1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 31 /* 32 * Relocation overview 33 * 34 * [What does relocation do] 35 * 36 * The objective of relocation is to relocate all extents of the target block 37 * group to other block groups. 38 * This is utilized by resize (shrink only), profile converting, compacting 39 * space, or balance routine to spread chunks over devices. 40 * 41 * Before | After 42 * ------------------------------------------------------------------ 43 * BG A: 10 data extents | BG A: deleted 44 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 45 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 46 * 47 * [How does relocation work] 48 * 49 * 1. Mark the target block group read-only 50 * New extents won't be allocated from the target block group. 51 * 52 * 2.1 Record each extent in the target block group 53 * To build a proper map of extents to be relocated. 54 * 55 * 2.2 Build data reloc tree and reloc trees 56 * Data reloc tree will contain an inode, recording all newly relocated 57 * data extents. 58 * There will be only one data reloc tree for one data block group. 59 * 60 * Reloc tree will be a special snapshot of its source tree, containing 61 * relocated tree blocks. 62 * Each tree referring to a tree block in target block group will get its 63 * reloc tree built. 64 * 65 * 2.3 Swap source tree with its corresponding reloc tree 66 * Each involved tree only refers to new extents after swap. 67 * 68 * 3. Cleanup reloc trees and data reloc tree. 69 * As old extents in the target block group are still referenced by reloc 70 * trees, we need to clean them up before really freeing the target block 71 * group. 72 * 73 * The main complexity is in steps 2.2 and 2.3. 74 * 75 * The entry point of relocation is relocate_block_group() function. 76 */ 77 78 #define RELOCATION_RESERVED_NODES 256 79 /* 80 * map address of tree root to tree 81 */ 82 struct mapping_node { 83 struct { 84 struct rb_node rb_node; 85 u64 bytenr; 86 }; /* Use rb_simle_node for search/insert */ 87 void *data; 88 }; 89 90 struct mapping_tree { 91 struct rb_root rb_root; 92 spinlock_t lock; 93 }; 94 95 /* 96 * present a tree block to process 97 */ 98 struct tree_block { 99 struct { 100 struct rb_node rb_node; 101 u64 bytenr; 102 }; /* Use rb_simple_node for search/insert */ 103 u64 owner; 104 struct btrfs_key key; 105 unsigned int level:8; 106 unsigned int key_ready:1; 107 }; 108 109 #define MAX_EXTENTS 128 110 111 struct file_extent_cluster { 112 u64 start; 113 u64 end; 114 u64 boundary[MAX_EXTENTS]; 115 unsigned int nr; 116 }; 117 118 struct reloc_control { 119 /* block group to relocate */ 120 struct btrfs_block_group *block_group; 121 /* extent tree */ 122 struct btrfs_root *extent_root; 123 /* inode for moving data */ 124 struct inode *data_inode; 125 126 struct btrfs_block_rsv *block_rsv; 127 128 struct btrfs_backref_cache backref_cache; 129 130 struct file_extent_cluster cluster; 131 /* tree blocks have been processed */ 132 struct extent_io_tree processed_blocks; 133 /* map start of tree root to corresponding reloc tree */ 134 struct mapping_tree reloc_root_tree; 135 /* list of reloc trees */ 136 struct list_head reloc_roots; 137 /* list of subvolume trees that get relocated */ 138 struct list_head dirty_subvol_roots; 139 /* size of metadata reservation for merging reloc trees */ 140 u64 merging_rsv_size; 141 /* size of relocated tree nodes */ 142 u64 nodes_relocated; 143 /* reserved size for block group relocation*/ 144 u64 reserved_bytes; 145 146 u64 search_start; 147 u64 extents_found; 148 149 unsigned int stage:8; 150 unsigned int create_reloc_tree:1; 151 unsigned int merge_reloc_tree:1; 152 unsigned int found_file_extent:1; 153 }; 154 155 /* stages of data relocation */ 156 #define MOVE_DATA_EXTENTS 0 157 #define UPDATE_DATA_PTRS 1 158 159 static void mark_block_processed(struct reloc_control *rc, 160 struct btrfs_backref_node *node) 161 { 162 u32 blocksize; 163 164 if (node->level == 0 || 165 in_range(node->bytenr, rc->block_group->start, 166 rc->block_group->length)) { 167 blocksize = rc->extent_root->fs_info->nodesize; 168 set_extent_bits(&rc->processed_blocks, node->bytenr, 169 node->bytenr + blocksize - 1, EXTENT_DIRTY); 170 } 171 node->processed = 1; 172 } 173 174 175 static void mapping_tree_init(struct mapping_tree *tree) 176 { 177 tree->rb_root = RB_ROOT; 178 spin_lock_init(&tree->lock); 179 } 180 181 /* 182 * walk up backref nodes until reach node presents tree root 183 */ 184 static struct btrfs_backref_node *walk_up_backref( 185 struct btrfs_backref_node *node, 186 struct btrfs_backref_edge *edges[], int *index) 187 { 188 struct btrfs_backref_edge *edge; 189 int idx = *index; 190 191 while (!list_empty(&node->upper)) { 192 edge = list_entry(node->upper.next, 193 struct btrfs_backref_edge, list[LOWER]); 194 edges[idx++] = edge; 195 node = edge->node[UPPER]; 196 } 197 BUG_ON(node->detached); 198 *index = idx; 199 return node; 200 } 201 202 /* 203 * walk down backref nodes to find start of next reference path 204 */ 205 static struct btrfs_backref_node *walk_down_backref( 206 struct btrfs_backref_edge *edges[], int *index) 207 { 208 struct btrfs_backref_edge *edge; 209 struct btrfs_backref_node *lower; 210 int idx = *index; 211 212 while (idx > 0) { 213 edge = edges[idx - 1]; 214 lower = edge->node[LOWER]; 215 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 216 idx--; 217 continue; 218 } 219 edge = list_entry(edge->list[LOWER].next, 220 struct btrfs_backref_edge, list[LOWER]); 221 edges[idx - 1] = edge; 222 *index = idx; 223 return edge->node[UPPER]; 224 } 225 *index = 0; 226 return NULL; 227 } 228 229 static void update_backref_node(struct btrfs_backref_cache *cache, 230 struct btrfs_backref_node *node, u64 bytenr) 231 { 232 struct rb_node *rb_node; 233 rb_erase(&node->rb_node, &cache->rb_root); 234 node->bytenr = bytenr; 235 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 236 if (rb_node) 237 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 238 } 239 240 /* 241 * update backref cache after a transaction commit 242 */ 243 static int update_backref_cache(struct btrfs_trans_handle *trans, 244 struct btrfs_backref_cache *cache) 245 { 246 struct btrfs_backref_node *node; 247 int level = 0; 248 249 if (cache->last_trans == 0) { 250 cache->last_trans = trans->transid; 251 return 0; 252 } 253 254 if (cache->last_trans == trans->transid) 255 return 0; 256 257 /* 258 * detached nodes are used to avoid unnecessary backref 259 * lookup. transaction commit changes the extent tree. 260 * so the detached nodes are no longer useful. 261 */ 262 while (!list_empty(&cache->detached)) { 263 node = list_entry(cache->detached.next, 264 struct btrfs_backref_node, list); 265 btrfs_backref_cleanup_node(cache, node); 266 } 267 268 while (!list_empty(&cache->changed)) { 269 node = list_entry(cache->changed.next, 270 struct btrfs_backref_node, list); 271 list_del_init(&node->list); 272 BUG_ON(node->pending); 273 update_backref_node(cache, node, node->new_bytenr); 274 } 275 276 /* 277 * some nodes can be left in the pending list if there were 278 * errors during processing the pending nodes. 279 */ 280 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 281 list_for_each_entry(node, &cache->pending[level], list) { 282 BUG_ON(!node->pending); 283 if (node->bytenr == node->new_bytenr) 284 continue; 285 update_backref_node(cache, node, node->new_bytenr); 286 } 287 } 288 289 cache->last_trans = 0; 290 return 1; 291 } 292 293 static bool reloc_root_is_dead(struct btrfs_root *root) 294 { 295 /* 296 * Pair with set_bit/clear_bit in clean_dirty_subvols and 297 * btrfs_update_reloc_root. We need to see the updated bit before 298 * trying to access reloc_root 299 */ 300 smp_rmb(); 301 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 302 return true; 303 return false; 304 } 305 306 /* 307 * Check if this subvolume tree has valid reloc tree. 308 * 309 * Reloc tree after swap is considered dead, thus not considered as valid. 310 * This is enough for most callers, as they don't distinguish dead reloc root 311 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 312 * special case. 313 */ 314 static bool have_reloc_root(struct btrfs_root *root) 315 { 316 if (reloc_root_is_dead(root)) 317 return false; 318 if (!root->reloc_root) 319 return false; 320 return true; 321 } 322 323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 324 { 325 struct btrfs_root *reloc_root; 326 327 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 328 return 0; 329 330 /* This root has been merged with its reloc tree, we can ignore it */ 331 if (reloc_root_is_dead(root)) 332 return 1; 333 334 reloc_root = root->reloc_root; 335 if (!reloc_root) 336 return 0; 337 338 if (btrfs_header_generation(reloc_root->commit_root) == 339 root->fs_info->running_transaction->transid) 340 return 0; 341 /* 342 * if there is reloc tree and it was created in previous 343 * transaction backref lookup can find the reloc tree, 344 * so backref node for the fs tree root is useless for 345 * relocation. 346 */ 347 return 1; 348 } 349 350 /* 351 * find reloc tree by address of tree root 352 */ 353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 354 { 355 struct reloc_control *rc = fs_info->reloc_ctl; 356 struct rb_node *rb_node; 357 struct mapping_node *node; 358 struct btrfs_root *root = NULL; 359 360 ASSERT(rc); 361 spin_lock(&rc->reloc_root_tree.lock); 362 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 363 if (rb_node) { 364 node = rb_entry(rb_node, struct mapping_node, rb_node); 365 root = node->data; 366 } 367 spin_unlock(&rc->reloc_root_tree.lock); 368 return btrfs_grab_root(root); 369 } 370 371 /* 372 * For useless nodes, do two major clean ups: 373 * 374 * - Cleanup the children edges and nodes 375 * If child node is also orphan (no parent) during cleanup, then the child 376 * node will also be cleaned up. 377 * 378 * - Freeing up leaves (level 0), keeps nodes detached 379 * For nodes, the node is still cached as "detached" 380 * 381 * Return false if @node is not in the @useless_nodes list. 382 * Return true if @node is in the @useless_nodes list. 383 */ 384 static bool handle_useless_nodes(struct reloc_control *rc, 385 struct btrfs_backref_node *node) 386 { 387 struct btrfs_backref_cache *cache = &rc->backref_cache; 388 struct list_head *useless_node = &cache->useless_node; 389 bool ret = false; 390 391 while (!list_empty(useless_node)) { 392 struct btrfs_backref_node *cur; 393 394 cur = list_first_entry(useless_node, struct btrfs_backref_node, 395 list); 396 list_del_init(&cur->list); 397 398 /* Only tree root nodes can be added to @useless_nodes */ 399 ASSERT(list_empty(&cur->upper)); 400 401 if (cur == node) 402 ret = true; 403 404 /* The node is the lowest node */ 405 if (cur->lowest) { 406 list_del_init(&cur->lower); 407 cur->lowest = 0; 408 } 409 410 /* Cleanup the lower edges */ 411 while (!list_empty(&cur->lower)) { 412 struct btrfs_backref_edge *edge; 413 struct btrfs_backref_node *lower; 414 415 edge = list_entry(cur->lower.next, 416 struct btrfs_backref_edge, list[UPPER]); 417 list_del(&edge->list[UPPER]); 418 list_del(&edge->list[LOWER]); 419 lower = edge->node[LOWER]; 420 btrfs_backref_free_edge(cache, edge); 421 422 /* Child node is also orphan, queue for cleanup */ 423 if (list_empty(&lower->upper)) 424 list_add(&lower->list, useless_node); 425 } 426 /* Mark this block processed for relocation */ 427 mark_block_processed(rc, cur); 428 429 /* 430 * Backref nodes for tree leaves are deleted from the cache. 431 * Backref nodes for upper level tree blocks are left in the 432 * cache to avoid unnecessary backref lookup. 433 */ 434 if (cur->level > 0) { 435 list_add(&cur->list, &cache->detached); 436 cur->detached = 1; 437 } else { 438 rb_erase(&cur->rb_node, &cache->rb_root); 439 btrfs_backref_free_node(cache, cur); 440 } 441 } 442 return ret; 443 } 444 445 /* 446 * Build backref tree for a given tree block. Root of the backref tree 447 * corresponds the tree block, leaves of the backref tree correspond roots of 448 * b-trees that reference the tree block. 449 * 450 * The basic idea of this function is check backrefs of a given block to find 451 * upper level blocks that reference the block, and then check backrefs of 452 * these upper level blocks recursively. The recursion stops when tree root is 453 * reached or backrefs for the block is cached. 454 * 455 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 456 * all upper level blocks that directly/indirectly reference the block are also 457 * cached. 458 */ 459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 460 struct reloc_control *rc, struct btrfs_key *node_key, 461 int level, u64 bytenr) 462 { 463 struct btrfs_backref_iter *iter; 464 struct btrfs_backref_cache *cache = &rc->backref_cache; 465 /* For searching parent of TREE_BLOCK_REF */ 466 struct btrfs_path *path; 467 struct btrfs_backref_node *cur; 468 struct btrfs_backref_node *node = NULL; 469 struct btrfs_backref_edge *edge; 470 int ret; 471 int err = 0; 472 473 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 474 if (!iter) 475 return ERR_PTR(-ENOMEM); 476 path = btrfs_alloc_path(); 477 if (!path) { 478 err = -ENOMEM; 479 goto out; 480 } 481 482 node = btrfs_backref_alloc_node(cache, bytenr, level); 483 if (!node) { 484 err = -ENOMEM; 485 goto out; 486 } 487 488 node->lowest = 1; 489 cur = node; 490 491 /* Breadth-first search to build backref cache */ 492 do { 493 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 494 cur); 495 if (ret < 0) { 496 err = ret; 497 goto out; 498 } 499 edge = list_first_entry_or_null(&cache->pending_edge, 500 struct btrfs_backref_edge, list[UPPER]); 501 /* 502 * The pending list isn't empty, take the first block to 503 * process 504 */ 505 if (edge) { 506 list_del_init(&edge->list[UPPER]); 507 cur = edge->node[UPPER]; 508 } 509 } while (edge); 510 511 /* Finish the upper linkage of newly added edges/nodes */ 512 ret = btrfs_backref_finish_upper_links(cache, node); 513 if (ret < 0) { 514 err = ret; 515 goto out; 516 } 517 518 if (handle_useless_nodes(rc, node)) 519 node = NULL; 520 out: 521 btrfs_backref_iter_free(iter); 522 btrfs_free_path(path); 523 if (err) { 524 btrfs_backref_error_cleanup(cache, node); 525 return ERR_PTR(err); 526 } 527 ASSERT(!node || !node->detached); 528 ASSERT(list_empty(&cache->useless_node) && 529 list_empty(&cache->pending_edge)); 530 return node; 531 } 532 533 /* 534 * helper to add backref node for the newly created snapshot. 535 * the backref node is created by cloning backref node that 536 * corresponds to root of source tree 537 */ 538 static int clone_backref_node(struct btrfs_trans_handle *trans, 539 struct reloc_control *rc, 540 struct btrfs_root *src, 541 struct btrfs_root *dest) 542 { 543 struct btrfs_root *reloc_root = src->reloc_root; 544 struct btrfs_backref_cache *cache = &rc->backref_cache; 545 struct btrfs_backref_node *node = NULL; 546 struct btrfs_backref_node *new_node; 547 struct btrfs_backref_edge *edge; 548 struct btrfs_backref_edge *new_edge; 549 struct rb_node *rb_node; 550 551 if (cache->last_trans > 0) 552 update_backref_cache(trans, cache); 553 554 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 555 if (rb_node) { 556 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 557 if (node->detached) 558 node = NULL; 559 else 560 BUG_ON(node->new_bytenr != reloc_root->node->start); 561 } 562 563 if (!node) { 564 rb_node = rb_simple_search(&cache->rb_root, 565 reloc_root->commit_root->start); 566 if (rb_node) { 567 node = rb_entry(rb_node, struct btrfs_backref_node, 568 rb_node); 569 BUG_ON(node->detached); 570 } 571 } 572 573 if (!node) 574 return 0; 575 576 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 577 node->level); 578 if (!new_node) 579 return -ENOMEM; 580 581 new_node->lowest = node->lowest; 582 new_node->checked = 1; 583 new_node->root = btrfs_grab_root(dest); 584 ASSERT(new_node->root); 585 586 if (!node->lowest) { 587 list_for_each_entry(edge, &node->lower, list[UPPER]) { 588 new_edge = btrfs_backref_alloc_edge(cache); 589 if (!new_edge) 590 goto fail; 591 592 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 593 new_node, LINK_UPPER); 594 } 595 } else { 596 list_add_tail(&new_node->lower, &cache->leaves); 597 } 598 599 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 600 &new_node->rb_node); 601 if (rb_node) 602 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 603 604 if (!new_node->lowest) { 605 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 606 list_add_tail(&new_edge->list[LOWER], 607 &new_edge->node[LOWER]->upper); 608 } 609 } 610 return 0; 611 fail: 612 while (!list_empty(&new_node->lower)) { 613 new_edge = list_entry(new_node->lower.next, 614 struct btrfs_backref_edge, list[UPPER]); 615 list_del(&new_edge->list[UPPER]); 616 btrfs_backref_free_edge(cache, new_edge); 617 } 618 btrfs_backref_free_node(cache, new_node); 619 return -ENOMEM; 620 } 621 622 /* 623 * helper to add 'address of tree root -> reloc tree' mapping 624 */ 625 static int __must_check __add_reloc_root(struct btrfs_root *root) 626 { 627 struct btrfs_fs_info *fs_info = root->fs_info; 628 struct rb_node *rb_node; 629 struct mapping_node *node; 630 struct reloc_control *rc = fs_info->reloc_ctl; 631 632 node = kmalloc(sizeof(*node), GFP_NOFS); 633 if (!node) 634 return -ENOMEM; 635 636 node->bytenr = root->commit_root->start; 637 node->data = root; 638 639 spin_lock(&rc->reloc_root_tree.lock); 640 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 641 node->bytenr, &node->rb_node); 642 spin_unlock(&rc->reloc_root_tree.lock); 643 if (rb_node) { 644 btrfs_err(fs_info, 645 "Duplicate root found for start=%llu while inserting into relocation tree", 646 node->bytenr); 647 return -EEXIST; 648 } 649 650 list_add_tail(&root->root_list, &rc->reloc_roots); 651 return 0; 652 } 653 654 /* 655 * helper to delete the 'address of tree root -> reloc tree' 656 * mapping 657 */ 658 static void __del_reloc_root(struct btrfs_root *root) 659 { 660 struct btrfs_fs_info *fs_info = root->fs_info; 661 struct rb_node *rb_node; 662 struct mapping_node *node = NULL; 663 struct reloc_control *rc = fs_info->reloc_ctl; 664 bool put_ref = false; 665 666 if (rc && root->node) { 667 spin_lock(&rc->reloc_root_tree.lock); 668 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 669 root->commit_root->start); 670 if (rb_node) { 671 node = rb_entry(rb_node, struct mapping_node, rb_node); 672 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 673 RB_CLEAR_NODE(&node->rb_node); 674 } 675 spin_unlock(&rc->reloc_root_tree.lock); 676 ASSERT(!node || (struct btrfs_root *)node->data == root); 677 } 678 679 /* 680 * We only put the reloc root here if it's on the list. There's a lot 681 * of places where the pattern is to splice the rc->reloc_roots, process 682 * the reloc roots, and then add the reloc root back onto 683 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 684 * list we don't want the reference being dropped, because the guy 685 * messing with the list is in charge of the reference. 686 */ 687 spin_lock(&fs_info->trans_lock); 688 if (!list_empty(&root->root_list)) { 689 put_ref = true; 690 list_del_init(&root->root_list); 691 } 692 spin_unlock(&fs_info->trans_lock); 693 if (put_ref) 694 btrfs_put_root(root); 695 kfree(node); 696 } 697 698 /* 699 * helper to update the 'address of tree root -> reloc tree' 700 * mapping 701 */ 702 static int __update_reloc_root(struct btrfs_root *root) 703 { 704 struct btrfs_fs_info *fs_info = root->fs_info; 705 struct rb_node *rb_node; 706 struct mapping_node *node = NULL; 707 struct reloc_control *rc = fs_info->reloc_ctl; 708 709 spin_lock(&rc->reloc_root_tree.lock); 710 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 711 root->commit_root->start); 712 if (rb_node) { 713 node = rb_entry(rb_node, struct mapping_node, rb_node); 714 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 715 } 716 spin_unlock(&rc->reloc_root_tree.lock); 717 718 if (!node) 719 return 0; 720 BUG_ON((struct btrfs_root *)node->data != root); 721 722 spin_lock(&rc->reloc_root_tree.lock); 723 node->bytenr = root->node->start; 724 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 725 node->bytenr, &node->rb_node); 726 spin_unlock(&rc->reloc_root_tree.lock); 727 if (rb_node) 728 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 729 return 0; 730 } 731 732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 733 struct btrfs_root *root, u64 objectid) 734 { 735 struct btrfs_fs_info *fs_info = root->fs_info; 736 struct btrfs_root *reloc_root; 737 struct extent_buffer *eb; 738 struct btrfs_root_item *root_item; 739 struct btrfs_key root_key; 740 int ret = 0; 741 bool must_abort = false; 742 743 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 744 if (!root_item) 745 return ERR_PTR(-ENOMEM); 746 747 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 748 root_key.type = BTRFS_ROOT_ITEM_KEY; 749 root_key.offset = objectid; 750 751 if (root->root_key.objectid == objectid) { 752 u64 commit_root_gen; 753 754 /* called by btrfs_init_reloc_root */ 755 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 756 BTRFS_TREE_RELOC_OBJECTID); 757 if (ret) 758 goto fail; 759 760 /* 761 * Set the last_snapshot field to the generation of the commit 762 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 763 * correctly (returns true) when the relocation root is created 764 * either inside the critical section of a transaction commit 765 * (through transaction.c:qgroup_account_snapshot()) and when 766 * it's created before the transaction commit is started. 767 */ 768 commit_root_gen = btrfs_header_generation(root->commit_root); 769 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 770 } else { 771 /* 772 * called by btrfs_reloc_post_snapshot_hook. 773 * the source tree is a reloc tree, all tree blocks 774 * modified after it was created have RELOC flag 775 * set in their headers. so it's OK to not update 776 * the 'last_snapshot'. 777 */ 778 ret = btrfs_copy_root(trans, root, root->node, &eb, 779 BTRFS_TREE_RELOC_OBJECTID); 780 if (ret) 781 goto fail; 782 } 783 784 /* 785 * We have changed references at this point, we must abort the 786 * transaction if anything fails. 787 */ 788 must_abort = true; 789 790 memcpy(root_item, &root->root_item, sizeof(*root_item)); 791 btrfs_set_root_bytenr(root_item, eb->start); 792 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 793 btrfs_set_root_generation(root_item, trans->transid); 794 795 if (root->root_key.objectid == objectid) { 796 btrfs_set_root_refs(root_item, 0); 797 memset(&root_item->drop_progress, 0, 798 sizeof(struct btrfs_disk_key)); 799 btrfs_set_root_drop_level(root_item, 0); 800 } 801 802 btrfs_tree_unlock(eb); 803 free_extent_buffer(eb); 804 805 ret = btrfs_insert_root(trans, fs_info->tree_root, 806 &root_key, root_item); 807 if (ret) 808 goto fail; 809 810 kfree(root_item); 811 812 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 813 if (IS_ERR(reloc_root)) { 814 ret = PTR_ERR(reloc_root); 815 goto abort; 816 } 817 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 818 reloc_root->last_trans = trans->transid; 819 return reloc_root; 820 fail: 821 kfree(root_item); 822 abort: 823 if (must_abort) 824 btrfs_abort_transaction(trans, ret); 825 return ERR_PTR(ret); 826 } 827 828 /* 829 * create reloc tree for a given fs tree. reloc tree is just a 830 * snapshot of the fs tree with special root objectid. 831 * 832 * The reloc_root comes out of here with two references, one for 833 * root->reloc_root, and another for being on the rc->reloc_roots list. 834 */ 835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 836 struct btrfs_root *root) 837 { 838 struct btrfs_fs_info *fs_info = root->fs_info; 839 struct btrfs_root *reloc_root; 840 struct reloc_control *rc = fs_info->reloc_ctl; 841 struct btrfs_block_rsv *rsv; 842 int clear_rsv = 0; 843 int ret; 844 845 if (!rc) 846 return 0; 847 848 /* 849 * The subvolume has reloc tree but the swap is finished, no need to 850 * create/update the dead reloc tree 851 */ 852 if (reloc_root_is_dead(root)) 853 return 0; 854 855 /* 856 * This is subtle but important. We do not do 857 * record_root_in_transaction for reloc roots, instead we record their 858 * corresponding fs root, and then here we update the last trans for the 859 * reloc root. This means that we have to do this for the entire life 860 * of the reloc root, regardless of which stage of the relocation we are 861 * in. 862 */ 863 if (root->reloc_root) { 864 reloc_root = root->reloc_root; 865 reloc_root->last_trans = trans->transid; 866 return 0; 867 } 868 869 /* 870 * We are merging reloc roots, we do not need new reloc trees. Also 871 * reloc trees never need their own reloc tree. 872 */ 873 if (!rc->create_reloc_tree || 874 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 875 return 0; 876 877 if (!trans->reloc_reserved) { 878 rsv = trans->block_rsv; 879 trans->block_rsv = rc->block_rsv; 880 clear_rsv = 1; 881 } 882 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 883 if (clear_rsv) 884 trans->block_rsv = rsv; 885 if (IS_ERR(reloc_root)) 886 return PTR_ERR(reloc_root); 887 888 ret = __add_reloc_root(reloc_root); 889 ASSERT(ret != -EEXIST); 890 if (ret) { 891 /* Pairs with create_reloc_root */ 892 btrfs_put_root(reloc_root); 893 return ret; 894 } 895 root->reloc_root = btrfs_grab_root(reloc_root); 896 return 0; 897 } 898 899 /* 900 * update root item of reloc tree 901 */ 902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 903 struct btrfs_root *root) 904 { 905 struct btrfs_fs_info *fs_info = root->fs_info; 906 struct btrfs_root *reloc_root; 907 struct btrfs_root_item *root_item; 908 int ret; 909 910 if (!have_reloc_root(root)) 911 return 0; 912 913 reloc_root = root->reloc_root; 914 root_item = &reloc_root->root_item; 915 916 /* 917 * We are probably ok here, but __del_reloc_root() will drop its ref of 918 * the root. We have the ref for root->reloc_root, but just in case 919 * hold it while we update the reloc root. 920 */ 921 btrfs_grab_root(reloc_root); 922 923 /* root->reloc_root will stay until current relocation finished */ 924 if (fs_info->reloc_ctl->merge_reloc_tree && 925 btrfs_root_refs(root_item) == 0) { 926 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 927 /* 928 * Mark the tree as dead before we change reloc_root so 929 * have_reloc_root will not touch it from now on. 930 */ 931 smp_wmb(); 932 __del_reloc_root(reloc_root); 933 } 934 935 if (reloc_root->commit_root != reloc_root->node) { 936 __update_reloc_root(reloc_root); 937 btrfs_set_root_node(root_item, reloc_root->node); 938 free_extent_buffer(reloc_root->commit_root); 939 reloc_root->commit_root = btrfs_root_node(reloc_root); 940 } 941 942 ret = btrfs_update_root(trans, fs_info->tree_root, 943 &reloc_root->root_key, root_item); 944 btrfs_put_root(reloc_root); 945 return ret; 946 } 947 948 /* 949 * helper to find first cached inode with inode number >= objectid 950 * in a subvolume 951 */ 952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 953 { 954 struct rb_node *node; 955 struct rb_node *prev; 956 struct btrfs_inode *entry; 957 struct inode *inode; 958 959 spin_lock(&root->inode_lock); 960 again: 961 node = root->inode_tree.rb_node; 962 prev = NULL; 963 while (node) { 964 prev = node; 965 entry = rb_entry(node, struct btrfs_inode, rb_node); 966 967 if (objectid < btrfs_ino(entry)) 968 node = node->rb_left; 969 else if (objectid > btrfs_ino(entry)) 970 node = node->rb_right; 971 else 972 break; 973 } 974 if (!node) { 975 while (prev) { 976 entry = rb_entry(prev, struct btrfs_inode, rb_node); 977 if (objectid <= btrfs_ino(entry)) { 978 node = prev; 979 break; 980 } 981 prev = rb_next(prev); 982 } 983 } 984 while (node) { 985 entry = rb_entry(node, struct btrfs_inode, rb_node); 986 inode = igrab(&entry->vfs_inode); 987 if (inode) { 988 spin_unlock(&root->inode_lock); 989 return inode; 990 } 991 992 objectid = btrfs_ino(entry) + 1; 993 if (cond_resched_lock(&root->inode_lock)) 994 goto again; 995 996 node = rb_next(node); 997 } 998 spin_unlock(&root->inode_lock); 999 return NULL; 1000 } 1001 1002 /* 1003 * get new location of data 1004 */ 1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1006 u64 bytenr, u64 num_bytes) 1007 { 1008 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1009 struct btrfs_path *path; 1010 struct btrfs_file_extent_item *fi; 1011 struct extent_buffer *leaf; 1012 int ret; 1013 1014 path = btrfs_alloc_path(); 1015 if (!path) 1016 return -ENOMEM; 1017 1018 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1019 ret = btrfs_lookup_file_extent(NULL, root, path, 1020 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1021 if (ret < 0) 1022 goto out; 1023 if (ret > 0) { 1024 ret = -ENOENT; 1025 goto out; 1026 } 1027 1028 leaf = path->nodes[0]; 1029 fi = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_file_extent_item); 1031 1032 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1033 btrfs_file_extent_compression(leaf, fi) || 1034 btrfs_file_extent_encryption(leaf, fi) || 1035 btrfs_file_extent_other_encoding(leaf, fi)); 1036 1037 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1038 ret = -EINVAL; 1039 goto out; 1040 } 1041 1042 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1043 ret = 0; 1044 out: 1045 btrfs_free_path(path); 1046 return ret; 1047 } 1048 1049 /* 1050 * update file extent items in the tree leaf to point to 1051 * the new locations. 1052 */ 1053 static noinline_for_stack 1054 int replace_file_extents(struct btrfs_trans_handle *trans, 1055 struct reloc_control *rc, 1056 struct btrfs_root *root, 1057 struct extent_buffer *leaf) 1058 { 1059 struct btrfs_fs_info *fs_info = root->fs_info; 1060 struct btrfs_key key; 1061 struct btrfs_file_extent_item *fi; 1062 struct inode *inode = NULL; 1063 u64 parent; 1064 u64 bytenr; 1065 u64 new_bytenr = 0; 1066 u64 num_bytes; 1067 u64 end; 1068 u32 nritems; 1069 u32 i; 1070 int ret = 0; 1071 int first = 1; 1072 int dirty = 0; 1073 1074 if (rc->stage != UPDATE_DATA_PTRS) 1075 return 0; 1076 1077 /* reloc trees always use full backref */ 1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1079 parent = leaf->start; 1080 else 1081 parent = 0; 1082 1083 nritems = btrfs_header_nritems(leaf); 1084 for (i = 0; i < nritems; i++) { 1085 struct btrfs_ref ref = { 0 }; 1086 1087 cond_resched(); 1088 btrfs_item_key_to_cpu(leaf, &key, i); 1089 if (key.type != BTRFS_EXTENT_DATA_KEY) 1090 continue; 1091 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1092 if (btrfs_file_extent_type(leaf, fi) == 1093 BTRFS_FILE_EXTENT_INLINE) 1094 continue; 1095 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1096 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1097 if (bytenr == 0) 1098 continue; 1099 if (!in_range(bytenr, rc->block_group->start, 1100 rc->block_group->length)) 1101 continue; 1102 1103 /* 1104 * if we are modifying block in fs tree, wait for read_folio 1105 * to complete and drop the extent cache 1106 */ 1107 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1108 if (first) { 1109 inode = find_next_inode(root, key.objectid); 1110 first = 0; 1111 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1112 btrfs_add_delayed_iput(inode); 1113 inode = find_next_inode(root, key.objectid); 1114 } 1115 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1116 end = key.offset + 1117 btrfs_file_extent_num_bytes(leaf, fi); 1118 WARN_ON(!IS_ALIGNED(key.offset, 1119 fs_info->sectorsize)); 1120 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1121 end--; 1122 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1123 key.offset, end); 1124 if (!ret) 1125 continue; 1126 1127 btrfs_drop_extent_map_range(BTRFS_I(inode), 1128 key.offset, end, true); 1129 unlock_extent(&BTRFS_I(inode)->io_tree, 1130 key.offset, end, NULL); 1131 } 1132 } 1133 1134 ret = get_new_location(rc->data_inode, &new_bytenr, 1135 bytenr, num_bytes); 1136 if (ret) { 1137 /* 1138 * Don't have to abort since we've not changed anything 1139 * in the file extent yet. 1140 */ 1141 break; 1142 } 1143 1144 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1145 dirty = 1; 1146 1147 key.offset -= btrfs_file_extent_offset(leaf, fi); 1148 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1149 num_bytes, parent); 1150 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1151 key.objectid, key.offset, 1152 root->root_key.objectid, false); 1153 ret = btrfs_inc_extent_ref(trans, &ref); 1154 if (ret) { 1155 btrfs_abort_transaction(trans, ret); 1156 break; 1157 } 1158 1159 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1160 num_bytes, parent); 1161 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1162 key.objectid, key.offset, 1163 root->root_key.objectid, false); 1164 ret = btrfs_free_extent(trans, &ref); 1165 if (ret) { 1166 btrfs_abort_transaction(trans, ret); 1167 break; 1168 } 1169 } 1170 if (dirty) 1171 btrfs_mark_buffer_dirty(leaf); 1172 if (inode) 1173 btrfs_add_delayed_iput(inode); 1174 return ret; 1175 } 1176 1177 static noinline_for_stack 1178 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1179 struct btrfs_path *path, int level) 1180 { 1181 struct btrfs_disk_key key1; 1182 struct btrfs_disk_key key2; 1183 btrfs_node_key(eb, &key1, slot); 1184 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1185 return memcmp(&key1, &key2, sizeof(key1)); 1186 } 1187 1188 /* 1189 * try to replace tree blocks in fs tree with the new blocks 1190 * in reloc tree. tree blocks haven't been modified since the 1191 * reloc tree was create can be replaced. 1192 * 1193 * if a block was replaced, level of the block + 1 is returned. 1194 * if no block got replaced, 0 is returned. if there are other 1195 * errors, a negative error number is returned. 1196 */ 1197 static noinline_for_stack 1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1199 struct btrfs_root *dest, struct btrfs_root *src, 1200 struct btrfs_path *path, struct btrfs_key *next_key, 1201 int lowest_level, int max_level) 1202 { 1203 struct btrfs_fs_info *fs_info = dest->fs_info; 1204 struct extent_buffer *eb; 1205 struct extent_buffer *parent; 1206 struct btrfs_ref ref = { 0 }; 1207 struct btrfs_key key; 1208 u64 old_bytenr; 1209 u64 new_bytenr; 1210 u64 old_ptr_gen; 1211 u64 new_ptr_gen; 1212 u64 last_snapshot; 1213 u32 blocksize; 1214 int cow = 0; 1215 int level; 1216 int ret; 1217 int slot; 1218 1219 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1220 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1221 1222 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1223 again: 1224 slot = path->slots[lowest_level]; 1225 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1226 1227 eb = btrfs_lock_root_node(dest); 1228 level = btrfs_header_level(eb); 1229 1230 if (level < lowest_level) { 1231 btrfs_tree_unlock(eb); 1232 free_extent_buffer(eb); 1233 return 0; 1234 } 1235 1236 if (cow) { 1237 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1238 BTRFS_NESTING_COW); 1239 if (ret) { 1240 btrfs_tree_unlock(eb); 1241 free_extent_buffer(eb); 1242 return ret; 1243 } 1244 } 1245 1246 if (next_key) { 1247 next_key->objectid = (u64)-1; 1248 next_key->type = (u8)-1; 1249 next_key->offset = (u64)-1; 1250 } 1251 1252 parent = eb; 1253 while (1) { 1254 level = btrfs_header_level(parent); 1255 ASSERT(level >= lowest_level); 1256 1257 ret = btrfs_bin_search(parent, &key, &slot); 1258 if (ret < 0) 1259 break; 1260 if (ret && slot > 0) 1261 slot--; 1262 1263 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1264 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1265 1266 old_bytenr = btrfs_node_blockptr(parent, slot); 1267 blocksize = fs_info->nodesize; 1268 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1269 1270 if (level <= max_level) { 1271 eb = path->nodes[level]; 1272 new_bytenr = btrfs_node_blockptr(eb, 1273 path->slots[level]); 1274 new_ptr_gen = btrfs_node_ptr_generation(eb, 1275 path->slots[level]); 1276 } else { 1277 new_bytenr = 0; 1278 new_ptr_gen = 0; 1279 } 1280 1281 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1282 ret = level; 1283 break; 1284 } 1285 1286 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1287 memcmp_node_keys(parent, slot, path, level)) { 1288 if (level <= lowest_level) { 1289 ret = 0; 1290 break; 1291 } 1292 1293 eb = btrfs_read_node_slot(parent, slot); 1294 if (IS_ERR(eb)) { 1295 ret = PTR_ERR(eb); 1296 break; 1297 } 1298 btrfs_tree_lock(eb); 1299 if (cow) { 1300 ret = btrfs_cow_block(trans, dest, eb, parent, 1301 slot, &eb, 1302 BTRFS_NESTING_COW); 1303 if (ret) { 1304 btrfs_tree_unlock(eb); 1305 free_extent_buffer(eb); 1306 break; 1307 } 1308 } 1309 1310 btrfs_tree_unlock(parent); 1311 free_extent_buffer(parent); 1312 1313 parent = eb; 1314 continue; 1315 } 1316 1317 if (!cow) { 1318 btrfs_tree_unlock(parent); 1319 free_extent_buffer(parent); 1320 cow = 1; 1321 goto again; 1322 } 1323 1324 btrfs_node_key_to_cpu(path->nodes[level], &key, 1325 path->slots[level]); 1326 btrfs_release_path(path); 1327 1328 path->lowest_level = level; 1329 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1330 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1331 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1332 path->lowest_level = 0; 1333 if (ret) { 1334 if (ret > 0) 1335 ret = -ENOENT; 1336 break; 1337 } 1338 1339 /* 1340 * Info qgroup to trace both subtrees. 1341 * 1342 * We must trace both trees. 1343 * 1) Tree reloc subtree 1344 * If not traced, we will leak data numbers 1345 * 2) Fs subtree 1346 * If not traced, we will double count old data 1347 * 1348 * We don't scan the subtree right now, but only record 1349 * the swapped tree blocks. 1350 * The real subtree rescan is delayed until we have new 1351 * CoW on the subtree root node before transaction commit. 1352 */ 1353 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1354 rc->block_group, parent, slot, 1355 path->nodes[level], path->slots[level], 1356 last_snapshot); 1357 if (ret < 0) 1358 break; 1359 /* 1360 * swap blocks in fs tree and reloc tree. 1361 */ 1362 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1363 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1364 btrfs_mark_buffer_dirty(parent); 1365 1366 btrfs_set_node_blockptr(path->nodes[level], 1367 path->slots[level], old_bytenr); 1368 btrfs_set_node_ptr_generation(path->nodes[level], 1369 path->slots[level], old_ptr_gen); 1370 btrfs_mark_buffer_dirty(path->nodes[level]); 1371 1372 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1373 blocksize, path->nodes[level]->start); 1374 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1375 0, true); 1376 ret = btrfs_inc_extent_ref(trans, &ref); 1377 if (ret) { 1378 btrfs_abort_transaction(trans, ret); 1379 break; 1380 } 1381 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1382 blocksize, 0); 1383 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1384 true); 1385 ret = btrfs_inc_extent_ref(trans, &ref); 1386 if (ret) { 1387 btrfs_abort_transaction(trans, ret); 1388 break; 1389 } 1390 1391 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1392 blocksize, path->nodes[level]->start); 1393 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1394 0, true); 1395 ret = btrfs_free_extent(trans, &ref); 1396 if (ret) { 1397 btrfs_abort_transaction(trans, ret); 1398 break; 1399 } 1400 1401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1402 blocksize, 0); 1403 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1404 0, true); 1405 ret = btrfs_free_extent(trans, &ref); 1406 if (ret) { 1407 btrfs_abort_transaction(trans, ret); 1408 break; 1409 } 1410 1411 btrfs_unlock_up_safe(path, 0); 1412 1413 ret = level; 1414 break; 1415 } 1416 btrfs_tree_unlock(parent); 1417 free_extent_buffer(parent); 1418 return ret; 1419 } 1420 1421 /* 1422 * helper to find next relocated block in reloc tree 1423 */ 1424 static noinline_for_stack 1425 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1426 int *level) 1427 { 1428 struct extent_buffer *eb; 1429 int i; 1430 u64 last_snapshot; 1431 u32 nritems; 1432 1433 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1434 1435 for (i = 0; i < *level; i++) { 1436 free_extent_buffer(path->nodes[i]); 1437 path->nodes[i] = NULL; 1438 } 1439 1440 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1441 eb = path->nodes[i]; 1442 nritems = btrfs_header_nritems(eb); 1443 while (path->slots[i] + 1 < nritems) { 1444 path->slots[i]++; 1445 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1446 last_snapshot) 1447 continue; 1448 1449 *level = i; 1450 return 0; 1451 } 1452 free_extent_buffer(path->nodes[i]); 1453 path->nodes[i] = NULL; 1454 } 1455 return 1; 1456 } 1457 1458 /* 1459 * walk down reloc tree to find relocated block of lowest level 1460 */ 1461 static noinline_for_stack 1462 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1463 int *level) 1464 { 1465 struct extent_buffer *eb = NULL; 1466 int i; 1467 u64 ptr_gen = 0; 1468 u64 last_snapshot; 1469 u32 nritems; 1470 1471 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1472 1473 for (i = *level; i > 0; i--) { 1474 eb = path->nodes[i]; 1475 nritems = btrfs_header_nritems(eb); 1476 while (path->slots[i] < nritems) { 1477 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1478 if (ptr_gen > last_snapshot) 1479 break; 1480 path->slots[i]++; 1481 } 1482 if (path->slots[i] >= nritems) { 1483 if (i == *level) 1484 break; 1485 *level = i + 1; 1486 return 0; 1487 } 1488 if (i == 1) { 1489 *level = i; 1490 return 0; 1491 } 1492 1493 eb = btrfs_read_node_slot(eb, path->slots[i]); 1494 if (IS_ERR(eb)) 1495 return PTR_ERR(eb); 1496 BUG_ON(btrfs_header_level(eb) != i - 1); 1497 path->nodes[i - 1] = eb; 1498 path->slots[i - 1] = 0; 1499 } 1500 return 1; 1501 } 1502 1503 /* 1504 * invalidate extent cache for file extents whose key in range of 1505 * [min_key, max_key) 1506 */ 1507 static int invalidate_extent_cache(struct btrfs_root *root, 1508 struct btrfs_key *min_key, 1509 struct btrfs_key *max_key) 1510 { 1511 struct btrfs_fs_info *fs_info = root->fs_info; 1512 struct inode *inode = NULL; 1513 u64 objectid; 1514 u64 start, end; 1515 u64 ino; 1516 1517 objectid = min_key->objectid; 1518 while (1) { 1519 cond_resched(); 1520 iput(inode); 1521 1522 if (objectid > max_key->objectid) 1523 break; 1524 1525 inode = find_next_inode(root, objectid); 1526 if (!inode) 1527 break; 1528 ino = btrfs_ino(BTRFS_I(inode)); 1529 1530 if (ino > max_key->objectid) { 1531 iput(inode); 1532 break; 1533 } 1534 1535 objectid = ino + 1; 1536 if (!S_ISREG(inode->i_mode)) 1537 continue; 1538 1539 if (unlikely(min_key->objectid == ino)) { 1540 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1541 continue; 1542 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1543 start = 0; 1544 else { 1545 start = min_key->offset; 1546 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1547 } 1548 } else { 1549 start = 0; 1550 } 1551 1552 if (unlikely(max_key->objectid == ino)) { 1553 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1554 continue; 1555 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1556 end = (u64)-1; 1557 } else { 1558 if (max_key->offset == 0) 1559 continue; 1560 end = max_key->offset; 1561 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1562 end--; 1563 } 1564 } else { 1565 end = (u64)-1; 1566 } 1567 1568 /* the lock_extent waits for read_folio to complete */ 1569 lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); 1570 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); 1571 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); 1572 } 1573 return 0; 1574 } 1575 1576 static int find_next_key(struct btrfs_path *path, int level, 1577 struct btrfs_key *key) 1578 1579 { 1580 while (level < BTRFS_MAX_LEVEL) { 1581 if (!path->nodes[level]) 1582 break; 1583 if (path->slots[level] + 1 < 1584 btrfs_header_nritems(path->nodes[level])) { 1585 btrfs_node_key_to_cpu(path->nodes[level], key, 1586 path->slots[level] + 1); 1587 return 0; 1588 } 1589 level++; 1590 } 1591 return 1; 1592 } 1593 1594 /* 1595 * Insert current subvolume into reloc_control::dirty_subvol_roots 1596 */ 1597 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1598 struct reloc_control *rc, 1599 struct btrfs_root *root) 1600 { 1601 struct btrfs_root *reloc_root = root->reloc_root; 1602 struct btrfs_root_item *reloc_root_item; 1603 int ret; 1604 1605 /* @root must be a subvolume tree root with a valid reloc tree */ 1606 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1607 ASSERT(reloc_root); 1608 1609 reloc_root_item = &reloc_root->root_item; 1610 memset(&reloc_root_item->drop_progress, 0, 1611 sizeof(reloc_root_item->drop_progress)); 1612 btrfs_set_root_drop_level(reloc_root_item, 0); 1613 btrfs_set_root_refs(reloc_root_item, 0); 1614 ret = btrfs_update_reloc_root(trans, root); 1615 if (ret) 1616 return ret; 1617 1618 if (list_empty(&root->reloc_dirty_list)) { 1619 btrfs_grab_root(root); 1620 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1621 } 1622 1623 return 0; 1624 } 1625 1626 static int clean_dirty_subvols(struct reloc_control *rc) 1627 { 1628 struct btrfs_root *root; 1629 struct btrfs_root *next; 1630 int ret = 0; 1631 int ret2; 1632 1633 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1634 reloc_dirty_list) { 1635 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1636 /* Merged subvolume, cleanup its reloc root */ 1637 struct btrfs_root *reloc_root = root->reloc_root; 1638 1639 list_del_init(&root->reloc_dirty_list); 1640 root->reloc_root = NULL; 1641 /* 1642 * Need barrier to ensure clear_bit() only happens after 1643 * root->reloc_root = NULL. Pairs with have_reloc_root. 1644 */ 1645 smp_wmb(); 1646 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1647 if (reloc_root) { 1648 /* 1649 * btrfs_drop_snapshot drops our ref we hold for 1650 * ->reloc_root. If it fails however we must 1651 * drop the ref ourselves. 1652 */ 1653 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1654 if (ret2 < 0) { 1655 btrfs_put_root(reloc_root); 1656 if (!ret) 1657 ret = ret2; 1658 } 1659 } 1660 btrfs_put_root(root); 1661 } else { 1662 /* Orphan reloc tree, just clean it up */ 1663 ret2 = btrfs_drop_snapshot(root, 0, 1); 1664 if (ret2 < 0) { 1665 btrfs_put_root(root); 1666 if (!ret) 1667 ret = ret2; 1668 } 1669 } 1670 } 1671 return ret; 1672 } 1673 1674 /* 1675 * merge the relocated tree blocks in reloc tree with corresponding 1676 * fs tree. 1677 */ 1678 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1679 struct btrfs_root *root) 1680 { 1681 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1682 struct btrfs_key key; 1683 struct btrfs_key next_key; 1684 struct btrfs_trans_handle *trans = NULL; 1685 struct btrfs_root *reloc_root; 1686 struct btrfs_root_item *root_item; 1687 struct btrfs_path *path; 1688 struct extent_buffer *leaf; 1689 int reserve_level; 1690 int level; 1691 int max_level; 1692 int replaced = 0; 1693 int ret = 0; 1694 u32 min_reserved; 1695 1696 path = btrfs_alloc_path(); 1697 if (!path) 1698 return -ENOMEM; 1699 path->reada = READA_FORWARD; 1700 1701 reloc_root = root->reloc_root; 1702 root_item = &reloc_root->root_item; 1703 1704 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1705 level = btrfs_root_level(root_item); 1706 atomic_inc(&reloc_root->node->refs); 1707 path->nodes[level] = reloc_root->node; 1708 path->slots[level] = 0; 1709 } else { 1710 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1711 1712 level = btrfs_root_drop_level(root_item); 1713 BUG_ON(level == 0); 1714 path->lowest_level = level; 1715 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1716 path->lowest_level = 0; 1717 if (ret < 0) { 1718 btrfs_free_path(path); 1719 return ret; 1720 } 1721 1722 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1723 path->slots[level]); 1724 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1725 1726 btrfs_unlock_up_safe(path, 0); 1727 } 1728 1729 /* 1730 * In merge_reloc_root(), we modify the upper level pointer to swap the 1731 * tree blocks between reloc tree and subvolume tree. Thus for tree 1732 * block COW, we COW at most from level 1 to root level for each tree. 1733 * 1734 * Thus the needed metadata size is at most root_level * nodesize, 1735 * and * 2 since we have two trees to COW. 1736 */ 1737 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1738 min_reserved = fs_info->nodesize * reserve_level * 2; 1739 memset(&next_key, 0, sizeof(next_key)); 1740 1741 while (1) { 1742 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1743 min_reserved, 1744 BTRFS_RESERVE_FLUSH_LIMIT); 1745 if (ret) 1746 goto out; 1747 trans = btrfs_start_transaction(root, 0); 1748 if (IS_ERR(trans)) { 1749 ret = PTR_ERR(trans); 1750 trans = NULL; 1751 goto out; 1752 } 1753 1754 /* 1755 * At this point we no longer have a reloc_control, so we can't 1756 * depend on btrfs_init_reloc_root to update our last_trans. 1757 * 1758 * But that's ok, we started the trans handle on our 1759 * corresponding fs_root, which means it's been added to the 1760 * dirty list. At commit time we'll still call 1761 * btrfs_update_reloc_root() and update our root item 1762 * appropriately. 1763 */ 1764 reloc_root->last_trans = trans->transid; 1765 trans->block_rsv = rc->block_rsv; 1766 1767 replaced = 0; 1768 max_level = level; 1769 1770 ret = walk_down_reloc_tree(reloc_root, path, &level); 1771 if (ret < 0) 1772 goto out; 1773 if (ret > 0) 1774 break; 1775 1776 if (!find_next_key(path, level, &key) && 1777 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1778 ret = 0; 1779 } else { 1780 ret = replace_path(trans, rc, root, reloc_root, path, 1781 &next_key, level, max_level); 1782 } 1783 if (ret < 0) 1784 goto out; 1785 if (ret > 0) { 1786 level = ret; 1787 btrfs_node_key_to_cpu(path->nodes[level], &key, 1788 path->slots[level]); 1789 replaced = 1; 1790 } 1791 1792 ret = walk_up_reloc_tree(reloc_root, path, &level); 1793 if (ret > 0) 1794 break; 1795 1796 BUG_ON(level == 0); 1797 /* 1798 * save the merging progress in the drop_progress. 1799 * this is OK since root refs == 1 in this case. 1800 */ 1801 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1802 path->slots[level]); 1803 btrfs_set_root_drop_level(root_item, level); 1804 1805 btrfs_end_transaction_throttle(trans); 1806 trans = NULL; 1807 1808 btrfs_btree_balance_dirty(fs_info); 1809 1810 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1811 invalidate_extent_cache(root, &key, &next_key); 1812 } 1813 1814 /* 1815 * handle the case only one block in the fs tree need to be 1816 * relocated and the block is tree root. 1817 */ 1818 leaf = btrfs_lock_root_node(root); 1819 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1820 BTRFS_NESTING_COW); 1821 btrfs_tree_unlock(leaf); 1822 free_extent_buffer(leaf); 1823 out: 1824 btrfs_free_path(path); 1825 1826 if (ret == 0) { 1827 ret = insert_dirty_subvol(trans, rc, root); 1828 if (ret) 1829 btrfs_abort_transaction(trans, ret); 1830 } 1831 1832 if (trans) 1833 btrfs_end_transaction_throttle(trans); 1834 1835 btrfs_btree_balance_dirty(fs_info); 1836 1837 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1838 invalidate_extent_cache(root, &key, &next_key); 1839 1840 return ret; 1841 } 1842 1843 static noinline_for_stack 1844 int prepare_to_merge(struct reloc_control *rc, int err) 1845 { 1846 struct btrfs_root *root = rc->extent_root; 1847 struct btrfs_fs_info *fs_info = root->fs_info; 1848 struct btrfs_root *reloc_root; 1849 struct btrfs_trans_handle *trans; 1850 LIST_HEAD(reloc_roots); 1851 u64 num_bytes = 0; 1852 int ret; 1853 1854 mutex_lock(&fs_info->reloc_mutex); 1855 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1856 rc->merging_rsv_size += rc->nodes_relocated * 2; 1857 mutex_unlock(&fs_info->reloc_mutex); 1858 1859 again: 1860 if (!err) { 1861 num_bytes = rc->merging_rsv_size; 1862 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1863 BTRFS_RESERVE_FLUSH_ALL); 1864 if (ret) 1865 err = ret; 1866 } 1867 1868 trans = btrfs_join_transaction(rc->extent_root); 1869 if (IS_ERR(trans)) { 1870 if (!err) 1871 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1872 num_bytes, NULL); 1873 return PTR_ERR(trans); 1874 } 1875 1876 if (!err) { 1877 if (num_bytes != rc->merging_rsv_size) { 1878 btrfs_end_transaction(trans); 1879 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1880 num_bytes, NULL); 1881 goto again; 1882 } 1883 } 1884 1885 rc->merge_reloc_tree = 1; 1886 1887 while (!list_empty(&rc->reloc_roots)) { 1888 reloc_root = list_entry(rc->reloc_roots.next, 1889 struct btrfs_root, root_list); 1890 list_del_init(&reloc_root->root_list); 1891 1892 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1893 false); 1894 if (IS_ERR(root)) { 1895 /* 1896 * Even if we have an error we need this reloc root 1897 * back on our list so we can clean up properly. 1898 */ 1899 list_add(&reloc_root->root_list, &reloc_roots); 1900 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1901 if (!err) 1902 err = PTR_ERR(root); 1903 break; 1904 } 1905 ASSERT(root->reloc_root == reloc_root); 1906 1907 /* 1908 * set reference count to 1, so btrfs_recover_relocation 1909 * knows it should resumes merging 1910 */ 1911 if (!err) 1912 btrfs_set_root_refs(&reloc_root->root_item, 1); 1913 ret = btrfs_update_reloc_root(trans, root); 1914 1915 /* 1916 * Even if we have an error we need this reloc root back on our 1917 * list so we can clean up properly. 1918 */ 1919 list_add(&reloc_root->root_list, &reloc_roots); 1920 btrfs_put_root(root); 1921 1922 if (ret) { 1923 btrfs_abort_transaction(trans, ret); 1924 if (!err) 1925 err = ret; 1926 break; 1927 } 1928 } 1929 1930 list_splice(&reloc_roots, &rc->reloc_roots); 1931 1932 if (!err) 1933 err = btrfs_commit_transaction(trans); 1934 else 1935 btrfs_end_transaction(trans); 1936 return err; 1937 } 1938 1939 static noinline_for_stack 1940 void free_reloc_roots(struct list_head *list) 1941 { 1942 struct btrfs_root *reloc_root, *tmp; 1943 1944 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1945 __del_reloc_root(reloc_root); 1946 } 1947 1948 static noinline_for_stack 1949 void merge_reloc_roots(struct reloc_control *rc) 1950 { 1951 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1952 struct btrfs_root *root; 1953 struct btrfs_root *reloc_root; 1954 LIST_HEAD(reloc_roots); 1955 int found = 0; 1956 int ret = 0; 1957 again: 1958 root = rc->extent_root; 1959 1960 /* 1961 * this serializes us with btrfs_record_root_in_transaction, 1962 * we have to make sure nobody is in the middle of 1963 * adding their roots to the list while we are 1964 * doing this splice 1965 */ 1966 mutex_lock(&fs_info->reloc_mutex); 1967 list_splice_init(&rc->reloc_roots, &reloc_roots); 1968 mutex_unlock(&fs_info->reloc_mutex); 1969 1970 while (!list_empty(&reloc_roots)) { 1971 found = 1; 1972 reloc_root = list_entry(reloc_roots.next, 1973 struct btrfs_root, root_list); 1974 1975 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1976 false); 1977 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1978 if (IS_ERR(root)) { 1979 /* 1980 * For recovery we read the fs roots on mount, 1981 * and if we didn't find the root then we marked 1982 * the reloc root as a garbage root. For normal 1983 * relocation obviously the root should exist in 1984 * memory. However there's no reason we can't 1985 * handle the error properly here just in case. 1986 */ 1987 ASSERT(0); 1988 ret = PTR_ERR(root); 1989 goto out; 1990 } 1991 if (root->reloc_root != reloc_root) { 1992 /* 1993 * This is actually impossible without something 1994 * going really wrong (like weird race condition 1995 * or cosmic rays). 1996 */ 1997 ASSERT(0); 1998 ret = -EINVAL; 1999 goto out; 2000 } 2001 ret = merge_reloc_root(rc, root); 2002 btrfs_put_root(root); 2003 if (ret) { 2004 if (list_empty(&reloc_root->root_list)) 2005 list_add_tail(&reloc_root->root_list, 2006 &reloc_roots); 2007 goto out; 2008 } 2009 } else { 2010 if (!IS_ERR(root)) { 2011 if (root->reloc_root == reloc_root) { 2012 root->reloc_root = NULL; 2013 btrfs_put_root(reloc_root); 2014 } 2015 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2016 &root->state); 2017 btrfs_put_root(root); 2018 } 2019 2020 list_del_init(&reloc_root->root_list); 2021 /* Don't forget to queue this reloc root for cleanup */ 2022 list_add_tail(&reloc_root->reloc_dirty_list, 2023 &rc->dirty_subvol_roots); 2024 } 2025 } 2026 2027 if (found) { 2028 found = 0; 2029 goto again; 2030 } 2031 out: 2032 if (ret) { 2033 btrfs_handle_fs_error(fs_info, ret, NULL); 2034 free_reloc_roots(&reloc_roots); 2035 2036 /* new reloc root may be added */ 2037 mutex_lock(&fs_info->reloc_mutex); 2038 list_splice_init(&rc->reloc_roots, &reloc_roots); 2039 mutex_unlock(&fs_info->reloc_mutex); 2040 free_reloc_roots(&reloc_roots); 2041 } 2042 2043 /* 2044 * We used to have 2045 * 2046 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2047 * 2048 * here, but it's wrong. If we fail to start the transaction in 2049 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2050 * have actually been removed from the reloc_root_tree rb tree. This is 2051 * fine because we're bailing here, and we hold a reference on the root 2052 * for the list that holds it, so these roots will be cleaned up when we 2053 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2054 * will be cleaned up on unmount. 2055 * 2056 * The remaining nodes will be cleaned up by free_reloc_control. 2057 */ 2058 } 2059 2060 static void free_block_list(struct rb_root *blocks) 2061 { 2062 struct tree_block *block; 2063 struct rb_node *rb_node; 2064 while ((rb_node = rb_first(blocks))) { 2065 block = rb_entry(rb_node, struct tree_block, rb_node); 2066 rb_erase(rb_node, blocks); 2067 kfree(block); 2068 } 2069 } 2070 2071 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2072 struct btrfs_root *reloc_root) 2073 { 2074 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2075 struct btrfs_root *root; 2076 int ret; 2077 2078 if (reloc_root->last_trans == trans->transid) 2079 return 0; 2080 2081 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2082 2083 /* 2084 * This should succeed, since we can't have a reloc root without having 2085 * already looked up the actual root and created the reloc root for this 2086 * root. 2087 * 2088 * However if there's some sort of corruption where we have a ref to a 2089 * reloc root without a corresponding root this could return ENOENT. 2090 */ 2091 if (IS_ERR(root)) { 2092 ASSERT(0); 2093 return PTR_ERR(root); 2094 } 2095 if (root->reloc_root != reloc_root) { 2096 ASSERT(0); 2097 btrfs_err(fs_info, 2098 "root %llu has two reloc roots associated with it", 2099 reloc_root->root_key.offset); 2100 btrfs_put_root(root); 2101 return -EUCLEAN; 2102 } 2103 ret = btrfs_record_root_in_trans(trans, root); 2104 btrfs_put_root(root); 2105 2106 return ret; 2107 } 2108 2109 static noinline_for_stack 2110 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2111 struct reloc_control *rc, 2112 struct btrfs_backref_node *node, 2113 struct btrfs_backref_edge *edges[]) 2114 { 2115 struct btrfs_backref_node *next; 2116 struct btrfs_root *root; 2117 int index = 0; 2118 int ret; 2119 2120 next = node; 2121 while (1) { 2122 cond_resched(); 2123 next = walk_up_backref(next, edges, &index); 2124 root = next->root; 2125 2126 /* 2127 * If there is no root, then our references for this block are 2128 * incomplete, as we should be able to walk all the way up to a 2129 * block that is owned by a root. 2130 * 2131 * This path is only for SHAREABLE roots, so if we come upon a 2132 * non-SHAREABLE root then we have backrefs that resolve 2133 * improperly. 2134 * 2135 * Both of these cases indicate file system corruption, or a bug 2136 * in the backref walking code. 2137 */ 2138 if (!root) { 2139 ASSERT(0); 2140 btrfs_err(trans->fs_info, 2141 "bytenr %llu doesn't have a backref path ending in a root", 2142 node->bytenr); 2143 return ERR_PTR(-EUCLEAN); 2144 } 2145 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2146 ASSERT(0); 2147 btrfs_err(trans->fs_info, 2148 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2149 node->bytenr); 2150 return ERR_PTR(-EUCLEAN); 2151 } 2152 2153 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2154 ret = record_reloc_root_in_trans(trans, root); 2155 if (ret) 2156 return ERR_PTR(ret); 2157 break; 2158 } 2159 2160 ret = btrfs_record_root_in_trans(trans, root); 2161 if (ret) 2162 return ERR_PTR(ret); 2163 root = root->reloc_root; 2164 2165 /* 2166 * We could have raced with another thread which failed, so 2167 * root->reloc_root may not be set, return ENOENT in this case. 2168 */ 2169 if (!root) 2170 return ERR_PTR(-ENOENT); 2171 2172 if (next->new_bytenr != root->node->start) { 2173 /* 2174 * We just created the reloc root, so we shouldn't have 2175 * ->new_bytenr set and this shouldn't be in the changed 2176 * list. If it is then we have multiple roots pointing 2177 * at the same bytenr which indicates corruption, or 2178 * we've made a mistake in the backref walking code. 2179 */ 2180 ASSERT(next->new_bytenr == 0); 2181 ASSERT(list_empty(&next->list)); 2182 if (next->new_bytenr || !list_empty(&next->list)) { 2183 btrfs_err(trans->fs_info, 2184 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2185 node->bytenr, next->bytenr); 2186 return ERR_PTR(-EUCLEAN); 2187 } 2188 2189 next->new_bytenr = root->node->start; 2190 btrfs_put_root(next->root); 2191 next->root = btrfs_grab_root(root); 2192 ASSERT(next->root); 2193 list_add_tail(&next->list, 2194 &rc->backref_cache.changed); 2195 mark_block_processed(rc, next); 2196 break; 2197 } 2198 2199 WARN_ON(1); 2200 root = NULL; 2201 next = walk_down_backref(edges, &index); 2202 if (!next || next->level <= node->level) 2203 break; 2204 } 2205 if (!root) { 2206 /* 2207 * This can happen if there's fs corruption or if there's a bug 2208 * in the backref lookup code. 2209 */ 2210 ASSERT(0); 2211 return ERR_PTR(-ENOENT); 2212 } 2213 2214 next = node; 2215 /* setup backref node path for btrfs_reloc_cow_block */ 2216 while (1) { 2217 rc->backref_cache.path[next->level] = next; 2218 if (--index < 0) 2219 break; 2220 next = edges[index]->node[UPPER]; 2221 } 2222 return root; 2223 } 2224 2225 /* 2226 * Select a tree root for relocation. 2227 * 2228 * Return NULL if the block is not shareable. We should use do_relocation() in 2229 * this case. 2230 * 2231 * Return a tree root pointer if the block is shareable. 2232 * Return -ENOENT if the block is root of reloc tree. 2233 */ 2234 static noinline_for_stack 2235 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2236 { 2237 struct btrfs_backref_node *next; 2238 struct btrfs_root *root; 2239 struct btrfs_root *fs_root = NULL; 2240 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2241 int index = 0; 2242 2243 next = node; 2244 while (1) { 2245 cond_resched(); 2246 next = walk_up_backref(next, edges, &index); 2247 root = next->root; 2248 2249 /* 2250 * This can occur if we have incomplete extent refs leading all 2251 * the way up a particular path, in this case return -EUCLEAN. 2252 */ 2253 if (!root) 2254 return ERR_PTR(-EUCLEAN); 2255 2256 /* No other choice for non-shareable tree */ 2257 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2258 return root; 2259 2260 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2261 fs_root = root; 2262 2263 if (next != node) 2264 return NULL; 2265 2266 next = walk_down_backref(edges, &index); 2267 if (!next || next->level <= node->level) 2268 break; 2269 } 2270 2271 if (!fs_root) 2272 return ERR_PTR(-ENOENT); 2273 return fs_root; 2274 } 2275 2276 static noinline_for_stack 2277 u64 calcu_metadata_size(struct reloc_control *rc, 2278 struct btrfs_backref_node *node, int reserve) 2279 { 2280 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2281 struct btrfs_backref_node *next = node; 2282 struct btrfs_backref_edge *edge; 2283 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2284 u64 num_bytes = 0; 2285 int index = 0; 2286 2287 BUG_ON(reserve && node->processed); 2288 2289 while (next) { 2290 cond_resched(); 2291 while (1) { 2292 if (next->processed && (reserve || next != node)) 2293 break; 2294 2295 num_bytes += fs_info->nodesize; 2296 2297 if (list_empty(&next->upper)) 2298 break; 2299 2300 edge = list_entry(next->upper.next, 2301 struct btrfs_backref_edge, list[LOWER]); 2302 edges[index++] = edge; 2303 next = edge->node[UPPER]; 2304 } 2305 next = walk_down_backref(edges, &index); 2306 } 2307 return num_bytes; 2308 } 2309 2310 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2311 struct reloc_control *rc, 2312 struct btrfs_backref_node *node) 2313 { 2314 struct btrfs_root *root = rc->extent_root; 2315 struct btrfs_fs_info *fs_info = root->fs_info; 2316 u64 num_bytes; 2317 int ret; 2318 u64 tmp; 2319 2320 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2321 2322 trans->block_rsv = rc->block_rsv; 2323 rc->reserved_bytes += num_bytes; 2324 2325 /* 2326 * We are under a transaction here so we can only do limited flushing. 2327 * If we get an enospc just kick back -EAGAIN so we know to drop the 2328 * transaction and try to refill when we can flush all the things. 2329 */ 2330 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2331 BTRFS_RESERVE_FLUSH_LIMIT); 2332 if (ret) { 2333 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2334 while (tmp <= rc->reserved_bytes) 2335 tmp <<= 1; 2336 /* 2337 * only one thread can access block_rsv at this point, 2338 * so we don't need hold lock to protect block_rsv. 2339 * we expand more reservation size here to allow enough 2340 * space for relocation and we will return earlier in 2341 * enospc case. 2342 */ 2343 rc->block_rsv->size = tmp + fs_info->nodesize * 2344 RELOCATION_RESERVED_NODES; 2345 return -EAGAIN; 2346 } 2347 2348 return 0; 2349 } 2350 2351 /* 2352 * relocate a block tree, and then update pointers in upper level 2353 * blocks that reference the block to point to the new location. 2354 * 2355 * if called by link_to_upper, the block has already been relocated. 2356 * in that case this function just updates pointers. 2357 */ 2358 static int do_relocation(struct btrfs_trans_handle *trans, 2359 struct reloc_control *rc, 2360 struct btrfs_backref_node *node, 2361 struct btrfs_key *key, 2362 struct btrfs_path *path, int lowest) 2363 { 2364 struct btrfs_backref_node *upper; 2365 struct btrfs_backref_edge *edge; 2366 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2367 struct btrfs_root *root; 2368 struct extent_buffer *eb; 2369 u32 blocksize; 2370 u64 bytenr; 2371 int slot; 2372 int ret = 0; 2373 2374 /* 2375 * If we are lowest then this is the first time we're processing this 2376 * block, and thus shouldn't have an eb associated with it yet. 2377 */ 2378 ASSERT(!lowest || !node->eb); 2379 2380 path->lowest_level = node->level + 1; 2381 rc->backref_cache.path[node->level] = node; 2382 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2383 struct btrfs_ref ref = { 0 }; 2384 2385 cond_resched(); 2386 2387 upper = edge->node[UPPER]; 2388 root = select_reloc_root(trans, rc, upper, edges); 2389 if (IS_ERR(root)) { 2390 ret = PTR_ERR(root); 2391 goto next; 2392 } 2393 2394 if (upper->eb && !upper->locked) { 2395 if (!lowest) { 2396 ret = btrfs_bin_search(upper->eb, key, &slot); 2397 if (ret < 0) 2398 goto next; 2399 BUG_ON(ret); 2400 bytenr = btrfs_node_blockptr(upper->eb, slot); 2401 if (node->eb->start == bytenr) 2402 goto next; 2403 } 2404 btrfs_backref_drop_node_buffer(upper); 2405 } 2406 2407 if (!upper->eb) { 2408 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2409 if (ret) { 2410 if (ret > 0) 2411 ret = -ENOENT; 2412 2413 btrfs_release_path(path); 2414 break; 2415 } 2416 2417 if (!upper->eb) { 2418 upper->eb = path->nodes[upper->level]; 2419 path->nodes[upper->level] = NULL; 2420 } else { 2421 BUG_ON(upper->eb != path->nodes[upper->level]); 2422 } 2423 2424 upper->locked = 1; 2425 path->locks[upper->level] = 0; 2426 2427 slot = path->slots[upper->level]; 2428 btrfs_release_path(path); 2429 } else { 2430 ret = btrfs_bin_search(upper->eb, key, &slot); 2431 if (ret < 0) 2432 goto next; 2433 BUG_ON(ret); 2434 } 2435 2436 bytenr = btrfs_node_blockptr(upper->eb, slot); 2437 if (lowest) { 2438 if (bytenr != node->bytenr) { 2439 btrfs_err(root->fs_info, 2440 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2441 bytenr, node->bytenr, slot, 2442 upper->eb->start); 2443 ret = -EIO; 2444 goto next; 2445 } 2446 } else { 2447 if (node->eb->start == bytenr) 2448 goto next; 2449 } 2450 2451 blocksize = root->fs_info->nodesize; 2452 eb = btrfs_read_node_slot(upper->eb, slot); 2453 if (IS_ERR(eb)) { 2454 ret = PTR_ERR(eb); 2455 goto next; 2456 } 2457 btrfs_tree_lock(eb); 2458 2459 if (!node->eb) { 2460 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2461 slot, &eb, BTRFS_NESTING_COW); 2462 btrfs_tree_unlock(eb); 2463 free_extent_buffer(eb); 2464 if (ret < 0) 2465 goto next; 2466 /* 2467 * We've just COWed this block, it should have updated 2468 * the correct backref node entry. 2469 */ 2470 ASSERT(node->eb == eb); 2471 } else { 2472 btrfs_set_node_blockptr(upper->eb, slot, 2473 node->eb->start); 2474 btrfs_set_node_ptr_generation(upper->eb, slot, 2475 trans->transid); 2476 btrfs_mark_buffer_dirty(upper->eb); 2477 2478 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2479 node->eb->start, blocksize, 2480 upper->eb->start); 2481 btrfs_init_tree_ref(&ref, node->level, 2482 btrfs_header_owner(upper->eb), 2483 root->root_key.objectid, false); 2484 ret = btrfs_inc_extent_ref(trans, &ref); 2485 if (!ret) 2486 ret = btrfs_drop_subtree(trans, root, eb, 2487 upper->eb); 2488 if (ret) 2489 btrfs_abort_transaction(trans, ret); 2490 } 2491 next: 2492 if (!upper->pending) 2493 btrfs_backref_drop_node_buffer(upper); 2494 else 2495 btrfs_backref_unlock_node_buffer(upper); 2496 if (ret) 2497 break; 2498 } 2499 2500 if (!ret && node->pending) { 2501 btrfs_backref_drop_node_buffer(node); 2502 list_move_tail(&node->list, &rc->backref_cache.changed); 2503 node->pending = 0; 2504 } 2505 2506 path->lowest_level = 0; 2507 2508 /* 2509 * We should have allocated all of our space in the block rsv and thus 2510 * shouldn't ENOSPC. 2511 */ 2512 ASSERT(ret != -ENOSPC); 2513 return ret; 2514 } 2515 2516 static int link_to_upper(struct btrfs_trans_handle *trans, 2517 struct reloc_control *rc, 2518 struct btrfs_backref_node *node, 2519 struct btrfs_path *path) 2520 { 2521 struct btrfs_key key; 2522 2523 btrfs_node_key_to_cpu(node->eb, &key, 0); 2524 return do_relocation(trans, rc, node, &key, path, 0); 2525 } 2526 2527 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2528 struct reloc_control *rc, 2529 struct btrfs_path *path, int err) 2530 { 2531 LIST_HEAD(list); 2532 struct btrfs_backref_cache *cache = &rc->backref_cache; 2533 struct btrfs_backref_node *node; 2534 int level; 2535 int ret; 2536 2537 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2538 while (!list_empty(&cache->pending[level])) { 2539 node = list_entry(cache->pending[level].next, 2540 struct btrfs_backref_node, list); 2541 list_move_tail(&node->list, &list); 2542 BUG_ON(!node->pending); 2543 2544 if (!err) { 2545 ret = link_to_upper(trans, rc, node, path); 2546 if (ret < 0) 2547 err = ret; 2548 } 2549 } 2550 list_splice_init(&list, &cache->pending[level]); 2551 } 2552 return err; 2553 } 2554 2555 /* 2556 * mark a block and all blocks directly/indirectly reference the block 2557 * as processed. 2558 */ 2559 static void update_processed_blocks(struct reloc_control *rc, 2560 struct btrfs_backref_node *node) 2561 { 2562 struct btrfs_backref_node *next = node; 2563 struct btrfs_backref_edge *edge; 2564 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2565 int index = 0; 2566 2567 while (next) { 2568 cond_resched(); 2569 while (1) { 2570 if (next->processed) 2571 break; 2572 2573 mark_block_processed(rc, next); 2574 2575 if (list_empty(&next->upper)) 2576 break; 2577 2578 edge = list_entry(next->upper.next, 2579 struct btrfs_backref_edge, list[LOWER]); 2580 edges[index++] = edge; 2581 next = edge->node[UPPER]; 2582 } 2583 next = walk_down_backref(edges, &index); 2584 } 2585 } 2586 2587 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2588 { 2589 u32 blocksize = rc->extent_root->fs_info->nodesize; 2590 2591 if (test_range_bit(&rc->processed_blocks, bytenr, 2592 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2593 return 1; 2594 return 0; 2595 } 2596 2597 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2598 struct tree_block *block) 2599 { 2600 struct extent_buffer *eb; 2601 2602 eb = read_tree_block(fs_info, block->bytenr, block->owner, 2603 block->key.offset, block->level, NULL); 2604 if (IS_ERR(eb)) 2605 return PTR_ERR(eb); 2606 if (!extent_buffer_uptodate(eb)) { 2607 free_extent_buffer(eb); 2608 return -EIO; 2609 } 2610 if (block->level == 0) 2611 btrfs_item_key_to_cpu(eb, &block->key, 0); 2612 else 2613 btrfs_node_key_to_cpu(eb, &block->key, 0); 2614 free_extent_buffer(eb); 2615 block->key_ready = 1; 2616 return 0; 2617 } 2618 2619 /* 2620 * helper function to relocate a tree block 2621 */ 2622 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2623 struct reloc_control *rc, 2624 struct btrfs_backref_node *node, 2625 struct btrfs_key *key, 2626 struct btrfs_path *path) 2627 { 2628 struct btrfs_root *root; 2629 int ret = 0; 2630 2631 if (!node) 2632 return 0; 2633 2634 /* 2635 * If we fail here we want to drop our backref_node because we are going 2636 * to start over and regenerate the tree for it. 2637 */ 2638 ret = reserve_metadata_space(trans, rc, node); 2639 if (ret) 2640 goto out; 2641 2642 BUG_ON(node->processed); 2643 root = select_one_root(node); 2644 if (IS_ERR(root)) { 2645 ret = PTR_ERR(root); 2646 2647 /* See explanation in select_one_root for the -EUCLEAN case. */ 2648 ASSERT(ret == -ENOENT); 2649 if (ret == -ENOENT) { 2650 ret = 0; 2651 update_processed_blocks(rc, node); 2652 } 2653 goto out; 2654 } 2655 2656 if (root) { 2657 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2658 /* 2659 * This block was the root block of a root, and this is 2660 * the first time we're processing the block and thus it 2661 * should not have had the ->new_bytenr modified and 2662 * should have not been included on the changed list. 2663 * 2664 * However in the case of corruption we could have 2665 * multiple refs pointing to the same block improperly, 2666 * and thus we would trip over these checks. ASSERT() 2667 * for the developer case, because it could indicate a 2668 * bug in the backref code, however error out for a 2669 * normal user in the case of corruption. 2670 */ 2671 ASSERT(node->new_bytenr == 0); 2672 ASSERT(list_empty(&node->list)); 2673 if (node->new_bytenr || !list_empty(&node->list)) { 2674 btrfs_err(root->fs_info, 2675 "bytenr %llu has improper references to it", 2676 node->bytenr); 2677 ret = -EUCLEAN; 2678 goto out; 2679 } 2680 ret = btrfs_record_root_in_trans(trans, root); 2681 if (ret) 2682 goto out; 2683 /* 2684 * Another thread could have failed, need to check if we 2685 * have reloc_root actually set. 2686 */ 2687 if (!root->reloc_root) { 2688 ret = -ENOENT; 2689 goto out; 2690 } 2691 root = root->reloc_root; 2692 node->new_bytenr = root->node->start; 2693 btrfs_put_root(node->root); 2694 node->root = btrfs_grab_root(root); 2695 ASSERT(node->root); 2696 list_add_tail(&node->list, &rc->backref_cache.changed); 2697 } else { 2698 path->lowest_level = node->level; 2699 if (root == root->fs_info->chunk_root) 2700 btrfs_reserve_chunk_metadata(trans, false); 2701 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2702 btrfs_release_path(path); 2703 if (root == root->fs_info->chunk_root) 2704 btrfs_trans_release_chunk_metadata(trans); 2705 if (ret > 0) 2706 ret = 0; 2707 } 2708 if (!ret) 2709 update_processed_blocks(rc, node); 2710 } else { 2711 ret = do_relocation(trans, rc, node, key, path, 1); 2712 } 2713 out: 2714 if (ret || node->level == 0 || node->cowonly) 2715 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2716 return ret; 2717 } 2718 2719 /* 2720 * relocate a list of blocks 2721 */ 2722 static noinline_for_stack 2723 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2724 struct reloc_control *rc, struct rb_root *blocks) 2725 { 2726 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2727 struct btrfs_backref_node *node; 2728 struct btrfs_path *path; 2729 struct tree_block *block; 2730 struct tree_block *next; 2731 int ret; 2732 int err = 0; 2733 2734 path = btrfs_alloc_path(); 2735 if (!path) { 2736 err = -ENOMEM; 2737 goto out_free_blocks; 2738 } 2739 2740 /* Kick in readahead for tree blocks with missing keys */ 2741 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2742 if (!block->key_ready) 2743 btrfs_readahead_tree_block(fs_info, block->bytenr, 2744 block->owner, 0, 2745 block->level); 2746 } 2747 2748 /* Get first keys */ 2749 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2750 if (!block->key_ready) { 2751 err = get_tree_block_key(fs_info, block); 2752 if (err) 2753 goto out_free_path; 2754 } 2755 } 2756 2757 /* Do tree relocation */ 2758 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2759 node = build_backref_tree(rc, &block->key, 2760 block->level, block->bytenr); 2761 if (IS_ERR(node)) { 2762 err = PTR_ERR(node); 2763 goto out; 2764 } 2765 2766 ret = relocate_tree_block(trans, rc, node, &block->key, 2767 path); 2768 if (ret < 0) { 2769 err = ret; 2770 break; 2771 } 2772 } 2773 out: 2774 err = finish_pending_nodes(trans, rc, path, err); 2775 2776 out_free_path: 2777 btrfs_free_path(path); 2778 out_free_blocks: 2779 free_block_list(blocks); 2780 return err; 2781 } 2782 2783 static noinline_for_stack int prealloc_file_extent_cluster( 2784 struct btrfs_inode *inode, 2785 struct file_extent_cluster *cluster) 2786 { 2787 u64 alloc_hint = 0; 2788 u64 start; 2789 u64 end; 2790 u64 offset = inode->index_cnt; 2791 u64 num_bytes; 2792 int nr; 2793 int ret = 0; 2794 u64 i_size = i_size_read(&inode->vfs_inode); 2795 u64 prealloc_start = cluster->start - offset; 2796 u64 prealloc_end = cluster->end - offset; 2797 u64 cur_offset = prealloc_start; 2798 2799 /* 2800 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2801 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2802 * btrfs_do_readpage() call of previously relocated file cluster. 2803 * 2804 * If the current cluster starts in the above range, btrfs_do_readpage() 2805 * will skip the read, and relocate_one_page() will later writeback 2806 * the padding zeros as new data, causing data corruption. 2807 * 2808 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2809 */ 2810 if (!IS_ALIGNED(i_size, PAGE_SIZE)) { 2811 struct address_space *mapping = inode->vfs_inode.i_mapping; 2812 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2813 const u32 sectorsize = fs_info->sectorsize; 2814 struct page *page; 2815 2816 ASSERT(sectorsize < PAGE_SIZE); 2817 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2818 2819 /* 2820 * Subpage can't handle page with DIRTY but without UPTODATE 2821 * bit as it can lead to the following deadlock: 2822 * 2823 * btrfs_read_folio() 2824 * | Page already *locked* 2825 * |- btrfs_lock_and_flush_ordered_range() 2826 * |- btrfs_start_ordered_extent() 2827 * |- extent_write_cache_pages() 2828 * |- lock_page() 2829 * We try to lock the page we already hold. 2830 * 2831 * Here we just writeback the whole data reloc inode, so that 2832 * we will be ensured to have no dirty range in the page, and 2833 * are safe to clear the uptodate bits. 2834 * 2835 * This shouldn't cause too much overhead, as we need to write 2836 * the data back anyway. 2837 */ 2838 ret = filemap_write_and_wait(mapping); 2839 if (ret < 0) 2840 return ret; 2841 2842 clear_extent_bits(&inode->io_tree, i_size, 2843 round_up(i_size, PAGE_SIZE) - 1, 2844 EXTENT_UPTODATE); 2845 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2846 /* 2847 * If page is freed we don't need to do anything then, as we 2848 * will re-read the whole page anyway. 2849 */ 2850 if (page) { 2851 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2852 round_up(i_size, PAGE_SIZE) - i_size); 2853 unlock_page(page); 2854 put_page(page); 2855 } 2856 } 2857 2858 BUG_ON(cluster->start != cluster->boundary[0]); 2859 ret = btrfs_alloc_data_chunk_ondemand(inode, 2860 prealloc_end + 1 - prealloc_start); 2861 if (ret) 2862 return ret; 2863 2864 btrfs_inode_lock(&inode->vfs_inode, 0); 2865 for (nr = 0; nr < cluster->nr; nr++) { 2866 start = cluster->boundary[nr] - offset; 2867 if (nr + 1 < cluster->nr) 2868 end = cluster->boundary[nr + 1] - 1 - offset; 2869 else 2870 end = cluster->end - offset; 2871 2872 lock_extent(&inode->io_tree, start, end, NULL); 2873 num_bytes = end + 1 - start; 2874 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2875 num_bytes, num_bytes, 2876 end + 1, &alloc_hint); 2877 cur_offset = end + 1; 2878 unlock_extent(&inode->io_tree, start, end, NULL); 2879 if (ret) 2880 break; 2881 } 2882 btrfs_inode_unlock(&inode->vfs_inode, 0); 2883 2884 if (cur_offset < prealloc_end) 2885 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2886 prealloc_end + 1 - cur_offset); 2887 return ret; 2888 } 2889 2890 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2891 u64 start, u64 end, u64 block_start) 2892 { 2893 struct extent_map *em; 2894 int ret = 0; 2895 2896 em = alloc_extent_map(); 2897 if (!em) 2898 return -ENOMEM; 2899 2900 em->start = start; 2901 em->len = end + 1 - start; 2902 em->block_len = em->len; 2903 em->block_start = block_start; 2904 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2905 2906 lock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); 2907 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); 2908 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, NULL); 2909 free_extent_map(em); 2910 2911 return ret; 2912 } 2913 2914 /* 2915 * Allow error injection to test balance/relocation cancellation 2916 */ 2917 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2918 { 2919 return atomic_read(&fs_info->balance_cancel_req) || 2920 atomic_read(&fs_info->reloc_cancel_req) || 2921 fatal_signal_pending(current); 2922 } 2923 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2924 2925 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2926 int cluster_nr) 2927 { 2928 /* Last extent, use cluster end directly */ 2929 if (cluster_nr >= cluster->nr - 1) 2930 return cluster->end; 2931 2932 /* Use next boundary start*/ 2933 return cluster->boundary[cluster_nr + 1] - 1; 2934 } 2935 2936 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2937 struct file_extent_cluster *cluster, 2938 int *cluster_nr, unsigned long page_index) 2939 { 2940 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2941 u64 offset = BTRFS_I(inode)->index_cnt; 2942 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2943 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2944 struct page *page; 2945 u64 page_start; 2946 u64 page_end; 2947 u64 cur; 2948 int ret; 2949 2950 ASSERT(page_index <= last_index); 2951 page = find_lock_page(inode->i_mapping, page_index); 2952 if (!page) { 2953 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2954 page_index, last_index + 1 - page_index); 2955 page = find_or_create_page(inode->i_mapping, page_index, mask); 2956 if (!page) 2957 return -ENOMEM; 2958 } 2959 ret = set_page_extent_mapped(page); 2960 if (ret < 0) 2961 goto release_page; 2962 2963 if (PageReadahead(page)) 2964 page_cache_async_readahead(inode->i_mapping, ra, NULL, 2965 page_folio(page), page_index, 2966 last_index + 1 - page_index); 2967 2968 if (!PageUptodate(page)) { 2969 btrfs_read_folio(NULL, page_folio(page)); 2970 lock_page(page); 2971 if (!PageUptodate(page)) { 2972 ret = -EIO; 2973 goto release_page; 2974 } 2975 } 2976 2977 page_start = page_offset(page); 2978 page_end = page_start + PAGE_SIZE - 1; 2979 2980 /* 2981 * Start from the cluster, as for subpage case, the cluster can start 2982 * inside the page. 2983 */ 2984 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 2985 while (cur <= page_end) { 2986 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 2987 u64 extent_end = get_cluster_boundary_end(cluster, 2988 *cluster_nr) - offset; 2989 u64 clamped_start = max(page_start, extent_start); 2990 u64 clamped_end = min(page_end, extent_end); 2991 u32 clamped_len = clamped_end + 1 - clamped_start; 2992 2993 /* Reserve metadata for this range */ 2994 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2995 clamped_len, clamped_len, 2996 false); 2997 if (ret) 2998 goto release_page; 2999 3000 /* Mark the range delalloc and dirty for later writeback */ 3001 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL); 3002 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3003 clamped_end, 0, NULL); 3004 if (ret) { 3005 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3006 clamped_start, clamped_end, 3007 EXTENT_LOCKED | EXTENT_BOUNDARY); 3008 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3009 clamped_len, true); 3010 btrfs_delalloc_release_extents(BTRFS_I(inode), 3011 clamped_len); 3012 goto release_page; 3013 } 3014 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3015 3016 /* 3017 * Set the boundary if it's inside the page. 3018 * Data relocation requires the destination extents to have the 3019 * same size as the source. 3020 * EXTENT_BOUNDARY bit prevents current extent from being merged 3021 * with previous extent. 3022 */ 3023 if (in_range(cluster->boundary[*cluster_nr] - offset, 3024 page_start, PAGE_SIZE)) { 3025 u64 boundary_start = cluster->boundary[*cluster_nr] - 3026 offset; 3027 u64 boundary_end = boundary_start + 3028 fs_info->sectorsize - 1; 3029 3030 set_extent_bits(&BTRFS_I(inode)->io_tree, 3031 boundary_start, boundary_end, 3032 EXTENT_BOUNDARY); 3033 } 3034 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, NULL); 3035 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3036 cur += clamped_len; 3037 3038 /* Crossed extent end, go to next extent */ 3039 if (cur >= extent_end) { 3040 (*cluster_nr)++; 3041 /* Just finished the last extent of the cluster, exit. */ 3042 if (*cluster_nr >= cluster->nr) 3043 break; 3044 } 3045 } 3046 unlock_page(page); 3047 put_page(page); 3048 3049 balance_dirty_pages_ratelimited(inode->i_mapping); 3050 btrfs_throttle(fs_info); 3051 if (btrfs_should_cancel_balance(fs_info)) 3052 ret = -ECANCELED; 3053 return ret; 3054 3055 release_page: 3056 unlock_page(page); 3057 put_page(page); 3058 return ret; 3059 } 3060 3061 static int relocate_file_extent_cluster(struct inode *inode, 3062 struct file_extent_cluster *cluster) 3063 { 3064 u64 offset = BTRFS_I(inode)->index_cnt; 3065 unsigned long index; 3066 unsigned long last_index; 3067 struct file_ra_state *ra; 3068 int cluster_nr = 0; 3069 int ret = 0; 3070 3071 if (!cluster->nr) 3072 return 0; 3073 3074 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3075 if (!ra) 3076 return -ENOMEM; 3077 3078 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3079 if (ret) 3080 goto out; 3081 3082 file_ra_state_init(ra, inode->i_mapping); 3083 3084 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3085 cluster->end - offset, cluster->start); 3086 if (ret) 3087 goto out; 3088 3089 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3090 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3091 index <= last_index && !ret; index++) 3092 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3093 if (ret == 0) 3094 WARN_ON(cluster_nr != cluster->nr); 3095 out: 3096 kfree(ra); 3097 return ret; 3098 } 3099 3100 static noinline_for_stack 3101 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3102 struct file_extent_cluster *cluster) 3103 { 3104 int ret; 3105 3106 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3107 ret = relocate_file_extent_cluster(inode, cluster); 3108 if (ret) 3109 return ret; 3110 cluster->nr = 0; 3111 } 3112 3113 if (!cluster->nr) 3114 cluster->start = extent_key->objectid; 3115 else 3116 BUG_ON(cluster->nr >= MAX_EXTENTS); 3117 cluster->end = extent_key->objectid + extent_key->offset - 1; 3118 cluster->boundary[cluster->nr] = extent_key->objectid; 3119 cluster->nr++; 3120 3121 if (cluster->nr >= MAX_EXTENTS) { 3122 ret = relocate_file_extent_cluster(inode, cluster); 3123 if (ret) 3124 return ret; 3125 cluster->nr = 0; 3126 } 3127 return 0; 3128 } 3129 3130 /* 3131 * helper to add a tree block to the list. 3132 * the major work is getting the generation and level of the block 3133 */ 3134 static int add_tree_block(struct reloc_control *rc, 3135 struct btrfs_key *extent_key, 3136 struct btrfs_path *path, 3137 struct rb_root *blocks) 3138 { 3139 struct extent_buffer *eb; 3140 struct btrfs_extent_item *ei; 3141 struct btrfs_tree_block_info *bi; 3142 struct tree_block *block; 3143 struct rb_node *rb_node; 3144 u32 item_size; 3145 int level = -1; 3146 u64 generation; 3147 u64 owner = 0; 3148 3149 eb = path->nodes[0]; 3150 item_size = btrfs_item_size(eb, path->slots[0]); 3151 3152 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3153 item_size >= sizeof(*ei) + sizeof(*bi)) { 3154 unsigned long ptr = 0, end; 3155 3156 ei = btrfs_item_ptr(eb, path->slots[0], 3157 struct btrfs_extent_item); 3158 end = (unsigned long)ei + item_size; 3159 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3160 bi = (struct btrfs_tree_block_info *)(ei + 1); 3161 level = btrfs_tree_block_level(eb, bi); 3162 ptr = (unsigned long)(bi + 1); 3163 } else { 3164 level = (int)extent_key->offset; 3165 ptr = (unsigned long)(ei + 1); 3166 } 3167 generation = btrfs_extent_generation(eb, ei); 3168 3169 /* 3170 * We're reading random blocks without knowing their owner ahead 3171 * of time. This is ok most of the time, as all reloc roots and 3172 * fs roots have the same lock type. However normal trees do 3173 * not, and the only way to know ahead of time is to read the 3174 * inline ref offset. We know it's an fs root if 3175 * 3176 * 1. There's more than one ref. 3177 * 2. There's a SHARED_DATA_REF_KEY set. 3178 * 3. FULL_BACKREF is set on the flags. 3179 * 3180 * Otherwise it's safe to assume that the ref offset == the 3181 * owner of this block, so we can use that when calling 3182 * read_tree_block. 3183 */ 3184 if (btrfs_extent_refs(eb, ei) == 1 && 3185 !(btrfs_extent_flags(eb, ei) & 3186 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3187 ptr < end) { 3188 struct btrfs_extent_inline_ref *iref; 3189 int type; 3190 3191 iref = (struct btrfs_extent_inline_ref *)ptr; 3192 type = btrfs_get_extent_inline_ref_type(eb, iref, 3193 BTRFS_REF_TYPE_BLOCK); 3194 if (type == BTRFS_REF_TYPE_INVALID) 3195 return -EINVAL; 3196 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3197 owner = btrfs_extent_inline_ref_offset(eb, iref); 3198 } 3199 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3200 btrfs_print_v0_err(eb->fs_info); 3201 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3202 return -EINVAL; 3203 } else { 3204 BUG(); 3205 } 3206 3207 btrfs_release_path(path); 3208 3209 BUG_ON(level == -1); 3210 3211 block = kmalloc(sizeof(*block), GFP_NOFS); 3212 if (!block) 3213 return -ENOMEM; 3214 3215 block->bytenr = extent_key->objectid; 3216 block->key.objectid = rc->extent_root->fs_info->nodesize; 3217 block->key.offset = generation; 3218 block->level = level; 3219 block->key_ready = 0; 3220 block->owner = owner; 3221 3222 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3223 if (rb_node) 3224 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3225 -EEXIST); 3226 3227 return 0; 3228 } 3229 3230 /* 3231 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3232 */ 3233 static int __add_tree_block(struct reloc_control *rc, 3234 u64 bytenr, u32 blocksize, 3235 struct rb_root *blocks) 3236 { 3237 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3238 struct btrfs_path *path; 3239 struct btrfs_key key; 3240 int ret; 3241 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3242 3243 if (tree_block_processed(bytenr, rc)) 3244 return 0; 3245 3246 if (rb_simple_search(blocks, bytenr)) 3247 return 0; 3248 3249 path = btrfs_alloc_path(); 3250 if (!path) 3251 return -ENOMEM; 3252 again: 3253 key.objectid = bytenr; 3254 if (skinny) { 3255 key.type = BTRFS_METADATA_ITEM_KEY; 3256 key.offset = (u64)-1; 3257 } else { 3258 key.type = BTRFS_EXTENT_ITEM_KEY; 3259 key.offset = blocksize; 3260 } 3261 3262 path->search_commit_root = 1; 3263 path->skip_locking = 1; 3264 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3265 if (ret < 0) 3266 goto out; 3267 3268 if (ret > 0 && skinny) { 3269 if (path->slots[0]) { 3270 path->slots[0]--; 3271 btrfs_item_key_to_cpu(path->nodes[0], &key, 3272 path->slots[0]); 3273 if (key.objectid == bytenr && 3274 (key.type == BTRFS_METADATA_ITEM_KEY || 3275 (key.type == BTRFS_EXTENT_ITEM_KEY && 3276 key.offset == blocksize))) 3277 ret = 0; 3278 } 3279 3280 if (ret) { 3281 skinny = false; 3282 btrfs_release_path(path); 3283 goto again; 3284 } 3285 } 3286 if (ret) { 3287 ASSERT(ret == 1); 3288 btrfs_print_leaf(path->nodes[0]); 3289 btrfs_err(fs_info, 3290 "tree block extent item (%llu) is not found in extent tree", 3291 bytenr); 3292 WARN_ON(1); 3293 ret = -EINVAL; 3294 goto out; 3295 } 3296 3297 ret = add_tree_block(rc, &key, path, blocks); 3298 out: 3299 btrfs_free_path(path); 3300 return ret; 3301 } 3302 3303 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3304 struct btrfs_block_group *block_group, 3305 struct inode *inode, 3306 u64 ino) 3307 { 3308 struct btrfs_root *root = fs_info->tree_root; 3309 struct btrfs_trans_handle *trans; 3310 int ret = 0; 3311 3312 if (inode) 3313 goto truncate; 3314 3315 inode = btrfs_iget(fs_info->sb, ino, root); 3316 if (IS_ERR(inode)) 3317 return -ENOENT; 3318 3319 truncate: 3320 ret = btrfs_check_trunc_cache_free_space(fs_info, 3321 &fs_info->global_block_rsv); 3322 if (ret) 3323 goto out; 3324 3325 trans = btrfs_join_transaction(root); 3326 if (IS_ERR(trans)) { 3327 ret = PTR_ERR(trans); 3328 goto out; 3329 } 3330 3331 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3332 3333 btrfs_end_transaction(trans); 3334 btrfs_btree_balance_dirty(fs_info); 3335 out: 3336 iput(inode); 3337 return ret; 3338 } 3339 3340 /* 3341 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3342 * cache inode, to avoid free space cache data extent blocking data relocation. 3343 */ 3344 static int delete_v1_space_cache(struct extent_buffer *leaf, 3345 struct btrfs_block_group *block_group, 3346 u64 data_bytenr) 3347 { 3348 u64 space_cache_ino; 3349 struct btrfs_file_extent_item *ei; 3350 struct btrfs_key key; 3351 bool found = false; 3352 int i; 3353 int ret; 3354 3355 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3356 return 0; 3357 3358 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3359 u8 type; 3360 3361 btrfs_item_key_to_cpu(leaf, &key, i); 3362 if (key.type != BTRFS_EXTENT_DATA_KEY) 3363 continue; 3364 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3365 type = btrfs_file_extent_type(leaf, ei); 3366 3367 if ((type == BTRFS_FILE_EXTENT_REG || 3368 type == BTRFS_FILE_EXTENT_PREALLOC) && 3369 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3370 found = true; 3371 space_cache_ino = key.objectid; 3372 break; 3373 } 3374 } 3375 if (!found) 3376 return -ENOENT; 3377 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3378 space_cache_ino); 3379 return ret; 3380 } 3381 3382 /* 3383 * helper to find all tree blocks that reference a given data extent 3384 */ 3385 static noinline_for_stack 3386 int add_data_references(struct reloc_control *rc, 3387 struct btrfs_key *extent_key, 3388 struct btrfs_path *path, 3389 struct rb_root *blocks) 3390 { 3391 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3392 struct ulist *leaves = NULL; 3393 struct ulist_iterator leaf_uiter; 3394 struct ulist_node *ref_node = NULL; 3395 const u32 blocksize = fs_info->nodesize; 3396 int ret = 0; 3397 3398 btrfs_release_path(path); 3399 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3400 0, &leaves, NULL, true); 3401 if (ret < 0) 3402 return ret; 3403 3404 ULIST_ITER_INIT(&leaf_uiter); 3405 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3406 struct extent_buffer *eb; 3407 3408 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3409 if (IS_ERR(eb)) { 3410 ret = PTR_ERR(eb); 3411 break; 3412 } 3413 ret = delete_v1_space_cache(eb, rc->block_group, 3414 extent_key->objectid); 3415 free_extent_buffer(eb); 3416 if (ret < 0) 3417 break; 3418 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3419 if (ret < 0) 3420 break; 3421 } 3422 if (ret < 0) 3423 free_block_list(blocks); 3424 ulist_free(leaves); 3425 return ret; 3426 } 3427 3428 /* 3429 * helper to find next unprocessed extent 3430 */ 3431 static noinline_for_stack 3432 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3433 struct btrfs_key *extent_key) 3434 { 3435 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3436 struct btrfs_key key; 3437 struct extent_buffer *leaf; 3438 u64 start, end, last; 3439 int ret; 3440 3441 last = rc->block_group->start + rc->block_group->length; 3442 while (1) { 3443 cond_resched(); 3444 if (rc->search_start >= last) { 3445 ret = 1; 3446 break; 3447 } 3448 3449 key.objectid = rc->search_start; 3450 key.type = BTRFS_EXTENT_ITEM_KEY; 3451 key.offset = 0; 3452 3453 path->search_commit_root = 1; 3454 path->skip_locking = 1; 3455 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3456 0, 0); 3457 if (ret < 0) 3458 break; 3459 next: 3460 leaf = path->nodes[0]; 3461 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3462 ret = btrfs_next_leaf(rc->extent_root, path); 3463 if (ret != 0) 3464 break; 3465 leaf = path->nodes[0]; 3466 } 3467 3468 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3469 if (key.objectid >= last) { 3470 ret = 1; 3471 break; 3472 } 3473 3474 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3475 key.type != BTRFS_METADATA_ITEM_KEY) { 3476 path->slots[0]++; 3477 goto next; 3478 } 3479 3480 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3481 key.objectid + key.offset <= rc->search_start) { 3482 path->slots[0]++; 3483 goto next; 3484 } 3485 3486 if (key.type == BTRFS_METADATA_ITEM_KEY && 3487 key.objectid + fs_info->nodesize <= 3488 rc->search_start) { 3489 path->slots[0]++; 3490 goto next; 3491 } 3492 3493 ret = find_first_extent_bit(&rc->processed_blocks, 3494 key.objectid, &start, &end, 3495 EXTENT_DIRTY, NULL); 3496 3497 if (ret == 0 && start <= key.objectid) { 3498 btrfs_release_path(path); 3499 rc->search_start = end + 1; 3500 } else { 3501 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3502 rc->search_start = key.objectid + key.offset; 3503 else 3504 rc->search_start = key.objectid + 3505 fs_info->nodesize; 3506 memcpy(extent_key, &key, sizeof(key)); 3507 return 0; 3508 } 3509 } 3510 btrfs_release_path(path); 3511 return ret; 3512 } 3513 3514 static void set_reloc_control(struct reloc_control *rc) 3515 { 3516 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3517 3518 mutex_lock(&fs_info->reloc_mutex); 3519 fs_info->reloc_ctl = rc; 3520 mutex_unlock(&fs_info->reloc_mutex); 3521 } 3522 3523 static void unset_reloc_control(struct reloc_control *rc) 3524 { 3525 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3526 3527 mutex_lock(&fs_info->reloc_mutex); 3528 fs_info->reloc_ctl = NULL; 3529 mutex_unlock(&fs_info->reloc_mutex); 3530 } 3531 3532 static noinline_for_stack 3533 int prepare_to_relocate(struct reloc_control *rc) 3534 { 3535 struct btrfs_trans_handle *trans; 3536 int ret; 3537 3538 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3539 BTRFS_BLOCK_RSV_TEMP); 3540 if (!rc->block_rsv) 3541 return -ENOMEM; 3542 3543 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3544 rc->search_start = rc->block_group->start; 3545 rc->extents_found = 0; 3546 rc->nodes_relocated = 0; 3547 rc->merging_rsv_size = 0; 3548 rc->reserved_bytes = 0; 3549 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3550 RELOCATION_RESERVED_NODES; 3551 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3552 rc->block_rsv, rc->block_rsv->size, 3553 BTRFS_RESERVE_FLUSH_ALL); 3554 if (ret) 3555 return ret; 3556 3557 rc->create_reloc_tree = 1; 3558 set_reloc_control(rc); 3559 3560 trans = btrfs_join_transaction(rc->extent_root); 3561 if (IS_ERR(trans)) { 3562 unset_reloc_control(rc); 3563 /* 3564 * extent tree is not a ref_cow tree and has no reloc_root to 3565 * cleanup. And callers are responsible to free the above 3566 * block rsv. 3567 */ 3568 return PTR_ERR(trans); 3569 } 3570 3571 ret = btrfs_commit_transaction(trans); 3572 if (ret) 3573 unset_reloc_control(rc); 3574 3575 return ret; 3576 } 3577 3578 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3579 { 3580 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3581 struct rb_root blocks = RB_ROOT; 3582 struct btrfs_key key; 3583 struct btrfs_trans_handle *trans = NULL; 3584 struct btrfs_path *path; 3585 struct btrfs_extent_item *ei; 3586 u64 flags; 3587 int ret; 3588 int err = 0; 3589 int progress = 0; 3590 3591 path = btrfs_alloc_path(); 3592 if (!path) 3593 return -ENOMEM; 3594 path->reada = READA_FORWARD; 3595 3596 ret = prepare_to_relocate(rc); 3597 if (ret) { 3598 err = ret; 3599 goto out_free; 3600 } 3601 3602 while (1) { 3603 rc->reserved_bytes = 0; 3604 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3605 rc->block_rsv->size, 3606 BTRFS_RESERVE_FLUSH_ALL); 3607 if (ret) { 3608 err = ret; 3609 break; 3610 } 3611 progress++; 3612 trans = btrfs_start_transaction(rc->extent_root, 0); 3613 if (IS_ERR(trans)) { 3614 err = PTR_ERR(trans); 3615 trans = NULL; 3616 break; 3617 } 3618 restart: 3619 if (update_backref_cache(trans, &rc->backref_cache)) { 3620 btrfs_end_transaction(trans); 3621 trans = NULL; 3622 continue; 3623 } 3624 3625 ret = find_next_extent(rc, path, &key); 3626 if (ret < 0) 3627 err = ret; 3628 if (ret != 0) 3629 break; 3630 3631 rc->extents_found++; 3632 3633 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3634 struct btrfs_extent_item); 3635 flags = btrfs_extent_flags(path->nodes[0], ei); 3636 3637 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3638 ret = add_tree_block(rc, &key, path, &blocks); 3639 } else if (rc->stage == UPDATE_DATA_PTRS && 3640 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3641 ret = add_data_references(rc, &key, path, &blocks); 3642 } else { 3643 btrfs_release_path(path); 3644 ret = 0; 3645 } 3646 if (ret < 0) { 3647 err = ret; 3648 break; 3649 } 3650 3651 if (!RB_EMPTY_ROOT(&blocks)) { 3652 ret = relocate_tree_blocks(trans, rc, &blocks); 3653 if (ret < 0) { 3654 if (ret != -EAGAIN) { 3655 err = ret; 3656 break; 3657 } 3658 rc->extents_found--; 3659 rc->search_start = key.objectid; 3660 } 3661 } 3662 3663 btrfs_end_transaction_throttle(trans); 3664 btrfs_btree_balance_dirty(fs_info); 3665 trans = NULL; 3666 3667 if (rc->stage == MOVE_DATA_EXTENTS && 3668 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3669 rc->found_file_extent = 1; 3670 ret = relocate_data_extent(rc->data_inode, 3671 &key, &rc->cluster); 3672 if (ret < 0) { 3673 err = ret; 3674 break; 3675 } 3676 } 3677 if (btrfs_should_cancel_balance(fs_info)) { 3678 err = -ECANCELED; 3679 break; 3680 } 3681 } 3682 if (trans && progress && err == -ENOSPC) { 3683 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3684 if (ret == 1) { 3685 err = 0; 3686 progress = 0; 3687 goto restart; 3688 } 3689 } 3690 3691 btrfs_release_path(path); 3692 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3693 3694 if (trans) { 3695 btrfs_end_transaction_throttle(trans); 3696 btrfs_btree_balance_dirty(fs_info); 3697 } 3698 3699 if (!err) { 3700 ret = relocate_file_extent_cluster(rc->data_inode, 3701 &rc->cluster); 3702 if (ret < 0) 3703 err = ret; 3704 } 3705 3706 rc->create_reloc_tree = 0; 3707 set_reloc_control(rc); 3708 3709 btrfs_backref_release_cache(&rc->backref_cache); 3710 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3711 3712 /* 3713 * Even in the case when the relocation is cancelled, we should all go 3714 * through prepare_to_merge() and merge_reloc_roots(). 3715 * 3716 * For error (including cancelled balance), prepare_to_merge() will 3717 * mark all reloc trees orphan, then queue them for cleanup in 3718 * merge_reloc_roots() 3719 */ 3720 err = prepare_to_merge(rc, err); 3721 3722 merge_reloc_roots(rc); 3723 3724 rc->merge_reloc_tree = 0; 3725 unset_reloc_control(rc); 3726 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3727 3728 /* get rid of pinned extents */ 3729 trans = btrfs_join_transaction(rc->extent_root); 3730 if (IS_ERR(trans)) { 3731 err = PTR_ERR(trans); 3732 goto out_free; 3733 } 3734 ret = btrfs_commit_transaction(trans); 3735 if (ret && !err) 3736 err = ret; 3737 out_free: 3738 ret = clean_dirty_subvols(rc); 3739 if (ret < 0 && !err) 3740 err = ret; 3741 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3742 btrfs_free_path(path); 3743 return err; 3744 } 3745 3746 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3747 struct btrfs_root *root, u64 objectid) 3748 { 3749 struct btrfs_path *path; 3750 struct btrfs_inode_item *item; 3751 struct extent_buffer *leaf; 3752 int ret; 3753 3754 path = btrfs_alloc_path(); 3755 if (!path) 3756 return -ENOMEM; 3757 3758 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3759 if (ret) 3760 goto out; 3761 3762 leaf = path->nodes[0]; 3763 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3764 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3765 btrfs_set_inode_generation(leaf, item, 1); 3766 btrfs_set_inode_size(leaf, item, 0); 3767 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3768 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3769 BTRFS_INODE_PREALLOC); 3770 btrfs_mark_buffer_dirty(leaf); 3771 out: 3772 btrfs_free_path(path); 3773 return ret; 3774 } 3775 3776 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3777 struct btrfs_root *root, u64 objectid) 3778 { 3779 struct btrfs_path *path; 3780 struct btrfs_key key; 3781 int ret = 0; 3782 3783 path = btrfs_alloc_path(); 3784 if (!path) { 3785 ret = -ENOMEM; 3786 goto out; 3787 } 3788 3789 key.objectid = objectid; 3790 key.type = BTRFS_INODE_ITEM_KEY; 3791 key.offset = 0; 3792 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3793 if (ret) { 3794 if (ret > 0) 3795 ret = -ENOENT; 3796 goto out; 3797 } 3798 ret = btrfs_del_item(trans, root, path); 3799 out: 3800 if (ret) 3801 btrfs_abort_transaction(trans, ret); 3802 btrfs_free_path(path); 3803 } 3804 3805 /* 3806 * helper to create inode for data relocation. 3807 * the inode is in data relocation tree and its link count is 0 3808 */ 3809 static noinline_for_stack 3810 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3811 struct btrfs_block_group *group) 3812 { 3813 struct inode *inode = NULL; 3814 struct btrfs_trans_handle *trans; 3815 struct btrfs_root *root; 3816 u64 objectid; 3817 int err = 0; 3818 3819 root = btrfs_grab_root(fs_info->data_reloc_root); 3820 trans = btrfs_start_transaction(root, 6); 3821 if (IS_ERR(trans)) { 3822 btrfs_put_root(root); 3823 return ERR_CAST(trans); 3824 } 3825 3826 err = btrfs_get_free_objectid(root, &objectid); 3827 if (err) 3828 goto out; 3829 3830 err = __insert_orphan_inode(trans, root, objectid); 3831 if (err) 3832 goto out; 3833 3834 inode = btrfs_iget(fs_info->sb, objectid, root); 3835 if (IS_ERR(inode)) { 3836 delete_orphan_inode(trans, root, objectid); 3837 err = PTR_ERR(inode); 3838 inode = NULL; 3839 goto out; 3840 } 3841 BTRFS_I(inode)->index_cnt = group->start; 3842 3843 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3844 out: 3845 btrfs_put_root(root); 3846 btrfs_end_transaction(trans); 3847 btrfs_btree_balance_dirty(fs_info); 3848 if (err) { 3849 iput(inode); 3850 inode = ERR_PTR(err); 3851 } 3852 return inode; 3853 } 3854 3855 /* 3856 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3857 * has been requested meanwhile and don't start in that case. 3858 * 3859 * Return: 3860 * 0 success 3861 * -EINPROGRESS operation is already in progress, that's probably a bug 3862 * -ECANCELED cancellation request was set before the operation started 3863 */ 3864 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3865 { 3866 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3867 /* This should not happen */ 3868 btrfs_err(fs_info, "reloc already running, cannot start"); 3869 return -EINPROGRESS; 3870 } 3871 3872 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3873 btrfs_info(fs_info, "chunk relocation canceled on start"); 3874 /* 3875 * On cancel, clear all requests but let the caller mark 3876 * the end after cleanup operations. 3877 */ 3878 atomic_set(&fs_info->reloc_cancel_req, 0); 3879 return -ECANCELED; 3880 } 3881 return 0; 3882 } 3883 3884 /* 3885 * Mark end of chunk relocation that is cancellable and wake any waiters. 3886 */ 3887 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3888 { 3889 /* Requested after start, clear bit first so any waiters can continue */ 3890 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3891 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3892 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3893 atomic_set(&fs_info->reloc_cancel_req, 0); 3894 } 3895 3896 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3897 { 3898 struct reloc_control *rc; 3899 3900 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3901 if (!rc) 3902 return NULL; 3903 3904 INIT_LIST_HEAD(&rc->reloc_roots); 3905 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3906 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3907 mapping_tree_init(&rc->reloc_root_tree); 3908 extent_io_tree_init(fs_info, &rc->processed_blocks, 3909 IO_TREE_RELOC_BLOCKS, NULL); 3910 return rc; 3911 } 3912 3913 static void free_reloc_control(struct reloc_control *rc) 3914 { 3915 struct mapping_node *node, *tmp; 3916 3917 free_reloc_roots(&rc->reloc_roots); 3918 rbtree_postorder_for_each_entry_safe(node, tmp, 3919 &rc->reloc_root_tree.rb_root, rb_node) 3920 kfree(node); 3921 3922 kfree(rc); 3923 } 3924 3925 /* 3926 * Print the block group being relocated 3927 */ 3928 static void describe_relocation(struct btrfs_fs_info *fs_info, 3929 struct btrfs_block_group *block_group) 3930 { 3931 char buf[128] = {'\0'}; 3932 3933 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3934 3935 btrfs_info(fs_info, 3936 "relocating block group %llu flags %s", 3937 block_group->start, buf); 3938 } 3939 3940 static const char *stage_to_string(int stage) 3941 { 3942 if (stage == MOVE_DATA_EXTENTS) 3943 return "move data extents"; 3944 if (stage == UPDATE_DATA_PTRS) 3945 return "update data pointers"; 3946 return "unknown"; 3947 } 3948 3949 /* 3950 * function to relocate all extents in a block group. 3951 */ 3952 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3953 { 3954 struct btrfs_block_group *bg; 3955 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 3956 struct reloc_control *rc; 3957 struct inode *inode; 3958 struct btrfs_path *path; 3959 int ret; 3960 int rw = 0; 3961 int err = 0; 3962 3963 /* 3964 * This only gets set if we had a half-deleted snapshot on mount. We 3965 * cannot allow relocation to start while we're still trying to clean up 3966 * these pending deletions. 3967 */ 3968 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 3969 if (ret) 3970 return ret; 3971 3972 /* We may have been woken up by close_ctree, so bail if we're closing. */ 3973 if (btrfs_fs_closing(fs_info)) 3974 return -EINTR; 3975 3976 bg = btrfs_lookup_block_group(fs_info, group_start); 3977 if (!bg) 3978 return -ENOENT; 3979 3980 /* 3981 * Relocation of a data block group creates ordered extents. Without 3982 * sb_start_write(), we can freeze the filesystem while unfinished 3983 * ordered extents are left. Such ordered extents can cause a deadlock 3984 * e.g. when syncfs() is waiting for their completion but they can't 3985 * finish because they block when joining a transaction, due to the 3986 * fact that the freeze locks are being held in write mode. 3987 */ 3988 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 3989 ASSERT(sb_write_started(fs_info->sb)); 3990 3991 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3992 btrfs_put_block_group(bg); 3993 return -ETXTBSY; 3994 } 3995 3996 rc = alloc_reloc_control(fs_info); 3997 if (!rc) { 3998 btrfs_put_block_group(bg); 3999 return -ENOMEM; 4000 } 4001 4002 ret = reloc_chunk_start(fs_info); 4003 if (ret < 0) { 4004 err = ret; 4005 goto out_put_bg; 4006 } 4007 4008 rc->extent_root = extent_root; 4009 rc->block_group = bg; 4010 4011 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4012 if (ret) { 4013 err = ret; 4014 goto out; 4015 } 4016 rw = 1; 4017 4018 path = btrfs_alloc_path(); 4019 if (!path) { 4020 err = -ENOMEM; 4021 goto out; 4022 } 4023 4024 inode = lookup_free_space_inode(rc->block_group, path); 4025 btrfs_free_path(path); 4026 4027 if (!IS_ERR(inode)) 4028 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4029 else 4030 ret = PTR_ERR(inode); 4031 4032 if (ret && ret != -ENOENT) { 4033 err = ret; 4034 goto out; 4035 } 4036 4037 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4038 if (IS_ERR(rc->data_inode)) { 4039 err = PTR_ERR(rc->data_inode); 4040 rc->data_inode = NULL; 4041 goto out; 4042 } 4043 4044 describe_relocation(fs_info, rc->block_group); 4045 4046 btrfs_wait_block_group_reservations(rc->block_group); 4047 btrfs_wait_nocow_writers(rc->block_group); 4048 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4049 rc->block_group->start, 4050 rc->block_group->length); 4051 4052 ret = btrfs_zone_finish(rc->block_group); 4053 WARN_ON(ret && ret != -EAGAIN); 4054 4055 while (1) { 4056 int finishes_stage; 4057 4058 mutex_lock(&fs_info->cleaner_mutex); 4059 ret = relocate_block_group(rc); 4060 mutex_unlock(&fs_info->cleaner_mutex); 4061 if (ret < 0) 4062 err = ret; 4063 4064 finishes_stage = rc->stage; 4065 /* 4066 * We may have gotten ENOSPC after we already dirtied some 4067 * extents. If writeout happens while we're relocating a 4068 * different block group we could end up hitting the 4069 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4070 * btrfs_reloc_cow_block. Make sure we write everything out 4071 * properly so we don't trip over this problem, and then break 4072 * out of the loop if we hit an error. 4073 */ 4074 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4075 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4076 (u64)-1); 4077 if (ret) 4078 err = ret; 4079 invalidate_mapping_pages(rc->data_inode->i_mapping, 4080 0, -1); 4081 rc->stage = UPDATE_DATA_PTRS; 4082 } 4083 4084 if (err < 0) 4085 goto out; 4086 4087 if (rc->extents_found == 0) 4088 break; 4089 4090 btrfs_info(fs_info, "found %llu extents, stage: %s", 4091 rc->extents_found, stage_to_string(finishes_stage)); 4092 } 4093 4094 WARN_ON(rc->block_group->pinned > 0); 4095 WARN_ON(rc->block_group->reserved > 0); 4096 WARN_ON(rc->block_group->used > 0); 4097 out: 4098 if (err && rw) 4099 btrfs_dec_block_group_ro(rc->block_group); 4100 iput(rc->data_inode); 4101 out_put_bg: 4102 btrfs_put_block_group(bg); 4103 reloc_chunk_end(fs_info); 4104 free_reloc_control(rc); 4105 return err; 4106 } 4107 4108 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4109 { 4110 struct btrfs_fs_info *fs_info = root->fs_info; 4111 struct btrfs_trans_handle *trans; 4112 int ret, err; 4113 4114 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4115 if (IS_ERR(trans)) 4116 return PTR_ERR(trans); 4117 4118 memset(&root->root_item.drop_progress, 0, 4119 sizeof(root->root_item.drop_progress)); 4120 btrfs_set_root_drop_level(&root->root_item, 0); 4121 btrfs_set_root_refs(&root->root_item, 0); 4122 ret = btrfs_update_root(trans, fs_info->tree_root, 4123 &root->root_key, &root->root_item); 4124 4125 err = btrfs_end_transaction(trans); 4126 if (err) 4127 return err; 4128 return ret; 4129 } 4130 4131 /* 4132 * recover relocation interrupted by system crash. 4133 * 4134 * this function resumes merging reloc trees with corresponding fs trees. 4135 * this is important for keeping the sharing of tree blocks 4136 */ 4137 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4138 { 4139 LIST_HEAD(reloc_roots); 4140 struct btrfs_key key; 4141 struct btrfs_root *fs_root; 4142 struct btrfs_root *reloc_root; 4143 struct btrfs_path *path; 4144 struct extent_buffer *leaf; 4145 struct reloc_control *rc = NULL; 4146 struct btrfs_trans_handle *trans; 4147 int ret; 4148 int err = 0; 4149 4150 path = btrfs_alloc_path(); 4151 if (!path) 4152 return -ENOMEM; 4153 path->reada = READA_BACK; 4154 4155 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4156 key.type = BTRFS_ROOT_ITEM_KEY; 4157 key.offset = (u64)-1; 4158 4159 while (1) { 4160 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4161 path, 0, 0); 4162 if (ret < 0) { 4163 err = ret; 4164 goto out; 4165 } 4166 if (ret > 0) { 4167 if (path->slots[0] == 0) 4168 break; 4169 path->slots[0]--; 4170 } 4171 leaf = path->nodes[0]; 4172 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4173 btrfs_release_path(path); 4174 4175 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4176 key.type != BTRFS_ROOT_ITEM_KEY) 4177 break; 4178 4179 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4180 if (IS_ERR(reloc_root)) { 4181 err = PTR_ERR(reloc_root); 4182 goto out; 4183 } 4184 4185 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4186 list_add(&reloc_root->root_list, &reloc_roots); 4187 4188 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4189 fs_root = btrfs_get_fs_root(fs_info, 4190 reloc_root->root_key.offset, false); 4191 if (IS_ERR(fs_root)) { 4192 ret = PTR_ERR(fs_root); 4193 if (ret != -ENOENT) { 4194 err = ret; 4195 goto out; 4196 } 4197 ret = mark_garbage_root(reloc_root); 4198 if (ret < 0) { 4199 err = ret; 4200 goto out; 4201 } 4202 } else { 4203 btrfs_put_root(fs_root); 4204 } 4205 } 4206 4207 if (key.offset == 0) 4208 break; 4209 4210 key.offset--; 4211 } 4212 btrfs_release_path(path); 4213 4214 if (list_empty(&reloc_roots)) 4215 goto out; 4216 4217 rc = alloc_reloc_control(fs_info); 4218 if (!rc) { 4219 err = -ENOMEM; 4220 goto out; 4221 } 4222 4223 ret = reloc_chunk_start(fs_info); 4224 if (ret < 0) { 4225 err = ret; 4226 goto out_end; 4227 } 4228 4229 rc->extent_root = btrfs_extent_root(fs_info, 0); 4230 4231 set_reloc_control(rc); 4232 4233 trans = btrfs_join_transaction(rc->extent_root); 4234 if (IS_ERR(trans)) { 4235 err = PTR_ERR(trans); 4236 goto out_unset; 4237 } 4238 4239 rc->merge_reloc_tree = 1; 4240 4241 while (!list_empty(&reloc_roots)) { 4242 reloc_root = list_entry(reloc_roots.next, 4243 struct btrfs_root, root_list); 4244 list_del(&reloc_root->root_list); 4245 4246 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4247 list_add_tail(&reloc_root->root_list, 4248 &rc->reloc_roots); 4249 continue; 4250 } 4251 4252 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4253 false); 4254 if (IS_ERR(fs_root)) { 4255 err = PTR_ERR(fs_root); 4256 list_add_tail(&reloc_root->root_list, &reloc_roots); 4257 btrfs_end_transaction(trans); 4258 goto out_unset; 4259 } 4260 4261 err = __add_reloc_root(reloc_root); 4262 ASSERT(err != -EEXIST); 4263 if (err) { 4264 list_add_tail(&reloc_root->root_list, &reloc_roots); 4265 btrfs_put_root(fs_root); 4266 btrfs_end_transaction(trans); 4267 goto out_unset; 4268 } 4269 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4270 btrfs_put_root(fs_root); 4271 } 4272 4273 err = btrfs_commit_transaction(trans); 4274 if (err) 4275 goto out_unset; 4276 4277 merge_reloc_roots(rc); 4278 4279 unset_reloc_control(rc); 4280 4281 trans = btrfs_join_transaction(rc->extent_root); 4282 if (IS_ERR(trans)) { 4283 err = PTR_ERR(trans); 4284 goto out_clean; 4285 } 4286 err = btrfs_commit_transaction(trans); 4287 out_clean: 4288 ret = clean_dirty_subvols(rc); 4289 if (ret < 0 && !err) 4290 err = ret; 4291 out_unset: 4292 unset_reloc_control(rc); 4293 out_end: 4294 reloc_chunk_end(fs_info); 4295 free_reloc_control(rc); 4296 out: 4297 free_reloc_roots(&reloc_roots); 4298 4299 btrfs_free_path(path); 4300 4301 if (err == 0) { 4302 /* cleanup orphan inode in data relocation tree */ 4303 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4304 ASSERT(fs_root); 4305 err = btrfs_orphan_cleanup(fs_root); 4306 btrfs_put_root(fs_root); 4307 } 4308 return err; 4309 } 4310 4311 /* 4312 * helper to add ordered checksum for data relocation. 4313 * 4314 * cloning checksum properly handles the nodatasum extents. 4315 * it also saves CPU time to re-calculate the checksum. 4316 */ 4317 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 4318 { 4319 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4320 struct btrfs_root *csum_root; 4321 struct btrfs_ordered_sum *sums; 4322 struct btrfs_ordered_extent *ordered; 4323 int ret; 4324 u64 disk_bytenr; 4325 u64 new_bytenr; 4326 LIST_HEAD(list); 4327 4328 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4329 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4330 4331 disk_bytenr = file_pos + inode->index_cnt; 4332 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4333 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr, 4334 disk_bytenr + len - 1, &list, 0, false); 4335 if (ret) 4336 goto out; 4337 4338 while (!list_empty(&list)) { 4339 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4340 list_del_init(&sums->list); 4341 4342 /* 4343 * We need to offset the new_bytenr based on where the csum is. 4344 * We need to do this because we will read in entire prealloc 4345 * extents but we may have written to say the middle of the 4346 * prealloc extent, so we need to make sure the csum goes with 4347 * the right disk offset. 4348 * 4349 * We can do this because the data reloc inode refers strictly 4350 * to the on disk bytes, so we don't have to worry about 4351 * disk_len vs real len like with real inodes since it's all 4352 * disk length. 4353 */ 4354 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4355 sums->bytenr = new_bytenr; 4356 4357 btrfs_add_ordered_sum(ordered, sums); 4358 } 4359 out: 4360 btrfs_put_ordered_extent(ordered); 4361 return ret; 4362 } 4363 4364 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4365 struct btrfs_root *root, struct extent_buffer *buf, 4366 struct extent_buffer *cow) 4367 { 4368 struct btrfs_fs_info *fs_info = root->fs_info; 4369 struct reloc_control *rc; 4370 struct btrfs_backref_node *node; 4371 int first_cow = 0; 4372 int level; 4373 int ret = 0; 4374 4375 rc = fs_info->reloc_ctl; 4376 if (!rc) 4377 return 0; 4378 4379 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4380 4381 level = btrfs_header_level(buf); 4382 if (btrfs_header_generation(buf) <= 4383 btrfs_root_last_snapshot(&root->root_item)) 4384 first_cow = 1; 4385 4386 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4387 rc->create_reloc_tree) { 4388 WARN_ON(!first_cow && level == 0); 4389 4390 node = rc->backref_cache.path[level]; 4391 BUG_ON(node->bytenr != buf->start && 4392 node->new_bytenr != buf->start); 4393 4394 btrfs_backref_drop_node_buffer(node); 4395 atomic_inc(&cow->refs); 4396 node->eb = cow; 4397 node->new_bytenr = cow->start; 4398 4399 if (!node->pending) { 4400 list_move_tail(&node->list, 4401 &rc->backref_cache.pending[level]); 4402 node->pending = 1; 4403 } 4404 4405 if (first_cow) 4406 mark_block_processed(rc, node); 4407 4408 if (first_cow && level > 0) 4409 rc->nodes_relocated += buf->len; 4410 } 4411 4412 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4413 ret = replace_file_extents(trans, rc, root, cow); 4414 return ret; 4415 } 4416 4417 /* 4418 * called before creating snapshot. it calculates metadata reservation 4419 * required for relocating tree blocks in the snapshot 4420 */ 4421 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4422 u64 *bytes_to_reserve) 4423 { 4424 struct btrfs_root *root = pending->root; 4425 struct reloc_control *rc = root->fs_info->reloc_ctl; 4426 4427 if (!rc || !have_reloc_root(root)) 4428 return; 4429 4430 if (!rc->merge_reloc_tree) 4431 return; 4432 4433 root = root->reloc_root; 4434 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4435 /* 4436 * relocation is in the stage of merging trees. the space 4437 * used by merging a reloc tree is twice the size of 4438 * relocated tree nodes in the worst case. half for cowing 4439 * the reloc tree, half for cowing the fs tree. the space 4440 * used by cowing the reloc tree will be freed after the 4441 * tree is dropped. if we create snapshot, cowing the fs 4442 * tree may use more space than it frees. so we need 4443 * reserve extra space. 4444 */ 4445 *bytes_to_reserve += rc->nodes_relocated; 4446 } 4447 4448 /* 4449 * called after snapshot is created. migrate block reservation 4450 * and create reloc root for the newly created snapshot 4451 * 4452 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4453 * references held on the reloc_root, one for root->reloc_root and one for 4454 * rc->reloc_roots. 4455 */ 4456 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4457 struct btrfs_pending_snapshot *pending) 4458 { 4459 struct btrfs_root *root = pending->root; 4460 struct btrfs_root *reloc_root; 4461 struct btrfs_root *new_root; 4462 struct reloc_control *rc = root->fs_info->reloc_ctl; 4463 int ret; 4464 4465 if (!rc || !have_reloc_root(root)) 4466 return 0; 4467 4468 rc = root->fs_info->reloc_ctl; 4469 rc->merging_rsv_size += rc->nodes_relocated; 4470 4471 if (rc->merge_reloc_tree) { 4472 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4473 rc->block_rsv, 4474 rc->nodes_relocated, true); 4475 if (ret) 4476 return ret; 4477 } 4478 4479 new_root = pending->snap; 4480 reloc_root = create_reloc_root(trans, root->reloc_root, 4481 new_root->root_key.objectid); 4482 if (IS_ERR(reloc_root)) 4483 return PTR_ERR(reloc_root); 4484 4485 ret = __add_reloc_root(reloc_root); 4486 ASSERT(ret != -EEXIST); 4487 if (ret) { 4488 /* Pairs with create_reloc_root */ 4489 btrfs_put_root(reloc_root); 4490 return ret; 4491 } 4492 new_root->reloc_root = btrfs_grab_root(reloc_root); 4493 4494 if (rc->create_reloc_tree) 4495 ret = clone_backref_node(trans, rc, root, reloc_root); 4496 return ret; 4497 } 4498