1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 #include "qgroup.h" 35 #include "print-tree.h" 36 37 /* 38 * backref_node, mapping_node and tree_block start with this 39 */ 40 struct tree_entry { 41 struct rb_node rb_node; 42 u64 bytenr; 43 }; 44 45 /* 46 * present a tree block in the backref cache 47 */ 48 struct backref_node { 49 struct rb_node rb_node; 50 u64 bytenr; 51 52 u64 new_bytenr; 53 /* objectid of tree block owner, can be not uptodate */ 54 u64 owner; 55 /* link to pending, changed or detached list */ 56 struct list_head list; 57 /* list of upper level blocks reference this block */ 58 struct list_head upper; 59 /* list of child blocks in the cache */ 60 struct list_head lower; 61 /* NULL if this node is not tree root */ 62 struct btrfs_root *root; 63 /* extent buffer got by COW the block */ 64 struct extent_buffer *eb; 65 /* level of tree block */ 66 unsigned int level:8; 67 /* is the block in non-reference counted tree */ 68 unsigned int cowonly:1; 69 /* 1 if no child node in the cache */ 70 unsigned int lowest:1; 71 /* is the extent buffer locked */ 72 unsigned int locked:1; 73 /* has the block been processed */ 74 unsigned int processed:1; 75 /* have backrefs of this block been checked */ 76 unsigned int checked:1; 77 /* 78 * 1 if corresponding block has been cowed but some upper 79 * level block pointers may not point to the new location 80 */ 81 unsigned int pending:1; 82 /* 83 * 1 if the backref node isn't connected to any other 84 * backref node. 85 */ 86 unsigned int detached:1; 87 }; 88 89 /* 90 * present a block pointer in the backref cache 91 */ 92 struct backref_edge { 93 struct list_head list[2]; 94 struct backref_node *node[2]; 95 }; 96 97 #define LOWER 0 98 #define UPPER 1 99 #define RELOCATION_RESERVED_NODES 256 100 101 struct backref_cache { 102 /* red black tree of all backref nodes in the cache */ 103 struct rb_root rb_root; 104 /* for passing backref nodes to btrfs_reloc_cow_block */ 105 struct backref_node *path[BTRFS_MAX_LEVEL]; 106 /* 107 * list of blocks that have been cowed but some block 108 * pointers in upper level blocks may not reflect the 109 * new location 110 */ 111 struct list_head pending[BTRFS_MAX_LEVEL]; 112 /* list of backref nodes with no child node */ 113 struct list_head leaves; 114 /* list of blocks that have been cowed in current transaction */ 115 struct list_head changed; 116 /* list of detached backref node. */ 117 struct list_head detached; 118 119 u64 last_trans; 120 121 int nr_nodes; 122 int nr_edges; 123 }; 124 125 /* 126 * map address of tree root to tree 127 */ 128 struct mapping_node { 129 struct rb_node rb_node; 130 u64 bytenr; 131 void *data; 132 }; 133 134 struct mapping_tree { 135 struct rb_root rb_root; 136 spinlock_t lock; 137 }; 138 139 /* 140 * present a tree block to process 141 */ 142 struct tree_block { 143 struct rb_node rb_node; 144 u64 bytenr; 145 struct btrfs_key key; 146 unsigned int level:8; 147 unsigned int key_ready:1; 148 }; 149 150 #define MAX_EXTENTS 128 151 152 struct file_extent_cluster { 153 u64 start; 154 u64 end; 155 u64 boundary[MAX_EXTENTS]; 156 unsigned int nr; 157 }; 158 159 struct reloc_control { 160 /* block group to relocate */ 161 struct btrfs_block_group_cache *block_group; 162 /* extent tree */ 163 struct btrfs_root *extent_root; 164 /* inode for moving data */ 165 struct inode *data_inode; 166 167 struct btrfs_block_rsv *block_rsv; 168 169 struct backref_cache backref_cache; 170 171 struct file_extent_cluster cluster; 172 /* tree blocks have been processed */ 173 struct extent_io_tree processed_blocks; 174 /* map start of tree root to corresponding reloc tree */ 175 struct mapping_tree reloc_root_tree; 176 /* list of reloc trees */ 177 struct list_head reloc_roots; 178 /* size of metadata reservation for merging reloc trees */ 179 u64 merging_rsv_size; 180 /* size of relocated tree nodes */ 181 u64 nodes_relocated; 182 /* reserved size for block group relocation*/ 183 u64 reserved_bytes; 184 185 u64 search_start; 186 u64 extents_found; 187 188 unsigned int stage:8; 189 unsigned int create_reloc_tree:1; 190 unsigned int merge_reloc_tree:1; 191 unsigned int found_file_extent:1; 192 }; 193 194 /* stages of data relocation */ 195 #define MOVE_DATA_EXTENTS 0 196 #define UPDATE_DATA_PTRS 1 197 198 static void remove_backref_node(struct backref_cache *cache, 199 struct backref_node *node); 200 static void __mark_block_processed(struct reloc_control *rc, 201 struct backref_node *node); 202 203 static void mapping_tree_init(struct mapping_tree *tree) 204 { 205 tree->rb_root = RB_ROOT; 206 spin_lock_init(&tree->lock); 207 } 208 209 static void backref_cache_init(struct backref_cache *cache) 210 { 211 int i; 212 cache->rb_root = RB_ROOT; 213 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 214 INIT_LIST_HEAD(&cache->pending[i]); 215 INIT_LIST_HEAD(&cache->changed); 216 INIT_LIST_HEAD(&cache->detached); 217 INIT_LIST_HEAD(&cache->leaves); 218 } 219 220 static void backref_cache_cleanup(struct backref_cache *cache) 221 { 222 struct backref_node *node; 223 int i; 224 225 while (!list_empty(&cache->detached)) { 226 node = list_entry(cache->detached.next, 227 struct backref_node, list); 228 remove_backref_node(cache, node); 229 } 230 231 while (!list_empty(&cache->leaves)) { 232 node = list_entry(cache->leaves.next, 233 struct backref_node, lower); 234 remove_backref_node(cache, node); 235 } 236 237 cache->last_trans = 0; 238 239 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 240 ASSERT(list_empty(&cache->pending[i])); 241 ASSERT(list_empty(&cache->changed)); 242 ASSERT(list_empty(&cache->detached)); 243 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 244 ASSERT(!cache->nr_nodes); 245 ASSERT(!cache->nr_edges); 246 } 247 248 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 249 { 250 struct backref_node *node; 251 252 node = kzalloc(sizeof(*node), GFP_NOFS); 253 if (node) { 254 INIT_LIST_HEAD(&node->list); 255 INIT_LIST_HEAD(&node->upper); 256 INIT_LIST_HEAD(&node->lower); 257 RB_CLEAR_NODE(&node->rb_node); 258 cache->nr_nodes++; 259 } 260 return node; 261 } 262 263 static void free_backref_node(struct backref_cache *cache, 264 struct backref_node *node) 265 { 266 if (node) { 267 cache->nr_nodes--; 268 kfree(node); 269 } 270 } 271 272 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 273 { 274 struct backref_edge *edge; 275 276 edge = kzalloc(sizeof(*edge), GFP_NOFS); 277 if (edge) 278 cache->nr_edges++; 279 return edge; 280 } 281 282 static void free_backref_edge(struct backref_cache *cache, 283 struct backref_edge *edge) 284 { 285 if (edge) { 286 cache->nr_edges--; 287 kfree(edge); 288 } 289 } 290 291 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 292 struct rb_node *node) 293 { 294 struct rb_node **p = &root->rb_node; 295 struct rb_node *parent = NULL; 296 struct tree_entry *entry; 297 298 while (*p) { 299 parent = *p; 300 entry = rb_entry(parent, struct tree_entry, rb_node); 301 302 if (bytenr < entry->bytenr) 303 p = &(*p)->rb_left; 304 else if (bytenr > entry->bytenr) 305 p = &(*p)->rb_right; 306 else 307 return parent; 308 } 309 310 rb_link_node(node, parent, p); 311 rb_insert_color(node, root); 312 return NULL; 313 } 314 315 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 316 { 317 struct rb_node *n = root->rb_node; 318 struct tree_entry *entry; 319 320 while (n) { 321 entry = rb_entry(n, struct tree_entry, rb_node); 322 323 if (bytenr < entry->bytenr) 324 n = n->rb_left; 325 else if (bytenr > entry->bytenr) 326 n = n->rb_right; 327 else 328 return n; 329 } 330 return NULL; 331 } 332 333 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 334 { 335 336 struct btrfs_fs_info *fs_info = NULL; 337 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 338 rb_node); 339 if (bnode->root) 340 fs_info = bnode->root->fs_info; 341 btrfs_panic(fs_info, errno, 342 "Inconsistency in backref cache found at offset %llu", 343 bytenr); 344 } 345 346 /* 347 * walk up backref nodes until reach node presents tree root 348 */ 349 static struct backref_node *walk_up_backref(struct backref_node *node, 350 struct backref_edge *edges[], 351 int *index) 352 { 353 struct backref_edge *edge; 354 int idx = *index; 355 356 while (!list_empty(&node->upper)) { 357 edge = list_entry(node->upper.next, 358 struct backref_edge, list[LOWER]); 359 edges[idx++] = edge; 360 node = edge->node[UPPER]; 361 } 362 BUG_ON(node->detached); 363 *index = idx; 364 return node; 365 } 366 367 /* 368 * walk down backref nodes to find start of next reference path 369 */ 370 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 371 int *index) 372 { 373 struct backref_edge *edge; 374 struct backref_node *lower; 375 int idx = *index; 376 377 while (idx > 0) { 378 edge = edges[idx - 1]; 379 lower = edge->node[LOWER]; 380 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 381 idx--; 382 continue; 383 } 384 edge = list_entry(edge->list[LOWER].next, 385 struct backref_edge, list[LOWER]); 386 edges[idx - 1] = edge; 387 *index = idx; 388 return edge->node[UPPER]; 389 } 390 *index = 0; 391 return NULL; 392 } 393 394 static void unlock_node_buffer(struct backref_node *node) 395 { 396 if (node->locked) { 397 btrfs_tree_unlock(node->eb); 398 node->locked = 0; 399 } 400 } 401 402 static void drop_node_buffer(struct backref_node *node) 403 { 404 if (node->eb) { 405 unlock_node_buffer(node); 406 free_extent_buffer(node->eb); 407 node->eb = NULL; 408 } 409 } 410 411 static void drop_backref_node(struct backref_cache *tree, 412 struct backref_node *node) 413 { 414 BUG_ON(!list_empty(&node->upper)); 415 416 drop_node_buffer(node); 417 list_del(&node->list); 418 list_del(&node->lower); 419 if (!RB_EMPTY_NODE(&node->rb_node)) 420 rb_erase(&node->rb_node, &tree->rb_root); 421 free_backref_node(tree, node); 422 } 423 424 /* 425 * remove a backref node from the backref cache 426 */ 427 static void remove_backref_node(struct backref_cache *cache, 428 struct backref_node *node) 429 { 430 struct backref_node *upper; 431 struct backref_edge *edge; 432 433 if (!node) 434 return; 435 436 BUG_ON(!node->lowest && !node->detached); 437 while (!list_empty(&node->upper)) { 438 edge = list_entry(node->upper.next, struct backref_edge, 439 list[LOWER]); 440 upper = edge->node[UPPER]; 441 list_del(&edge->list[LOWER]); 442 list_del(&edge->list[UPPER]); 443 free_backref_edge(cache, edge); 444 445 if (RB_EMPTY_NODE(&upper->rb_node)) { 446 BUG_ON(!list_empty(&node->upper)); 447 drop_backref_node(cache, node); 448 node = upper; 449 node->lowest = 1; 450 continue; 451 } 452 /* 453 * add the node to leaf node list if no other 454 * child block cached. 455 */ 456 if (list_empty(&upper->lower)) { 457 list_add_tail(&upper->lower, &cache->leaves); 458 upper->lowest = 1; 459 } 460 } 461 462 drop_backref_node(cache, node); 463 } 464 465 static void update_backref_node(struct backref_cache *cache, 466 struct backref_node *node, u64 bytenr) 467 { 468 struct rb_node *rb_node; 469 rb_erase(&node->rb_node, &cache->rb_root); 470 node->bytenr = bytenr; 471 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 472 if (rb_node) 473 backref_tree_panic(rb_node, -EEXIST, bytenr); 474 } 475 476 /* 477 * update backref cache after a transaction commit 478 */ 479 static int update_backref_cache(struct btrfs_trans_handle *trans, 480 struct backref_cache *cache) 481 { 482 struct backref_node *node; 483 int level = 0; 484 485 if (cache->last_trans == 0) { 486 cache->last_trans = trans->transid; 487 return 0; 488 } 489 490 if (cache->last_trans == trans->transid) 491 return 0; 492 493 /* 494 * detached nodes are used to avoid unnecessary backref 495 * lookup. transaction commit changes the extent tree. 496 * so the detached nodes are no longer useful. 497 */ 498 while (!list_empty(&cache->detached)) { 499 node = list_entry(cache->detached.next, 500 struct backref_node, list); 501 remove_backref_node(cache, node); 502 } 503 504 while (!list_empty(&cache->changed)) { 505 node = list_entry(cache->changed.next, 506 struct backref_node, list); 507 list_del_init(&node->list); 508 BUG_ON(node->pending); 509 update_backref_node(cache, node, node->new_bytenr); 510 } 511 512 /* 513 * some nodes can be left in the pending list if there were 514 * errors during processing the pending nodes. 515 */ 516 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 517 list_for_each_entry(node, &cache->pending[level], list) { 518 BUG_ON(!node->pending); 519 if (node->bytenr == node->new_bytenr) 520 continue; 521 update_backref_node(cache, node, node->new_bytenr); 522 } 523 } 524 525 cache->last_trans = 0; 526 return 1; 527 } 528 529 530 static int should_ignore_root(struct btrfs_root *root) 531 { 532 struct btrfs_root *reloc_root; 533 534 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 535 return 0; 536 537 reloc_root = root->reloc_root; 538 if (!reloc_root) 539 return 0; 540 541 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 542 root->fs_info->running_transaction->transid - 1) 543 return 0; 544 /* 545 * if there is reloc tree and it was created in previous 546 * transaction backref lookup can find the reloc tree, 547 * so backref node for the fs tree root is useless for 548 * relocation. 549 */ 550 return 1; 551 } 552 /* 553 * find reloc tree by address of tree root 554 */ 555 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 556 u64 bytenr) 557 { 558 struct rb_node *rb_node; 559 struct mapping_node *node; 560 struct btrfs_root *root = NULL; 561 562 spin_lock(&rc->reloc_root_tree.lock); 563 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 564 if (rb_node) { 565 node = rb_entry(rb_node, struct mapping_node, rb_node); 566 root = (struct btrfs_root *)node->data; 567 } 568 spin_unlock(&rc->reloc_root_tree.lock); 569 return root; 570 } 571 572 static int is_cowonly_root(u64 root_objectid) 573 { 574 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 575 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 576 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 577 root_objectid == BTRFS_DEV_TREE_OBJECTID || 578 root_objectid == BTRFS_TREE_LOG_OBJECTID || 579 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 580 root_objectid == BTRFS_UUID_TREE_OBJECTID || 581 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 582 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 583 return 1; 584 return 0; 585 } 586 587 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 588 u64 root_objectid) 589 { 590 struct btrfs_key key; 591 592 key.objectid = root_objectid; 593 key.type = BTRFS_ROOT_ITEM_KEY; 594 if (is_cowonly_root(root_objectid)) 595 key.offset = 0; 596 else 597 key.offset = (u64)-1; 598 599 return btrfs_get_fs_root(fs_info, &key, false); 600 } 601 602 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 603 static noinline_for_stack 604 struct btrfs_root *find_tree_root(struct reloc_control *rc, 605 struct extent_buffer *leaf, 606 struct btrfs_extent_ref_v0 *ref0) 607 { 608 struct btrfs_root *root; 609 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 610 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 611 612 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 613 614 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 615 BUG_ON(IS_ERR(root)); 616 617 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 618 generation != btrfs_root_generation(&root->root_item)) 619 return NULL; 620 621 return root; 622 } 623 #endif 624 625 static noinline_for_stack 626 int find_inline_backref(struct extent_buffer *leaf, int slot, 627 unsigned long *ptr, unsigned long *end) 628 { 629 struct btrfs_key key; 630 struct btrfs_extent_item *ei; 631 struct btrfs_tree_block_info *bi; 632 u32 item_size; 633 634 btrfs_item_key_to_cpu(leaf, &key, slot); 635 636 item_size = btrfs_item_size_nr(leaf, slot); 637 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 638 if (item_size < sizeof(*ei)) { 639 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 640 return 1; 641 } 642 #endif 643 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 644 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 645 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 646 647 if (key.type == BTRFS_EXTENT_ITEM_KEY && 648 item_size <= sizeof(*ei) + sizeof(*bi)) { 649 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 650 return 1; 651 } 652 if (key.type == BTRFS_METADATA_ITEM_KEY && 653 item_size <= sizeof(*ei)) { 654 WARN_ON(item_size < sizeof(*ei)); 655 return 1; 656 } 657 658 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 659 bi = (struct btrfs_tree_block_info *)(ei + 1); 660 *ptr = (unsigned long)(bi + 1); 661 } else { 662 *ptr = (unsigned long)(ei + 1); 663 } 664 *end = (unsigned long)ei + item_size; 665 return 0; 666 } 667 668 /* 669 * build backref tree for a given tree block. root of the backref tree 670 * corresponds the tree block, leaves of the backref tree correspond 671 * roots of b-trees that reference the tree block. 672 * 673 * the basic idea of this function is check backrefs of a given block 674 * to find upper level blocks that reference the block, and then check 675 * backrefs of these upper level blocks recursively. the recursion stop 676 * when tree root is reached or backrefs for the block is cached. 677 * 678 * NOTE: if we find backrefs for a block are cached, we know backrefs 679 * for all upper level blocks that directly/indirectly reference the 680 * block are also cached. 681 */ 682 static noinline_for_stack 683 struct backref_node *build_backref_tree(struct reloc_control *rc, 684 struct btrfs_key *node_key, 685 int level, u64 bytenr) 686 { 687 struct backref_cache *cache = &rc->backref_cache; 688 struct btrfs_path *path1; 689 struct btrfs_path *path2; 690 struct extent_buffer *eb; 691 struct btrfs_root *root; 692 struct backref_node *cur; 693 struct backref_node *upper; 694 struct backref_node *lower; 695 struct backref_node *node = NULL; 696 struct backref_node *exist = NULL; 697 struct backref_edge *edge; 698 struct rb_node *rb_node; 699 struct btrfs_key key; 700 unsigned long end; 701 unsigned long ptr; 702 LIST_HEAD(list); 703 LIST_HEAD(useless); 704 int cowonly; 705 int ret; 706 int err = 0; 707 bool need_check = true; 708 709 path1 = btrfs_alloc_path(); 710 path2 = btrfs_alloc_path(); 711 if (!path1 || !path2) { 712 err = -ENOMEM; 713 goto out; 714 } 715 path1->reada = READA_FORWARD; 716 path2->reada = READA_FORWARD; 717 718 node = alloc_backref_node(cache); 719 if (!node) { 720 err = -ENOMEM; 721 goto out; 722 } 723 724 node->bytenr = bytenr; 725 node->level = level; 726 node->lowest = 1; 727 cur = node; 728 again: 729 end = 0; 730 ptr = 0; 731 key.objectid = cur->bytenr; 732 key.type = BTRFS_METADATA_ITEM_KEY; 733 key.offset = (u64)-1; 734 735 path1->search_commit_root = 1; 736 path1->skip_locking = 1; 737 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 738 0, 0); 739 if (ret < 0) { 740 err = ret; 741 goto out; 742 } 743 ASSERT(ret); 744 ASSERT(path1->slots[0]); 745 746 path1->slots[0]--; 747 748 WARN_ON(cur->checked); 749 if (!list_empty(&cur->upper)) { 750 /* 751 * the backref was added previously when processing 752 * backref of type BTRFS_TREE_BLOCK_REF_KEY 753 */ 754 ASSERT(list_is_singular(&cur->upper)); 755 edge = list_entry(cur->upper.next, struct backref_edge, 756 list[LOWER]); 757 ASSERT(list_empty(&edge->list[UPPER])); 758 exist = edge->node[UPPER]; 759 /* 760 * add the upper level block to pending list if we need 761 * check its backrefs 762 */ 763 if (!exist->checked) 764 list_add_tail(&edge->list[UPPER], &list); 765 } else { 766 exist = NULL; 767 } 768 769 while (1) { 770 cond_resched(); 771 eb = path1->nodes[0]; 772 773 if (ptr >= end) { 774 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 775 ret = btrfs_next_leaf(rc->extent_root, path1); 776 if (ret < 0) { 777 err = ret; 778 goto out; 779 } 780 if (ret > 0) 781 break; 782 eb = path1->nodes[0]; 783 } 784 785 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 786 if (key.objectid != cur->bytenr) { 787 WARN_ON(exist); 788 break; 789 } 790 791 if (key.type == BTRFS_EXTENT_ITEM_KEY || 792 key.type == BTRFS_METADATA_ITEM_KEY) { 793 ret = find_inline_backref(eb, path1->slots[0], 794 &ptr, &end); 795 if (ret) 796 goto next; 797 } 798 } 799 800 if (ptr < end) { 801 /* update key for inline back ref */ 802 struct btrfs_extent_inline_ref *iref; 803 int type; 804 iref = (struct btrfs_extent_inline_ref *)ptr; 805 type = btrfs_get_extent_inline_ref_type(eb, iref, 806 BTRFS_REF_TYPE_BLOCK); 807 if (type == BTRFS_REF_TYPE_INVALID) { 808 err = -EINVAL; 809 goto out; 810 } 811 key.type = type; 812 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 813 814 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 815 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 816 } 817 818 if (exist && 819 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 820 exist->owner == key.offset) || 821 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 822 exist->bytenr == key.offset))) { 823 exist = NULL; 824 goto next; 825 } 826 827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 828 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 829 key.type == BTRFS_EXTENT_REF_V0_KEY) { 830 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 831 struct btrfs_extent_ref_v0 *ref0; 832 ref0 = btrfs_item_ptr(eb, path1->slots[0], 833 struct btrfs_extent_ref_v0); 834 if (key.objectid == key.offset) { 835 root = find_tree_root(rc, eb, ref0); 836 if (root && !should_ignore_root(root)) 837 cur->root = root; 838 else 839 list_add(&cur->list, &useless); 840 break; 841 } 842 if (is_cowonly_root(btrfs_ref_root_v0(eb, 843 ref0))) 844 cur->cowonly = 1; 845 } 846 #else 847 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 848 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 849 #endif 850 if (key.objectid == key.offset) { 851 /* 852 * only root blocks of reloc trees use 853 * backref of this type. 854 */ 855 root = find_reloc_root(rc, cur->bytenr); 856 ASSERT(root); 857 cur->root = root; 858 break; 859 } 860 861 edge = alloc_backref_edge(cache); 862 if (!edge) { 863 err = -ENOMEM; 864 goto out; 865 } 866 rb_node = tree_search(&cache->rb_root, key.offset); 867 if (!rb_node) { 868 upper = alloc_backref_node(cache); 869 if (!upper) { 870 free_backref_edge(cache, edge); 871 err = -ENOMEM; 872 goto out; 873 } 874 upper->bytenr = key.offset; 875 upper->level = cur->level + 1; 876 /* 877 * backrefs for the upper level block isn't 878 * cached, add the block to pending list 879 */ 880 list_add_tail(&edge->list[UPPER], &list); 881 } else { 882 upper = rb_entry(rb_node, struct backref_node, 883 rb_node); 884 ASSERT(upper->checked); 885 INIT_LIST_HEAD(&edge->list[UPPER]); 886 } 887 list_add_tail(&edge->list[LOWER], &cur->upper); 888 edge->node[LOWER] = cur; 889 edge->node[UPPER] = upper; 890 891 goto next; 892 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 893 goto next; 894 } 895 896 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 897 root = read_fs_root(rc->extent_root->fs_info, key.offset); 898 if (IS_ERR(root)) { 899 err = PTR_ERR(root); 900 goto out; 901 } 902 903 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 904 cur->cowonly = 1; 905 906 if (btrfs_root_level(&root->root_item) == cur->level) { 907 /* tree root */ 908 ASSERT(btrfs_root_bytenr(&root->root_item) == 909 cur->bytenr); 910 if (should_ignore_root(root)) 911 list_add(&cur->list, &useless); 912 else 913 cur->root = root; 914 break; 915 } 916 917 level = cur->level + 1; 918 919 /* 920 * searching the tree to find upper level blocks 921 * reference the block. 922 */ 923 path2->search_commit_root = 1; 924 path2->skip_locking = 1; 925 path2->lowest_level = level; 926 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 927 path2->lowest_level = 0; 928 if (ret < 0) { 929 err = ret; 930 goto out; 931 } 932 if (ret > 0 && path2->slots[level] > 0) 933 path2->slots[level]--; 934 935 eb = path2->nodes[level]; 936 if (btrfs_node_blockptr(eb, path2->slots[level]) != 937 cur->bytenr) { 938 btrfs_err(root->fs_info, 939 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 940 cur->bytenr, level - 1, root->objectid, 941 node_key->objectid, node_key->type, 942 node_key->offset); 943 err = -ENOENT; 944 goto out; 945 } 946 lower = cur; 947 need_check = true; 948 for (; level < BTRFS_MAX_LEVEL; level++) { 949 if (!path2->nodes[level]) { 950 ASSERT(btrfs_root_bytenr(&root->root_item) == 951 lower->bytenr); 952 if (should_ignore_root(root)) 953 list_add(&lower->list, &useless); 954 else 955 lower->root = root; 956 break; 957 } 958 959 edge = alloc_backref_edge(cache); 960 if (!edge) { 961 err = -ENOMEM; 962 goto out; 963 } 964 965 eb = path2->nodes[level]; 966 rb_node = tree_search(&cache->rb_root, eb->start); 967 if (!rb_node) { 968 upper = alloc_backref_node(cache); 969 if (!upper) { 970 free_backref_edge(cache, edge); 971 err = -ENOMEM; 972 goto out; 973 } 974 upper->bytenr = eb->start; 975 upper->owner = btrfs_header_owner(eb); 976 upper->level = lower->level + 1; 977 if (!test_bit(BTRFS_ROOT_REF_COWS, 978 &root->state)) 979 upper->cowonly = 1; 980 981 /* 982 * if we know the block isn't shared 983 * we can void checking its backrefs. 984 */ 985 if (btrfs_block_can_be_shared(root, eb)) 986 upper->checked = 0; 987 else 988 upper->checked = 1; 989 990 /* 991 * add the block to pending list if we 992 * need check its backrefs, we only do this once 993 * while walking up a tree as we will catch 994 * anything else later on. 995 */ 996 if (!upper->checked && need_check) { 997 need_check = false; 998 list_add_tail(&edge->list[UPPER], 999 &list); 1000 } else { 1001 if (upper->checked) 1002 need_check = true; 1003 INIT_LIST_HEAD(&edge->list[UPPER]); 1004 } 1005 } else { 1006 upper = rb_entry(rb_node, struct backref_node, 1007 rb_node); 1008 ASSERT(upper->checked); 1009 INIT_LIST_HEAD(&edge->list[UPPER]); 1010 if (!upper->owner) 1011 upper->owner = btrfs_header_owner(eb); 1012 } 1013 list_add_tail(&edge->list[LOWER], &lower->upper); 1014 edge->node[LOWER] = lower; 1015 edge->node[UPPER] = upper; 1016 1017 if (rb_node) 1018 break; 1019 lower = upper; 1020 upper = NULL; 1021 } 1022 btrfs_release_path(path2); 1023 next: 1024 if (ptr < end) { 1025 ptr += btrfs_extent_inline_ref_size(key.type); 1026 if (ptr >= end) { 1027 WARN_ON(ptr > end); 1028 ptr = 0; 1029 end = 0; 1030 } 1031 } 1032 if (ptr >= end) 1033 path1->slots[0]++; 1034 } 1035 btrfs_release_path(path1); 1036 1037 cur->checked = 1; 1038 WARN_ON(exist); 1039 1040 /* the pending list isn't empty, take the first block to process */ 1041 if (!list_empty(&list)) { 1042 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1043 list_del_init(&edge->list[UPPER]); 1044 cur = edge->node[UPPER]; 1045 goto again; 1046 } 1047 1048 /* 1049 * everything goes well, connect backref nodes and insert backref nodes 1050 * into the cache. 1051 */ 1052 ASSERT(node->checked); 1053 cowonly = node->cowonly; 1054 if (!cowonly) { 1055 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1056 &node->rb_node); 1057 if (rb_node) 1058 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1059 list_add_tail(&node->lower, &cache->leaves); 1060 } 1061 1062 list_for_each_entry(edge, &node->upper, list[LOWER]) 1063 list_add_tail(&edge->list[UPPER], &list); 1064 1065 while (!list_empty(&list)) { 1066 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1067 list_del_init(&edge->list[UPPER]); 1068 upper = edge->node[UPPER]; 1069 if (upper->detached) { 1070 list_del(&edge->list[LOWER]); 1071 lower = edge->node[LOWER]; 1072 free_backref_edge(cache, edge); 1073 if (list_empty(&lower->upper)) 1074 list_add(&lower->list, &useless); 1075 continue; 1076 } 1077 1078 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1079 if (upper->lowest) { 1080 list_del_init(&upper->lower); 1081 upper->lowest = 0; 1082 } 1083 1084 list_add_tail(&edge->list[UPPER], &upper->lower); 1085 continue; 1086 } 1087 1088 if (!upper->checked) { 1089 /* 1090 * Still want to blow up for developers since this is a 1091 * logic bug. 1092 */ 1093 ASSERT(0); 1094 err = -EINVAL; 1095 goto out; 1096 } 1097 if (cowonly != upper->cowonly) { 1098 ASSERT(0); 1099 err = -EINVAL; 1100 goto out; 1101 } 1102 1103 if (!cowonly) { 1104 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1105 &upper->rb_node); 1106 if (rb_node) 1107 backref_tree_panic(rb_node, -EEXIST, 1108 upper->bytenr); 1109 } 1110 1111 list_add_tail(&edge->list[UPPER], &upper->lower); 1112 1113 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1114 list_add_tail(&edge->list[UPPER], &list); 1115 } 1116 /* 1117 * process useless backref nodes. backref nodes for tree leaves 1118 * are deleted from the cache. backref nodes for upper level 1119 * tree blocks are left in the cache to avoid unnecessary backref 1120 * lookup. 1121 */ 1122 while (!list_empty(&useless)) { 1123 upper = list_entry(useless.next, struct backref_node, list); 1124 list_del_init(&upper->list); 1125 ASSERT(list_empty(&upper->upper)); 1126 if (upper == node) 1127 node = NULL; 1128 if (upper->lowest) { 1129 list_del_init(&upper->lower); 1130 upper->lowest = 0; 1131 } 1132 while (!list_empty(&upper->lower)) { 1133 edge = list_entry(upper->lower.next, 1134 struct backref_edge, list[UPPER]); 1135 list_del(&edge->list[UPPER]); 1136 list_del(&edge->list[LOWER]); 1137 lower = edge->node[LOWER]; 1138 free_backref_edge(cache, edge); 1139 1140 if (list_empty(&lower->upper)) 1141 list_add(&lower->list, &useless); 1142 } 1143 __mark_block_processed(rc, upper); 1144 if (upper->level > 0) { 1145 list_add(&upper->list, &cache->detached); 1146 upper->detached = 1; 1147 } else { 1148 rb_erase(&upper->rb_node, &cache->rb_root); 1149 free_backref_node(cache, upper); 1150 } 1151 } 1152 out: 1153 btrfs_free_path(path1); 1154 btrfs_free_path(path2); 1155 if (err) { 1156 while (!list_empty(&useless)) { 1157 lower = list_entry(useless.next, 1158 struct backref_node, list); 1159 list_del_init(&lower->list); 1160 } 1161 while (!list_empty(&list)) { 1162 edge = list_first_entry(&list, struct backref_edge, 1163 list[UPPER]); 1164 list_del(&edge->list[UPPER]); 1165 list_del(&edge->list[LOWER]); 1166 lower = edge->node[LOWER]; 1167 upper = edge->node[UPPER]; 1168 free_backref_edge(cache, edge); 1169 1170 /* 1171 * Lower is no longer linked to any upper backref nodes 1172 * and isn't in the cache, we can free it ourselves. 1173 */ 1174 if (list_empty(&lower->upper) && 1175 RB_EMPTY_NODE(&lower->rb_node)) 1176 list_add(&lower->list, &useless); 1177 1178 if (!RB_EMPTY_NODE(&upper->rb_node)) 1179 continue; 1180 1181 /* Add this guy's upper edges to the list to process */ 1182 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1183 list_add_tail(&edge->list[UPPER], &list); 1184 if (list_empty(&upper->upper)) 1185 list_add(&upper->list, &useless); 1186 } 1187 1188 while (!list_empty(&useless)) { 1189 lower = list_entry(useless.next, 1190 struct backref_node, list); 1191 list_del_init(&lower->list); 1192 if (lower == node) 1193 node = NULL; 1194 free_backref_node(cache, lower); 1195 } 1196 1197 free_backref_node(cache, node); 1198 return ERR_PTR(err); 1199 } 1200 ASSERT(!node || !node->detached); 1201 return node; 1202 } 1203 1204 /* 1205 * helper to add backref node for the newly created snapshot. 1206 * the backref node is created by cloning backref node that 1207 * corresponds to root of source tree 1208 */ 1209 static int clone_backref_node(struct btrfs_trans_handle *trans, 1210 struct reloc_control *rc, 1211 struct btrfs_root *src, 1212 struct btrfs_root *dest) 1213 { 1214 struct btrfs_root *reloc_root = src->reloc_root; 1215 struct backref_cache *cache = &rc->backref_cache; 1216 struct backref_node *node = NULL; 1217 struct backref_node *new_node; 1218 struct backref_edge *edge; 1219 struct backref_edge *new_edge; 1220 struct rb_node *rb_node; 1221 1222 if (cache->last_trans > 0) 1223 update_backref_cache(trans, cache); 1224 1225 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1226 if (rb_node) { 1227 node = rb_entry(rb_node, struct backref_node, rb_node); 1228 if (node->detached) 1229 node = NULL; 1230 else 1231 BUG_ON(node->new_bytenr != reloc_root->node->start); 1232 } 1233 1234 if (!node) { 1235 rb_node = tree_search(&cache->rb_root, 1236 reloc_root->commit_root->start); 1237 if (rb_node) { 1238 node = rb_entry(rb_node, struct backref_node, 1239 rb_node); 1240 BUG_ON(node->detached); 1241 } 1242 } 1243 1244 if (!node) 1245 return 0; 1246 1247 new_node = alloc_backref_node(cache); 1248 if (!new_node) 1249 return -ENOMEM; 1250 1251 new_node->bytenr = dest->node->start; 1252 new_node->level = node->level; 1253 new_node->lowest = node->lowest; 1254 new_node->checked = 1; 1255 new_node->root = dest; 1256 1257 if (!node->lowest) { 1258 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1259 new_edge = alloc_backref_edge(cache); 1260 if (!new_edge) 1261 goto fail; 1262 1263 new_edge->node[UPPER] = new_node; 1264 new_edge->node[LOWER] = edge->node[LOWER]; 1265 list_add_tail(&new_edge->list[UPPER], 1266 &new_node->lower); 1267 } 1268 } else { 1269 list_add_tail(&new_node->lower, &cache->leaves); 1270 } 1271 1272 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1273 &new_node->rb_node); 1274 if (rb_node) 1275 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1276 1277 if (!new_node->lowest) { 1278 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1279 list_add_tail(&new_edge->list[LOWER], 1280 &new_edge->node[LOWER]->upper); 1281 } 1282 } 1283 return 0; 1284 fail: 1285 while (!list_empty(&new_node->lower)) { 1286 new_edge = list_entry(new_node->lower.next, 1287 struct backref_edge, list[UPPER]); 1288 list_del(&new_edge->list[UPPER]); 1289 free_backref_edge(cache, new_edge); 1290 } 1291 free_backref_node(cache, new_node); 1292 return -ENOMEM; 1293 } 1294 1295 /* 1296 * helper to add 'address of tree root -> reloc tree' mapping 1297 */ 1298 static int __must_check __add_reloc_root(struct btrfs_root *root) 1299 { 1300 struct btrfs_fs_info *fs_info = root->fs_info; 1301 struct rb_node *rb_node; 1302 struct mapping_node *node; 1303 struct reloc_control *rc = fs_info->reloc_ctl; 1304 1305 node = kmalloc(sizeof(*node), GFP_NOFS); 1306 if (!node) 1307 return -ENOMEM; 1308 1309 node->bytenr = root->node->start; 1310 node->data = root; 1311 1312 spin_lock(&rc->reloc_root_tree.lock); 1313 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1314 node->bytenr, &node->rb_node); 1315 spin_unlock(&rc->reloc_root_tree.lock); 1316 if (rb_node) { 1317 btrfs_panic(fs_info, -EEXIST, 1318 "Duplicate root found for start=%llu while inserting into relocation tree", 1319 node->bytenr); 1320 } 1321 1322 list_add_tail(&root->root_list, &rc->reloc_roots); 1323 return 0; 1324 } 1325 1326 /* 1327 * helper to delete the 'address of tree root -> reloc tree' 1328 * mapping 1329 */ 1330 static void __del_reloc_root(struct btrfs_root *root) 1331 { 1332 struct btrfs_fs_info *fs_info = root->fs_info; 1333 struct rb_node *rb_node; 1334 struct mapping_node *node = NULL; 1335 struct reloc_control *rc = fs_info->reloc_ctl; 1336 1337 spin_lock(&rc->reloc_root_tree.lock); 1338 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1339 root->node->start); 1340 if (rb_node) { 1341 node = rb_entry(rb_node, struct mapping_node, rb_node); 1342 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1343 } 1344 spin_unlock(&rc->reloc_root_tree.lock); 1345 1346 if (!node) 1347 return; 1348 BUG_ON((struct btrfs_root *)node->data != root); 1349 1350 spin_lock(&fs_info->trans_lock); 1351 list_del_init(&root->root_list); 1352 spin_unlock(&fs_info->trans_lock); 1353 kfree(node); 1354 } 1355 1356 /* 1357 * helper to update the 'address of tree root -> reloc tree' 1358 * mapping 1359 */ 1360 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1361 { 1362 struct btrfs_fs_info *fs_info = root->fs_info; 1363 struct rb_node *rb_node; 1364 struct mapping_node *node = NULL; 1365 struct reloc_control *rc = fs_info->reloc_ctl; 1366 1367 spin_lock(&rc->reloc_root_tree.lock); 1368 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1369 root->node->start); 1370 if (rb_node) { 1371 node = rb_entry(rb_node, struct mapping_node, rb_node); 1372 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1373 } 1374 spin_unlock(&rc->reloc_root_tree.lock); 1375 1376 if (!node) 1377 return 0; 1378 BUG_ON((struct btrfs_root *)node->data != root); 1379 1380 spin_lock(&rc->reloc_root_tree.lock); 1381 node->bytenr = new_bytenr; 1382 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1383 node->bytenr, &node->rb_node); 1384 spin_unlock(&rc->reloc_root_tree.lock); 1385 if (rb_node) 1386 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1387 return 0; 1388 } 1389 1390 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1391 struct btrfs_root *root, u64 objectid) 1392 { 1393 struct btrfs_fs_info *fs_info = root->fs_info; 1394 struct btrfs_root *reloc_root; 1395 struct extent_buffer *eb; 1396 struct btrfs_root_item *root_item; 1397 struct btrfs_key root_key; 1398 int ret; 1399 1400 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1401 BUG_ON(!root_item); 1402 1403 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1404 root_key.type = BTRFS_ROOT_ITEM_KEY; 1405 root_key.offset = objectid; 1406 1407 if (root->root_key.objectid == objectid) { 1408 u64 commit_root_gen; 1409 1410 /* called by btrfs_init_reloc_root */ 1411 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1412 BTRFS_TREE_RELOC_OBJECTID); 1413 BUG_ON(ret); 1414 /* 1415 * Set the last_snapshot field to the generation of the commit 1416 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1417 * correctly (returns true) when the relocation root is created 1418 * either inside the critical section of a transaction commit 1419 * (through transaction.c:qgroup_account_snapshot()) and when 1420 * it's created before the transaction commit is started. 1421 */ 1422 commit_root_gen = btrfs_header_generation(root->commit_root); 1423 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1424 } else { 1425 /* 1426 * called by btrfs_reloc_post_snapshot_hook. 1427 * the source tree is a reloc tree, all tree blocks 1428 * modified after it was created have RELOC flag 1429 * set in their headers. so it's OK to not update 1430 * the 'last_snapshot'. 1431 */ 1432 ret = btrfs_copy_root(trans, root, root->node, &eb, 1433 BTRFS_TREE_RELOC_OBJECTID); 1434 BUG_ON(ret); 1435 } 1436 1437 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1438 btrfs_set_root_bytenr(root_item, eb->start); 1439 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1440 btrfs_set_root_generation(root_item, trans->transid); 1441 1442 if (root->root_key.objectid == objectid) { 1443 btrfs_set_root_refs(root_item, 0); 1444 memset(&root_item->drop_progress, 0, 1445 sizeof(struct btrfs_disk_key)); 1446 root_item->drop_level = 0; 1447 } 1448 1449 btrfs_tree_unlock(eb); 1450 free_extent_buffer(eb); 1451 1452 ret = btrfs_insert_root(trans, fs_info->tree_root, 1453 &root_key, root_item); 1454 BUG_ON(ret); 1455 kfree(root_item); 1456 1457 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1458 BUG_ON(IS_ERR(reloc_root)); 1459 reloc_root->last_trans = trans->transid; 1460 return reloc_root; 1461 } 1462 1463 /* 1464 * create reloc tree for a given fs tree. reloc tree is just a 1465 * snapshot of the fs tree with special root objectid. 1466 */ 1467 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1468 struct btrfs_root *root) 1469 { 1470 struct btrfs_fs_info *fs_info = root->fs_info; 1471 struct btrfs_root *reloc_root; 1472 struct reloc_control *rc = fs_info->reloc_ctl; 1473 struct btrfs_block_rsv *rsv; 1474 int clear_rsv = 0; 1475 int ret; 1476 1477 if (root->reloc_root) { 1478 reloc_root = root->reloc_root; 1479 reloc_root->last_trans = trans->transid; 1480 return 0; 1481 } 1482 1483 if (!rc || !rc->create_reloc_tree || 1484 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1485 return 0; 1486 1487 if (!trans->reloc_reserved) { 1488 rsv = trans->block_rsv; 1489 trans->block_rsv = rc->block_rsv; 1490 clear_rsv = 1; 1491 } 1492 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1493 if (clear_rsv) 1494 trans->block_rsv = rsv; 1495 1496 ret = __add_reloc_root(reloc_root); 1497 BUG_ON(ret < 0); 1498 root->reloc_root = reloc_root; 1499 return 0; 1500 } 1501 1502 /* 1503 * update root item of reloc tree 1504 */ 1505 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1506 struct btrfs_root *root) 1507 { 1508 struct btrfs_fs_info *fs_info = root->fs_info; 1509 struct btrfs_root *reloc_root; 1510 struct btrfs_root_item *root_item; 1511 int ret; 1512 1513 if (!root->reloc_root) 1514 goto out; 1515 1516 reloc_root = root->reloc_root; 1517 root_item = &reloc_root->root_item; 1518 1519 if (fs_info->reloc_ctl->merge_reloc_tree && 1520 btrfs_root_refs(root_item) == 0) { 1521 root->reloc_root = NULL; 1522 __del_reloc_root(reloc_root); 1523 } 1524 1525 if (reloc_root->commit_root != reloc_root->node) { 1526 btrfs_set_root_node(root_item, reloc_root->node); 1527 free_extent_buffer(reloc_root->commit_root); 1528 reloc_root->commit_root = btrfs_root_node(reloc_root); 1529 } 1530 1531 ret = btrfs_update_root(trans, fs_info->tree_root, 1532 &reloc_root->root_key, root_item); 1533 BUG_ON(ret); 1534 1535 out: 1536 return 0; 1537 } 1538 1539 /* 1540 * helper to find first cached inode with inode number >= objectid 1541 * in a subvolume 1542 */ 1543 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1544 { 1545 struct rb_node *node; 1546 struct rb_node *prev; 1547 struct btrfs_inode *entry; 1548 struct inode *inode; 1549 1550 spin_lock(&root->inode_lock); 1551 again: 1552 node = root->inode_tree.rb_node; 1553 prev = NULL; 1554 while (node) { 1555 prev = node; 1556 entry = rb_entry(node, struct btrfs_inode, rb_node); 1557 1558 if (objectid < btrfs_ino(entry)) 1559 node = node->rb_left; 1560 else if (objectid > btrfs_ino(entry)) 1561 node = node->rb_right; 1562 else 1563 break; 1564 } 1565 if (!node) { 1566 while (prev) { 1567 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1568 if (objectid <= btrfs_ino(entry)) { 1569 node = prev; 1570 break; 1571 } 1572 prev = rb_next(prev); 1573 } 1574 } 1575 while (node) { 1576 entry = rb_entry(node, struct btrfs_inode, rb_node); 1577 inode = igrab(&entry->vfs_inode); 1578 if (inode) { 1579 spin_unlock(&root->inode_lock); 1580 return inode; 1581 } 1582 1583 objectid = btrfs_ino(entry) + 1; 1584 if (cond_resched_lock(&root->inode_lock)) 1585 goto again; 1586 1587 node = rb_next(node); 1588 } 1589 spin_unlock(&root->inode_lock); 1590 return NULL; 1591 } 1592 1593 static int in_block_group(u64 bytenr, 1594 struct btrfs_block_group_cache *block_group) 1595 { 1596 if (bytenr >= block_group->key.objectid && 1597 bytenr < block_group->key.objectid + block_group->key.offset) 1598 return 1; 1599 return 0; 1600 } 1601 1602 /* 1603 * get new location of data 1604 */ 1605 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1606 u64 bytenr, u64 num_bytes) 1607 { 1608 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1609 struct btrfs_path *path; 1610 struct btrfs_file_extent_item *fi; 1611 struct extent_buffer *leaf; 1612 int ret; 1613 1614 path = btrfs_alloc_path(); 1615 if (!path) 1616 return -ENOMEM; 1617 1618 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1619 ret = btrfs_lookup_file_extent(NULL, root, path, 1620 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1621 if (ret < 0) 1622 goto out; 1623 if (ret > 0) { 1624 ret = -ENOENT; 1625 goto out; 1626 } 1627 1628 leaf = path->nodes[0]; 1629 fi = btrfs_item_ptr(leaf, path->slots[0], 1630 struct btrfs_file_extent_item); 1631 1632 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1633 btrfs_file_extent_compression(leaf, fi) || 1634 btrfs_file_extent_encryption(leaf, fi) || 1635 btrfs_file_extent_other_encoding(leaf, fi)); 1636 1637 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1638 ret = -EINVAL; 1639 goto out; 1640 } 1641 1642 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1643 ret = 0; 1644 out: 1645 btrfs_free_path(path); 1646 return ret; 1647 } 1648 1649 /* 1650 * update file extent items in the tree leaf to point to 1651 * the new locations. 1652 */ 1653 static noinline_for_stack 1654 int replace_file_extents(struct btrfs_trans_handle *trans, 1655 struct reloc_control *rc, 1656 struct btrfs_root *root, 1657 struct extent_buffer *leaf) 1658 { 1659 struct btrfs_fs_info *fs_info = root->fs_info; 1660 struct btrfs_key key; 1661 struct btrfs_file_extent_item *fi; 1662 struct inode *inode = NULL; 1663 u64 parent; 1664 u64 bytenr; 1665 u64 new_bytenr = 0; 1666 u64 num_bytes; 1667 u64 end; 1668 u32 nritems; 1669 u32 i; 1670 int ret = 0; 1671 int first = 1; 1672 int dirty = 0; 1673 1674 if (rc->stage != UPDATE_DATA_PTRS) 1675 return 0; 1676 1677 /* reloc trees always use full backref */ 1678 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1679 parent = leaf->start; 1680 else 1681 parent = 0; 1682 1683 nritems = btrfs_header_nritems(leaf); 1684 for (i = 0; i < nritems; i++) { 1685 cond_resched(); 1686 btrfs_item_key_to_cpu(leaf, &key, i); 1687 if (key.type != BTRFS_EXTENT_DATA_KEY) 1688 continue; 1689 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1690 if (btrfs_file_extent_type(leaf, fi) == 1691 BTRFS_FILE_EXTENT_INLINE) 1692 continue; 1693 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1694 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1695 if (bytenr == 0) 1696 continue; 1697 if (!in_block_group(bytenr, rc->block_group)) 1698 continue; 1699 1700 /* 1701 * if we are modifying block in fs tree, wait for readpage 1702 * to complete and drop the extent cache 1703 */ 1704 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1705 if (first) { 1706 inode = find_next_inode(root, key.objectid); 1707 first = 0; 1708 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1709 btrfs_add_delayed_iput(inode); 1710 inode = find_next_inode(root, key.objectid); 1711 } 1712 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1713 end = key.offset + 1714 btrfs_file_extent_num_bytes(leaf, fi); 1715 WARN_ON(!IS_ALIGNED(key.offset, 1716 fs_info->sectorsize)); 1717 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1718 end--; 1719 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1720 key.offset, end); 1721 if (!ret) 1722 continue; 1723 1724 btrfs_drop_extent_cache(BTRFS_I(inode), 1725 key.offset, end, 1); 1726 unlock_extent(&BTRFS_I(inode)->io_tree, 1727 key.offset, end); 1728 } 1729 } 1730 1731 ret = get_new_location(rc->data_inode, &new_bytenr, 1732 bytenr, num_bytes); 1733 if (ret) { 1734 /* 1735 * Don't have to abort since we've not changed anything 1736 * in the file extent yet. 1737 */ 1738 break; 1739 } 1740 1741 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1742 dirty = 1; 1743 1744 key.offset -= btrfs_file_extent_offset(leaf, fi); 1745 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1746 num_bytes, parent, 1747 btrfs_header_owner(leaf), 1748 key.objectid, key.offset); 1749 if (ret) { 1750 btrfs_abort_transaction(trans, ret); 1751 break; 1752 } 1753 1754 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1755 parent, btrfs_header_owner(leaf), 1756 key.objectid, key.offset); 1757 if (ret) { 1758 btrfs_abort_transaction(trans, ret); 1759 break; 1760 } 1761 } 1762 if (dirty) 1763 btrfs_mark_buffer_dirty(leaf); 1764 if (inode) 1765 btrfs_add_delayed_iput(inode); 1766 return ret; 1767 } 1768 1769 static noinline_for_stack 1770 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1771 struct btrfs_path *path, int level) 1772 { 1773 struct btrfs_disk_key key1; 1774 struct btrfs_disk_key key2; 1775 btrfs_node_key(eb, &key1, slot); 1776 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1777 return memcmp(&key1, &key2, sizeof(key1)); 1778 } 1779 1780 /* 1781 * try to replace tree blocks in fs tree with the new blocks 1782 * in reloc tree. tree blocks haven't been modified since the 1783 * reloc tree was create can be replaced. 1784 * 1785 * if a block was replaced, level of the block + 1 is returned. 1786 * if no block got replaced, 0 is returned. if there are other 1787 * errors, a negative error number is returned. 1788 */ 1789 static noinline_for_stack 1790 int replace_path(struct btrfs_trans_handle *trans, 1791 struct btrfs_root *dest, struct btrfs_root *src, 1792 struct btrfs_path *path, struct btrfs_key *next_key, 1793 int lowest_level, int max_level) 1794 { 1795 struct btrfs_fs_info *fs_info = dest->fs_info; 1796 struct extent_buffer *eb; 1797 struct extent_buffer *parent; 1798 struct btrfs_key key; 1799 u64 old_bytenr; 1800 u64 new_bytenr; 1801 u64 old_ptr_gen; 1802 u64 new_ptr_gen; 1803 u64 last_snapshot; 1804 u32 blocksize; 1805 int cow = 0; 1806 int level; 1807 int ret; 1808 int slot; 1809 1810 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1811 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1812 1813 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1814 again: 1815 slot = path->slots[lowest_level]; 1816 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1817 1818 eb = btrfs_lock_root_node(dest); 1819 btrfs_set_lock_blocking(eb); 1820 level = btrfs_header_level(eb); 1821 1822 if (level < lowest_level) { 1823 btrfs_tree_unlock(eb); 1824 free_extent_buffer(eb); 1825 return 0; 1826 } 1827 1828 if (cow) { 1829 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1830 BUG_ON(ret); 1831 } 1832 btrfs_set_lock_blocking(eb); 1833 1834 if (next_key) { 1835 next_key->objectid = (u64)-1; 1836 next_key->type = (u8)-1; 1837 next_key->offset = (u64)-1; 1838 } 1839 1840 parent = eb; 1841 while (1) { 1842 struct btrfs_key first_key; 1843 1844 level = btrfs_header_level(parent); 1845 BUG_ON(level < lowest_level); 1846 1847 ret = btrfs_bin_search(parent, &key, level, &slot); 1848 if (ret && slot > 0) 1849 slot--; 1850 1851 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1852 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1853 1854 old_bytenr = btrfs_node_blockptr(parent, slot); 1855 blocksize = fs_info->nodesize; 1856 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1857 btrfs_node_key_to_cpu(parent, &key, slot); 1858 1859 if (level <= max_level) { 1860 eb = path->nodes[level]; 1861 new_bytenr = btrfs_node_blockptr(eb, 1862 path->slots[level]); 1863 new_ptr_gen = btrfs_node_ptr_generation(eb, 1864 path->slots[level]); 1865 } else { 1866 new_bytenr = 0; 1867 new_ptr_gen = 0; 1868 } 1869 1870 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1871 ret = level; 1872 break; 1873 } 1874 1875 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1876 memcmp_node_keys(parent, slot, path, level)) { 1877 if (level <= lowest_level) { 1878 ret = 0; 1879 break; 1880 } 1881 1882 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1883 level - 1, &first_key); 1884 if (IS_ERR(eb)) { 1885 ret = PTR_ERR(eb); 1886 break; 1887 } else if (!extent_buffer_uptodate(eb)) { 1888 ret = -EIO; 1889 free_extent_buffer(eb); 1890 break; 1891 } 1892 btrfs_tree_lock(eb); 1893 if (cow) { 1894 ret = btrfs_cow_block(trans, dest, eb, parent, 1895 slot, &eb); 1896 BUG_ON(ret); 1897 } 1898 btrfs_set_lock_blocking(eb); 1899 1900 btrfs_tree_unlock(parent); 1901 free_extent_buffer(parent); 1902 1903 parent = eb; 1904 continue; 1905 } 1906 1907 if (!cow) { 1908 btrfs_tree_unlock(parent); 1909 free_extent_buffer(parent); 1910 cow = 1; 1911 goto again; 1912 } 1913 1914 btrfs_node_key_to_cpu(path->nodes[level], &key, 1915 path->slots[level]); 1916 btrfs_release_path(path); 1917 1918 path->lowest_level = level; 1919 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1920 path->lowest_level = 0; 1921 BUG_ON(ret); 1922 1923 /* 1924 * Info qgroup to trace both subtrees. 1925 * 1926 * We must trace both trees. 1927 * 1) Tree reloc subtree 1928 * If not traced, we will leak data numbers 1929 * 2) Fs subtree 1930 * If not traced, we will double count old data 1931 * and tree block numbers, if current trans doesn't free 1932 * data reloc tree inode. 1933 */ 1934 ret = btrfs_qgroup_trace_subtree(trans, src, parent, 1935 btrfs_header_generation(parent), 1936 btrfs_header_level(parent)); 1937 if (ret < 0) 1938 break; 1939 ret = btrfs_qgroup_trace_subtree(trans, dest, 1940 path->nodes[level], 1941 btrfs_header_generation(path->nodes[level]), 1942 btrfs_header_level(path->nodes[level])); 1943 if (ret < 0) 1944 break; 1945 1946 /* 1947 * swap blocks in fs tree and reloc tree. 1948 */ 1949 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1950 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1951 btrfs_mark_buffer_dirty(parent); 1952 1953 btrfs_set_node_blockptr(path->nodes[level], 1954 path->slots[level], old_bytenr); 1955 btrfs_set_node_ptr_generation(path->nodes[level], 1956 path->slots[level], old_ptr_gen); 1957 btrfs_mark_buffer_dirty(path->nodes[level]); 1958 1959 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, 1960 blocksize, path->nodes[level]->start, 1961 src->root_key.objectid, level - 1, 0); 1962 BUG_ON(ret); 1963 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, 1964 blocksize, 0, dest->root_key.objectid, 1965 level - 1, 0); 1966 BUG_ON(ret); 1967 1968 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1969 path->nodes[level]->start, 1970 src->root_key.objectid, level - 1, 0); 1971 BUG_ON(ret); 1972 1973 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1974 0, dest->root_key.objectid, level - 1, 1975 0); 1976 BUG_ON(ret); 1977 1978 btrfs_unlock_up_safe(path, 0); 1979 1980 ret = level; 1981 break; 1982 } 1983 btrfs_tree_unlock(parent); 1984 free_extent_buffer(parent); 1985 return ret; 1986 } 1987 1988 /* 1989 * helper to find next relocated block in reloc tree 1990 */ 1991 static noinline_for_stack 1992 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1993 int *level) 1994 { 1995 struct extent_buffer *eb; 1996 int i; 1997 u64 last_snapshot; 1998 u32 nritems; 1999 2000 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2001 2002 for (i = 0; i < *level; i++) { 2003 free_extent_buffer(path->nodes[i]); 2004 path->nodes[i] = NULL; 2005 } 2006 2007 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 2008 eb = path->nodes[i]; 2009 nritems = btrfs_header_nritems(eb); 2010 while (path->slots[i] + 1 < nritems) { 2011 path->slots[i]++; 2012 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 2013 last_snapshot) 2014 continue; 2015 2016 *level = i; 2017 return 0; 2018 } 2019 free_extent_buffer(path->nodes[i]); 2020 path->nodes[i] = NULL; 2021 } 2022 return 1; 2023 } 2024 2025 /* 2026 * walk down reloc tree to find relocated block of lowest level 2027 */ 2028 static noinline_for_stack 2029 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2030 int *level) 2031 { 2032 struct btrfs_fs_info *fs_info = root->fs_info; 2033 struct extent_buffer *eb = NULL; 2034 int i; 2035 u64 bytenr; 2036 u64 ptr_gen = 0; 2037 u64 last_snapshot; 2038 u32 nritems; 2039 2040 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2041 2042 for (i = *level; i > 0; i--) { 2043 struct btrfs_key first_key; 2044 2045 eb = path->nodes[i]; 2046 nritems = btrfs_header_nritems(eb); 2047 while (path->slots[i] < nritems) { 2048 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2049 if (ptr_gen > last_snapshot) 2050 break; 2051 path->slots[i]++; 2052 } 2053 if (path->slots[i] >= nritems) { 2054 if (i == *level) 2055 break; 2056 *level = i + 1; 2057 return 0; 2058 } 2059 if (i == 1) { 2060 *level = i; 2061 return 0; 2062 } 2063 2064 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2065 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2066 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2067 &first_key); 2068 if (IS_ERR(eb)) { 2069 return PTR_ERR(eb); 2070 } else if (!extent_buffer_uptodate(eb)) { 2071 free_extent_buffer(eb); 2072 return -EIO; 2073 } 2074 BUG_ON(btrfs_header_level(eb) != i - 1); 2075 path->nodes[i - 1] = eb; 2076 path->slots[i - 1] = 0; 2077 } 2078 return 1; 2079 } 2080 2081 /* 2082 * invalidate extent cache for file extents whose key in range of 2083 * [min_key, max_key) 2084 */ 2085 static int invalidate_extent_cache(struct btrfs_root *root, 2086 struct btrfs_key *min_key, 2087 struct btrfs_key *max_key) 2088 { 2089 struct btrfs_fs_info *fs_info = root->fs_info; 2090 struct inode *inode = NULL; 2091 u64 objectid; 2092 u64 start, end; 2093 u64 ino; 2094 2095 objectid = min_key->objectid; 2096 while (1) { 2097 cond_resched(); 2098 iput(inode); 2099 2100 if (objectid > max_key->objectid) 2101 break; 2102 2103 inode = find_next_inode(root, objectid); 2104 if (!inode) 2105 break; 2106 ino = btrfs_ino(BTRFS_I(inode)); 2107 2108 if (ino > max_key->objectid) { 2109 iput(inode); 2110 break; 2111 } 2112 2113 objectid = ino + 1; 2114 if (!S_ISREG(inode->i_mode)) 2115 continue; 2116 2117 if (unlikely(min_key->objectid == ino)) { 2118 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2119 continue; 2120 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2121 start = 0; 2122 else { 2123 start = min_key->offset; 2124 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2125 } 2126 } else { 2127 start = 0; 2128 } 2129 2130 if (unlikely(max_key->objectid == ino)) { 2131 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2132 continue; 2133 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2134 end = (u64)-1; 2135 } else { 2136 if (max_key->offset == 0) 2137 continue; 2138 end = max_key->offset; 2139 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2140 end--; 2141 } 2142 } else { 2143 end = (u64)-1; 2144 } 2145 2146 /* the lock_extent waits for readpage to complete */ 2147 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2148 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2149 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2150 } 2151 return 0; 2152 } 2153 2154 static int find_next_key(struct btrfs_path *path, int level, 2155 struct btrfs_key *key) 2156 2157 { 2158 while (level < BTRFS_MAX_LEVEL) { 2159 if (!path->nodes[level]) 2160 break; 2161 if (path->slots[level] + 1 < 2162 btrfs_header_nritems(path->nodes[level])) { 2163 btrfs_node_key_to_cpu(path->nodes[level], key, 2164 path->slots[level] + 1); 2165 return 0; 2166 } 2167 level++; 2168 } 2169 return 1; 2170 } 2171 2172 /* 2173 * merge the relocated tree blocks in reloc tree with corresponding 2174 * fs tree. 2175 */ 2176 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2177 struct btrfs_root *root) 2178 { 2179 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2180 LIST_HEAD(inode_list); 2181 struct btrfs_key key; 2182 struct btrfs_key next_key; 2183 struct btrfs_trans_handle *trans = NULL; 2184 struct btrfs_root *reloc_root; 2185 struct btrfs_root_item *root_item; 2186 struct btrfs_path *path; 2187 struct extent_buffer *leaf; 2188 int level; 2189 int max_level; 2190 int replaced = 0; 2191 int ret; 2192 int err = 0; 2193 u32 min_reserved; 2194 2195 path = btrfs_alloc_path(); 2196 if (!path) 2197 return -ENOMEM; 2198 path->reada = READA_FORWARD; 2199 2200 reloc_root = root->reloc_root; 2201 root_item = &reloc_root->root_item; 2202 2203 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2204 level = btrfs_root_level(root_item); 2205 extent_buffer_get(reloc_root->node); 2206 path->nodes[level] = reloc_root->node; 2207 path->slots[level] = 0; 2208 } else { 2209 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2210 2211 level = root_item->drop_level; 2212 BUG_ON(level == 0); 2213 path->lowest_level = level; 2214 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2215 path->lowest_level = 0; 2216 if (ret < 0) { 2217 btrfs_free_path(path); 2218 return ret; 2219 } 2220 2221 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2222 path->slots[level]); 2223 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2224 2225 btrfs_unlock_up_safe(path, 0); 2226 } 2227 2228 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2229 memset(&next_key, 0, sizeof(next_key)); 2230 2231 while (1) { 2232 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2233 BTRFS_RESERVE_FLUSH_ALL); 2234 if (ret) { 2235 err = ret; 2236 goto out; 2237 } 2238 trans = btrfs_start_transaction(root, 0); 2239 if (IS_ERR(trans)) { 2240 err = PTR_ERR(trans); 2241 trans = NULL; 2242 goto out; 2243 } 2244 trans->block_rsv = rc->block_rsv; 2245 2246 replaced = 0; 2247 max_level = level; 2248 2249 ret = walk_down_reloc_tree(reloc_root, path, &level); 2250 if (ret < 0) { 2251 err = ret; 2252 goto out; 2253 } 2254 if (ret > 0) 2255 break; 2256 2257 if (!find_next_key(path, level, &key) && 2258 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2259 ret = 0; 2260 } else { 2261 ret = replace_path(trans, root, reloc_root, path, 2262 &next_key, level, max_level); 2263 } 2264 if (ret < 0) { 2265 err = ret; 2266 goto out; 2267 } 2268 2269 if (ret > 0) { 2270 level = ret; 2271 btrfs_node_key_to_cpu(path->nodes[level], &key, 2272 path->slots[level]); 2273 replaced = 1; 2274 } 2275 2276 ret = walk_up_reloc_tree(reloc_root, path, &level); 2277 if (ret > 0) 2278 break; 2279 2280 BUG_ON(level == 0); 2281 /* 2282 * save the merging progress in the drop_progress. 2283 * this is OK since root refs == 1 in this case. 2284 */ 2285 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2286 path->slots[level]); 2287 root_item->drop_level = level; 2288 2289 btrfs_end_transaction_throttle(trans); 2290 trans = NULL; 2291 2292 btrfs_btree_balance_dirty(fs_info); 2293 2294 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2295 invalidate_extent_cache(root, &key, &next_key); 2296 } 2297 2298 /* 2299 * handle the case only one block in the fs tree need to be 2300 * relocated and the block is tree root. 2301 */ 2302 leaf = btrfs_lock_root_node(root); 2303 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2304 btrfs_tree_unlock(leaf); 2305 free_extent_buffer(leaf); 2306 if (ret < 0) 2307 err = ret; 2308 out: 2309 btrfs_free_path(path); 2310 2311 if (err == 0) { 2312 memset(&root_item->drop_progress, 0, 2313 sizeof(root_item->drop_progress)); 2314 root_item->drop_level = 0; 2315 btrfs_set_root_refs(root_item, 0); 2316 btrfs_update_reloc_root(trans, root); 2317 } 2318 2319 if (trans) 2320 btrfs_end_transaction_throttle(trans); 2321 2322 btrfs_btree_balance_dirty(fs_info); 2323 2324 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2325 invalidate_extent_cache(root, &key, &next_key); 2326 2327 return err; 2328 } 2329 2330 static noinline_for_stack 2331 int prepare_to_merge(struct reloc_control *rc, int err) 2332 { 2333 struct btrfs_root *root = rc->extent_root; 2334 struct btrfs_fs_info *fs_info = root->fs_info; 2335 struct btrfs_root *reloc_root; 2336 struct btrfs_trans_handle *trans; 2337 LIST_HEAD(reloc_roots); 2338 u64 num_bytes = 0; 2339 int ret; 2340 2341 mutex_lock(&fs_info->reloc_mutex); 2342 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2343 rc->merging_rsv_size += rc->nodes_relocated * 2; 2344 mutex_unlock(&fs_info->reloc_mutex); 2345 2346 again: 2347 if (!err) { 2348 num_bytes = rc->merging_rsv_size; 2349 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2350 BTRFS_RESERVE_FLUSH_ALL); 2351 if (ret) 2352 err = ret; 2353 } 2354 2355 trans = btrfs_join_transaction(rc->extent_root); 2356 if (IS_ERR(trans)) { 2357 if (!err) 2358 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2359 num_bytes); 2360 return PTR_ERR(trans); 2361 } 2362 2363 if (!err) { 2364 if (num_bytes != rc->merging_rsv_size) { 2365 btrfs_end_transaction(trans); 2366 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2367 num_bytes); 2368 goto again; 2369 } 2370 } 2371 2372 rc->merge_reloc_tree = 1; 2373 2374 while (!list_empty(&rc->reloc_roots)) { 2375 reloc_root = list_entry(rc->reloc_roots.next, 2376 struct btrfs_root, root_list); 2377 list_del_init(&reloc_root->root_list); 2378 2379 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2380 BUG_ON(IS_ERR(root)); 2381 BUG_ON(root->reloc_root != reloc_root); 2382 2383 /* 2384 * set reference count to 1, so btrfs_recover_relocation 2385 * knows it should resumes merging 2386 */ 2387 if (!err) 2388 btrfs_set_root_refs(&reloc_root->root_item, 1); 2389 btrfs_update_reloc_root(trans, root); 2390 2391 list_add(&reloc_root->root_list, &reloc_roots); 2392 } 2393 2394 list_splice(&reloc_roots, &rc->reloc_roots); 2395 2396 if (!err) 2397 btrfs_commit_transaction(trans); 2398 else 2399 btrfs_end_transaction(trans); 2400 return err; 2401 } 2402 2403 static noinline_for_stack 2404 void free_reloc_roots(struct list_head *list) 2405 { 2406 struct btrfs_root *reloc_root; 2407 2408 while (!list_empty(list)) { 2409 reloc_root = list_entry(list->next, struct btrfs_root, 2410 root_list); 2411 __del_reloc_root(reloc_root); 2412 free_extent_buffer(reloc_root->node); 2413 free_extent_buffer(reloc_root->commit_root); 2414 reloc_root->node = NULL; 2415 reloc_root->commit_root = NULL; 2416 } 2417 } 2418 2419 static noinline_for_stack 2420 void merge_reloc_roots(struct reloc_control *rc) 2421 { 2422 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2423 struct btrfs_root *root; 2424 struct btrfs_root *reloc_root; 2425 LIST_HEAD(reloc_roots); 2426 int found = 0; 2427 int ret = 0; 2428 again: 2429 root = rc->extent_root; 2430 2431 /* 2432 * this serializes us with btrfs_record_root_in_transaction, 2433 * we have to make sure nobody is in the middle of 2434 * adding their roots to the list while we are 2435 * doing this splice 2436 */ 2437 mutex_lock(&fs_info->reloc_mutex); 2438 list_splice_init(&rc->reloc_roots, &reloc_roots); 2439 mutex_unlock(&fs_info->reloc_mutex); 2440 2441 while (!list_empty(&reloc_roots)) { 2442 found = 1; 2443 reloc_root = list_entry(reloc_roots.next, 2444 struct btrfs_root, root_list); 2445 2446 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2447 root = read_fs_root(fs_info, 2448 reloc_root->root_key.offset); 2449 BUG_ON(IS_ERR(root)); 2450 BUG_ON(root->reloc_root != reloc_root); 2451 2452 ret = merge_reloc_root(rc, root); 2453 if (ret) { 2454 if (list_empty(&reloc_root->root_list)) 2455 list_add_tail(&reloc_root->root_list, 2456 &reloc_roots); 2457 goto out; 2458 } 2459 } else { 2460 list_del_init(&reloc_root->root_list); 2461 } 2462 2463 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2464 if (ret < 0) { 2465 if (list_empty(&reloc_root->root_list)) 2466 list_add_tail(&reloc_root->root_list, 2467 &reloc_roots); 2468 goto out; 2469 } 2470 } 2471 2472 if (found) { 2473 found = 0; 2474 goto again; 2475 } 2476 out: 2477 if (ret) { 2478 btrfs_handle_fs_error(fs_info, ret, NULL); 2479 if (!list_empty(&reloc_roots)) 2480 free_reloc_roots(&reloc_roots); 2481 2482 /* new reloc root may be added */ 2483 mutex_lock(&fs_info->reloc_mutex); 2484 list_splice_init(&rc->reloc_roots, &reloc_roots); 2485 mutex_unlock(&fs_info->reloc_mutex); 2486 if (!list_empty(&reloc_roots)) 2487 free_reloc_roots(&reloc_roots); 2488 } 2489 2490 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2491 } 2492 2493 static void free_block_list(struct rb_root *blocks) 2494 { 2495 struct tree_block *block; 2496 struct rb_node *rb_node; 2497 while ((rb_node = rb_first(blocks))) { 2498 block = rb_entry(rb_node, struct tree_block, rb_node); 2499 rb_erase(rb_node, blocks); 2500 kfree(block); 2501 } 2502 } 2503 2504 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2505 struct btrfs_root *reloc_root) 2506 { 2507 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2508 struct btrfs_root *root; 2509 2510 if (reloc_root->last_trans == trans->transid) 2511 return 0; 2512 2513 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2514 BUG_ON(IS_ERR(root)); 2515 BUG_ON(root->reloc_root != reloc_root); 2516 2517 return btrfs_record_root_in_trans(trans, root); 2518 } 2519 2520 static noinline_for_stack 2521 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2522 struct reloc_control *rc, 2523 struct backref_node *node, 2524 struct backref_edge *edges[]) 2525 { 2526 struct backref_node *next; 2527 struct btrfs_root *root; 2528 int index = 0; 2529 2530 next = node; 2531 while (1) { 2532 cond_resched(); 2533 next = walk_up_backref(next, edges, &index); 2534 root = next->root; 2535 BUG_ON(!root); 2536 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2537 2538 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2539 record_reloc_root_in_trans(trans, root); 2540 break; 2541 } 2542 2543 btrfs_record_root_in_trans(trans, root); 2544 root = root->reloc_root; 2545 2546 if (next->new_bytenr != root->node->start) { 2547 BUG_ON(next->new_bytenr); 2548 BUG_ON(!list_empty(&next->list)); 2549 next->new_bytenr = root->node->start; 2550 next->root = root; 2551 list_add_tail(&next->list, 2552 &rc->backref_cache.changed); 2553 __mark_block_processed(rc, next); 2554 break; 2555 } 2556 2557 WARN_ON(1); 2558 root = NULL; 2559 next = walk_down_backref(edges, &index); 2560 if (!next || next->level <= node->level) 2561 break; 2562 } 2563 if (!root) 2564 return NULL; 2565 2566 next = node; 2567 /* setup backref node path for btrfs_reloc_cow_block */ 2568 while (1) { 2569 rc->backref_cache.path[next->level] = next; 2570 if (--index < 0) 2571 break; 2572 next = edges[index]->node[UPPER]; 2573 } 2574 return root; 2575 } 2576 2577 /* 2578 * select a tree root for relocation. return NULL if the block 2579 * is reference counted. we should use do_relocation() in this 2580 * case. return a tree root pointer if the block isn't reference 2581 * counted. return -ENOENT if the block is root of reloc tree. 2582 */ 2583 static noinline_for_stack 2584 struct btrfs_root *select_one_root(struct backref_node *node) 2585 { 2586 struct backref_node *next; 2587 struct btrfs_root *root; 2588 struct btrfs_root *fs_root = NULL; 2589 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2590 int index = 0; 2591 2592 next = node; 2593 while (1) { 2594 cond_resched(); 2595 next = walk_up_backref(next, edges, &index); 2596 root = next->root; 2597 BUG_ON(!root); 2598 2599 /* no other choice for non-references counted tree */ 2600 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2601 return root; 2602 2603 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2604 fs_root = root; 2605 2606 if (next != node) 2607 return NULL; 2608 2609 next = walk_down_backref(edges, &index); 2610 if (!next || next->level <= node->level) 2611 break; 2612 } 2613 2614 if (!fs_root) 2615 return ERR_PTR(-ENOENT); 2616 return fs_root; 2617 } 2618 2619 static noinline_for_stack 2620 u64 calcu_metadata_size(struct reloc_control *rc, 2621 struct backref_node *node, int reserve) 2622 { 2623 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2624 struct backref_node *next = node; 2625 struct backref_edge *edge; 2626 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2627 u64 num_bytes = 0; 2628 int index = 0; 2629 2630 BUG_ON(reserve && node->processed); 2631 2632 while (next) { 2633 cond_resched(); 2634 while (1) { 2635 if (next->processed && (reserve || next != node)) 2636 break; 2637 2638 num_bytes += fs_info->nodesize; 2639 2640 if (list_empty(&next->upper)) 2641 break; 2642 2643 edge = list_entry(next->upper.next, 2644 struct backref_edge, list[LOWER]); 2645 edges[index++] = edge; 2646 next = edge->node[UPPER]; 2647 } 2648 next = walk_down_backref(edges, &index); 2649 } 2650 return num_bytes; 2651 } 2652 2653 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2654 struct reloc_control *rc, 2655 struct backref_node *node) 2656 { 2657 struct btrfs_root *root = rc->extent_root; 2658 struct btrfs_fs_info *fs_info = root->fs_info; 2659 u64 num_bytes; 2660 int ret; 2661 u64 tmp; 2662 2663 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2664 2665 trans->block_rsv = rc->block_rsv; 2666 rc->reserved_bytes += num_bytes; 2667 2668 /* 2669 * We are under a transaction here so we can only do limited flushing. 2670 * If we get an enospc just kick back -EAGAIN so we know to drop the 2671 * transaction and try to refill when we can flush all the things. 2672 */ 2673 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2674 BTRFS_RESERVE_FLUSH_LIMIT); 2675 if (ret) { 2676 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2677 while (tmp <= rc->reserved_bytes) 2678 tmp <<= 1; 2679 /* 2680 * only one thread can access block_rsv at this point, 2681 * so we don't need hold lock to protect block_rsv. 2682 * we expand more reservation size here to allow enough 2683 * space for relocation and we will return eailer in 2684 * enospc case. 2685 */ 2686 rc->block_rsv->size = tmp + fs_info->nodesize * 2687 RELOCATION_RESERVED_NODES; 2688 return -EAGAIN; 2689 } 2690 2691 return 0; 2692 } 2693 2694 /* 2695 * relocate a block tree, and then update pointers in upper level 2696 * blocks that reference the block to point to the new location. 2697 * 2698 * if called by link_to_upper, the block has already been relocated. 2699 * in that case this function just updates pointers. 2700 */ 2701 static int do_relocation(struct btrfs_trans_handle *trans, 2702 struct reloc_control *rc, 2703 struct backref_node *node, 2704 struct btrfs_key *key, 2705 struct btrfs_path *path, int lowest) 2706 { 2707 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2708 struct backref_node *upper; 2709 struct backref_edge *edge; 2710 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2711 struct btrfs_root *root; 2712 struct extent_buffer *eb; 2713 u32 blocksize; 2714 u64 bytenr; 2715 u64 generation; 2716 int slot; 2717 int ret; 2718 int err = 0; 2719 2720 BUG_ON(lowest && node->eb); 2721 2722 path->lowest_level = node->level + 1; 2723 rc->backref_cache.path[node->level] = node; 2724 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2725 struct btrfs_key first_key; 2726 2727 cond_resched(); 2728 2729 upper = edge->node[UPPER]; 2730 root = select_reloc_root(trans, rc, upper, edges); 2731 BUG_ON(!root); 2732 2733 if (upper->eb && !upper->locked) { 2734 if (!lowest) { 2735 ret = btrfs_bin_search(upper->eb, key, 2736 upper->level, &slot); 2737 BUG_ON(ret); 2738 bytenr = btrfs_node_blockptr(upper->eb, slot); 2739 if (node->eb->start == bytenr) 2740 goto next; 2741 } 2742 drop_node_buffer(upper); 2743 } 2744 2745 if (!upper->eb) { 2746 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2747 if (ret) { 2748 if (ret < 0) 2749 err = ret; 2750 else 2751 err = -ENOENT; 2752 2753 btrfs_release_path(path); 2754 break; 2755 } 2756 2757 if (!upper->eb) { 2758 upper->eb = path->nodes[upper->level]; 2759 path->nodes[upper->level] = NULL; 2760 } else { 2761 BUG_ON(upper->eb != path->nodes[upper->level]); 2762 } 2763 2764 upper->locked = 1; 2765 path->locks[upper->level] = 0; 2766 2767 slot = path->slots[upper->level]; 2768 btrfs_release_path(path); 2769 } else { 2770 ret = btrfs_bin_search(upper->eb, key, upper->level, 2771 &slot); 2772 BUG_ON(ret); 2773 } 2774 2775 bytenr = btrfs_node_blockptr(upper->eb, slot); 2776 if (lowest) { 2777 if (bytenr != node->bytenr) { 2778 btrfs_err(root->fs_info, 2779 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2780 bytenr, node->bytenr, slot, 2781 upper->eb->start); 2782 err = -EIO; 2783 goto next; 2784 } 2785 } else { 2786 if (node->eb->start == bytenr) 2787 goto next; 2788 } 2789 2790 blocksize = root->fs_info->nodesize; 2791 generation = btrfs_node_ptr_generation(upper->eb, slot); 2792 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2793 eb = read_tree_block(fs_info, bytenr, generation, 2794 upper->level - 1, &first_key); 2795 if (IS_ERR(eb)) { 2796 err = PTR_ERR(eb); 2797 goto next; 2798 } else if (!extent_buffer_uptodate(eb)) { 2799 free_extent_buffer(eb); 2800 err = -EIO; 2801 goto next; 2802 } 2803 btrfs_tree_lock(eb); 2804 btrfs_set_lock_blocking(eb); 2805 2806 if (!node->eb) { 2807 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2808 slot, &eb); 2809 btrfs_tree_unlock(eb); 2810 free_extent_buffer(eb); 2811 if (ret < 0) { 2812 err = ret; 2813 goto next; 2814 } 2815 BUG_ON(node->eb != eb); 2816 } else { 2817 btrfs_set_node_blockptr(upper->eb, slot, 2818 node->eb->start); 2819 btrfs_set_node_ptr_generation(upper->eb, slot, 2820 trans->transid); 2821 btrfs_mark_buffer_dirty(upper->eb); 2822 2823 ret = btrfs_inc_extent_ref(trans, root, 2824 node->eb->start, blocksize, 2825 upper->eb->start, 2826 btrfs_header_owner(upper->eb), 2827 node->level, 0); 2828 BUG_ON(ret); 2829 2830 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2831 BUG_ON(ret); 2832 } 2833 next: 2834 if (!upper->pending) 2835 drop_node_buffer(upper); 2836 else 2837 unlock_node_buffer(upper); 2838 if (err) 2839 break; 2840 } 2841 2842 if (!err && node->pending) { 2843 drop_node_buffer(node); 2844 list_move_tail(&node->list, &rc->backref_cache.changed); 2845 node->pending = 0; 2846 } 2847 2848 path->lowest_level = 0; 2849 BUG_ON(err == -ENOSPC); 2850 return err; 2851 } 2852 2853 static int link_to_upper(struct btrfs_trans_handle *trans, 2854 struct reloc_control *rc, 2855 struct backref_node *node, 2856 struct btrfs_path *path) 2857 { 2858 struct btrfs_key key; 2859 2860 btrfs_node_key_to_cpu(node->eb, &key, 0); 2861 return do_relocation(trans, rc, node, &key, path, 0); 2862 } 2863 2864 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2865 struct reloc_control *rc, 2866 struct btrfs_path *path, int err) 2867 { 2868 LIST_HEAD(list); 2869 struct backref_cache *cache = &rc->backref_cache; 2870 struct backref_node *node; 2871 int level; 2872 int ret; 2873 2874 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2875 while (!list_empty(&cache->pending[level])) { 2876 node = list_entry(cache->pending[level].next, 2877 struct backref_node, list); 2878 list_move_tail(&node->list, &list); 2879 BUG_ON(!node->pending); 2880 2881 if (!err) { 2882 ret = link_to_upper(trans, rc, node, path); 2883 if (ret < 0) 2884 err = ret; 2885 } 2886 } 2887 list_splice_init(&list, &cache->pending[level]); 2888 } 2889 return err; 2890 } 2891 2892 static void mark_block_processed(struct reloc_control *rc, 2893 u64 bytenr, u32 blocksize) 2894 { 2895 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2896 EXTENT_DIRTY); 2897 } 2898 2899 static void __mark_block_processed(struct reloc_control *rc, 2900 struct backref_node *node) 2901 { 2902 u32 blocksize; 2903 if (node->level == 0 || 2904 in_block_group(node->bytenr, rc->block_group)) { 2905 blocksize = rc->extent_root->fs_info->nodesize; 2906 mark_block_processed(rc, node->bytenr, blocksize); 2907 } 2908 node->processed = 1; 2909 } 2910 2911 /* 2912 * mark a block and all blocks directly/indirectly reference the block 2913 * as processed. 2914 */ 2915 static void update_processed_blocks(struct reloc_control *rc, 2916 struct backref_node *node) 2917 { 2918 struct backref_node *next = node; 2919 struct backref_edge *edge; 2920 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2921 int index = 0; 2922 2923 while (next) { 2924 cond_resched(); 2925 while (1) { 2926 if (next->processed) 2927 break; 2928 2929 __mark_block_processed(rc, next); 2930 2931 if (list_empty(&next->upper)) 2932 break; 2933 2934 edge = list_entry(next->upper.next, 2935 struct backref_edge, list[LOWER]); 2936 edges[index++] = edge; 2937 next = edge->node[UPPER]; 2938 } 2939 next = walk_down_backref(edges, &index); 2940 } 2941 } 2942 2943 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2944 { 2945 u32 blocksize = rc->extent_root->fs_info->nodesize; 2946 2947 if (test_range_bit(&rc->processed_blocks, bytenr, 2948 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2949 return 1; 2950 return 0; 2951 } 2952 2953 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2954 struct tree_block *block) 2955 { 2956 struct extent_buffer *eb; 2957 2958 BUG_ON(block->key_ready); 2959 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2960 block->level, NULL); 2961 if (IS_ERR(eb)) { 2962 return PTR_ERR(eb); 2963 } else if (!extent_buffer_uptodate(eb)) { 2964 free_extent_buffer(eb); 2965 return -EIO; 2966 } 2967 WARN_ON(btrfs_header_level(eb) != block->level); 2968 if (block->level == 0) 2969 btrfs_item_key_to_cpu(eb, &block->key, 0); 2970 else 2971 btrfs_node_key_to_cpu(eb, &block->key, 0); 2972 free_extent_buffer(eb); 2973 block->key_ready = 1; 2974 return 0; 2975 } 2976 2977 /* 2978 * helper function to relocate a tree block 2979 */ 2980 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2981 struct reloc_control *rc, 2982 struct backref_node *node, 2983 struct btrfs_key *key, 2984 struct btrfs_path *path) 2985 { 2986 struct btrfs_root *root; 2987 int ret = 0; 2988 2989 if (!node) 2990 return 0; 2991 2992 BUG_ON(node->processed); 2993 root = select_one_root(node); 2994 if (root == ERR_PTR(-ENOENT)) { 2995 update_processed_blocks(rc, node); 2996 goto out; 2997 } 2998 2999 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3000 ret = reserve_metadata_space(trans, rc, node); 3001 if (ret) 3002 goto out; 3003 } 3004 3005 if (root) { 3006 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3007 BUG_ON(node->new_bytenr); 3008 BUG_ON(!list_empty(&node->list)); 3009 btrfs_record_root_in_trans(trans, root); 3010 root = root->reloc_root; 3011 node->new_bytenr = root->node->start; 3012 node->root = root; 3013 list_add_tail(&node->list, &rc->backref_cache.changed); 3014 } else { 3015 path->lowest_level = node->level; 3016 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3017 btrfs_release_path(path); 3018 if (ret > 0) 3019 ret = 0; 3020 } 3021 if (!ret) 3022 update_processed_blocks(rc, node); 3023 } else { 3024 ret = do_relocation(trans, rc, node, key, path, 1); 3025 } 3026 out: 3027 if (ret || node->level == 0 || node->cowonly) 3028 remove_backref_node(&rc->backref_cache, node); 3029 return ret; 3030 } 3031 3032 /* 3033 * relocate a list of blocks 3034 */ 3035 static noinline_for_stack 3036 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3037 struct reloc_control *rc, struct rb_root *blocks) 3038 { 3039 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3040 struct backref_node *node; 3041 struct btrfs_path *path; 3042 struct tree_block *block; 3043 struct rb_node *rb_node; 3044 int ret; 3045 int err = 0; 3046 3047 path = btrfs_alloc_path(); 3048 if (!path) { 3049 err = -ENOMEM; 3050 goto out_free_blocks; 3051 } 3052 3053 rb_node = rb_first(blocks); 3054 while (rb_node) { 3055 block = rb_entry(rb_node, struct tree_block, rb_node); 3056 if (!block->key_ready) 3057 readahead_tree_block(fs_info, block->bytenr); 3058 rb_node = rb_next(rb_node); 3059 } 3060 3061 rb_node = rb_first(blocks); 3062 while (rb_node) { 3063 block = rb_entry(rb_node, struct tree_block, rb_node); 3064 if (!block->key_ready) { 3065 err = get_tree_block_key(fs_info, block); 3066 if (err) 3067 goto out_free_path; 3068 } 3069 rb_node = rb_next(rb_node); 3070 } 3071 3072 rb_node = rb_first(blocks); 3073 while (rb_node) { 3074 block = rb_entry(rb_node, struct tree_block, rb_node); 3075 3076 node = build_backref_tree(rc, &block->key, 3077 block->level, block->bytenr); 3078 if (IS_ERR(node)) { 3079 err = PTR_ERR(node); 3080 goto out; 3081 } 3082 3083 ret = relocate_tree_block(trans, rc, node, &block->key, 3084 path); 3085 if (ret < 0) { 3086 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3087 err = ret; 3088 goto out; 3089 } 3090 rb_node = rb_next(rb_node); 3091 } 3092 out: 3093 err = finish_pending_nodes(trans, rc, path, err); 3094 3095 out_free_path: 3096 btrfs_free_path(path); 3097 out_free_blocks: 3098 free_block_list(blocks); 3099 return err; 3100 } 3101 3102 static noinline_for_stack 3103 int prealloc_file_extent_cluster(struct inode *inode, 3104 struct file_extent_cluster *cluster) 3105 { 3106 u64 alloc_hint = 0; 3107 u64 start; 3108 u64 end; 3109 u64 offset = BTRFS_I(inode)->index_cnt; 3110 u64 num_bytes; 3111 int nr = 0; 3112 int ret = 0; 3113 u64 prealloc_start = cluster->start - offset; 3114 u64 prealloc_end = cluster->end - offset; 3115 u64 cur_offset; 3116 struct extent_changeset *data_reserved = NULL; 3117 3118 BUG_ON(cluster->start != cluster->boundary[0]); 3119 inode_lock(inode); 3120 3121 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3122 prealloc_end + 1 - prealloc_start); 3123 if (ret) 3124 goto out; 3125 3126 cur_offset = prealloc_start; 3127 while (nr < cluster->nr) { 3128 start = cluster->boundary[nr] - offset; 3129 if (nr + 1 < cluster->nr) 3130 end = cluster->boundary[nr + 1] - 1 - offset; 3131 else 3132 end = cluster->end - offset; 3133 3134 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3135 num_bytes = end + 1 - start; 3136 if (cur_offset < start) 3137 btrfs_free_reserved_data_space(inode, data_reserved, 3138 cur_offset, start - cur_offset); 3139 ret = btrfs_prealloc_file_range(inode, 0, start, 3140 num_bytes, num_bytes, 3141 end + 1, &alloc_hint); 3142 cur_offset = end + 1; 3143 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3144 if (ret) 3145 break; 3146 nr++; 3147 } 3148 if (cur_offset < prealloc_end) 3149 btrfs_free_reserved_data_space(inode, data_reserved, 3150 cur_offset, prealloc_end + 1 - cur_offset); 3151 out: 3152 inode_unlock(inode); 3153 extent_changeset_free(data_reserved); 3154 return ret; 3155 } 3156 3157 static noinline_for_stack 3158 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3159 u64 block_start) 3160 { 3161 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3162 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3163 struct extent_map *em; 3164 int ret = 0; 3165 3166 em = alloc_extent_map(); 3167 if (!em) 3168 return -ENOMEM; 3169 3170 em->start = start; 3171 em->len = end + 1 - start; 3172 em->block_len = em->len; 3173 em->block_start = block_start; 3174 em->bdev = fs_info->fs_devices->latest_bdev; 3175 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3176 3177 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3178 while (1) { 3179 write_lock(&em_tree->lock); 3180 ret = add_extent_mapping(em_tree, em, 0); 3181 write_unlock(&em_tree->lock); 3182 if (ret != -EEXIST) { 3183 free_extent_map(em); 3184 break; 3185 } 3186 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3187 } 3188 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3189 return ret; 3190 } 3191 3192 static int relocate_file_extent_cluster(struct inode *inode, 3193 struct file_extent_cluster *cluster) 3194 { 3195 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3196 u64 page_start; 3197 u64 page_end; 3198 u64 offset = BTRFS_I(inode)->index_cnt; 3199 unsigned long index; 3200 unsigned long last_index; 3201 struct page *page; 3202 struct file_ra_state *ra; 3203 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3204 int nr = 0; 3205 int ret = 0; 3206 3207 if (!cluster->nr) 3208 return 0; 3209 3210 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3211 if (!ra) 3212 return -ENOMEM; 3213 3214 ret = prealloc_file_extent_cluster(inode, cluster); 3215 if (ret) 3216 goto out; 3217 3218 file_ra_state_init(ra, inode->i_mapping); 3219 3220 ret = setup_extent_mapping(inode, cluster->start - offset, 3221 cluster->end - offset, cluster->start); 3222 if (ret) 3223 goto out; 3224 3225 index = (cluster->start - offset) >> PAGE_SHIFT; 3226 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3227 while (index <= last_index) { 3228 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3229 PAGE_SIZE); 3230 if (ret) 3231 goto out; 3232 3233 page = find_lock_page(inode->i_mapping, index); 3234 if (!page) { 3235 page_cache_sync_readahead(inode->i_mapping, 3236 ra, NULL, index, 3237 last_index + 1 - index); 3238 page = find_or_create_page(inode->i_mapping, index, 3239 mask); 3240 if (!page) { 3241 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3242 PAGE_SIZE, true); 3243 ret = -ENOMEM; 3244 goto out; 3245 } 3246 } 3247 3248 if (PageReadahead(page)) { 3249 page_cache_async_readahead(inode->i_mapping, 3250 ra, NULL, page, index, 3251 last_index + 1 - index); 3252 } 3253 3254 if (!PageUptodate(page)) { 3255 btrfs_readpage(NULL, page); 3256 lock_page(page); 3257 if (!PageUptodate(page)) { 3258 unlock_page(page); 3259 put_page(page); 3260 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3261 PAGE_SIZE, true); 3262 btrfs_delalloc_release_extents(BTRFS_I(inode), 3263 PAGE_SIZE, true); 3264 ret = -EIO; 3265 goto out; 3266 } 3267 } 3268 3269 page_start = page_offset(page); 3270 page_end = page_start + PAGE_SIZE - 1; 3271 3272 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3273 3274 set_page_extent_mapped(page); 3275 3276 if (nr < cluster->nr && 3277 page_start + offset == cluster->boundary[nr]) { 3278 set_extent_bits(&BTRFS_I(inode)->io_tree, 3279 page_start, page_end, 3280 EXTENT_BOUNDARY); 3281 nr++; 3282 } 3283 3284 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3285 NULL, 0); 3286 if (ret) { 3287 unlock_page(page); 3288 put_page(page); 3289 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3290 PAGE_SIZE, true); 3291 btrfs_delalloc_release_extents(BTRFS_I(inode), 3292 PAGE_SIZE, true); 3293 3294 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3295 page_start, page_end, 3296 EXTENT_LOCKED | EXTENT_BOUNDARY); 3297 goto out; 3298 3299 } 3300 set_page_dirty(page); 3301 3302 unlock_extent(&BTRFS_I(inode)->io_tree, 3303 page_start, page_end); 3304 unlock_page(page); 3305 put_page(page); 3306 3307 index++; 3308 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE, 3309 false); 3310 balance_dirty_pages_ratelimited(inode->i_mapping); 3311 btrfs_throttle(fs_info); 3312 } 3313 WARN_ON(nr != cluster->nr); 3314 out: 3315 kfree(ra); 3316 return ret; 3317 } 3318 3319 static noinline_for_stack 3320 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3321 struct file_extent_cluster *cluster) 3322 { 3323 int ret; 3324 3325 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3326 ret = relocate_file_extent_cluster(inode, cluster); 3327 if (ret) 3328 return ret; 3329 cluster->nr = 0; 3330 } 3331 3332 if (!cluster->nr) 3333 cluster->start = extent_key->objectid; 3334 else 3335 BUG_ON(cluster->nr >= MAX_EXTENTS); 3336 cluster->end = extent_key->objectid + extent_key->offset - 1; 3337 cluster->boundary[cluster->nr] = extent_key->objectid; 3338 cluster->nr++; 3339 3340 if (cluster->nr >= MAX_EXTENTS) { 3341 ret = relocate_file_extent_cluster(inode, cluster); 3342 if (ret) 3343 return ret; 3344 cluster->nr = 0; 3345 } 3346 return 0; 3347 } 3348 3349 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3350 static int get_ref_objectid_v0(struct reloc_control *rc, 3351 struct btrfs_path *path, 3352 struct btrfs_key *extent_key, 3353 u64 *ref_objectid, int *path_change) 3354 { 3355 struct btrfs_key key; 3356 struct extent_buffer *leaf; 3357 struct btrfs_extent_ref_v0 *ref0; 3358 int ret; 3359 int slot; 3360 3361 leaf = path->nodes[0]; 3362 slot = path->slots[0]; 3363 while (1) { 3364 if (slot >= btrfs_header_nritems(leaf)) { 3365 ret = btrfs_next_leaf(rc->extent_root, path); 3366 if (ret < 0) 3367 return ret; 3368 BUG_ON(ret > 0); 3369 leaf = path->nodes[0]; 3370 slot = path->slots[0]; 3371 if (path_change) 3372 *path_change = 1; 3373 } 3374 btrfs_item_key_to_cpu(leaf, &key, slot); 3375 if (key.objectid != extent_key->objectid) 3376 return -ENOENT; 3377 3378 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3379 slot++; 3380 continue; 3381 } 3382 ref0 = btrfs_item_ptr(leaf, slot, 3383 struct btrfs_extent_ref_v0); 3384 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3385 break; 3386 } 3387 return 0; 3388 } 3389 #endif 3390 3391 /* 3392 * helper to add a tree block to the list. 3393 * the major work is getting the generation and level of the block 3394 */ 3395 static int add_tree_block(struct reloc_control *rc, 3396 struct btrfs_key *extent_key, 3397 struct btrfs_path *path, 3398 struct rb_root *blocks) 3399 { 3400 struct extent_buffer *eb; 3401 struct btrfs_extent_item *ei; 3402 struct btrfs_tree_block_info *bi; 3403 struct tree_block *block; 3404 struct rb_node *rb_node; 3405 u32 item_size; 3406 int level = -1; 3407 u64 generation; 3408 3409 eb = path->nodes[0]; 3410 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3411 3412 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3413 item_size >= sizeof(*ei) + sizeof(*bi)) { 3414 ei = btrfs_item_ptr(eb, path->slots[0], 3415 struct btrfs_extent_item); 3416 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3417 bi = (struct btrfs_tree_block_info *)(ei + 1); 3418 level = btrfs_tree_block_level(eb, bi); 3419 } else { 3420 level = (int)extent_key->offset; 3421 } 3422 generation = btrfs_extent_generation(eb, ei); 3423 } else { 3424 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3425 u64 ref_owner; 3426 int ret; 3427 3428 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3429 ret = get_ref_objectid_v0(rc, path, extent_key, 3430 &ref_owner, NULL); 3431 if (ret < 0) 3432 return ret; 3433 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3434 level = (int)ref_owner; 3435 /* FIXME: get real generation */ 3436 generation = 0; 3437 #else 3438 BUG(); 3439 #endif 3440 } 3441 3442 btrfs_release_path(path); 3443 3444 BUG_ON(level == -1); 3445 3446 block = kmalloc(sizeof(*block), GFP_NOFS); 3447 if (!block) 3448 return -ENOMEM; 3449 3450 block->bytenr = extent_key->objectid; 3451 block->key.objectid = rc->extent_root->fs_info->nodesize; 3452 block->key.offset = generation; 3453 block->level = level; 3454 block->key_ready = 0; 3455 3456 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3457 if (rb_node) 3458 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3459 3460 return 0; 3461 } 3462 3463 /* 3464 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3465 */ 3466 static int __add_tree_block(struct reloc_control *rc, 3467 u64 bytenr, u32 blocksize, 3468 struct rb_root *blocks) 3469 { 3470 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3471 struct btrfs_path *path; 3472 struct btrfs_key key; 3473 int ret; 3474 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3475 3476 if (tree_block_processed(bytenr, rc)) 3477 return 0; 3478 3479 if (tree_search(blocks, bytenr)) 3480 return 0; 3481 3482 path = btrfs_alloc_path(); 3483 if (!path) 3484 return -ENOMEM; 3485 again: 3486 key.objectid = bytenr; 3487 if (skinny) { 3488 key.type = BTRFS_METADATA_ITEM_KEY; 3489 key.offset = (u64)-1; 3490 } else { 3491 key.type = BTRFS_EXTENT_ITEM_KEY; 3492 key.offset = blocksize; 3493 } 3494 3495 path->search_commit_root = 1; 3496 path->skip_locking = 1; 3497 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3498 if (ret < 0) 3499 goto out; 3500 3501 if (ret > 0 && skinny) { 3502 if (path->slots[0]) { 3503 path->slots[0]--; 3504 btrfs_item_key_to_cpu(path->nodes[0], &key, 3505 path->slots[0]); 3506 if (key.objectid == bytenr && 3507 (key.type == BTRFS_METADATA_ITEM_KEY || 3508 (key.type == BTRFS_EXTENT_ITEM_KEY && 3509 key.offset == blocksize))) 3510 ret = 0; 3511 } 3512 3513 if (ret) { 3514 skinny = false; 3515 btrfs_release_path(path); 3516 goto again; 3517 } 3518 } 3519 if (ret) { 3520 ASSERT(ret == 1); 3521 btrfs_print_leaf(path->nodes[0]); 3522 btrfs_err(fs_info, 3523 "tree block extent item (%llu) is not found in extent tree", 3524 bytenr); 3525 WARN_ON(1); 3526 ret = -EINVAL; 3527 goto out; 3528 } 3529 3530 ret = add_tree_block(rc, &key, path, blocks); 3531 out: 3532 btrfs_free_path(path); 3533 return ret; 3534 } 3535 3536 /* 3537 * helper to check if the block use full backrefs for pointers in it 3538 */ 3539 static int block_use_full_backref(struct reloc_control *rc, 3540 struct extent_buffer *eb) 3541 { 3542 u64 flags; 3543 int ret; 3544 3545 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3546 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3547 return 1; 3548 3549 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3550 eb->start, btrfs_header_level(eb), 1, 3551 NULL, &flags); 3552 BUG_ON(ret); 3553 3554 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3555 ret = 1; 3556 else 3557 ret = 0; 3558 return ret; 3559 } 3560 3561 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3562 struct btrfs_block_group_cache *block_group, 3563 struct inode *inode, 3564 u64 ino) 3565 { 3566 struct btrfs_key key; 3567 struct btrfs_root *root = fs_info->tree_root; 3568 struct btrfs_trans_handle *trans; 3569 int ret = 0; 3570 3571 if (inode) 3572 goto truncate; 3573 3574 key.objectid = ino; 3575 key.type = BTRFS_INODE_ITEM_KEY; 3576 key.offset = 0; 3577 3578 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3579 if (IS_ERR(inode) || is_bad_inode(inode)) { 3580 if (!IS_ERR(inode)) 3581 iput(inode); 3582 return -ENOENT; 3583 } 3584 3585 truncate: 3586 ret = btrfs_check_trunc_cache_free_space(fs_info, 3587 &fs_info->global_block_rsv); 3588 if (ret) 3589 goto out; 3590 3591 trans = btrfs_join_transaction(root); 3592 if (IS_ERR(trans)) { 3593 ret = PTR_ERR(trans); 3594 goto out; 3595 } 3596 3597 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3598 3599 btrfs_end_transaction(trans); 3600 btrfs_btree_balance_dirty(fs_info); 3601 out: 3602 iput(inode); 3603 return ret; 3604 } 3605 3606 /* 3607 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3608 * this function scans fs tree to find blocks reference the data extent 3609 */ 3610 static int find_data_references(struct reloc_control *rc, 3611 struct btrfs_key *extent_key, 3612 struct extent_buffer *leaf, 3613 struct btrfs_extent_data_ref *ref, 3614 struct rb_root *blocks) 3615 { 3616 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3617 struct btrfs_path *path; 3618 struct tree_block *block; 3619 struct btrfs_root *root; 3620 struct btrfs_file_extent_item *fi; 3621 struct rb_node *rb_node; 3622 struct btrfs_key key; 3623 u64 ref_root; 3624 u64 ref_objectid; 3625 u64 ref_offset; 3626 u32 ref_count; 3627 u32 nritems; 3628 int err = 0; 3629 int added = 0; 3630 int counted; 3631 int ret; 3632 3633 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3634 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3635 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3636 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3637 3638 /* 3639 * This is an extent belonging to the free space cache, lets just delete 3640 * it and redo the search. 3641 */ 3642 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3643 ret = delete_block_group_cache(fs_info, rc->block_group, 3644 NULL, ref_objectid); 3645 if (ret != -ENOENT) 3646 return ret; 3647 ret = 0; 3648 } 3649 3650 path = btrfs_alloc_path(); 3651 if (!path) 3652 return -ENOMEM; 3653 path->reada = READA_FORWARD; 3654 3655 root = read_fs_root(fs_info, ref_root); 3656 if (IS_ERR(root)) { 3657 err = PTR_ERR(root); 3658 goto out; 3659 } 3660 3661 key.objectid = ref_objectid; 3662 key.type = BTRFS_EXTENT_DATA_KEY; 3663 if (ref_offset > ((u64)-1 << 32)) 3664 key.offset = 0; 3665 else 3666 key.offset = ref_offset; 3667 3668 path->search_commit_root = 1; 3669 path->skip_locking = 1; 3670 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3671 if (ret < 0) { 3672 err = ret; 3673 goto out; 3674 } 3675 3676 leaf = path->nodes[0]; 3677 nritems = btrfs_header_nritems(leaf); 3678 /* 3679 * the references in tree blocks that use full backrefs 3680 * are not counted in 3681 */ 3682 if (block_use_full_backref(rc, leaf)) 3683 counted = 0; 3684 else 3685 counted = 1; 3686 rb_node = tree_search(blocks, leaf->start); 3687 if (rb_node) { 3688 if (counted) 3689 added = 1; 3690 else 3691 path->slots[0] = nritems; 3692 } 3693 3694 while (ref_count > 0) { 3695 while (path->slots[0] >= nritems) { 3696 ret = btrfs_next_leaf(root, path); 3697 if (ret < 0) { 3698 err = ret; 3699 goto out; 3700 } 3701 if (WARN_ON(ret > 0)) 3702 goto out; 3703 3704 leaf = path->nodes[0]; 3705 nritems = btrfs_header_nritems(leaf); 3706 added = 0; 3707 3708 if (block_use_full_backref(rc, leaf)) 3709 counted = 0; 3710 else 3711 counted = 1; 3712 rb_node = tree_search(blocks, leaf->start); 3713 if (rb_node) { 3714 if (counted) 3715 added = 1; 3716 else 3717 path->slots[0] = nritems; 3718 } 3719 } 3720 3721 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3722 if (WARN_ON(key.objectid != ref_objectid || 3723 key.type != BTRFS_EXTENT_DATA_KEY)) 3724 break; 3725 3726 fi = btrfs_item_ptr(leaf, path->slots[0], 3727 struct btrfs_file_extent_item); 3728 3729 if (btrfs_file_extent_type(leaf, fi) == 3730 BTRFS_FILE_EXTENT_INLINE) 3731 goto next; 3732 3733 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3734 extent_key->objectid) 3735 goto next; 3736 3737 key.offset -= btrfs_file_extent_offset(leaf, fi); 3738 if (key.offset != ref_offset) 3739 goto next; 3740 3741 if (counted) 3742 ref_count--; 3743 if (added) 3744 goto next; 3745 3746 if (!tree_block_processed(leaf->start, rc)) { 3747 block = kmalloc(sizeof(*block), GFP_NOFS); 3748 if (!block) { 3749 err = -ENOMEM; 3750 break; 3751 } 3752 block->bytenr = leaf->start; 3753 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3754 block->level = 0; 3755 block->key_ready = 1; 3756 rb_node = tree_insert(blocks, block->bytenr, 3757 &block->rb_node); 3758 if (rb_node) 3759 backref_tree_panic(rb_node, -EEXIST, 3760 block->bytenr); 3761 } 3762 if (counted) 3763 added = 1; 3764 else 3765 path->slots[0] = nritems; 3766 next: 3767 path->slots[0]++; 3768 3769 } 3770 out: 3771 btrfs_free_path(path); 3772 return err; 3773 } 3774 3775 /* 3776 * helper to find all tree blocks that reference a given data extent 3777 */ 3778 static noinline_for_stack 3779 int add_data_references(struct reloc_control *rc, 3780 struct btrfs_key *extent_key, 3781 struct btrfs_path *path, 3782 struct rb_root *blocks) 3783 { 3784 struct btrfs_key key; 3785 struct extent_buffer *eb; 3786 struct btrfs_extent_data_ref *dref; 3787 struct btrfs_extent_inline_ref *iref; 3788 unsigned long ptr; 3789 unsigned long end; 3790 u32 blocksize = rc->extent_root->fs_info->nodesize; 3791 int ret = 0; 3792 int err = 0; 3793 3794 eb = path->nodes[0]; 3795 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3796 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3797 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3798 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3799 ptr = end; 3800 else 3801 #endif 3802 ptr += sizeof(struct btrfs_extent_item); 3803 3804 while (ptr < end) { 3805 iref = (struct btrfs_extent_inline_ref *)ptr; 3806 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3807 BTRFS_REF_TYPE_DATA); 3808 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3809 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3810 ret = __add_tree_block(rc, key.offset, blocksize, 3811 blocks); 3812 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3813 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3814 ret = find_data_references(rc, extent_key, 3815 eb, dref, blocks); 3816 } else { 3817 ret = -EINVAL; 3818 btrfs_err(rc->extent_root->fs_info, 3819 "extent %llu slot %d has an invalid inline ref type", 3820 eb->start, path->slots[0]); 3821 } 3822 if (ret) { 3823 err = ret; 3824 goto out; 3825 } 3826 ptr += btrfs_extent_inline_ref_size(key.type); 3827 } 3828 WARN_ON(ptr > end); 3829 3830 while (1) { 3831 cond_resched(); 3832 eb = path->nodes[0]; 3833 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3834 ret = btrfs_next_leaf(rc->extent_root, path); 3835 if (ret < 0) { 3836 err = ret; 3837 break; 3838 } 3839 if (ret > 0) 3840 break; 3841 eb = path->nodes[0]; 3842 } 3843 3844 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3845 if (key.objectid != extent_key->objectid) 3846 break; 3847 3848 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3849 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3850 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3851 #else 3852 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3853 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3854 #endif 3855 ret = __add_tree_block(rc, key.offset, blocksize, 3856 blocks); 3857 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3858 dref = btrfs_item_ptr(eb, path->slots[0], 3859 struct btrfs_extent_data_ref); 3860 ret = find_data_references(rc, extent_key, 3861 eb, dref, blocks); 3862 } else { 3863 ret = 0; 3864 } 3865 if (ret) { 3866 err = ret; 3867 break; 3868 } 3869 path->slots[0]++; 3870 } 3871 out: 3872 btrfs_release_path(path); 3873 if (err) 3874 free_block_list(blocks); 3875 return err; 3876 } 3877 3878 /* 3879 * helper to find next unprocessed extent 3880 */ 3881 static noinline_for_stack 3882 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3883 struct btrfs_key *extent_key) 3884 { 3885 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3886 struct btrfs_key key; 3887 struct extent_buffer *leaf; 3888 u64 start, end, last; 3889 int ret; 3890 3891 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3892 while (1) { 3893 cond_resched(); 3894 if (rc->search_start >= last) { 3895 ret = 1; 3896 break; 3897 } 3898 3899 key.objectid = rc->search_start; 3900 key.type = BTRFS_EXTENT_ITEM_KEY; 3901 key.offset = 0; 3902 3903 path->search_commit_root = 1; 3904 path->skip_locking = 1; 3905 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3906 0, 0); 3907 if (ret < 0) 3908 break; 3909 next: 3910 leaf = path->nodes[0]; 3911 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3912 ret = btrfs_next_leaf(rc->extent_root, path); 3913 if (ret != 0) 3914 break; 3915 leaf = path->nodes[0]; 3916 } 3917 3918 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3919 if (key.objectid >= last) { 3920 ret = 1; 3921 break; 3922 } 3923 3924 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3925 key.type != BTRFS_METADATA_ITEM_KEY) { 3926 path->slots[0]++; 3927 goto next; 3928 } 3929 3930 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3931 key.objectid + key.offset <= rc->search_start) { 3932 path->slots[0]++; 3933 goto next; 3934 } 3935 3936 if (key.type == BTRFS_METADATA_ITEM_KEY && 3937 key.objectid + fs_info->nodesize <= 3938 rc->search_start) { 3939 path->slots[0]++; 3940 goto next; 3941 } 3942 3943 ret = find_first_extent_bit(&rc->processed_blocks, 3944 key.objectid, &start, &end, 3945 EXTENT_DIRTY, NULL); 3946 3947 if (ret == 0 && start <= key.objectid) { 3948 btrfs_release_path(path); 3949 rc->search_start = end + 1; 3950 } else { 3951 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3952 rc->search_start = key.objectid + key.offset; 3953 else 3954 rc->search_start = key.objectid + 3955 fs_info->nodesize; 3956 memcpy(extent_key, &key, sizeof(key)); 3957 return 0; 3958 } 3959 } 3960 btrfs_release_path(path); 3961 return ret; 3962 } 3963 3964 static void set_reloc_control(struct reloc_control *rc) 3965 { 3966 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3967 3968 mutex_lock(&fs_info->reloc_mutex); 3969 fs_info->reloc_ctl = rc; 3970 mutex_unlock(&fs_info->reloc_mutex); 3971 } 3972 3973 static void unset_reloc_control(struct reloc_control *rc) 3974 { 3975 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3976 3977 mutex_lock(&fs_info->reloc_mutex); 3978 fs_info->reloc_ctl = NULL; 3979 mutex_unlock(&fs_info->reloc_mutex); 3980 } 3981 3982 static int check_extent_flags(u64 flags) 3983 { 3984 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3985 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3986 return 1; 3987 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3988 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3989 return 1; 3990 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3991 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3992 return 1; 3993 return 0; 3994 } 3995 3996 static noinline_for_stack 3997 int prepare_to_relocate(struct reloc_control *rc) 3998 { 3999 struct btrfs_trans_handle *trans; 4000 int ret; 4001 4002 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 4003 BTRFS_BLOCK_RSV_TEMP); 4004 if (!rc->block_rsv) 4005 return -ENOMEM; 4006 4007 memset(&rc->cluster, 0, sizeof(rc->cluster)); 4008 rc->search_start = rc->block_group->key.objectid; 4009 rc->extents_found = 0; 4010 rc->nodes_relocated = 0; 4011 rc->merging_rsv_size = 0; 4012 rc->reserved_bytes = 0; 4013 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 4014 RELOCATION_RESERVED_NODES; 4015 ret = btrfs_block_rsv_refill(rc->extent_root, 4016 rc->block_rsv, rc->block_rsv->size, 4017 BTRFS_RESERVE_FLUSH_ALL); 4018 if (ret) 4019 return ret; 4020 4021 rc->create_reloc_tree = 1; 4022 set_reloc_control(rc); 4023 4024 trans = btrfs_join_transaction(rc->extent_root); 4025 if (IS_ERR(trans)) { 4026 unset_reloc_control(rc); 4027 /* 4028 * extent tree is not a ref_cow tree and has no reloc_root to 4029 * cleanup. And callers are responsible to free the above 4030 * block rsv. 4031 */ 4032 return PTR_ERR(trans); 4033 } 4034 btrfs_commit_transaction(trans); 4035 return 0; 4036 } 4037 4038 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4039 { 4040 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 4041 struct rb_root blocks = RB_ROOT; 4042 struct btrfs_key key; 4043 struct btrfs_trans_handle *trans = NULL; 4044 struct btrfs_path *path; 4045 struct btrfs_extent_item *ei; 4046 u64 flags; 4047 u32 item_size; 4048 int ret; 4049 int err = 0; 4050 int progress = 0; 4051 4052 path = btrfs_alloc_path(); 4053 if (!path) 4054 return -ENOMEM; 4055 path->reada = READA_FORWARD; 4056 4057 ret = prepare_to_relocate(rc); 4058 if (ret) { 4059 err = ret; 4060 goto out_free; 4061 } 4062 4063 while (1) { 4064 rc->reserved_bytes = 0; 4065 ret = btrfs_block_rsv_refill(rc->extent_root, 4066 rc->block_rsv, rc->block_rsv->size, 4067 BTRFS_RESERVE_FLUSH_ALL); 4068 if (ret) { 4069 err = ret; 4070 break; 4071 } 4072 progress++; 4073 trans = btrfs_start_transaction(rc->extent_root, 0); 4074 if (IS_ERR(trans)) { 4075 err = PTR_ERR(trans); 4076 trans = NULL; 4077 break; 4078 } 4079 restart: 4080 if (update_backref_cache(trans, &rc->backref_cache)) { 4081 btrfs_end_transaction(trans); 4082 continue; 4083 } 4084 4085 ret = find_next_extent(rc, path, &key); 4086 if (ret < 0) 4087 err = ret; 4088 if (ret != 0) 4089 break; 4090 4091 rc->extents_found++; 4092 4093 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4094 struct btrfs_extent_item); 4095 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4096 if (item_size >= sizeof(*ei)) { 4097 flags = btrfs_extent_flags(path->nodes[0], ei); 4098 ret = check_extent_flags(flags); 4099 BUG_ON(ret); 4100 4101 } else { 4102 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4103 u64 ref_owner; 4104 int path_change = 0; 4105 4106 BUG_ON(item_size != 4107 sizeof(struct btrfs_extent_item_v0)); 4108 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 4109 &path_change); 4110 if (ret < 0) { 4111 err = ret; 4112 break; 4113 } 4114 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 4115 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 4116 else 4117 flags = BTRFS_EXTENT_FLAG_DATA; 4118 4119 if (path_change) { 4120 btrfs_release_path(path); 4121 4122 path->search_commit_root = 1; 4123 path->skip_locking = 1; 4124 ret = btrfs_search_slot(NULL, rc->extent_root, 4125 &key, path, 0, 0); 4126 if (ret < 0) { 4127 err = ret; 4128 break; 4129 } 4130 BUG_ON(ret > 0); 4131 } 4132 #else 4133 BUG(); 4134 #endif 4135 } 4136 4137 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4138 ret = add_tree_block(rc, &key, path, &blocks); 4139 } else if (rc->stage == UPDATE_DATA_PTRS && 4140 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4141 ret = add_data_references(rc, &key, path, &blocks); 4142 } else { 4143 btrfs_release_path(path); 4144 ret = 0; 4145 } 4146 if (ret < 0) { 4147 err = ret; 4148 break; 4149 } 4150 4151 if (!RB_EMPTY_ROOT(&blocks)) { 4152 ret = relocate_tree_blocks(trans, rc, &blocks); 4153 if (ret < 0) { 4154 /* 4155 * if we fail to relocate tree blocks, force to update 4156 * backref cache when committing transaction. 4157 */ 4158 rc->backref_cache.last_trans = trans->transid - 1; 4159 4160 if (ret != -EAGAIN) { 4161 err = ret; 4162 break; 4163 } 4164 rc->extents_found--; 4165 rc->search_start = key.objectid; 4166 } 4167 } 4168 4169 btrfs_end_transaction_throttle(trans); 4170 btrfs_btree_balance_dirty(fs_info); 4171 trans = NULL; 4172 4173 if (rc->stage == MOVE_DATA_EXTENTS && 4174 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4175 rc->found_file_extent = 1; 4176 ret = relocate_data_extent(rc->data_inode, 4177 &key, &rc->cluster); 4178 if (ret < 0) { 4179 err = ret; 4180 break; 4181 } 4182 } 4183 } 4184 if (trans && progress && err == -ENOSPC) { 4185 ret = btrfs_force_chunk_alloc(trans, fs_info, 4186 rc->block_group->flags); 4187 if (ret == 1) { 4188 err = 0; 4189 progress = 0; 4190 goto restart; 4191 } 4192 } 4193 4194 btrfs_release_path(path); 4195 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4196 4197 if (trans) { 4198 btrfs_end_transaction_throttle(trans); 4199 btrfs_btree_balance_dirty(fs_info); 4200 } 4201 4202 if (!err) { 4203 ret = relocate_file_extent_cluster(rc->data_inode, 4204 &rc->cluster); 4205 if (ret < 0) 4206 err = ret; 4207 } 4208 4209 rc->create_reloc_tree = 0; 4210 set_reloc_control(rc); 4211 4212 backref_cache_cleanup(&rc->backref_cache); 4213 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4214 4215 err = prepare_to_merge(rc, err); 4216 4217 merge_reloc_roots(rc); 4218 4219 rc->merge_reloc_tree = 0; 4220 unset_reloc_control(rc); 4221 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4222 4223 /* get rid of pinned extents */ 4224 trans = btrfs_join_transaction(rc->extent_root); 4225 if (IS_ERR(trans)) { 4226 err = PTR_ERR(trans); 4227 goto out_free; 4228 } 4229 btrfs_commit_transaction(trans); 4230 out_free: 4231 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4232 btrfs_free_path(path); 4233 return err; 4234 } 4235 4236 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4237 struct btrfs_root *root, u64 objectid) 4238 { 4239 struct btrfs_path *path; 4240 struct btrfs_inode_item *item; 4241 struct extent_buffer *leaf; 4242 int ret; 4243 4244 path = btrfs_alloc_path(); 4245 if (!path) 4246 return -ENOMEM; 4247 4248 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4249 if (ret) 4250 goto out; 4251 4252 leaf = path->nodes[0]; 4253 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4254 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4255 btrfs_set_inode_generation(leaf, item, 1); 4256 btrfs_set_inode_size(leaf, item, 0); 4257 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4258 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4259 BTRFS_INODE_PREALLOC); 4260 btrfs_mark_buffer_dirty(leaf); 4261 out: 4262 btrfs_free_path(path); 4263 return ret; 4264 } 4265 4266 /* 4267 * helper to create inode for data relocation. 4268 * the inode is in data relocation tree and its link count is 0 4269 */ 4270 static noinline_for_stack 4271 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4272 struct btrfs_block_group_cache *group) 4273 { 4274 struct inode *inode = NULL; 4275 struct btrfs_trans_handle *trans; 4276 struct btrfs_root *root; 4277 struct btrfs_key key; 4278 u64 objectid; 4279 int err = 0; 4280 4281 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4282 if (IS_ERR(root)) 4283 return ERR_CAST(root); 4284 4285 trans = btrfs_start_transaction(root, 6); 4286 if (IS_ERR(trans)) 4287 return ERR_CAST(trans); 4288 4289 err = btrfs_find_free_objectid(root, &objectid); 4290 if (err) 4291 goto out; 4292 4293 err = __insert_orphan_inode(trans, root, objectid); 4294 BUG_ON(err); 4295 4296 key.objectid = objectid; 4297 key.type = BTRFS_INODE_ITEM_KEY; 4298 key.offset = 0; 4299 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 4300 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4301 BTRFS_I(inode)->index_cnt = group->key.objectid; 4302 4303 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4304 out: 4305 btrfs_end_transaction(trans); 4306 btrfs_btree_balance_dirty(fs_info); 4307 if (err) { 4308 if (inode) 4309 iput(inode); 4310 inode = ERR_PTR(err); 4311 } 4312 return inode; 4313 } 4314 4315 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4316 { 4317 struct reloc_control *rc; 4318 4319 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4320 if (!rc) 4321 return NULL; 4322 4323 INIT_LIST_HEAD(&rc->reloc_roots); 4324 backref_cache_init(&rc->backref_cache); 4325 mapping_tree_init(&rc->reloc_root_tree); 4326 extent_io_tree_init(&rc->processed_blocks, NULL); 4327 return rc; 4328 } 4329 4330 /* 4331 * Print the block group being relocated 4332 */ 4333 static void describe_relocation(struct btrfs_fs_info *fs_info, 4334 struct btrfs_block_group_cache *block_group) 4335 { 4336 char buf[128]; /* prefixed by a '|' that'll be dropped */ 4337 u64 flags = block_group->flags; 4338 4339 /* Shouldn't happen */ 4340 if (!flags) { 4341 strcpy(buf, "|NONE"); 4342 } else { 4343 char *bp = buf; 4344 4345 #define DESCRIBE_FLAG(f, d) \ 4346 if (flags & BTRFS_BLOCK_GROUP_##f) { \ 4347 bp += snprintf(bp, buf - bp + sizeof(buf), "|%s", d); \ 4348 flags &= ~BTRFS_BLOCK_GROUP_##f; \ 4349 } 4350 DESCRIBE_FLAG(DATA, "data"); 4351 DESCRIBE_FLAG(SYSTEM, "system"); 4352 DESCRIBE_FLAG(METADATA, "metadata"); 4353 DESCRIBE_FLAG(RAID0, "raid0"); 4354 DESCRIBE_FLAG(RAID1, "raid1"); 4355 DESCRIBE_FLAG(DUP, "dup"); 4356 DESCRIBE_FLAG(RAID10, "raid10"); 4357 DESCRIBE_FLAG(RAID5, "raid5"); 4358 DESCRIBE_FLAG(RAID6, "raid6"); 4359 if (flags) 4360 snprintf(buf, buf - bp + sizeof(buf), "|0x%llx", flags); 4361 #undef DESCRIBE_FLAG 4362 } 4363 4364 btrfs_info(fs_info, 4365 "relocating block group %llu flags %s", 4366 block_group->key.objectid, buf + 1); 4367 } 4368 4369 /* 4370 * function to relocate all extents in a block group. 4371 */ 4372 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4373 { 4374 struct btrfs_root *extent_root = fs_info->extent_root; 4375 struct reloc_control *rc; 4376 struct inode *inode; 4377 struct btrfs_path *path; 4378 int ret; 4379 int rw = 0; 4380 int err = 0; 4381 4382 rc = alloc_reloc_control(fs_info); 4383 if (!rc) 4384 return -ENOMEM; 4385 4386 rc->extent_root = extent_root; 4387 4388 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4389 BUG_ON(!rc->block_group); 4390 4391 ret = btrfs_inc_block_group_ro(fs_info, rc->block_group); 4392 if (ret) { 4393 err = ret; 4394 goto out; 4395 } 4396 rw = 1; 4397 4398 path = btrfs_alloc_path(); 4399 if (!path) { 4400 err = -ENOMEM; 4401 goto out; 4402 } 4403 4404 inode = lookup_free_space_inode(fs_info, rc->block_group, path); 4405 btrfs_free_path(path); 4406 4407 if (!IS_ERR(inode)) 4408 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4409 else 4410 ret = PTR_ERR(inode); 4411 4412 if (ret && ret != -ENOENT) { 4413 err = ret; 4414 goto out; 4415 } 4416 4417 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4418 if (IS_ERR(rc->data_inode)) { 4419 err = PTR_ERR(rc->data_inode); 4420 rc->data_inode = NULL; 4421 goto out; 4422 } 4423 4424 describe_relocation(fs_info, rc->block_group); 4425 4426 btrfs_wait_block_group_reservations(rc->block_group); 4427 btrfs_wait_nocow_writers(rc->block_group); 4428 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4429 rc->block_group->key.objectid, 4430 rc->block_group->key.offset); 4431 4432 while (1) { 4433 mutex_lock(&fs_info->cleaner_mutex); 4434 ret = relocate_block_group(rc); 4435 mutex_unlock(&fs_info->cleaner_mutex); 4436 if (ret < 0) { 4437 err = ret; 4438 goto out; 4439 } 4440 4441 if (rc->extents_found == 0) 4442 break; 4443 4444 btrfs_info(fs_info, "found %llu extents", rc->extents_found); 4445 4446 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4447 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4448 (u64)-1); 4449 if (ret) { 4450 err = ret; 4451 goto out; 4452 } 4453 invalidate_mapping_pages(rc->data_inode->i_mapping, 4454 0, -1); 4455 rc->stage = UPDATE_DATA_PTRS; 4456 } 4457 } 4458 4459 WARN_ON(rc->block_group->pinned > 0); 4460 WARN_ON(rc->block_group->reserved > 0); 4461 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4462 out: 4463 if (err && rw) 4464 btrfs_dec_block_group_ro(rc->block_group); 4465 iput(rc->data_inode); 4466 btrfs_put_block_group(rc->block_group); 4467 kfree(rc); 4468 return err; 4469 } 4470 4471 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4472 { 4473 struct btrfs_fs_info *fs_info = root->fs_info; 4474 struct btrfs_trans_handle *trans; 4475 int ret, err; 4476 4477 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4478 if (IS_ERR(trans)) 4479 return PTR_ERR(trans); 4480 4481 memset(&root->root_item.drop_progress, 0, 4482 sizeof(root->root_item.drop_progress)); 4483 root->root_item.drop_level = 0; 4484 btrfs_set_root_refs(&root->root_item, 0); 4485 ret = btrfs_update_root(trans, fs_info->tree_root, 4486 &root->root_key, &root->root_item); 4487 4488 err = btrfs_end_transaction(trans); 4489 if (err) 4490 return err; 4491 return ret; 4492 } 4493 4494 /* 4495 * recover relocation interrupted by system crash. 4496 * 4497 * this function resumes merging reloc trees with corresponding fs trees. 4498 * this is important for keeping the sharing of tree blocks 4499 */ 4500 int btrfs_recover_relocation(struct btrfs_root *root) 4501 { 4502 struct btrfs_fs_info *fs_info = root->fs_info; 4503 LIST_HEAD(reloc_roots); 4504 struct btrfs_key key; 4505 struct btrfs_root *fs_root; 4506 struct btrfs_root *reloc_root; 4507 struct btrfs_path *path; 4508 struct extent_buffer *leaf; 4509 struct reloc_control *rc = NULL; 4510 struct btrfs_trans_handle *trans; 4511 int ret; 4512 int err = 0; 4513 4514 path = btrfs_alloc_path(); 4515 if (!path) 4516 return -ENOMEM; 4517 path->reada = READA_BACK; 4518 4519 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4520 key.type = BTRFS_ROOT_ITEM_KEY; 4521 key.offset = (u64)-1; 4522 4523 while (1) { 4524 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4525 path, 0, 0); 4526 if (ret < 0) { 4527 err = ret; 4528 goto out; 4529 } 4530 if (ret > 0) { 4531 if (path->slots[0] == 0) 4532 break; 4533 path->slots[0]--; 4534 } 4535 leaf = path->nodes[0]; 4536 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4537 btrfs_release_path(path); 4538 4539 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4540 key.type != BTRFS_ROOT_ITEM_KEY) 4541 break; 4542 4543 reloc_root = btrfs_read_fs_root(root, &key); 4544 if (IS_ERR(reloc_root)) { 4545 err = PTR_ERR(reloc_root); 4546 goto out; 4547 } 4548 4549 list_add(&reloc_root->root_list, &reloc_roots); 4550 4551 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4552 fs_root = read_fs_root(fs_info, 4553 reloc_root->root_key.offset); 4554 if (IS_ERR(fs_root)) { 4555 ret = PTR_ERR(fs_root); 4556 if (ret != -ENOENT) { 4557 err = ret; 4558 goto out; 4559 } 4560 ret = mark_garbage_root(reloc_root); 4561 if (ret < 0) { 4562 err = ret; 4563 goto out; 4564 } 4565 } 4566 } 4567 4568 if (key.offset == 0) 4569 break; 4570 4571 key.offset--; 4572 } 4573 btrfs_release_path(path); 4574 4575 if (list_empty(&reloc_roots)) 4576 goto out; 4577 4578 rc = alloc_reloc_control(fs_info); 4579 if (!rc) { 4580 err = -ENOMEM; 4581 goto out; 4582 } 4583 4584 rc->extent_root = fs_info->extent_root; 4585 4586 set_reloc_control(rc); 4587 4588 trans = btrfs_join_transaction(rc->extent_root); 4589 if (IS_ERR(trans)) { 4590 unset_reloc_control(rc); 4591 err = PTR_ERR(trans); 4592 goto out_free; 4593 } 4594 4595 rc->merge_reloc_tree = 1; 4596 4597 while (!list_empty(&reloc_roots)) { 4598 reloc_root = list_entry(reloc_roots.next, 4599 struct btrfs_root, root_list); 4600 list_del(&reloc_root->root_list); 4601 4602 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4603 list_add_tail(&reloc_root->root_list, 4604 &rc->reloc_roots); 4605 continue; 4606 } 4607 4608 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4609 if (IS_ERR(fs_root)) { 4610 err = PTR_ERR(fs_root); 4611 goto out_free; 4612 } 4613 4614 err = __add_reloc_root(reloc_root); 4615 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4616 fs_root->reloc_root = reloc_root; 4617 } 4618 4619 err = btrfs_commit_transaction(trans); 4620 if (err) 4621 goto out_free; 4622 4623 merge_reloc_roots(rc); 4624 4625 unset_reloc_control(rc); 4626 4627 trans = btrfs_join_transaction(rc->extent_root); 4628 if (IS_ERR(trans)) { 4629 err = PTR_ERR(trans); 4630 goto out_free; 4631 } 4632 err = btrfs_commit_transaction(trans); 4633 out_free: 4634 kfree(rc); 4635 out: 4636 if (!list_empty(&reloc_roots)) 4637 free_reloc_roots(&reloc_roots); 4638 4639 btrfs_free_path(path); 4640 4641 if (err == 0) { 4642 /* cleanup orphan inode in data relocation tree */ 4643 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4644 if (IS_ERR(fs_root)) 4645 err = PTR_ERR(fs_root); 4646 else 4647 err = btrfs_orphan_cleanup(fs_root); 4648 } 4649 return err; 4650 } 4651 4652 /* 4653 * helper to add ordered checksum for data relocation. 4654 * 4655 * cloning checksum properly handles the nodatasum extents. 4656 * it also saves CPU time to re-calculate the checksum. 4657 */ 4658 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4659 { 4660 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4661 struct btrfs_ordered_sum *sums; 4662 struct btrfs_ordered_extent *ordered; 4663 int ret; 4664 u64 disk_bytenr; 4665 u64 new_bytenr; 4666 LIST_HEAD(list); 4667 4668 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4669 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4670 4671 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4672 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4673 disk_bytenr + len - 1, &list, 0); 4674 if (ret) 4675 goto out; 4676 4677 while (!list_empty(&list)) { 4678 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4679 list_del_init(&sums->list); 4680 4681 /* 4682 * We need to offset the new_bytenr based on where the csum is. 4683 * We need to do this because we will read in entire prealloc 4684 * extents but we may have written to say the middle of the 4685 * prealloc extent, so we need to make sure the csum goes with 4686 * the right disk offset. 4687 * 4688 * We can do this because the data reloc inode refers strictly 4689 * to the on disk bytes, so we don't have to worry about 4690 * disk_len vs real len like with real inodes since it's all 4691 * disk length. 4692 */ 4693 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4694 sums->bytenr = new_bytenr; 4695 4696 btrfs_add_ordered_sum(inode, ordered, sums); 4697 } 4698 out: 4699 btrfs_put_ordered_extent(ordered); 4700 return ret; 4701 } 4702 4703 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4704 struct btrfs_root *root, struct extent_buffer *buf, 4705 struct extent_buffer *cow) 4706 { 4707 struct btrfs_fs_info *fs_info = root->fs_info; 4708 struct reloc_control *rc; 4709 struct backref_node *node; 4710 int first_cow = 0; 4711 int level; 4712 int ret = 0; 4713 4714 rc = fs_info->reloc_ctl; 4715 if (!rc) 4716 return 0; 4717 4718 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4719 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4720 4721 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4722 if (buf == root->node) 4723 __update_reloc_root(root, cow->start); 4724 } 4725 4726 level = btrfs_header_level(buf); 4727 if (btrfs_header_generation(buf) <= 4728 btrfs_root_last_snapshot(&root->root_item)) 4729 first_cow = 1; 4730 4731 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4732 rc->create_reloc_tree) { 4733 WARN_ON(!first_cow && level == 0); 4734 4735 node = rc->backref_cache.path[level]; 4736 BUG_ON(node->bytenr != buf->start && 4737 node->new_bytenr != buf->start); 4738 4739 drop_node_buffer(node); 4740 extent_buffer_get(cow); 4741 node->eb = cow; 4742 node->new_bytenr = cow->start; 4743 4744 if (!node->pending) { 4745 list_move_tail(&node->list, 4746 &rc->backref_cache.pending[level]); 4747 node->pending = 1; 4748 } 4749 4750 if (first_cow) 4751 __mark_block_processed(rc, node); 4752 4753 if (first_cow && level > 0) 4754 rc->nodes_relocated += buf->len; 4755 } 4756 4757 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4758 ret = replace_file_extents(trans, rc, root, cow); 4759 return ret; 4760 } 4761 4762 /* 4763 * called before creating snapshot. it calculates metadata reservation 4764 * required for relocating tree blocks in the snapshot 4765 */ 4766 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4767 u64 *bytes_to_reserve) 4768 { 4769 struct btrfs_root *root; 4770 struct reloc_control *rc; 4771 4772 root = pending->root; 4773 if (!root->reloc_root) 4774 return; 4775 4776 rc = root->fs_info->reloc_ctl; 4777 if (!rc->merge_reloc_tree) 4778 return; 4779 4780 root = root->reloc_root; 4781 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4782 /* 4783 * relocation is in the stage of merging trees. the space 4784 * used by merging a reloc tree is twice the size of 4785 * relocated tree nodes in the worst case. half for cowing 4786 * the reloc tree, half for cowing the fs tree. the space 4787 * used by cowing the reloc tree will be freed after the 4788 * tree is dropped. if we create snapshot, cowing the fs 4789 * tree may use more space than it frees. so we need 4790 * reserve extra space. 4791 */ 4792 *bytes_to_reserve += rc->nodes_relocated; 4793 } 4794 4795 /* 4796 * called after snapshot is created. migrate block reservation 4797 * and create reloc root for the newly created snapshot 4798 */ 4799 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4800 struct btrfs_pending_snapshot *pending) 4801 { 4802 struct btrfs_root *root = pending->root; 4803 struct btrfs_root *reloc_root; 4804 struct btrfs_root *new_root; 4805 struct reloc_control *rc; 4806 int ret; 4807 4808 if (!root->reloc_root) 4809 return 0; 4810 4811 rc = root->fs_info->reloc_ctl; 4812 rc->merging_rsv_size += rc->nodes_relocated; 4813 4814 if (rc->merge_reloc_tree) { 4815 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4816 rc->block_rsv, 4817 rc->nodes_relocated, 1); 4818 if (ret) 4819 return ret; 4820 } 4821 4822 new_root = pending->snap; 4823 reloc_root = create_reloc_root(trans, root->reloc_root, 4824 new_root->root_key.objectid); 4825 if (IS_ERR(reloc_root)) 4826 return PTR_ERR(reloc_root); 4827 4828 ret = __add_reloc_root(reloc_root); 4829 BUG_ON(ret < 0); 4830 new_root->reloc_root = reloc_root; 4831 4832 if (rc->create_reloc_tree) 4833 ret = clone_backref_node(trans, rc, root, reloc_root); 4834 return ret; 4835 } 4836