xref: /openbmc/linux/fs/btrfs/relocation.c (revision bd329f028f1cd51c7623c326147af07c6d832193)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 #include "qgroup.h"
35 #include "print-tree.h"
36 
37 /*
38  * backref_node, mapping_node and tree_block start with this
39  */
40 struct tree_entry {
41 	struct rb_node rb_node;
42 	u64 bytenr;
43 };
44 
45 /*
46  * present a tree block in the backref cache
47  */
48 struct backref_node {
49 	struct rb_node rb_node;
50 	u64 bytenr;
51 
52 	u64 new_bytenr;
53 	/* objectid of tree block owner, can be not uptodate */
54 	u64 owner;
55 	/* link to pending, changed or detached list */
56 	struct list_head list;
57 	/* list of upper level blocks reference this block */
58 	struct list_head upper;
59 	/* list of child blocks in the cache */
60 	struct list_head lower;
61 	/* NULL if this node is not tree root */
62 	struct btrfs_root *root;
63 	/* extent buffer got by COW the block */
64 	struct extent_buffer *eb;
65 	/* level of tree block */
66 	unsigned int level:8;
67 	/* is the block in non-reference counted tree */
68 	unsigned int cowonly:1;
69 	/* 1 if no child node in the cache */
70 	unsigned int lowest:1;
71 	/* is the extent buffer locked */
72 	unsigned int locked:1;
73 	/* has the block been processed */
74 	unsigned int processed:1;
75 	/* have backrefs of this block been checked */
76 	unsigned int checked:1;
77 	/*
78 	 * 1 if corresponding block has been cowed but some upper
79 	 * level block pointers may not point to the new location
80 	 */
81 	unsigned int pending:1;
82 	/*
83 	 * 1 if the backref node isn't connected to any other
84 	 * backref node.
85 	 */
86 	unsigned int detached:1;
87 };
88 
89 /*
90  * present a block pointer in the backref cache
91  */
92 struct backref_edge {
93 	struct list_head list[2];
94 	struct backref_node *node[2];
95 };
96 
97 #define LOWER	0
98 #define UPPER	1
99 #define RELOCATION_RESERVED_NODES	256
100 
101 struct backref_cache {
102 	/* red black tree of all backref nodes in the cache */
103 	struct rb_root rb_root;
104 	/* for passing backref nodes to btrfs_reloc_cow_block */
105 	struct backref_node *path[BTRFS_MAX_LEVEL];
106 	/*
107 	 * list of blocks that have been cowed but some block
108 	 * pointers in upper level blocks may not reflect the
109 	 * new location
110 	 */
111 	struct list_head pending[BTRFS_MAX_LEVEL];
112 	/* list of backref nodes with no child node */
113 	struct list_head leaves;
114 	/* list of blocks that have been cowed in current transaction */
115 	struct list_head changed;
116 	/* list of detached backref node. */
117 	struct list_head detached;
118 
119 	u64 last_trans;
120 
121 	int nr_nodes;
122 	int nr_edges;
123 };
124 
125 /*
126  * map address of tree root to tree
127  */
128 struct mapping_node {
129 	struct rb_node rb_node;
130 	u64 bytenr;
131 	void *data;
132 };
133 
134 struct mapping_tree {
135 	struct rb_root rb_root;
136 	spinlock_t lock;
137 };
138 
139 /*
140  * present a tree block to process
141  */
142 struct tree_block {
143 	struct rb_node rb_node;
144 	u64 bytenr;
145 	struct btrfs_key key;
146 	unsigned int level:8;
147 	unsigned int key_ready:1;
148 };
149 
150 #define MAX_EXTENTS 128
151 
152 struct file_extent_cluster {
153 	u64 start;
154 	u64 end;
155 	u64 boundary[MAX_EXTENTS];
156 	unsigned int nr;
157 };
158 
159 struct reloc_control {
160 	/* block group to relocate */
161 	struct btrfs_block_group_cache *block_group;
162 	/* extent tree */
163 	struct btrfs_root *extent_root;
164 	/* inode for moving data */
165 	struct inode *data_inode;
166 
167 	struct btrfs_block_rsv *block_rsv;
168 
169 	struct backref_cache backref_cache;
170 
171 	struct file_extent_cluster cluster;
172 	/* tree blocks have been processed */
173 	struct extent_io_tree processed_blocks;
174 	/* map start of tree root to corresponding reloc tree */
175 	struct mapping_tree reloc_root_tree;
176 	/* list of reloc trees */
177 	struct list_head reloc_roots;
178 	/* size of metadata reservation for merging reloc trees */
179 	u64 merging_rsv_size;
180 	/* size of relocated tree nodes */
181 	u64 nodes_relocated;
182 	/* reserved size for block group relocation*/
183 	u64 reserved_bytes;
184 
185 	u64 search_start;
186 	u64 extents_found;
187 
188 	unsigned int stage:8;
189 	unsigned int create_reloc_tree:1;
190 	unsigned int merge_reloc_tree:1;
191 	unsigned int found_file_extent:1;
192 };
193 
194 /* stages of data relocation */
195 #define MOVE_DATA_EXTENTS	0
196 #define UPDATE_DATA_PTRS	1
197 
198 static void remove_backref_node(struct backref_cache *cache,
199 				struct backref_node *node);
200 static void __mark_block_processed(struct reloc_control *rc,
201 				   struct backref_node *node);
202 
203 static void mapping_tree_init(struct mapping_tree *tree)
204 {
205 	tree->rb_root = RB_ROOT;
206 	spin_lock_init(&tree->lock);
207 }
208 
209 static void backref_cache_init(struct backref_cache *cache)
210 {
211 	int i;
212 	cache->rb_root = RB_ROOT;
213 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
214 		INIT_LIST_HEAD(&cache->pending[i]);
215 	INIT_LIST_HEAD(&cache->changed);
216 	INIT_LIST_HEAD(&cache->detached);
217 	INIT_LIST_HEAD(&cache->leaves);
218 }
219 
220 static void backref_cache_cleanup(struct backref_cache *cache)
221 {
222 	struct backref_node *node;
223 	int i;
224 
225 	while (!list_empty(&cache->detached)) {
226 		node = list_entry(cache->detached.next,
227 				  struct backref_node, list);
228 		remove_backref_node(cache, node);
229 	}
230 
231 	while (!list_empty(&cache->leaves)) {
232 		node = list_entry(cache->leaves.next,
233 				  struct backref_node, lower);
234 		remove_backref_node(cache, node);
235 	}
236 
237 	cache->last_trans = 0;
238 
239 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
240 		ASSERT(list_empty(&cache->pending[i]));
241 	ASSERT(list_empty(&cache->changed));
242 	ASSERT(list_empty(&cache->detached));
243 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
244 	ASSERT(!cache->nr_nodes);
245 	ASSERT(!cache->nr_edges);
246 }
247 
248 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
249 {
250 	struct backref_node *node;
251 
252 	node = kzalloc(sizeof(*node), GFP_NOFS);
253 	if (node) {
254 		INIT_LIST_HEAD(&node->list);
255 		INIT_LIST_HEAD(&node->upper);
256 		INIT_LIST_HEAD(&node->lower);
257 		RB_CLEAR_NODE(&node->rb_node);
258 		cache->nr_nodes++;
259 	}
260 	return node;
261 }
262 
263 static void free_backref_node(struct backref_cache *cache,
264 			      struct backref_node *node)
265 {
266 	if (node) {
267 		cache->nr_nodes--;
268 		kfree(node);
269 	}
270 }
271 
272 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
273 {
274 	struct backref_edge *edge;
275 
276 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
277 	if (edge)
278 		cache->nr_edges++;
279 	return edge;
280 }
281 
282 static void free_backref_edge(struct backref_cache *cache,
283 			      struct backref_edge *edge)
284 {
285 	if (edge) {
286 		cache->nr_edges--;
287 		kfree(edge);
288 	}
289 }
290 
291 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
292 				   struct rb_node *node)
293 {
294 	struct rb_node **p = &root->rb_node;
295 	struct rb_node *parent = NULL;
296 	struct tree_entry *entry;
297 
298 	while (*p) {
299 		parent = *p;
300 		entry = rb_entry(parent, struct tree_entry, rb_node);
301 
302 		if (bytenr < entry->bytenr)
303 			p = &(*p)->rb_left;
304 		else if (bytenr > entry->bytenr)
305 			p = &(*p)->rb_right;
306 		else
307 			return parent;
308 	}
309 
310 	rb_link_node(node, parent, p);
311 	rb_insert_color(node, root);
312 	return NULL;
313 }
314 
315 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
316 {
317 	struct rb_node *n = root->rb_node;
318 	struct tree_entry *entry;
319 
320 	while (n) {
321 		entry = rb_entry(n, struct tree_entry, rb_node);
322 
323 		if (bytenr < entry->bytenr)
324 			n = n->rb_left;
325 		else if (bytenr > entry->bytenr)
326 			n = n->rb_right;
327 		else
328 			return n;
329 	}
330 	return NULL;
331 }
332 
333 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
334 {
335 
336 	struct btrfs_fs_info *fs_info = NULL;
337 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
338 					      rb_node);
339 	if (bnode->root)
340 		fs_info = bnode->root->fs_info;
341 	btrfs_panic(fs_info, errno,
342 		    "Inconsistency in backref cache found at offset %llu",
343 		    bytenr);
344 }
345 
346 /*
347  * walk up backref nodes until reach node presents tree root
348  */
349 static struct backref_node *walk_up_backref(struct backref_node *node,
350 					    struct backref_edge *edges[],
351 					    int *index)
352 {
353 	struct backref_edge *edge;
354 	int idx = *index;
355 
356 	while (!list_empty(&node->upper)) {
357 		edge = list_entry(node->upper.next,
358 				  struct backref_edge, list[LOWER]);
359 		edges[idx++] = edge;
360 		node = edge->node[UPPER];
361 	}
362 	BUG_ON(node->detached);
363 	*index = idx;
364 	return node;
365 }
366 
367 /*
368  * walk down backref nodes to find start of next reference path
369  */
370 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
371 					      int *index)
372 {
373 	struct backref_edge *edge;
374 	struct backref_node *lower;
375 	int idx = *index;
376 
377 	while (idx > 0) {
378 		edge = edges[idx - 1];
379 		lower = edge->node[LOWER];
380 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
381 			idx--;
382 			continue;
383 		}
384 		edge = list_entry(edge->list[LOWER].next,
385 				  struct backref_edge, list[LOWER]);
386 		edges[idx - 1] = edge;
387 		*index = idx;
388 		return edge->node[UPPER];
389 	}
390 	*index = 0;
391 	return NULL;
392 }
393 
394 static void unlock_node_buffer(struct backref_node *node)
395 {
396 	if (node->locked) {
397 		btrfs_tree_unlock(node->eb);
398 		node->locked = 0;
399 	}
400 }
401 
402 static void drop_node_buffer(struct backref_node *node)
403 {
404 	if (node->eb) {
405 		unlock_node_buffer(node);
406 		free_extent_buffer(node->eb);
407 		node->eb = NULL;
408 	}
409 }
410 
411 static void drop_backref_node(struct backref_cache *tree,
412 			      struct backref_node *node)
413 {
414 	BUG_ON(!list_empty(&node->upper));
415 
416 	drop_node_buffer(node);
417 	list_del(&node->list);
418 	list_del(&node->lower);
419 	if (!RB_EMPTY_NODE(&node->rb_node))
420 		rb_erase(&node->rb_node, &tree->rb_root);
421 	free_backref_node(tree, node);
422 }
423 
424 /*
425  * remove a backref node from the backref cache
426  */
427 static void remove_backref_node(struct backref_cache *cache,
428 				struct backref_node *node)
429 {
430 	struct backref_node *upper;
431 	struct backref_edge *edge;
432 
433 	if (!node)
434 		return;
435 
436 	BUG_ON(!node->lowest && !node->detached);
437 	while (!list_empty(&node->upper)) {
438 		edge = list_entry(node->upper.next, struct backref_edge,
439 				  list[LOWER]);
440 		upper = edge->node[UPPER];
441 		list_del(&edge->list[LOWER]);
442 		list_del(&edge->list[UPPER]);
443 		free_backref_edge(cache, edge);
444 
445 		if (RB_EMPTY_NODE(&upper->rb_node)) {
446 			BUG_ON(!list_empty(&node->upper));
447 			drop_backref_node(cache, node);
448 			node = upper;
449 			node->lowest = 1;
450 			continue;
451 		}
452 		/*
453 		 * add the node to leaf node list if no other
454 		 * child block cached.
455 		 */
456 		if (list_empty(&upper->lower)) {
457 			list_add_tail(&upper->lower, &cache->leaves);
458 			upper->lowest = 1;
459 		}
460 	}
461 
462 	drop_backref_node(cache, node);
463 }
464 
465 static void update_backref_node(struct backref_cache *cache,
466 				struct backref_node *node, u64 bytenr)
467 {
468 	struct rb_node *rb_node;
469 	rb_erase(&node->rb_node, &cache->rb_root);
470 	node->bytenr = bytenr;
471 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
472 	if (rb_node)
473 		backref_tree_panic(rb_node, -EEXIST, bytenr);
474 }
475 
476 /*
477  * update backref cache after a transaction commit
478  */
479 static int update_backref_cache(struct btrfs_trans_handle *trans,
480 				struct backref_cache *cache)
481 {
482 	struct backref_node *node;
483 	int level = 0;
484 
485 	if (cache->last_trans == 0) {
486 		cache->last_trans = trans->transid;
487 		return 0;
488 	}
489 
490 	if (cache->last_trans == trans->transid)
491 		return 0;
492 
493 	/*
494 	 * detached nodes are used to avoid unnecessary backref
495 	 * lookup. transaction commit changes the extent tree.
496 	 * so the detached nodes are no longer useful.
497 	 */
498 	while (!list_empty(&cache->detached)) {
499 		node = list_entry(cache->detached.next,
500 				  struct backref_node, list);
501 		remove_backref_node(cache, node);
502 	}
503 
504 	while (!list_empty(&cache->changed)) {
505 		node = list_entry(cache->changed.next,
506 				  struct backref_node, list);
507 		list_del_init(&node->list);
508 		BUG_ON(node->pending);
509 		update_backref_node(cache, node, node->new_bytenr);
510 	}
511 
512 	/*
513 	 * some nodes can be left in the pending list if there were
514 	 * errors during processing the pending nodes.
515 	 */
516 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
517 		list_for_each_entry(node, &cache->pending[level], list) {
518 			BUG_ON(!node->pending);
519 			if (node->bytenr == node->new_bytenr)
520 				continue;
521 			update_backref_node(cache, node, node->new_bytenr);
522 		}
523 	}
524 
525 	cache->last_trans = 0;
526 	return 1;
527 }
528 
529 
530 static int should_ignore_root(struct btrfs_root *root)
531 {
532 	struct btrfs_root *reloc_root;
533 
534 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
535 		return 0;
536 
537 	reloc_root = root->reloc_root;
538 	if (!reloc_root)
539 		return 0;
540 
541 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
542 	    root->fs_info->running_transaction->transid - 1)
543 		return 0;
544 	/*
545 	 * if there is reloc tree and it was created in previous
546 	 * transaction backref lookup can find the reloc tree,
547 	 * so backref node for the fs tree root is useless for
548 	 * relocation.
549 	 */
550 	return 1;
551 }
552 /*
553  * find reloc tree by address of tree root
554  */
555 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
556 					  u64 bytenr)
557 {
558 	struct rb_node *rb_node;
559 	struct mapping_node *node;
560 	struct btrfs_root *root = NULL;
561 
562 	spin_lock(&rc->reloc_root_tree.lock);
563 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
564 	if (rb_node) {
565 		node = rb_entry(rb_node, struct mapping_node, rb_node);
566 		root = (struct btrfs_root *)node->data;
567 	}
568 	spin_unlock(&rc->reloc_root_tree.lock);
569 	return root;
570 }
571 
572 static int is_cowonly_root(u64 root_objectid)
573 {
574 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
576 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
579 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
580 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
581 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
582 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
583 		return 1;
584 	return 0;
585 }
586 
587 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
588 					u64 root_objectid)
589 {
590 	struct btrfs_key key;
591 
592 	key.objectid = root_objectid;
593 	key.type = BTRFS_ROOT_ITEM_KEY;
594 	if (is_cowonly_root(root_objectid))
595 		key.offset = 0;
596 	else
597 		key.offset = (u64)-1;
598 
599 	return btrfs_get_fs_root(fs_info, &key, false);
600 }
601 
602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
603 static noinline_for_stack
604 struct btrfs_root *find_tree_root(struct reloc_control *rc,
605 				  struct extent_buffer *leaf,
606 				  struct btrfs_extent_ref_v0 *ref0)
607 {
608 	struct btrfs_root *root;
609 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
610 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
611 
612 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
613 
614 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
615 	BUG_ON(IS_ERR(root));
616 
617 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
618 	    generation != btrfs_root_generation(&root->root_item))
619 		return NULL;
620 
621 	return root;
622 }
623 #endif
624 
625 static noinline_for_stack
626 int find_inline_backref(struct extent_buffer *leaf, int slot,
627 			unsigned long *ptr, unsigned long *end)
628 {
629 	struct btrfs_key key;
630 	struct btrfs_extent_item *ei;
631 	struct btrfs_tree_block_info *bi;
632 	u32 item_size;
633 
634 	btrfs_item_key_to_cpu(leaf, &key, slot);
635 
636 	item_size = btrfs_item_size_nr(leaf, slot);
637 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
638 	if (item_size < sizeof(*ei)) {
639 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
640 		return 1;
641 	}
642 #endif
643 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
644 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
645 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
646 
647 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
648 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
649 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
650 		return 1;
651 	}
652 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
653 	    item_size <= sizeof(*ei)) {
654 		WARN_ON(item_size < sizeof(*ei));
655 		return 1;
656 	}
657 
658 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
659 		bi = (struct btrfs_tree_block_info *)(ei + 1);
660 		*ptr = (unsigned long)(bi + 1);
661 	} else {
662 		*ptr = (unsigned long)(ei + 1);
663 	}
664 	*end = (unsigned long)ei + item_size;
665 	return 0;
666 }
667 
668 /*
669  * build backref tree for a given tree block. root of the backref tree
670  * corresponds the tree block, leaves of the backref tree correspond
671  * roots of b-trees that reference the tree block.
672  *
673  * the basic idea of this function is check backrefs of a given block
674  * to find upper level blocks that reference the block, and then check
675  * backrefs of these upper level blocks recursively. the recursion stop
676  * when tree root is reached or backrefs for the block is cached.
677  *
678  * NOTE: if we find backrefs for a block are cached, we know backrefs
679  * for all upper level blocks that directly/indirectly reference the
680  * block are also cached.
681  */
682 static noinline_for_stack
683 struct backref_node *build_backref_tree(struct reloc_control *rc,
684 					struct btrfs_key *node_key,
685 					int level, u64 bytenr)
686 {
687 	struct backref_cache *cache = &rc->backref_cache;
688 	struct btrfs_path *path1;
689 	struct btrfs_path *path2;
690 	struct extent_buffer *eb;
691 	struct btrfs_root *root;
692 	struct backref_node *cur;
693 	struct backref_node *upper;
694 	struct backref_node *lower;
695 	struct backref_node *node = NULL;
696 	struct backref_node *exist = NULL;
697 	struct backref_edge *edge;
698 	struct rb_node *rb_node;
699 	struct btrfs_key key;
700 	unsigned long end;
701 	unsigned long ptr;
702 	LIST_HEAD(list);
703 	LIST_HEAD(useless);
704 	int cowonly;
705 	int ret;
706 	int err = 0;
707 	bool need_check = true;
708 
709 	path1 = btrfs_alloc_path();
710 	path2 = btrfs_alloc_path();
711 	if (!path1 || !path2) {
712 		err = -ENOMEM;
713 		goto out;
714 	}
715 	path1->reada = READA_FORWARD;
716 	path2->reada = READA_FORWARD;
717 
718 	node = alloc_backref_node(cache);
719 	if (!node) {
720 		err = -ENOMEM;
721 		goto out;
722 	}
723 
724 	node->bytenr = bytenr;
725 	node->level = level;
726 	node->lowest = 1;
727 	cur = node;
728 again:
729 	end = 0;
730 	ptr = 0;
731 	key.objectid = cur->bytenr;
732 	key.type = BTRFS_METADATA_ITEM_KEY;
733 	key.offset = (u64)-1;
734 
735 	path1->search_commit_root = 1;
736 	path1->skip_locking = 1;
737 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
738 				0, 0);
739 	if (ret < 0) {
740 		err = ret;
741 		goto out;
742 	}
743 	ASSERT(ret);
744 	ASSERT(path1->slots[0]);
745 
746 	path1->slots[0]--;
747 
748 	WARN_ON(cur->checked);
749 	if (!list_empty(&cur->upper)) {
750 		/*
751 		 * the backref was added previously when processing
752 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
753 		 */
754 		ASSERT(list_is_singular(&cur->upper));
755 		edge = list_entry(cur->upper.next, struct backref_edge,
756 				  list[LOWER]);
757 		ASSERT(list_empty(&edge->list[UPPER]));
758 		exist = edge->node[UPPER];
759 		/*
760 		 * add the upper level block to pending list if we need
761 		 * check its backrefs
762 		 */
763 		if (!exist->checked)
764 			list_add_tail(&edge->list[UPPER], &list);
765 	} else {
766 		exist = NULL;
767 	}
768 
769 	while (1) {
770 		cond_resched();
771 		eb = path1->nodes[0];
772 
773 		if (ptr >= end) {
774 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
775 				ret = btrfs_next_leaf(rc->extent_root, path1);
776 				if (ret < 0) {
777 					err = ret;
778 					goto out;
779 				}
780 				if (ret > 0)
781 					break;
782 				eb = path1->nodes[0];
783 			}
784 
785 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
786 			if (key.objectid != cur->bytenr) {
787 				WARN_ON(exist);
788 				break;
789 			}
790 
791 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
792 			    key.type == BTRFS_METADATA_ITEM_KEY) {
793 				ret = find_inline_backref(eb, path1->slots[0],
794 							  &ptr, &end);
795 				if (ret)
796 					goto next;
797 			}
798 		}
799 
800 		if (ptr < end) {
801 			/* update key for inline back ref */
802 			struct btrfs_extent_inline_ref *iref;
803 			int type;
804 			iref = (struct btrfs_extent_inline_ref *)ptr;
805 			type = btrfs_get_extent_inline_ref_type(eb, iref,
806 							BTRFS_REF_TYPE_BLOCK);
807 			if (type == BTRFS_REF_TYPE_INVALID) {
808 				err = -EINVAL;
809 				goto out;
810 			}
811 			key.type = type;
812 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
813 
814 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
815 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
816 		}
817 
818 		if (exist &&
819 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
820 		      exist->owner == key.offset) ||
821 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
822 		      exist->bytenr == key.offset))) {
823 			exist = NULL;
824 			goto next;
825 		}
826 
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
829 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
830 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
831 				struct btrfs_extent_ref_v0 *ref0;
832 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
833 						struct btrfs_extent_ref_v0);
834 				if (key.objectid == key.offset) {
835 					root = find_tree_root(rc, eb, ref0);
836 					if (root && !should_ignore_root(root))
837 						cur->root = root;
838 					else
839 						list_add(&cur->list, &useless);
840 					break;
841 				}
842 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
843 								      ref0)))
844 					cur->cowonly = 1;
845 			}
846 #else
847 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
848 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
849 #endif
850 			if (key.objectid == key.offset) {
851 				/*
852 				 * only root blocks of reloc trees use
853 				 * backref of this type.
854 				 */
855 				root = find_reloc_root(rc, cur->bytenr);
856 				ASSERT(root);
857 				cur->root = root;
858 				break;
859 			}
860 
861 			edge = alloc_backref_edge(cache);
862 			if (!edge) {
863 				err = -ENOMEM;
864 				goto out;
865 			}
866 			rb_node = tree_search(&cache->rb_root, key.offset);
867 			if (!rb_node) {
868 				upper = alloc_backref_node(cache);
869 				if (!upper) {
870 					free_backref_edge(cache, edge);
871 					err = -ENOMEM;
872 					goto out;
873 				}
874 				upper->bytenr = key.offset;
875 				upper->level = cur->level + 1;
876 				/*
877 				 *  backrefs for the upper level block isn't
878 				 *  cached, add the block to pending list
879 				 */
880 				list_add_tail(&edge->list[UPPER], &list);
881 			} else {
882 				upper = rb_entry(rb_node, struct backref_node,
883 						 rb_node);
884 				ASSERT(upper->checked);
885 				INIT_LIST_HEAD(&edge->list[UPPER]);
886 			}
887 			list_add_tail(&edge->list[LOWER], &cur->upper);
888 			edge->node[LOWER] = cur;
889 			edge->node[UPPER] = upper;
890 
891 			goto next;
892 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
893 			goto next;
894 		}
895 
896 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
897 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
898 		if (IS_ERR(root)) {
899 			err = PTR_ERR(root);
900 			goto out;
901 		}
902 
903 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
904 			cur->cowonly = 1;
905 
906 		if (btrfs_root_level(&root->root_item) == cur->level) {
907 			/* tree root */
908 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
909 			       cur->bytenr);
910 			if (should_ignore_root(root))
911 				list_add(&cur->list, &useless);
912 			else
913 				cur->root = root;
914 			break;
915 		}
916 
917 		level = cur->level + 1;
918 
919 		/*
920 		 * searching the tree to find upper level blocks
921 		 * reference the block.
922 		 */
923 		path2->search_commit_root = 1;
924 		path2->skip_locking = 1;
925 		path2->lowest_level = level;
926 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
927 		path2->lowest_level = 0;
928 		if (ret < 0) {
929 			err = ret;
930 			goto out;
931 		}
932 		if (ret > 0 && path2->slots[level] > 0)
933 			path2->slots[level]--;
934 
935 		eb = path2->nodes[level];
936 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
937 		    cur->bytenr) {
938 			btrfs_err(root->fs_info,
939 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
940 				  cur->bytenr, level - 1, root->objectid,
941 				  node_key->objectid, node_key->type,
942 				  node_key->offset);
943 			err = -ENOENT;
944 			goto out;
945 		}
946 		lower = cur;
947 		need_check = true;
948 		for (; level < BTRFS_MAX_LEVEL; level++) {
949 			if (!path2->nodes[level]) {
950 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
951 				       lower->bytenr);
952 				if (should_ignore_root(root))
953 					list_add(&lower->list, &useless);
954 				else
955 					lower->root = root;
956 				break;
957 			}
958 
959 			edge = alloc_backref_edge(cache);
960 			if (!edge) {
961 				err = -ENOMEM;
962 				goto out;
963 			}
964 
965 			eb = path2->nodes[level];
966 			rb_node = tree_search(&cache->rb_root, eb->start);
967 			if (!rb_node) {
968 				upper = alloc_backref_node(cache);
969 				if (!upper) {
970 					free_backref_edge(cache, edge);
971 					err = -ENOMEM;
972 					goto out;
973 				}
974 				upper->bytenr = eb->start;
975 				upper->owner = btrfs_header_owner(eb);
976 				upper->level = lower->level + 1;
977 				if (!test_bit(BTRFS_ROOT_REF_COWS,
978 					      &root->state))
979 					upper->cowonly = 1;
980 
981 				/*
982 				 * if we know the block isn't shared
983 				 * we can void checking its backrefs.
984 				 */
985 				if (btrfs_block_can_be_shared(root, eb))
986 					upper->checked = 0;
987 				else
988 					upper->checked = 1;
989 
990 				/*
991 				 * add the block to pending list if we
992 				 * need check its backrefs, we only do this once
993 				 * while walking up a tree as we will catch
994 				 * anything else later on.
995 				 */
996 				if (!upper->checked && need_check) {
997 					need_check = false;
998 					list_add_tail(&edge->list[UPPER],
999 						      &list);
1000 				} else {
1001 					if (upper->checked)
1002 						need_check = true;
1003 					INIT_LIST_HEAD(&edge->list[UPPER]);
1004 				}
1005 			} else {
1006 				upper = rb_entry(rb_node, struct backref_node,
1007 						 rb_node);
1008 				ASSERT(upper->checked);
1009 				INIT_LIST_HEAD(&edge->list[UPPER]);
1010 				if (!upper->owner)
1011 					upper->owner = btrfs_header_owner(eb);
1012 			}
1013 			list_add_tail(&edge->list[LOWER], &lower->upper);
1014 			edge->node[LOWER] = lower;
1015 			edge->node[UPPER] = upper;
1016 
1017 			if (rb_node)
1018 				break;
1019 			lower = upper;
1020 			upper = NULL;
1021 		}
1022 		btrfs_release_path(path2);
1023 next:
1024 		if (ptr < end) {
1025 			ptr += btrfs_extent_inline_ref_size(key.type);
1026 			if (ptr >= end) {
1027 				WARN_ON(ptr > end);
1028 				ptr = 0;
1029 				end = 0;
1030 			}
1031 		}
1032 		if (ptr >= end)
1033 			path1->slots[0]++;
1034 	}
1035 	btrfs_release_path(path1);
1036 
1037 	cur->checked = 1;
1038 	WARN_ON(exist);
1039 
1040 	/* the pending list isn't empty, take the first block to process */
1041 	if (!list_empty(&list)) {
1042 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043 		list_del_init(&edge->list[UPPER]);
1044 		cur = edge->node[UPPER];
1045 		goto again;
1046 	}
1047 
1048 	/*
1049 	 * everything goes well, connect backref nodes and insert backref nodes
1050 	 * into the cache.
1051 	 */
1052 	ASSERT(node->checked);
1053 	cowonly = node->cowonly;
1054 	if (!cowonly) {
1055 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1056 				      &node->rb_node);
1057 		if (rb_node)
1058 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1059 		list_add_tail(&node->lower, &cache->leaves);
1060 	}
1061 
1062 	list_for_each_entry(edge, &node->upper, list[LOWER])
1063 		list_add_tail(&edge->list[UPPER], &list);
1064 
1065 	while (!list_empty(&list)) {
1066 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1067 		list_del_init(&edge->list[UPPER]);
1068 		upper = edge->node[UPPER];
1069 		if (upper->detached) {
1070 			list_del(&edge->list[LOWER]);
1071 			lower = edge->node[LOWER];
1072 			free_backref_edge(cache, edge);
1073 			if (list_empty(&lower->upper))
1074 				list_add(&lower->list, &useless);
1075 			continue;
1076 		}
1077 
1078 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1079 			if (upper->lowest) {
1080 				list_del_init(&upper->lower);
1081 				upper->lowest = 0;
1082 			}
1083 
1084 			list_add_tail(&edge->list[UPPER], &upper->lower);
1085 			continue;
1086 		}
1087 
1088 		if (!upper->checked) {
1089 			/*
1090 			 * Still want to blow up for developers since this is a
1091 			 * logic bug.
1092 			 */
1093 			ASSERT(0);
1094 			err = -EINVAL;
1095 			goto out;
1096 		}
1097 		if (cowonly != upper->cowonly) {
1098 			ASSERT(0);
1099 			err = -EINVAL;
1100 			goto out;
1101 		}
1102 
1103 		if (!cowonly) {
1104 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1105 					      &upper->rb_node);
1106 			if (rb_node)
1107 				backref_tree_panic(rb_node, -EEXIST,
1108 						   upper->bytenr);
1109 		}
1110 
1111 		list_add_tail(&edge->list[UPPER], &upper->lower);
1112 
1113 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1114 			list_add_tail(&edge->list[UPPER], &list);
1115 	}
1116 	/*
1117 	 * process useless backref nodes. backref nodes for tree leaves
1118 	 * are deleted from the cache. backref nodes for upper level
1119 	 * tree blocks are left in the cache to avoid unnecessary backref
1120 	 * lookup.
1121 	 */
1122 	while (!list_empty(&useless)) {
1123 		upper = list_entry(useless.next, struct backref_node, list);
1124 		list_del_init(&upper->list);
1125 		ASSERT(list_empty(&upper->upper));
1126 		if (upper == node)
1127 			node = NULL;
1128 		if (upper->lowest) {
1129 			list_del_init(&upper->lower);
1130 			upper->lowest = 0;
1131 		}
1132 		while (!list_empty(&upper->lower)) {
1133 			edge = list_entry(upper->lower.next,
1134 					  struct backref_edge, list[UPPER]);
1135 			list_del(&edge->list[UPPER]);
1136 			list_del(&edge->list[LOWER]);
1137 			lower = edge->node[LOWER];
1138 			free_backref_edge(cache, edge);
1139 
1140 			if (list_empty(&lower->upper))
1141 				list_add(&lower->list, &useless);
1142 		}
1143 		__mark_block_processed(rc, upper);
1144 		if (upper->level > 0) {
1145 			list_add(&upper->list, &cache->detached);
1146 			upper->detached = 1;
1147 		} else {
1148 			rb_erase(&upper->rb_node, &cache->rb_root);
1149 			free_backref_node(cache, upper);
1150 		}
1151 	}
1152 out:
1153 	btrfs_free_path(path1);
1154 	btrfs_free_path(path2);
1155 	if (err) {
1156 		while (!list_empty(&useless)) {
1157 			lower = list_entry(useless.next,
1158 					   struct backref_node, list);
1159 			list_del_init(&lower->list);
1160 		}
1161 		while (!list_empty(&list)) {
1162 			edge = list_first_entry(&list, struct backref_edge,
1163 						list[UPPER]);
1164 			list_del(&edge->list[UPPER]);
1165 			list_del(&edge->list[LOWER]);
1166 			lower = edge->node[LOWER];
1167 			upper = edge->node[UPPER];
1168 			free_backref_edge(cache, edge);
1169 
1170 			/*
1171 			 * Lower is no longer linked to any upper backref nodes
1172 			 * and isn't in the cache, we can free it ourselves.
1173 			 */
1174 			if (list_empty(&lower->upper) &&
1175 			    RB_EMPTY_NODE(&lower->rb_node))
1176 				list_add(&lower->list, &useless);
1177 
1178 			if (!RB_EMPTY_NODE(&upper->rb_node))
1179 				continue;
1180 
1181 			/* Add this guy's upper edges to the list to process */
1182 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1183 				list_add_tail(&edge->list[UPPER], &list);
1184 			if (list_empty(&upper->upper))
1185 				list_add(&upper->list, &useless);
1186 		}
1187 
1188 		while (!list_empty(&useless)) {
1189 			lower = list_entry(useless.next,
1190 					   struct backref_node, list);
1191 			list_del_init(&lower->list);
1192 			if (lower == node)
1193 				node = NULL;
1194 			free_backref_node(cache, lower);
1195 		}
1196 
1197 		free_backref_node(cache, node);
1198 		return ERR_PTR(err);
1199 	}
1200 	ASSERT(!node || !node->detached);
1201 	return node;
1202 }
1203 
1204 /*
1205  * helper to add backref node for the newly created snapshot.
1206  * the backref node is created by cloning backref node that
1207  * corresponds to root of source tree
1208  */
1209 static int clone_backref_node(struct btrfs_trans_handle *trans,
1210 			      struct reloc_control *rc,
1211 			      struct btrfs_root *src,
1212 			      struct btrfs_root *dest)
1213 {
1214 	struct btrfs_root *reloc_root = src->reloc_root;
1215 	struct backref_cache *cache = &rc->backref_cache;
1216 	struct backref_node *node = NULL;
1217 	struct backref_node *new_node;
1218 	struct backref_edge *edge;
1219 	struct backref_edge *new_edge;
1220 	struct rb_node *rb_node;
1221 
1222 	if (cache->last_trans > 0)
1223 		update_backref_cache(trans, cache);
1224 
1225 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1226 	if (rb_node) {
1227 		node = rb_entry(rb_node, struct backref_node, rb_node);
1228 		if (node->detached)
1229 			node = NULL;
1230 		else
1231 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1232 	}
1233 
1234 	if (!node) {
1235 		rb_node = tree_search(&cache->rb_root,
1236 				      reloc_root->commit_root->start);
1237 		if (rb_node) {
1238 			node = rb_entry(rb_node, struct backref_node,
1239 					rb_node);
1240 			BUG_ON(node->detached);
1241 		}
1242 	}
1243 
1244 	if (!node)
1245 		return 0;
1246 
1247 	new_node = alloc_backref_node(cache);
1248 	if (!new_node)
1249 		return -ENOMEM;
1250 
1251 	new_node->bytenr = dest->node->start;
1252 	new_node->level = node->level;
1253 	new_node->lowest = node->lowest;
1254 	new_node->checked = 1;
1255 	new_node->root = dest;
1256 
1257 	if (!node->lowest) {
1258 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1259 			new_edge = alloc_backref_edge(cache);
1260 			if (!new_edge)
1261 				goto fail;
1262 
1263 			new_edge->node[UPPER] = new_node;
1264 			new_edge->node[LOWER] = edge->node[LOWER];
1265 			list_add_tail(&new_edge->list[UPPER],
1266 				      &new_node->lower);
1267 		}
1268 	} else {
1269 		list_add_tail(&new_node->lower, &cache->leaves);
1270 	}
1271 
1272 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1273 			      &new_node->rb_node);
1274 	if (rb_node)
1275 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1276 
1277 	if (!new_node->lowest) {
1278 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1279 			list_add_tail(&new_edge->list[LOWER],
1280 				      &new_edge->node[LOWER]->upper);
1281 		}
1282 	}
1283 	return 0;
1284 fail:
1285 	while (!list_empty(&new_node->lower)) {
1286 		new_edge = list_entry(new_node->lower.next,
1287 				      struct backref_edge, list[UPPER]);
1288 		list_del(&new_edge->list[UPPER]);
1289 		free_backref_edge(cache, new_edge);
1290 	}
1291 	free_backref_node(cache, new_node);
1292 	return -ENOMEM;
1293 }
1294 
1295 /*
1296  * helper to add 'address of tree root -> reloc tree' mapping
1297  */
1298 static int __must_check __add_reloc_root(struct btrfs_root *root)
1299 {
1300 	struct btrfs_fs_info *fs_info = root->fs_info;
1301 	struct rb_node *rb_node;
1302 	struct mapping_node *node;
1303 	struct reloc_control *rc = fs_info->reloc_ctl;
1304 
1305 	node = kmalloc(sizeof(*node), GFP_NOFS);
1306 	if (!node)
1307 		return -ENOMEM;
1308 
1309 	node->bytenr = root->node->start;
1310 	node->data = root;
1311 
1312 	spin_lock(&rc->reloc_root_tree.lock);
1313 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1314 			      node->bytenr, &node->rb_node);
1315 	spin_unlock(&rc->reloc_root_tree.lock);
1316 	if (rb_node) {
1317 		btrfs_panic(fs_info, -EEXIST,
1318 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1319 			    node->bytenr);
1320 	}
1321 
1322 	list_add_tail(&root->root_list, &rc->reloc_roots);
1323 	return 0;
1324 }
1325 
1326 /*
1327  * helper to delete the 'address of tree root -> reloc tree'
1328  * mapping
1329  */
1330 static void __del_reloc_root(struct btrfs_root *root)
1331 {
1332 	struct btrfs_fs_info *fs_info = root->fs_info;
1333 	struct rb_node *rb_node;
1334 	struct mapping_node *node = NULL;
1335 	struct reloc_control *rc = fs_info->reloc_ctl;
1336 
1337 	spin_lock(&rc->reloc_root_tree.lock);
1338 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1339 			      root->node->start);
1340 	if (rb_node) {
1341 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1342 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1343 	}
1344 	spin_unlock(&rc->reloc_root_tree.lock);
1345 
1346 	if (!node)
1347 		return;
1348 	BUG_ON((struct btrfs_root *)node->data != root);
1349 
1350 	spin_lock(&fs_info->trans_lock);
1351 	list_del_init(&root->root_list);
1352 	spin_unlock(&fs_info->trans_lock);
1353 	kfree(node);
1354 }
1355 
1356 /*
1357  * helper to update the 'address of tree root -> reloc tree'
1358  * mapping
1359  */
1360 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1361 {
1362 	struct btrfs_fs_info *fs_info = root->fs_info;
1363 	struct rb_node *rb_node;
1364 	struct mapping_node *node = NULL;
1365 	struct reloc_control *rc = fs_info->reloc_ctl;
1366 
1367 	spin_lock(&rc->reloc_root_tree.lock);
1368 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1369 			      root->node->start);
1370 	if (rb_node) {
1371 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1372 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1373 	}
1374 	spin_unlock(&rc->reloc_root_tree.lock);
1375 
1376 	if (!node)
1377 		return 0;
1378 	BUG_ON((struct btrfs_root *)node->data != root);
1379 
1380 	spin_lock(&rc->reloc_root_tree.lock);
1381 	node->bytenr = new_bytenr;
1382 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1383 			      node->bytenr, &node->rb_node);
1384 	spin_unlock(&rc->reloc_root_tree.lock);
1385 	if (rb_node)
1386 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1387 	return 0;
1388 }
1389 
1390 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1391 					struct btrfs_root *root, u64 objectid)
1392 {
1393 	struct btrfs_fs_info *fs_info = root->fs_info;
1394 	struct btrfs_root *reloc_root;
1395 	struct extent_buffer *eb;
1396 	struct btrfs_root_item *root_item;
1397 	struct btrfs_key root_key;
1398 	int ret;
1399 
1400 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1401 	BUG_ON(!root_item);
1402 
1403 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1404 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1405 	root_key.offset = objectid;
1406 
1407 	if (root->root_key.objectid == objectid) {
1408 		u64 commit_root_gen;
1409 
1410 		/* called by btrfs_init_reloc_root */
1411 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1412 				      BTRFS_TREE_RELOC_OBJECTID);
1413 		BUG_ON(ret);
1414 		/*
1415 		 * Set the last_snapshot field to the generation of the commit
1416 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1417 		 * correctly (returns true) when the relocation root is created
1418 		 * either inside the critical section of a transaction commit
1419 		 * (through transaction.c:qgroup_account_snapshot()) and when
1420 		 * it's created before the transaction commit is started.
1421 		 */
1422 		commit_root_gen = btrfs_header_generation(root->commit_root);
1423 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1424 	} else {
1425 		/*
1426 		 * called by btrfs_reloc_post_snapshot_hook.
1427 		 * the source tree is a reloc tree, all tree blocks
1428 		 * modified after it was created have RELOC flag
1429 		 * set in their headers. so it's OK to not update
1430 		 * the 'last_snapshot'.
1431 		 */
1432 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1433 				      BTRFS_TREE_RELOC_OBJECTID);
1434 		BUG_ON(ret);
1435 	}
1436 
1437 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1438 	btrfs_set_root_bytenr(root_item, eb->start);
1439 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1440 	btrfs_set_root_generation(root_item, trans->transid);
1441 
1442 	if (root->root_key.objectid == objectid) {
1443 		btrfs_set_root_refs(root_item, 0);
1444 		memset(&root_item->drop_progress, 0,
1445 		       sizeof(struct btrfs_disk_key));
1446 		root_item->drop_level = 0;
1447 	}
1448 
1449 	btrfs_tree_unlock(eb);
1450 	free_extent_buffer(eb);
1451 
1452 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1453 				&root_key, root_item);
1454 	BUG_ON(ret);
1455 	kfree(root_item);
1456 
1457 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1458 	BUG_ON(IS_ERR(reloc_root));
1459 	reloc_root->last_trans = trans->transid;
1460 	return reloc_root;
1461 }
1462 
1463 /*
1464  * create reloc tree for a given fs tree. reloc tree is just a
1465  * snapshot of the fs tree with special root objectid.
1466  */
1467 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1468 			  struct btrfs_root *root)
1469 {
1470 	struct btrfs_fs_info *fs_info = root->fs_info;
1471 	struct btrfs_root *reloc_root;
1472 	struct reloc_control *rc = fs_info->reloc_ctl;
1473 	struct btrfs_block_rsv *rsv;
1474 	int clear_rsv = 0;
1475 	int ret;
1476 
1477 	if (root->reloc_root) {
1478 		reloc_root = root->reloc_root;
1479 		reloc_root->last_trans = trans->transid;
1480 		return 0;
1481 	}
1482 
1483 	if (!rc || !rc->create_reloc_tree ||
1484 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1485 		return 0;
1486 
1487 	if (!trans->reloc_reserved) {
1488 		rsv = trans->block_rsv;
1489 		trans->block_rsv = rc->block_rsv;
1490 		clear_rsv = 1;
1491 	}
1492 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1493 	if (clear_rsv)
1494 		trans->block_rsv = rsv;
1495 
1496 	ret = __add_reloc_root(reloc_root);
1497 	BUG_ON(ret < 0);
1498 	root->reloc_root = reloc_root;
1499 	return 0;
1500 }
1501 
1502 /*
1503  * update root item of reloc tree
1504  */
1505 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1506 			    struct btrfs_root *root)
1507 {
1508 	struct btrfs_fs_info *fs_info = root->fs_info;
1509 	struct btrfs_root *reloc_root;
1510 	struct btrfs_root_item *root_item;
1511 	int ret;
1512 
1513 	if (!root->reloc_root)
1514 		goto out;
1515 
1516 	reloc_root = root->reloc_root;
1517 	root_item = &reloc_root->root_item;
1518 
1519 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1520 	    btrfs_root_refs(root_item) == 0) {
1521 		root->reloc_root = NULL;
1522 		__del_reloc_root(reloc_root);
1523 	}
1524 
1525 	if (reloc_root->commit_root != reloc_root->node) {
1526 		btrfs_set_root_node(root_item, reloc_root->node);
1527 		free_extent_buffer(reloc_root->commit_root);
1528 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1529 	}
1530 
1531 	ret = btrfs_update_root(trans, fs_info->tree_root,
1532 				&reloc_root->root_key, root_item);
1533 	BUG_ON(ret);
1534 
1535 out:
1536 	return 0;
1537 }
1538 
1539 /*
1540  * helper to find first cached inode with inode number >= objectid
1541  * in a subvolume
1542  */
1543 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1544 {
1545 	struct rb_node *node;
1546 	struct rb_node *prev;
1547 	struct btrfs_inode *entry;
1548 	struct inode *inode;
1549 
1550 	spin_lock(&root->inode_lock);
1551 again:
1552 	node = root->inode_tree.rb_node;
1553 	prev = NULL;
1554 	while (node) {
1555 		prev = node;
1556 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1557 
1558 		if (objectid < btrfs_ino(entry))
1559 			node = node->rb_left;
1560 		else if (objectid > btrfs_ino(entry))
1561 			node = node->rb_right;
1562 		else
1563 			break;
1564 	}
1565 	if (!node) {
1566 		while (prev) {
1567 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1568 			if (objectid <= btrfs_ino(entry)) {
1569 				node = prev;
1570 				break;
1571 			}
1572 			prev = rb_next(prev);
1573 		}
1574 	}
1575 	while (node) {
1576 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1577 		inode = igrab(&entry->vfs_inode);
1578 		if (inode) {
1579 			spin_unlock(&root->inode_lock);
1580 			return inode;
1581 		}
1582 
1583 		objectid = btrfs_ino(entry) + 1;
1584 		if (cond_resched_lock(&root->inode_lock))
1585 			goto again;
1586 
1587 		node = rb_next(node);
1588 	}
1589 	spin_unlock(&root->inode_lock);
1590 	return NULL;
1591 }
1592 
1593 static int in_block_group(u64 bytenr,
1594 			  struct btrfs_block_group_cache *block_group)
1595 {
1596 	if (bytenr >= block_group->key.objectid &&
1597 	    bytenr < block_group->key.objectid + block_group->key.offset)
1598 		return 1;
1599 	return 0;
1600 }
1601 
1602 /*
1603  * get new location of data
1604  */
1605 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1606 			    u64 bytenr, u64 num_bytes)
1607 {
1608 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1609 	struct btrfs_path *path;
1610 	struct btrfs_file_extent_item *fi;
1611 	struct extent_buffer *leaf;
1612 	int ret;
1613 
1614 	path = btrfs_alloc_path();
1615 	if (!path)
1616 		return -ENOMEM;
1617 
1618 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1619 	ret = btrfs_lookup_file_extent(NULL, root, path,
1620 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1621 	if (ret < 0)
1622 		goto out;
1623 	if (ret > 0) {
1624 		ret = -ENOENT;
1625 		goto out;
1626 	}
1627 
1628 	leaf = path->nodes[0];
1629 	fi = btrfs_item_ptr(leaf, path->slots[0],
1630 			    struct btrfs_file_extent_item);
1631 
1632 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1633 	       btrfs_file_extent_compression(leaf, fi) ||
1634 	       btrfs_file_extent_encryption(leaf, fi) ||
1635 	       btrfs_file_extent_other_encoding(leaf, fi));
1636 
1637 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1638 		ret = -EINVAL;
1639 		goto out;
1640 	}
1641 
1642 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1643 	ret = 0;
1644 out:
1645 	btrfs_free_path(path);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * update file extent items in the tree leaf to point to
1651  * the new locations.
1652  */
1653 static noinline_for_stack
1654 int replace_file_extents(struct btrfs_trans_handle *trans,
1655 			 struct reloc_control *rc,
1656 			 struct btrfs_root *root,
1657 			 struct extent_buffer *leaf)
1658 {
1659 	struct btrfs_fs_info *fs_info = root->fs_info;
1660 	struct btrfs_key key;
1661 	struct btrfs_file_extent_item *fi;
1662 	struct inode *inode = NULL;
1663 	u64 parent;
1664 	u64 bytenr;
1665 	u64 new_bytenr = 0;
1666 	u64 num_bytes;
1667 	u64 end;
1668 	u32 nritems;
1669 	u32 i;
1670 	int ret = 0;
1671 	int first = 1;
1672 	int dirty = 0;
1673 
1674 	if (rc->stage != UPDATE_DATA_PTRS)
1675 		return 0;
1676 
1677 	/* reloc trees always use full backref */
1678 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1679 		parent = leaf->start;
1680 	else
1681 		parent = 0;
1682 
1683 	nritems = btrfs_header_nritems(leaf);
1684 	for (i = 0; i < nritems; i++) {
1685 		cond_resched();
1686 		btrfs_item_key_to_cpu(leaf, &key, i);
1687 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1688 			continue;
1689 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1690 		if (btrfs_file_extent_type(leaf, fi) ==
1691 		    BTRFS_FILE_EXTENT_INLINE)
1692 			continue;
1693 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1694 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1695 		if (bytenr == 0)
1696 			continue;
1697 		if (!in_block_group(bytenr, rc->block_group))
1698 			continue;
1699 
1700 		/*
1701 		 * if we are modifying block in fs tree, wait for readpage
1702 		 * to complete and drop the extent cache
1703 		 */
1704 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1705 			if (first) {
1706 				inode = find_next_inode(root, key.objectid);
1707 				first = 0;
1708 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1709 				btrfs_add_delayed_iput(inode);
1710 				inode = find_next_inode(root, key.objectid);
1711 			}
1712 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1713 				end = key.offset +
1714 				      btrfs_file_extent_num_bytes(leaf, fi);
1715 				WARN_ON(!IS_ALIGNED(key.offset,
1716 						    fs_info->sectorsize));
1717 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1718 				end--;
1719 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1720 						      key.offset, end);
1721 				if (!ret)
1722 					continue;
1723 
1724 				btrfs_drop_extent_cache(BTRFS_I(inode),
1725 						key.offset,	end, 1);
1726 				unlock_extent(&BTRFS_I(inode)->io_tree,
1727 					      key.offset, end);
1728 			}
1729 		}
1730 
1731 		ret = get_new_location(rc->data_inode, &new_bytenr,
1732 				       bytenr, num_bytes);
1733 		if (ret) {
1734 			/*
1735 			 * Don't have to abort since we've not changed anything
1736 			 * in the file extent yet.
1737 			 */
1738 			break;
1739 		}
1740 
1741 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1742 		dirty = 1;
1743 
1744 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1745 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1746 					   num_bytes, parent,
1747 					   btrfs_header_owner(leaf),
1748 					   key.objectid, key.offset);
1749 		if (ret) {
1750 			btrfs_abort_transaction(trans, ret);
1751 			break;
1752 		}
1753 
1754 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1755 					parent, btrfs_header_owner(leaf),
1756 					key.objectid, key.offset);
1757 		if (ret) {
1758 			btrfs_abort_transaction(trans, ret);
1759 			break;
1760 		}
1761 	}
1762 	if (dirty)
1763 		btrfs_mark_buffer_dirty(leaf);
1764 	if (inode)
1765 		btrfs_add_delayed_iput(inode);
1766 	return ret;
1767 }
1768 
1769 static noinline_for_stack
1770 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1771 		     struct btrfs_path *path, int level)
1772 {
1773 	struct btrfs_disk_key key1;
1774 	struct btrfs_disk_key key2;
1775 	btrfs_node_key(eb, &key1, slot);
1776 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1777 	return memcmp(&key1, &key2, sizeof(key1));
1778 }
1779 
1780 /*
1781  * try to replace tree blocks in fs tree with the new blocks
1782  * in reloc tree. tree blocks haven't been modified since the
1783  * reloc tree was create can be replaced.
1784  *
1785  * if a block was replaced, level of the block + 1 is returned.
1786  * if no block got replaced, 0 is returned. if there are other
1787  * errors, a negative error number is returned.
1788  */
1789 static noinline_for_stack
1790 int replace_path(struct btrfs_trans_handle *trans,
1791 		 struct btrfs_root *dest, struct btrfs_root *src,
1792 		 struct btrfs_path *path, struct btrfs_key *next_key,
1793 		 int lowest_level, int max_level)
1794 {
1795 	struct btrfs_fs_info *fs_info = dest->fs_info;
1796 	struct extent_buffer *eb;
1797 	struct extent_buffer *parent;
1798 	struct btrfs_key key;
1799 	u64 old_bytenr;
1800 	u64 new_bytenr;
1801 	u64 old_ptr_gen;
1802 	u64 new_ptr_gen;
1803 	u64 last_snapshot;
1804 	u32 blocksize;
1805 	int cow = 0;
1806 	int level;
1807 	int ret;
1808 	int slot;
1809 
1810 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1811 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1812 
1813 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1814 again:
1815 	slot = path->slots[lowest_level];
1816 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1817 
1818 	eb = btrfs_lock_root_node(dest);
1819 	btrfs_set_lock_blocking(eb);
1820 	level = btrfs_header_level(eb);
1821 
1822 	if (level < lowest_level) {
1823 		btrfs_tree_unlock(eb);
1824 		free_extent_buffer(eb);
1825 		return 0;
1826 	}
1827 
1828 	if (cow) {
1829 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1830 		BUG_ON(ret);
1831 	}
1832 	btrfs_set_lock_blocking(eb);
1833 
1834 	if (next_key) {
1835 		next_key->objectid = (u64)-1;
1836 		next_key->type = (u8)-1;
1837 		next_key->offset = (u64)-1;
1838 	}
1839 
1840 	parent = eb;
1841 	while (1) {
1842 		level = btrfs_header_level(parent);
1843 		BUG_ON(level < lowest_level);
1844 
1845 		ret = btrfs_bin_search(parent, &key, level, &slot);
1846 		if (ret && slot > 0)
1847 			slot--;
1848 
1849 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1850 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1851 
1852 		old_bytenr = btrfs_node_blockptr(parent, slot);
1853 		blocksize = fs_info->nodesize;
1854 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1855 
1856 		if (level <= max_level) {
1857 			eb = path->nodes[level];
1858 			new_bytenr = btrfs_node_blockptr(eb,
1859 							path->slots[level]);
1860 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1861 							path->slots[level]);
1862 		} else {
1863 			new_bytenr = 0;
1864 			new_ptr_gen = 0;
1865 		}
1866 
1867 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1868 			ret = level;
1869 			break;
1870 		}
1871 
1872 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1873 		    memcmp_node_keys(parent, slot, path, level)) {
1874 			if (level <= lowest_level) {
1875 				ret = 0;
1876 				break;
1877 			}
1878 
1879 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen);
1880 			if (IS_ERR(eb)) {
1881 				ret = PTR_ERR(eb);
1882 				break;
1883 			} else if (!extent_buffer_uptodate(eb)) {
1884 				ret = -EIO;
1885 				free_extent_buffer(eb);
1886 				break;
1887 			}
1888 			btrfs_tree_lock(eb);
1889 			if (cow) {
1890 				ret = btrfs_cow_block(trans, dest, eb, parent,
1891 						      slot, &eb);
1892 				BUG_ON(ret);
1893 			}
1894 			btrfs_set_lock_blocking(eb);
1895 
1896 			btrfs_tree_unlock(parent);
1897 			free_extent_buffer(parent);
1898 
1899 			parent = eb;
1900 			continue;
1901 		}
1902 
1903 		if (!cow) {
1904 			btrfs_tree_unlock(parent);
1905 			free_extent_buffer(parent);
1906 			cow = 1;
1907 			goto again;
1908 		}
1909 
1910 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1911 				      path->slots[level]);
1912 		btrfs_release_path(path);
1913 
1914 		path->lowest_level = level;
1915 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1916 		path->lowest_level = 0;
1917 		BUG_ON(ret);
1918 
1919 		/*
1920 		 * Info qgroup to trace both subtrees.
1921 		 *
1922 		 * We must trace both trees.
1923 		 * 1) Tree reloc subtree
1924 		 *    If not traced, we will leak data numbers
1925 		 * 2) Fs subtree
1926 		 *    If not traced, we will double count old data
1927 		 *    and tree block numbers, if current trans doesn't free
1928 		 *    data reloc tree inode.
1929 		 */
1930 		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1931 				btrfs_header_generation(parent),
1932 				btrfs_header_level(parent));
1933 		if (ret < 0)
1934 			break;
1935 		ret = btrfs_qgroup_trace_subtree(trans, dest,
1936 				path->nodes[level],
1937 				btrfs_header_generation(path->nodes[level]),
1938 				btrfs_header_level(path->nodes[level]));
1939 		if (ret < 0)
1940 			break;
1941 
1942 		/*
1943 		 * swap blocks in fs tree and reloc tree.
1944 		 */
1945 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1946 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1947 		btrfs_mark_buffer_dirty(parent);
1948 
1949 		btrfs_set_node_blockptr(path->nodes[level],
1950 					path->slots[level], old_bytenr);
1951 		btrfs_set_node_ptr_generation(path->nodes[level],
1952 					      path->slots[level], old_ptr_gen);
1953 		btrfs_mark_buffer_dirty(path->nodes[level]);
1954 
1955 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1956 					blocksize, path->nodes[level]->start,
1957 					src->root_key.objectid, level - 1, 0);
1958 		BUG_ON(ret);
1959 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1960 					blocksize, 0, dest->root_key.objectid,
1961 					level - 1, 0);
1962 		BUG_ON(ret);
1963 
1964 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1965 					path->nodes[level]->start,
1966 					src->root_key.objectid, level - 1, 0);
1967 		BUG_ON(ret);
1968 
1969 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1970 					0, dest->root_key.objectid, level - 1,
1971 					0);
1972 		BUG_ON(ret);
1973 
1974 		btrfs_unlock_up_safe(path, 0);
1975 
1976 		ret = level;
1977 		break;
1978 	}
1979 	btrfs_tree_unlock(parent);
1980 	free_extent_buffer(parent);
1981 	return ret;
1982 }
1983 
1984 /*
1985  * helper to find next relocated block in reloc tree
1986  */
1987 static noinline_for_stack
1988 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1989 		       int *level)
1990 {
1991 	struct extent_buffer *eb;
1992 	int i;
1993 	u64 last_snapshot;
1994 	u32 nritems;
1995 
1996 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1997 
1998 	for (i = 0; i < *level; i++) {
1999 		free_extent_buffer(path->nodes[i]);
2000 		path->nodes[i] = NULL;
2001 	}
2002 
2003 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
2004 		eb = path->nodes[i];
2005 		nritems = btrfs_header_nritems(eb);
2006 		while (path->slots[i] + 1 < nritems) {
2007 			path->slots[i]++;
2008 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2009 			    last_snapshot)
2010 				continue;
2011 
2012 			*level = i;
2013 			return 0;
2014 		}
2015 		free_extent_buffer(path->nodes[i]);
2016 		path->nodes[i] = NULL;
2017 	}
2018 	return 1;
2019 }
2020 
2021 /*
2022  * walk down reloc tree to find relocated block of lowest level
2023  */
2024 static noinline_for_stack
2025 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2026 			 int *level)
2027 {
2028 	struct btrfs_fs_info *fs_info = root->fs_info;
2029 	struct extent_buffer *eb = NULL;
2030 	int i;
2031 	u64 bytenr;
2032 	u64 ptr_gen = 0;
2033 	u64 last_snapshot;
2034 	u32 nritems;
2035 
2036 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2037 
2038 	for (i = *level; i > 0; i--) {
2039 		eb = path->nodes[i];
2040 		nritems = btrfs_header_nritems(eb);
2041 		while (path->slots[i] < nritems) {
2042 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2043 			if (ptr_gen > last_snapshot)
2044 				break;
2045 			path->slots[i]++;
2046 		}
2047 		if (path->slots[i] >= nritems) {
2048 			if (i == *level)
2049 				break;
2050 			*level = i + 1;
2051 			return 0;
2052 		}
2053 		if (i == 1) {
2054 			*level = i;
2055 			return 0;
2056 		}
2057 
2058 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2059 		eb = read_tree_block(fs_info, bytenr, ptr_gen);
2060 		if (IS_ERR(eb)) {
2061 			return PTR_ERR(eb);
2062 		} else if (!extent_buffer_uptodate(eb)) {
2063 			free_extent_buffer(eb);
2064 			return -EIO;
2065 		}
2066 		BUG_ON(btrfs_header_level(eb) != i - 1);
2067 		path->nodes[i - 1] = eb;
2068 		path->slots[i - 1] = 0;
2069 	}
2070 	return 1;
2071 }
2072 
2073 /*
2074  * invalidate extent cache for file extents whose key in range of
2075  * [min_key, max_key)
2076  */
2077 static int invalidate_extent_cache(struct btrfs_root *root,
2078 				   struct btrfs_key *min_key,
2079 				   struct btrfs_key *max_key)
2080 {
2081 	struct btrfs_fs_info *fs_info = root->fs_info;
2082 	struct inode *inode = NULL;
2083 	u64 objectid;
2084 	u64 start, end;
2085 	u64 ino;
2086 
2087 	objectid = min_key->objectid;
2088 	while (1) {
2089 		cond_resched();
2090 		iput(inode);
2091 
2092 		if (objectid > max_key->objectid)
2093 			break;
2094 
2095 		inode = find_next_inode(root, objectid);
2096 		if (!inode)
2097 			break;
2098 		ino = btrfs_ino(BTRFS_I(inode));
2099 
2100 		if (ino > max_key->objectid) {
2101 			iput(inode);
2102 			break;
2103 		}
2104 
2105 		objectid = ino + 1;
2106 		if (!S_ISREG(inode->i_mode))
2107 			continue;
2108 
2109 		if (unlikely(min_key->objectid == ino)) {
2110 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2111 				continue;
2112 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2113 				start = 0;
2114 			else {
2115 				start = min_key->offset;
2116 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2117 			}
2118 		} else {
2119 			start = 0;
2120 		}
2121 
2122 		if (unlikely(max_key->objectid == ino)) {
2123 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2124 				continue;
2125 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2126 				end = (u64)-1;
2127 			} else {
2128 				if (max_key->offset == 0)
2129 					continue;
2130 				end = max_key->offset;
2131 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2132 				end--;
2133 			}
2134 		} else {
2135 			end = (u64)-1;
2136 		}
2137 
2138 		/* the lock_extent waits for readpage to complete */
2139 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2140 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2141 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2142 	}
2143 	return 0;
2144 }
2145 
2146 static int find_next_key(struct btrfs_path *path, int level,
2147 			 struct btrfs_key *key)
2148 
2149 {
2150 	while (level < BTRFS_MAX_LEVEL) {
2151 		if (!path->nodes[level])
2152 			break;
2153 		if (path->slots[level] + 1 <
2154 		    btrfs_header_nritems(path->nodes[level])) {
2155 			btrfs_node_key_to_cpu(path->nodes[level], key,
2156 					      path->slots[level] + 1);
2157 			return 0;
2158 		}
2159 		level++;
2160 	}
2161 	return 1;
2162 }
2163 
2164 /*
2165  * merge the relocated tree blocks in reloc tree with corresponding
2166  * fs tree.
2167  */
2168 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2169 					       struct btrfs_root *root)
2170 {
2171 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2172 	LIST_HEAD(inode_list);
2173 	struct btrfs_key key;
2174 	struct btrfs_key next_key;
2175 	struct btrfs_trans_handle *trans = NULL;
2176 	struct btrfs_root *reloc_root;
2177 	struct btrfs_root_item *root_item;
2178 	struct btrfs_path *path;
2179 	struct extent_buffer *leaf;
2180 	int level;
2181 	int max_level;
2182 	int replaced = 0;
2183 	int ret;
2184 	int err = 0;
2185 	u32 min_reserved;
2186 
2187 	path = btrfs_alloc_path();
2188 	if (!path)
2189 		return -ENOMEM;
2190 	path->reada = READA_FORWARD;
2191 
2192 	reloc_root = root->reloc_root;
2193 	root_item = &reloc_root->root_item;
2194 
2195 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2196 		level = btrfs_root_level(root_item);
2197 		extent_buffer_get(reloc_root->node);
2198 		path->nodes[level] = reloc_root->node;
2199 		path->slots[level] = 0;
2200 	} else {
2201 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2202 
2203 		level = root_item->drop_level;
2204 		BUG_ON(level == 0);
2205 		path->lowest_level = level;
2206 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2207 		path->lowest_level = 0;
2208 		if (ret < 0) {
2209 			btrfs_free_path(path);
2210 			return ret;
2211 		}
2212 
2213 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2214 				      path->slots[level]);
2215 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2216 
2217 		btrfs_unlock_up_safe(path, 0);
2218 	}
2219 
2220 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2221 	memset(&next_key, 0, sizeof(next_key));
2222 
2223 	while (1) {
2224 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2225 					     BTRFS_RESERVE_FLUSH_ALL);
2226 		if (ret) {
2227 			err = ret;
2228 			goto out;
2229 		}
2230 		trans = btrfs_start_transaction(root, 0);
2231 		if (IS_ERR(trans)) {
2232 			err = PTR_ERR(trans);
2233 			trans = NULL;
2234 			goto out;
2235 		}
2236 		trans->block_rsv = rc->block_rsv;
2237 
2238 		replaced = 0;
2239 		max_level = level;
2240 
2241 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2242 		if (ret < 0) {
2243 			err = ret;
2244 			goto out;
2245 		}
2246 		if (ret > 0)
2247 			break;
2248 
2249 		if (!find_next_key(path, level, &key) &&
2250 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2251 			ret = 0;
2252 		} else {
2253 			ret = replace_path(trans, root, reloc_root, path,
2254 					   &next_key, level, max_level);
2255 		}
2256 		if (ret < 0) {
2257 			err = ret;
2258 			goto out;
2259 		}
2260 
2261 		if (ret > 0) {
2262 			level = ret;
2263 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2264 					      path->slots[level]);
2265 			replaced = 1;
2266 		}
2267 
2268 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2269 		if (ret > 0)
2270 			break;
2271 
2272 		BUG_ON(level == 0);
2273 		/*
2274 		 * save the merging progress in the drop_progress.
2275 		 * this is OK since root refs == 1 in this case.
2276 		 */
2277 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2278 			       path->slots[level]);
2279 		root_item->drop_level = level;
2280 
2281 		btrfs_end_transaction_throttle(trans);
2282 		trans = NULL;
2283 
2284 		btrfs_btree_balance_dirty(fs_info);
2285 
2286 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2287 			invalidate_extent_cache(root, &key, &next_key);
2288 	}
2289 
2290 	/*
2291 	 * handle the case only one block in the fs tree need to be
2292 	 * relocated and the block is tree root.
2293 	 */
2294 	leaf = btrfs_lock_root_node(root);
2295 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2296 	btrfs_tree_unlock(leaf);
2297 	free_extent_buffer(leaf);
2298 	if (ret < 0)
2299 		err = ret;
2300 out:
2301 	btrfs_free_path(path);
2302 
2303 	if (err == 0) {
2304 		memset(&root_item->drop_progress, 0,
2305 		       sizeof(root_item->drop_progress));
2306 		root_item->drop_level = 0;
2307 		btrfs_set_root_refs(root_item, 0);
2308 		btrfs_update_reloc_root(trans, root);
2309 	}
2310 
2311 	if (trans)
2312 		btrfs_end_transaction_throttle(trans);
2313 
2314 	btrfs_btree_balance_dirty(fs_info);
2315 
2316 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2317 		invalidate_extent_cache(root, &key, &next_key);
2318 
2319 	return err;
2320 }
2321 
2322 static noinline_for_stack
2323 int prepare_to_merge(struct reloc_control *rc, int err)
2324 {
2325 	struct btrfs_root *root = rc->extent_root;
2326 	struct btrfs_fs_info *fs_info = root->fs_info;
2327 	struct btrfs_root *reloc_root;
2328 	struct btrfs_trans_handle *trans;
2329 	LIST_HEAD(reloc_roots);
2330 	u64 num_bytes = 0;
2331 	int ret;
2332 
2333 	mutex_lock(&fs_info->reloc_mutex);
2334 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2335 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2336 	mutex_unlock(&fs_info->reloc_mutex);
2337 
2338 again:
2339 	if (!err) {
2340 		num_bytes = rc->merging_rsv_size;
2341 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2342 					  BTRFS_RESERVE_FLUSH_ALL);
2343 		if (ret)
2344 			err = ret;
2345 	}
2346 
2347 	trans = btrfs_join_transaction(rc->extent_root);
2348 	if (IS_ERR(trans)) {
2349 		if (!err)
2350 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2351 						num_bytes);
2352 		return PTR_ERR(trans);
2353 	}
2354 
2355 	if (!err) {
2356 		if (num_bytes != rc->merging_rsv_size) {
2357 			btrfs_end_transaction(trans);
2358 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2359 						num_bytes);
2360 			goto again;
2361 		}
2362 	}
2363 
2364 	rc->merge_reloc_tree = 1;
2365 
2366 	while (!list_empty(&rc->reloc_roots)) {
2367 		reloc_root = list_entry(rc->reloc_roots.next,
2368 					struct btrfs_root, root_list);
2369 		list_del_init(&reloc_root->root_list);
2370 
2371 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2372 		BUG_ON(IS_ERR(root));
2373 		BUG_ON(root->reloc_root != reloc_root);
2374 
2375 		/*
2376 		 * set reference count to 1, so btrfs_recover_relocation
2377 		 * knows it should resumes merging
2378 		 */
2379 		if (!err)
2380 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2381 		btrfs_update_reloc_root(trans, root);
2382 
2383 		list_add(&reloc_root->root_list, &reloc_roots);
2384 	}
2385 
2386 	list_splice(&reloc_roots, &rc->reloc_roots);
2387 
2388 	if (!err)
2389 		btrfs_commit_transaction(trans);
2390 	else
2391 		btrfs_end_transaction(trans);
2392 	return err;
2393 }
2394 
2395 static noinline_for_stack
2396 void free_reloc_roots(struct list_head *list)
2397 {
2398 	struct btrfs_root *reloc_root;
2399 
2400 	while (!list_empty(list)) {
2401 		reloc_root = list_entry(list->next, struct btrfs_root,
2402 					root_list);
2403 		__del_reloc_root(reloc_root);
2404 		free_extent_buffer(reloc_root->node);
2405 		free_extent_buffer(reloc_root->commit_root);
2406 		reloc_root->node = NULL;
2407 		reloc_root->commit_root = NULL;
2408 	}
2409 }
2410 
2411 static noinline_for_stack
2412 void merge_reloc_roots(struct reloc_control *rc)
2413 {
2414 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2415 	struct btrfs_root *root;
2416 	struct btrfs_root *reloc_root;
2417 	LIST_HEAD(reloc_roots);
2418 	int found = 0;
2419 	int ret = 0;
2420 again:
2421 	root = rc->extent_root;
2422 
2423 	/*
2424 	 * this serializes us with btrfs_record_root_in_transaction,
2425 	 * we have to make sure nobody is in the middle of
2426 	 * adding their roots to the list while we are
2427 	 * doing this splice
2428 	 */
2429 	mutex_lock(&fs_info->reloc_mutex);
2430 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2431 	mutex_unlock(&fs_info->reloc_mutex);
2432 
2433 	while (!list_empty(&reloc_roots)) {
2434 		found = 1;
2435 		reloc_root = list_entry(reloc_roots.next,
2436 					struct btrfs_root, root_list);
2437 
2438 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2439 			root = read_fs_root(fs_info,
2440 					    reloc_root->root_key.offset);
2441 			BUG_ON(IS_ERR(root));
2442 			BUG_ON(root->reloc_root != reloc_root);
2443 
2444 			ret = merge_reloc_root(rc, root);
2445 			if (ret) {
2446 				if (list_empty(&reloc_root->root_list))
2447 					list_add_tail(&reloc_root->root_list,
2448 						      &reloc_roots);
2449 				goto out;
2450 			}
2451 		} else {
2452 			list_del_init(&reloc_root->root_list);
2453 		}
2454 
2455 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2456 		if (ret < 0) {
2457 			if (list_empty(&reloc_root->root_list))
2458 				list_add_tail(&reloc_root->root_list,
2459 					      &reloc_roots);
2460 			goto out;
2461 		}
2462 	}
2463 
2464 	if (found) {
2465 		found = 0;
2466 		goto again;
2467 	}
2468 out:
2469 	if (ret) {
2470 		btrfs_handle_fs_error(fs_info, ret, NULL);
2471 		if (!list_empty(&reloc_roots))
2472 			free_reloc_roots(&reloc_roots);
2473 
2474 		/* new reloc root may be added */
2475 		mutex_lock(&fs_info->reloc_mutex);
2476 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2477 		mutex_unlock(&fs_info->reloc_mutex);
2478 		if (!list_empty(&reloc_roots))
2479 			free_reloc_roots(&reloc_roots);
2480 	}
2481 
2482 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2483 }
2484 
2485 static void free_block_list(struct rb_root *blocks)
2486 {
2487 	struct tree_block *block;
2488 	struct rb_node *rb_node;
2489 	while ((rb_node = rb_first(blocks))) {
2490 		block = rb_entry(rb_node, struct tree_block, rb_node);
2491 		rb_erase(rb_node, blocks);
2492 		kfree(block);
2493 	}
2494 }
2495 
2496 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2497 				      struct btrfs_root *reloc_root)
2498 {
2499 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2500 	struct btrfs_root *root;
2501 
2502 	if (reloc_root->last_trans == trans->transid)
2503 		return 0;
2504 
2505 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2506 	BUG_ON(IS_ERR(root));
2507 	BUG_ON(root->reloc_root != reloc_root);
2508 
2509 	return btrfs_record_root_in_trans(trans, root);
2510 }
2511 
2512 static noinline_for_stack
2513 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2514 				     struct reloc_control *rc,
2515 				     struct backref_node *node,
2516 				     struct backref_edge *edges[])
2517 {
2518 	struct backref_node *next;
2519 	struct btrfs_root *root;
2520 	int index = 0;
2521 
2522 	next = node;
2523 	while (1) {
2524 		cond_resched();
2525 		next = walk_up_backref(next, edges, &index);
2526 		root = next->root;
2527 		BUG_ON(!root);
2528 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2529 
2530 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2531 			record_reloc_root_in_trans(trans, root);
2532 			break;
2533 		}
2534 
2535 		btrfs_record_root_in_trans(trans, root);
2536 		root = root->reloc_root;
2537 
2538 		if (next->new_bytenr != root->node->start) {
2539 			BUG_ON(next->new_bytenr);
2540 			BUG_ON(!list_empty(&next->list));
2541 			next->new_bytenr = root->node->start;
2542 			next->root = root;
2543 			list_add_tail(&next->list,
2544 				      &rc->backref_cache.changed);
2545 			__mark_block_processed(rc, next);
2546 			break;
2547 		}
2548 
2549 		WARN_ON(1);
2550 		root = NULL;
2551 		next = walk_down_backref(edges, &index);
2552 		if (!next || next->level <= node->level)
2553 			break;
2554 	}
2555 	if (!root)
2556 		return NULL;
2557 
2558 	next = node;
2559 	/* setup backref node path for btrfs_reloc_cow_block */
2560 	while (1) {
2561 		rc->backref_cache.path[next->level] = next;
2562 		if (--index < 0)
2563 			break;
2564 		next = edges[index]->node[UPPER];
2565 	}
2566 	return root;
2567 }
2568 
2569 /*
2570  * select a tree root for relocation. return NULL if the block
2571  * is reference counted. we should use do_relocation() in this
2572  * case. return a tree root pointer if the block isn't reference
2573  * counted. return -ENOENT if the block is root of reloc tree.
2574  */
2575 static noinline_for_stack
2576 struct btrfs_root *select_one_root(struct backref_node *node)
2577 {
2578 	struct backref_node *next;
2579 	struct btrfs_root *root;
2580 	struct btrfs_root *fs_root = NULL;
2581 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2582 	int index = 0;
2583 
2584 	next = node;
2585 	while (1) {
2586 		cond_resched();
2587 		next = walk_up_backref(next, edges, &index);
2588 		root = next->root;
2589 		BUG_ON(!root);
2590 
2591 		/* no other choice for non-references counted tree */
2592 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2593 			return root;
2594 
2595 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2596 			fs_root = root;
2597 
2598 		if (next != node)
2599 			return NULL;
2600 
2601 		next = walk_down_backref(edges, &index);
2602 		if (!next || next->level <= node->level)
2603 			break;
2604 	}
2605 
2606 	if (!fs_root)
2607 		return ERR_PTR(-ENOENT);
2608 	return fs_root;
2609 }
2610 
2611 static noinline_for_stack
2612 u64 calcu_metadata_size(struct reloc_control *rc,
2613 			struct backref_node *node, int reserve)
2614 {
2615 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2616 	struct backref_node *next = node;
2617 	struct backref_edge *edge;
2618 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2619 	u64 num_bytes = 0;
2620 	int index = 0;
2621 
2622 	BUG_ON(reserve && node->processed);
2623 
2624 	while (next) {
2625 		cond_resched();
2626 		while (1) {
2627 			if (next->processed && (reserve || next != node))
2628 				break;
2629 
2630 			num_bytes += fs_info->nodesize;
2631 
2632 			if (list_empty(&next->upper))
2633 				break;
2634 
2635 			edge = list_entry(next->upper.next,
2636 					  struct backref_edge, list[LOWER]);
2637 			edges[index++] = edge;
2638 			next = edge->node[UPPER];
2639 		}
2640 		next = walk_down_backref(edges, &index);
2641 	}
2642 	return num_bytes;
2643 }
2644 
2645 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2646 				  struct reloc_control *rc,
2647 				  struct backref_node *node)
2648 {
2649 	struct btrfs_root *root = rc->extent_root;
2650 	struct btrfs_fs_info *fs_info = root->fs_info;
2651 	u64 num_bytes;
2652 	int ret;
2653 	u64 tmp;
2654 
2655 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2656 
2657 	trans->block_rsv = rc->block_rsv;
2658 	rc->reserved_bytes += num_bytes;
2659 
2660 	/*
2661 	 * We are under a transaction here so we can only do limited flushing.
2662 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2663 	 * transaction and try to refill when we can flush all the things.
2664 	 */
2665 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2666 				BTRFS_RESERVE_FLUSH_LIMIT);
2667 	if (ret) {
2668 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2669 		while (tmp <= rc->reserved_bytes)
2670 			tmp <<= 1;
2671 		/*
2672 		 * only one thread can access block_rsv at this point,
2673 		 * so we don't need hold lock to protect block_rsv.
2674 		 * we expand more reservation size here to allow enough
2675 		 * space for relocation and we will return eailer in
2676 		 * enospc case.
2677 		 */
2678 		rc->block_rsv->size = tmp + fs_info->nodesize *
2679 				      RELOCATION_RESERVED_NODES;
2680 		return -EAGAIN;
2681 	}
2682 
2683 	return 0;
2684 }
2685 
2686 /*
2687  * relocate a block tree, and then update pointers in upper level
2688  * blocks that reference the block to point to the new location.
2689  *
2690  * if called by link_to_upper, the block has already been relocated.
2691  * in that case this function just updates pointers.
2692  */
2693 static int do_relocation(struct btrfs_trans_handle *trans,
2694 			 struct reloc_control *rc,
2695 			 struct backref_node *node,
2696 			 struct btrfs_key *key,
2697 			 struct btrfs_path *path, int lowest)
2698 {
2699 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2700 	struct backref_node *upper;
2701 	struct backref_edge *edge;
2702 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2703 	struct btrfs_root *root;
2704 	struct extent_buffer *eb;
2705 	u32 blocksize;
2706 	u64 bytenr;
2707 	u64 generation;
2708 	int slot;
2709 	int ret;
2710 	int err = 0;
2711 
2712 	BUG_ON(lowest && node->eb);
2713 
2714 	path->lowest_level = node->level + 1;
2715 	rc->backref_cache.path[node->level] = node;
2716 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2717 		cond_resched();
2718 
2719 		upper = edge->node[UPPER];
2720 		root = select_reloc_root(trans, rc, upper, edges);
2721 		BUG_ON(!root);
2722 
2723 		if (upper->eb && !upper->locked) {
2724 			if (!lowest) {
2725 				ret = btrfs_bin_search(upper->eb, key,
2726 						       upper->level, &slot);
2727 				BUG_ON(ret);
2728 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2729 				if (node->eb->start == bytenr)
2730 					goto next;
2731 			}
2732 			drop_node_buffer(upper);
2733 		}
2734 
2735 		if (!upper->eb) {
2736 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2737 			if (ret) {
2738 				if (ret < 0)
2739 					err = ret;
2740 				else
2741 					err = -ENOENT;
2742 
2743 				btrfs_release_path(path);
2744 				break;
2745 			}
2746 
2747 			if (!upper->eb) {
2748 				upper->eb = path->nodes[upper->level];
2749 				path->nodes[upper->level] = NULL;
2750 			} else {
2751 				BUG_ON(upper->eb != path->nodes[upper->level]);
2752 			}
2753 
2754 			upper->locked = 1;
2755 			path->locks[upper->level] = 0;
2756 
2757 			slot = path->slots[upper->level];
2758 			btrfs_release_path(path);
2759 		} else {
2760 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2761 					       &slot);
2762 			BUG_ON(ret);
2763 		}
2764 
2765 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2766 		if (lowest) {
2767 			if (bytenr != node->bytenr) {
2768 				btrfs_err(root->fs_info,
2769 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2770 					  bytenr, node->bytenr, slot,
2771 					  upper->eb->start);
2772 				err = -EIO;
2773 				goto next;
2774 			}
2775 		} else {
2776 			if (node->eb->start == bytenr)
2777 				goto next;
2778 		}
2779 
2780 		blocksize = root->fs_info->nodesize;
2781 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2782 		eb = read_tree_block(fs_info, bytenr, generation);
2783 		if (IS_ERR(eb)) {
2784 			err = PTR_ERR(eb);
2785 			goto next;
2786 		} else if (!extent_buffer_uptodate(eb)) {
2787 			free_extent_buffer(eb);
2788 			err = -EIO;
2789 			goto next;
2790 		}
2791 		btrfs_tree_lock(eb);
2792 		btrfs_set_lock_blocking(eb);
2793 
2794 		if (!node->eb) {
2795 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2796 					      slot, &eb);
2797 			btrfs_tree_unlock(eb);
2798 			free_extent_buffer(eb);
2799 			if (ret < 0) {
2800 				err = ret;
2801 				goto next;
2802 			}
2803 			BUG_ON(node->eb != eb);
2804 		} else {
2805 			btrfs_set_node_blockptr(upper->eb, slot,
2806 						node->eb->start);
2807 			btrfs_set_node_ptr_generation(upper->eb, slot,
2808 						      trans->transid);
2809 			btrfs_mark_buffer_dirty(upper->eb);
2810 
2811 			ret = btrfs_inc_extent_ref(trans, root,
2812 						node->eb->start, blocksize,
2813 						upper->eb->start,
2814 						btrfs_header_owner(upper->eb),
2815 						node->level, 0);
2816 			BUG_ON(ret);
2817 
2818 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2819 			BUG_ON(ret);
2820 		}
2821 next:
2822 		if (!upper->pending)
2823 			drop_node_buffer(upper);
2824 		else
2825 			unlock_node_buffer(upper);
2826 		if (err)
2827 			break;
2828 	}
2829 
2830 	if (!err && node->pending) {
2831 		drop_node_buffer(node);
2832 		list_move_tail(&node->list, &rc->backref_cache.changed);
2833 		node->pending = 0;
2834 	}
2835 
2836 	path->lowest_level = 0;
2837 	BUG_ON(err == -ENOSPC);
2838 	return err;
2839 }
2840 
2841 static int link_to_upper(struct btrfs_trans_handle *trans,
2842 			 struct reloc_control *rc,
2843 			 struct backref_node *node,
2844 			 struct btrfs_path *path)
2845 {
2846 	struct btrfs_key key;
2847 
2848 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2849 	return do_relocation(trans, rc, node, &key, path, 0);
2850 }
2851 
2852 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2853 				struct reloc_control *rc,
2854 				struct btrfs_path *path, int err)
2855 {
2856 	LIST_HEAD(list);
2857 	struct backref_cache *cache = &rc->backref_cache;
2858 	struct backref_node *node;
2859 	int level;
2860 	int ret;
2861 
2862 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2863 		while (!list_empty(&cache->pending[level])) {
2864 			node = list_entry(cache->pending[level].next,
2865 					  struct backref_node, list);
2866 			list_move_tail(&node->list, &list);
2867 			BUG_ON(!node->pending);
2868 
2869 			if (!err) {
2870 				ret = link_to_upper(trans, rc, node, path);
2871 				if (ret < 0)
2872 					err = ret;
2873 			}
2874 		}
2875 		list_splice_init(&list, &cache->pending[level]);
2876 	}
2877 	return err;
2878 }
2879 
2880 static void mark_block_processed(struct reloc_control *rc,
2881 				 u64 bytenr, u32 blocksize)
2882 {
2883 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2884 			EXTENT_DIRTY);
2885 }
2886 
2887 static void __mark_block_processed(struct reloc_control *rc,
2888 				   struct backref_node *node)
2889 {
2890 	u32 blocksize;
2891 	if (node->level == 0 ||
2892 	    in_block_group(node->bytenr, rc->block_group)) {
2893 		blocksize = rc->extent_root->fs_info->nodesize;
2894 		mark_block_processed(rc, node->bytenr, blocksize);
2895 	}
2896 	node->processed = 1;
2897 }
2898 
2899 /*
2900  * mark a block and all blocks directly/indirectly reference the block
2901  * as processed.
2902  */
2903 static void update_processed_blocks(struct reloc_control *rc,
2904 				    struct backref_node *node)
2905 {
2906 	struct backref_node *next = node;
2907 	struct backref_edge *edge;
2908 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2909 	int index = 0;
2910 
2911 	while (next) {
2912 		cond_resched();
2913 		while (1) {
2914 			if (next->processed)
2915 				break;
2916 
2917 			__mark_block_processed(rc, next);
2918 
2919 			if (list_empty(&next->upper))
2920 				break;
2921 
2922 			edge = list_entry(next->upper.next,
2923 					  struct backref_edge, list[LOWER]);
2924 			edges[index++] = edge;
2925 			next = edge->node[UPPER];
2926 		}
2927 		next = walk_down_backref(edges, &index);
2928 	}
2929 }
2930 
2931 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2932 {
2933 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2934 
2935 	if (test_range_bit(&rc->processed_blocks, bytenr,
2936 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2937 		return 1;
2938 	return 0;
2939 }
2940 
2941 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2942 			      struct tree_block *block)
2943 {
2944 	struct extent_buffer *eb;
2945 
2946 	BUG_ON(block->key_ready);
2947 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset);
2948 	if (IS_ERR(eb)) {
2949 		return PTR_ERR(eb);
2950 	} else if (!extent_buffer_uptodate(eb)) {
2951 		free_extent_buffer(eb);
2952 		return -EIO;
2953 	}
2954 	WARN_ON(btrfs_header_level(eb) != block->level);
2955 	if (block->level == 0)
2956 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2957 	else
2958 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2959 	free_extent_buffer(eb);
2960 	block->key_ready = 1;
2961 	return 0;
2962 }
2963 
2964 /*
2965  * helper function to relocate a tree block
2966  */
2967 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2968 				struct reloc_control *rc,
2969 				struct backref_node *node,
2970 				struct btrfs_key *key,
2971 				struct btrfs_path *path)
2972 {
2973 	struct btrfs_root *root;
2974 	int ret = 0;
2975 
2976 	if (!node)
2977 		return 0;
2978 
2979 	BUG_ON(node->processed);
2980 	root = select_one_root(node);
2981 	if (root == ERR_PTR(-ENOENT)) {
2982 		update_processed_blocks(rc, node);
2983 		goto out;
2984 	}
2985 
2986 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2987 		ret = reserve_metadata_space(trans, rc, node);
2988 		if (ret)
2989 			goto out;
2990 	}
2991 
2992 	if (root) {
2993 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2994 			BUG_ON(node->new_bytenr);
2995 			BUG_ON(!list_empty(&node->list));
2996 			btrfs_record_root_in_trans(trans, root);
2997 			root = root->reloc_root;
2998 			node->new_bytenr = root->node->start;
2999 			node->root = root;
3000 			list_add_tail(&node->list, &rc->backref_cache.changed);
3001 		} else {
3002 			path->lowest_level = node->level;
3003 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3004 			btrfs_release_path(path);
3005 			if (ret > 0)
3006 				ret = 0;
3007 		}
3008 		if (!ret)
3009 			update_processed_blocks(rc, node);
3010 	} else {
3011 		ret = do_relocation(trans, rc, node, key, path, 1);
3012 	}
3013 out:
3014 	if (ret || node->level == 0 || node->cowonly)
3015 		remove_backref_node(&rc->backref_cache, node);
3016 	return ret;
3017 }
3018 
3019 /*
3020  * relocate a list of blocks
3021  */
3022 static noinline_for_stack
3023 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3024 			 struct reloc_control *rc, struct rb_root *blocks)
3025 {
3026 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3027 	struct backref_node *node;
3028 	struct btrfs_path *path;
3029 	struct tree_block *block;
3030 	struct rb_node *rb_node;
3031 	int ret;
3032 	int err = 0;
3033 
3034 	path = btrfs_alloc_path();
3035 	if (!path) {
3036 		err = -ENOMEM;
3037 		goto out_free_blocks;
3038 	}
3039 
3040 	rb_node = rb_first(blocks);
3041 	while (rb_node) {
3042 		block = rb_entry(rb_node, struct tree_block, rb_node);
3043 		if (!block->key_ready)
3044 			readahead_tree_block(fs_info, block->bytenr);
3045 		rb_node = rb_next(rb_node);
3046 	}
3047 
3048 	rb_node = rb_first(blocks);
3049 	while (rb_node) {
3050 		block = rb_entry(rb_node, struct tree_block, rb_node);
3051 		if (!block->key_ready) {
3052 			err = get_tree_block_key(fs_info, block);
3053 			if (err)
3054 				goto out_free_path;
3055 		}
3056 		rb_node = rb_next(rb_node);
3057 	}
3058 
3059 	rb_node = rb_first(blocks);
3060 	while (rb_node) {
3061 		block = rb_entry(rb_node, struct tree_block, rb_node);
3062 
3063 		node = build_backref_tree(rc, &block->key,
3064 					  block->level, block->bytenr);
3065 		if (IS_ERR(node)) {
3066 			err = PTR_ERR(node);
3067 			goto out;
3068 		}
3069 
3070 		ret = relocate_tree_block(trans, rc, node, &block->key,
3071 					  path);
3072 		if (ret < 0) {
3073 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3074 				err = ret;
3075 			goto out;
3076 		}
3077 		rb_node = rb_next(rb_node);
3078 	}
3079 out:
3080 	err = finish_pending_nodes(trans, rc, path, err);
3081 
3082 out_free_path:
3083 	btrfs_free_path(path);
3084 out_free_blocks:
3085 	free_block_list(blocks);
3086 	return err;
3087 }
3088 
3089 static noinline_for_stack
3090 int prealloc_file_extent_cluster(struct inode *inode,
3091 				 struct file_extent_cluster *cluster)
3092 {
3093 	u64 alloc_hint = 0;
3094 	u64 start;
3095 	u64 end;
3096 	u64 offset = BTRFS_I(inode)->index_cnt;
3097 	u64 num_bytes;
3098 	int nr = 0;
3099 	int ret = 0;
3100 	u64 prealloc_start = cluster->start - offset;
3101 	u64 prealloc_end = cluster->end - offset;
3102 	u64 cur_offset;
3103 	struct extent_changeset *data_reserved = NULL;
3104 
3105 	BUG_ON(cluster->start != cluster->boundary[0]);
3106 	inode_lock(inode);
3107 
3108 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3109 					  prealloc_end + 1 - prealloc_start);
3110 	if (ret)
3111 		goto out;
3112 
3113 	cur_offset = prealloc_start;
3114 	while (nr < cluster->nr) {
3115 		start = cluster->boundary[nr] - offset;
3116 		if (nr + 1 < cluster->nr)
3117 			end = cluster->boundary[nr + 1] - 1 - offset;
3118 		else
3119 			end = cluster->end - offset;
3120 
3121 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3122 		num_bytes = end + 1 - start;
3123 		if (cur_offset < start)
3124 			btrfs_free_reserved_data_space(inode, data_reserved,
3125 					cur_offset, start - cur_offset);
3126 		ret = btrfs_prealloc_file_range(inode, 0, start,
3127 						num_bytes, num_bytes,
3128 						end + 1, &alloc_hint);
3129 		cur_offset = end + 1;
3130 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3131 		if (ret)
3132 			break;
3133 		nr++;
3134 	}
3135 	if (cur_offset < prealloc_end)
3136 		btrfs_free_reserved_data_space(inode, data_reserved,
3137 				cur_offset, prealloc_end + 1 - cur_offset);
3138 out:
3139 	inode_unlock(inode);
3140 	extent_changeset_free(data_reserved);
3141 	return ret;
3142 }
3143 
3144 static noinline_for_stack
3145 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3146 			 u64 block_start)
3147 {
3148 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3149 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3150 	struct extent_map *em;
3151 	int ret = 0;
3152 
3153 	em = alloc_extent_map();
3154 	if (!em)
3155 		return -ENOMEM;
3156 
3157 	em->start = start;
3158 	em->len = end + 1 - start;
3159 	em->block_len = em->len;
3160 	em->block_start = block_start;
3161 	em->bdev = fs_info->fs_devices->latest_bdev;
3162 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3163 
3164 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3165 	while (1) {
3166 		write_lock(&em_tree->lock);
3167 		ret = add_extent_mapping(em_tree, em, 0);
3168 		write_unlock(&em_tree->lock);
3169 		if (ret != -EEXIST) {
3170 			free_extent_map(em);
3171 			break;
3172 		}
3173 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3174 	}
3175 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3176 	return ret;
3177 }
3178 
3179 static int relocate_file_extent_cluster(struct inode *inode,
3180 					struct file_extent_cluster *cluster)
3181 {
3182 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3183 	u64 page_start;
3184 	u64 page_end;
3185 	u64 offset = BTRFS_I(inode)->index_cnt;
3186 	unsigned long index;
3187 	unsigned long last_index;
3188 	struct page *page;
3189 	struct file_ra_state *ra;
3190 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3191 	int nr = 0;
3192 	int ret = 0;
3193 
3194 	if (!cluster->nr)
3195 		return 0;
3196 
3197 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3198 	if (!ra)
3199 		return -ENOMEM;
3200 
3201 	ret = prealloc_file_extent_cluster(inode, cluster);
3202 	if (ret)
3203 		goto out;
3204 
3205 	file_ra_state_init(ra, inode->i_mapping);
3206 
3207 	ret = setup_extent_mapping(inode, cluster->start - offset,
3208 				   cluster->end - offset, cluster->start);
3209 	if (ret)
3210 		goto out;
3211 
3212 	index = (cluster->start - offset) >> PAGE_SHIFT;
3213 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3214 	while (index <= last_index) {
3215 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3216 				PAGE_SIZE);
3217 		if (ret)
3218 			goto out;
3219 
3220 		page = find_lock_page(inode->i_mapping, index);
3221 		if (!page) {
3222 			page_cache_sync_readahead(inode->i_mapping,
3223 						  ra, NULL, index,
3224 						  last_index + 1 - index);
3225 			page = find_or_create_page(inode->i_mapping, index,
3226 						   mask);
3227 			if (!page) {
3228 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3229 							PAGE_SIZE);
3230 				ret = -ENOMEM;
3231 				goto out;
3232 			}
3233 		}
3234 
3235 		if (PageReadahead(page)) {
3236 			page_cache_async_readahead(inode->i_mapping,
3237 						   ra, NULL, page, index,
3238 						   last_index + 1 - index);
3239 		}
3240 
3241 		if (!PageUptodate(page)) {
3242 			btrfs_readpage(NULL, page);
3243 			lock_page(page);
3244 			if (!PageUptodate(page)) {
3245 				unlock_page(page);
3246 				put_page(page);
3247 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3248 							PAGE_SIZE);
3249 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3250 							       PAGE_SIZE);
3251 				ret = -EIO;
3252 				goto out;
3253 			}
3254 		}
3255 
3256 		page_start = page_offset(page);
3257 		page_end = page_start + PAGE_SIZE - 1;
3258 
3259 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3260 
3261 		set_page_extent_mapped(page);
3262 
3263 		if (nr < cluster->nr &&
3264 		    page_start + offset == cluster->boundary[nr]) {
3265 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3266 					page_start, page_end,
3267 					EXTENT_BOUNDARY);
3268 			nr++;
3269 		}
3270 
3271 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3272 						NULL, 0);
3273 		if (ret) {
3274 			unlock_page(page);
3275 			put_page(page);
3276 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3277 							 PAGE_SIZE);
3278 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3279 			                               PAGE_SIZE);
3280 
3281 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3282 					  page_start, page_end,
3283 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3284 			goto out;
3285 
3286 		}
3287 		set_page_dirty(page);
3288 
3289 		unlock_extent(&BTRFS_I(inode)->io_tree,
3290 			      page_start, page_end);
3291 		unlock_page(page);
3292 		put_page(page);
3293 
3294 		index++;
3295 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
3296 		balance_dirty_pages_ratelimited(inode->i_mapping);
3297 		btrfs_throttle(fs_info);
3298 	}
3299 	WARN_ON(nr != cluster->nr);
3300 out:
3301 	kfree(ra);
3302 	return ret;
3303 }
3304 
3305 static noinline_for_stack
3306 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3307 			 struct file_extent_cluster *cluster)
3308 {
3309 	int ret;
3310 
3311 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3312 		ret = relocate_file_extent_cluster(inode, cluster);
3313 		if (ret)
3314 			return ret;
3315 		cluster->nr = 0;
3316 	}
3317 
3318 	if (!cluster->nr)
3319 		cluster->start = extent_key->objectid;
3320 	else
3321 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3322 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3323 	cluster->boundary[cluster->nr] = extent_key->objectid;
3324 	cluster->nr++;
3325 
3326 	if (cluster->nr >= MAX_EXTENTS) {
3327 		ret = relocate_file_extent_cluster(inode, cluster);
3328 		if (ret)
3329 			return ret;
3330 		cluster->nr = 0;
3331 	}
3332 	return 0;
3333 }
3334 
3335 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3336 static int get_ref_objectid_v0(struct reloc_control *rc,
3337 			       struct btrfs_path *path,
3338 			       struct btrfs_key *extent_key,
3339 			       u64 *ref_objectid, int *path_change)
3340 {
3341 	struct btrfs_key key;
3342 	struct extent_buffer *leaf;
3343 	struct btrfs_extent_ref_v0 *ref0;
3344 	int ret;
3345 	int slot;
3346 
3347 	leaf = path->nodes[0];
3348 	slot = path->slots[0];
3349 	while (1) {
3350 		if (slot >= btrfs_header_nritems(leaf)) {
3351 			ret = btrfs_next_leaf(rc->extent_root, path);
3352 			if (ret < 0)
3353 				return ret;
3354 			BUG_ON(ret > 0);
3355 			leaf = path->nodes[0];
3356 			slot = path->slots[0];
3357 			if (path_change)
3358 				*path_change = 1;
3359 		}
3360 		btrfs_item_key_to_cpu(leaf, &key, slot);
3361 		if (key.objectid != extent_key->objectid)
3362 			return -ENOENT;
3363 
3364 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3365 			slot++;
3366 			continue;
3367 		}
3368 		ref0 = btrfs_item_ptr(leaf, slot,
3369 				struct btrfs_extent_ref_v0);
3370 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3371 		break;
3372 	}
3373 	return 0;
3374 }
3375 #endif
3376 
3377 /*
3378  * helper to add a tree block to the list.
3379  * the major work is getting the generation and level of the block
3380  */
3381 static int add_tree_block(struct reloc_control *rc,
3382 			  struct btrfs_key *extent_key,
3383 			  struct btrfs_path *path,
3384 			  struct rb_root *blocks)
3385 {
3386 	struct extent_buffer *eb;
3387 	struct btrfs_extent_item *ei;
3388 	struct btrfs_tree_block_info *bi;
3389 	struct tree_block *block;
3390 	struct rb_node *rb_node;
3391 	u32 item_size;
3392 	int level = -1;
3393 	u64 generation;
3394 
3395 	eb =  path->nodes[0];
3396 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3397 
3398 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3399 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3400 		ei = btrfs_item_ptr(eb, path->slots[0],
3401 				struct btrfs_extent_item);
3402 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3403 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3404 			level = btrfs_tree_block_level(eb, bi);
3405 		} else {
3406 			level = (int)extent_key->offset;
3407 		}
3408 		generation = btrfs_extent_generation(eb, ei);
3409 	} else {
3410 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3411 		u64 ref_owner;
3412 		int ret;
3413 
3414 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3415 		ret = get_ref_objectid_v0(rc, path, extent_key,
3416 					  &ref_owner, NULL);
3417 		if (ret < 0)
3418 			return ret;
3419 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3420 		level = (int)ref_owner;
3421 		/* FIXME: get real generation */
3422 		generation = 0;
3423 #else
3424 		BUG();
3425 #endif
3426 	}
3427 
3428 	btrfs_release_path(path);
3429 
3430 	BUG_ON(level == -1);
3431 
3432 	block = kmalloc(sizeof(*block), GFP_NOFS);
3433 	if (!block)
3434 		return -ENOMEM;
3435 
3436 	block->bytenr = extent_key->objectid;
3437 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3438 	block->key.offset = generation;
3439 	block->level = level;
3440 	block->key_ready = 0;
3441 
3442 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3443 	if (rb_node)
3444 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3445 
3446 	return 0;
3447 }
3448 
3449 /*
3450  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3451  */
3452 static int __add_tree_block(struct reloc_control *rc,
3453 			    u64 bytenr, u32 blocksize,
3454 			    struct rb_root *blocks)
3455 {
3456 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3457 	struct btrfs_path *path;
3458 	struct btrfs_key key;
3459 	int ret;
3460 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3461 
3462 	if (tree_block_processed(bytenr, rc))
3463 		return 0;
3464 
3465 	if (tree_search(blocks, bytenr))
3466 		return 0;
3467 
3468 	path = btrfs_alloc_path();
3469 	if (!path)
3470 		return -ENOMEM;
3471 again:
3472 	key.objectid = bytenr;
3473 	if (skinny) {
3474 		key.type = BTRFS_METADATA_ITEM_KEY;
3475 		key.offset = (u64)-1;
3476 	} else {
3477 		key.type = BTRFS_EXTENT_ITEM_KEY;
3478 		key.offset = blocksize;
3479 	}
3480 
3481 	path->search_commit_root = 1;
3482 	path->skip_locking = 1;
3483 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3484 	if (ret < 0)
3485 		goto out;
3486 
3487 	if (ret > 0 && skinny) {
3488 		if (path->slots[0]) {
3489 			path->slots[0]--;
3490 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3491 					      path->slots[0]);
3492 			if (key.objectid == bytenr &&
3493 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3494 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3495 			      key.offset == blocksize)))
3496 				ret = 0;
3497 		}
3498 
3499 		if (ret) {
3500 			skinny = false;
3501 			btrfs_release_path(path);
3502 			goto again;
3503 		}
3504 	}
3505 	if (ret) {
3506 		ASSERT(ret == 1);
3507 		btrfs_print_leaf(path->nodes[0]);
3508 		btrfs_err(fs_info,
3509 	     "tree block extent item (%llu) is not found in extent tree",
3510 		     bytenr);
3511 		WARN_ON(1);
3512 		ret = -EINVAL;
3513 		goto out;
3514 	}
3515 
3516 	ret = add_tree_block(rc, &key, path, blocks);
3517 out:
3518 	btrfs_free_path(path);
3519 	return ret;
3520 }
3521 
3522 /*
3523  * helper to check if the block use full backrefs for pointers in it
3524  */
3525 static int block_use_full_backref(struct reloc_control *rc,
3526 				  struct extent_buffer *eb)
3527 {
3528 	u64 flags;
3529 	int ret;
3530 
3531 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3532 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3533 		return 1;
3534 
3535 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3536 				       eb->start, btrfs_header_level(eb), 1,
3537 				       NULL, &flags);
3538 	BUG_ON(ret);
3539 
3540 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3541 		ret = 1;
3542 	else
3543 		ret = 0;
3544 	return ret;
3545 }
3546 
3547 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3548 				    struct btrfs_block_group_cache *block_group,
3549 				    struct inode *inode,
3550 				    u64 ino)
3551 {
3552 	struct btrfs_key key;
3553 	struct btrfs_root *root = fs_info->tree_root;
3554 	struct btrfs_trans_handle *trans;
3555 	int ret = 0;
3556 
3557 	if (inode)
3558 		goto truncate;
3559 
3560 	key.objectid = ino;
3561 	key.type = BTRFS_INODE_ITEM_KEY;
3562 	key.offset = 0;
3563 
3564 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3565 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3566 		if (!IS_ERR(inode))
3567 			iput(inode);
3568 		return -ENOENT;
3569 	}
3570 
3571 truncate:
3572 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3573 						 &fs_info->global_block_rsv);
3574 	if (ret)
3575 		goto out;
3576 
3577 	trans = btrfs_join_transaction(root);
3578 	if (IS_ERR(trans)) {
3579 		ret = PTR_ERR(trans);
3580 		goto out;
3581 	}
3582 
3583 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3584 
3585 	btrfs_end_transaction(trans);
3586 	btrfs_btree_balance_dirty(fs_info);
3587 out:
3588 	iput(inode);
3589 	return ret;
3590 }
3591 
3592 /*
3593  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3594  * this function scans fs tree to find blocks reference the data extent
3595  */
3596 static int find_data_references(struct reloc_control *rc,
3597 				struct btrfs_key *extent_key,
3598 				struct extent_buffer *leaf,
3599 				struct btrfs_extent_data_ref *ref,
3600 				struct rb_root *blocks)
3601 {
3602 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3603 	struct btrfs_path *path;
3604 	struct tree_block *block;
3605 	struct btrfs_root *root;
3606 	struct btrfs_file_extent_item *fi;
3607 	struct rb_node *rb_node;
3608 	struct btrfs_key key;
3609 	u64 ref_root;
3610 	u64 ref_objectid;
3611 	u64 ref_offset;
3612 	u32 ref_count;
3613 	u32 nritems;
3614 	int err = 0;
3615 	int added = 0;
3616 	int counted;
3617 	int ret;
3618 
3619 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3620 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3621 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3622 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3623 
3624 	/*
3625 	 * This is an extent belonging to the free space cache, lets just delete
3626 	 * it and redo the search.
3627 	 */
3628 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3629 		ret = delete_block_group_cache(fs_info, rc->block_group,
3630 					       NULL, ref_objectid);
3631 		if (ret != -ENOENT)
3632 			return ret;
3633 		ret = 0;
3634 	}
3635 
3636 	path = btrfs_alloc_path();
3637 	if (!path)
3638 		return -ENOMEM;
3639 	path->reada = READA_FORWARD;
3640 
3641 	root = read_fs_root(fs_info, ref_root);
3642 	if (IS_ERR(root)) {
3643 		err = PTR_ERR(root);
3644 		goto out;
3645 	}
3646 
3647 	key.objectid = ref_objectid;
3648 	key.type = BTRFS_EXTENT_DATA_KEY;
3649 	if (ref_offset > ((u64)-1 << 32))
3650 		key.offset = 0;
3651 	else
3652 		key.offset = ref_offset;
3653 
3654 	path->search_commit_root = 1;
3655 	path->skip_locking = 1;
3656 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3657 	if (ret < 0) {
3658 		err = ret;
3659 		goto out;
3660 	}
3661 
3662 	leaf = path->nodes[0];
3663 	nritems = btrfs_header_nritems(leaf);
3664 	/*
3665 	 * the references in tree blocks that use full backrefs
3666 	 * are not counted in
3667 	 */
3668 	if (block_use_full_backref(rc, leaf))
3669 		counted = 0;
3670 	else
3671 		counted = 1;
3672 	rb_node = tree_search(blocks, leaf->start);
3673 	if (rb_node) {
3674 		if (counted)
3675 			added = 1;
3676 		else
3677 			path->slots[0] = nritems;
3678 	}
3679 
3680 	while (ref_count > 0) {
3681 		while (path->slots[0] >= nritems) {
3682 			ret = btrfs_next_leaf(root, path);
3683 			if (ret < 0) {
3684 				err = ret;
3685 				goto out;
3686 			}
3687 			if (WARN_ON(ret > 0))
3688 				goto out;
3689 
3690 			leaf = path->nodes[0];
3691 			nritems = btrfs_header_nritems(leaf);
3692 			added = 0;
3693 
3694 			if (block_use_full_backref(rc, leaf))
3695 				counted = 0;
3696 			else
3697 				counted = 1;
3698 			rb_node = tree_search(blocks, leaf->start);
3699 			if (rb_node) {
3700 				if (counted)
3701 					added = 1;
3702 				else
3703 					path->slots[0] = nritems;
3704 			}
3705 		}
3706 
3707 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3708 		if (WARN_ON(key.objectid != ref_objectid ||
3709 		    key.type != BTRFS_EXTENT_DATA_KEY))
3710 			break;
3711 
3712 		fi = btrfs_item_ptr(leaf, path->slots[0],
3713 				    struct btrfs_file_extent_item);
3714 
3715 		if (btrfs_file_extent_type(leaf, fi) ==
3716 		    BTRFS_FILE_EXTENT_INLINE)
3717 			goto next;
3718 
3719 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3720 		    extent_key->objectid)
3721 			goto next;
3722 
3723 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3724 		if (key.offset != ref_offset)
3725 			goto next;
3726 
3727 		if (counted)
3728 			ref_count--;
3729 		if (added)
3730 			goto next;
3731 
3732 		if (!tree_block_processed(leaf->start, rc)) {
3733 			block = kmalloc(sizeof(*block), GFP_NOFS);
3734 			if (!block) {
3735 				err = -ENOMEM;
3736 				break;
3737 			}
3738 			block->bytenr = leaf->start;
3739 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3740 			block->level = 0;
3741 			block->key_ready = 1;
3742 			rb_node = tree_insert(blocks, block->bytenr,
3743 					      &block->rb_node);
3744 			if (rb_node)
3745 				backref_tree_panic(rb_node, -EEXIST,
3746 						   block->bytenr);
3747 		}
3748 		if (counted)
3749 			added = 1;
3750 		else
3751 			path->slots[0] = nritems;
3752 next:
3753 		path->slots[0]++;
3754 
3755 	}
3756 out:
3757 	btrfs_free_path(path);
3758 	return err;
3759 }
3760 
3761 /*
3762  * helper to find all tree blocks that reference a given data extent
3763  */
3764 static noinline_for_stack
3765 int add_data_references(struct reloc_control *rc,
3766 			struct btrfs_key *extent_key,
3767 			struct btrfs_path *path,
3768 			struct rb_root *blocks)
3769 {
3770 	struct btrfs_key key;
3771 	struct extent_buffer *eb;
3772 	struct btrfs_extent_data_ref *dref;
3773 	struct btrfs_extent_inline_ref *iref;
3774 	unsigned long ptr;
3775 	unsigned long end;
3776 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3777 	int ret = 0;
3778 	int err = 0;
3779 
3780 	eb = path->nodes[0];
3781 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3782 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3783 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3784 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3785 		ptr = end;
3786 	else
3787 #endif
3788 		ptr += sizeof(struct btrfs_extent_item);
3789 
3790 	while (ptr < end) {
3791 		iref = (struct btrfs_extent_inline_ref *)ptr;
3792 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3793 							BTRFS_REF_TYPE_DATA);
3794 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3795 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3796 			ret = __add_tree_block(rc, key.offset, blocksize,
3797 					       blocks);
3798 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3799 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3800 			ret = find_data_references(rc, extent_key,
3801 						   eb, dref, blocks);
3802 		} else {
3803 			ret = -EINVAL;
3804 			btrfs_err(rc->extent_root->fs_info,
3805 		     "extent %llu slot %d has an invalid inline ref type",
3806 			     eb->start, path->slots[0]);
3807 		}
3808 		if (ret) {
3809 			err = ret;
3810 			goto out;
3811 		}
3812 		ptr += btrfs_extent_inline_ref_size(key.type);
3813 	}
3814 	WARN_ON(ptr > end);
3815 
3816 	while (1) {
3817 		cond_resched();
3818 		eb = path->nodes[0];
3819 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3820 			ret = btrfs_next_leaf(rc->extent_root, path);
3821 			if (ret < 0) {
3822 				err = ret;
3823 				break;
3824 			}
3825 			if (ret > 0)
3826 				break;
3827 			eb = path->nodes[0];
3828 		}
3829 
3830 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3831 		if (key.objectid != extent_key->objectid)
3832 			break;
3833 
3834 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3835 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3836 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3837 #else
3838 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3839 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3840 #endif
3841 			ret = __add_tree_block(rc, key.offset, blocksize,
3842 					       blocks);
3843 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3844 			dref = btrfs_item_ptr(eb, path->slots[0],
3845 					      struct btrfs_extent_data_ref);
3846 			ret = find_data_references(rc, extent_key,
3847 						   eb, dref, blocks);
3848 		} else {
3849 			ret = 0;
3850 		}
3851 		if (ret) {
3852 			err = ret;
3853 			break;
3854 		}
3855 		path->slots[0]++;
3856 	}
3857 out:
3858 	btrfs_release_path(path);
3859 	if (err)
3860 		free_block_list(blocks);
3861 	return err;
3862 }
3863 
3864 /*
3865  * helper to find next unprocessed extent
3866  */
3867 static noinline_for_stack
3868 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3869 		     struct btrfs_key *extent_key)
3870 {
3871 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3872 	struct btrfs_key key;
3873 	struct extent_buffer *leaf;
3874 	u64 start, end, last;
3875 	int ret;
3876 
3877 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3878 	while (1) {
3879 		cond_resched();
3880 		if (rc->search_start >= last) {
3881 			ret = 1;
3882 			break;
3883 		}
3884 
3885 		key.objectid = rc->search_start;
3886 		key.type = BTRFS_EXTENT_ITEM_KEY;
3887 		key.offset = 0;
3888 
3889 		path->search_commit_root = 1;
3890 		path->skip_locking = 1;
3891 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3892 					0, 0);
3893 		if (ret < 0)
3894 			break;
3895 next:
3896 		leaf = path->nodes[0];
3897 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3898 			ret = btrfs_next_leaf(rc->extent_root, path);
3899 			if (ret != 0)
3900 				break;
3901 			leaf = path->nodes[0];
3902 		}
3903 
3904 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3905 		if (key.objectid >= last) {
3906 			ret = 1;
3907 			break;
3908 		}
3909 
3910 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3911 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3912 			path->slots[0]++;
3913 			goto next;
3914 		}
3915 
3916 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3917 		    key.objectid + key.offset <= rc->search_start) {
3918 			path->slots[0]++;
3919 			goto next;
3920 		}
3921 
3922 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3923 		    key.objectid + fs_info->nodesize <=
3924 		    rc->search_start) {
3925 			path->slots[0]++;
3926 			goto next;
3927 		}
3928 
3929 		ret = find_first_extent_bit(&rc->processed_blocks,
3930 					    key.objectid, &start, &end,
3931 					    EXTENT_DIRTY, NULL);
3932 
3933 		if (ret == 0 && start <= key.objectid) {
3934 			btrfs_release_path(path);
3935 			rc->search_start = end + 1;
3936 		} else {
3937 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3938 				rc->search_start = key.objectid + key.offset;
3939 			else
3940 				rc->search_start = key.objectid +
3941 					fs_info->nodesize;
3942 			memcpy(extent_key, &key, sizeof(key));
3943 			return 0;
3944 		}
3945 	}
3946 	btrfs_release_path(path);
3947 	return ret;
3948 }
3949 
3950 static void set_reloc_control(struct reloc_control *rc)
3951 {
3952 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3953 
3954 	mutex_lock(&fs_info->reloc_mutex);
3955 	fs_info->reloc_ctl = rc;
3956 	mutex_unlock(&fs_info->reloc_mutex);
3957 }
3958 
3959 static void unset_reloc_control(struct reloc_control *rc)
3960 {
3961 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3962 
3963 	mutex_lock(&fs_info->reloc_mutex);
3964 	fs_info->reloc_ctl = NULL;
3965 	mutex_unlock(&fs_info->reloc_mutex);
3966 }
3967 
3968 static int check_extent_flags(u64 flags)
3969 {
3970 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3971 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3972 		return 1;
3973 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3974 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3975 		return 1;
3976 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3977 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3978 		return 1;
3979 	return 0;
3980 }
3981 
3982 static noinline_for_stack
3983 int prepare_to_relocate(struct reloc_control *rc)
3984 {
3985 	struct btrfs_trans_handle *trans;
3986 	int ret;
3987 
3988 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3989 					      BTRFS_BLOCK_RSV_TEMP);
3990 	if (!rc->block_rsv)
3991 		return -ENOMEM;
3992 
3993 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3994 	rc->search_start = rc->block_group->key.objectid;
3995 	rc->extents_found = 0;
3996 	rc->nodes_relocated = 0;
3997 	rc->merging_rsv_size = 0;
3998 	rc->reserved_bytes = 0;
3999 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
4000 			      RELOCATION_RESERVED_NODES;
4001 	ret = btrfs_block_rsv_refill(rc->extent_root,
4002 				     rc->block_rsv, rc->block_rsv->size,
4003 				     BTRFS_RESERVE_FLUSH_ALL);
4004 	if (ret)
4005 		return ret;
4006 
4007 	rc->create_reloc_tree = 1;
4008 	set_reloc_control(rc);
4009 
4010 	trans = btrfs_join_transaction(rc->extent_root);
4011 	if (IS_ERR(trans)) {
4012 		unset_reloc_control(rc);
4013 		/*
4014 		 * extent tree is not a ref_cow tree and has no reloc_root to
4015 		 * cleanup.  And callers are responsible to free the above
4016 		 * block rsv.
4017 		 */
4018 		return PTR_ERR(trans);
4019 	}
4020 	btrfs_commit_transaction(trans);
4021 	return 0;
4022 }
4023 
4024 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4025 {
4026 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4027 	struct rb_root blocks = RB_ROOT;
4028 	struct btrfs_key key;
4029 	struct btrfs_trans_handle *trans = NULL;
4030 	struct btrfs_path *path;
4031 	struct btrfs_extent_item *ei;
4032 	u64 flags;
4033 	u32 item_size;
4034 	int ret;
4035 	int err = 0;
4036 	int progress = 0;
4037 
4038 	path = btrfs_alloc_path();
4039 	if (!path)
4040 		return -ENOMEM;
4041 	path->reada = READA_FORWARD;
4042 
4043 	ret = prepare_to_relocate(rc);
4044 	if (ret) {
4045 		err = ret;
4046 		goto out_free;
4047 	}
4048 
4049 	while (1) {
4050 		rc->reserved_bytes = 0;
4051 		ret = btrfs_block_rsv_refill(rc->extent_root,
4052 					rc->block_rsv, rc->block_rsv->size,
4053 					BTRFS_RESERVE_FLUSH_ALL);
4054 		if (ret) {
4055 			err = ret;
4056 			break;
4057 		}
4058 		progress++;
4059 		trans = btrfs_start_transaction(rc->extent_root, 0);
4060 		if (IS_ERR(trans)) {
4061 			err = PTR_ERR(trans);
4062 			trans = NULL;
4063 			break;
4064 		}
4065 restart:
4066 		if (update_backref_cache(trans, &rc->backref_cache)) {
4067 			btrfs_end_transaction(trans);
4068 			continue;
4069 		}
4070 
4071 		ret = find_next_extent(rc, path, &key);
4072 		if (ret < 0)
4073 			err = ret;
4074 		if (ret != 0)
4075 			break;
4076 
4077 		rc->extents_found++;
4078 
4079 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4080 				    struct btrfs_extent_item);
4081 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4082 		if (item_size >= sizeof(*ei)) {
4083 			flags = btrfs_extent_flags(path->nodes[0], ei);
4084 			ret = check_extent_flags(flags);
4085 			BUG_ON(ret);
4086 
4087 		} else {
4088 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4089 			u64 ref_owner;
4090 			int path_change = 0;
4091 
4092 			BUG_ON(item_size !=
4093 			       sizeof(struct btrfs_extent_item_v0));
4094 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4095 						  &path_change);
4096 			if (ret < 0) {
4097 				err = ret;
4098 				break;
4099 			}
4100 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4101 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4102 			else
4103 				flags = BTRFS_EXTENT_FLAG_DATA;
4104 
4105 			if (path_change) {
4106 				btrfs_release_path(path);
4107 
4108 				path->search_commit_root = 1;
4109 				path->skip_locking = 1;
4110 				ret = btrfs_search_slot(NULL, rc->extent_root,
4111 							&key, path, 0, 0);
4112 				if (ret < 0) {
4113 					err = ret;
4114 					break;
4115 				}
4116 				BUG_ON(ret > 0);
4117 			}
4118 #else
4119 			BUG();
4120 #endif
4121 		}
4122 
4123 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4124 			ret = add_tree_block(rc, &key, path, &blocks);
4125 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4126 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4127 			ret = add_data_references(rc, &key, path, &blocks);
4128 		} else {
4129 			btrfs_release_path(path);
4130 			ret = 0;
4131 		}
4132 		if (ret < 0) {
4133 			err = ret;
4134 			break;
4135 		}
4136 
4137 		if (!RB_EMPTY_ROOT(&blocks)) {
4138 			ret = relocate_tree_blocks(trans, rc, &blocks);
4139 			if (ret < 0) {
4140 				/*
4141 				 * if we fail to relocate tree blocks, force to update
4142 				 * backref cache when committing transaction.
4143 				 */
4144 				rc->backref_cache.last_trans = trans->transid - 1;
4145 
4146 				if (ret != -EAGAIN) {
4147 					err = ret;
4148 					break;
4149 				}
4150 				rc->extents_found--;
4151 				rc->search_start = key.objectid;
4152 			}
4153 		}
4154 
4155 		btrfs_end_transaction_throttle(trans);
4156 		btrfs_btree_balance_dirty(fs_info);
4157 		trans = NULL;
4158 
4159 		if (rc->stage == MOVE_DATA_EXTENTS &&
4160 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4161 			rc->found_file_extent = 1;
4162 			ret = relocate_data_extent(rc->data_inode,
4163 						   &key, &rc->cluster);
4164 			if (ret < 0) {
4165 				err = ret;
4166 				break;
4167 			}
4168 		}
4169 	}
4170 	if (trans && progress && err == -ENOSPC) {
4171 		ret = btrfs_force_chunk_alloc(trans, fs_info,
4172 					      rc->block_group->flags);
4173 		if (ret == 1) {
4174 			err = 0;
4175 			progress = 0;
4176 			goto restart;
4177 		}
4178 	}
4179 
4180 	btrfs_release_path(path);
4181 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4182 
4183 	if (trans) {
4184 		btrfs_end_transaction_throttle(trans);
4185 		btrfs_btree_balance_dirty(fs_info);
4186 	}
4187 
4188 	if (!err) {
4189 		ret = relocate_file_extent_cluster(rc->data_inode,
4190 						   &rc->cluster);
4191 		if (ret < 0)
4192 			err = ret;
4193 	}
4194 
4195 	rc->create_reloc_tree = 0;
4196 	set_reloc_control(rc);
4197 
4198 	backref_cache_cleanup(&rc->backref_cache);
4199 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4200 
4201 	err = prepare_to_merge(rc, err);
4202 
4203 	merge_reloc_roots(rc);
4204 
4205 	rc->merge_reloc_tree = 0;
4206 	unset_reloc_control(rc);
4207 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4208 
4209 	/* get rid of pinned extents */
4210 	trans = btrfs_join_transaction(rc->extent_root);
4211 	if (IS_ERR(trans)) {
4212 		err = PTR_ERR(trans);
4213 		goto out_free;
4214 	}
4215 	btrfs_commit_transaction(trans);
4216 out_free:
4217 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4218 	btrfs_free_path(path);
4219 	return err;
4220 }
4221 
4222 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4223 				 struct btrfs_root *root, u64 objectid)
4224 {
4225 	struct btrfs_path *path;
4226 	struct btrfs_inode_item *item;
4227 	struct extent_buffer *leaf;
4228 	int ret;
4229 
4230 	path = btrfs_alloc_path();
4231 	if (!path)
4232 		return -ENOMEM;
4233 
4234 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4235 	if (ret)
4236 		goto out;
4237 
4238 	leaf = path->nodes[0];
4239 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4240 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4241 	btrfs_set_inode_generation(leaf, item, 1);
4242 	btrfs_set_inode_size(leaf, item, 0);
4243 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4244 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4245 					  BTRFS_INODE_PREALLOC);
4246 	btrfs_mark_buffer_dirty(leaf);
4247 out:
4248 	btrfs_free_path(path);
4249 	return ret;
4250 }
4251 
4252 /*
4253  * helper to create inode for data relocation.
4254  * the inode is in data relocation tree and its link count is 0
4255  */
4256 static noinline_for_stack
4257 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4258 				 struct btrfs_block_group_cache *group)
4259 {
4260 	struct inode *inode = NULL;
4261 	struct btrfs_trans_handle *trans;
4262 	struct btrfs_root *root;
4263 	struct btrfs_key key;
4264 	u64 objectid;
4265 	int err = 0;
4266 
4267 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4268 	if (IS_ERR(root))
4269 		return ERR_CAST(root);
4270 
4271 	trans = btrfs_start_transaction(root, 6);
4272 	if (IS_ERR(trans))
4273 		return ERR_CAST(trans);
4274 
4275 	err = btrfs_find_free_objectid(root, &objectid);
4276 	if (err)
4277 		goto out;
4278 
4279 	err = __insert_orphan_inode(trans, root, objectid);
4280 	BUG_ON(err);
4281 
4282 	key.objectid = objectid;
4283 	key.type = BTRFS_INODE_ITEM_KEY;
4284 	key.offset = 0;
4285 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4286 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4287 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4288 
4289 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4290 out:
4291 	btrfs_end_transaction(trans);
4292 	btrfs_btree_balance_dirty(fs_info);
4293 	if (err) {
4294 		if (inode)
4295 			iput(inode);
4296 		inode = ERR_PTR(err);
4297 	}
4298 	return inode;
4299 }
4300 
4301 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4302 {
4303 	struct reloc_control *rc;
4304 
4305 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4306 	if (!rc)
4307 		return NULL;
4308 
4309 	INIT_LIST_HEAD(&rc->reloc_roots);
4310 	backref_cache_init(&rc->backref_cache);
4311 	mapping_tree_init(&rc->reloc_root_tree);
4312 	extent_io_tree_init(&rc->processed_blocks, NULL);
4313 	return rc;
4314 }
4315 
4316 /*
4317  * Print the block group being relocated
4318  */
4319 static void describe_relocation(struct btrfs_fs_info *fs_info,
4320 				struct btrfs_block_group_cache *block_group)
4321 {
4322 	char buf[128];		/* prefixed by a '|' that'll be dropped */
4323 	u64 flags = block_group->flags;
4324 
4325 	/* Shouldn't happen */
4326 	if (!flags) {
4327 		strcpy(buf, "|NONE");
4328 	} else {
4329 		char *bp = buf;
4330 
4331 #define DESCRIBE_FLAG(f, d) \
4332 		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4333 			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4334 			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4335 		}
4336 		DESCRIBE_FLAG(DATA,     "data");
4337 		DESCRIBE_FLAG(SYSTEM,   "system");
4338 		DESCRIBE_FLAG(METADATA, "metadata");
4339 		DESCRIBE_FLAG(RAID0,    "raid0");
4340 		DESCRIBE_FLAG(RAID1,    "raid1");
4341 		DESCRIBE_FLAG(DUP,      "dup");
4342 		DESCRIBE_FLAG(RAID10,   "raid10");
4343 		DESCRIBE_FLAG(RAID5,    "raid5");
4344 		DESCRIBE_FLAG(RAID6,    "raid6");
4345 		if (flags)
4346 			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4347 #undef DESCRIBE_FLAG
4348 	}
4349 
4350 	btrfs_info(fs_info,
4351 		   "relocating block group %llu flags %s",
4352 		   block_group->key.objectid, buf + 1);
4353 }
4354 
4355 /*
4356  * function to relocate all extents in a block group.
4357  */
4358 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4359 {
4360 	struct btrfs_root *extent_root = fs_info->extent_root;
4361 	struct reloc_control *rc;
4362 	struct inode *inode;
4363 	struct btrfs_path *path;
4364 	int ret;
4365 	int rw = 0;
4366 	int err = 0;
4367 
4368 	rc = alloc_reloc_control(fs_info);
4369 	if (!rc)
4370 		return -ENOMEM;
4371 
4372 	rc->extent_root = extent_root;
4373 
4374 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4375 	BUG_ON(!rc->block_group);
4376 
4377 	ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
4378 	if (ret) {
4379 		err = ret;
4380 		goto out;
4381 	}
4382 	rw = 1;
4383 
4384 	path = btrfs_alloc_path();
4385 	if (!path) {
4386 		err = -ENOMEM;
4387 		goto out;
4388 	}
4389 
4390 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4391 	btrfs_free_path(path);
4392 
4393 	if (!IS_ERR(inode))
4394 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4395 	else
4396 		ret = PTR_ERR(inode);
4397 
4398 	if (ret && ret != -ENOENT) {
4399 		err = ret;
4400 		goto out;
4401 	}
4402 
4403 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4404 	if (IS_ERR(rc->data_inode)) {
4405 		err = PTR_ERR(rc->data_inode);
4406 		rc->data_inode = NULL;
4407 		goto out;
4408 	}
4409 
4410 	describe_relocation(fs_info, rc->block_group);
4411 
4412 	btrfs_wait_block_group_reservations(rc->block_group);
4413 	btrfs_wait_nocow_writers(rc->block_group);
4414 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4415 				 rc->block_group->key.objectid,
4416 				 rc->block_group->key.offset);
4417 
4418 	while (1) {
4419 		mutex_lock(&fs_info->cleaner_mutex);
4420 		ret = relocate_block_group(rc);
4421 		mutex_unlock(&fs_info->cleaner_mutex);
4422 		if (ret < 0) {
4423 			err = ret;
4424 			goto out;
4425 		}
4426 
4427 		if (rc->extents_found == 0)
4428 			break;
4429 
4430 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4431 
4432 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4433 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4434 						       (u64)-1);
4435 			if (ret) {
4436 				err = ret;
4437 				goto out;
4438 			}
4439 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4440 						 0, -1);
4441 			rc->stage = UPDATE_DATA_PTRS;
4442 		}
4443 	}
4444 
4445 	WARN_ON(rc->block_group->pinned > 0);
4446 	WARN_ON(rc->block_group->reserved > 0);
4447 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4448 out:
4449 	if (err && rw)
4450 		btrfs_dec_block_group_ro(rc->block_group);
4451 	iput(rc->data_inode);
4452 	btrfs_put_block_group(rc->block_group);
4453 	kfree(rc);
4454 	return err;
4455 }
4456 
4457 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4458 {
4459 	struct btrfs_fs_info *fs_info = root->fs_info;
4460 	struct btrfs_trans_handle *trans;
4461 	int ret, err;
4462 
4463 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4464 	if (IS_ERR(trans))
4465 		return PTR_ERR(trans);
4466 
4467 	memset(&root->root_item.drop_progress, 0,
4468 		sizeof(root->root_item.drop_progress));
4469 	root->root_item.drop_level = 0;
4470 	btrfs_set_root_refs(&root->root_item, 0);
4471 	ret = btrfs_update_root(trans, fs_info->tree_root,
4472 				&root->root_key, &root->root_item);
4473 
4474 	err = btrfs_end_transaction(trans);
4475 	if (err)
4476 		return err;
4477 	return ret;
4478 }
4479 
4480 /*
4481  * recover relocation interrupted by system crash.
4482  *
4483  * this function resumes merging reloc trees with corresponding fs trees.
4484  * this is important for keeping the sharing of tree blocks
4485  */
4486 int btrfs_recover_relocation(struct btrfs_root *root)
4487 {
4488 	struct btrfs_fs_info *fs_info = root->fs_info;
4489 	LIST_HEAD(reloc_roots);
4490 	struct btrfs_key key;
4491 	struct btrfs_root *fs_root;
4492 	struct btrfs_root *reloc_root;
4493 	struct btrfs_path *path;
4494 	struct extent_buffer *leaf;
4495 	struct reloc_control *rc = NULL;
4496 	struct btrfs_trans_handle *trans;
4497 	int ret;
4498 	int err = 0;
4499 
4500 	path = btrfs_alloc_path();
4501 	if (!path)
4502 		return -ENOMEM;
4503 	path->reada = READA_BACK;
4504 
4505 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4506 	key.type = BTRFS_ROOT_ITEM_KEY;
4507 	key.offset = (u64)-1;
4508 
4509 	while (1) {
4510 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4511 					path, 0, 0);
4512 		if (ret < 0) {
4513 			err = ret;
4514 			goto out;
4515 		}
4516 		if (ret > 0) {
4517 			if (path->slots[0] == 0)
4518 				break;
4519 			path->slots[0]--;
4520 		}
4521 		leaf = path->nodes[0];
4522 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4523 		btrfs_release_path(path);
4524 
4525 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4526 		    key.type != BTRFS_ROOT_ITEM_KEY)
4527 			break;
4528 
4529 		reloc_root = btrfs_read_fs_root(root, &key);
4530 		if (IS_ERR(reloc_root)) {
4531 			err = PTR_ERR(reloc_root);
4532 			goto out;
4533 		}
4534 
4535 		list_add(&reloc_root->root_list, &reloc_roots);
4536 
4537 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4538 			fs_root = read_fs_root(fs_info,
4539 					       reloc_root->root_key.offset);
4540 			if (IS_ERR(fs_root)) {
4541 				ret = PTR_ERR(fs_root);
4542 				if (ret != -ENOENT) {
4543 					err = ret;
4544 					goto out;
4545 				}
4546 				ret = mark_garbage_root(reloc_root);
4547 				if (ret < 0) {
4548 					err = ret;
4549 					goto out;
4550 				}
4551 			}
4552 		}
4553 
4554 		if (key.offset == 0)
4555 			break;
4556 
4557 		key.offset--;
4558 	}
4559 	btrfs_release_path(path);
4560 
4561 	if (list_empty(&reloc_roots))
4562 		goto out;
4563 
4564 	rc = alloc_reloc_control(fs_info);
4565 	if (!rc) {
4566 		err = -ENOMEM;
4567 		goto out;
4568 	}
4569 
4570 	rc->extent_root = fs_info->extent_root;
4571 
4572 	set_reloc_control(rc);
4573 
4574 	trans = btrfs_join_transaction(rc->extent_root);
4575 	if (IS_ERR(trans)) {
4576 		unset_reloc_control(rc);
4577 		err = PTR_ERR(trans);
4578 		goto out_free;
4579 	}
4580 
4581 	rc->merge_reloc_tree = 1;
4582 
4583 	while (!list_empty(&reloc_roots)) {
4584 		reloc_root = list_entry(reloc_roots.next,
4585 					struct btrfs_root, root_list);
4586 		list_del(&reloc_root->root_list);
4587 
4588 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4589 			list_add_tail(&reloc_root->root_list,
4590 				      &rc->reloc_roots);
4591 			continue;
4592 		}
4593 
4594 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4595 		if (IS_ERR(fs_root)) {
4596 			err = PTR_ERR(fs_root);
4597 			goto out_free;
4598 		}
4599 
4600 		err = __add_reloc_root(reloc_root);
4601 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4602 		fs_root->reloc_root = reloc_root;
4603 	}
4604 
4605 	err = btrfs_commit_transaction(trans);
4606 	if (err)
4607 		goto out_free;
4608 
4609 	merge_reloc_roots(rc);
4610 
4611 	unset_reloc_control(rc);
4612 
4613 	trans = btrfs_join_transaction(rc->extent_root);
4614 	if (IS_ERR(trans)) {
4615 		err = PTR_ERR(trans);
4616 		goto out_free;
4617 	}
4618 	err = btrfs_commit_transaction(trans);
4619 out_free:
4620 	kfree(rc);
4621 out:
4622 	if (!list_empty(&reloc_roots))
4623 		free_reloc_roots(&reloc_roots);
4624 
4625 	btrfs_free_path(path);
4626 
4627 	if (err == 0) {
4628 		/* cleanup orphan inode in data relocation tree */
4629 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4630 		if (IS_ERR(fs_root))
4631 			err = PTR_ERR(fs_root);
4632 		else
4633 			err = btrfs_orphan_cleanup(fs_root);
4634 	}
4635 	return err;
4636 }
4637 
4638 /*
4639  * helper to add ordered checksum for data relocation.
4640  *
4641  * cloning checksum properly handles the nodatasum extents.
4642  * it also saves CPU time to re-calculate the checksum.
4643  */
4644 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4645 {
4646 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4647 	struct btrfs_ordered_sum *sums;
4648 	struct btrfs_ordered_extent *ordered;
4649 	int ret;
4650 	u64 disk_bytenr;
4651 	u64 new_bytenr;
4652 	LIST_HEAD(list);
4653 
4654 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4655 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4656 
4657 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4658 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4659 				       disk_bytenr + len - 1, &list, 0);
4660 	if (ret)
4661 		goto out;
4662 
4663 	while (!list_empty(&list)) {
4664 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4665 		list_del_init(&sums->list);
4666 
4667 		/*
4668 		 * We need to offset the new_bytenr based on where the csum is.
4669 		 * We need to do this because we will read in entire prealloc
4670 		 * extents but we may have written to say the middle of the
4671 		 * prealloc extent, so we need to make sure the csum goes with
4672 		 * the right disk offset.
4673 		 *
4674 		 * We can do this because the data reloc inode refers strictly
4675 		 * to the on disk bytes, so we don't have to worry about
4676 		 * disk_len vs real len like with real inodes since it's all
4677 		 * disk length.
4678 		 */
4679 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4680 		sums->bytenr = new_bytenr;
4681 
4682 		btrfs_add_ordered_sum(inode, ordered, sums);
4683 	}
4684 out:
4685 	btrfs_put_ordered_extent(ordered);
4686 	return ret;
4687 }
4688 
4689 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4690 			  struct btrfs_root *root, struct extent_buffer *buf,
4691 			  struct extent_buffer *cow)
4692 {
4693 	struct btrfs_fs_info *fs_info = root->fs_info;
4694 	struct reloc_control *rc;
4695 	struct backref_node *node;
4696 	int first_cow = 0;
4697 	int level;
4698 	int ret = 0;
4699 
4700 	rc = fs_info->reloc_ctl;
4701 	if (!rc)
4702 		return 0;
4703 
4704 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4705 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4706 
4707 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4708 		if (buf == root->node)
4709 			__update_reloc_root(root, cow->start);
4710 	}
4711 
4712 	level = btrfs_header_level(buf);
4713 	if (btrfs_header_generation(buf) <=
4714 	    btrfs_root_last_snapshot(&root->root_item))
4715 		first_cow = 1;
4716 
4717 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4718 	    rc->create_reloc_tree) {
4719 		WARN_ON(!first_cow && level == 0);
4720 
4721 		node = rc->backref_cache.path[level];
4722 		BUG_ON(node->bytenr != buf->start &&
4723 		       node->new_bytenr != buf->start);
4724 
4725 		drop_node_buffer(node);
4726 		extent_buffer_get(cow);
4727 		node->eb = cow;
4728 		node->new_bytenr = cow->start;
4729 
4730 		if (!node->pending) {
4731 			list_move_tail(&node->list,
4732 				       &rc->backref_cache.pending[level]);
4733 			node->pending = 1;
4734 		}
4735 
4736 		if (first_cow)
4737 			__mark_block_processed(rc, node);
4738 
4739 		if (first_cow && level > 0)
4740 			rc->nodes_relocated += buf->len;
4741 	}
4742 
4743 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4744 		ret = replace_file_extents(trans, rc, root, cow);
4745 	return ret;
4746 }
4747 
4748 /*
4749  * called before creating snapshot. it calculates metadata reservation
4750  * required for relocating tree blocks in the snapshot
4751  */
4752 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4753 			      u64 *bytes_to_reserve)
4754 {
4755 	struct btrfs_root *root;
4756 	struct reloc_control *rc;
4757 
4758 	root = pending->root;
4759 	if (!root->reloc_root)
4760 		return;
4761 
4762 	rc = root->fs_info->reloc_ctl;
4763 	if (!rc->merge_reloc_tree)
4764 		return;
4765 
4766 	root = root->reloc_root;
4767 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4768 	/*
4769 	 * relocation is in the stage of merging trees. the space
4770 	 * used by merging a reloc tree is twice the size of
4771 	 * relocated tree nodes in the worst case. half for cowing
4772 	 * the reloc tree, half for cowing the fs tree. the space
4773 	 * used by cowing the reloc tree will be freed after the
4774 	 * tree is dropped. if we create snapshot, cowing the fs
4775 	 * tree may use more space than it frees. so we need
4776 	 * reserve extra space.
4777 	 */
4778 	*bytes_to_reserve += rc->nodes_relocated;
4779 }
4780 
4781 /*
4782  * called after snapshot is created. migrate block reservation
4783  * and create reloc root for the newly created snapshot
4784  */
4785 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4786 			       struct btrfs_pending_snapshot *pending)
4787 {
4788 	struct btrfs_root *root = pending->root;
4789 	struct btrfs_root *reloc_root;
4790 	struct btrfs_root *new_root;
4791 	struct reloc_control *rc;
4792 	int ret;
4793 
4794 	if (!root->reloc_root)
4795 		return 0;
4796 
4797 	rc = root->fs_info->reloc_ctl;
4798 	rc->merging_rsv_size += rc->nodes_relocated;
4799 
4800 	if (rc->merge_reloc_tree) {
4801 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4802 					      rc->block_rsv,
4803 					      rc->nodes_relocated, 1);
4804 		if (ret)
4805 			return ret;
4806 	}
4807 
4808 	new_root = pending->snap;
4809 	reloc_root = create_reloc_root(trans, root->reloc_root,
4810 				       new_root->root_key.objectid);
4811 	if (IS_ERR(reloc_root))
4812 		return PTR_ERR(reloc_root);
4813 
4814 	ret = __add_reloc_root(reloc_root);
4815 	BUG_ON(ret < 0);
4816 	new_root->reloc_root = reloc_root;
4817 
4818 	if (rc->create_reloc_tree)
4819 		ret = clone_backref_node(trans, rc, root, reloc_root);
4820 	return ret;
4821 }
4822