode); 1966 1967 if (ino > max_key->objectid) { 1968 iput(inode); 1969 break; 1970 } 1971 1972 objectid = ino + 1; 1973 if (!S_ISREG(inode->i_mode)) 1974 continue; 1975 1976 if (unlikely(min_key->objectid == ino)) { 1977 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1978 continue; 1979 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1980 start = 0; 1981 else { 1982 start = min_key->offset; 1983 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1984 } 1985 } else { 1986 start = 0; 1987 } 1988 1989 if (unlikely(max_key->objectid == ino)) { 1990 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1991 continue; 1992 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1993 end = (u64)-1; 1994 } else { 1995 if (max_key->offset == 0) 1996 continue; 1997 end = max_key->offset; 1998 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1999 end--; 2000 } 2001 } else { 2002 end = (u64)-1; 2003 } 2004 2005 /* the lock_extent waits for readpage to complete */ 2006 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2007 btrfs_drop_extent_cache(inode, start, end, 1); 2008 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2009 } 2010 return 0; 2011 } 2012 2013 static int find_next_key(struct btrfs_path *path, int level, 2014 struct btrfs_key *key) 2015 2016 { 2017 while (level < BTRFS_MAX_LEVEL) { 2018 if (!path->nodes[level]) 2019 break; 2020 if (path->slots[level] + 1 < 2021 btrfs_header_nritems(path->nodes[level])) { 2022 btrfs_node_key_to_cpu(path->nodes[level], key, 2023 path->slots[level] + 1); 2024 return 0; 2025 } 2026 level++; 2027 } 2028 return 1; 2029 } 2030 2031 /* 2032 * merge the relocated tree blocks in reloc tree with corresponding 2033 * fs tree. 2034 */ 2035 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2036 struct btrfs_root *root) 2037 { 2038 LIST_HEAD(inode_list); 2039 struct btrfs_key key; 2040 struct btrfs_key next_key; 2041 struct btrfs_trans_handle *trans; 2042 struct btrfs_root *reloc_root; 2043 struct btrfs_root_item *root_item; 2044 struct btrfs_path *path; 2045 struct extent_buffer *leaf; 2046 int level; 2047 int max_level; 2048 int replaced = 0; 2049 int ret; 2050 int err = 0; 2051 u32 min_reserved; 2052 2053 path = btrfs_alloc_path(); 2054 if (!path) 2055 return -ENOMEM; 2056 path->reada = 1; 2057 2058 reloc_root = root->reloc_root; 2059 root_item = &reloc_root->root_item; 2060 2061 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2062 level = btrfs_root_level(root_item); 2063 extent_buffer_get(reloc_root->node); 2064 path->nodes[level] = reloc_root->node; 2065 path->slots[level] = 0; 2066 } else { 2067 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2068 2069 level = root_item->drop_level; 2070 BUG_ON(level == 0); 2071 path->lowest_level = level; 2072 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2073 path->lowest_level = 0; 2074 if (ret < 0) { 2075 btrfs_free_path(path); 2076 return ret; 2077 } 2078 2079 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2080 path->slots[level]); 2081 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2082 2083 btrfs_unlock_up_safe(path, 0); 2084 } 2085 2086 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2087 memset(&next_key, 0, sizeof(next_key)); 2088 2089 while (1) { 2090 trans = btrfs_start_transaction(root, 0); 2091 BUG_ON(IS_ERR(trans)); 2092 trans->block_rsv = rc->block_rsv; 2093 2094 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2095 BTRFS_RESERVE_FLUSH_ALL); 2096 if (ret) { 2097 BUG_ON(ret != -EAGAIN); 2098 ret = btrfs_commit_transaction(trans, root); 2099 BUG_ON(ret); 2100 continue; 2101 } 2102 2103 replaced = 0; 2104 max_level = level; 2105 2106 ret = walk_down_reloc_tree(reloc_root, path, &level); 2107 if (ret < 0) { 2108 err = ret; 2109 goto out; 2110 } 2111 if (ret > 0) 2112 break; 2113 2114 if (!find_next_key(path, level, &key) && 2115 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2116 ret = 0; 2117 } else { 2118 ret = replace_path(trans, root, reloc_root, path, 2119 &next_key, level, max_level); 2120 } 2121 if (ret < 0) { 2122 err = ret; 2123 goto out; 2124 } 2125 2126 if (ret > 0) { 2127 level = ret; 2128 btrfs_node_key_to_cpu(path->nodes[level], &key, 2129 path->slots[level]); 2130 replaced = 1; 2131 } 2132 2133 ret = walk_up_reloc_tree(reloc_root, path, &level); 2134 if (ret > 0) 2135 break; 2136 2137 BUG_ON(level == 0); 2138 /* 2139 * save the merging progress in the drop_progress. 2140 * this is OK since root refs == 1 in this case. 2141 */ 2142 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2143 path->slots[level]); 2144 root_item->drop_level = level; 2145 2146 btrfs_end_transaction_throttle(trans, root); 2147 2148 btrfs_btree_balance_dirty(root); 2149 2150 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2151 invalidate_extent_cache(root, &key, &next_key); 2152 } 2153 2154 /* 2155 * handle the case only one block in the fs tree need to be 2156 * relocated and the block is tree root. 2157 */ 2158 leaf = btrfs_lock_root_node(root); 2159 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2160 btrfs_tree_unlock(leaf); 2161 free_extent_buffer(leaf); 2162 if (ret < 0) 2163 err = ret; 2164 out: 2165 btrfs_free_path(path); 2166 2167 if (err == 0) { 2168 memset(&root_item->drop_progress, 0, 2169 sizeof(root_item->drop_progress)); 2170 root_item->drop_level = 0; 2171 btrfs_set_root_refs(root_item, 0); 2172 btrfs_update_reloc_root(trans, root); 2173 } 2174 2175 btrfs_end_transaction_throttle(trans, root); 2176 2177 btrfs_btree_balance_dirty(root); 2178 2179 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2180 invalidate_extent_cache(root, &key, &next_key); 2181 2182 return err; 2183 } 2184 2185 static noinline_for_stack 2186 int prepare_to_merge(struct reloc_control *rc, int err) 2187 { 2188 struct btrfs_root *root = rc->extent_root; 2189 struct btrfs_root *reloc_root; 2190 struct btrfs_trans_handle *trans; 2191 LIST_HEAD(reloc_roots); 2192 u64 num_bytes = 0; 2193 int ret; 2194 2195 mutex_lock(&root->fs_info->reloc_mutex); 2196 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2197 rc->merging_rsv_size += rc->nodes_relocated * 2; 2198 mutex_unlock(&root->fs_info->reloc_mutex); 2199 2200 again: 2201 if (!err) { 2202 num_bytes = rc->merging_rsv_size; 2203 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2204 BTRFS_RESERVE_FLUSH_ALL); 2205 if (ret) 2206 err = ret; 2207 } 2208 2209 trans = btrfs_join_transaction(rc->extent_root); 2210 if (IS_ERR(trans)) { 2211 if (!err) 2212 btrfs_block_rsv_release(rc->extent_root, 2213 rc->block_rsv, num_bytes); 2214 return PTR_ERR(trans); 2215 } 2216 2217 if (!err) { 2218 if (num_bytes != rc->merging_rsv_size) { 2219 btrfs_end_transaction(trans, rc->extent_root); 2220 btrfs_block_rsv_release(rc->extent_root, 2221 rc->block_rsv, num_bytes); 2222 goto again; 2223 } 2224 } 2225 2226 rc->merge_reloc_tree = 1; 2227 2228 while (!list_empty(&rc->reloc_roots)) { 2229 reloc_root = list_entry(rc->reloc_roots.next, 2230 struct btrfs_root, root_list); 2231 list_del_init(&reloc_root->root_list); 2232 2233 root = read_fs_root(reloc_root->fs_info, 2234 reloc_root->root_key.offset); 2235 BUG_ON(IS_ERR(root)); 2236 BUG_ON(root->reloc_root != reloc_root); 2237 2238 /* 2239 * set reference count to 1, so btrfs_recover_relocation 2240 * knows it should resumes merging 2241 */ 2242 if (!err) 2243 btrfs_set_root_refs(&reloc_root->root_item, 1); 2244 btrfs_update_reloc_root(trans, root); 2245 2246 list_add(&reloc_root->root_list, &reloc_roots); 2247 } 2248 2249 list_splice(&reloc_roots, &rc->reloc_roots); 2250 2251 if (!err) 2252 btrfs_commit_transaction(trans, rc->extent_root); 2253 else 2254 btrfs_end_transaction(trans, rc->extent_root); 2255 return err; 2256 } 2257 2258 static noinline_for_stack 2259 void free_reloc_roots(struct list_head *list) 2260 { 2261 struct btrfs_root *reloc_root; 2262 2263 while (!list_empty(list)) { 2264 reloc_root = list_entry(list->next, struct btrfs_root, 2265 root_list); 2266 __update_reloc_root(reloc_root, 1); 2267 free_extent_buffer(reloc_root->node); 2268 free_extent_buffer(reloc_root->commit_root); 2269 kfree(reloc_root); 2270 } 2271 } 2272 2273 static noinline_for_stack 2274 int merge_reloc_roots(struct reloc_control *rc) 2275 { 2276 struct btrfs_root *root; 2277 struct btrfs_root *reloc_root; 2278 LIST_HEAD(reloc_roots); 2279 int found = 0; 2280 int ret = 0; 2281 again: 2282 root = rc->extent_root; 2283 2284 /* 2285 * this serializes us with btrfs_record_root_in_transaction, 2286 * we have to make sure nobody is in the middle of 2287 * adding their roots to the list while we are 2288 * doing this splice 2289 */ 2290 mutex_lock(&root->fs_info->reloc_mutex); 2291 list_splice_init(&rc->reloc_roots, &reloc_roots); 2292 mutex_unlock(&root->fs_info->reloc_mutex); 2293 2294 while (!list_empty(&reloc_roots)) { 2295 found = 1; 2296 reloc_root = list_entry(reloc_roots.next, 2297 struct btrfs_root, root_list); 2298 2299 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2300 root = read_fs_root(reloc_root->fs_info, 2301 reloc_root->root_key.offset); 2302 BUG_ON(IS_ERR(root)); 2303 BUG_ON(root->reloc_root != reloc_root); 2304 2305 ret = merge_reloc_root(rc, root); 2306 if (ret) 2307 goto out; 2308 } else { 2309 list_del_init(&reloc_root->root_list); 2310 } 2311 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2312 if (ret < 0) { 2313 if (list_empty(&reloc_root->root_list)) 2314 list_add_tail(&reloc_root->root_list, 2315 &reloc_roots); 2316 goto out; 2317 } 2318 } 2319 2320 if (found) { 2321 found = 0; 2322 goto again; 2323 } 2324 out: 2325 if (ret) { 2326 btrfs_std_error(root->fs_info, ret); 2327 if (!list_empty(&reloc_roots)) 2328 free_reloc_roots(&reloc_roots); 2329 } 2330 2331 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2332 return ret; 2333 } 2334 2335 static void free_block_list(struct rb_root *blocks) 2336 { 2337 struct tree_block *block; 2338 struct rb_node *rb_node; 2339 while ((rb_node = rb_first(blocks))) { 2340 block = rb_entry(rb_node, struct tree_block, rb_node); 2341 rb_erase(rb_node, blocks); 2342 kfree(block); 2343 } 2344 } 2345 2346 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2347 struct btrfs_root *reloc_root) 2348 { 2349 struct btrfs_root *root; 2350 2351 if (reloc_root->last_trans == trans->transid) 2352 return 0; 2353 2354 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2355 BUG_ON(IS_ERR(root)); 2356 BUG_ON(root->reloc_root != reloc_root); 2357 2358 return btrfs_record_root_in_trans(trans, root); 2359 } 2360 2361 static noinline_for_stack 2362 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2363 struct reloc_control *rc, 2364 struct backref_node *node, 2365 struct backref_edge *edges[], int *nr) 2366 { 2367 struct backref_node *next; 2368 struct btrfs_root *root; 2369 int index = 0; 2370 2371 next = node; 2372 while (1) { 2373 cond_resched(); 2374 next = walk_up_backref(next, edges, &index); 2375 root = next->root; 2376 BUG_ON(!root); 2377 BUG_ON(!root->ref_cows); 2378 2379 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2380 record_reloc_root_in_trans(trans, root); 2381 break; 2382 } 2383 2384 btrfs_record_root_in_trans(trans, root); 2385 root = root->reloc_root; 2386 2387 if (next->new_bytenr != root->node->start) { 2388 BUG_ON(next->new_bytenr); 2389 BUG_ON(!list_empty(&next->list)); 2390 next->new_bytenr = root->node->start; 2391 next->root = root; 2392 list_add_tail(&next->list, 2393 &rc->backref_cache.changed); 2394 __mark_block_processed(rc, next); 2395 break; 2396 } 2397 2398 WARN_ON(1); 2399 root = NULL; 2400 next = walk_down_backref(edges, &index); 2401 if (!next || next->level <= node->level) 2402 break; 2403 } 2404 if (!root) 2405 return NULL; 2406 2407 *nr = index; 2408 next = node; 2409 /* setup backref node path for btrfs_reloc_cow_block */ 2410 while (1) { 2411 rc->backref_cache.path[next->level] = next; 2412 if (--index < 0) 2413 break; 2414 next = edges[index]->node[UPPER]; 2415 } 2416 return root; 2417 } 2418 2419 /* 2420 * select a tree root for relocation. return NULL if the block 2421 * is reference counted. we should use do_relocation() in this 2422 * case. return a tree root pointer if the block isn't reference 2423 * counted. return -ENOENT if the block is root of reloc tree. 2424 */ 2425 static noinline_for_stack 2426 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2427 struct backref_node *node) 2428 { 2429 struct backref_node *next; 2430 struct btrfs_root *root; 2431 struct btrfs_root *fs_root = NULL; 2432 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2433 int index = 0; 2434 2435 next = node; 2436 while (1) { 2437 cond_resched(); 2438 next = walk_up_backref(next, edges, &index); 2439 root = next->root; 2440 BUG_ON(!root); 2441 2442 /* no other choice for non-references counted tree */ 2443 if (!root->ref_cows) 2444 return root; 2445 2446 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2447 fs_root = root; 2448 2449 if (next != node) 2450 return NULL; 2451 2452 next = walk_down_backref(edges, &index); 2453 if (!next || next->level <= node->level) 2454 break; 2455 } 2456 2457 if (!fs_root) 2458 return ERR_PTR(-ENOENT); 2459 return fs_root; 2460 } 2461 2462 static noinline_for_stack 2463 u64 calcu_metadata_size(struct reloc_control *rc, 2464 struct backref_node *node, int reserve) 2465 { 2466 struct backref_node *next = node; 2467 struct backref_edge *edge; 2468 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2469 u64 num_bytes = 0; 2470 int index = 0; 2471 2472 BUG_ON(reserve && node->processed); 2473 2474 while (next) { 2475 cond_resched(); 2476 while (1) { 2477 if (next->processed && (reserve || next != node)) 2478 break; 2479 2480 num_bytes += btrfs_level_size(rc->extent_root, 2481 next->level); 2482 2483 if (list_empty(&next->upper)) 2484 break; 2485 2486 edge = list_entry(next->upper.next, 2487 struct backref_edge, list[LOWER]); 2488 edges[index++] = edge; 2489 next = edge->node[UPPER]; 2490 } 2491 next = walk_down_backref(edges, &index); 2492 } 2493 return num_bytes; 2494 } 2495 2496 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2497 struct reloc_control *rc, 2498 struct backref_node *node) 2499 { 2500 struct btrfs_root *root = rc->extent_root; 2501 u64 num_bytes; 2502 int ret; 2503 2504 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2505 2506 trans->block_rsv = rc->block_rsv; 2507 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2508 BTRFS_RESERVE_FLUSH_ALL); 2509 if (ret) { 2510 if (ret == -EAGAIN) 2511 rc->commit_transaction = 1; 2512 return ret; 2513 } 2514 2515 return 0; 2516 } 2517 2518 static void release_metadata_space(struct reloc_control *rc, 2519 struct backref_node *node) 2520 { 2521 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2522 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2523 } 2524 2525 /* 2526 * relocate a block tree, and then update pointers in upper level 2527 * blocks that reference the block to point to the new location. 2528 * 2529 * if called by link_to_upper, the block has already been relocated. 2530 * in that case this function just updates pointers. 2531 */ 2532 static int do_relocation(struct btrfs_trans_handle *trans, 2533 struct reloc_control *rc, 2534 struct backref_node *node, 2535 struct btrfs_key *key, 2536 struct btrfs_path *path, int lowest) 2537 { 2538 struct backref_node *upper; 2539 struct backref_edge *edge; 2540 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2541 struct btrfs_root *root; 2542 struct extent_buffer *eb; 2543 u32 blocksize; 2544 u64 bytenr; 2545 u64 generation; 2546 int nr; 2547 int slot; 2548 int ret; 2549 int err = 0; 2550 2551 BUG_ON(lowest && node->eb); 2552 2553 path->lowest_level = node->level + 1; 2554 rc->backref_cache.path[node->level] = node; 2555 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2556 cond_resched(); 2557 2558 upper = edge->node[UPPER]; 2559 root = select_reloc_root(trans, rc, upper, edges, &nr); 2560 BUG_ON(!root); 2561 2562 if (upper->eb && !upper->locked) { 2563 if (!lowest) { 2564 ret = btrfs_bin_search(upper->eb, key, 2565 upper->level, &slot); 2566 BUG_ON(ret); 2567 bytenr = btrfs_node_blockptr(upper->eb, slot); 2568 if (node->eb->start == bytenr) 2569 goto next; 2570 } 2571 drop_node_buffer(upper); 2572 } 2573 2574 if (!upper->eb) { 2575 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2576 if (ret < 0) { 2577 err = ret; 2578 break; 2579 } 2580 BUG_ON(ret > 0); 2581 2582 if (!upper->eb) { 2583 upper->eb = path->nodes[upper->level]; 2584 path->nodes[upper->level] = NULL; 2585 } else { 2586 BUG_ON(upper->eb != path->nodes[upper->level]); 2587 } 2588 2589 upper->locked = 1; 2590 path->locks[upper->level] = 0; 2591 2592 slot = path->slots[upper->level]; 2593 btrfs_release_path(path); 2594 } else { 2595 ret = btrfs_bin_search(upper->eb, key, upper->level, 2596 &slot); 2597 BUG_ON(ret); 2598 } 2599 2600 bytenr = btrfs_node_blockptr(upper->eb, slot); 2601 if (lowest) { 2602 BUG_ON(bytenr != node->bytenr); 2603 } else { 2604 if (node->eb->start == bytenr) 2605 goto next; 2606 } 2607 2608 blocksize = btrfs_level_size(root, node->level); 2609 generation = btrfs_node_ptr_generation(upper->eb, slot); 2610 eb = read_tree_block(root, bytenr, blocksize, generation); 2611 if (!eb || !extent_buffer_uptodate(eb)) { 2612 free_extent_buffer(eb); 2613 err = -EIO; 2614 goto next; 2615 } 2616 btrfs_tree_lock(eb); 2617 btrfs_set_lock_blocking(eb); 2618 2619 if (!node->eb) { 2620 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2621 slot, &eb); 2622 btrfs_tree_unlock(eb); 2623 free_extent_buffer(eb); 2624 if (ret < 0) { 2625 err = ret; 2626 goto next; 2627 } 2628 BUG_ON(node->eb != eb); 2629 } else { 2630 btrfs_set_node_blockptr(upper->eb, slot, 2631 node->eb->start); 2632 btrfs_set_node_ptr_generation(upper->eb, slot, 2633 trans->transid); 2634 btrfs_mark_buffer_dirty(upper->eb); 2635 2636 ret = btrfs_inc_extent_ref(trans, root, 2637 node->eb->start, blocksize, 2638 upper->eb->start, 2639 btrfs_header_owner(upper->eb), 2640 node->level, 0, 1); 2641 BUG_ON(ret); 2642 2643 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2644 BUG_ON(ret); 2645 } 2646 next: 2647 if (!upper->pending) 2648 drop_node_buffer(upper); 2649 else 2650 unlock_node_buffer(upper); 2651 if (err) 2652 break; 2653 } 2654 2655 if (!err && node->pending) { 2656 drop_node_buffer(node); 2657 list_move_tail(&node->list, &rc->backref_cache.changed); 2658 node->pending = 0; 2659 } 2660 2661 path->lowest_level = 0; 2662 BUG_ON(err == -ENOSPC); 2663 return err; 2664 } 2665 2666 static int link_to_upper(struct btrfs_trans_handle *trans, 2667 struct reloc_control *rc, 2668 struct backref_node *node, 2669 struct btrfs_path *path) 2670 { 2671 struct btrfs_key key; 2672 2673 btrfs_node_key_to_cpu(node->eb, &key, 0); 2674 return do_relocation(trans, rc, node, &key, path, 0); 2675 } 2676 2677 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2678 struct reloc_control *rc, 2679 struct btrfs_path *path, int err) 2680 { 2681 LIST_HEAD(list); 2682 struct backref_cache *cache = &rc->backref_cache; 2683 struct backref_node *node; 2684 int level; 2685 int ret; 2686 2687 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2688 while (!list_empty(&cache->pending[level])) { 2689 node = list_entry(cache->pending[level].next, 2690 struct backref_node, list); 2691 list_move_tail(&node->list, &list); 2692 BUG_ON(!node->pending); 2693 2694 if (!err) { 2695 ret = link_to_upper(trans, rc, node, path); 2696 if (ret < 0) 2697 err = ret; 2698 } 2699 } 2700 list_splice_init(&list, &cache->pending[level]); 2701 } 2702 return err; 2703 } 2704 2705 static void mark_block_processed(struct reloc_control *rc, 2706 u64 bytenr, u32 blocksize) 2707 { 2708 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2709 EXTENT_DIRTY, GFP_NOFS); 2710 } 2711 2712 static void __mark_block_processed(struct reloc_control *rc, 2713 struct backref_node *node) 2714 { 2715 u32 blocksize; 2716 if (node->level == 0 || 2717 in_block_group(node->bytenr, rc->block_group)) { 2718 blocksize = btrfs_level_size(rc->extent_root, node->level); 2719 mark_block_processed(rc, node->bytenr, blocksize); 2720 } 2721 node->processed = 1; 2722 } 2723 2724 /* 2725 * mark a block and all blocks directly/indirectly reference the block 2726 * as processed. 2727 */ 2728 static void update_processed_blocks(struct reloc_control *rc, 2729 struct backref_node *node) 2730 { 2731 struct backref_node *next = node; 2732 struct backref_edge *edge; 2733 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2734 int index = 0; 2735 2736 while (next) { 2737 cond_resched(); 2738 while (1) { 2739 if (next->processed) 2740 break; 2741 2742 __mark_block_processed(rc, next); 2743 2744 if (list_empty(&next->upper)) 2745 break; 2746 2747 edge = list_entry(next->upper.next, 2748 struct backref_edge, list[LOWER]); 2749 edges[index++] = edge; 2750 next = edge->node[UPPER]; 2751 } 2752 next = walk_down_backref(edges, &index); 2753 } 2754 } 2755 2756 static int tree_block_processed(u64 bytenr, u32 blocksize, 2757 struct reloc_control *rc) 2758 { 2759 if (test_range_bit(&rc->processed_blocks, bytenr, 2760 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2761 return 1; 2762 return 0; 2763 } 2764 2765 static int get_tree_block_key(struct reloc_control *rc, 2766 struct tree_block *block) 2767 { 2768 struct extent_buffer *eb; 2769 2770 BUG_ON(block->key_ready); 2771 eb = read_tree_block(rc->extent_root, block->bytenr, 2772 block->key.objectid, block->key.offset); 2773 if (!eb || !extent_buffer_uptodate(eb)) { 2774 free_extent_buffer(eb); 2775 return -EIO; 2776 } 2777 WARN_ON(btrfs_header_level(eb) != block->level); 2778 if (block->level == 0) 2779 btrfs_item_key_to_cpu(eb, &block->key, 0); 2780 else 2781 btrfs_node_key_to_cpu(eb, &block->key, 0); 2782 free_extent_buffer(eb); 2783 block->key_ready = 1; 2784 return 0; 2785 } 2786 2787 static int reada_tree_block(struct reloc_control *rc, 2788 struct tree_block *block) 2789 { 2790 BUG_ON(block->key_ready); 2791 if (block->key.type == BTRFS_METADATA_ITEM_KEY) 2792 readahead_tree_block(rc->extent_root, block->bytenr, 2793 block->key.objectid, 2794 rc->extent_root->leafsize); 2795 else 2796 readahead_tree_block(rc->extent_root, block->bytenr, 2797 block->key.objectid, block->key.offset); 2798 return 0; 2799 } 2800 2801 /* 2802 * helper function to relocate a tree block 2803 */ 2804 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2805 struct reloc_control *rc, 2806 struct backref_node *node, 2807 struct btrfs_key *key, 2808 struct btrfs_path *path) 2809 { 2810 struct btrfs_root *root; 2811 int release = 0; 2812 int ret = 0; 2813 2814 if (!node) 2815 return 0; 2816 2817 BUG_ON(node->processed); 2818 root = select_one_root(trans, node); 2819 if (root == ERR_PTR(-ENOENT)) { 2820 update_processed_blocks(rc, node); 2821 goto out; 2822 } 2823 2824 if (!root || root->ref_cows) { 2825 ret = reserve_metadata_space(trans, rc, node); 2826 if (ret) 2827 goto out; 2828 release = 1; 2829 } 2830 2831 if (root) { 2832 if (root->ref_cows) { 2833 BUG_ON(node->new_bytenr); 2834 BUG_ON(!list_empty(&node->list)); 2835 btrfs_record_root_in_trans(trans, root); 2836 root = root->reloc_root; 2837 node->new_bytenr = root->node->start; 2838 node->root = root; 2839 list_add_tail(&node->list, &rc->backref_cache.changed); 2840 } else { 2841 path->lowest_level = node->level; 2842 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2843 btrfs_release_path(path); 2844 if (ret > 0) 2845 ret = 0; 2846 } 2847 if (!ret) 2848 update_processed_blocks(rc, node); 2849 } else { 2850 ret = do_relocation(trans, rc, node, key, path, 1); 2851 } 2852 out: 2853 if (ret || node->level == 0 || node->cowonly) { 2854 if (release) 2855 release_metadata_space(rc, node); 2856 remove_backref_node(&rc->backref_cache, node); 2857 } 2858 return ret; 2859 } 2860 2861 /* 2862 * relocate a list of blocks 2863 */ 2864 static noinline_for_stack 2865 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2866 struct reloc_control *rc, struct rb_root *blocks) 2867 { 2868 struct backref_node *node; 2869 struct btrfs_path *path; 2870 struct tree_block *block; 2871 struct rb_node *rb_node; 2872 int ret; 2873 int err = 0; 2874 2875 path = btrfs_alloc_path(); 2876 if (!path) { 2877 err = -ENOMEM; 2878 goto out_free_blocks; 2879 } 2880 2881 rb_node = rb_first(blocks); 2882 while (rb_node) { 2883 block = rb_entry(rb_node, struct tree_block, rb_node); 2884 if (!block->key_ready) 2885 reada_tree_block(rc, block); 2886 rb_node = rb_next(rb_node); 2887 } 2888 2889 rb_node = rb_first(blocks); 2890 while (rb_node) { 2891 block = rb_entry(rb_node, struct tree_block, rb_node); 2892 if (!block->key_ready) { 2893 err = get_tree_block_key(rc, block); 2894 if (err) 2895 goto out_free_path; 2896 } 2897 rb_node = rb_next(rb_node); 2898 } 2899 2900 rb_node = rb_first(blocks); 2901 while (rb_node) { 2902 block = rb_entry(rb_node, struct tree_block, rb_node); 2903 2904 node = build_backref_tree(rc, &block->key, 2905 block->level, block->bytenr); 2906 if (IS_ERR(node)) { 2907 err = PTR_ERR(node); 2908 goto out; 2909 } 2910 2911 ret = relocate_tree_block(trans, rc, node, &block->key, 2912 path); 2913 if (ret < 0) { 2914 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2915 err = ret; 2916 goto out; 2917 } 2918 rb_node = rb_next(rb_node); 2919 } 2920 out: 2921 err = finish_pending_nodes(trans, rc, path, err); 2922 2923 out_free_path: 2924 btrfs_free_path(path); 2925 out_free_blocks: 2926 free_block_list(blocks); 2927 return err; 2928 } 2929 2930 static noinline_for_stack 2931 int prealloc_file_extent_cluster(struct inode *inode, 2932 struct file_extent_cluster *cluster) 2933 { 2934 u64 alloc_hint = 0; 2935 u64 start; 2936 u64 end; 2937 u64 offset = BTRFS_I(inode)->index_cnt; 2938 u64 num_bytes; 2939 int nr = 0; 2940 int ret = 0; 2941 2942 BUG_ON(cluster->start != cluster->boundary[0]); 2943 mutex_lock(&inode->i_mutex); 2944 2945 ret = btrfs_check_data_free_space(inode, cluster->end + 2946 1 - cluster->start); 2947 if (ret) 2948 goto out; 2949 2950 while (nr < cluster->nr) { 2951 start = cluster->boundary[nr] - offset; 2952 if (nr + 1 < cluster->nr) 2953 end = cluster->boundary[nr + 1] - 1 - offset; 2954 else 2955 end = cluster->end - offset; 2956 2957 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2958 num_bytes = end + 1 - start; 2959 ret = btrfs_prealloc_file_range(inode, 0, start, 2960 num_bytes, num_bytes, 2961 end + 1, &alloc_hint); 2962 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2963 if (ret) 2964 break; 2965 nr++; 2966 } 2967 btrfs_free_reserved_data_space(inode, cluster->end + 2968 1 - cluster->start); 2969 out: 2970 mutex_unlock(&inode->i_mutex); 2971 return ret; 2972 } 2973 2974 static noinline_for_stack 2975 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2976 u64 block_start) 2977 { 2978 struct btrfs_root *root = BTRFS_I(inode)->root; 2979 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2980 struct extent_map *em; 2981 int ret = 0; 2982 2983 em = alloc_extent_map(); 2984 if (!em) 2985 return -ENOMEM; 2986 2987 em->start = start; 2988 em->len = end + 1 - start; 2989 em->block_len = em->len; 2990 em->block_start = block_start; 2991 em->bdev = root->fs_info->fs_devices->latest_bdev; 2992 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2993 2994 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2995 while (1) { 2996 write_lock(&em_tree->lock); 2997 ret = add_extent_mapping(em_tree, em, 0); 2998 write_unlock(&em_tree->lock); 2999 if (ret != -EEXIST) { 3000 free_extent_map(em); 3001 break; 3002 } 3003 btrfs_drop_extent_cache(inode, start, end, 0); 3004 } 3005 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3006 return ret; 3007 } 3008 3009 static int relocate_file_extent_cluster(struct inode *inode, 3010 struct file_extent_cluster *cluster) 3011 { 3012 u64 page_start; 3013 u64 page_end; 3014 u64 offset = BTRFS_I(inode)->index_cnt; 3015 unsigned long index; 3016 unsigned long last_index; 3017 struct page *page; 3018 struct file_ra_state *ra; 3019 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3020 int nr = 0; 3021 int ret = 0; 3022 3023 if (!cluster->nr) 3024 return 0; 3025 3026 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3027 if (!ra) 3028 return -ENOMEM; 3029 3030 ret = prealloc_file_extent_cluster(inode, cluster); 3031 if (ret) 3032 goto out; 3033 3034 file_ra_state_init(ra, inode->i_mapping); 3035 3036 ret = setup_extent_mapping(inode, cluster->start - offset, 3037 cluster->end - offset, cluster->start); 3038 if (ret) 3039 goto out; 3040 3041 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3042 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3043 while (index <= last_index) { 3044 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3045 if (ret) 3046 goto out; 3047 3048 page = find_lock_page(inode->i_mapping, index); 3049 if (!page) { 3050 page_cache_sync_readahead(inode->i_mapping, 3051 ra, NULL, index, 3052 last_index + 1 - index); 3053 page = find_or_create_page(inode->i_mapping, index, 3054 mask); 3055 if (!page) { 3056 btrfs_delalloc_release_metadata(inode, 3057 PAGE_CACHE_SIZE); 3058 ret = -ENOMEM; 3059 goto out; 3060 } 3061 } 3062 3063 if (PageReadahead(page)) { 3064 page_cache_async_readahead(inode->i_mapping, 3065 ra, NULL, page, index, 3066 last_index + 1 - index); 3067 } 3068 3069 if (!PageUptodate(page)) { 3070 btrfs_readpage(NULL, page); 3071 lock_page(page); 3072 if (!PageUptodate(page)) { 3073 unlock_page(page); 3074 page_cache_release(page); 3075 btrfs_delalloc_release_metadata(inode, 3076 PAGE_CACHE_SIZE); 3077 ret = -EIO; 3078 goto out; 3079 } 3080 } 3081 3082 page_start = page_offset(page); 3083 page_end = page_start + PAGE_CACHE_SIZE - 1; 3084 3085 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3086 3087 set_page_extent_mapped(page); 3088 3089 if (nr < cluster->nr && 3090 page_start + offset == cluster->boundary[nr]) { 3091 set_extent_bits(&BTRFS_I(inode)->io_tree, 3092 page_start, page_end, 3093 EXTENT_BOUNDARY, GFP_NOFS); 3094 nr++; 3095 } 3096 3097 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3098 set_page_dirty(page); 3099 3100 unlock_extent(&BTRFS_I(inode)->io_tree, 3101 page_start, page_end); 3102 unlock_page(page); 3103 page_cache_release(page); 3104 3105 index++; 3106 balance_dirty_pages_ratelimited(inode->i_mapping); 3107 btrfs_throttle(BTRFS_I(inode)->root); 3108 } 3109 WARN_ON(nr != cluster->nr); 3110 out: 3111 kfree(ra); 3112 return ret; 3113 } 3114 3115 static noinline_for_stack 3116 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3117 struct file_extent_cluster *cluster) 3118 { 3119 int ret; 3120 3121 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3122 ret = relocate_file_extent_cluster(inode, cluster); 3123 if (ret) 3124 return ret; 3125 cluster->nr = 0; 3126 } 3127 3128 if (!cluster->nr) 3129 cluster->start = extent_key->objectid; 3130 else 3131 BUG_ON(cluster->nr >= MAX_EXTENTS); 3132 cluster->end = extent_key->objectid + extent_key->offset - 1; 3133 cluster->boundary[cluster->nr] = extent_key->objectid; 3134 cluster->nr++; 3135 3136 if (cluster->nr >= MAX_EXTENTS) { 3137 ret = relocate_file_extent_cluster(inode, cluster); 3138 if (ret) 3139 return ret; 3140 cluster->nr = 0; 3141 } 3142 return 0; 3143 } 3144 3145 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3146 static int get_ref_objectid_v0(struct reloc_control *rc, 3147 struct btrfs_path *path, 3148 struct btrfs_key *extent_key, 3149 u64 *ref_objectid, int *path_change) 3150 { 3151 struct btrfs_key key; 3152 struct extent_buffer *leaf; 3153 struct btrfs_extent_ref_v0 *ref0; 3154 int ret; 3155 int slot; 3156 3157 leaf = path->nodes[0]; 3158 slot = path->slots[0]; 3159 while (1) { 3160 if (slot >= btrfs_header_nritems(leaf)) { 3161 ret = btrfs_next_leaf(rc->extent_root, path); 3162 if (ret < 0) 3163 return ret; 3164 BUG_ON(ret > 0); 3165 leaf = path->nodes[0]; 3166 slot = path->slots[0]; 3167 if (path_change) 3168 *path_change = 1; 3169 } 3170 btrfs_item_key_to_cpu(leaf, &key, slot); 3171 if (key.objectid != extent_key->objectid) 3172 return -ENOENT; 3173 3174 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3175 slot++; 3176 continue; 3177 } 3178 ref0 = btrfs_item_ptr(leaf, slot, 3179 struct btrfs_extent_ref_v0); 3180 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3181 break; 3182 } 3183 return 0; 3184 } 3185 #endif 3186 3187 /* 3188 * helper to add a tree block to the list. 3189 * the major work is getting the generation and level of the block 3190 */ 3191 static int add_tree_block(struct reloc_control *rc, 3192 struct btrfs_key *extent_key, 3193 struct btrfs_path *path, 3194 struct rb_root *blocks) 3195 { 3196 struct extent_buffer *eb; 3197 struct btrfs_extent_item *ei; 3198 struct btrfs_tree_block_info *bi; 3199 struct tree_block *block; 3200 struct rb_node *rb_node; 3201 u32 item_size; 3202 int level = -1; 3203 int generation; 3204 3205 eb = path->nodes[0]; 3206 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3207 3208 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3209 item_size >= sizeof(*ei) + sizeof(*bi)) { 3210 ei = btrfs_item_ptr(eb, path->slots[0], 3211 struct btrfs_extent_item); 3212 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3213 bi = (struct btrfs_tree_block_info *)(ei + 1); 3214 level = btrfs_tree_block_level(eb, bi); 3215 } else { 3216 level = (int)extent_key->offset; 3217 } 3218 generation = btrfs_extent_generation(eb, ei); 3219 } else { 3220 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3221 u64 ref_owner; 3222 int ret; 3223 3224 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3225 ret = get_ref_objectid_v0(rc, path, extent_key, 3226 &ref_owner, NULL); 3227 if (ret < 0) 3228 return ret; 3229 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3230 level = (int)ref_owner; 3231 /* FIXME: get real generation */ 3232 generation = 0; 3233 #else 3234 BUG(); 3235 #endif 3236 } 3237 3238 btrfs_release_path(path); 3239 3240 BUG_ON(level == -1); 3241 3242 block = kmalloc(sizeof(*block), GFP_NOFS); 3243 if (!block) 3244 return -ENOMEM; 3245 3246 block->bytenr = extent_key->objectid; 3247 block->key.objectid = rc->extent_root->leafsize; 3248 block->key.offset = generation; 3249 block->level = level; 3250 block->key_ready = 0; 3251 3252 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3253 if (rb_node) 3254 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3255 3256 return 0; 3257 } 3258 3259 /* 3260 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3261 */ 3262 static int __add_tree_block(struct reloc_control *rc, 3263 u64 bytenr, u32 blocksize, 3264 struct rb_root *blocks) 3265 { 3266 struct btrfs_path *path; 3267 struct btrfs_key key; 3268 int ret; 3269 3270 if (tree_block_processed(bytenr, blocksize, rc)) 3271 return 0; 3272 3273 if (tree_search(blocks, bytenr)) 3274 return 0; 3275 3276 path = btrfs_alloc_path(); 3277 if (!path) 3278 return -ENOMEM; 3279 3280 key.objectid = bytenr; 3281 key.type = BTRFS_EXTENT_ITEM_KEY; 3282 key.offset = blocksize; 3283 3284 path->search_commit_root = 1; 3285 path->skip_locking = 1; 3286 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3287 if (ret < 0) 3288 goto out; 3289 3290 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3291 if (ret > 0) { 3292 if (key.objectid == bytenr && 3293 key.type == BTRFS_METADATA_ITEM_KEY) 3294 ret = 0; 3295 } 3296 BUG_ON(ret); 3297 3298 ret = add_tree_block(rc, &key, path, blocks); 3299 out: 3300 btrfs_free_path(path); 3301 return ret; 3302 } 3303 3304 /* 3305 * helper to check if the block use full backrefs for pointers in it 3306 */ 3307 static int block_use_full_backref(struct reloc_control *rc, 3308 struct extent_buffer *eb) 3309 { 3310 u64 flags; 3311 int ret; 3312 3313 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3314 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3315 return 1; 3316 3317 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3318 eb->start, btrfs_header_level(eb), 1, 3319 NULL, &flags); 3320 BUG_ON(ret); 3321 3322 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3323 ret = 1; 3324 else 3325 ret = 0; 3326 return ret; 3327 } 3328 3329 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3330 struct inode *inode, u64 ino) 3331 { 3332 struct btrfs_key key; 3333 struct btrfs_path *path; 3334 struct btrfs_root *root = fs_info->tree_root; 3335 struct btrfs_trans_handle *trans; 3336 int ret = 0; 3337 3338 if (inode) 3339 goto truncate; 3340 3341 key.objectid = ino; 3342 key.type = BTRFS_INODE_ITEM_KEY; 3343 key.offset = 0; 3344 3345 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3346 if (IS_ERR(inode) || is_bad_inode(inode)) { 3347 if (!IS_ERR(inode)) 3348 iput(inode); 3349 return -ENOENT; 3350 } 3351 3352 truncate: 3353 ret = btrfs_check_trunc_cache_free_space(root, 3354 &fs_info->global_block_rsv); 3355 if (ret) 3356 goto out; 3357 3358 path = btrfs_alloc_path(); 3359 if (!path) { 3360 ret = -ENOMEM; 3361 goto out; 3362 } 3363 3364 trans = btrfs_join_transaction(root); 3365 if (IS_ERR(trans)) { 3366 btrfs_free_path(path); 3367 ret = PTR_ERR(trans); 3368 goto out; 3369 } 3370 3371 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3372 3373 btrfs_free_path(path); 3374 btrfs_end_transaction(trans, root); 3375 btrfs_btree_balance_dirty(root); 3376 out: 3377 iput(inode); 3378 return ret; 3379 } 3380 3381 /* 3382 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3383 * this function scans fs tree to find blocks reference the data extent 3384 */ 3385 static int find_data_references(struct reloc_control *rc, 3386 struct btrfs_key *extent_key, 3387 struct extent_buffer *leaf, 3388 struct btrfs_extent_data_ref *ref, 3389 struct rb_root *blocks) 3390 { 3391 struct btrfs_path *path; 3392 struct tree_block *block; 3393 struct btrfs_root *root; 3394 struct btrfs_file_extent_item *fi; 3395 struct rb_node *rb_node; 3396 struct btrfs_key key; 3397 u64 ref_root; 3398 u64 ref_objectid; 3399 u64 ref_offset; 3400 u32 ref_count; 3401 u32 nritems; 3402 int err = 0; 3403 int added = 0; 3404 int counted; 3405 int ret; 3406 3407 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3408 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3409 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3410 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3411 3412 /* 3413 * This is an extent belonging to the free space cache, lets just delete 3414 * it and redo the search. 3415 */ 3416 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3417 ret = delete_block_group_cache(rc->extent_root->fs_info, 3418 NULL, ref_objectid); 3419 if (ret != -ENOENT) 3420 return ret; 3421 ret = 0; 3422 } 3423 3424 path = btrfs_alloc_path(); 3425 if (!path) 3426 return -ENOMEM; 3427 path->reada = 1; 3428 3429 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3430 if (IS_ERR(root)) { 3431 err = PTR_ERR(root); 3432 goto out; 3433 } 3434 3435 key.objectid = ref_objectid; 3436 key.type = BTRFS_EXTENT_DATA_KEY; 3437 if (ref_offset > ((u64)-1 << 32)) 3438 key.offset = 0; 3439 else 3440 key.offset = ref_offset; 3441 3442 path->search_commit_root = 1; 3443 path->skip_locking = 1; 3444 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3445 if (ret < 0) { 3446 err = ret; 3447 goto out; 3448 } 3449 3450 leaf = path->nodes[0]; 3451 nritems = btrfs_header_nritems(leaf); 3452 /* 3453 * the references in tree blocks that use full backrefs 3454 * are not counted in 3455 */ 3456 if (block_use_full_backref(rc, leaf)) 3457 counted = 0; 3458 else 3459 counted = 1; 3460 rb_node = tree_search(blocks, leaf->start); 3461 if (rb_node) { 3462 if (counted) 3463 added = 1; 3464 else 3465 path->slots[0] = nritems; 3466 } 3467 3468 while (ref_count > 0) { 3469 while (path->slots[0] >= nritems) { 3470 ret = btrfs_next_leaf(root, path); 3471 if (ret < 0) { 3472 err = ret; 3473 goto out; 3474 } 3475 if (ret > 0) { 3476 WARN_ON(1); 3477 goto out; 3478 } 3479 3480 leaf = path->nodes[0]; 3481 nritems = btrfs_header_nritems(leaf); 3482 added = 0; 3483 3484 if (block_use_full_backref(rc, leaf)) 3485 counted = 0; 3486 else 3487 counted = 1; 3488 rb_node = tree_search(blocks, leaf->start); 3489 if (rb_node) { 3490 if (counted) 3491 added = 1; 3492 else 3493 path->slots[0] = nritems; 3494 } 3495 } 3496 3497 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3498 if (key.objectid != ref_objectid || 3499 key.type != BTRFS_EXTENT_DATA_KEY) { 3500 WARN_ON(1); 3501 break; 3502 } 3503 3504 fi = btrfs_item_ptr(leaf, path->slots[0], 3505 struct btrfs_file_extent_item); 3506 3507 if (btrfs_file_extent_type(leaf, fi) == 3508 BTRFS_FILE_EXTENT_INLINE) 3509 goto next; 3510 3511 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3512 extent_key->objectid) 3513 goto next; 3514 3515 key.offset -= btrfs_file_extent_offset(leaf, fi); 3516 if (key.offset != ref_offset) 3517 goto next; 3518 3519 if (counted) 3520 ref_count--; 3521 if (added) 3522 goto next; 3523 3524 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3525 block = kmalloc(sizeof(*block), GFP_NOFS); 3526 if (!block) { 3527 err = -ENOMEM; 3528 break; 3529 } 3530 block->bytenr = leaf->start; 3531 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3532 block->level = 0; 3533 block->key_ready = 1; 3534 rb_node = tree_insert(blocks, block->bytenr, 3535 &block->rb_node); 3536 if (rb_node) 3537 backref_tree_panic(rb_node, -EEXIST, 3538 block->bytenr); 3539 } 3540 if (counted) 3541 added = 1; 3542 else 3543 path->slots[0] = nritems; 3544 next: 3545 path->slots[0]++; 3546 3547 } 3548 out: 3549 btrfs_free_path(path); 3550 return err; 3551 } 3552 3553 /* 3554 * helper to find all tree blocks that reference a given data extent 3555 */ 3556 static noinline_for_stack 3557 int add_data_references(struct reloc_control *rc, 3558 struct btrfs_key *extent_key, 3559 struct btrfs_path *path, 3560 struct rb_root *blocks) 3561 { 3562 struct btrfs_key key; 3563 struct extent_buffer *eb; 3564 struct btrfs_extent_data_ref *dref; 3565 struct btrfs_extent_inline_ref *iref; 3566 unsigned long ptr; 3567 unsigned long end; 3568 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3569 int ret; 3570 int err = 0; 3571 3572 eb = path->nodes[0]; 3573 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3574 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3575 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3576 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3577 ptr = end; 3578 else 3579 #endif 3580 ptr += sizeof(struct btrfs_extent_item); 3581 3582 while (ptr < end) { 3583 iref = (struct btrfs_extent_inline_ref *)ptr; 3584 key.type = btrfs_extent_inline_ref_type(eb, iref); 3585 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3586 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3587 ret = __add_tree_block(rc, key.offset, blocksize, 3588 blocks); 3589 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3590 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3591 ret = find_data_references(rc, extent_key, 3592 eb, dref, blocks); 3593 } else { 3594 BUG(); 3595 } 3596 ptr += btrfs_extent_inline_ref_size(key.type); 3597 } 3598 WARN_ON(ptr > end); 3599 3600 while (1) { 3601 cond_resched(); 3602 eb = path->nodes[0]; 3603 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3604 ret = btrfs_next_leaf(rc->extent_root, path); 3605 if (ret < 0) { 3606 err = ret; 3607 break; 3608 } 3609 if (ret > 0) 3610 break; 3611 eb = path->nodes[0]; 3612 } 3613 3614 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3615 if (key.objectid != extent_key->objectid) 3616 break; 3617 3618 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3619 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3620 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3621 #else 3622 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3623 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3624 #endif 3625 ret = __add_tree_block(rc, key.offset, blocksize, 3626 blocks); 3627 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3628 dref = btrfs_item_ptr(eb, path->slots[0], 3629 struct btrfs_extent_data_ref); 3630 ret = find_data_references(rc, extent_key, 3631 eb, dref, blocks); 3632 } else { 3633 ret = 0; 3634 } 3635 if (ret) { 3636 err = ret; 3637 break; 3638 } 3639 path->slots[0]++; 3640 } 3641 btrfs_release_path(path); 3642 if (err) 3643 free_block_list(blocks); 3644 return err; 3645 } 3646 3647 /* 3648 * helper to find next unprocessed extent 3649 */ 3650 static noinline_for_stack 3651 int find_next_extent(struct btrfs_trans_handle *trans, 3652 struct reloc_control *rc, struct btrfs_path *path, 3653 struct btrfs_key *extent_key) 3654 { 3655 struct btrfs_key key; 3656 struct extent_buffer *leaf; 3657 u64 start, end, last; 3658 int ret; 3659 3660 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3661 while (1) { 3662 cond_resched(); 3663 if (rc->search_start >= last) { 3664 ret = 1; 3665 break; 3666 } 3667 3668 key.objectid = rc->search_start; 3669 key.type = BTRFS_EXTENT_ITEM_KEY; 3670 key.offset = 0; 3671 3672 path->search_commit_root = 1; 3673 path->skip_locking = 1; 3674 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3675 0, 0); 3676 if (ret < 0) 3677 break; 3678 next: 3679 leaf = path->nodes[0]; 3680 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3681 ret = btrfs_next_leaf(rc->extent_root, path); 3682 if (ret != 0) 3683 break; 3684 leaf = path->nodes[0]; 3685 } 3686 3687 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3688 if (key.objectid >= last) { 3689 ret = 1; 3690 break; 3691 } 3692 3693 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3694 key.type != BTRFS_METADATA_ITEM_KEY) { 3695 path->slots[0]++; 3696 goto next; 3697 } 3698 3699 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3700 key.objectid + key.offset <= rc->search_start) { 3701 path->slots[0]++; 3702 goto next; 3703 } 3704 3705 if (key.type == BTRFS_METADATA_ITEM_KEY && 3706 key.objectid + rc->extent_root->leafsize <= 3707 rc->search_start) { 3708 path->slots[0]++; 3709 goto next; 3710 } 3711 3712 ret = find_first_extent_bit(&rc->processed_blocks, 3713 key.objectid, &start, &end, 3714 EXTENT_DIRTY, NULL); 3715 3716 if (ret == 0 && start <= key.objectid) { 3717 btrfs_release_path(path); 3718 rc->search_start = end + 1; 3719 } else { 3720 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3721 rc->search_start = key.objectid + key.offset; 3722 else 3723 rc->search_start = key.objectid + 3724 rc->extent_root->leafsize; 3725 memcpy(extent_key, &key, sizeof(key)); 3726 return 0; 3727 } 3728 } 3729 btrfs_release_path(path); 3730 return ret; 3731 } 3732 3733 static void set_reloc_control(struct reloc_control *rc) 3734 { 3735 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3736 3737 mutex_lock(&fs_info->reloc_mutex); 3738 fs_info->reloc_ctl = rc; 3739 mutex_unlock(&fs_info->reloc_mutex); 3740 } 3741 3742 static void unset_reloc_control(struct reloc_control *rc) 3743 { 3744 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3745 3746 mutex_lock(&fs_info->reloc_mutex); 3747 fs_info->reloc_ctl = NULL; 3748 mutex_unlock(&fs_info->reloc_mutex); 3749 } 3750 3751 static int check_extent_flags(u64 flags) 3752 { 3753 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3754 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3755 return 1; 3756 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3757 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3758 return 1; 3759 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3760 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3761 return 1; 3762 return 0; 3763 } 3764 3765 static noinline_for_stack 3766 int prepare_to_relocate(struct reloc_control *rc) 3767 { 3768 struct btrfs_trans_handle *trans; 3769 int ret; 3770 3771 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3772 BTRFS_BLOCK_RSV_TEMP); 3773 if (!rc->block_rsv) 3774 return -ENOMEM; 3775 3776 /* 3777 * reserve some space for creating reloc trees. 3778 * btrfs_init_reloc_root will use them when there 3779 * is no reservation in transaction handle. 3780 */ 3781 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3782 rc->extent_root->nodesize * 256, 3783 BTRFS_RESERVE_FLUSH_ALL); 3784 if (ret) 3785 return ret; 3786 3787 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3788 rc->search_start = rc->block_group->key.objectid; 3789 rc->extents_found = 0; 3790 rc->nodes_relocated = 0; 3791 rc->merging_rsv_size = 0; 3792 3793 rc->create_reloc_tree = 1; 3794 set_reloc_control(rc); 3795 3796 trans = btrfs_join_transaction(rc->extent_root); 3797 if (IS_ERR(trans)) { 3798 unset_reloc_control(rc); 3799 /* 3800 * extent tree is not a ref_cow tree and has no reloc_root to 3801 * cleanup. And callers are responsible to free the above 3802 * block rsv. 3803 */ 3804 return PTR_ERR(trans); 3805 } 3806 btrfs_commit_transaction(trans, rc->extent_root); 3807 return 0; 3808 } 3809 3810 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3811 { 3812 struct rb_root blocks = RB_ROOT; 3813 struct btrfs_key key; 3814 struct btrfs_trans_handle *trans = NULL; 3815 struct btrfs_path *path; 3816 struct btrfs_extent_item *ei; 3817 u64 flags; 3818 u32 item_size; 3819 int ret; 3820 int err = 0; 3821 int progress = 0; 3822 3823 path = btrfs_alloc_path(); 3824 if (!path) 3825 return -ENOMEM; 3826 path->reada = 1; 3827 3828 ret = prepare_to_relocate(rc); 3829 if (ret) { 3830 err = ret; 3831 goto out_free; 3832 } 3833 3834 while (1) { 3835 progress++; 3836 trans = btrfs_start_transaction(rc->extent_root, 0); 3837 if (IS_ERR(trans)) { 3838 err = PTR_ERR(trans); 3839 trans = NULL; 3840 break; 3841 } 3842 restart: 3843 if (update_backref_cache(trans, &rc->backref_cache)) { 3844 btrfs_end_transaction(trans, rc->extent_root); 3845 continue; 3846 } 3847 3848 ret = find_next_extent(trans, rc, path, &key); 3849 if (ret < 0) 3850 err = ret; 3851 if (ret != 0) 3852 break; 3853 3854 rc->extents_found++; 3855 3856 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3857 struct btrfs_extent_item); 3858 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3859 if (item_size >= sizeof(*ei)) { 3860 flags = btrfs_extent_flags(path->nodes[0], ei); 3861 ret = check_extent_flags(flags); 3862 BUG_ON(ret); 3863 3864 } else { 3865 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3866 u64 ref_owner; 3867 int path_change = 0; 3868 3869 BUG_ON(item_size != 3870 sizeof(struct btrfs_extent_item_v0)); 3871 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3872 &path_change); 3873 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3874 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3875 else 3876 flags = BTRFS_EXTENT_FLAG_DATA; 3877 3878 if (path_change) { 3879 btrfs_release_path(path); 3880 3881 path->search_commit_root = 1; 3882 path->skip_locking = 1; 3883 ret = btrfs_search_slot(NULL, rc->extent_root, 3884 &key, path, 0, 0); 3885 if (ret < 0) { 3886 err = ret; 3887 break; 3888 } 3889 BUG_ON(ret > 0); 3890 } 3891 #else 3892 BUG(); 3893 #endif 3894 } 3895 3896 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3897 ret = add_tree_block(rc, &key, path, &blocks); 3898 } else if (rc->stage == UPDATE_DATA_PTRS && 3899 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3900 ret = add_data_references(rc, &key, path, &blocks); 3901 } else { 3902 btrfs_release_path(path); 3903 ret = 0; 3904 } 3905 if (ret < 0) { 3906 err = ret; 3907 break; 3908 } 3909 3910 if (!RB_EMPTY_ROOT(&blocks)) { 3911 ret = relocate_tree_blocks(trans, rc, &blocks); 3912 if (ret < 0) { 3913 if (ret != -EAGAIN) { 3914 err = ret; 3915 break; 3916 } 3917 rc->extents_found--; 3918 rc->search_start = key.objectid; 3919 } 3920 } 3921 3922 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 3923 if (ret < 0) { 3924 if (ret != -ENOSPC) { 3925 err = ret; 3926 WARN_ON(1); 3927 break; 3928 } 3929 rc->commit_transaction = 1; 3930 } 3931 3932 if (rc->commit_transaction) { 3933 rc->commit_transaction = 0; 3934 ret = btrfs_commit_transaction(trans, rc->extent_root); 3935 BUG_ON(ret); 3936 } else { 3937 btrfs_end_transaction_throttle(trans, rc->extent_root); 3938 btrfs_btree_balance_dirty(rc->extent_root); 3939 } 3940 trans = NULL; 3941 3942 if (rc->stage == MOVE_DATA_EXTENTS && 3943 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3944 rc->found_file_extent = 1; 3945 ret = relocate_data_extent(rc->data_inode, 3946 &key, &rc->cluster); 3947 if (ret < 0) { 3948 err = ret; 3949 break; 3950 } 3951 } 3952 } 3953 if (trans && progress && err == -ENOSPC) { 3954 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 3955 rc->block_group->flags); 3956 if (ret == 0) { 3957 err = 0; 3958 progress = 0; 3959 goto restart; 3960 } 3961 } 3962 3963 btrfs_release_path(path); 3964 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 3965 GFP_NOFS); 3966 3967 if (trans) { 3968 btrfs_end_transaction_throttle(trans, rc->extent_root); 3969 btrfs_btree_balance_dirty(rc->extent_root); 3970 } 3971 3972 if (!err) { 3973 ret = relocate_file_extent_cluster(rc->data_inode, 3974 &rc->cluster); 3975 if (ret < 0) 3976 err = ret; 3977 } 3978 3979 rc->create_reloc_tree = 0; 3980 set_reloc_control(rc); 3981 3982 backref_cache_cleanup(&rc->backref_cache); 3983 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3984 3985 err = prepare_to_merge(rc, err); 3986 3987 merge_reloc_roots(rc); 3988 3989 rc->merge_reloc_tree = 0; 3990 unset_reloc_control(rc); 3991 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3992 3993 /* get rid of pinned extents */ 3994 trans = btrfs_join_transaction(rc->extent_root); 3995 if (IS_ERR(trans)) 3996 err = PTR_ERR(trans); 3997 else 3998 btrfs_commit_transaction(trans, rc->extent_root); 3999 out_free: 4000 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4001 btrfs_free_path(path); 4002 return err; 4003 } 4004 4005 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4006 struct btrfs_root *root, u64 objectid) 4007 { 4008 struct btrfs_path *path; 4009 struct btrfs_inode_item *item; 4010 struct extent_buffer *leaf; 4011 int ret; 4012 4013 path = btrfs_alloc_path(); 4014 if (!path) 4015 return -ENOMEM; 4016 4017 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4018 if (ret) 4019 goto out; 4020 4021 leaf = path->nodes[0]; 4022 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4023 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4024 btrfs_set_inode_generation(leaf, item, 1); 4025 btrfs_set_inode_size(leaf, item, 0); 4026 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4027 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4028 BTRFS_INODE_PREALLOC); 4029 btrfs_mark_buffer_dirty(leaf); 4030 btrfs_release_path(path); 4031 out: 4032 btrfs_free_path(path); 4033 return ret; 4034 } 4035 4036 /* 4037 * helper to create inode for data relocation. 4038 * the inode is in data relocation tree and its link count is 0 4039 */ 4040 static noinline_for_stack 4041 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4042 struct btrfs_block_group_cache *group) 4043 { 4044 struct inode *inode = NULL; 4045 struct btrfs_trans_handle *trans; 4046 struct btrfs_root *root; 4047 struct btrfs_key key; 4048 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4049 int err = 0; 4050 4051 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4052 if (IS_ERR(root)) 4053 return ERR_CAST(root); 4054 4055 trans = btrfs_start_transaction(root, 6); 4056 if (IS_ERR(trans)) 4057 return ERR_CAST(trans); 4058 4059 err = btrfs_find_free_objectid(root, &objectid); 4060 if (err) 4061 goto out; 4062 4063 err = __insert_orphan_inode(trans, root, objectid); 4064 BUG_ON(err); 4065 4066 key.objectid = objectid; 4067 key.type = BTRFS_INODE_ITEM_KEY; 4068 key.offset = 0; 4069 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4070 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4071 BTRFS_I(inode)->index_cnt = group->key.objectid; 4072 4073 err = btrfs_orphan_add(trans, inode); 4074 out: 4075 btrfs_end_transaction(trans, root); 4076 btrfs_btree_balance_dirty(root); 4077 if (err) { 4078 if (inode) 4079 iput(inode); 4080 inode = ERR_PTR(err); 4081 } 4082 return inode; 4083 } 4084 4085 static struct reloc_control *alloc_reloc_control(void) 4086 { 4087 struct reloc_control *rc; 4088 4089 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4090 if (!rc) 4091 return NULL; 4092 4093 INIT_LIST_HEAD(&rc->reloc_roots); 4094 backref_cache_init(&rc->backref_cache); 4095 mapping_tree_init(&rc->reloc_root_tree); 4096 extent_io_tree_init(&rc->processed_blocks, NULL); 4097 return rc; 4098 } 4099 4100 /* 4101 * function to relocate all extents in a block group. 4102 */ 4103 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4104 { 4105 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4106 struct reloc_control *rc; 4107 struct inode *inode; 4108 struct btrfs_path *path; 4109 int ret; 4110 int rw = 0; 4111 int err = 0; 4112 4113 rc = alloc_reloc_control(); 4114 if (!rc) 4115 return -ENOMEM; 4116 4117 rc->extent_root = extent_root; 4118 4119 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4120 BUG_ON(!rc->block_group); 4121 4122 if (!rc->block_group->ro) { 4123 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4124 if (ret) { 4125 err = ret; 4126 goto out; 4127 } 4128 rw = 1; 4129 } 4130 4131 path = btrfs_alloc_path(); 4132 if (!path) { 4133 err = -ENOMEM; 4134 goto out; 4135 } 4136 4137 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4138 path); 4139 btrfs_free_path(path); 4140 4141 if (!IS_ERR(inode)) 4142 ret = delete_block_group_cache(fs_info, inode, 0); 4143 else 4144 ret = PTR_ERR(inode); 4145 4146 if (ret && ret != -ENOENT) { 4147 err = ret; 4148 goto out; 4149 } 4150 4151 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4152 if (IS_ERR(rc->data_inode)) { 4153 err = PTR_ERR(rc->data_inode); 4154 rc->data_inode = NULL; 4155 goto out; 4156 } 4157 4158 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4159 (unsigned long long)rc->block_group->key.objectid, 4160 (unsigned long long)rc->block_group->flags); 4161 4162 ret = btrfs_start_delalloc_inodes(fs_info->tree_root, 0); 4163 if (ret < 0) { 4164 err = ret; 4165 goto out; 4166 } 4167 btrfs_wait_ordered_extents(fs_info->tree_root, 0); 4168 4169 while (1) { 4170 mutex_lock(&fs_info->cleaner_mutex); 4171 ret = relocate_block_group(rc); 4172 mutex_unlock(&fs_info->cleaner_mutex); 4173 if (ret < 0) { 4174 err = ret; 4175 goto out; 4176 } 4177 4178 if (rc->extents_found == 0) 4179 break; 4180 4181 printk(KERN_INFO "btrfs: found %llu extents\n", 4182 (unsigned long long)rc->extents_found); 4183 4184 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4185 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4186 invalidate_mapping_pages(rc->data_inode->i_mapping, 4187 0, -1); 4188 rc->stage = UPDATE_DATA_PTRS; 4189 } 4190 } 4191 4192 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4193 rc->block_group->key.objectid, 4194 rc->block_group->key.objectid + 4195 rc->block_group->key.offset - 1); 4196 4197 WARN_ON(rc->block_group->pinned > 0); 4198 WARN_ON(rc->block_group->reserved > 0); 4199 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4200 out: 4201 if (err && rw) 4202 btrfs_set_block_group_rw(extent_root, rc->block_group); 4203 iput(rc->data_inode); 4204 btrfs_put_block_group(rc->block_group); 4205 kfree(rc); 4206 return err; 4207 } 4208 4209 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4210 { 4211 struct btrfs_trans_handle *trans; 4212 int ret, err; 4213 4214 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4215 if (IS_ERR(trans)) 4216 return PTR_ERR(trans); 4217 4218 memset(&root->root_item.drop_progress, 0, 4219 sizeof(root->root_item.drop_progress)); 4220 root->root_item.drop_level = 0; 4221 btrfs_set_root_refs(&root->root_item, 0); 4222 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4223 &root->root_key, &root->root_item); 4224 4225 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4226 if (err) 4227 return err; 4228 return ret; 4229 } 4230 4231 /* 4232 * recover relocation interrupted by system crash. 4233 * 4234 * this function resumes merging reloc trees with corresponding fs trees. 4235 * this is important for keeping the sharing of tree blocks 4236 */ 4237 int btrfs_recover_relocation(struct btrfs_root *root) 4238 { 4239 LIST_HEAD(reloc_roots); 4240 struct btrfs_key key; 4241 struct btrfs_root *fs_root; 4242 struct btrfs_root *reloc_root; 4243 struct btrfs_path *path; 4244 struct extent_buffer *leaf; 4245 struct reloc_control *rc = NULL; 4246 struct btrfs_trans_handle *trans; 4247 int ret; 4248 int err = 0; 4249 4250 path = btrfs_alloc_path(); 4251 if (!path) 4252 return -ENOMEM; 4253 path->reada = -1; 4254 4255 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4256 key.type = BTRFS_ROOT_ITEM_KEY; 4257 key.offset = (u64)-1; 4258 4259 while (1) { 4260 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4261 path, 0, 0); 4262 if (ret < 0) { 4263 err = ret; 4264 goto out; 4265 } 4266 if (ret > 0) { 4267 if (path->slots[0] == 0) 4268 break; 4269 path->slots[0]--; 4270 } 4271 leaf = path->nodes[0]; 4272 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4273 btrfs_release_path(path); 4274 4275 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4276 key.type != BTRFS_ROOT_ITEM_KEY) 4277 break; 4278 4279 reloc_root = btrfs_read_fs_root_no_radix(root, &key); 4280 if (IS_ERR(reloc_root)) { 4281 err = PTR_ERR(reloc_root); 4282 goto out; 4283 } 4284 4285 list_add(&reloc_root->root_list, &reloc_roots); 4286 4287 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4288 fs_root = read_fs_root(root->fs_info, 4289 reloc_root->root_key.offset); 4290 if (IS_ERR(fs_root)) { 4291 ret = PTR_ERR(fs_root); 4292 if (ret != -ENOENT) { 4293 err = ret; 4294 goto out; 4295 } 4296 ret = mark_garbage_root(reloc_root); 4297 if (ret < 0) { 4298 err = ret; 4299 goto out; 4300 } 4301 } 4302 } 4303 4304 if (key.offset == 0) 4305 break; 4306 4307 key.offset--; 4308 } 4309 btrfs_release_path(path); 4310 4311 if (list_empty(&reloc_roots)) 4312 goto out; 4313 4314 rc = alloc_reloc_control(); 4315 if (!rc) { 4316 err = -ENOMEM; 4317 goto out; 4318 } 4319 4320 rc->extent_root = root->fs_info->extent_root; 4321 4322 set_reloc_control(rc); 4323 4324 trans = btrfs_join_transaction(rc->extent_root); 4325 if (IS_ERR(trans)) { 4326 unset_reloc_control(rc); 4327 err = PTR_ERR(trans); 4328 goto out_free; 4329 } 4330 4331 rc->merge_reloc_tree = 1; 4332 4333 while (!list_empty(&reloc_roots)) { 4334 reloc_root = list_entry(reloc_roots.next, 4335 struct btrfs_root, root_list); 4336 list_del(&reloc_root->root_list); 4337 4338 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4339 list_add_tail(&reloc_root->root_list, 4340 &rc->reloc_roots); 4341 continue; 4342 } 4343 4344 fs_root = read_fs_root(root->fs_info, 4345 reloc_root->root_key.offset); 4346 if (IS_ERR(fs_root)) { 4347 err = PTR_ERR(fs_root); 4348 goto out_free; 4349 } 4350 4351 err = __add_reloc_root(reloc_root); 4352 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4353 fs_root->reloc_root = reloc_root; 4354 } 4355 4356 err = btrfs_commit_transaction(trans, rc->extent_root); 4357 if (err) 4358 goto out_free; 4359 4360 merge_reloc_roots(rc); 4361 4362 unset_reloc_control(rc); 4363 4364 trans = btrfs_join_transaction(rc->extent_root); 4365 if (IS_ERR(trans)) 4366 err = PTR_ERR(trans); 4367 else 4368 err = btrfs_commit_transaction(trans, rc->extent_root); 4369 out_free: 4370 kfree(rc); 4371 out: 4372 if (!list_empty(&reloc_roots)) 4373 free_reloc_roots(&reloc_roots); 4374 4375 btrfs_free_path(path); 4376 4377 if (err == 0) { 4378 /* cleanup orphan inode in data relocation tree */ 4379 fs_root = read_fs_root(root->fs_info, 4380 BTRFS_DATA_RELOC_TREE_OBJECTID); 4381 if (IS_ERR(fs_root)) 4382 err = PTR_ERR(fs_root); 4383 else 4384 err = btrfs_orphan_cleanup(fs_root); 4385 } 4386 return err; 4387 } 4388 4389 /* 4390 * helper to add ordered checksum for data relocation. 4391 * 4392 * cloning checksum properly handles the nodatasum extents. 4393 * it also saves CPU time to re-calculate the checksum. 4394 */ 4395 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4396 { 4397 struct btrfs_ordered_sum *sums; 4398 struct btrfs_sector_sum *sector_sum; 4399 struct btrfs_ordered_extent *ordered; 4400 struct btrfs_root *root = BTRFS_I(inode)->root; 4401 size_t offset; 4402 int ret; 4403 u64 disk_bytenr; 4404 LIST_HEAD(list); 4405 4406 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4407 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4408 4409 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4410 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4411 disk_bytenr + len - 1, &list, 0); 4412 if (ret) 4413 goto out; 4414 4415 while (!list_empty(&list)) { 4416 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4417 list_del_init(&sums->list); 4418 4419 sector_sum = sums->sums; 4420 sums->bytenr = ordered->start; 4421 4422 offset = 0; 4423 while (offset < sums->len) { 4424 sector_sum->bytenr += ordered->start - disk_bytenr; 4425 sector_sum++; 4426 offset += root->sectorsize; 4427 } 4428 4429 btrfs_add_ordered_sum(inode, ordered, sums); 4430 } 4431 out: 4432 btrfs_put_ordered_extent(ordered); 4433 return ret; 4434 } 4435 4436 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4437 struct btrfs_root *root, struct extent_buffer *buf, 4438 struct extent_buffer *cow) 4439 { 4440 struct reloc_control *rc; 4441 struct backref_node *node; 4442 int first_cow = 0; 4443 int level; 4444 int ret; 4445 4446 rc = root->fs_info->reloc_ctl; 4447 if (!rc) 4448 return; 4449 4450 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4451 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4452 4453 level = btrfs_header_level(buf); 4454 if (btrfs_header_generation(buf) <= 4455 btrfs_root_last_snapshot(&root->root_item)) 4456 first_cow = 1; 4457 4458 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4459 rc->create_reloc_tree) { 4460 WARN_ON(!first_cow && level == 0); 4461 4462 node = rc->backref_cache.path[level]; 4463 BUG_ON(node->bytenr != buf->start && 4464 node->new_bytenr != buf->start); 4465 4466 drop_node_buffer(node); 4467 extent_buffer_get(cow); 4468 node->eb = cow; 4469 node->new_bytenr = cow->start; 4470 4471 if (!node->pending) { 4472 list_move_tail(&node->list, 4473 &rc->backref_cache.pending[level]); 4474 node->pending = 1; 4475 } 4476 4477 if (first_cow) 4478 __mark_block_processed(rc, node); 4479 4480 if (first_cow && level > 0) 4481 rc->nodes_relocated += buf->len; 4482 } 4483 4484 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4485 ret = replace_file_extents(trans, rc, root, cow); 4486 BUG_ON(ret); 4487 } 4488 } 4489 4490 /* 4491 * called before creating snapshot. it calculates metadata reservation 4492 * requried for relocating tree blocks in the snapshot 4493 */ 4494 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4495 struct btrfs_pending_snapshot *pending, 4496 u64 *bytes_to_reserve) 4497 { 4498 struct btrfs_root *root; 4499 struct reloc_control *rc; 4500 4501 root = pending->root; 4502 if (!root->reloc_root) 4503 return; 4504 4505 rc = root->fs_info->reloc_ctl; 4506 if (!rc->merge_reloc_tree) 4507 return; 4508 4509 root = root->reloc_root; 4510 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4511 /* 4512 * relocation is in the stage of merging trees. the space 4513 * used by merging a reloc tree is twice the size of 4514 * relocated tree nodes in the worst case. half for cowing 4515 * the reloc tree, half for cowing the fs tree. the space 4516 * used by cowing the reloc tree will be freed after the 4517 * tree is dropped. if we create snapshot, cowing the fs 4518 * tree may use more space than it frees. so we need 4519 * reserve extra space. 4520 */ 4521 *bytes_to_reserve += rc->nodes_relocated; 4522 } 4523 4524 /* 4525 * called after snapshot is created. migrate block reservation 4526 * and create reloc root for the newly created snapshot 4527 */ 4528 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4529 struct btrfs_pending_snapshot *pending) 4530 { 4531 struct btrfs_root *root = pending->root; 4532 struct btrfs_root *reloc_root; 4533 struct btrfs_root *new_root; 4534 struct reloc_control *rc; 4535 int ret; 4536 4537 if (!root->reloc_root) 4538 return 0; 4539 4540 rc = root->fs_info->reloc_ctl; 4541 rc->merging_rsv_size += rc->nodes_relocated; 4542 4543 if (rc->merge_reloc_tree) { 4544 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4545 rc->block_rsv, 4546 rc->nodes_relocated); 4547 if (ret) 4548 return ret; 4549 } 4550 4551 new_root = pending->snap; 4552 reloc_root = create_reloc_root(trans, root->reloc_root, 4553 new_root->root_key.objectid); 4554 if (IS_ERR(reloc_root)) 4555 return PTR_ERR(reloc_root); 4556 4557 ret = __add_reloc_root(reloc_root); 4558 BUG_ON(ret < 0); 4559 new_root->reloc_root = reloc_root; 4560 4561 if (rc->create_reloc_tree) 4562 ret = clone_backref_node(trans, rc, root, reloc_root); 4563 return ret; 4564 } 4565