xref: /openbmc/linux/fs/btrfs/relocation.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 #include "qgroup.h"
35 #include "print-tree.h"
36 
37 /*
38  * backref_node, mapping_node and tree_block start with this
39  */
40 struct tree_entry {
41 	struct rb_node rb_node;
42 	u64 bytenr;
43 };
44 
45 /*
46  * present a tree block in the backref cache
47  */
48 struct backref_node {
49 	struct rb_node rb_node;
50 	u64 bytenr;
51 
52 	u64 new_bytenr;
53 	/* objectid of tree block owner, can be not uptodate */
54 	u64 owner;
55 	/* link to pending, changed or detached list */
56 	struct list_head list;
57 	/* list of upper level blocks reference this block */
58 	struct list_head upper;
59 	/* list of child blocks in the cache */
60 	struct list_head lower;
61 	/* NULL if this node is not tree root */
62 	struct btrfs_root *root;
63 	/* extent buffer got by COW the block */
64 	struct extent_buffer *eb;
65 	/* level of tree block */
66 	unsigned int level:8;
67 	/* is the block in non-reference counted tree */
68 	unsigned int cowonly:1;
69 	/* 1 if no child node in the cache */
70 	unsigned int lowest:1;
71 	/* is the extent buffer locked */
72 	unsigned int locked:1;
73 	/* has the block been processed */
74 	unsigned int processed:1;
75 	/* have backrefs of this block been checked */
76 	unsigned int checked:1;
77 	/*
78 	 * 1 if corresponding block has been cowed but some upper
79 	 * level block pointers may not point to the new location
80 	 */
81 	unsigned int pending:1;
82 	/*
83 	 * 1 if the backref node isn't connected to any other
84 	 * backref node.
85 	 */
86 	unsigned int detached:1;
87 };
88 
89 /*
90  * present a block pointer in the backref cache
91  */
92 struct backref_edge {
93 	struct list_head list[2];
94 	struct backref_node *node[2];
95 };
96 
97 #define LOWER	0
98 #define UPPER	1
99 #define RELOCATION_RESERVED_NODES	256
100 
101 struct backref_cache {
102 	/* red black tree of all backref nodes in the cache */
103 	struct rb_root rb_root;
104 	/* for passing backref nodes to btrfs_reloc_cow_block */
105 	struct backref_node *path[BTRFS_MAX_LEVEL];
106 	/*
107 	 * list of blocks that have been cowed but some block
108 	 * pointers in upper level blocks may not reflect the
109 	 * new location
110 	 */
111 	struct list_head pending[BTRFS_MAX_LEVEL];
112 	/* list of backref nodes with no child node */
113 	struct list_head leaves;
114 	/* list of blocks that have been cowed in current transaction */
115 	struct list_head changed;
116 	/* list of detached backref node. */
117 	struct list_head detached;
118 
119 	u64 last_trans;
120 
121 	int nr_nodes;
122 	int nr_edges;
123 };
124 
125 /*
126  * map address of tree root to tree
127  */
128 struct mapping_node {
129 	struct rb_node rb_node;
130 	u64 bytenr;
131 	void *data;
132 };
133 
134 struct mapping_tree {
135 	struct rb_root rb_root;
136 	spinlock_t lock;
137 };
138 
139 /*
140  * present a tree block to process
141  */
142 struct tree_block {
143 	struct rb_node rb_node;
144 	u64 bytenr;
145 	struct btrfs_key key;
146 	unsigned int level:8;
147 	unsigned int key_ready:1;
148 };
149 
150 #define MAX_EXTENTS 128
151 
152 struct file_extent_cluster {
153 	u64 start;
154 	u64 end;
155 	u64 boundary[MAX_EXTENTS];
156 	unsigned int nr;
157 };
158 
159 struct reloc_control {
160 	/* block group to relocate */
161 	struct btrfs_block_group_cache *block_group;
162 	/* extent tree */
163 	struct btrfs_root *extent_root;
164 	/* inode for moving data */
165 	struct inode *data_inode;
166 
167 	struct btrfs_block_rsv *block_rsv;
168 
169 	struct backref_cache backref_cache;
170 
171 	struct file_extent_cluster cluster;
172 	/* tree blocks have been processed */
173 	struct extent_io_tree processed_blocks;
174 	/* map start of tree root to corresponding reloc tree */
175 	struct mapping_tree reloc_root_tree;
176 	/* list of reloc trees */
177 	struct list_head reloc_roots;
178 	/* size of metadata reservation for merging reloc trees */
179 	u64 merging_rsv_size;
180 	/* size of relocated tree nodes */
181 	u64 nodes_relocated;
182 	/* reserved size for block group relocation*/
183 	u64 reserved_bytes;
184 
185 	u64 search_start;
186 	u64 extents_found;
187 
188 	unsigned int stage:8;
189 	unsigned int create_reloc_tree:1;
190 	unsigned int merge_reloc_tree:1;
191 	unsigned int found_file_extent:1;
192 };
193 
194 /* stages of data relocation */
195 #define MOVE_DATA_EXTENTS	0
196 #define UPDATE_DATA_PTRS	1
197 
198 static void remove_backref_node(struct backref_cache *cache,
199 				struct backref_node *node);
200 static void __mark_block_processed(struct reloc_control *rc,
201 				   struct backref_node *node);
202 
203 static void mapping_tree_init(struct mapping_tree *tree)
204 {
205 	tree->rb_root = RB_ROOT;
206 	spin_lock_init(&tree->lock);
207 }
208 
209 static void backref_cache_init(struct backref_cache *cache)
210 {
211 	int i;
212 	cache->rb_root = RB_ROOT;
213 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
214 		INIT_LIST_HEAD(&cache->pending[i]);
215 	INIT_LIST_HEAD(&cache->changed);
216 	INIT_LIST_HEAD(&cache->detached);
217 	INIT_LIST_HEAD(&cache->leaves);
218 }
219 
220 static void backref_cache_cleanup(struct backref_cache *cache)
221 {
222 	struct backref_node *node;
223 	int i;
224 
225 	while (!list_empty(&cache->detached)) {
226 		node = list_entry(cache->detached.next,
227 				  struct backref_node, list);
228 		remove_backref_node(cache, node);
229 	}
230 
231 	while (!list_empty(&cache->leaves)) {
232 		node = list_entry(cache->leaves.next,
233 				  struct backref_node, lower);
234 		remove_backref_node(cache, node);
235 	}
236 
237 	cache->last_trans = 0;
238 
239 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
240 		ASSERT(list_empty(&cache->pending[i]));
241 	ASSERT(list_empty(&cache->changed));
242 	ASSERT(list_empty(&cache->detached));
243 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
244 	ASSERT(!cache->nr_nodes);
245 	ASSERT(!cache->nr_edges);
246 }
247 
248 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
249 {
250 	struct backref_node *node;
251 
252 	node = kzalloc(sizeof(*node), GFP_NOFS);
253 	if (node) {
254 		INIT_LIST_HEAD(&node->list);
255 		INIT_LIST_HEAD(&node->upper);
256 		INIT_LIST_HEAD(&node->lower);
257 		RB_CLEAR_NODE(&node->rb_node);
258 		cache->nr_nodes++;
259 	}
260 	return node;
261 }
262 
263 static void free_backref_node(struct backref_cache *cache,
264 			      struct backref_node *node)
265 {
266 	if (node) {
267 		cache->nr_nodes--;
268 		kfree(node);
269 	}
270 }
271 
272 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
273 {
274 	struct backref_edge *edge;
275 
276 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
277 	if (edge)
278 		cache->nr_edges++;
279 	return edge;
280 }
281 
282 static void free_backref_edge(struct backref_cache *cache,
283 			      struct backref_edge *edge)
284 {
285 	if (edge) {
286 		cache->nr_edges--;
287 		kfree(edge);
288 	}
289 }
290 
291 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
292 				   struct rb_node *node)
293 {
294 	struct rb_node **p = &root->rb_node;
295 	struct rb_node *parent = NULL;
296 	struct tree_entry *entry;
297 
298 	while (*p) {
299 		parent = *p;
300 		entry = rb_entry(parent, struct tree_entry, rb_node);
301 
302 		if (bytenr < entry->bytenr)
303 			p = &(*p)->rb_left;
304 		else if (bytenr > entry->bytenr)
305 			p = &(*p)->rb_right;
306 		else
307 			return parent;
308 	}
309 
310 	rb_link_node(node, parent, p);
311 	rb_insert_color(node, root);
312 	return NULL;
313 }
314 
315 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
316 {
317 	struct rb_node *n = root->rb_node;
318 	struct tree_entry *entry;
319 
320 	while (n) {
321 		entry = rb_entry(n, struct tree_entry, rb_node);
322 
323 		if (bytenr < entry->bytenr)
324 			n = n->rb_left;
325 		else if (bytenr > entry->bytenr)
326 			n = n->rb_right;
327 		else
328 			return n;
329 	}
330 	return NULL;
331 }
332 
333 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
334 {
335 
336 	struct btrfs_fs_info *fs_info = NULL;
337 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
338 					      rb_node);
339 	if (bnode->root)
340 		fs_info = bnode->root->fs_info;
341 	btrfs_panic(fs_info, errno,
342 		    "Inconsistency in backref cache found at offset %llu",
343 		    bytenr);
344 }
345 
346 /*
347  * walk up backref nodes until reach node presents tree root
348  */
349 static struct backref_node *walk_up_backref(struct backref_node *node,
350 					    struct backref_edge *edges[],
351 					    int *index)
352 {
353 	struct backref_edge *edge;
354 	int idx = *index;
355 
356 	while (!list_empty(&node->upper)) {
357 		edge = list_entry(node->upper.next,
358 				  struct backref_edge, list[LOWER]);
359 		edges[idx++] = edge;
360 		node = edge->node[UPPER];
361 	}
362 	BUG_ON(node->detached);
363 	*index = idx;
364 	return node;
365 }
366 
367 /*
368  * walk down backref nodes to find start of next reference path
369  */
370 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
371 					      int *index)
372 {
373 	struct backref_edge *edge;
374 	struct backref_node *lower;
375 	int idx = *index;
376 
377 	while (idx > 0) {
378 		edge = edges[idx - 1];
379 		lower = edge->node[LOWER];
380 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
381 			idx--;
382 			continue;
383 		}
384 		edge = list_entry(edge->list[LOWER].next,
385 				  struct backref_edge, list[LOWER]);
386 		edges[idx - 1] = edge;
387 		*index = idx;
388 		return edge->node[UPPER];
389 	}
390 	*index = 0;
391 	return NULL;
392 }
393 
394 static void unlock_node_buffer(struct backref_node *node)
395 {
396 	if (node->locked) {
397 		btrfs_tree_unlock(node->eb);
398 		node->locked = 0;
399 	}
400 }
401 
402 static void drop_node_buffer(struct backref_node *node)
403 {
404 	if (node->eb) {
405 		unlock_node_buffer(node);
406 		free_extent_buffer(node->eb);
407 		node->eb = NULL;
408 	}
409 }
410 
411 static void drop_backref_node(struct backref_cache *tree,
412 			      struct backref_node *node)
413 {
414 	BUG_ON(!list_empty(&node->upper));
415 
416 	drop_node_buffer(node);
417 	list_del(&node->list);
418 	list_del(&node->lower);
419 	if (!RB_EMPTY_NODE(&node->rb_node))
420 		rb_erase(&node->rb_node, &tree->rb_root);
421 	free_backref_node(tree, node);
422 }
423 
424 /*
425  * remove a backref node from the backref cache
426  */
427 static void remove_backref_node(struct backref_cache *cache,
428 				struct backref_node *node)
429 {
430 	struct backref_node *upper;
431 	struct backref_edge *edge;
432 
433 	if (!node)
434 		return;
435 
436 	BUG_ON(!node->lowest && !node->detached);
437 	while (!list_empty(&node->upper)) {
438 		edge = list_entry(node->upper.next, struct backref_edge,
439 				  list[LOWER]);
440 		upper = edge->node[UPPER];
441 		list_del(&edge->list[LOWER]);
442 		list_del(&edge->list[UPPER]);
443 		free_backref_edge(cache, edge);
444 
445 		if (RB_EMPTY_NODE(&upper->rb_node)) {
446 			BUG_ON(!list_empty(&node->upper));
447 			drop_backref_node(cache, node);
448 			node = upper;
449 			node->lowest = 1;
450 			continue;
451 		}
452 		/*
453 		 * add the node to leaf node list if no other
454 		 * child block cached.
455 		 */
456 		if (list_empty(&upper->lower)) {
457 			list_add_tail(&upper->lower, &cache->leaves);
458 			upper->lowest = 1;
459 		}
460 	}
461 
462 	drop_backref_node(cache, node);
463 }
464 
465 static void update_backref_node(struct backref_cache *cache,
466 				struct backref_node *node, u64 bytenr)
467 {
468 	struct rb_node *rb_node;
469 	rb_erase(&node->rb_node, &cache->rb_root);
470 	node->bytenr = bytenr;
471 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
472 	if (rb_node)
473 		backref_tree_panic(rb_node, -EEXIST, bytenr);
474 }
475 
476 /*
477  * update backref cache after a transaction commit
478  */
479 static int update_backref_cache(struct btrfs_trans_handle *trans,
480 				struct backref_cache *cache)
481 {
482 	struct backref_node *node;
483 	int level = 0;
484 
485 	if (cache->last_trans == 0) {
486 		cache->last_trans = trans->transid;
487 		return 0;
488 	}
489 
490 	if (cache->last_trans == trans->transid)
491 		return 0;
492 
493 	/*
494 	 * detached nodes are used to avoid unnecessary backref
495 	 * lookup. transaction commit changes the extent tree.
496 	 * so the detached nodes are no longer useful.
497 	 */
498 	while (!list_empty(&cache->detached)) {
499 		node = list_entry(cache->detached.next,
500 				  struct backref_node, list);
501 		remove_backref_node(cache, node);
502 	}
503 
504 	while (!list_empty(&cache->changed)) {
505 		node = list_entry(cache->changed.next,
506 				  struct backref_node, list);
507 		list_del_init(&node->list);
508 		BUG_ON(node->pending);
509 		update_backref_node(cache, node, node->new_bytenr);
510 	}
511 
512 	/*
513 	 * some nodes can be left in the pending list if there were
514 	 * errors during processing the pending nodes.
515 	 */
516 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
517 		list_for_each_entry(node, &cache->pending[level], list) {
518 			BUG_ON(!node->pending);
519 			if (node->bytenr == node->new_bytenr)
520 				continue;
521 			update_backref_node(cache, node, node->new_bytenr);
522 		}
523 	}
524 
525 	cache->last_trans = 0;
526 	return 1;
527 }
528 
529 
530 static int should_ignore_root(struct btrfs_root *root)
531 {
532 	struct btrfs_root *reloc_root;
533 
534 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
535 		return 0;
536 
537 	reloc_root = root->reloc_root;
538 	if (!reloc_root)
539 		return 0;
540 
541 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
542 	    root->fs_info->running_transaction->transid - 1)
543 		return 0;
544 	/*
545 	 * if there is reloc tree and it was created in previous
546 	 * transaction backref lookup can find the reloc tree,
547 	 * so backref node for the fs tree root is useless for
548 	 * relocation.
549 	 */
550 	return 1;
551 }
552 /*
553  * find reloc tree by address of tree root
554  */
555 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
556 					  u64 bytenr)
557 {
558 	struct rb_node *rb_node;
559 	struct mapping_node *node;
560 	struct btrfs_root *root = NULL;
561 
562 	spin_lock(&rc->reloc_root_tree.lock);
563 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
564 	if (rb_node) {
565 		node = rb_entry(rb_node, struct mapping_node, rb_node);
566 		root = (struct btrfs_root *)node->data;
567 	}
568 	spin_unlock(&rc->reloc_root_tree.lock);
569 	return root;
570 }
571 
572 static int is_cowonly_root(u64 root_objectid)
573 {
574 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
576 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
579 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
580 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
581 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
582 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
583 		return 1;
584 	return 0;
585 }
586 
587 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
588 					u64 root_objectid)
589 {
590 	struct btrfs_key key;
591 
592 	key.objectid = root_objectid;
593 	key.type = BTRFS_ROOT_ITEM_KEY;
594 	if (is_cowonly_root(root_objectid))
595 		key.offset = 0;
596 	else
597 		key.offset = (u64)-1;
598 
599 	return btrfs_get_fs_root(fs_info, &key, false);
600 }
601 
602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
603 static noinline_for_stack
604 struct btrfs_root *find_tree_root(struct reloc_control *rc,
605 				  struct extent_buffer *leaf,
606 				  struct btrfs_extent_ref_v0 *ref0)
607 {
608 	struct btrfs_root *root;
609 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
610 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
611 
612 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
613 
614 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
615 	BUG_ON(IS_ERR(root));
616 
617 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
618 	    generation != btrfs_root_generation(&root->root_item))
619 		return NULL;
620 
621 	return root;
622 }
623 #endif
624 
625 static noinline_for_stack
626 int find_inline_backref(struct extent_buffer *leaf, int slot,
627 			unsigned long *ptr, unsigned long *end)
628 {
629 	struct btrfs_key key;
630 	struct btrfs_extent_item *ei;
631 	struct btrfs_tree_block_info *bi;
632 	u32 item_size;
633 
634 	btrfs_item_key_to_cpu(leaf, &key, slot);
635 
636 	item_size = btrfs_item_size_nr(leaf, slot);
637 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
638 	if (item_size < sizeof(*ei)) {
639 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
640 		return 1;
641 	}
642 #endif
643 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
644 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
645 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
646 
647 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
648 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
649 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
650 		return 1;
651 	}
652 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
653 	    item_size <= sizeof(*ei)) {
654 		WARN_ON(item_size < sizeof(*ei));
655 		return 1;
656 	}
657 
658 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
659 		bi = (struct btrfs_tree_block_info *)(ei + 1);
660 		*ptr = (unsigned long)(bi + 1);
661 	} else {
662 		*ptr = (unsigned long)(ei + 1);
663 	}
664 	*end = (unsigned long)ei + item_size;
665 	return 0;
666 }
667 
668 /*
669  * build backref tree for a given tree block. root of the backref tree
670  * corresponds the tree block, leaves of the backref tree correspond
671  * roots of b-trees that reference the tree block.
672  *
673  * the basic idea of this function is check backrefs of a given block
674  * to find upper level blocks that reference the block, and then check
675  * backrefs of these upper level blocks recursively. the recursion stop
676  * when tree root is reached or backrefs for the block is cached.
677  *
678  * NOTE: if we find backrefs for a block are cached, we know backrefs
679  * for all upper level blocks that directly/indirectly reference the
680  * block are also cached.
681  */
682 static noinline_for_stack
683 struct backref_node *build_backref_tree(struct reloc_control *rc,
684 					struct btrfs_key *node_key,
685 					int level, u64 bytenr)
686 {
687 	struct backref_cache *cache = &rc->backref_cache;
688 	struct btrfs_path *path1;
689 	struct btrfs_path *path2;
690 	struct extent_buffer *eb;
691 	struct btrfs_root *root;
692 	struct backref_node *cur;
693 	struct backref_node *upper;
694 	struct backref_node *lower;
695 	struct backref_node *node = NULL;
696 	struct backref_node *exist = NULL;
697 	struct backref_edge *edge;
698 	struct rb_node *rb_node;
699 	struct btrfs_key key;
700 	unsigned long end;
701 	unsigned long ptr;
702 	LIST_HEAD(list);
703 	LIST_HEAD(useless);
704 	int cowonly;
705 	int ret;
706 	int err = 0;
707 	bool need_check = true;
708 
709 	path1 = btrfs_alloc_path();
710 	path2 = btrfs_alloc_path();
711 	if (!path1 || !path2) {
712 		err = -ENOMEM;
713 		goto out;
714 	}
715 	path1->reada = READA_FORWARD;
716 	path2->reada = READA_FORWARD;
717 
718 	node = alloc_backref_node(cache);
719 	if (!node) {
720 		err = -ENOMEM;
721 		goto out;
722 	}
723 
724 	node->bytenr = bytenr;
725 	node->level = level;
726 	node->lowest = 1;
727 	cur = node;
728 again:
729 	end = 0;
730 	ptr = 0;
731 	key.objectid = cur->bytenr;
732 	key.type = BTRFS_METADATA_ITEM_KEY;
733 	key.offset = (u64)-1;
734 
735 	path1->search_commit_root = 1;
736 	path1->skip_locking = 1;
737 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
738 				0, 0);
739 	if (ret < 0) {
740 		err = ret;
741 		goto out;
742 	}
743 	ASSERT(ret);
744 	ASSERT(path1->slots[0]);
745 
746 	path1->slots[0]--;
747 
748 	WARN_ON(cur->checked);
749 	if (!list_empty(&cur->upper)) {
750 		/*
751 		 * the backref was added previously when processing
752 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
753 		 */
754 		ASSERT(list_is_singular(&cur->upper));
755 		edge = list_entry(cur->upper.next, struct backref_edge,
756 				  list[LOWER]);
757 		ASSERT(list_empty(&edge->list[UPPER]));
758 		exist = edge->node[UPPER];
759 		/*
760 		 * add the upper level block to pending list if we need
761 		 * check its backrefs
762 		 */
763 		if (!exist->checked)
764 			list_add_tail(&edge->list[UPPER], &list);
765 	} else {
766 		exist = NULL;
767 	}
768 
769 	while (1) {
770 		cond_resched();
771 		eb = path1->nodes[0];
772 
773 		if (ptr >= end) {
774 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
775 				ret = btrfs_next_leaf(rc->extent_root, path1);
776 				if (ret < 0) {
777 					err = ret;
778 					goto out;
779 				}
780 				if (ret > 0)
781 					break;
782 				eb = path1->nodes[0];
783 			}
784 
785 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
786 			if (key.objectid != cur->bytenr) {
787 				WARN_ON(exist);
788 				break;
789 			}
790 
791 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
792 			    key.type == BTRFS_METADATA_ITEM_KEY) {
793 				ret = find_inline_backref(eb, path1->slots[0],
794 							  &ptr, &end);
795 				if (ret)
796 					goto next;
797 			}
798 		}
799 
800 		if (ptr < end) {
801 			/* update key for inline back ref */
802 			struct btrfs_extent_inline_ref *iref;
803 			int type;
804 			iref = (struct btrfs_extent_inline_ref *)ptr;
805 			type = btrfs_get_extent_inline_ref_type(eb, iref,
806 							BTRFS_REF_TYPE_BLOCK);
807 			if (type == BTRFS_REF_TYPE_INVALID) {
808 				err = -EINVAL;
809 				goto out;
810 			}
811 			key.type = type;
812 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
813 
814 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
815 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
816 		}
817 
818 		if (exist &&
819 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
820 		      exist->owner == key.offset) ||
821 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
822 		      exist->bytenr == key.offset))) {
823 			exist = NULL;
824 			goto next;
825 		}
826 
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
829 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
830 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
831 				struct btrfs_extent_ref_v0 *ref0;
832 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
833 						struct btrfs_extent_ref_v0);
834 				if (key.objectid == key.offset) {
835 					root = find_tree_root(rc, eb, ref0);
836 					if (root && !should_ignore_root(root))
837 						cur->root = root;
838 					else
839 						list_add(&cur->list, &useless);
840 					break;
841 				}
842 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
843 								      ref0)))
844 					cur->cowonly = 1;
845 			}
846 #else
847 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
848 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
849 #endif
850 			if (key.objectid == key.offset) {
851 				/*
852 				 * only root blocks of reloc trees use
853 				 * backref of this type.
854 				 */
855 				root = find_reloc_root(rc, cur->bytenr);
856 				ASSERT(root);
857 				cur->root = root;
858 				break;
859 			}
860 
861 			edge = alloc_backref_edge(cache);
862 			if (!edge) {
863 				err = -ENOMEM;
864 				goto out;
865 			}
866 			rb_node = tree_search(&cache->rb_root, key.offset);
867 			if (!rb_node) {
868 				upper = alloc_backref_node(cache);
869 				if (!upper) {
870 					free_backref_edge(cache, edge);
871 					err = -ENOMEM;
872 					goto out;
873 				}
874 				upper->bytenr = key.offset;
875 				upper->level = cur->level + 1;
876 				/*
877 				 *  backrefs for the upper level block isn't
878 				 *  cached, add the block to pending list
879 				 */
880 				list_add_tail(&edge->list[UPPER], &list);
881 			} else {
882 				upper = rb_entry(rb_node, struct backref_node,
883 						 rb_node);
884 				ASSERT(upper->checked);
885 				INIT_LIST_HEAD(&edge->list[UPPER]);
886 			}
887 			list_add_tail(&edge->list[LOWER], &cur->upper);
888 			edge->node[LOWER] = cur;
889 			edge->node[UPPER] = upper;
890 
891 			goto next;
892 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
893 			goto next;
894 		}
895 
896 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
897 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
898 		if (IS_ERR(root)) {
899 			err = PTR_ERR(root);
900 			goto out;
901 		}
902 
903 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
904 			cur->cowonly = 1;
905 
906 		if (btrfs_root_level(&root->root_item) == cur->level) {
907 			/* tree root */
908 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
909 			       cur->bytenr);
910 			if (should_ignore_root(root))
911 				list_add(&cur->list, &useless);
912 			else
913 				cur->root = root;
914 			break;
915 		}
916 
917 		level = cur->level + 1;
918 
919 		/*
920 		 * searching the tree to find upper level blocks
921 		 * reference the block.
922 		 */
923 		path2->search_commit_root = 1;
924 		path2->skip_locking = 1;
925 		path2->lowest_level = level;
926 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
927 		path2->lowest_level = 0;
928 		if (ret < 0) {
929 			err = ret;
930 			goto out;
931 		}
932 		if (ret > 0 && path2->slots[level] > 0)
933 			path2->slots[level]--;
934 
935 		eb = path2->nodes[level];
936 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
937 		    cur->bytenr) {
938 			btrfs_err(root->fs_info,
939 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
940 				  cur->bytenr, level - 1, root->objectid,
941 				  node_key->objectid, node_key->type,
942 				  node_key->offset);
943 			err = -ENOENT;
944 			goto out;
945 		}
946 		lower = cur;
947 		need_check = true;
948 		for (; level < BTRFS_MAX_LEVEL; level++) {
949 			if (!path2->nodes[level]) {
950 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
951 				       lower->bytenr);
952 				if (should_ignore_root(root))
953 					list_add(&lower->list, &useless);
954 				else
955 					lower->root = root;
956 				break;
957 			}
958 
959 			edge = alloc_backref_edge(cache);
960 			if (!edge) {
961 				err = -ENOMEM;
962 				goto out;
963 			}
964 
965 			eb = path2->nodes[level];
966 			rb_node = tree_search(&cache->rb_root, eb->start);
967 			if (!rb_node) {
968 				upper = alloc_backref_node(cache);
969 				if (!upper) {
970 					free_backref_edge(cache, edge);
971 					err = -ENOMEM;
972 					goto out;
973 				}
974 				upper->bytenr = eb->start;
975 				upper->owner = btrfs_header_owner(eb);
976 				upper->level = lower->level + 1;
977 				if (!test_bit(BTRFS_ROOT_REF_COWS,
978 					      &root->state))
979 					upper->cowonly = 1;
980 
981 				/*
982 				 * if we know the block isn't shared
983 				 * we can void checking its backrefs.
984 				 */
985 				if (btrfs_block_can_be_shared(root, eb))
986 					upper->checked = 0;
987 				else
988 					upper->checked = 1;
989 
990 				/*
991 				 * add the block to pending list if we
992 				 * need check its backrefs, we only do this once
993 				 * while walking up a tree as we will catch
994 				 * anything else later on.
995 				 */
996 				if (!upper->checked && need_check) {
997 					need_check = false;
998 					list_add_tail(&edge->list[UPPER],
999 						      &list);
1000 				} else {
1001 					if (upper->checked)
1002 						need_check = true;
1003 					INIT_LIST_HEAD(&edge->list[UPPER]);
1004 				}
1005 			} else {
1006 				upper = rb_entry(rb_node, struct backref_node,
1007 						 rb_node);
1008 				ASSERT(upper->checked);
1009 				INIT_LIST_HEAD(&edge->list[UPPER]);
1010 				if (!upper->owner)
1011 					upper->owner = btrfs_header_owner(eb);
1012 			}
1013 			list_add_tail(&edge->list[LOWER], &lower->upper);
1014 			edge->node[LOWER] = lower;
1015 			edge->node[UPPER] = upper;
1016 
1017 			if (rb_node)
1018 				break;
1019 			lower = upper;
1020 			upper = NULL;
1021 		}
1022 		btrfs_release_path(path2);
1023 next:
1024 		if (ptr < end) {
1025 			ptr += btrfs_extent_inline_ref_size(key.type);
1026 			if (ptr >= end) {
1027 				WARN_ON(ptr > end);
1028 				ptr = 0;
1029 				end = 0;
1030 			}
1031 		}
1032 		if (ptr >= end)
1033 			path1->slots[0]++;
1034 	}
1035 	btrfs_release_path(path1);
1036 
1037 	cur->checked = 1;
1038 	WARN_ON(exist);
1039 
1040 	/* the pending list isn't empty, take the first block to process */
1041 	if (!list_empty(&list)) {
1042 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043 		list_del_init(&edge->list[UPPER]);
1044 		cur = edge->node[UPPER];
1045 		goto again;
1046 	}
1047 
1048 	/*
1049 	 * everything goes well, connect backref nodes and insert backref nodes
1050 	 * into the cache.
1051 	 */
1052 	ASSERT(node->checked);
1053 	cowonly = node->cowonly;
1054 	if (!cowonly) {
1055 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1056 				      &node->rb_node);
1057 		if (rb_node)
1058 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1059 		list_add_tail(&node->lower, &cache->leaves);
1060 	}
1061 
1062 	list_for_each_entry(edge, &node->upper, list[LOWER])
1063 		list_add_tail(&edge->list[UPPER], &list);
1064 
1065 	while (!list_empty(&list)) {
1066 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1067 		list_del_init(&edge->list[UPPER]);
1068 		upper = edge->node[UPPER];
1069 		if (upper->detached) {
1070 			list_del(&edge->list[LOWER]);
1071 			lower = edge->node[LOWER];
1072 			free_backref_edge(cache, edge);
1073 			if (list_empty(&lower->upper))
1074 				list_add(&lower->list, &useless);
1075 			continue;
1076 		}
1077 
1078 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1079 			if (upper->lowest) {
1080 				list_del_init(&upper->lower);
1081 				upper->lowest = 0;
1082 			}
1083 
1084 			list_add_tail(&edge->list[UPPER], &upper->lower);
1085 			continue;
1086 		}
1087 
1088 		if (!upper->checked) {
1089 			/*
1090 			 * Still want to blow up for developers since this is a
1091 			 * logic bug.
1092 			 */
1093 			ASSERT(0);
1094 			err = -EINVAL;
1095 			goto out;
1096 		}
1097 		if (cowonly != upper->cowonly) {
1098 			ASSERT(0);
1099 			err = -EINVAL;
1100 			goto out;
1101 		}
1102 
1103 		if (!cowonly) {
1104 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1105 					      &upper->rb_node);
1106 			if (rb_node)
1107 				backref_tree_panic(rb_node, -EEXIST,
1108 						   upper->bytenr);
1109 		}
1110 
1111 		list_add_tail(&edge->list[UPPER], &upper->lower);
1112 
1113 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1114 			list_add_tail(&edge->list[UPPER], &list);
1115 	}
1116 	/*
1117 	 * process useless backref nodes. backref nodes for tree leaves
1118 	 * are deleted from the cache. backref nodes for upper level
1119 	 * tree blocks are left in the cache to avoid unnecessary backref
1120 	 * lookup.
1121 	 */
1122 	while (!list_empty(&useless)) {
1123 		upper = list_entry(useless.next, struct backref_node, list);
1124 		list_del_init(&upper->list);
1125 		ASSERT(list_empty(&upper->upper));
1126 		if (upper == node)
1127 			node = NULL;
1128 		if (upper->lowest) {
1129 			list_del_init(&upper->lower);
1130 			upper->lowest = 0;
1131 		}
1132 		while (!list_empty(&upper->lower)) {
1133 			edge = list_entry(upper->lower.next,
1134 					  struct backref_edge, list[UPPER]);
1135 			list_del(&edge->list[UPPER]);
1136 			list_del(&edge->list[LOWER]);
1137 			lower = edge->node[LOWER];
1138 			free_backref_edge(cache, edge);
1139 
1140 			if (list_empty(&lower->upper))
1141 				list_add(&lower->list, &useless);
1142 		}
1143 		__mark_block_processed(rc, upper);
1144 		if (upper->level > 0) {
1145 			list_add(&upper->list, &cache->detached);
1146 			upper->detached = 1;
1147 		} else {
1148 			rb_erase(&upper->rb_node, &cache->rb_root);
1149 			free_backref_node(cache, upper);
1150 		}
1151 	}
1152 out:
1153 	btrfs_free_path(path1);
1154 	btrfs_free_path(path2);
1155 	if (err) {
1156 		while (!list_empty(&useless)) {
1157 			lower = list_entry(useless.next,
1158 					   struct backref_node, list);
1159 			list_del_init(&lower->list);
1160 		}
1161 		while (!list_empty(&list)) {
1162 			edge = list_first_entry(&list, struct backref_edge,
1163 						list[UPPER]);
1164 			list_del(&edge->list[UPPER]);
1165 			list_del(&edge->list[LOWER]);
1166 			lower = edge->node[LOWER];
1167 			upper = edge->node[UPPER];
1168 			free_backref_edge(cache, edge);
1169 
1170 			/*
1171 			 * Lower is no longer linked to any upper backref nodes
1172 			 * and isn't in the cache, we can free it ourselves.
1173 			 */
1174 			if (list_empty(&lower->upper) &&
1175 			    RB_EMPTY_NODE(&lower->rb_node))
1176 				list_add(&lower->list, &useless);
1177 
1178 			if (!RB_EMPTY_NODE(&upper->rb_node))
1179 				continue;
1180 
1181 			/* Add this guy's upper edges to the list to process */
1182 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1183 				list_add_tail(&edge->list[UPPER], &list);
1184 			if (list_empty(&upper->upper))
1185 				list_add(&upper->list, &useless);
1186 		}
1187 
1188 		while (!list_empty(&useless)) {
1189 			lower = list_entry(useless.next,
1190 					   struct backref_node, list);
1191 			list_del_init(&lower->list);
1192 			if (lower == node)
1193 				node = NULL;
1194 			free_backref_node(cache, lower);
1195 		}
1196 
1197 		free_backref_node(cache, node);
1198 		return ERR_PTR(err);
1199 	}
1200 	ASSERT(!node || !node->detached);
1201 	return node;
1202 }
1203 
1204 /*
1205  * helper to add backref node for the newly created snapshot.
1206  * the backref node is created by cloning backref node that
1207  * corresponds to root of source tree
1208  */
1209 static int clone_backref_node(struct btrfs_trans_handle *trans,
1210 			      struct reloc_control *rc,
1211 			      struct btrfs_root *src,
1212 			      struct btrfs_root *dest)
1213 {
1214 	struct btrfs_root *reloc_root = src->reloc_root;
1215 	struct backref_cache *cache = &rc->backref_cache;
1216 	struct backref_node *node = NULL;
1217 	struct backref_node *new_node;
1218 	struct backref_edge *edge;
1219 	struct backref_edge *new_edge;
1220 	struct rb_node *rb_node;
1221 
1222 	if (cache->last_trans > 0)
1223 		update_backref_cache(trans, cache);
1224 
1225 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1226 	if (rb_node) {
1227 		node = rb_entry(rb_node, struct backref_node, rb_node);
1228 		if (node->detached)
1229 			node = NULL;
1230 		else
1231 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1232 	}
1233 
1234 	if (!node) {
1235 		rb_node = tree_search(&cache->rb_root,
1236 				      reloc_root->commit_root->start);
1237 		if (rb_node) {
1238 			node = rb_entry(rb_node, struct backref_node,
1239 					rb_node);
1240 			BUG_ON(node->detached);
1241 		}
1242 	}
1243 
1244 	if (!node)
1245 		return 0;
1246 
1247 	new_node = alloc_backref_node(cache);
1248 	if (!new_node)
1249 		return -ENOMEM;
1250 
1251 	new_node->bytenr = dest->node->start;
1252 	new_node->level = node->level;
1253 	new_node->lowest = node->lowest;
1254 	new_node->checked = 1;
1255 	new_node->root = dest;
1256 
1257 	if (!node->lowest) {
1258 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1259 			new_edge = alloc_backref_edge(cache);
1260 			if (!new_edge)
1261 				goto fail;
1262 
1263 			new_edge->node[UPPER] = new_node;
1264 			new_edge->node[LOWER] = edge->node[LOWER];
1265 			list_add_tail(&new_edge->list[UPPER],
1266 				      &new_node->lower);
1267 		}
1268 	} else {
1269 		list_add_tail(&new_node->lower, &cache->leaves);
1270 	}
1271 
1272 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1273 			      &new_node->rb_node);
1274 	if (rb_node)
1275 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1276 
1277 	if (!new_node->lowest) {
1278 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1279 			list_add_tail(&new_edge->list[LOWER],
1280 				      &new_edge->node[LOWER]->upper);
1281 		}
1282 	}
1283 	return 0;
1284 fail:
1285 	while (!list_empty(&new_node->lower)) {
1286 		new_edge = list_entry(new_node->lower.next,
1287 				      struct backref_edge, list[UPPER]);
1288 		list_del(&new_edge->list[UPPER]);
1289 		free_backref_edge(cache, new_edge);
1290 	}
1291 	free_backref_node(cache, new_node);
1292 	return -ENOMEM;
1293 }
1294 
1295 /*
1296  * helper to add 'address of tree root -> reloc tree' mapping
1297  */
1298 static int __must_check __add_reloc_root(struct btrfs_root *root)
1299 {
1300 	struct btrfs_fs_info *fs_info = root->fs_info;
1301 	struct rb_node *rb_node;
1302 	struct mapping_node *node;
1303 	struct reloc_control *rc = fs_info->reloc_ctl;
1304 
1305 	node = kmalloc(sizeof(*node), GFP_NOFS);
1306 	if (!node)
1307 		return -ENOMEM;
1308 
1309 	node->bytenr = root->node->start;
1310 	node->data = root;
1311 
1312 	spin_lock(&rc->reloc_root_tree.lock);
1313 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1314 			      node->bytenr, &node->rb_node);
1315 	spin_unlock(&rc->reloc_root_tree.lock);
1316 	if (rb_node) {
1317 		btrfs_panic(fs_info, -EEXIST,
1318 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1319 			    node->bytenr);
1320 	}
1321 
1322 	list_add_tail(&root->root_list, &rc->reloc_roots);
1323 	return 0;
1324 }
1325 
1326 /*
1327  * helper to delete the 'address of tree root -> reloc tree'
1328  * mapping
1329  */
1330 static void __del_reloc_root(struct btrfs_root *root)
1331 {
1332 	struct btrfs_fs_info *fs_info = root->fs_info;
1333 	struct rb_node *rb_node;
1334 	struct mapping_node *node = NULL;
1335 	struct reloc_control *rc = fs_info->reloc_ctl;
1336 
1337 	spin_lock(&rc->reloc_root_tree.lock);
1338 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1339 			      root->node->start);
1340 	if (rb_node) {
1341 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1342 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1343 	}
1344 	spin_unlock(&rc->reloc_root_tree.lock);
1345 
1346 	if (!node)
1347 		return;
1348 	BUG_ON((struct btrfs_root *)node->data != root);
1349 
1350 	spin_lock(&fs_info->trans_lock);
1351 	list_del_init(&root->root_list);
1352 	spin_unlock(&fs_info->trans_lock);
1353 	kfree(node);
1354 }
1355 
1356 /*
1357  * helper to update the 'address of tree root -> reloc tree'
1358  * mapping
1359  */
1360 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1361 {
1362 	struct btrfs_fs_info *fs_info = root->fs_info;
1363 	struct rb_node *rb_node;
1364 	struct mapping_node *node = NULL;
1365 	struct reloc_control *rc = fs_info->reloc_ctl;
1366 
1367 	spin_lock(&rc->reloc_root_tree.lock);
1368 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1369 			      root->node->start);
1370 	if (rb_node) {
1371 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1372 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1373 	}
1374 	spin_unlock(&rc->reloc_root_tree.lock);
1375 
1376 	if (!node)
1377 		return 0;
1378 	BUG_ON((struct btrfs_root *)node->data != root);
1379 
1380 	spin_lock(&rc->reloc_root_tree.lock);
1381 	node->bytenr = new_bytenr;
1382 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1383 			      node->bytenr, &node->rb_node);
1384 	spin_unlock(&rc->reloc_root_tree.lock);
1385 	if (rb_node)
1386 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1387 	return 0;
1388 }
1389 
1390 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1391 					struct btrfs_root *root, u64 objectid)
1392 {
1393 	struct btrfs_fs_info *fs_info = root->fs_info;
1394 	struct btrfs_root *reloc_root;
1395 	struct extent_buffer *eb;
1396 	struct btrfs_root_item *root_item;
1397 	struct btrfs_key root_key;
1398 	int ret;
1399 
1400 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1401 	BUG_ON(!root_item);
1402 
1403 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1404 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1405 	root_key.offset = objectid;
1406 
1407 	if (root->root_key.objectid == objectid) {
1408 		u64 commit_root_gen;
1409 
1410 		/* called by btrfs_init_reloc_root */
1411 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1412 				      BTRFS_TREE_RELOC_OBJECTID);
1413 		BUG_ON(ret);
1414 		/*
1415 		 * Set the last_snapshot field to the generation of the commit
1416 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1417 		 * correctly (returns true) when the relocation root is created
1418 		 * either inside the critical section of a transaction commit
1419 		 * (through transaction.c:qgroup_account_snapshot()) and when
1420 		 * it's created before the transaction commit is started.
1421 		 */
1422 		commit_root_gen = btrfs_header_generation(root->commit_root);
1423 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1424 	} else {
1425 		/*
1426 		 * called by btrfs_reloc_post_snapshot_hook.
1427 		 * the source tree is a reloc tree, all tree blocks
1428 		 * modified after it was created have RELOC flag
1429 		 * set in their headers. so it's OK to not update
1430 		 * the 'last_snapshot'.
1431 		 */
1432 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1433 				      BTRFS_TREE_RELOC_OBJECTID);
1434 		BUG_ON(ret);
1435 	}
1436 
1437 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1438 	btrfs_set_root_bytenr(root_item, eb->start);
1439 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1440 	btrfs_set_root_generation(root_item, trans->transid);
1441 
1442 	if (root->root_key.objectid == objectid) {
1443 		btrfs_set_root_refs(root_item, 0);
1444 		memset(&root_item->drop_progress, 0,
1445 		       sizeof(struct btrfs_disk_key));
1446 		root_item->drop_level = 0;
1447 	}
1448 
1449 	btrfs_tree_unlock(eb);
1450 	free_extent_buffer(eb);
1451 
1452 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1453 				&root_key, root_item);
1454 	BUG_ON(ret);
1455 	kfree(root_item);
1456 
1457 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1458 	BUG_ON(IS_ERR(reloc_root));
1459 	reloc_root->last_trans = trans->transid;
1460 	return reloc_root;
1461 }
1462 
1463 /*
1464  * create reloc tree for a given fs tree. reloc tree is just a
1465  * snapshot of the fs tree with special root objectid.
1466  */
1467 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1468 			  struct btrfs_root *root)
1469 {
1470 	struct btrfs_fs_info *fs_info = root->fs_info;
1471 	struct btrfs_root *reloc_root;
1472 	struct reloc_control *rc = fs_info->reloc_ctl;
1473 	struct btrfs_block_rsv *rsv;
1474 	int clear_rsv = 0;
1475 	int ret;
1476 
1477 	if (root->reloc_root) {
1478 		reloc_root = root->reloc_root;
1479 		reloc_root->last_trans = trans->transid;
1480 		return 0;
1481 	}
1482 
1483 	if (!rc || !rc->create_reloc_tree ||
1484 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1485 		return 0;
1486 
1487 	if (!trans->reloc_reserved) {
1488 		rsv = trans->block_rsv;
1489 		trans->block_rsv = rc->block_rsv;
1490 		clear_rsv = 1;
1491 	}
1492 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1493 	if (clear_rsv)
1494 		trans->block_rsv = rsv;
1495 
1496 	ret = __add_reloc_root(reloc_root);
1497 	BUG_ON(ret < 0);
1498 	root->reloc_root = reloc_root;
1499 	return 0;
1500 }
1501 
1502 /*
1503  * update root item of reloc tree
1504  */
1505 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1506 			    struct btrfs_root *root)
1507 {
1508 	struct btrfs_fs_info *fs_info = root->fs_info;
1509 	struct btrfs_root *reloc_root;
1510 	struct btrfs_root_item *root_item;
1511 	int ret;
1512 
1513 	if (!root->reloc_root)
1514 		goto out;
1515 
1516 	reloc_root = root->reloc_root;
1517 	root_item = &reloc_root->root_item;
1518 
1519 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1520 	    btrfs_root_refs(root_item) == 0) {
1521 		root->reloc_root = NULL;
1522 		__del_reloc_root(reloc_root);
1523 	}
1524 
1525 	if (reloc_root->commit_root != reloc_root->node) {
1526 		btrfs_set_root_node(root_item, reloc_root->node);
1527 		free_extent_buffer(reloc_root->commit_root);
1528 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1529 	}
1530 
1531 	ret = btrfs_update_root(trans, fs_info->tree_root,
1532 				&reloc_root->root_key, root_item);
1533 	BUG_ON(ret);
1534 
1535 out:
1536 	return 0;
1537 }
1538 
1539 /*
1540  * helper to find first cached inode with inode number >= objectid
1541  * in a subvolume
1542  */
1543 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1544 {
1545 	struct rb_node *node;
1546 	struct rb_node *prev;
1547 	struct btrfs_inode *entry;
1548 	struct inode *inode;
1549 
1550 	spin_lock(&root->inode_lock);
1551 again:
1552 	node = root->inode_tree.rb_node;
1553 	prev = NULL;
1554 	while (node) {
1555 		prev = node;
1556 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1557 
1558 		if (objectid < btrfs_ino(entry))
1559 			node = node->rb_left;
1560 		else if (objectid > btrfs_ino(entry))
1561 			node = node->rb_right;
1562 		else
1563 			break;
1564 	}
1565 	if (!node) {
1566 		while (prev) {
1567 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1568 			if (objectid <= btrfs_ino(entry)) {
1569 				node = prev;
1570 				break;
1571 			}
1572 			prev = rb_next(prev);
1573 		}
1574 	}
1575 	while (node) {
1576 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1577 		inode = igrab(&entry->vfs_inode);
1578 		if (inode) {
1579 			spin_unlock(&root->inode_lock);
1580 			return inode;
1581 		}
1582 
1583 		objectid = btrfs_ino(entry) + 1;
1584 		if (cond_resched_lock(&root->inode_lock))
1585 			goto again;
1586 
1587 		node = rb_next(node);
1588 	}
1589 	spin_unlock(&root->inode_lock);
1590 	return NULL;
1591 }
1592 
1593 static int in_block_group(u64 bytenr,
1594 			  struct btrfs_block_group_cache *block_group)
1595 {
1596 	if (bytenr >= block_group->key.objectid &&
1597 	    bytenr < block_group->key.objectid + block_group->key.offset)
1598 		return 1;
1599 	return 0;
1600 }
1601 
1602 /*
1603  * get new location of data
1604  */
1605 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1606 			    u64 bytenr, u64 num_bytes)
1607 {
1608 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1609 	struct btrfs_path *path;
1610 	struct btrfs_file_extent_item *fi;
1611 	struct extent_buffer *leaf;
1612 	int ret;
1613 
1614 	path = btrfs_alloc_path();
1615 	if (!path)
1616 		return -ENOMEM;
1617 
1618 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1619 	ret = btrfs_lookup_file_extent(NULL, root, path,
1620 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1621 	if (ret < 0)
1622 		goto out;
1623 	if (ret > 0) {
1624 		ret = -ENOENT;
1625 		goto out;
1626 	}
1627 
1628 	leaf = path->nodes[0];
1629 	fi = btrfs_item_ptr(leaf, path->slots[0],
1630 			    struct btrfs_file_extent_item);
1631 
1632 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1633 	       btrfs_file_extent_compression(leaf, fi) ||
1634 	       btrfs_file_extent_encryption(leaf, fi) ||
1635 	       btrfs_file_extent_other_encoding(leaf, fi));
1636 
1637 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1638 		ret = -EINVAL;
1639 		goto out;
1640 	}
1641 
1642 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1643 	ret = 0;
1644 out:
1645 	btrfs_free_path(path);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * update file extent items in the tree leaf to point to
1651  * the new locations.
1652  */
1653 static noinline_for_stack
1654 int replace_file_extents(struct btrfs_trans_handle *trans,
1655 			 struct reloc_control *rc,
1656 			 struct btrfs_root *root,
1657 			 struct extent_buffer *leaf)
1658 {
1659 	struct btrfs_fs_info *fs_info = root->fs_info;
1660 	struct btrfs_key key;
1661 	struct btrfs_file_extent_item *fi;
1662 	struct inode *inode = NULL;
1663 	u64 parent;
1664 	u64 bytenr;
1665 	u64 new_bytenr = 0;
1666 	u64 num_bytes;
1667 	u64 end;
1668 	u32 nritems;
1669 	u32 i;
1670 	int ret = 0;
1671 	int first = 1;
1672 	int dirty = 0;
1673 
1674 	if (rc->stage != UPDATE_DATA_PTRS)
1675 		return 0;
1676 
1677 	/* reloc trees always use full backref */
1678 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1679 		parent = leaf->start;
1680 	else
1681 		parent = 0;
1682 
1683 	nritems = btrfs_header_nritems(leaf);
1684 	for (i = 0; i < nritems; i++) {
1685 		cond_resched();
1686 		btrfs_item_key_to_cpu(leaf, &key, i);
1687 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1688 			continue;
1689 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1690 		if (btrfs_file_extent_type(leaf, fi) ==
1691 		    BTRFS_FILE_EXTENT_INLINE)
1692 			continue;
1693 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1694 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1695 		if (bytenr == 0)
1696 			continue;
1697 		if (!in_block_group(bytenr, rc->block_group))
1698 			continue;
1699 
1700 		/*
1701 		 * if we are modifying block in fs tree, wait for readpage
1702 		 * to complete and drop the extent cache
1703 		 */
1704 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1705 			if (first) {
1706 				inode = find_next_inode(root, key.objectid);
1707 				first = 0;
1708 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1709 				btrfs_add_delayed_iput(inode);
1710 				inode = find_next_inode(root, key.objectid);
1711 			}
1712 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1713 				end = key.offset +
1714 				      btrfs_file_extent_num_bytes(leaf, fi);
1715 				WARN_ON(!IS_ALIGNED(key.offset,
1716 						    fs_info->sectorsize));
1717 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1718 				end--;
1719 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1720 						      key.offset, end);
1721 				if (!ret)
1722 					continue;
1723 
1724 				btrfs_drop_extent_cache(BTRFS_I(inode),
1725 						key.offset,	end, 1);
1726 				unlock_extent(&BTRFS_I(inode)->io_tree,
1727 					      key.offset, end);
1728 			}
1729 		}
1730 
1731 		ret = get_new_location(rc->data_inode, &new_bytenr,
1732 				       bytenr, num_bytes);
1733 		if (ret) {
1734 			/*
1735 			 * Don't have to abort since we've not changed anything
1736 			 * in the file extent yet.
1737 			 */
1738 			break;
1739 		}
1740 
1741 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1742 		dirty = 1;
1743 
1744 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1745 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1746 					   num_bytes, parent,
1747 					   btrfs_header_owner(leaf),
1748 					   key.objectid, key.offset);
1749 		if (ret) {
1750 			btrfs_abort_transaction(trans, ret);
1751 			break;
1752 		}
1753 
1754 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1755 					parent, btrfs_header_owner(leaf),
1756 					key.objectid, key.offset);
1757 		if (ret) {
1758 			btrfs_abort_transaction(trans, ret);
1759 			break;
1760 		}
1761 	}
1762 	if (dirty)
1763 		btrfs_mark_buffer_dirty(leaf);
1764 	if (inode)
1765 		btrfs_add_delayed_iput(inode);
1766 	return ret;
1767 }
1768 
1769 static noinline_for_stack
1770 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1771 		     struct btrfs_path *path, int level)
1772 {
1773 	struct btrfs_disk_key key1;
1774 	struct btrfs_disk_key key2;
1775 	btrfs_node_key(eb, &key1, slot);
1776 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1777 	return memcmp(&key1, &key2, sizeof(key1));
1778 }
1779 
1780 /*
1781  * try to replace tree blocks in fs tree with the new blocks
1782  * in reloc tree. tree blocks haven't been modified since the
1783  * reloc tree was create can be replaced.
1784  *
1785  * if a block was replaced, level of the block + 1 is returned.
1786  * if no block got replaced, 0 is returned. if there are other
1787  * errors, a negative error number is returned.
1788  */
1789 static noinline_for_stack
1790 int replace_path(struct btrfs_trans_handle *trans,
1791 		 struct btrfs_root *dest, struct btrfs_root *src,
1792 		 struct btrfs_path *path, struct btrfs_key *next_key,
1793 		 int lowest_level, int max_level)
1794 {
1795 	struct btrfs_fs_info *fs_info = dest->fs_info;
1796 	struct extent_buffer *eb;
1797 	struct extent_buffer *parent;
1798 	struct btrfs_key key;
1799 	u64 old_bytenr;
1800 	u64 new_bytenr;
1801 	u64 old_ptr_gen;
1802 	u64 new_ptr_gen;
1803 	u64 last_snapshot;
1804 	u32 blocksize;
1805 	int cow = 0;
1806 	int level;
1807 	int ret;
1808 	int slot;
1809 
1810 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1811 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1812 
1813 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1814 again:
1815 	slot = path->slots[lowest_level];
1816 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1817 
1818 	eb = btrfs_lock_root_node(dest);
1819 	btrfs_set_lock_blocking(eb);
1820 	level = btrfs_header_level(eb);
1821 
1822 	if (level < lowest_level) {
1823 		btrfs_tree_unlock(eb);
1824 		free_extent_buffer(eb);
1825 		return 0;
1826 	}
1827 
1828 	if (cow) {
1829 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1830 		BUG_ON(ret);
1831 	}
1832 	btrfs_set_lock_blocking(eb);
1833 
1834 	if (next_key) {
1835 		next_key->objectid = (u64)-1;
1836 		next_key->type = (u8)-1;
1837 		next_key->offset = (u64)-1;
1838 	}
1839 
1840 	parent = eb;
1841 	while (1) {
1842 		struct btrfs_key first_key;
1843 
1844 		level = btrfs_header_level(parent);
1845 		BUG_ON(level < lowest_level);
1846 
1847 		ret = btrfs_bin_search(parent, &key, level, &slot);
1848 		if (ret && slot > 0)
1849 			slot--;
1850 
1851 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1852 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1853 
1854 		old_bytenr = btrfs_node_blockptr(parent, slot);
1855 		blocksize = fs_info->nodesize;
1856 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1857 		btrfs_node_key_to_cpu(parent, &key, slot);
1858 
1859 		if (level <= max_level) {
1860 			eb = path->nodes[level];
1861 			new_bytenr = btrfs_node_blockptr(eb,
1862 							path->slots[level]);
1863 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1864 							path->slots[level]);
1865 		} else {
1866 			new_bytenr = 0;
1867 			new_ptr_gen = 0;
1868 		}
1869 
1870 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1871 			ret = level;
1872 			break;
1873 		}
1874 
1875 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1876 		    memcmp_node_keys(parent, slot, path, level)) {
1877 			if (level <= lowest_level) {
1878 				ret = 0;
1879 				break;
1880 			}
1881 
1882 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1883 					     level - 1, &first_key);
1884 			if (IS_ERR(eb)) {
1885 				ret = PTR_ERR(eb);
1886 				break;
1887 			} else if (!extent_buffer_uptodate(eb)) {
1888 				ret = -EIO;
1889 				free_extent_buffer(eb);
1890 				break;
1891 			}
1892 			btrfs_tree_lock(eb);
1893 			if (cow) {
1894 				ret = btrfs_cow_block(trans, dest, eb, parent,
1895 						      slot, &eb);
1896 				BUG_ON(ret);
1897 			}
1898 			btrfs_set_lock_blocking(eb);
1899 
1900 			btrfs_tree_unlock(parent);
1901 			free_extent_buffer(parent);
1902 
1903 			parent = eb;
1904 			continue;
1905 		}
1906 
1907 		if (!cow) {
1908 			btrfs_tree_unlock(parent);
1909 			free_extent_buffer(parent);
1910 			cow = 1;
1911 			goto again;
1912 		}
1913 
1914 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1915 				      path->slots[level]);
1916 		btrfs_release_path(path);
1917 
1918 		path->lowest_level = level;
1919 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1920 		path->lowest_level = 0;
1921 		BUG_ON(ret);
1922 
1923 		/*
1924 		 * Info qgroup to trace both subtrees.
1925 		 *
1926 		 * We must trace both trees.
1927 		 * 1) Tree reloc subtree
1928 		 *    If not traced, we will leak data numbers
1929 		 * 2) Fs subtree
1930 		 *    If not traced, we will double count old data
1931 		 *    and tree block numbers, if current trans doesn't free
1932 		 *    data reloc tree inode.
1933 		 */
1934 		ret = btrfs_qgroup_trace_subtree(trans, src, parent,
1935 				btrfs_header_generation(parent),
1936 				btrfs_header_level(parent));
1937 		if (ret < 0)
1938 			break;
1939 		ret = btrfs_qgroup_trace_subtree(trans, dest,
1940 				path->nodes[level],
1941 				btrfs_header_generation(path->nodes[level]),
1942 				btrfs_header_level(path->nodes[level]));
1943 		if (ret < 0)
1944 			break;
1945 
1946 		/*
1947 		 * swap blocks in fs tree and reloc tree.
1948 		 */
1949 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1950 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1951 		btrfs_mark_buffer_dirty(parent);
1952 
1953 		btrfs_set_node_blockptr(path->nodes[level],
1954 					path->slots[level], old_bytenr);
1955 		btrfs_set_node_ptr_generation(path->nodes[level],
1956 					      path->slots[level], old_ptr_gen);
1957 		btrfs_mark_buffer_dirty(path->nodes[level]);
1958 
1959 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1960 					blocksize, path->nodes[level]->start,
1961 					src->root_key.objectid, level - 1, 0);
1962 		BUG_ON(ret);
1963 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1964 					blocksize, 0, dest->root_key.objectid,
1965 					level - 1, 0);
1966 		BUG_ON(ret);
1967 
1968 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1969 					path->nodes[level]->start,
1970 					src->root_key.objectid, level - 1, 0);
1971 		BUG_ON(ret);
1972 
1973 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1974 					0, dest->root_key.objectid, level - 1,
1975 					0);
1976 		BUG_ON(ret);
1977 
1978 		btrfs_unlock_up_safe(path, 0);
1979 
1980 		ret = level;
1981 		break;
1982 	}
1983 	btrfs_tree_unlock(parent);
1984 	free_extent_buffer(parent);
1985 	return ret;
1986 }
1987 
1988 /*
1989  * helper to find next relocated block in reloc tree
1990  */
1991 static noinline_for_stack
1992 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1993 		       int *level)
1994 {
1995 	struct extent_buffer *eb;
1996 	int i;
1997 	u64 last_snapshot;
1998 	u32 nritems;
1999 
2000 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2001 
2002 	for (i = 0; i < *level; i++) {
2003 		free_extent_buffer(path->nodes[i]);
2004 		path->nodes[i] = NULL;
2005 	}
2006 
2007 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
2008 		eb = path->nodes[i];
2009 		nritems = btrfs_header_nritems(eb);
2010 		while (path->slots[i] + 1 < nritems) {
2011 			path->slots[i]++;
2012 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
2013 			    last_snapshot)
2014 				continue;
2015 
2016 			*level = i;
2017 			return 0;
2018 		}
2019 		free_extent_buffer(path->nodes[i]);
2020 		path->nodes[i] = NULL;
2021 	}
2022 	return 1;
2023 }
2024 
2025 /*
2026  * walk down reloc tree to find relocated block of lowest level
2027  */
2028 static noinline_for_stack
2029 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
2030 			 int *level)
2031 {
2032 	struct btrfs_fs_info *fs_info = root->fs_info;
2033 	struct extent_buffer *eb = NULL;
2034 	int i;
2035 	u64 bytenr;
2036 	u64 ptr_gen = 0;
2037 	u64 last_snapshot;
2038 	u32 nritems;
2039 
2040 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2041 
2042 	for (i = *level; i > 0; i--) {
2043 		struct btrfs_key first_key;
2044 
2045 		eb = path->nodes[i];
2046 		nritems = btrfs_header_nritems(eb);
2047 		while (path->slots[i] < nritems) {
2048 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2049 			if (ptr_gen > last_snapshot)
2050 				break;
2051 			path->slots[i]++;
2052 		}
2053 		if (path->slots[i] >= nritems) {
2054 			if (i == *level)
2055 				break;
2056 			*level = i + 1;
2057 			return 0;
2058 		}
2059 		if (i == 1) {
2060 			*level = i;
2061 			return 0;
2062 		}
2063 
2064 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2065 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2066 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2067 				     &first_key);
2068 		if (IS_ERR(eb)) {
2069 			return PTR_ERR(eb);
2070 		} else if (!extent_buffer_uptodate(eb)) {
2071 			free_extent_buffer(eb);
2072 			return -EIO;
2073 		}
2074 		BUG_ON(btrfs_header_level(eb) != i - 1);
2075 		path->nodes[i - 1] = eb;
2076 		path->slots[i - 1] = 0;
2077 	}
2078 	return 1;
2079 }
2080 
2081 /*
2082  * invalidate extent cache for file extents whose key in range of
2083  * [min_key, max_key)
2084  */
2085 static int invalidate_extent_cache(struct btrfs_root *root,
2086 				   struct btrfs_key *min_key,
2087 				   struct btrfs_key *max_key)
2088 {
2089 	struct btrfs_fs_info *fs_info = root->fs_info;
2090 	struct inode *inode = NULL;
2091 	u64 objectid;
2092 	u64 start, end;
2093 	u64 ino;
2094 
2095 	objectid = min_key->objectid;
2096 	while (1) {
2097 		cond_resched();
2098 		iput(inode);
2099 
2100 		if (objectid > max_key->objectid)
2101 			break;
2102 
2103 		inode = find_next_inode(root, objectid);
2104 		if (!inode)
2105 			break;
2106 		ino = btrfs_ino(BTRFS_I(inode));
2107 
2108 		if (ino > max_key->objectid) {
2109 			iput(inode);
2110 			break;
2111 		}
2112 
2113 		objectid = ino + 1;
2114 		if (!S_ISREG(inode->i_mode))
2115 			continue;
2116 
2117 		if (unlikely(min_key->objectid == ino)) {
2118 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2119 				continue;
2120 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2121 				start = 0;
2122 			else {
2123 				start = min_key->offset;
2124 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2125 			}
2126 		} else {
2127 			start = 0;
2128 		}
2129 
2130 		if (unlikely(max_key->objectid == ino)) {
2131 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2132 				continue;
2133 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2134 				end = (u64)-1;
2135 			} else {
2136 				if (max_key->offset == 0)
2137 					continue;
2138 				end = max_key->offset;
2139 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2140 				end--;
2141 			}
2142 		} else {
2143 			end = (u64)-1;
2144 		}
2145 
2146 		/* the lock_extent waits for readpage to complete */
2147 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2148 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2149 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2150 	}
2151 	return 0;
2152 }
2153 
2154 static int find_next_key(struct btrfs_path *path, int level,
2155 			 struct btrfs_key *key)
2156 
2157 {
2158 	while (level < BTRFS_MAX_LEVEL) {
2159 		if (!path->nodes[level])
2160 			break;
2161 		if (path->slots[level] + 1 <
2162 		    btrfs_header_nritems(path->nodes[level])) {
2163 			btrfs_node_key_to_cpu(path->nodes[level], key,
2164 					      path->slots[level] + 1);
2165 			return 0;
2166 		}
2167 		level++;
2168 	}
2169 	return 1;
2170 }
2171 
2172 /*
2173  * merge the relocated tree blocks in reloc tree with corresponding
2174  * fs tree.
2175  */
2176 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2177 					       struct btrfs_root *root)
2178 {
2179 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2180 	LIST_HEAD(inode_list);
2181 	struct btrfs_key key;
2182 	struct btrfs_key next_key;
2183 	struct btrfs_trans_handle *trans = NULL;
2184 	struct btrfs_root *reloc_root;
2185 	struct btrfs_root_item *root_item;
2186 	struct btrfs_path *path;
2187 	struct extent_buffer *leaf;
2188 	int level;
2189 	int max_level;
2190 	int replaced = 0;
2191 	int ret;
2192 	int err = 0;
2193 	u32 min_reserved;
2194 
2195 	path = btrfs_alloc_path();
2196 	if (!path)
2197 		return -ENOMEM;
2198 	path->reada = READA_FORWARD;
2199 
2200 	reloc_root = root->reloc_root;
2201 	root_item = &reloc_root->root_item;
2202 
2203 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2204 		level = btrfs_root_level(root_item);
2205 		extent_buffer_get(reloc_root->node);
2206 		path->nodes[level] = reloc_root->node;
2207 		path->slots[level] = 0;
2208 	} else {
2209 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2210 
2211 		level = root_item->drop_level;
2212 		BUG_ON(level == 0);
2213 		path->lowest_level = level;
2214 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2215 		path->lowest_level = 0;
2216 		if (ret < 0) {
2217 			btrfs_free_path(path);
2218 			return ret;
2219 		}
2220 
2221 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2222 				      path->slots[level]);
2223 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2224 
2225 		btrfs_unlock_up_safe(path, 0);
2226 	}
2227 
2228 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2229 	memset(&next_key, 0, sizeof(next_key));
2230 
2231 	while (1) {
2232 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2233 					     BTRFS_RESERVE_FLUSH_ALL);
2234 		if (ret) {
2235 			err = ret;
2236 			goto out;
2237 		}
2238 		trans = btrfs_start_transaction(root, 0);
2239 		if (IS_ERR(trans)) {
2240 			err = PTR_ERR(trans);
2241 			trans = NULL;
2242 			goto out;
2243 		}
2244 		trans->block_rsv = rc->block_rsv;
2245 
2246 		replaced = 0;
2247 		max_level = level;
2248 
2249 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2250 		if (ret < 0) {
2251 			err = ret;
2252 			goto out;
2253 		}
2254 		if (ret > 0)
2255 			break;
2256 
2257 		if (!find_next_key(path, level, &key) &&
2258 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2259 			ret = 0;
2260 		} else {
2261 			ret = replace_path(trans, root, reloc_root, path,
2262 					   &next_key, level, max_level);
2263 		}
2264 		if (ret < 0) {
2265 			err = ret;
2266 			goto out;
2267 		}
2268 
2269 		if (ret > 0) {
2270 			level = ret;
2271 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2272 					      path->slots[level]);
2273 			replaced = 1;
2274 		}
2275 
2276 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2277 		if (ret > 0)
2278 			break;
2279 
2280 		BUG_ON(level == 0);
2281 		/*
2282 		 * save the merging progress in the drop_progress.
2283 		 * this is OK since root refs == 1 in this case.
2284 		 */
2285 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2286 			       path->slots[level]);
2287 		root_item->drop_level = level;
2288 
2289 		btrfs_end_transaction_throttle(trans);
2290 		trans = NULL;
2291 
2292 		btrfs_btree_balance_dirty(fs_info);
2293 
2294 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2295 			invalidate_extent_cache(root, &key, &next_key);
2296 	}
2297 
2298 	/*
2299 	 * handle the case only one block in the fs tree need to be
2300 	 * relocated and the block is tree root.
2301 	 */
2302 	leaf = btrfs_lock_root_node(root);
2303 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2304 	btrfs_tree_unlock(leaf);
2305 	free_extent_buffer(leaf);
2306 	if (ret < 0)
2307 		err = ret;
2308 out:
2309 	btrfs_free_path(path);
2310 
2311 	if (err == 0) {
2312 		memset(&root_item->drop_progress, 0,
2313 		       sizeof(root_item->drop_progress));
2314 		root_item->drop_level = 0;
2315 		btrfs_set_root_refs(root_item, 0);
2316 		btrfs_update_reloc_root(trans, root);
2317 	}
2318 
2319 	if (trans)
2320 		btrfs_end_transaction_throttle(trans);
2321 
2322 	btrfs_btree_balance_dirty(fs_info);
2323 
2324 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2325 		invalidate_extent_cache(root, &key, &next_key);
2326 
2327 	return err;
2328 }
2329 
2330 static noinline_for_stack
2331 int prepare_to_merge(struct reloc_control *rc, int err)
2332 {
2333 	struct btrfs_root *root = rc->extent_root;
2334 	struct btrfs_fs_info *fs_info = root->fs_info;
2335 	struct btrfs_root *reloc_root;
2336 	struct btrfs_trans_handle *trans;
2337 	LIST_HEAD(reloc_roots);
2338 	u64 num_bytes = 0;
2339 	int ret;
2340 
2341 	mutex_lock(&fs_info->reloc_mutex);
2342 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2343 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2344 	mutex_unlock(&fs_info->reloc_mutex);
2345 
2346 again:
2347 	if (!err) {
2348 		num_bytes = rc->merging_rsv_size;
2349 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2350 					  BTRFS_RESERVE_FLUSH_ALL);
2351 		if (ret)
2352 			err = ret;
2353 	}
2354 
2355 	trans = btrfs_join_transaction(rc->extent_root);
2356 	if (IS_ERR(trans)) {
2357 		if (!err)
2358 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2359 						num_bytes);
2360 		return PTR_ERR(trans);
2361 	}
2362 
2363 	if (!err) {
2364 		if (num_bytes != rc->merging_rsv_size) {
2365 			btrfs_end_transaction(trans);
2366 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2367 						num_bytes);
2368 			goto again;
2369 		}
2370 	}
2371 
2372 	rc->merge_reloc_tree = 1;
2373 
2374 	while (!list_empty(&rc->reloc_roots)) {
2375 		reloc_root = list_entry(rc->reloc_roots.next,
2376 					struct btrfs_root, root_list);
2377 		list_del_init(&reloc_root->root_list);
2378 
2379 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2380 		BUG_ON(IS_ERR(root));
2381 		BUG_ON(root->reloc_root != reloc_root);
2382 
2383 		/*
2384 		 * set reference count to 1, so btrfs_recover_relocation
2385 		 * knows it should resumes merging
2386 		 */
2387 		if (!err)
2388 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2389 		btrfs_update_reloc_root(trans, root);
2390 
2391 		list_add(&reloc_root->root_list, &reloc_roots);
2392 	}
2393 
2394 	list_splice(&reloc_roots, &rc->reloc_roots);
2395 
2396 	if (!err)
2397 		btrfs_commit_transaction(trans);
2398 	else
2399 		btrfs_end_transaction(trans);
2400 	return err;
2401 }
2402 
2403 static noinline_for_stack
2404 void free_reloc_roots(struct list_head *list)
2405 {
2406 	struct btrfs_root *reloc_root;
2407 
2408 	while (!list_empty(list)) {
2409 		reloc_root = list_entry(list->next, struct btrfs_root,
2410 					root_list);
2411 		__del_reloc_root(reloc_root);
2412 		free_extent_buffer(reloc_root->node);
2413 		free_extent_buffer(reloc_root->commit_root);
2414 		reloc_root->node = NULL;
2415 		reloc_root->commit_root = NULL;
2416 	}
2417 }
2418 
2419 static noinline_for_stack
2420 void merge_reloc_roots(struct reloc_control *rc)
2421 {
2422 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2423 	struct btrfs_root *root;
2424 	struct btrfs_root *reloc_root;
2425 	LIST_HEAD(reloc_roots);
2426 	int found = 0;
2427 	int ret = 0;
2428 again:
2429 	root = rc->extent_root;
2430 
2431 	/*
2432 	 * this serializes us with btrfs_record_root_in_transaction,
2433 	 * we have to make sure nobody is in the middle of
2434 	 * adding their roots to the list while we are
2435 	 * doing this splice
2436 	 */
2437 	mutex_lock(&fs_info->reloc_mutex);
2438 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2439 	mutex_unlock(&fs_info->reloc_mutex);
2440 
2441 	while (!list_empty(&reloc_roots)) {
2442 		found = 1;
2443 		reloc_root = list_entry(reloc_roots.next,
2444 					struct btrfs_root, root_list);
2445 
2446 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2447 			root = read_fs_root(fs_info,
2448 					    reloc_root->root_key.offset);
2449 			BUG_ON(IS_ERR(root));
2450 			BUG_ON(root->reloc_root != reloc_root);
2451 
2452 			ret = merge_reloc_root(rc, root);
2453 			if (ret) {
2454 				if (list_empty(&reloc_root->root_list))
2455 					list_add_tail(&reloc_root->root_list,
2456 						      &reloc_roots);
2457 				goto out;
2458 			}
2459 		} else {
2460 			list_del_init(&reloc_root->root_list);
2461 		}
2462 
2463 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2464 		if (ret < 0) {
2465 			if (list_empty(&reloc_root->root_list))
2466 				list_add_tail(&reloc_root->root_list,
2467 					      &reloc_roots);
2468 			goto out;
2469 		}
2470 	}
2471 
2472 	if (found) {
2473 		found = 0;
2474 		goto again;
2475 	}
2476 out:
2477 	if (ret) {
2478 		btrfs_handle_fs_error(fs_info, ret, NULL);
2479 		if (!list_empty(&reloc_roots))
2480 			free_reloc_roots(&reloc_roots);
2481 
2482 		/* new reloc root may be added */
2483 		mutex_lock(&fs_info->reloc_mutex);
2484 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2485 		mutex_unlock(&fs_info->reloc_mutex);
2486 		if (!list_empty(&reloc_roots))
2487 			free_reloc_roots(&reloc_roots);
2488 	}
2489 
2490 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2491 }
2492 
2493 static void free_block_list(struct rb_root *blocks)
2494 {
2495 	struct tree_block *block;
2496 	struct rb_node *rb_node;
2497 	while ((rb_node = rb_first(blocks))) {
2498 		block = rb_entry(rb_node, struct tree_block, rb_node);
2499 		rb_erase(rb_node, blocks);
2500 		kfree(block);
2501 	}
2502 }
2503 
2504 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2505 				      struct btrfs_root *reloc_root)
2506 {
2507 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2508 	struct btrfs_root *root;
2509 
2510 	if (reloc_root->last_trans == trans->transid)
2511 		return 0;
2512 
2513 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2514 	BUG_ON(IS_ERR(root));
2515 	BUG_ON(root->reloc_root != reloc_root);
2516 
2517 	return btrfs_record_root_in_trans(trans, root);
2518 }
2519 
2520 static noinline_for_stack
2521 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2522 				     struct reloc_control *rc,
2523 				     struct backref_node *node,
2524 				     struct backref_edge *edges[])
2525 {
2526 	struct backref_node *next;
2527 	struct btrfs_root *root;
2528 	int index = 0;
2529 
2530 	next = node;
2531 	while (1) {
2532 		cond_resched();
2533 		next = walk_up_backref(next, edges, &index);
2534 		root = next->root;
2535 		BUG_ON(!root);
2536 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2537 
2538 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2539 			record_reloc_root_in_trans(trans, root);
2540 			break;
2541 		}
2542 
2543 		btrfs_record_root_in_trans(trans, root);
2544 		root = root->reloc_root;
2545 
2546 		if (next->new_bytenr != root->node->start) {
2547 			BUG_ON(next->new_bytenr);
2548 			BUG_ON(!list_empty(&next->list));
2549 			next->new_bytenr = root->node->start;
2550 			next->root = root;
2551 			list_add_tail(&next->list,
2552 				      &rc->backref_cache.changed);
2553 			__mark_block_processed(rc, next);
2554 			break;
2555 		}
2556 
2557 		WARN_ON(1);
2558 		root = NULL;
2559 		next = walk_down_backref(edges, &index);
2560 		if (!next || next->level <= node->level)
2561 			break;
2562 	}
2563 	if (!root)
2564 		return NULL;
2565 
2566 	next = node;
2567 	/* setup backref node path for btrfs_reloc_cow_block */
2568 	while (1) {
2569 		rc->backref_cache.path[next->level] = next;
2570 		if (--index < 0)
2571 			break;
2572 		next = edges[index]->node[UPPER];
2573 	}
2574 	return root;
2575 }
2576 
2577 /*
2578  * select a tree root for relocation. return NULL if the block
2579  * is reference counted. we should use do_relocation() in this
2580  * case. return a tree root pointer if the block isn't reference
2581  * counted. return -ENOENT if the block is root of reloc tree.
2582  */
2583 static noinline_for_stack
2584 struct btrfs_root *select_one_root(struct backref_node *node)
2585 {
2586 	struct backref_node *next;
2587 	struct btrfs_root *root;
2588 	struct btrfs_root *fs_root = NULL;
2589 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2590 	int index = 0;
2591 
2592 	next = node;
2593 	while (1) {
2594 		cond_resched();
2595 		next = walk_up_backref(next, edges, &index);
2596 		root = next->root;
2597 		BUG_ON(!root);
2598 
2599 		/* no other choice for non-references counted tree */
2600 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2601 			return root;
2602 
2603 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2604 			fs_root = root;
2605 
2606 		if (next != node)
2607 			return NULL;
2608 
2609 		next = walk_down_backref(edges, &index);
2610 		if (!next || next->level <= node->level)
2611 			break;
2612 	}
2613 
2614 	if (!fs_root)
2615 		return ERR_PTR(-ENOENT);
2616 	return fs_root;
2617 }
2618 
2619 static noinline_for_stack
2620 u64 calcu_metadata_size(struct reloc_control *rc,
2621 			struct backref_node *node, int reserve)
2622 {
2623 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2624 	struct backref_node *next = node;
2625 	struct backref_edge *edge;
2626 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2627 	u64 num_bytes = 0;
2628 	int index = 0;
2629 
2630 	BUG_ON(reserve && node->processed);
2631 
2632 	while (next) {
2633 		cond_resched();
2634 		while (1) {
2635 			if (next->processed && (reserve || next != node))
2636 				break;
2637 
2638 			num_bytes += fs_info->nodesize;
2639 
2640 			if (list_empty(&next->upper))
2641 				break;
2642 
2643 			edge = list_entry(next->upper.next,
2644 					  struct backref_edge, list[LOWER]);
2645 			edges[index++] = edge;
2646 			next = edge->node[UPPER];
2647 		}
2648 		next = walk_down_backref(edges, &index);
2649 	}
2650 	return num_bytes;
2651 }
2652 
2653 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2654 				  struct reloc_control *rc,
2655 				  struct backref_node *node)
2656 {
2657 	struct btrfs_root *root = rc->extent_root;
2658 	struct btrfs_fs_info *fs_info = root->fs_info;
2659 	u64 num_bytes;
2660 	int ret;
2661 	u64 tmp;
2662 
2663 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2664 
2665 	trans->block_rsv = rc->block_rsv;
2666 	rc->reserved_bytes += num_bytes;
2667 
2668 	/*
2669 	 * We are under a transaction here so we can only do limited flushing.
2670 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2671 	 * transaction and try to refill when we can flush all the things.
2672 	 */
2673 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2674 				BTRFS_RESERVE_FLUSH_LIMIT);
2675 	if (ret) {
2676 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2677 		while (tmp <= rc->reserved_bytes)
2678 			tmp <<= 1;
2679 		/*
2680 		 * only one thread can access block_rsv at this point,
2681 		 * so we don't need hold lock to protect block_rsv.
2682 		 * we expand more reservation size here to allow enough
2683 		 * space for relocation and we will return eailer in
2684 		 * enospc case.
2685 		 */
2686 		rc->block_rsv->size = tmp + fs_info->nodesize *
2687 				      RELOCATION_RESERVED_NODES;
2688 		return -EAGAIN;
2689 	}
2690 
2691 	return 0;
2692 }
2693 
2694 /*
2695  * relocate a block tree, and then update pointers in upper level
2696  * blocks that reference the block to point to the new location.
2697  *
2698  * if called by link_to_upper, the block has already been relocated.
2699  * in that case this function just updates pointers.
2700  */
2701 static int do_relocation(struct btrfs_trans_handle *trans,
2702 			 struct reloc_control *rc,
2703 			 struct backref_node *node,
2704 			 struct btrfs_key *key,
2705 			 struct btrfs_path *path, int lowest)
2706 {
2707 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2708 	struct backref_node *upper;
2709 	struct backref_edge *edge;
2710 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2711 	struct btrfs_root *root;
2712 	struct extent_buffer *eb;
2713 	u32 blocksize;
2714 	u64 bytenr;
2715 	u64 generation;
2716 	int slot;
2717 	int ret;
2718 	int err = 0;
2719 
2720 	BUG_ON(lowest && node->eb);
2721 
2722 	path->lowest_level = node->level + 1;
2723 	rc->backref_cache.path[node->level] = node;
2724 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2725 		struct btrfs_key first_key;
2726 
2727 		cond_resched();
2728 
2729 		upper = edge->node[UPPER];
2730 		root = select_reloc_root(trans, rc, upper, edges);
2731 		BUG_ON(!root);
2732 
2733 		if (upper->eb && !upper->locked) {
2734 			if (!lowest) {
2735 				ret = btrfs_bin_search(upper->eb, key,
2736 						       upper->level, &slot);
2737 				BUG_ON(ret);
2738 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2739 				if (node->eb->start == bytenr)
2740 					goto next;
2741 			}
2742 			drop_node_buffer(upper);
2743 		}
2744 
2745 		if (!upper->eb) {
2746 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2747 			if (ret) {
2748 				if (ret < 0)
2749 					err = ret;
2750 				else
2751 					err = -ENOENT;
2752 
2753 				btrfs_release_path(path);
2754 				break;
2755 			}
2756 
2757 			if (!upper->eb) {
2758 				upper->eb = path->nodes[upper->level];
2759 				path->nodes[upper->level] = NULL;
2760 			} else {
2761 				BUG_ON(upper->eb != path->nodes[upper->level]);
2762 			}
2763 
2764 			upper->locked = 1;
2765 			path->locks[upper->level] = 0;
2766 
2767 			slot = path->slots[upper->level];
2768 			btrfs_release_path(path);
2769 		} else {
2770 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2771 					       &slot);
2772 			BUG_ON(ret);
2773 		}
2774 
2775 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2776 		if (lowest) {
2777 			if (bytenr != node->bytenr) {
2778 				btrfs_err(root->fs_info,
2779 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2780 					  bytenr, node->bytenr, slot,
2781 					  upper->eb->start);
2782 				err = -EIO;
2783 				goto next;
2784 			}
2785 		} else {
2786 			if (node->eb->start == bytenr)
2787 				goto next;
2788 		}
2789 
2790 		blocksize = root->fs_info->nodesize;
2791 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2792 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2793 		eb = read_tree_block(fs_info, bytenr, generation,
2794 				     upper->level - 1, &first_key);
2795 		if (IS_ERR(eb)) {
2796 			err = PTR_ERR(eb);
2797 			goto next;
2798 		} else if (!extent_buffer_uptodate(eb)) {
2799 			free_extent_buffer(eb);
2800 			err = -EIO;
2801 			goto next;
2802 		}
2803 		btrfs_tree_lock(eb);
2804 		btrfs_set_lock_blocking(eb);
2805 
2806 		if (!node->eb) {
2807 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2808 					      slot, &eb);
2809 			btrfs_tree_unlock(eb);
2810 			free_extent_buffer(eb);
2811 			if (ret < 0) {
2812 				err = ret;
2813 				goto next;
2814 			}
2815 			BUG_ON(node->eb != eb);
2816 		} else {
2817 			btrfs_set_node_blockptr(upper->eb, slot,
2818 						node->eb->start);
2819 			btrfs_set_node_ptr_generation(upper->eb, slot,
2820 						      trans->transid);
2821 			btrfs_mark_buffer_dirty(upper->eb);
2822 
2823 			ret = btrfs_inc_extent_ref(trans, root,
2824 						node->eb->start, blocksize,
2825 						upper->eb->start,
2826 						btrfs_header_owner(upper->eb),
2827 						node->level, 0);
2828 			BUG_ON(ret);
2829 
2830 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2831 			BUG_ON(ret);
2832 		}
2833 next:
2834 		if (!upper->pending)
2835 			drop_node_buffer(upper);
2836 		else
2837 			unlock_node_buffer(upper);
2838 		if (err)
2839 			break;
2840 	}
2841 
2842 	if (!err && node->pending) {
2843 		drop_node_buffer(node);
2844 		list_move_tail(&node->list, &rc->backref_cache.changed);
2845 		node->pending = 0;
2846 	}
2847 
2848 	path->lowest_level = 0;
2849 	BUG_ON(err == -ENOSPC);
2850 	return err;
2851 }
2852 
2853 static int link_to_upper(struct btrfs_trans_handle *trans,
2854 			 struct reloc_control *rc,
2855 			 struct backref_node *node,
2856 			 struct btrfs_path *path)
2857 {
2858 	struct btrfs_key key;
2859 
2860 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2861 	return do_relocation(trans, rc, node, &key, path, 0);
2862 }
2863 
2864 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2865 				struct reloc_control *rc,
2866 				struct btrfs_path *path, int err)
2867 {
2868 	LIST_HEAD(list);
2869 	struct backref_cache *cache = &rc->backref_cache;
2870 	struct backref_node *node;
2871 	int level;
2872 	int ret;
2873 
2874 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2875 		while (!list_empty(&cache->pending[level])) {
2876 			node = list_entry(cache->pending[level].next,
2877 					  struct backref_node, list);
2878 			list_move_tail(&node->list, &list);
2879 			BUG_ON(!node->pending);
2880 
2881 			if (!err) {
2882 				ret = link_to_upper(trans, rc, node, path);
2883 				if (ret < 0)
2884 					err = ret;
2885 			}
2886 		}
2887 		list_splice_init(&list, &cache->pending[level]);
2888 	}
2889 	return err;
2890 }
2891 
2892 static void mark_block_processed(struct reloc_control *rc,
2893 				 u64 bytenr, u32 blocksize)
2894 {
2895 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2896 			EXTENT_DIRTY);
2897 }
2898 
2899 static void __mark_block_processed(struct reloc_control *rc,
2900 				   struct backref_node *node)
2901 {
2902 	u32 blocksize;
2903 	if (node->level == 0 ||
2904 	    in_block_group(node->bytenr, rc->block_group)) {
2905 		blocksize = rc->extent_root->fs_info->nodesize;
2906 		mark_block_processed(rc, node->bytenr, blocksize);
2907 	}
2908 	node->processed = 1;
2909 }
2910 
2911 /*
2912  * mark a block and all blocks directly/indirectly reference the block
2913  * as processed.
2914  */
2915 static void update_processed_blocks(struct reloc_control *rc,
2916 				    struct backref_node *node)
2917 {
2918 	struct backref_node *next = node;
2919 	struct backref_edge *edge;
2920 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2921 	int index = 0;
2922 
2923 	while (next) {
2924 		cond_resched();
2925 		while (1) {
2926 			if (next->processed)
2927 				break;
2928 
2929 			__mark_block_processed(rc, next);
2930 
2931 			if (list_empty(&next->upper))
2932 				break;
2933 
2934 			edge = list_entry(next->upper.next,
2935 					  struct backref_edge, list[LOWER]);
2936 			edges[index++] = edge;
2937 			next = edge->node[UPPER];
2938 		}
2939 		next = walk_down_backref(edges, &index);
2940 	}
2941 }
2942 
2943 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2944 {
2945 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2946 
2947 	if (test_range_bit(&rc->processed_blocks, bytenr,
2948 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2949 		return 1;
2950 	return 0;
2951 }
2952 
2953 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2954 			      struct tree_block *block)
2955 {
2956 	struct extent_buffer *eb;
2957 
2958 	BUG_ON(block->key_ready);
2959 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2960 			     block->level, NULL);
2961 	if (IS_ERR(eb)) {
2962 		return PTR_ERR(eb);
2963 	} else if (!extent_buffer_uptodate(eb)) {
2964 		free_extent_buffer(eb);
2965 		return -EIO;
2966 	}
2967 	WARN_ON(btrfs_header_level(eb) != block->level);
2968 	if (block->level == 0)
2969 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2970 	else
2971 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2972 	free_extent_buffer(eb);
2973 	block->key_ready = 1;
2974 	return 0;
2975 }
2976 
2977 /*
2978  * helper function to relocate a tree block
2979  */
2980 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2981 				struct reloc_control *rc,
2982 				struct backref_node *node,
2983 				struct btrfs_key *key,
2984 				struct btrfs_path *path)
2985 {
2986 	struct btrfs_root *root;
2987 	int ret = 0;
2988 
2989 	if (!node)
2990 		return 0;
2991 
2992 	BUG_ON(node->processed);
2993 	root = select_one_root(node);
2994 	if (root == ERR_PTR(-ENOENT)) {
2995 		update_processed_blocks(rc, node);
2996 		goto out;
2997 	}
2998 
2999 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3000 		ret = reserve_metadata_space(trans, rc, node);
3001 		if (ret)
3002 			goto out;
3003 	}
3004 
3005 	if (root) {
3006 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3007 			BUG_ON(node->new_bytenr);
3008 			BUG_ON(!list_empty(&node->list));
3009 			btrfs_record_root_in_trans(trans, root);
3010 			root = root->reloc_root;
3011 			node->new_bytenr = root->node->start;
3012 			node->root = root;
3013 			list_add_tail(&node->list, &rc->backref_cache.changed);
3014 		} else {
3015 			path->lowest_level = node->level;
3016 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3017 			btrfs_release_path(path);
3018 			if (ret > 0)
3019 				ret = 0;
3020 		}
3021 		if (!ret)
3022 			update_processed_blocks(rc, node);
3023 	} else {
3024 		ret = do_relocation(trans, rc, node, key, path, 1);
3025 	}
3026 out:
3027 	if (ret || node->level == 0 || node->cowonly)
3028 		remove_backref_node(&rc->backref_cache, node);
3029 	return ret;
3030 }
3031 
3032 /*
3033  * relocate a list of blocks
3034  */
3035 static noinline_for_stack
3036 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3037 			 struct reloc_control *rc, struct rb_root *blocks)
3038 {
3039 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3040 	struct backref_node *node;
3041 	struct btrfs_path *path;
3042 	struct tree_block *block;
3043 	struct rb_node *rb_node;
3044 	int ret;
3045 	int err = 0;
3046 
3047 	path = btrfs_alloc_path();
3048 	if (!path) {
3049 		err = -ENOMEM;
3050 		goto out_free_blocks;
3051 	}
3052 
3053 	rb_node = rb_first(blocks);
3054 	while (rb_node) {
3055 		block = rb_entry(rb_node, struct tree_block, rb_node);
3056 		if (!block->key_ready)
3057 			readahead_tree_block(fs_info, block->bytenr);
3058 		rb_node = rb_next(rb_node);
3059 	}
3060 
3061 	rb_node = rb_first(blocks);
3062 	while (rb_node) {
3063 		block = rb_entry(rb_node, struct tree_block, rb_node);
3064 		if (!block->key_ready) {
3065 			err = get_tree_block_key(fs_info, block);
3066 			if (err)
3067 				goto out_free_path;
3068 		}
3069 		rb_node = rb_next(rb_node);
3070 	}
3071 
3072 	rb_node = rb_first(blocks);
3073 	while (rb_node) {
3074 		block = rb_entry(rb_node, struct tree_block, rb_node);
3075 
3076 		node = build_backref_tree(rc, &block->key,
3077 					  block->level, block->bytenr);
3078 		if (IS_ERR(node)) {
3079 			err = PTR_ERR(node);
3080 			goto out;
3081 		}
3082 
3083 		ret = relocate_tree_block(trans, rc, node, &block->key,
3084 					  path);
3085 		if (ret < 0) {
3086 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3087 				err = ret;
3088 			goto out;
3089 		}
3090 		rb_node = rb_next(rb_node);
3091 	}
3092 out:
3093 	err = finish_pending_nodes(trans, rc, path, err);
3094 
3095 out_free_path:
3096 	btrfs_free_path(path);
3097 out_free_blocks:
3098 	free_block_list(blocks);
3099 	return err;
3100 }
3101 
3102 static noinline_for_stack
3103 int prealloc_file_extent_cluster(struct inode *inode,
3104 				 struct file_extent_cluster *cluster)
3105 {
3106 	u64 alloc_hint = 0;
3107 	u64 start;
3108 	u64 end;
3109 	u64 offset = BTRFS_I(inode)->index_cnt;
3110 	u64 num_bytes;
3111 	int nr = 0;
3112 	int ret = 0;
3113 	u64 prealloc_start = cluster->start - offset;
3114 	u64 prealloc_end = cluster->end - offset;
3115 	u64 cur_offset;
3116 	struct extent_changeset *data_reserved = NULL;
3117 
3118 	BUG_ON(cluster->start != cluster->boundary[0]);
3119 	inode_lock(inode);
3120 
3121 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3122 					  prealloc_end + 1 - prealloc_start);
3123 	if (ret)
3124 		goto out;
3125 
3126 	cur_offset = prealloc_start;
3127 	while (nr < cluster->nr) {
3128 		start = cluster->boundary[nr] - offset;
3129 		if (nr + 1 < cluster->nr)
3130 			end = cluster->boundary[nr + 1] - 1 - offset;
3131 		else
3132 			end = cluster->end - offset;
3133 
3134 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3135 		num_bytes = end + 1 - start;
3136 		if (cur_offset < start)
3137 			btrfs_free_reserved_data_space(inode, data_reserved,
3138 					cur_offset, start - cur_offset);
3139 		ret = btrfs_prealloc_file_range(inode, 0, start,
3140 						num_bytes, num_bytes,
3141 						end + 1, &alloc_hint);
3142 		cur_offset = end + 1;
3143 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3144 		if (ret)
3145 			break;
3146 		nr++;
3147 	}
3148 	if (cur_offset < prealloc_end)
3149 		btrfs_free_reserved_data_space(inode, data_reserved,
3150 				cur_offset, prealloc_end + 1 - cur_offset);
3151 out:
3152 	inode_unlock(inode);
3153 	extent_changeset_free(data_reserved);
3154 	return ret;
3155 }
3156 
3157 static noinline_for_stack
3158 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3159 			 u64 block_start)
3160 {
3161 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3162 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3163 	struct extent_map *em;
3164 	int ret = 0;
3165 
3166 	em = alloc_extent_map();
3167 	if (!em)
3168 		return -ENOMEM;
3169 
3170 	em->start = start;
3171 	em->len = end + 1 - start;
3172 	em->block_len = em->len;
3173 	em->block_start = block_start;
3174 	em->bdev = fs_info->fs_devices->latest_bdev;
3175 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3176 
3177 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3178 	while (1) {
3179 		write_lock(&em_tree->lock);
3180 		ret = add_extent_mapping(em_tree, em, 0);
3181 		write_unlock(&em_tree->lock);
3182 		if (ret != -EEXIST) {
3183 			free_extent_map(em);
3184 			break;
3185 		}
3186 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3187 	}
3188 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3189 	return ret;
3190 }
3191 
3192 static int relocate_file_extent_cluster(struct inode *inode,
3193 					struct file_extent_cluster *cluster)
3194 {
3195 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3196 	u64 page_start;
3197 	u64 page_end;
3198 	u64 offset = BTRFS_I(inode)->index_cnt;
3199 	unsigned long index;
3200 	unsigned long last_index;
3201 	struct page *page;
3202 	struct file_ra_state *ra;
3203 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3204 	int nr = 0;
3205 	int ret = 0;
3206 
3207 	if (!cluster->nr)
3208 		return 0;
3209 
3210 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3211 	if (!ra)
3212 		return -ENOMEM;
3213 
3214 	ret = prealloc_file_extent_cluster(inode, cluster);
3215 	if (ret)
3216 		goto out;
3217 
3218 	file_ra_state_init(ra, inode->i_mapping);
3219 
3220 	ret = setup_extent_mapping(inode, cluster->start - offset,
3221 				   cluster->end - offset, cluster->start);
3222 	if (ret)
3223 		goto out;
3224 
3225 	index = (cluster->start - offset) >> PAGE_SHIFT;
3226 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3227 	while (index <= last_index) {
3228 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3229 				PAGE_SIZE);
3230 		if (ret)
3231 			goto out;
3232 
3233 		page = find_lock_page(inode->i_mapping, index);
3234 		if (!page) {
3235 			page_cache_sync_readahead(inode->i_mapping,
3236 						  ra, NULL, index,
3237 						  last_index + 1 - index);
3238 			page = find_or_create_page(inode->i_mapping, index,
3239 						   mask);
3240 			if (!page) {
3241 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3242 							PAGE_SIZE, true);
3243 				ret = -ENOMEM;
3244 				goto out;
3245 			}
3246 		}
3247 
3248 		if (PageReadahead(page)) {
3249 			page_cache_async_readahead(inode->i_mapping,
3250 						   ra, NULL, page, index,
3251 						   last_index + 1 - index);
3252 		}
3253 
3254 		if (!PageUptodate(page)) {
3255 			btrfs_readpage(NULL, page);
3256 			lock_page(page);
3257 			if (!PageUptodate(page)) {
3258 				unlock_page(page);
3259 				put_page(page);
3260 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3261 							PAGE_SIZE, true);
3262 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3263 							       PAGE_SIZE, true);
3264 				ret = -EIO;
3265 				goto out;
3266 			}
3267 		}
3268 
3269 		page_start = page_offset(page);
3270 		page_end = page_start + PAGE_SIZE - 1;
3271 
3272 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3273 
3274 		set_page_extent_mapped(page);
3275 
3276 		if (nr < cluster->nr &&
3277 		    page_start + offset == cluster->boundary[nr]) {
3278 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3279 					page_start, page_end,
3280 					EXTENT_BOUNDARY);
3281 			nr++;
3282 		}
3283 
3284 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3285 						NULL, 0);
3286 		if (ret) {
3287 			unlock_page(page);
3288 			put_page(page);
3289 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3290 							 PAGE_SIZE, true);
3291 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3292 			                               PAGE_SIZE, true);
3293 
3294 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3295 					  page_start, page_end,
3296 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3297 			goto out;
3298 
3299 		}
3300 		set_page_dirty(page);
3301 
3302 		unlock_extent(&BTRFS_I(inode)->io_tree,
3303 			      page_start, page_end);
3304 		unlock_page(page);
3305 		put_page(page);
3306 
3307 		index++;
3308 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3309 					       false);
3310 		balance_dirty_pages_ratelimited(inode->i_mapping);
3311 		btrfs_throttle(fs_info);
3312 	}
3313 	WARN_ON(nr != cluster->nr);
3314 out:
3315 	kfree(ra);
3316 	return ret;
3317 }
3318 
3319 static noinline_for_stack
3320 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3321 			 struct file_extent_cluster *cluster)
3322 {
3323 	int ret;
3324 
3325 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3326 		ret = relocate_file_extent_cluster(inode, cluster);
3327 		if (ret)
3328 			return ret;
3329 		cluster->nr = 0;
3330 	}
3331 
3332 	if (!cluster->nr)
3333 		cluster->start = extent_key->objectid;
3334 	else
3335 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3336 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3337 	cluster->boundary[cluster->nr] = extent_key->objectid;
3338 	cluster->nr++;
3339 
3340 	if (cluster->nr >= MAX_EXTENTS) {
3341 		ret = relocate_file_extent_cluster(inode, cluster);
3342 		if (ret)
3343 			return ret;
3344 		cluster->nr = 0;
3345 	}
3346 	return 0;
3347 }
3348 
3349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3350 static int get_ref_objectid_v0(struct reloc_control *rc,
3351 			       struct btrfs_path *path,
3352 			       struct btrfs_key *extent_key,
3353 			       u64 *ref_objectid, int *path_change)
3354 {
3355 	struct btrfs_key key;
3356 	struct extent_buffer *leaf;
3357 	struct btrfs_extent_ref_v0 *ref0;
3358 	int ret;
3359 	int slot;
3360 
3361 	leaf = path->nodes[0];
3362 	slot = path->slots[0];
3363 	while (1) {
3364 		if (slot >= btrfs_header_nritems(leaf)) {
3365 			ret = btrfs_next_leaf(rc->extent_root, path);
3366 			if (ret < 0)
3367 				return ret;
3368 			BUG_ON(ret > 0);
3369 			leaf = path->nodes[0];
3370 			slot = path->slots[0];
3371 			if (path_change)
3372 				*path_change = 1;
3373 		}
3374 		btrfs_item_key_to_cpu(leaf, &key, slot);
3375 		if (key.objectid != extent_key->objectid)
3376 			return -ENOENT;
3377 
3378 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3379 			slot++;
3380 			continue;
3381 		}
3382 		ref0 = btrfs_item_ptr(leaf, slot,
3383 				struct btrfs_extent_ref_v0);
3384 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3385 		break;
3386 	}
3387 	return 0;
3388 }
3389 #endif
3390 
3391 /*
3392  * helper to add a tree block to the list.
3393  * the major work is getting the generation and level of the block
3394  */
3395 static int add_tree_block(struct reloc_control *rc,
3396 			  struct btrfs_key *extent_key,
3397 			  struct btrfs_path *path,
3398 			  struct rb_root *blocks)
3399 {
3400 	struct extent_buffer *eb;
3401 	struct btrfs_extent_item *ei;
3402 	struct btrfs_tree_block_info *bi;
3403 	struct tree_block *block;
3404 	struct rb_node *rb_node;
3405 	u32 item_size;
3406 	int level = -1;
3407 	u64 generation;
3408 
3409 	eb =  path->nodes[0];
3410 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3411 
3412 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3413 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3414 		ei = btrfs_item_ptr(eb, path->slots[0],
3415 				struct btrfs_extent_item);
3416 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3417 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3418 			level = btrfs_tree_block_level(eb, bi);
3419 		} else {
3420 			level = (int)extent_key->offset;
3421 		}
3422 		generation = btrfs_extent_generation(eb, ei);
3423 	} else {
3424 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3425 		u64 ref_owner;
3426 		int ret;
3427 
3428 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3429 		ret = get_ref_objectid_v0(rc, path, extent_key,
3430 					  &ref_owner, NULL);
3431 		if (ret < 0)
3432 			return ret;
3433 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3434 		level = (int)ref_owner;
3435 		/* FIXME: get real generation */
3436 		generation = 0;
3437 #else
3438 		BUG();
3439 #endif
3440 	}
3441 
3442 	btrfs_release_path(path);
3443 
3444 	BUG_ON(level == -1);
3445 
3446 	block = kmalloc(sizeof(*block), GFP_NOFS);
3447 	if (!block)
3448 		return -ENOMEM;
3449 
3450 	block->bytenr = extent_key->objectid;
3451 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3452 	block->key.offset = generation;
3453 	block->level = level;
3454 	block->key_ready = 0;
3455 
3456 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3457 	if (rb_node)
3458 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3459 
3460 	return 0;
3461 }
3462 
3463 /*
3464  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3465  */
3466 static int __add_tree_block(struct reloc_control *rc,
3467 			    u64 bytenr, u32 blocksize,
3468 			    struct rb_root *blocks)
3469 {
3470 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3471 	struct btrfs_path *path;
3472 	struct btrfs_key key;
3473 	int ret;
3474 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3475 
3476 	if (tree_block_processed(bytenr, rc))
3477 		return 0;
3478 
3479 	if (tree_search(blocks, bytenr))
3480 		return 0;
3481 
3482 	path = btrfs_alloc_path();
3483 	if (!path)
3484 		return -ENOMEM;
3485 again:
3486 	key.objectid = bytenr;
3487 	if (skinny) {
3488 		key.type = BTRFS_METADATA_ITEM_KEY;
3489 		key.offset = (u64)-1;
3490 	} else {
3491 		key.type = BTRFS_EXTENT_ITEM_KEY;
3492 		key.offset = blocksize;
3493 	}
3494 
3495 	path->search_commit_root = 1;
3496 	path->skip_locking = 1;
3497 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3498 	if (ret < 0)
3499 		goto out;
3500 
3501 	if (ret > 0 && skinny) {
3502 		if (path->slots[0]) {
3503 			path->slots[0]--;
3504 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3505 					      path->slots[0]);
3506 			if (key.objectid == bytenr &&
3507 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3508 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3509 			      key.offset == blocksize)))
3510 				ret = 0;
3511 		}
3512 
3513 		if (ret) {
3514 			skinny = false;
3515 			btrfs_release_path(path);
3516 			goto again;
3517 		}
3518 	}
3519 	if (ret) {
3520 		ASSERT(ret == 1);
3521 		btrfs_print_leaf(path->nodes[0]);
3522 		btrfs_err(fs_info,
3523 	     "tree block extent item (%llu) is not found in extent tree",
3524 		     bytenr);
3525 		WARN_ON(1);
3526 		ret = -EINVAL;
3527 		goto out;
3528 	}
3529 
3530 	ret = add_tree_block(rc, &key, path, blocks);
3531 out:
3532 	btrfs_free_path(path);
3533 	return ret;
3534 }
3535 
3536 /*
3537  * helper to check if the block use full backrefs for pointers in it
3538  */
3539 static int block_use_full_backref(struct reloc_control *rc,
3540 				  struct extent_buffer *eb)
3541 {
3542 	u64 flags;
3543 	int ret;
3544 
3545 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3546 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3547 		return 1;
3548 
3549 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3550 				       eb->start, btrfs_header_level(eb), 1,
3551 				       NULL, &flags);
3552 	BUG_ON(ret);
3553 
3554 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3555 		ret = 1;
3556 	else
3557 		ret = 0;
3558 	return ret;
3559 }
3560 
3561 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3562 				    struct btrfs_block_group_cache *block_group,
3563 				    struct inode *inode,
3564 				    u64 ino)
3565 {
3566 	struct btrfs_key key;
3567 	struct btrfs_root *root = fs_info->tree_root;
3568 	struct btrfs_trans_handle *trans;
3569 	int ret = 0;
3570 
3571 	if (inode)
3572 		goto truncate;
3573 
3574 	key.objectid = ino;
3575 	key.type = BTRFS_INODE_ITEM_KEY;
3576 	key.offset = 0;
3577 
3578 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3579 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3580 		if (!IS_ERR(inode))
3581 			iput(inode);
3582 		return -ENOENT;
3583 	}
3584 
3585 truncate:
3586 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3587 						 &fs_info->global_block_rsv);
3588 	if (ret)
3589 		goto out;
3590 
3591 	trans = btrfs_join_transaction(root);
3592 	if (IS_ERR(trans)) {
3593 		ret = PTR_ERR(trans);
3594 		goto out;
3595 	}
3596 
3597 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3598 
3599 	btrfs_end_transaction(trans);
3600 	btrfs_btree_balance_dirty(fs_info);
3601 out:
3602 	iput(inode);
3603 	return ret;
3604 }
3605 
3606 /*
3607  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3608  * this function scans fs tree to find blocks reference the data extent
3609  */
3610 static int find_data_references(struct reloc_control *rc,
3611 				struct btrfs_key *extent_key,
3612 				struct extent_buffer *leaf,
3613 				struct btrfs_extent_data_ref *ref,
3614 				struct rb_root *blocks)
3615 {
3616 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3617 	struct btrfs_path *path;
3618 	struct tree_block *block;
3619 	struct btrfs_root *root;
3620 	struct btrfs_file_extent_item *fi;
3621 	struct rb_node *rb_node;
3622 	struct btrfs_key key;
3623 	u64 ref_root;
3624 	u64 ref_objectid;
3625 	u64 ref_offset;
3626 	u32 ref_count;
3627 	u32 nritems;
3628 	int err = 0;
3629 	int added = 0;
3630 	int counted;
3631 	int ret;
3632 
3633 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3634 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3635 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3636 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3637 
3638 	/*
3639 	 * This is an extent belonging to the free space cache, lets just delete
3640 	 * it and redo the search.
3641 	 */
3642 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3643 		ret = delete_block_group_cache(fs_info, rc->block_group,
3644 					       NULL, ref_objectid);
3645 		if (ret != -ENOENT)
3646 			return ret;
3647 		ret = 0;
3648 	}
3649 
3650 	path = btrfs_alloc_path();
3651 	if (!path)
3652 		return -ENOMEM;
3653 	path->reada = READA_FORWARD;
3654 
3655 	root = read_fs_root(fs_info, ref_root);
3656 	if (IS_ERR(root)) {
3657 		err = PTR_ERR(root);
3658 		goto out;
3659 	}
3660 
3661 	key.objectid = ref_objectid;
3662 	key.type = BTRFS_EXTENT_DATA_KEY;
3663 	if (ref_offset > ((u64)-1 << 32))
3664 		key.offset = 0;
3665 	else
3666 		key.offset = ref_offset;
3667 
3668 	path->search_commit_root = 1;
3669 	path->skip_locking = 1;
3670 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3671 	if (ret < 0) {
3672 		err = ret;
3673 		goto out;
3674 	}
3675 
3676 	leaf = path->nodes[0];
3677 	nritems = btrfs_header_nritems(leaf);
3678 	/*
3679 	 * the references in tree blocks that use full backrefs
3680 	 * are not counted in
3681 	 */
3682 	if (block_use_full_backref(rc, leaf))
3683 		counted = 0;
3684 	else
3685 		counted = 1;
3686 	rb_node = tree_search(blocks, leaf->start);
3687 	if (rb_node) {
3688 		if (counted)
3689 			added = 1;
3690 		else
3691 			path->slots[0] = nritems;
3692 	}
3693 
3694 	while (ref_count > 0) {
3695 		while (path->slots[0] >= nritems) {
3696 			ret = btrfs_next_leaf(root, path);
3697 			if (ret < 0) {
3698 				err = ret;
3699 				goto out;
3700 			}
3701 			if (WARN_ON(ret > 0))
3702 				goto out;
3703 
3704 			leaf = path->nodes[0];
3705 			nritems = btrfs_header_nritems(leaf);
3706 			added = 0;
3707 
3708 			if (block_use_full_backref(rc, leaf))
3709 				counted = 0;
3710 			else
3711 				counted = 1;
3712 			rb_node = tree_search(blocks, leaf->start);
3713 			if (rb_node) {
3714 				if (counted)
3715 					added = 1;
3716 				else
3717 					path->slots[0] = nritems;
3718 			}
3719 		}
3720 
3721 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3722 		if (WARN_ON(key.objectid != ref_objectid ||
3723 		    key.type != BTRFS_EXTENT_DATA_KEY))
3724 			break;
3725 
3726 		fi = btrfs_item_ptr(leaf, path->slots[0],
3727 				    struct btrfs_file_extent_item);
3728 
3729 		if (btrfs_file_extent_type(leaf, fi) ==
3730 		    BTRFS_FILE_EXTENT_INLINE)
3731 			goto next;
3732 
3733 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3734 		    extent_key->objectid)
3735 			goto next;
3736 
3737 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3738 		if (key.offset != ref_offset)
3739 			goto next;
3740 
3741 		if (counted)
3742 			ref_count--;
3743 		if (added)
3744 			goto next;
3745 
3746 		if (!tree_block_processed(leaf->start, rc)) {
3747 			block = kmalloc(sizeof(*block), GFP_NOFS);
3748 			if (!block) {
3749 				err = -ENOMEM;
3750 				break;
3751 			}
3752 			block->bytenr = leaf->start;
3753 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3754 			block->level = 0;
3755 			block->key_ready = 1;
3756 			rb_node = tree_insert(blocks, block->bytenr,
3757 					      &block->rb_node);
3758 			if (rb_node)
3759 				backref_tree_panic(rb_node, -EEXIST,
3760 						   block->bytenr);
3761 		}
3762 		if (counted)
3763 			added = 1;
3764 		else
3765 			path->slots[0] = nritems;
3766 next:
3767 		path->slots[0]++;
3768 
3769 	}
3770 out:
3771 	btrfs_free_path(path);
3772 	return err;
3773 }
3774 
3775 /*
3776  * helper to find all tree blocks that reference a given data extent
3777  */
3778 static noinline_for_stack
3779 int add_data_references(struct reloc_control *rc,
3780 			struct btrfs_key *extent_key,
3781 			struct btrfs_path *path,
3782 			struct rb_root *blocks)
3783 {
3784 	struct btrfs_key key;
3785 	struct extent_buffer *eb;
3786 	struct btrfs_extent_data_ref *dref;
3787 	struct btrfs_extent_inline_ref *iref;
3788 	unsigned long ptr;
3789 	unsigned long end;
3790 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3791 	int ret = 0;
3792 	int err = 0;
3793 
3794 	eb = path->nodes[0];
3795 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3796 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3797 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3798 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3799 		ptr = end;
3800 	else
3801 #endif
3802 		ptr += sizeof(struct btrfs_extent_item);
3803 
3804 	while (ptr < end) {
3805 		iref = (struct btrfs_extent_inline_ref *)ptr;
3806 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3807 							BTRFS_REF_TYPE_DATA);
3808 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3809 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3810 			ret = __add_tree_block(rc, key.offset, blocksize,
3811 					       blocks);
3812 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3813 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3814 			ret = find_data_references(rc, extent_key,
3815 						   eb, dref, blocks);
3816 		} else {
3817 			ret = -EINVAL;
3818 			btrfs_err(rc->extent_root->fs_info,
3819 		     "extent %llu slot %d has an invalid inline ref type",
3820 			     eb->start, path->slots[0]);
3821 		}
3822 		if (ret) {
3823 			err = ret;
3824 			goto out;
3825 		}
3826 		ptr += btrfs_extent_inline_ref_size(key.type);
3827 	}
3828 	WARN_ON(ptr > end);
3829 
3830 	while (1) {
3831 		cond_resched();
3832 		eb = path->nodes[0];
3833 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3834 			ret = btrfs_next_leaf(rc->extent_root, path);
3835 			if (ret < 0) {
3836 				err = ret;
3837 				break;
3838 			}
3839 			if (ret > 0)
3840 				break;
3841 			eb = path->nodes[0];
3842 		}
3843 
3844 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3845 		if (key.objectid != extent_key->objectid)
3846 			break;
3847 
3848 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3849 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3850 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3851 #else
3852 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3853 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3854 #endif
3855 			ret = __add_tree_block(rc, key.offset, blocksize,
3856 					       blocks);
3857 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3858 			dref = btrfs_item_ptr(eb, path->slots[0],
3859 					      struct btrfs_extent_data_ref);
3860 			ret = find_data_references(rc, extent_key,
3861 						   eb, dref, blocks);
3862 		} else {
3863 			ret = 0;
3864 		}
3865 		if (ret) {
3866 			err = ret;
3867 			break;
3868 		}
3869 		path->slots[0]++;
3870 	}
3871 out:
3872 	btrfs_release_path(path);
3873 	if (err)
3874 		free_block_list(blocks);
3875 	return err;
3876 }
3877 
3878 /*
3879  * helper to find next unprocessed extent
3880  */
3881 static noinline_for_stack
3882 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3883 		     struct btrfs_key *extent_key)
3884 {
3885 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3886 	struct btrfs_key key;
3887 	struct extent_buffer *leaf;
3888 	u64 start, end, last;
3889 	int ret;
3890 
3891 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3892 	while (1) {
3893 		cond_resched();
3894 		if (rc->search_start >= last) {
3895 			ret = 1;
3896 			break;
3897 		}
3898 
3899 		key.objectid = rc->search_start;
3900 		key.type = BTRFS_EXTENT_ITEM_KEY;
3901 		key.offset = 0;
3902 
3903 		path->search_commit_root = 1;
3904 		path->skip_locking = 1;
3905 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3906 					0, 0);
3907 		if (ret < 0)
3908 			break;
3909 next:
3910 		leaf = path->nodes[0];
3911 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3912 			ret = btrfs_next_leaf(rc->extent_root, path);
3913 			if (ret != 0)
3914 				break;
3915 			leaf = path->nodes[0];
3916 		}
3917 
3918 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3919 		if (key.objectid >= last) {
3920 			ret = 1;
3921 			break;
3922 		}
3923 
3924 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3925 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3926 			path->slots[0]++;
3927 			goto next;
3928 		}
3929 
3930 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3931 		    key.objectid + key.offset <= rc->search_start) {
3932 			path->slots[0]++;
3933 			goto next;
3934 		}
3935 
3936 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3937 		    key.objectid + fs_info->nodesize <=
3938 		    rc->search_start) {
3939 			path->slots[0]++;
3940 			goto next;
3941 		}
3942 
3943 		ret = find_first_extent_bit(&rc->processed_blocks,
3944 					    key.objectid, &start, &end,
3945 					    EXTENT_DIRTY, NULL);
3946 
3947 		if (ret == 0 && start <= key.objectid) {
3948 			btrfs_release_path(path);
3949 			rc->search_start = end + 1;
3950 		} else {
3951 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3952 				rc->search_start = key.objectid + key.offset;
3953 			else
3954 				rc->search_start = key.objectid +
3955 					fs_info->nodesize;
3956 			memcpy(extent_key, &key, sizeof(key));
3957 			return 0;
3958 		}
3959 	}
3960 	btrfs_release_path(path);
3961 	return ret;
3962 }
3963 
3964 static void set_reloc_control(struct reloc_control *rc)
3965 {
3966 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3967 
3968 	mutex_lock(&fs_info->reloc_mutex);
3969 	fs_info->reloc_ctl = rc;
3970 	mutex_unlock(&fs_info->reloc_mutex);
3971 }
3972 
3973 static void unset_reloc_control(struct reloc_control *rc)
3974 {
3975 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3976 
3977 	mutex_lock(&fs_info->reloc_mutex);
3978 	fs_info->reloc_ctl = NULL;
3979 	mutex_unlock(&fs_info->reloc_mutex);
3980 }
3981 
3982 static int check_extent_flags(u64 flags)
3983 {
3984 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3985 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3986 		return 1;
3987 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3988 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3989 		return 1;
3990 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3991 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3992 		return 1;
3993 	return 0;
3994 }
3995 
3996 static noinline_for_stack
3997 int prepare_to_relocate(struct reloc_control *rc)
3998 {
3999 	struct btrfs_trans_handle *trans;
4000 	int ret;
4001 
4002 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
4003 					      BTRFS_BLOCK_RSV_TEMP);
4004 	if (!rc->block_rsv)
4005 		return -ENOMEM;
4006 
4007 	memset(&rc->cluster, 0, sizeof(rc->cluster));
4008 	rc->search_start = rc->block_group->key.objectid;
4009 	rc->extents_found = 0;
4010 	rc->nodes_relocated = 0;
4011 	rc->merging_rsv_size = 0;
4012 	rc->reserved_bytes = 0;
4013 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
4014 			      RELOCATION_RESERVED_NODES;
4015 	ret = btrfs_block_rsv_refill(rc->extent_root,
4016 				     rc->block_rsv, rc->block_rsv->size,
4017 				     BTRFS_RESERVE_FLUSH_ALL);
4018 	if (ret)
4019 		return ret;
4020 
4021 	rc->create_reloc_tree = 1;
4022 	set_reloc_control(rc);
4023 
4024 	trans = btrfs_join_transaction(rc->extent_root);
4025 	if (IS_ERR(trans)) {
4026 		unset_reloc_control(rc);
4027 		/*
4028 		 * extent tree is not a ref_cow tree and has no reloc_root to
4029 		 * cleanup.  And callers are responsible to free the above
4030 		 * block rsv.
4031 		 */
4032 		return PTR_ERR(trans);
4033 	}
4034 	btrfs_commit_transaction(trans);
4035 	return 0;
4036 }
4037 
4038 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
4039 {
4040 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
4041 	struct rb_root blocks = RB_ROOT;
4042 	struct btrfs_key key;
4043 	struct btrfs_trans_handle *trans = NULL;
4044 	struct btrfs_path *path;
4045 	struct btrfs_extent_item *ei;
4046 	u64 flags;
4047 	u32 item_size;
4048 	int ret;
4049 	int err = 0;
4050 	int progress = 0;
4051 
4052 	path = btrfs_alloc_path();
4053 	if (!path)
4054 		return -ENOMEM;
4055 	path->reada = READA_FORWARD;
4056 
4057 	ret = prepare_to_relocate(rc);
4058 	if (ret) {
4059 		err = ret;
4060 		goto out_free;
4061 	}
4062 
4063 	while (1) {
4064 		rc->reserved_bytes = 0;
4065 		ret = btrfs_block_rsv_refill(rc->extent_root,
4066 					rc->block_rsv, rc->block_rsv->size,
4067 					BTRFS_RESERVE_FLUSH_ALL);
4068 		if (ret) {
4069 			err = ret;
4070 			break;
4071 		}
4072 		progress++;
4073 		trans = btrfs_start_transaction(rc->extent_root, 0);
4074 		if (IS_ERR(trans)) {
4075 			err = PTR_ERR(trans);
4076 			trans = NULL;
4077 			break;
4078 		}
4079 restart:
4080 		if (update_backref_cache(trans, &rc->backref_cache)) {
4081 			btrfs_end_transaction(trans);
4082 			continue;
4083 		}
4084 
4085 		ret = find_next_extent(rc, path, &key);
4086 		if (ret < 0)
4087 			err = ret;
4088 		if (ret != 0)
4089 			break;
4090 
4091 		rc->extents_found++;
4092 
4093 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4094 				    struct btrfs_extent_item);
4095 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4096 		if (item_size >= sizeof(*ei)) {
4097 			flags = btrfs_extent_flags(path->nodes[0], ei);
4098 			ret = check_extent_flags(flags);
4099 			BUG_ON(ret);
4100 
4101 		} else {
4102 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4103 			u64 ref_owner;
4104 			int path_change = 0;
4105 
4106 			BUG_ON(item_size !=
4107 			       sizeof(struct btrfs_extent_item_v0));
4108 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
4109 						  &path_change);
4110 			if (ret < 0) {
4111 				err = ret;
4112 				break;
4113 			}
4114 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
4115 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
4116 			else
4117 				flags = BTRFS_EXTENT_FLAG_DATA;
4118 
4119 			if (path_change) {
4120 				btrfs_release_path(path);
4121 
4122 				path->search_commit_root = 1;
4123 				path->skip_locking = 1;
4124 				ret = btrfs_search_slot(NULL, rc->extent_root,
4125 							&key, path, 0, 0);
4126 				if (ret < 0) {
4127 					err = ret;
4128 					break;
4129 				}
4130 				BUG_ON(ret > 0);
4131 			}
4132 #else
4133 			BUG();
4134 #endif
4135 		}
4136 
4137 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4138 			ret = add_tree_block(rc, &key, path, &blocks);
4139 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4140 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4141 			ret = add_data_references(rc, &key, path, &blocks);
4142 		} else {
4143 			btrfs_release_path(path);
4144 			ret = 0;
4145 		}
4146 		if (ret < 0) {
4147 			err = ret;
4148 			break;
4149 		}
4150 
4151 		if (!RB_EMPTY_ROOT(&blocks)) {
4152 			ret = relocate_tree_blocks(trans, rc, &blocks);
4153 			if (ret < 0) {
4154 				/*
4155 				 * if we fail to relocate tree blocks, force to update
4156 				 * backref cache when committing transaction.
4157 				 */
4158 				rc->backref_cache.last_trans = trans->transid - 1;
4159 
4160 				if (ret != -EAGAIN) {
4161 					err = ret;
4162 					break;
4163 				}
4164 				rc->extents_found--;
4165 				rc->search_start = key.objectid;
4166 			}
4167 		}
4168 
4169 		btrfs_end_transaction_throttle(trans);
4170 		btrfs_btree_balance_dirty(fs_info);
4171 		trans = NULL;
4172 
4173 		if (rc->stage == MOVE_DATA_EXTENTS &&
4174 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4175 			rc->found_file_extent = 1;
4176 			ret = relocate_data_extent(rc->data_inode,
4177 						   &key, &rc->cluster);
4178 			if (ret < 0) {
4179 				err = ret;
4180 				break;
4181 			}
4182 		}
4183 	}
4184 	if (trans && progress && err == -ENOSPC) {
4185 		ret = btrfs_force_chunk_alloc(trans, fs_info,
4186 					      rc->block_group->flags);
4187 		if (ret == 1) {
4188 			err = 0;
4189 			progress = 0;
4190 			goto restart;
4191 		}
4192 	}
4193 
4194 	btrfs_release_path(path);
4195 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4196 
4197 	if (trans) {
4198 		btrfs_end_transaction_throttle(trans);
4199 		btrfs_btree_balance_dirty(fs_info);
4200 	}
4201 
4202 	if (!err) {
4203 		ret = relocate_file_extent_cluster(rc->data_inode,
4204 						   &rc->cluster);
4205 		if (ret < 0)
4206 			err = ret;
4207 	}
4208 
4209 	rc->create_reloc_tree = 0;
4210 	set_reloc_control(rc);
4211 
4212 	backref_cache_cleanup(&rc->backref_cache);
4213 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4214 
4215 	err = prepare_to_merge(rc, err);
4216 
4217 	merge_reloc_roots(rc);
4218 
4219 	rc->merge_reloc_tree = 0;
4220 	unset_reloc_control(rc);
4221 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4222 
4223 	/* get rid of pinned extents */
4224 	trans = btrfs_join_transaction(rc->extent_root);
4225 	if (IS_ERR(trans)) {
4226 		err = PTR_ERR(trans);
4227 		goto out_free;
4228 	}
4229 	btrfs_commit_transaction(trans);
4230 out_free:
4231 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4232 	btrfs_free_path(path);
4233 	return err;
4234 }
4235 
4236 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4237 				 struct btrfs_root *root, u64 objectid)
4238 {
4239 	struct btrfs_path *path;
4240 	struct btrfs_inode_item *item;
4241 	struct extent_buffer *leaf;
4242 	int ret;
4243 
4244 	path = btrfs_alloc_path();
4245 	if (!path)
4246 		return -ENOMEM;
4247 
4248 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4249 	if (ret)
4250 		goto out;
4251 
4252 	leaf = path->nodes[0];
4253 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4254 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4255 	btrfs_set_inode_generation(leaf, item, 1);
4256 	btrfs_set_inode_size(leaf, item, 0);
4257 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4258 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4259 					  BTRFS_INODE_PREALLOC);
4260 	btrfs_mark_buffer_dirty(leaf);
4261 out:
4262 	btrfs_free_path(path);
4263 	return ret;
4264 }
4265 
4266 /*
4267  * helper to create inode for data relocation.
4268  * the inode is in data relocation tree and its link count is 0
4269  */
4270 static noinline_for_stack
4271 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4272 				 struct btrfs_block_group_cache *group)
4273 {
4274 	struct inode *inode = NULL;
4275 	struct btrfs_trans_handle *trans;
4276 	struct btrfs_root *root;
4277 	struct btrfs_key key;
4278 	u64 objectid;
4279 	int err = 0;
4280 
4281 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4282 	if (IS_ERR(root))
4283 		return ERR_CAST(root);
4284 
4285 	trans = btrfs_start_transaction(root, 6);
4286 	if (IS_ERR(trans))
4287 		return ERR_CAST(trans);
4288 
4289 	err = btrfs_find_free_objectid(root, &objectid);
4290 	if (err)
4291 		goto out;
4292 
4293 	err = __insert_orphan_inode(trans, root, objectid);
4294 	BUG_ON(err);
4295 
4296 	key.objectid = objectid;
4297 	key.type = BTRFS_INODE_ITEM_KEY;
4298 	key.offset = 0;
4299 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4300 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4301 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4302 
4303 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4304 out:
4305 	btrfs_end_transaction(trans);
4306 	btrfs_btree_balance_dirty(fs_info);
4307 	if (err) {
4308 		if (inode)
4309 			iput(inode);
4310 		inode = ERR_PTR(err);
4311 	}
4312 	return inode;
4313 }
4314 
4315 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4316 {
4317 	struct reloc_control *rc;
4318 
4319 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4320 	if (!rc)
4321 		return NULL;
4322 
4323 	INIT_LIST_HEAD(&rc->reloc_roots);
4324 	backref_cache_init(&rc->backref_cache);
4325 	mapping_tree_init(&rc->reloc_root_tree);
4326 	extent_io_tree_init(&rc->processed_blocks, NULL);
4327 	return rc;
4328 }
4329 
4330 /*
4331  * Print the block group being relocated
4332  */
4333 static void describe_relocation(struct btrfs_fs_info *fs_info,
4334 				struct btrfs_block_group_cache *block_group)
4335 {
4336 	char buf[128];		/* prefixed by a '|' that'll be dropped */
4337 	u64 flags = block_group->flags;
4338 
4339 	/* Shouldn't happen */
4340 	if (!flags) {
4341 		strcpy(buf, "|NONE");
4342 	} else {
4343 		char *bp = buf;
4344 
4345 #define DESCRIBE_FLAG(f, d) \
4346 		if (flags & BTRFS_BLOCK_GROUP_##f) { \
4347 			bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \
4348 			flags &= ~BTRFS_BLOCK_GROUP_##f; \
4349 		}
4350 		DESCRIBE_FLAG(DATA,     "data");
4351 		DESCRIBE_FLAG(SYSTEM,   "system");
4352 		DESCRIBE_FLAG(METADATA, "metadata");
4353 		DESCRIBE_FLAG(RAID0,    "raid0");
4354 		DESCRIBE_FLAG(RAID1,    "raid1");
4355 		DESCRIBE_FLAG(DUP,      "dup");
4356 		DESCRIBE_FLAG(RAID10,   "raid10");
4357 		DESCRIBE_FLAG(RAID5,    "raid5");
4358 		DESCRIBE_FLAG(RAID6,    "raid6");
4359 		if (flags)
4360 			snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags);
4361 #undef DESCRIBE_FLAG
4362 	}
4363 
4364 	btrfs_info(fs_info,
4365 		   "relocating block group %llu flags %s",
4366 		   block_group->key.objectid, buf + 1);
4367 }
4368 
4369 /*
4370  * function to relocate all extents in a block group.
4371  */
4372 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4373 {
4374 	struct btrfs_root *extent_root = fs_info->extent_root;
4375 	struct reloc_control *rc;
4376 	struct inode *inode;
4377 	struct btrfs_path *path;
4378 	int ret;
4379 	int rw = 0;
4380 	int err = 0;
4381 
4382 	rc = alloc_reloc_control(fs_info);
4383 	if (!rc)
4384 		return -ENOMEM;
4385 
4386 	rc->extent_root = extent_root;
4387 
4388 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4389 	BUG_ON(!rc->block_group);
4390 
4391 	ret = btrfs_inc_block_group_ro(fs_info, rc->block_group);
4392 	if (ret) {
4393 		err = ret;
4394 		goto out;
4395 	}
4396 	rw = 1;
4397 
4398 	path = btrfs_alloc_path();
4399 	if (!path) {
4400 		err = -ENOMEM;
4401 		goto out;
4402 	}
4403 
4404 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4405 	btrfs_free_path(path);
4406 
4407 	if (!IS_ERR(inode))
4408 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4409 	else
4410 		ret = PTR_ERR(inode);
4411 
4412 	if (ret && ret != -ENOENT) {
4413 		err = ret;
4414 		goto out;
4415 	}
4416 
4417 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4418 	if (IS_ERR(rc->data_inode)) {
4419 		err = PTR_ERR(rc->data_inode);
4420 		rc->data_inode = NULL;
4421 		goto out;
4422 	}
4423 
4424 	describe_relocation(fs_info, rc->block_group);
4425 
4426 	btrfs_wait_block_group_reservations(rc->block_group);
4427 	btrfs_wait_nocow_writers(rc->block_group);
4428 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4429 				 rc->block_group->key.objectid,
4430 				 rc->block_group->key.offset);
4431 
4432 	while (1) {
4433 		mutex_lock(&fs_info->cleaner_mutex);
4434 		ret = relocate_block_group(rc);
4435 		mutex_unlock(&fs_info->cleaner_mutex);
4436 		if (ret < 0) {
4437 			err = ret;
4438 			goto out;
4439 		}
4440 
4441 		if (rc->extents_found == 0)
4442 			break;
4443 
4444 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4445 
4446 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4447 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4448 						       (u64)-1);
4449 			if (ret) {
4450 				err = ret;
4451 				goto out;
4452 			}
4453 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4454 						 0, -1);
4455 			rc->stage = UPDATE_DATA_PTRS;
4456 		}
4457 	}
4458 
4459 	WARN_ON(rc->block_group->pinned > 0);
4460 	WARN_ON(rc->block_group->reserved > 0);
4461 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4462 out:
4463 	if (err && rw)
4464 		btrfs_dec_block_group_ro(rc->block_group);
4465 	iput(rc->data_inode);
4466 	btrfs_put_block_group(rc->block_group);
4467 	kfree(rc);
4468 	return err;
4469 }
4470 
4471 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4472 {
4473 	struct btrfs_fs_info *fs_info = root->fs_info;
4474 	struct btrfs_trans_handle *trans;
4475 	int ret, err;
4476 
4477 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4478 	if (IS_ERR(trans))
4479 		return PTR_ERR(trans);
4480 
4481 	memset(&root->root_item.drop_progress, 0,
4482 		sizeof(root->root_item.drop_progress));
4483 	root->root_item.drop_level = 0;
4484 	btrfs_set_root_refs(&root->root_item, 0);
4485 	ret = btrfs_update_root(trans, fs_info->tree_root,
4486 				&root->root_key, &root->root_item);
4487 
4488 	err = btrfs_end_transaction(trans);
4489 	if (err)
4490 		return err;
4491 	return ret;
4492 }
4493 
4494 /*
4495  * recover relocation interrupted by system crash.
4496  *
4497  * this function resumes merging reloc trees with corresponding fs trees.
4498  * this is important for keeping the sharing of tree blocks
4499  */
4500 int btrfs_recover_relocation(struct btrfs_root *root)
4501 {
4502 	struct btrfs_fs_info *fs_info = root->fs_info;
4503 	LIST_HEAD(reloc_roots);
4504 	struct btrfs_key key;
4505 	struct btrfs_root *fs_root;
4506 	struct btrfs_root *reloc_root;
4507 	struct btrfs_path *path;
4508 	struct extent_buffer *leaf;
4509 	struct reloc_control *rc = NULL;
4510 	struct btrfs_trans_handle *trans;
4511 	int ret;
4512 	int err = 0;
4513 
4514 	path = btrfs_alloc_path();
4515 	if (!path)
4516 		return -ENOMEM;
4517 	path->reada = READA_BACK;
4518 
4519 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4520 	key.type = BTRFS_ROOT_ITEM_KEY;
4521 	key.offset = (u64)-1;
4522 
4523 	while (1) {
4524 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4525 					path, 0, 0);
4526 		if (ret < 0) {
4527 			err = ret;
4528 			goto out;
4529 		}
4530 		if (ret > 0) {
4531 			if (path->slots[0] == 0)
4532 				break;
4533 			path->slots[0]--;
4534 		}
4535 		leaf = path->nodes[0];
4536 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4537 		btrfs_release_path(path);
4538 
4539 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4540 		    key.type != BTRFS_ROOT_ITEM_KEY)
4541 			break;
4542 
4543 		reloc_root = btrfs_read_fs_root(root, &key);
4544 		if (IS_ERR(reloc_root)) {
4545 			err = PTR_ERR(reloc_root);
4546 			goto out;
4547 		}
4548 
4549 		list_add(&reloc_root->root_list, &reloc_roots);
4550 
4551 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4552 			fs_root = read_fs_root(fs_info,
4553 					       reloc_root->root_key.offset);
4554 			if (IS_ERR(fs_root)) {
4555 				ret = PTR_ERR(fs_root);
4556 				if (ret != -ENOENT) {
4557 					err = ret;
4558 					goto out;
4559 				}
4560 				ret = mark_garbage_root(reloc_root);
4561 				if (ret < 0) {
4562 					err = ret;
4563 					goto out;
4564 				}
4565 			}
4566 		}
4567 
4568 		if (key.offset == 0)
4569 			break;
4570 
4571 		key.offset--;
4572 	}
4573 	btrfs_release_path(path);
4574 
4575 	if (list_empty(&reloc_roots))
4576 		goto out;
4577 
4578 	rc = alloc_reloc_control(fs_info);
4579 	if (!rc) {
4580 		err = -ENOMEM;
4581 		goto out;
4582 	}
4583 
4584 	rc->extent_root = fs_info->extent_root;
4585 
4586 	set_reloc_control(rc);
4587 
4588 	trans = btrfs_join_transaction(rc->extent_root);
4589 	if (IS_ERR(trans)) {
4590 		unset_reloc_control(rc);
4591 		err = PTR_ERR(trans);
4592 		goto out_free;
4593 	}
4594 
4595 	rc->merge_reloc_tree = 1;
4596 
4597 	while (!list_empty(&reloc_roots)) {
4598 		reloc_root = list_entry(reloc_roots.next,
4599 					struct btrfs_root, root_list);
4600 		list_del(&reloc_root->root_list);
4601 
4602 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4603 			list_add_tail(&reloc_root->root_list,
4604 				      &rc->reloc_roots);
4605 			continue;
4606 		}
4607 
4608 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4609 		if (IS_ERR(fs_root)) {
4610 			err = PTR_ERR(fs_root);
4611 			goto out_free;
4612 		}
4613 
4614 		err = __add_reloc_root(reloc_root);
4615 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4616 		fs_root->reloc_root = reloc_root;
4617 	}
4618 
4619 	err = btrfs_commit_transaction(trans);
4620 	if (err)
4621 		goto out_free;
4622 
4623 	merge_reloc_roots(rc);
4624 
4625 	unset_reloc_control(rc);
4626 
4627 	trans = btrfs_join_transaction(rc->extent_root);
4628 	if (IS_ERR(trans)) {
4629 		err = PTR_ERR(trans);
4630 		goto out_free;
4631 	}
4632 	err = btrfs_commit_transaction(trans);
4633 out_free:
4634 	kfree(rc);
4635 out:
4636 	if (!list_empty(&reloc_roots))
4637 		free_reloc_roots(&reloc_roots);
4638 
4639 	btrfs_free_path(path);
4640 
4641 	if (err == 0) {
4642 		/* cleanup orphan inode in data relocation tree */
4643 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4644 		if (IS_ERR(fs_root))
4645 			err = PTR_ERR(fs_root);
4646 		else
4647 			err = btrfs_orphan_cleanup(fs_root);
4648 	}
4649 	return err;
4650 }
4651 
4652 /*
4653  * helper to add ordered checksum for data relocation.
4654  *
4655  * cloning checksum properly handles the nodatasum extents.
4656  * it also saves CPU time to re-calculate the checksum.
4657  */
4658 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4659 {
4660 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4661 	struct btrfs_ordered_sum *sums;
4662 	struct btrfs_ordered_extent *ordered;
4663 	int ret;
4664 	u64 disk_bytenr;
4665 	u64 new_bytenr;
4666 	LIST_HEAD(list);
4667 
4668 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4669 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4670 
4671 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4672 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4673 				       disk_bytenr + len - 1, &list, 0);
4674 	if (ret)
4675 		goto out;
4676 
4677 	while (!list_empty(&list)) {
4678 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4679 		list_del_init(&sums->list);
4680 
4681 		/*
4682 		 * We need to offset the new_bytenr based on where the csum is.
4683 		 * We need to do this because we will read in entire prealloc
4684 		 * extents but we may have written to say the middle of the
4685 		 * prealloc extent, so we need to make sure the csum goes with
4686 		 * the right disk offset.
4687 		 *
4688 		 * We can do this because the data reloc inode refers strictly
4689 		 * to the on disk bytes, so we don't have to worry about
4690 		 * disk_len vs real len like with real inodes since it's all
4691 		 * disk length.
4692 		 */
4693 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4694 		sums->bytenr = new_bytenr;
4695 
4696 		btrfs_add_ordered_sum(inode, ordered, sums);
4697 	}
4698 out:
4699 	btrfs_put_ordered_extent(ordered);
4700 	return ret;
4701 }
4702 
4703 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4704 			  struct btrfs_root *root, struct extent_buffer *buf,
4705 			  struct extent_buffer *cow)
4706 {
4707 	struct btrfs_fs_info *fs_info = root->fs_info;
4708 	struct reloc_control *rc;
4709 	struct backref_node *node;
4710 	int first_cow = 0;
4711 	int level;
4712 	int ret = 0;
4713 
4714 	rc = fs_info->reloc_ctl;
4715 	if (!rc)
4716 		return 0;
4717 
4718 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4719 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4720 
4721 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4722 		if (buf == root->node)
4723 			__update_reloc_root(root, cow->start);
4724 	}
4725 
4726 	level = btrfs_header_level(buf);
4727 	if (btrfs_header_generation(buf) <=
4728 	    btrfs_root_last_snapshot(&root->root_item))
4729 		first_cow = 1;
4730 
4731 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4732 	    rc->create_reloc_tree) {
4733 		WARN_ON(!first_cow && level == 0);
4734 
4735 		node = rc->backref_cache.path[level];
4736 		BUG_ON(node->bytenr != buf->start &&
4737 		       node->new_bytenr != buf->start);
4738 
4739 		drop_node_buffer(node);
4740 		extent_buffer_get(cow);
4741 		node->eb = cow;
4742 		node->new_bytenr = cow->start;
4743 
4744 		if (!node->pending) {
4745 			list_move_tail(&node->list,
4746 				       &rc->backref_cache.pending[level]);
4747 			node->pending = 1;
4748 		}
4749 
4750 		if (first_cow)
4751 			__mark_block_processed(rc, node);
4752 
4753 		if (first_cow && level > 0)
4754 			rc->nodes_relocated += buf->len;
4755 	}
4756 
4757 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4758 		ret = replace_file_extents(trans, rc, root, cow);
4759 	return ret;
4760 }
4761 
4762 /*
4763  * called before creating snapshot. it calculates metadata reservation
4764  * required for relocating tree blocks in the snapshot
4765  */
4766 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4767 			      u64 *bytes_to_reserve)
4768 {
4769 	struct btrfs_root *root;
4770 	struct reloc_control *rc;
4771 
4772 	root = pending->root;
4773 	if (!root->reloc_root)
4774 		return;
4775 
4776 	rc = root->fs_info->reloc_ctl;
4777 	if (!rc->merge_reloc_tree)
4778 		return;
4779 
4780 	root = root->reloc_root;
4781 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4782 	/*
4783 	 * relocation is in the stage of merging trees. the space
4784 	 * used by merging a reloc tree is twice the size of
4785 	 * relocated tree nodes in the worst case. half for cowing
4786 	 * the reloc tree, half for cowing the fs tree. the space
4787 	 * used by cowing the reloc tree will be freed after the
4788 	 * tree is dropped. if we create snapshot, cowing the fs
4789 	 * tree may use more space than it frees. so we need
4790 	 * reserve extra space.
4791 	 */
4792 	*bytes_to_reserve += rc->nodes_relocated;
4793 }
4794 
4795 /*
4796  * called after snapshot is created. migrate block reservation
4797  * and create reloc root for the newly created snapshot
4798  */
4799 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4800 			       struct btrfs_pending_snapshot *pending)
4801 {
4802 	struct btrfs_root *root = pending->root;
4803 	struct btrfs_root *reloc_root;
4804 	struct btrfs_root *new_root;
4805 	struct reloc_control *rc;
4806 	int ret;
4807 
4808 	if (!root->reloc_root)
4809 		return 0;
4810 
4811 	rc = root->fs_info->reloc_ctl;
4812 	rc->merging_rsv_size += rc->nodes_relocated;
4813 
4814 	if (rc->merge_reloc_tree) {
4815 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4816 					      rc->block_rsv,
4817 					      rc->nodes_relocated, 1);
4818 		if (ret)
4819 			return ret;
4820 	}
4821 
4822 	new_root = pending->snap;
4823 	reloc_root = create_reloc_root(trans, root->reloc_root,
4824 				       new_root->root_key.objectid);
4825 	if (IS_ERR(reloc_root))
4826 		return PTR_ERR(reloc_root);
4827 
4828 	ret = __add_reloc_root(reloc_root);
4829 	BUG_ON(ret < 0);
4830 	new_root->reloc_root = reloc_root;
4831 
4832 	if (rc->create_reloc_tree)
4833 		ret = clone_backref_node(trans, rc, root, reloc_root);
4834 	return ret;
4835 }
4836