xref: /openbmc/linux/fs/btrfs/relocation.c (revision afc98d90)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		BUG_ON(!list_empty(&cache->pending[i]));
239 	BUG_ON(!list_empty(&cache->changed));
240 	BUG_ON(!list_empty(&cache->detached));
241 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 	BUG_ON(cache->nr_nodes);
243 	BUG_ON(cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu\n", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!root->ref_cows)
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID)
579 		return 1;
580 	return 0;
581 }
582 
583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
584 					u64 root_objectid)
585 {
586 	struct btrfs_key key;
587 
588 	key.objectid = root_objectid;
589 	key.type = BTRFS_ROOT_ITEM_KEY;
590 	if (is_cowonly_root(root_objectid))
591 		key.offset = 0;
592 	else
593 		key.offset = (u64)-1;
594 
595 	return btrfs_get_fs_root(fs_info, &key, false);
596 }
597 
598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
599 static noinline_for_stack
600 struct btrfs_root *find_tree_root(struct reloc_control *rc,
601 				  struct extent_buffer *leaf,
602 				  struct btrfs_extent_ref_v0 *ref0)
603 {
604 	struct btrfs_root *root;
605 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
606 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
607 
608 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
609 
610 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
611 	BUG_ON(IS_ERR(root));
612 
613 	if (root->ref_cows &&
614 	    generation != btrfs_root_generation(&root->root_item))
615 		return NULL;
616 
617 	return root;
618 }
619 #endif
620 
621 static noinline_for_stack
622 int find_inline_backref(struct extent_buffer *leaf, int slot,
623 			unsigned long *ptr, unsigned long *end)
624 {
625 	struct btrfs_key key;
626 	struct btrfs_extent_item *ei;
627 	struct btrfs_tree_block_info *bi;
628 	u32 item_size;
629 
630 	btrfs_item_key_to_cpu(leaf, &key, slot);
631 
632 	item_size = btrfs_item_size_nr(leaf, slot);
633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
634 	if (item_size < sizeof(*ei)) {
635 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
636 		return 1;
637 	}
638 #endif
639 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
640 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
641 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
642 
643 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
644 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
645 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
646 		return 1;
647 	}
648 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
649 	    item_size <= sizeof(*ei)) {
650 		WARN_ON(item_size < sizeof(*ei));
651 		return 1;
652 	}
653 
654 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
655 		bi = (struct btrfs_tree_block_info *)(ei + 1);
656 		*ptr = (unsigned long)(bi + 1);
657 	} else {
658 		*ptr = (unsigned long)(ei + 1);
659 	}
660 	*end = (unsigned long)ei + item_size;
661 	return 0;
662 }
663 
664 /*
665  * build backref tree for a given tree block. root of the backref tree
666  * corresponds the tree block, leaves of the backref tree correspond
667  * roots of b-trees that reference the tree block.
668  *
669  * the basic idea of this function is check backrefs of a given block
670  * to find upper level blocks that refernece the block, and then check
671  * bakcrefs of these upper level blocks recursively. the recursion stop
672  * when tree root is reached or backrefs for the block is cached.
673  *
674  * NOTE: if we find backrefs for a block are cached, we know backrefs
675  * for all upper level blocks that directly/indirectly reference the
676  * block are also cached.
677  */
678 static noinline_for_stack
679 struct backref_node *build_backref_tree(struct reloc_control *rc,
680 					struct btrfs_key *node_key,
681 					int level, u64 bytenr)
682 {
683 	struct backref_cache *cache = &rc->backref_cache;
684 	struct btrfs_path *path1;
685 	struct btrfs_path *path2;
686 	struct extent_buffer *eb;
687 	struct btrfs_root *root;
688 	struct backref_node *cur;
689 	struct backref_node *upper;
690 	struct backref_node *lower;
691 	struct backref_node *node = NULL;
692 	struct backref_node *exist = NULL;
693 	struct backref_edge *edge;
694 	struct rb_node *rb_node;
695 	struct btrfs_key key;
696 	unsigned long end;
697 	unsigned long ptr;
698 	LIST_HEAD(list);
699 	LIST_HEAD(useless);
700 	int cowonly;
701 	int ret;
702 	int err = 0;
703 	bool need_check = true;
704 
705 	path1 = btrfs_alloc_path();
706 	path2 = btrfs_alloc_path();
707 	if (!path1 || !path2) {
708 		err = -ENOMEM;
709 		goto out;
710 	}
711 	path1->reada = 1;
712 	path2->reada = 2;
713 
714 	node = alloc_backref_node(cache);
715 	if (!node) {
716 		err = -ENOMEM;
717 		goto out;
718 	}
719 
720 	node->bytenr = bytenr;
721 	node->level = level;
722 	node->lowest = 1;
723 	cur = node;
724 again:
725 	end = 0;
726 	ptr = 0;
727 	key.objectid = cur->bytenr;
728 	key.type = BTRFS_METADATA_ITEM_KEY;
729 	key.offset = (u64)-1;
730 
731 	path1->search_commit_root = 1;
732 	path1->skip_locking = 1;
733 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
734 				0, 0);
735 	if (ret < 0) {
736 		err = ret;
737 		goto out;
738 	}
739 	BUG_ON(!ret || !path1->slots[0]);
740 
741 	path1->slots[0]--;
742 
743 	WARN_ON(cur->checked);
744 	if (!list_empty(&cur->upper)) {
745 		/*
746 		 * the backref was added previously when processing
747 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
748 		 */
749 		BUG_ON(!list_is_singular(&cur->upper));
750 		edge = list_entry(cur->upper.next, struct backref_edge,
751 				  list[LOWER]);
752 		BUG_ON(!list_empty(&edge->list[UPPER]));
753 		exist = edge->node[UPPER];
754 		/*
755 		 * add the upper level block to pending list if we need
756 		 * check its backrefs
757 		 */
758 		if (!exist->checked)
759 			list_add_tail(&edge->list[UPPER], &list);
760 	} else {
761 		exist = NULL;
762 	}
763 
764 	while (1) {
765 		cond_resched();
766 		eb = path1->nodes[0];
767 
768 		if (ptr >= end) {
769 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
770 				ret = btrfs_next_leaf(rc->extent_root, path1);
771 				if (ret < 0) {
772 					err = ret;
773 					goto out;
774 				}
775 				if (ret > 0)
776 					break;
777 				eb = path1->nodes[0];
778 			}
779 
780 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
781 			if (key.objectid != cur->bytenr) {
782 				WARN_ON(exist);
783 				break;
784 			}
785 
786 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
787 			    key.type == BTRFS_METADATA_ITEM_KEY) {
788 				ret = find_inline_backref(eb, path1->slots[0],
789 							  &ptr, &end);
790 				if (ret)
791 					goto next;
792 			}
793 		}
794 
795 		if (ptr < end) {
796 			/* update key for inline back ref */
797 			struct btrfs_extent_inline_ref *iref;
798 			iref = (struct btrfs_extent_inline_ref *)ptr;
799 			key.type = btrfs_extent_inline_ref_type(eb, iref);
800 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
801 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
802 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
803 		}
804 
805 		if (exist &&
806 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
807 		      exist->owner == key.offset) ||
808 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
809 		      exist->bytenr == key.offset))) {
810 			exist = NULL;
811 			goto next;
812 		}
813 
814 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
815 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
816 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
817 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
818 				struct btrfs_extent_ref_v0 *ref0;
819 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
820 						struct btrfs_extent_ref_v0);
821 				if (key.objectid == key.offset) {
822 					root = find_tree_root(rc, eb, ref0);
823 					if (root && !should_ignore_root(root))
824 						cur->root = root;
825 					else
826 						list_add(&cur->list, &useless);
827 					break;
828 				}
829 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
830 								      ref0)))
831 					cur->cowonly = 1;
832 			}
833 #else
834 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
835 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
836 #endif
837 			if (key.objectid == key.offset) {
838 				/*
839 				 * only root blocks of reloc trees use
840 				 * backref of this type.
841 				 */
842 				root = find_reloc_root(rc, cur->bytenr);
843 				BUG_ON(!root);
844 				cur->root = root;
845 				break;
846 			}
847 
848 			edge = alloc_backref_edge(cache);
849 			if (!edge) {
850 				err = -ENOMEM;
851 				goto out;
852 			}
853 			rb_node = tree_search(&cache->rb_root, key.offset);
854 			if (!rb_node) {
855 				upper = alloc_backref_node(cache);
856 				if (!upper) {
857 					free_backref_edge(cache, edge);
858 					err = -ENOMEM;
859 					goto out;
860 				}
861 				upper->bytenr = key.offset;
862 				upper->level = cur->level + 1;
863 				/*
864 				 *  backrefs for the upper level block isn't
865 				 *  cached, add the block to pending list
866 				 */
867 				list_add_tail(&edge->list[UPPER], &list);
868 			} else {
869 				upper = rb_entry(rb_node, struct backref_node,
870 						 rb_node);
871 				BUG_ON(!upper->checked);
872 				INIT_LIST_HEAD(&edge->list[UPPER]);
873 			}
874 			list_add_tail(&edge->list[LOWER], &cur->upper);
875 			edge->node[LOWER] = cur;
876 			edge->node[UPPER] = upper;
877 
878 			goto next;
879 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
880 			goto next;
881 		}
882 
883 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
884 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
885 		if (IS_ERR(root)) {
886 			err = PTR_ERR(root);
887 			goto out;
888 		}
889 
890 		if (!root->ref_cows)
891 			cur->cowonly = 1;
892 
893 		if (btrfs_root_level(&root->root_item) == cur->level) {
894 			/* tree root */
895 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
896 			       cur->bytenr);
897 			if (should_ignore_root(root))
898 				list_add(&cur->list, &useless);
899 			else
900 				cur->root = root;
901 			break;
902 		}
903 
904 		level = cur->level + 1;
905 
906 		/*
907 		 * searching the tree to find upper level blocks
908 		 * reference the block.
909 		 */
910 		path2->search_commit_root = 1;
911 		path2->skip_locking = 1;
912 		path2->lowest_level = level;
913 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
914 		path2->lowest_level = 0;
915 		if (ret < 0) {
916 			err = ret;
917 			goto out;
918 		}
919 		if (ret > 0 && path2->slots[level] > 0)
920 			path2->slots[level]--;
921 
922 		eb = path2->nodes[level];
923 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
924 			cur->bytenr);
925 
926 		lower = cur;
927 		need_check = true;
928 		for (; level < BTRFS_MAX_LEVEL; level++) {
929 			if (!path2->nodes[level]) {
930 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
931 				       lower->bytenr);
932 				if (should_ignore_root(root))
933 					list_add(&lower->list, &useless);
934 				else
935 					lower->root = root;
936 				break;
937 			}
938 
939 			edge = alloc_backref_edge(cache);
940 			if (!edge) {
941 				err = -ENOMEM;
942 				goto out;
943 			}
944 
945 			eb = path2->nodes[level];
946 			rb_node = tree_search(&cache->rb_root, eb->start);
947 			if (!rb_node) {
948 				upper = alloc_backref_node(cache);
949 				if (!upper) {
950 					free_backref_edge(cache, edge);
951 					err = -ENOMEM;
952 					goto out;
953 				}
954 				upper->bytenr = eb->start;
955 				upper->owner = btrfs_header_owner(eb);
956 				upper->level = lower->level + 1;
957 				if (!root->ref_cows)
958 					upper->cowonly = 1;
959 
960 				/*
961 				 * if we know the block isn't shared
962 				 * we can void checking its backrefs.
963 				 */
964 				if (btrfs_block_can_be_shared(root, eb))
965 					upper->checked = 0;
966 				else
967 					upper->checked = 1;
968 
969 				/*
970 				 * add the block to pending list if we
971 				 * need check its backrefs, we only do this once
972 				 * while walking up a tree as we will catch
973 				 * anything else later on.
974 				 */
975 				if (!upper->checked && need_check) {
976 					need_check = false;
977 					list_add_tail(&edge->list[UPPER],
978 						      &list);
979 				} else
980 					INIT_LIST_HEAD(&edge->list[UPPER]);
981 			} else {
982 				upper = rb_entry(rb_node, struct backref_node,
983 						 rb_node);
984 				BUG_ON(!upper->checked);
985 				INIT_LIST_HEAD(&edge->list[UPPER]);
986 				if (!upper->owner)
987 					upper->owner = btrfs_header_owner(eb);
988 			}
989 			list_add_tail(&edge->list[LOWER], &lower->upper);
990 			edge->node[LOWER] = lower;
991 			edge->node[UPPER] = upper;
992 
993 			if (rb_node)
994 				break;
995 			lower = upper;
996 			upper = NULL;
997 		}
998 		btrfs_release_path(path2);
999 next:
1000 		if (ptr < end) {
1001 			ptr += btrfs_extent_inline_ref_size(key.type);
1002 			if (ptr >= end) {
1003 				WARN_ON(ptr > end);
1004 				ptr = 0;
1005 				end = 0;
1006 			}
1007 		}
1008 		if (ptr >= end)
1009 			path1->slots[0]++;
1010 	}
1011 	btrfs_release_path(path1);
1012 
1013 	cur->checked = 1;
1014 	WARN_ON(exist);
1015 
1016 	/* the pending list isn't empty, take the first block to process */
1017 	if (!list_empty(&list)) {
1018 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1019 		list_del_init(&edge->list[UPPER]);
1020 		cur = edge->node[UPPER];
1021 		goto again;
1022 	}
1023 
1024 	/*
1025 	 * everything goes well, connect backref nodes and insert backref nodes
1026 	 * into the cache.
1027 	 */
1028 	BUG_ON(!node->checked);
1029 	cowonly = node->cowonly;
1030 	if (!cowonly) {
1031 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1032 				      &node->rb_node);
1033 		if (rb_node)
1034 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1035 		list_add_tail(&node->lower, &cache->leaves);
1036 	}
1037 
1038 	list_for_each_entry(edge, &node->upper, list[LOWER])
1039 		list_add_tail(&edge->list[UPPER], &list);
1040 
1041 	while (!list_empty(&list)) {
1042 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1043 		list_del_init(&edge->list[UPPER]);
1044 		upper = edge->node[UPPER];
1045 		if (upper->detached) {
1046 			list_del(&edge->list[LOWER]);
1047 			lower = edge->node[LOWER];
1048 			free_backref_edge(cache, edge);
1049 			if (list_empty(&lower->upper))
1050 				list_add(&lower->list, &useless);
1051 			continue;
1052 		}
1053 
1054 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1055 			if (upper->lowest) {
1056 				list_del_init(&upper->lower);
1057 				upper->lowest = 0;
1058 			}
1059 
1060 			list_add_tail(&edge->list[UPPER], &upper->lower);
1061 			continue;
1062 		}
1063 
1064 		BUG_ON(!upper->checked);
1065 		BUG_ON(cowonly != upper->cowonly);
1066 		if (!cowonly) {
1067 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1068 					      &upper->rb_node);
1069 			if (rb_node)
1070 				backref_tree_panic(rb_node, -EEXIST,
1071 						   upper->bytenr);
1072 		}
1073 
1074 		list_add_tail(&edge->list[UPPER], &upper->lower);
1075 
1076 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1077 			list_add_tail(&edge->list[UPPER], &list);
1078 	}
1079 	/*
1080 	 * process useless backref nodes. backref nodes for tree leaves
1081 	 * are deleted from the cache. backref nodes for upper level
1082 	 * tree blocks are left in the cache to avoid unnecessary backref
1083 	 * lookup.
1084 	 */
1085 	while (!list_empty(&useless)) {
1086 		upper = list_entry(useless.next, struct backref_node, list);
1087 		list_del_init(&upper->list);
1088 		BUG_ON(!list_empty(&upper->upper));
1089 		if (upper == node)
1090 			node = NULL;
1091 		if (upper->lowest) {
1092 			list_del_init(&upper->lower);
1093 			upper->lowest = 0;
1094 		}
1095 		while (!list_empty(&upper->lower)) {
1096 			edge = list_entry(upper->lower.next,
1097 					  struct backref_edge, list[UPPER]);
1098 			list_del(&edge->list[UPPER]);
1099 			list_del(&edge->list[LOWER]);
1100 			lower = edge->node[LOWER];
1101 			free_backref_edge(cache, edge);
1102 
1103 			if (list_empty(&lower->upper))
1104 				list_add(&lower->list, &useless);
1105 		}
1106 		__mark_block_processed(rc, upper);
1107 		if (upper->level > 0) {
1108 			list_add(&upper->list, &cache->detached);
1109 			upper->detached = 1;
1110 		} else {
1111 			rb_erase(&upper->rb_node, &cache->rb_root);
1112 			free_backref_node(cache, upper);
1113 		}
1114 	}
1115 out:
1116 	btrfs_free_path(path1);
1117 	btrfs_free_path(path2);
1118 	if (err) {
1119 		while (!list_empty(&useless)) {
1120 			lower = list_entry(useless.next,
1121 					   struct backref_node, upper);
1122 			list_del_init(&lower->upper);
1123 		}
1124 		upper = node;
1125 		INIT_LIST_HEAD(&list);
1126 		while (upper) {
1127 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1128 				list_splice_tail(&upper->upper, &list);
1129 				free_backref_node(cache, upper);
1130 			}
1131 
1132 			if (list_empty(&list))
1133 				break;
1134 
1135 			edge = list_entry(list.next, struct backref_edge,
1136 					  list[LOWER]);
1137 			list_del(&edge->list[LOWER]);
1138 			upper = edge->node[UPPER];
1139 			free_backref_edge(cache, edge);
1140 		}
1141 		return ERR_PTR(err);
1142 	}
1143 	BUG_ON(node && node->detached);
1144 	return node;
1145 }
1146 
1147 /*
1148  * helper to add backref node for the newly created snapshot.
1149  * the backref node is created by cloning backref node that
1150  * corresponds to root of source tree
1151  */
1152 static int clone_backref_node(struct btrfs_trans_handle *trans,
1153 			      struct reloc_control *rc,
1154 			      struct btrfs_root *src,
1155 			      struct btrfs_root *dest)
1156 {
1157 	struct btrfs_root *reloc_root = src->reloc_root;
1158 	struct backref_cache *cache = &rc->backref_cache;
1159 	struct backref_node *node = NULL;
1160 	struct backref_node *new_node;
1161 	struct backref_edge *edge;
1162 	struct backref_edge *new_edge;
1163 	struct rb_node *rb_node;
1164 
1165 	if (cache->last_trans > 0)
1166 		update_backref_cache(trans, cache);
1167 
1168 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1169 	if (rb_node) {
1170 		node = rb_entry(rb_node, struct backref_node, rb_node);
1171 		if (node->detached)
1172 			node = NULL;
1173 		else
1174 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1175 	}
1176 
1177 	if (!node) {
1178 		rb_node = tree_search(&cache->rb_root,
1179 				      reloc_root->commit_root->start);
1180 		if (rb_node) {
1181 			node = rb_entry(rb_node, struct backref_node,
1182 					rb_node);
1183 			BUG_ON(node->detached);
1184 		}
1185 	}
1186 
1187 	if (!node)
1188 		return 0;
1189 
1190 	new_node = alloc_backref_node(cache);
1191 	if (!new_node)
1192 		return -ENOMEM;
1193 
1194 	new_node->bytenr = dest->node->start;
1195 	new_node->level = node->level;
1196 	new_node->lowest = node->lowest;
1197 	new_node->checked = 1;
1198 	new_node->root = dest;
1199 
1200 	if (!node->lowest) {
1201 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1202 			new_edge = alloc_backref_edge(cache);
1203 			if (!new_edge)
1204 				goto fail;
1205 
1206 			new_edge->node[UPPER] = new_node;
1207 			new_edge->node[LOWER] = edge->node[LOWER];
1208 			list_add_tail(&new_edge->list[UPPER],
1209 				      &new_node->lower);
1210 		}
1211 	} else {
1212 		list_add_tail(&new_node->lower, &cache->leaves);
1213 	}
1214 
1215 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1216 			      &new_node->rb_node);
1217 	if (rb_node)
1218 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1219 
1220 	if (!new_node->lowest) {
1221 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1222 			list_add_tail(&new_edge->list[LOWER],
1223 				      &new_edge->node[LOWER]->upper);
1224 		}
1225 	}
1226 	return 0;
1227 fail:
1228 	while (!list_empty(&new_node->lower)) {
1229 		new_edge = list_entry(new_node->lower.next,
1230 				      struct backref_edge, list[UPPER]);
1231 		list_del(&new_edge->list[UPPER]);
1232 		free_backref_edge(cache, new_edge);
1233 	}
1234 	free_backref_node(cache, new_node);
1235 	return -ENOMEM;
1236 }
1237 
1238 /*
1239  * helper to add 'address of tree root -> reloc tree' mapping
1240  */
1241 static int __must_check __add_reloc_root(struct btrfs_root *root)
1242 {
1243 	struct rb_node *rb_node;
1244 	struct mapping_node *node;
1245 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1246 
1247 	node = kmalloc(sizeof(*node), GFP_NOFS);
1248 	if (!node)
1249 		return -ENOMEM;
1250 
1251 	node->bytenr = root->node->start;
1252 	node->data = root;
1253 
1254 	spin_lock(&rc->reloc_root_tree.lock);
1255 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1256 			      node->bytenr, &node->rb_node);
1257 	spin_unlock(&rc->reloc_root_tree.lock);
1258 	if (rb_node) {
1259 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1260 			    "for start=%llu while inserting into relocation "
1261 			    "tree\n", node->bytenr);
1262 		kfree(node);
1263 		return -EEXIST;
1264 	}
1265 
1266 	list_add_tail(&root->root_list, &rc->reloc_roots);
1267 	return 0;
1268 }
1269 
1270 /*
1271  * helper to delete the 'address of tree root -> reloc tree'
1272  * mapping
1273  */
1274 static void __del_reloc_root(struct btrfs_root *root)
1275 {
1276 	struct rb_node *rb_node;
1277 	struct mapping_node *node = NULL;
1278 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1279 
1280 	spin_lock(&rc->reloc_root_tree.lock);
1281 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1282 			      root->node->start);
1283 	if (rb_node) {
1284 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1285 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1286 	}
1287 	spin_unlock(&rc->reloc_root_tree.lock);
1288 
1289 	if (!node)
1290 		return;
1291 	BUG_ON((struct btrfs_root *)node->data != root);
1292 
1293 	spin_lock(&root->fs_info->trans_lock);
1294 	list_del_init(&root->root_list);
1295 	spin_unlock(&root->fs_info->trans_lock);
1296 	kfree(node);
1297 }
1298 
1299 /*
1300  * helper to update the 'address of tree root -> reloc tree'
1301  * mapping
1302  */
1303 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1304 {
1305 	struct rb_node *rb_node;
1306 	struct mapping_node *node = NULL;
1307 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1308 
1309 	spin_lock(&rc->reloc_root_tree.lock);
1310 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1311 			      root->node->start);
1312 	if (rb_node) {
1313 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1314 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1315 	}
1316 	spin_unlock(&rc->reloc_root_tree.lock);
1317 
1318 	if (!node)
1319 		return 0;
1320 	BUG_ON((struct btrfs_root *)node->data != root);
1321 
1322 	spin_lock(&rc->reloc_root_tree.lock);
1323 	node->bytenr = new_bytenr;
1324 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1325 			      node->bytenr, &node->rb_node);
1326 	spin_unlock(&rc->reloc_root_tree.lock);
1327 	if (rb_node)
1328 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1329 	return 0;
1330 }
1331 
1332 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1333 					struct btrfs_root *root, u64 objectid)
1334 {
1335 	struct btrfs_root *reloc_root;
1336 	struct extent_buffer *eb;
1337 	struct btrfs_root_item *root_item;
1338 	struct btrfs_key root_key;
1339 	u64 last_snap = 0;
1340 	int ret;
1341 
1342 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1343 	BUG_ON(!root_item);
1344 
1345 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1346 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1347 	root_key.offset = objectid;
1348 
1349 	if (root->root_key.objectid == objectid) {
1350 		/* called by btrfs_init_reloc_root */
1351 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1352 				      BTRFS_TREE_RELOC_OBJECTID);
1353 		BUG_ON(ret);
1354 
1355 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1356 		btrfs_set_root_last_snapshot(&root->root_item,
1357 					     trans->transid - 1);
1358 	} else {
1359 		/*
1360 		 * called by btrfs_reloc_post_snapshot_hook.
1361 		 * the source tree is a reloc tree, all tree blocks
1362 		 * modified after it was created have RELOC flag
1363 		 * set in their headers. so it's OK to not update
1364 		 * the 'last_snapshot'.
1365 		 */
1366 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1367 				      BTRFS_TREE_RELOC_OBJECTID);
1368 		BUG_ON(ret);
1369 	}
1370 
1371 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1372 	btrfs_set_root_bytenr(root_item, eb->start);
1373 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1374 	btrfs_set_root_generation(root_item, trans->transid);
1375 
1376 	if (root->root_key.objectid == objectid) {
1377 		btrfs_set_root_refs(root_item, 0);
1378 		memset(&root_item->drop_progress, 0,
1379 		       sizeof(struct btrfs_disk_key));
1380 		root_item->drop_level = 0;
1381 		/*
1382 		 * abuse rtransid, it is safe because it is impossible to
1383 		 * receive data into a relocation tree.
1384 		 */
1385 		btrfs_set_root_rtransid(root_item, last_snap);
1386 		btrfs_set_root_otransid(root_item, trans->transid);
1387 	}
1388 
1389 	btrfs_tree_unlock(eb);
1390 	free_extent_buffer(eb);
1391 
1392 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1393 				&root_key, root_item);
1394 	BUG_ON(ret);
1395 	kfree(root_item);
1396 
1397 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1398 	BUG_ON(IS_ERR(reloc_root));
1399 	reloc_root->last_trans = trans->transid;
1400 	return reloc_root;
1401 }
1402 
1403 /*
1404  * create reloc tree for a given fs tree. reloc tree is just a
1405  * snapshot of the fs tree with special root objectid.
1406  */
1407 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1408 			  struct btrfs_root *root)
1409 {
1410 	struct btrfs_root *reloc_root;
1411 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1412 	struct btrfs_block_rsv *rsv;
1413 	int clear_rsv = 0;
1414 	int ret;
1415 
1416 	if (root->reloc_root) {
1417 		reloc_root = root->reloc_root;
1418 		reloc_root->last_trans = trans->transid;
1419 		return 0;
1420 	}
1421 
1422 	if (!rc || !rc->create_reloc_tree ||
1423 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1424 		return 0;
1425 
1426 	if (!trans->reloc_reserved) {
1427 		rsv = trans->block_rsv;
1428 		trans->block_rsv = rc->block_rsv;
1429 		clear_rsv = 1;
1430 	}
1431 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1432 	if (clear_rsv)
1433 		trans->block_rsv = rsv;
1434 
1435 	ret = __add_reloc_root(reloc_root);
1436 	BUG_ON(ret < 0);
1437 	root->reloc_root = reloc_root;
1438 	return 0;
1439 }
1440 
1441 /*
1442  * update root item of reloc tree
1443  */
1444 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1445 			    struct btrfs_root *root)
1446 {
1447 	struct btrfs_root *reloc_root;
1448 	struct btrfs_root_item *root_item;
1449 	int ret;
1450 
1451 	if (!root->reloc_root)
1452 		goto out;
1453 
1454 	reloc_root = root->reloc_root;
1455 	root_item = &reloc_root->root_item;
1456 
1457 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1458 	    btrfs_root_refs(root_item) == 0) {
1459 		root->reloc_root = NULL;
1460 		__del_reloc_root(reloc_root);
1461 	}
1462 
1463 	if (reloc_root->commit_root != reloc_root->node) {
1464 		btrfs_set_root_node(root_item, reloc_root->node);
1465 		free_extent_buffer(reloc_root->commit_root);
1466 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1467 	}
1468 
1469 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1470 				&reloc_root->root_key, root_item);
1471 	BUG_ON(ret);
1472 
1473 out:
1474 	return 0;
1475 }
1476 
1477 /*
1478  * helper to find first cached inode with inode number >= objectid
1479  * in a subvolume
1480  */
1481 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1482 {
1483 	struct rb_node *node;
1484 	struct rb_node *prev;
1485 	struct btrfs_inode *entry;
1486 	struct inode *inode;
1487 
1488 	spin_lock(&root->inode_lock);
1489 again:
1490 	node = root->inode_tree.rb_node;
1491 	prev = NULL;
1492 	while (node) {
1493 		prev = node;
1494 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1495 
1496 		if (objectid < btrfs_ino(&entry->vfs_inode))
1497 			node = node->rb_left;
1498 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1499 			node = node->rb_right;
1500 		else
1501 			break;
1502 	}
1503 	if (!node) {
1504 		while (prev) {
1505 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1506 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1507 				node = prev;
1508 				break;
1509 			}
1510 			prev = rb_next(prev);
1511 		}
1512 	}
1513 	while (node) {
1514 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1515 		inode = igrab(&entry->vfs_inode);
1516 		if (inode) {
1517 			spin_unlock(&root->inode_lock);
1518 			return inode;
1519 		}
1520 
1521 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1522 		if (cond_resched_lock(&root->inode_lock))
1523 			goto again;
1524 
1525 		node = rb_next(node);
1526 	}
1527 	spin_unlock(&root->inode_lock);
1528 	return NULL;
1529 }
1530 
1531 static int in_block_group(u64 bytenr,
1532 			  struct btrfs_block_group_cache *block_group)
1533 {
1534 	if (bytenr >= block_group->key.objectid &&
1535 	    bytenr < block_group->key.objectid + block_group->key.offset)
1536 		return 1;
1537 	return 0;
1538 }
1539 
1540 /*
1541  * get new location of data
1542  */
1543 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1544 			    u64 bytenr, u64 num_bytes)
1545 {
1546 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1547 	struct btrfs_path *path;
1548 	struct btrfs_file_extent_item *fi;
1549 	struct extent_buffer *leaf;
1550 	int ret;
1551 
1552 	path = btrfs_alloc_path();
1553 	if (!path)
1554 		return -ENOMEM;
1555 
1556 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1557 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1558 				       bytenr, 0);
1559 	if (ret < 0)
1560 		goto out;
1561 	if (ret > 0) {
1562 		ret = -ENOENT;
1563 		goto out;
1564 	}
1565 
1566 	leaf = path->nodes[0];
1567 	fi = btrfs_item_ptr(leaf, path->slots[0],
1568 			    struct btrfs_file_extent_item);
1569 
1570 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1571 	       btrfs_file_extent_compression(leaf, fi) ||
1572 	       btrfs_file_extent_encryption(leaf, fi) ||
1573 	       btrfs_file_extent_other_encoding(leaf, fi));
1574 
1575 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1576 		ret = -EINVAL;
1577 		goto out;
1578 	}
1579 
1580 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1581 	ret = 0;
1582 out:
1583 	btrfs_free_path(path);
1584 	return ret;
1585 }
1586 
1587 /*
1588  * update file extent items in the tree leaf to point to
1589  * the new locations.
1590  */
1591 static noinline_for_stack
1592 int replace_file_extents(struct btrfs_trans_handle *trans,
1593 			 struct reloc_control *rc,
1594 			 struct btrfs_root *root,
1595 			 struct extent_buffer *leaf)
1596 {
1597 	struct btrfs_key key;
1598 	struct btrfs_file_extent_item *fi;
1599 	struct inode *inode = NULL;
1600 	u64 parent;
1601 	u64 bytenr;
1602 	u64 new_bytenr = 0;
1603 	u64 num_bytes;
1604 	u64 end;
1605 	u32 nritems;
1606 	u32 i;
1607 	int ret = 0;
1608 	int first = 1;
1609 	int dirty = 0;
1610 
1611 	if (rc->stage != UPDATE_DATA_PTRS)
1612 		return 0;
1613 
1614 	/* reloc trees always use full backref */
1615 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1616 		parent = leaf->start;
1617 	else
1618 		parent = 0;
1619 
1620 	nritems = btrfs_header_nritems(leaf);
1621 	for (i = 0; i < nritems; i++) {
1622 		cond_resched();
1623 		btrfs_item_key_to_cpu(leaf, &key, i);
1624 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1625 			continue;
1626 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1627 		if (btrfs_file_extent_type(leaf, fi) ==
1628 		    BTRFS_FILE_EXTENT_INLINE)
1629 			continue;
1630 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1631 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1632 		if (bytenr == 0)
1633 			continue;
1634 		if (!in_block_group(bytenr, rc->block_group))
1635 			continue;
1636 
1637 		/*
1638 		 * if we are modifying block in fs tree, wait for readpage
1639 		 * to complete and drop the extent cache
1640 		 */
1641 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1642 			if (first) {
1643 				inode = find_next_inode(root, key.objectid);
1644 				first = 0;
1645 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1646 				btrfs_add_delayed_iput(inode);
1647 				inode = find_next_inode(root, key.objectid);
1648 			}
1649 			if (inode && btrfs_ino(inode) == key.objectid) {
1650 				end = key.offset +
1651 				      btrfs_file_extent_num_bytes(leaf, fi);
1652 				WARN_ON(!IS_ALIGNED(key.offset,
1653 						    root->sectorsize));
1654 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1655 				end--;
1656 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1657 						      key.offset, end);
1658 				if (!ret)
1659 					continue;
1660 
1661 				btrfs_drop_extent_cache(inode, key.offset, end,
1662 							1);
1663 				unlock_extent(&BTRFS_I(inode)->io_tree,
1664 					      key.offset, end);
1665 			}
1666 		}
1667 
1668 		ret = get_new_location(rc->data_inode, &new_bytenr,
1669 				       bytenr, num_bytes);
1670 		if (ret) {
1671 			/*
1672 			 * Don't have to abort since we've not changed anything
1673 			 * in the file extent yet.
1674 			 */
1675 			break;
1676 		}
1677 
1678 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1679 		dirty = 1;
1680 
1681 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1682 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1683 					   num_bytes, parent,
1684 					   btrfs_header_owner(leaf),
1685 					   key.objectid, key.offset, 1);
1686 		if (ret) {
1687 			btrfs_abort_transaction(trans, root, ret);
1688 			break;
1689 		}
1690 
1691 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1692 					parent, btrfs_header_owner(leaf),
1693 					key.objectid, key.offset, 1);
1694 		if (ret) {
1695 			btrfs_abort_transaction(trans, root, ret);
1696 			break;
1697 		}
1698 	}
1699 	if (dirty)
1700 		btrfs_mark_buffer_dirty(leaf);
1701 	if (inode)
1702 		btrfs_add_delayed_iput(inode);
1703 	return ret;
1704 }
1705 
1706 static noinline_for_stack
1707 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1708 		     struct btrfs_path *path, int level)
1709 {
1710 	struct btrfs_disk_key key1;
1711 	struct btrfs_disk_key key2;
1712 	btrfs_node_key(eb, &key1, slot);
1713 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1714 	return memcmp(&key1, &key2, sizeof(key1));
1715 }
1716 
1717 /*
1718  * try to replace tree blocks in fs tree with the new blocks
1719  * in reloc tree. tree blocks haven't been modified since the
1720  * reloc tree was create can be replaced.
1721  *
1722  * if a block was replaced, level of the block + 1 is returned.
1723  * if no block got replaced, 0 is returned. if there are other
1724  * errors, a negative error number is returned.
1725  */
1726 static noinline_for_stack
1727 int replace_path(struct btrfs_trans_handle *trans,
1728 		 struct btrfs_root *dest, struct btrfs_root *src,
1729 		 struct btrfs_path *path, struct btrfs_key *next_key,
1730 		 int lowest_level, int max_level)
1731 {
1732 	struct extent_buffer *eb;
1733 	struct extent_buffer *parent;
1734 	struct btrfs_key key;
1735 	u64 old_bytenr;
1736 	u64 new_bytenr;
1737 	u64 old_ptr_gen;
1738 	u64 new_ptr_gen;
1739 	u64 last_snapshot;
1740 	u32 blocksize;
1741 	int cow = 0;
1742 	int level;
1743 	int ret;
1744 	int slot;
1745 
1746 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1747 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1748 
1749 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1750 again:
1751 	slot = path->slots[lowest_level];
1752 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1753 
1754 	eb = btrfs_lock_root_node(dest);
1755 	btrfs_set_lock_blocking(eb);
1756 	level = btrfs_header_level(eb);
1757 
1758 	if (level < lowest_level) {
1759 		btrfs_tree_unlock(eb);
1760 		free_extent_buffer(eb);
1761 		return 0;
1762 	}
1763 
1764 	if (cow) {
1765 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1766 		BUG_ON(ret);
1767 	}
1768 	btrfs_set_lock_blocking(eb);
1769 
1770 	if (next_key) {
1771 		next_key->objectid = (u64)-1;
1772 		next_key->type = (u8)-1;
1773 		next_key->offset = (u64)-1;
1774 	}
1775 
1776 	parent = eb;
1777 	while (1) {
1778 		level = btrfs_header_level(parent);
1779 		BUG_ON(level < lowest_level);
1780 
1781 		ret = btrfs_bin_search(parent, &key, level, &slot);
1782 		if (ret && slot > 0)
1783 			slot--;
1784 
1785 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1786 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1787 
1788 		old_bytenr = btrfs_node_blockptr(parent, slot);
1789 		blocksize = btrfs_level_size(dest, level - 1);
1790 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1791 
1792 		if (level <= max_level) {
1793 			eb = path->nodes[level];
1794 			new_bytenr = btrfs_node_blockptr(eb,
1795 							path->slots[level]);
1796 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1797 							path->slots[level]);
1798 		} else {
1799 			new_bytenr = 0;
1800 			new_ptr_gen = 0;
1801 		}
1802 
1803 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1804 			ret = level;
1805 			break;
1806 		}
1807 
1808 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1809 		    memcmp_node_keys(parent, slot, path, level)) {
1810 			if (level <= lowest_level) {
1811 				ret = 0;
1812 				break;
1813 			}
1814 
1815 			eb = read_tree_block(dest, old_bytenr, blocksize,
1816 					     old_ptr_gen);
1817 			if (!eb || !extent_buffer_uptodate(eb)) {
1818 				ret = (!eb) ? -ENOMEM : -EIO;
1819 				free_extent_buffer(eb);
1820 				break;
1821 			}
1822 			btrfs_tree_lock(eb);
1823 			if (cow) {
1824 				ret = btrfs_cow_block(trans, dest, eb, parent,
1825 						      slot, &eb);
1826 				BUG_ON(ret);
1827 			}
1828 			btrfs_set_lock_blocking(eb);
1829 
1830 			btrfs_tree_unlock(parent);
1831 			free_extent_buffer(parent);
1832 
1833 			parent = eb;
1834 			continue;
1835 		}
1836 
1837 		if (!cow) {
1838 			btrfs_tree_unlock(parent);
1839 			free_extent_buffer(parent);
1840 			cow = 1;
1841 			goto again;
1842 		}
1843 
1844 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1845 				      path->slots[level]);
1846 		btrfs_release_path(path);
1847 
1848 		path->lowest_level = level;
1849 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1850 		path->lowest_level = 0;
1851 		BUG_ON(ret);
1852 
1853 		/*
1854 		 * swap blocks in fs tree and reloc tree.
1855 		 */
1856 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1857 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1858 		btrfs_mark_buffer_dirty(parent);
1859 
1860 		btrfs_set_node_blockptr(path->nodes[level],
1861 					path->slots[level], old_bytenr);
1862 		btrfs_set_node_ptr_generation(path->nodes[level],
1863 					      path->slots[level], old_ptr_gen);
1864 		btrfs_mark_buffer_dirty(path->nodes[level]);
1865 
1866 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1867 					path->nodes[level]->start,
1868 					src->root_key.objectid, level - 1, 0,
1869 					1);
1870 		BUG_ON(ret);
1871 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1872 					0, dest->root_key.objectid, level - 1,
1873 					0, 1);
1874 		BUG_ON(ret);
1875 
1876 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1877 					path->nodes[level]->start,
1878 					src->root_key.objectid, level - 1, 0,
1879 					1);
1880 		BUG_ON(ret);
1881 
1882 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1883 					0, dest->root_key.objectid, level - 1,
1884 					0, 1);
1885 		BUG_ON(ret);
1886 
1887 		btrfs_unlock_up_safe(path, 0);
1888 
1889 		ret = level;
1890 		break;
1891 	}
1892 	btrfs_tree_unlock(parent);
1893 	free_extent_buffer(parent);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * helper to find next relocated block in reloc tree
1899  */
1900 static noinline_for_stack
1901 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1902 		       int *level)
1903 {
1904 	struct extent_buffer *eb;
1905 	int i;
1906 	u64 last_snapshot;
1907 	u32 nritems;
1908 
1909 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1910 
1911 	for (i = 0; i < *level; i++) {
1912 		free_extent_buffer(path->nodes[i]);
1913 		path->nodes[i] = NULL;
1914 	}
1915 
1916 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1917 		eb = path->nodes[i];
1918 		nritems = btrfs_header_nritems(eb);
1919 		while (path->slots[i] + 1 < nritems) {
1920 			path->slots[i]++;
1921 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1922 			    last_snapshot)
1923 				continue;
1924 
1925 			*level = i;
1926 			return 0;
1927 		}
1928 		free_extent_buffer(path->nodes[i]);
1929 		path->nodes[i] = NULL;
1930 	}
1931 	return 1;
1932 }
1933 
1934 /*
1935  * walk down reloc tree to find relocated block of lowest level
1936  */
1937 static noinline_for_stack
1938 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1939 			 int *level)
1940 {
1941 	struct extent_buffer *eb = NULL;
1942 	int i;
1943 	u64 bytenr;
1944 	u64 ptr_gen = 0;
1945 	u64 last_snapshot;
1946 	u32 blocksize;
1947 	u32 nritems;
1948 
1949 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1950 
1951 	for (i = *level; i > 0; i--) {
1952 		eb = path->nodes[i];
1953 		nritems = btrfs_header_nritems(eb);
1954 		while (path->slots[i] < nritems) {
1955 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1956 			if (ptr_gen > last_snapshot)
1957 				break;
1958 			path->slots[i]++;
1959 		}
1960 		if (path->slots[i] >= nritems) {
1961 			if (i == *level)
1962 				break;
1963 			*level = i + 1;
1964 			return 0;
1965 		}
1966 		if (i == 1) {
1967 			*level = i;
1968 			return 0;
1969 		}
1970 
1971 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1972 		blocksize = btrfs_level_size(root, i - 1);
1973 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1974 		if (!eb || !extent_buffer_uptodate(eb)) {
1975 			free_extent_buffer(eb);
1976 			return -EIO;
1977 		}
1978 		BUG_ON(btrfs_header_level(eb) != i - 1);
1979 		path->nodes[i - 1] = eb;
1980 		path->slots[i - 1] = 0;
1981 	}
1982 	return 1;
1983 }
1984 
1985 /*
1986  * invalidate extent cache for file extents whose key in range of
1987  * [min_key, max_key)
1988  */
1989 static int invalidate_extent_cache(struct btrfs_root *root,
1990 				   struct btrfs_key *min_key,
1991 				   struct btrfs_key *max_key)
1992 {
1993 	struct inode *inode = NULL;
1994 	u64 objectid;
1995 	u64 start, end;
1996 	u64 ino;
1997 
1998 	objectid = min_key->objectid;
1999 	while (1) {
2000 		cond_resched();
2001 		iput(inode);
2002 
2003 		if (objectid > max_key->objectid)
2004 			break;
2005 
2006 		inode = find_next_inode(root, objectid);
2007 		if (!inode)
2008 			break;
2009 		ino = btrfs_ino(inode);
2010 
2011 		if (ino > max_key->objectid) {
2012 			iput(inode);
2013 			break;
2014 		}
2015 
2016 		objectid = ino + 1;
2017 		if (!S_ISREG(inode->i_mode))
2018 			continue;
2019 
2020 		if (unlikely(min_key->objectid == ino)) {
2021 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2022 				continue;
2023 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2024 				start = 0;
2025 			else {
2026 				start = min_key->offset;
2027 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2028 			}
2029 		} else {
2030 			start = 0;
2031 		}
2032 
2033 		if (unlikely(max_key->objectid == ino)) {
2034 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2035 				continue;
2036 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2037 				end = (u64)-1;
2038 			} else {
2039 				if (max_key->offset == 0)
2040 					continue;
2041 				end = max_key->offset;
2042 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2043 				end--;
2044 			}
2045 		} else {
2046 			end = (u64)-1;
2047 		}
2048 
2049 		/* the lock_extent waits for readpage to complete */
2050 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2051 		btrfs_drop_extent_cache(inode, start, end, 1);
2052 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2053 	}
2054 	return 0;
2055 }
2056 
2057 static int find_next_key(struct btrfs_path *path, int level,
2058 			 struct btrfs_key *key)
2059 
2060 {
2061 	while (level < BTRFS_MAX_LEVEL) {
2062 		if (!path->nodes[level])
2063 			break;
2064 		if (path->slots[level] + 1 <
2065 		    btrfs_header_nritems(path->nodes[level])) {
2066 			btrfs_node_key_to_cpu(path->nodes[level], key,
2067 					      path->slots[level] + 1);
2068 			return 0;
2069 		}
2070 		level++;
2071 	}
2072 	return 1;
2073 }
2074 
2075 /*
2076  * merge the relocated tree blocks in reloc tree with corresponding
2077  * fs tree.
2078  */
2079 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2080 					       struct btrfs_root *root)
2081 {
2082 	LIST_HEAD(inode_list);
2083 	struct btrfs_key key;
2084 	struct btrfs_key next_key;
2085 	struct btrfs_trans_handle *trans = NULL;
2086 	struct btrfs_root *reloc_root;
2087 	struct btrfs_root_item *root_item;
2088 	struct btrfs_path *path;
2089 	struct extent_buffer *leaf;
2090 	int level;
2091 	int max_level;
2092 	int replaced = 0;
2093 	int ret;
2094 	int err = 0;
2095 	u32 min_reserved;
2096 
2097 	path = btrfs_alloc_path();
2098 	if (!path)
2099 		return -ENOMEM;
2100 	path->reada = 1;
2101 
2102 	reloc_root = root->reloc_root;
2103 	root_item = &reloc_root->root_item;
2104 
2105 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2106 		level = btrfs_root_level(root_item);
2107 		extent_buffer_get(reloc_root->node);
2108 		path->nodes[level] = reloc_root->node;
2109 		path->slots[level] = 0;
2110 	} else {
2111 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2112 
2113 		level = root_item->drop_level;
2114 		BUG_ON(level == 0);
2115 		path->lowest_level = level;
2116 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2117 		path->lowest_level = 0;
2118 		if (ret < 0) {
2119 			btrfs_free_path(path);
2120 			return ret;
2121 		}
2122 
2123 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2124 				      path->slots[level]);
2125 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2126 
2127 		btrfs_unlock_up_safe(path, 0);
2128 	}
2129 
2130 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2131 	memset(&next_key, 0, sizeof(next_key));
2132 
2133 	while (1) {
2134 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2135 					     BTRFS_RESERVE_FLUSH_ALL);
2136 		if (ret) {
2137 			err = ret;
2138 			goto out;
2139 		}
2140 		trans = btrfs_start_transaction(root, 0);
2141 		if (IS_ERR(trans)) {
2142 			err = PTR_ERR(trans);
2143 			trans = NULL;
2144 			goto out;
2145 		}
2146 		trans->block_rsv = rc->block_rsv;
2147 
2148 		replaced = 0;
2149 		max_level = level;
2150 
2151 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2152 		if (ret < 0) {
2153 			err = ret;
2154 			goto out;
2155 		}
2156 		if (ret > 0)
2157 			break;
2158 
2159 		if (!find_next_key(path, level, &key) &&
2160 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2161 			ret = 0;
2162 		} else {
2163 			ret = replace_path(trans, root, reloc_root, path,
2164 					   &next_key, level, max_level);
2165 		}
2166 		if (ret < 0) {
2167 			err = ret;
2168 			goto out;
2169 		}
2170 
2171 		if (ret > 0) {
2172 			level = ret;
2173 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2174 					      path->slots[level]);
2175 			replaced = 1;
2176 		}
2177 
2178 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2179 		if (ret > 0)
2180 			break;
2181 
2182 		BUG_ON(level == 0);
2183 		/*
2184 		 * save the merging progress in the drop_progress.
2185 		 * this is OK since root refs == 1 in this case.
2186 		 */
2187 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2188 			       path->slots[level]);
2189 		root_item->drop_level = level;
2190 
2191 		btrfs_end_transaction_throttle(trans, root);
2192 		trans = NULL;
2193 
2194 		btrfs_btree_balance_dirty(root);
2195 
2196 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2197 			invalidate_extent_cache(root, &key, &next_key);
2198 	}
2199 
2200 	/*
2201 	 * handle the case only one block in the fs tree need to be
2202 	 * relocated and the block is tree root.
2203 	 */
2204 	leaf = btrfs_lock_root_node(root);
2205 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2206 	btrfs_tree_unlock(leaf);
2207 	free_extent_buffer(leaf);
2208 	if (ret < 0)
2209 		err = ret;
2210 out:
2211 	btrfs_free_path(path);
2212 
2213 	if (err == 0) {
2214 		memset(&root_item->drop_progress, 0,
2215 		       sizeof(root_item->drop_progress));
2216 		root_item->drop_level = 0;
2217 		btrfs_set_root_refs(root_item, 0);
2218 		btrfs_update_reloc_root(trans, root);
2219 	}
2220 
2221 	if (trans)
2222 		btrfs_end_transaction_throttle(trans, root);
2223 
2224 	btrfs_btree_balance_dirty(root);
2225 
2226 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2227 		invalidate_extent_cache(root, &key, &next_key);
2228 
2229 	return err;
2230 }
2231 
2232 static noinline_for_stack
2233 int prepare_to_merge(struct reloc_control *rc, int err)
2234 {
2235 	struct btrfs_root *root = rc->extent_root;
2236 	struct btrfs_root *reloc_root;
2237 	struct btrfs_trans_handle *trans;
2238 	LIST_HEAD(reloc_roots);
2239 	u64 num_bytes = 0;
2240 	int ret;
2241 
2242 	mutex_lock(&root->fs_info->reloc_mutex);
2243 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2244 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2245 	mutex_unlock(&root->fs_info->reloc_mutex);
2246 
2247 again:
2248 	if (!err) {
2249 		num_bytes = rc->merging_rsv_size;
2250 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2251 					  BTRFS_RESERVE_FLUSH_ALL);
2252 		if (ret)
2253 			err = ret;
2254 	}
2255 
2256 	trans = btrfs_join_transaction(rc->extent_root);
2257 	if (IS_ERR(trans)) {
2258 		if (!err)
2259 			btrfs_block_rsv_release(rc->extent_root,
2260 						rc->block_rsv, num_bytes);
2261 		return PTR_ERR(trans);
2262 	}
2263 
2264 	if (!err) {
2265 		if (num_bytes != rc->merging_rsv_size) {
2266 			btrfs_end_transaction(trans, rc->extent_root);
2267 			btrfs_block_rsv_release(rc->extent_root,
2268 						rc->block_rsv, num_bytes);
2269 			goto again;
2270 		}
2271 	}
2272 
2273 	rc->merge_reloc_tree = 1;
2274 
2275 	while (!list_empty(&rc->reloc_roots)) {
2276 		reloc_root = list_entry(rc->reloc_roots.next,
2277 					struct btrfs_root, root_list);
2278 		list_del_init(&reloc_root->root_list);
2279 
2280 		root = read_fs_root(reloc_root->fs_info,
2281 				    reloc_root->root_key.offset);
2282 		BUG_ON(IS_ERR(root));
2283 		BUG_ON(root->reloc_root != reloc_root);
2284 
2285 		/*
2286 		 * set reference count to 1, so btrfs_recover_relocation
2287 		 * knows it should resumes merging
2288 		 */
2289 		if (!err)
2290 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2291 		btrfs_update_reloc_root(trans, root);
2292 
2293 		list_add(&reloc_root->root_list, &reloc_roots);
2294 	}
2295 
2296 	list_splice(&reloc_roots, &rc->reloc_roots);
2297 
2298 	if (!err)
2299 		btrfs_commit_transaction(trans, rc->extent_root);
2300 	else
2301 		btrfs_end_transaction(trans, rc->extent_root);
2302 	return err;
2303 }
2304 
2305 static noinline_for_stack
2306 void free_reloc_roots(struct list_head *list)
2307 {
2308 	struct btrfs_root *reloc_root;
2309 
2310 	while (!list_empty(list)) {
2311 		reloc_root = list_entry(list->next, struct btrfs_root,
2312 					root_list);
2313 		__del_reloc_root(reloc_root);
2314 	}
2315 }
2316 
2317 static noinline_for_stack
2318 int merge_reloc_roots(struct reloc_control *rc)
2319 {
2320 	struct btrfs_trans_handle *trans;
2321 	struct btrfs_root *root;
2322 	struct btrfs_root *reloc_root;
2323 	u64 last_snap;
2324 	u64 otransid;
2325 	u64 objectid;
2326 	LIST_HEAD(reloc_roots);
2327 	int found = 0;
2328 	int ret = 0;
2329 again:
2330 	root = rc->extent_root;
2331 
2332 	/*
2333 	 * this serializes us with btrfs_record_root_in_transaction,
2334 	 * we have to make sure nobody is in the middle of
2335 	 * adding their roots to the list while we are
2336 	 * doing this splice
2337 	 */
2338 	mutex_lock(&root->fs_info->reloc_mutex);
2339 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2340 	mutex_unlock(&root->fs_info->reloc_mutex);
2341 
2342 	while (!list_empty(&reloc_roots)) {
2343 		found = 1;
2344 		reloc_root = list_entry(reloc_roots.next,
2345 					struct btrfs_root, root_list);
2346 
2347 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2348 			root = read_fs_root(reloc_root->fs_info,
2349 					    reloc_root->root_key.offset);
2350 			BUG_ON(IS_ERR(root));
2351 			BUG_ON(root->reloc_root != reloc_root);
2352 
2353 			ret = merge_reloc_root(rc, root);
2354 			if (ret) {
2355 				if (list_empty(&reloc_root->root_list))
2356 					list_add_tail(&reloc_root->root_list,
2357 						      &reloc_roots);
2358 				goto out;
2359 			}
2360 		} else {
2361 			list_del_init(&reloc_root->root_list);
2362 		}
2363 
2364 		/*
2365 		 * we keep the old last snapshod transid in rtranid when we
2366 		 * created the relocation tree.
2367 		 */
2368 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2369 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2370 		objectid = reloc_root->root_key.offset;
2371 
2372 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2373 		if (ret < 0) {
2374 			if (list_empty(&reloc_root->root_list))
2375 				list_add_tail(&reloc_root->root_list,
2376 					      &reloc_roots);
2377 			goto out;
2378 		} else if (!ret) {
2379 			/*
2380 			 * recover the last snapshot tranid to avoid
2381 			 * the space balance break NOCOW.
2382 			 */
2383 			root = read_fs_root(rc->extent_root->fs_info,
2384 					    objectid);
2385 			if (IS_ERR(root))
2386 				continue;
2387 
2388 			trans = btrfs_join_transaction(root);
2389 			BUG_ON(IS_ERR(trans));
2390 
2391 			/* Check if the fs/file tree was snapshoted or not. */
2392 			if (btrfs_root_last_snapshot(&root->root_item) ==
2393 			    otransid - 1)
2394 				btrfs_set_root_last_snapshot(&root->root_item,
2395 							     last_snap);
2396 
2397 			btrfs_end_transaction(trans, root);
2398 		}
2399 	}
2400 
2401 	if (found) {
2402 		found = 0;
2403 		goto again;
2404 	}
2405 out:
2406 	if (ret) {
2407 		btrfs_std_error(root->fs_info, ret);
2408 		if (!list_empty(&reloc_roots))
2409 			free_reloc_roots(&reloc_roots);
2410 
2411 		/* new reloc root may be added */
2412 		mutex_lock(&root->fs_info->reloc_mutex);
2413 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2414 		mutex_unlock(&root->fs_info->reloc_mutex);
2415 		if (!list_empty(&reloc_roots))
2416 			free_reloc_roots(&reloc_roots);
2417 	}
2418 
2419 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2420 	return ret;
2421 }
2422 
2423 static void free_block_list(struct rb_root *blocks)
2424 {
2425 	struct tree_block *block;
2426 	struct rb_node *rb_node;
2427 	while ((rb_node = rb_first(blocks))) {
2428 		block = rb_entry(rb_node, struct tree_block, rb_node);
2429 		rb_erase(rb_node, blocks);
2430 		kfree(block);
2431 	}
2432 }
2433 
2434 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2435 				      struct btrfs_root *reloc_root)
2436 {
2437 	struct btrfs_root *root;
2438 
2439 	if (reloc_root->last_trans == trans->transid)
2440 		return 0;
2441 
2442 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2443 	BUG_ON(IS_ERR(root));
2444 	BUG_ON(root->reloc_root != reloc_root);
2445 
2446 	return btrfs_record_root_in_trans(trans, root);
2447 }
2448 
2449 static noinline_for_stack
2450 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2451 				     struct reloc_control *rc,
2452 				     struct backref_node *node,
2453 				     struct backref_edge *edges[])
2454 {
2455 	struct backref_node *next;
2456 	struct btrfs_root *root;
2457 	int index = 0;
2458 
2459 	next = node;
2460 	while (1) {
2461 		cond_resched();
2462 		next = walk_up_backref(next, edges, &index);
2463 		root = next->root;
2464 		BUG_ON(!root);
2465 		BUG_ON(!root->ref_cows);
2466 
2467 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2468 			record_reloc_root_in_trans(trans, root);
2469 			break;
2470 		}
2471 
2472 		btrfs_record_root_in_trans(trans, root);
2473 		root = root->reloc_root;
2474 
2475 		if (next->new_bytenr != root->node->start) {
2476 			BUG_ON(next->new_bytenr);
2477 			BUG_ON(!list_empty(&next->list));
2478 			next->new_bytenr = root->node->start;
2479 			next->root = root;
2480 			list_add_tail(&next->list,
2481 				      &rc->backref_cache.changed);
2482 			__mark_block_processed(rc, next);
2483 			break;
2484 		}
2485 
2486 		WARN_ON(1);
2487 		root = NULL;
2488 		next = walk_down_backref(edges, &index);
2489 		if (!next || next->level <= node->level)
2490 			break;
2491 	}
2492 	if (!root)
2493 		return NULL;
2494 
2495 	next = node;
2496 	/* setup backref node path for btrfs_reloc_cow_block */
2497 	while (1) {
2498 		rc->backref_cache.path[next->level] = next;
2499 		if (--index < 0)
2500 			break;
2501 		next = edges[index]->node[UPPER];
2502 	}
2503 	return root;
2504 }
2505 
2506 /*
2507  * select a tree root for relocation. return NULL if the block
2508  * is reference counted. we should use do_relocation() in this
2509  * case. return a tree root pointer if the block isn't reference
2510  * counted. return -ENOENT if the block is root of reloc tree.
2511  */
2512 static noinline_for_stack
2513 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2514 				   struct backref_node *node)
2515 {
2516 	struct backref_node *next;
2517 	struct btrfs_root *root;
2518 	struct btrfs_root *fs_root = NULL;
2519 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2520 	int index = 0;
2521 
2522 	next = node;
2523 	while (1) {
2524 		cond_resched();
2525 		next = walk_up_backref(next, edges, &index);
2526 		root = next->root;
2527 		BUG_ON(!root);
2528 
2529 		/* no other choice for non-references counted tree */
2530 		if (!root->ref_cows)
2531 			return root;
2532 
2533 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2534 			fs_root = root;
2535 
2536 		if (next != node)
2537 			return NULL;
2538 
2539 		next = walk_down_backref(edges, &index);
2540 		if (!next || next->level <= node->level)
2541 			break;
2542 	}
2543 
2544 	if (!fs_root)
2545 		return ERR_PTR(-ENOENT);
2546 	return fs_root;
2547 }
2548 
2549 static noinline_for_stack
2550 u64 calcu_metadata_size(struct reloc_control *rc,
2551 			struct backref_node *node, int reserve)
2552 {
2553 	struct backref_node *next = node;
2554 	struct backref_edge *edge;
2555 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2556 	u64 num_bytes = 0;
2557 	int index = 0;
2558 
2559 	BUG_ON(reserve && node->processed);
2560 
2561 	while (next) {
2562 		cond_resched();
2563 		while (1) {
2564 			if (next->processed && (reserve || next != node))
2565 				break;
2566 
2567 			num_bytes += btrfs_level_size(rc->extent_root,
2568 						      next->level);
2569 
2570 			if (list_empty(&next->upper))
2571 				break;
2572 
2573 			edge = list_entry(next->upper.next,
2574 					  struct backref_edge, list[LOWER]);
2575 			edges[index++] = edge;
2576 			next = edge->node[UPPER];
2577 		}
2578 		next = walk_down_backref(edges, &index);
2579 	}
2580 	return num_bytes;
2581 }
2582 
2583 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2584 				  struct reloc_control *rc,
2585 				  struct backref_node *node)
2586 {
2587 	struct btrfs_root *root = rc->extent_root;
2588 	u64 num_bytes;
2589 	int ret;
2590 	u64 tmp;
2591 
2592 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2593 
2594 	trans->block_rsv = rc->block_rsv;
2595 	rc->reserved_bytes += num_bytes;
2596 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2597 				BTRFS_RESERVE_FLUSH_ALL);
2598 	if (ret) {
2599 		if (ret == -EAGAIN) {
2600 			tmp = rc->extent_root->nodesize *
2601 				RELOCATION_RESERVED_NODES;
2602 			while (tmp <= rc->reserved_bytes)
2603 				tmp <<= 1;
2604 			/*
2605 			 * only one thread can access block_rsv at this point,
2606 			 * so we don't need hold lock to protect block_rsv.
2607 			 * we expand more reservation size here to allow enough
2608 			 * space for relocation and we will return eailer in
2609 			 * enospc case.
2610 			 */
2611 			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2612 					      RELOCATION_RESERVED_NODES;
2613 		}
2614 		return ret;
2615 	}
2616 
2617 	return 0;
2618 }
2619 
2620 /*
2621  * relocate a block tree, and then update pointers in upper level
2622  * blocks that reference the block to point to the new location.
2623  *
2624  * if called by link_to_upper, the block has already been relocated.
2625  * in that case this function just updates pointers.
2626  */
2627 static int do_relocation(struct btrfs_trans_handle *trans,
2628 			 struct reloc_control *rc,
2629 			 struct backref_node *node,
2630 			 struct btrfs_key *key,
2631 			 struct btrfs_path *path, int lowest)
2632 {
2633 	struct backref_node *upper;
2634 	struct backref_edge *edge;
2635 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2636 	struct btrfs_root *root;
2637 	struct extent_buffer *eb;
2638 	u32 blocksize;
2639 	u64 bytenr;
2640 	u64 generation;
2641 	int slot;
2642 	int ret;
2643 	int err = 0;
2644 
2645 	BUG_ON(lowest && node->eb);
2646 
2647 	path->lowest_level = node->level + 1;
2648 	rc->backref_cache.path[node->level] = node;
2649 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2650 		cond_resched();
2651 
2652 		upper = edge->node[UPPER];
2653 		root = select_reloc_root(trans, rc, upper, edges);
2654 		BUG_ON(!root);
2655 
2656 		if (upper->eb && !upper->locked) {
2657 			if (!lowest) {
2658 				ret = btrfs_bin_search(upper->eb, key,
2659 						       upper->level, &slot);
2660 				BUG_ON(ret);
2661 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2662 				if (node->eb->start == bytenr)
2663 					goto next;
2664 			}
2665 			drop_node_buffer(upper);
2666 		}
2667 
2668 		if (!upper->eb) {
2669 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2670 			if (ret < 0) {
2671 				err = ret;
2672 				break;
2673 			}
2674 			BUG_ON(ret > 0);
2675 
2676 			if (!upper->eb) {
2677 				upper->eb = path->nodes[upper->level];
2678 				path->nodes[upper->level] = NULL;
2679 			} else {
2680 				BUG_ON(upper->eb != path->nodes[upper->level]);
2681 			}
2682 
2683 			upper->locked = 1;
2684 			path->locks[upper->level] = 0;
2685 
2686 			slot = path->slots[upper->level];
2687 			btrfs_release_path(path);
2688 		} else {
2689 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2690 					       &slot);
2691 			BUG_ON(ret);
2692 		}
2693 
2694 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2695 		if (lowest) {
2696 			BUG_ON(bytenr != node->bytenr);
2697 		} else {
2698 			if (node->eb->start == bytenr)
2699 				goto next;
2700 		}
2701 
2702 		blocksize = btrfs_level_size(root, node->level);
2703 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2704 		eb = read_tree_block(root, bytenr, blocksize, generation);
2705 		if (!eb || !extent_buffer_uptodate(eb)) {
2706 			free_extent_buffer(eb);
2707 			err = -EIO;
2708 			goto next;
2709 		}
2710 		btrfs_tree_lock(eb);
2711 		btrfs_set_lock_blocking(eb);
2712 
2713 		if (!node->eb) {
2714 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2715 					      slot, &eb);
2716 			btrfs_tree_unlock(eb);
2717 			free_extent_buffer(eb);
2718 			if (ret < 0) {
2719 				err = ret;
2720 				goto next;
2721 			}
2722 			BUG_ON(node->eb != eb);
2723 		} else {
2724 			btrfs_set_node_blockptr(upper->eb, slot,
2725 						node->eb->start);
2726 			btrfs_set_node_ptr_generation(upper->eb, slot,
2727 						      trans->transid);
2728 			btrfs_mark_buffer_dirty(upper->eb);
2729 
2730 			ret = btrfs_inc_extent_ref(trans, root,
2731 						node->eb->start, blocksize,
2732 						upper->eb->start,
2733 						btrfs_header_owner(upper->eb),
2734 						node->level, 0, 1);
2735 			BUG_ON(ret);
2736 
2737 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2738 			BUG_ON(ret);
2739 		}
2740 next:
2741 		if (!upper->pending)
2742 			drop_node_buffer(upper);
2743 		else
2744 			unlock_node_buffer(upper);
2745 		if (err)
2746 			break;
2747 	}
2748 
2749 	if (!err && node->pending) {
2750 		drop_node_buffer(node);
2751 		list_move_tail(&node->list, &rc->backref_cache.changed);
2752 		node->pending = 0;
2753 	}
2754 
2755 	path->lowest_level = 0;
2756 	BUG_ON(err == -ENOSPC);
2757 	return err;
2758 }
2759 
2760 static int link_to_upper(struct btrfs_trans_handle *trans,
2761 			 struct reloc_control *rc,
2762 			 struct backref_node *node,
2763 			 struct btrfs_path *path)
2764 {
2765 	struct btrfs_key key;
2766 
2767 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2768 	return do_relocation(trans, rc, node, &key, path, 0);
2769 }
2770 
2771 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2772 				struct reloc_control *rc,
2773 				struct btrfs_path *path, int err)
2774 {
2775 	LIST_HEAD(list);
2776 	struct backref_cache *cache = &rc->backref_cache;
2777 	struct backref_node *node;
2778 	int level;
2779 	int ret;
2780 
2781 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2782 		while (!list_empty(&cache->pending[level])) {
2783 			node = list_entry(cache->pending[level].next,
2784 					  struct backref_node, list);
2785 			list_move_tail(&node->list, &list);
2786 			BUG_ON(!node->pending);
2787 
2788 			if (!err) {
2789 				ret = link_to_upper(trans, rc, node, path);
2790 				if (ret < 0)
2791 					err = ret;
2792 			}
2793 		}
2794 		list_splice_init(&list, &cache->pending[level]);
2795 	}
2796 	return err;
2797 }
2798 
2799 static void mark_block_processed(struct reloc_control *rc,
2800 				 u64 bytenr, u32 blocksize)
2801 {
2802 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2803 			EXTENT_DIRTY, GFP_NOFS);
2804 }
2805 
2806 static void __mark_block_processed(struct reloc_control *rc,
2807 				   struct backref_node *node)
2808 {
2809 	u32 blocksize;
2810 	if (node->level == 0 ||
2811 	    in_block_group(node->bytenr, rc->block_group)) {
2812 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2813 		mark_block_processed(rc, node->bytenr, blocksize);
2814 	}
2815 	node->processed = 1;
2816 }
2817 
2818 /*
2819  * mark a block and all blocks directly/indirectly reference the block
2820  * as processed.
2821  */
2822 static void update_processed_blocks(struct reloc_control *rc,
2823 				    struct backref_node *node)
2824 {
2825 	struct backref_node *next = node;
2826 	struct backref_edge *edge;
2827 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2828 	int index = 0;
2829 
2830 	while (next) {
2831 		cond_resched();
2832 		while (1) {
2833 			if (next->processed)
2834 				break;
2835 
2836 			__mark_block_processed(rc, next);
2837 
2838 			if (list_empty(&next->upper))
2839 				break;
2840 
2841 			edge = list_entry(next->upper.next,
2842 					  struct backref_edge, list[LOWER]);
2843 			edges[index++] = edge;
2844 			next = edge->node[UPPER];
2845 		}
2846 		next = walk_down_backref(edges, &index);
2847 	}
2848 }
2849 
2850 static int tree_block_processed(u64 bytenr, u32 blocksize,
2851 				struct reloc_control *rc)
2852 {
2853 	if (test_range_bit(&rc->processed_blocks, bytenr,
2854 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2855 		return 1;
2856 	return 0;
2857 }
2858 
2859 static int get_tree_block_key(struct reloc_control *rc,
2860 			      struct tree_block *block)
2861 {
2862 	struct extent_buffer *eb;
2863 
2864 	BUG_ON(block->key_ready);
2865 	eb = read_tree_block(rc->extent_root, block->bytenr,
2866 			     block->key.objectid, block->key.offset);
2867 	if (!eb || !extent_buffer_uptodate(eb)) {
2868 		free_extent_buffer(eb);
2869 		return -EIO;
2870 	}
2871 	WARN_ON(btrfs_header_level(eb) != block->level);
2872 	if (block->level == 0)
2873 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2874 	else
2875 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2876 	free_extent_buffer(eb);
2877 	block->key_ready = 1;
2878 	return 0;
2879 }
2880 
2881 static int reada_tree_block(struct reloc_control *rc,
2882 			    struct tree_block *block)
2883 {
2884 	BUG_ON(block->key_ready);
2885 	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2886 		readahead_tree_block(rc->extent_root, block->bytenr,
2887 				     block->key.objectid,
2888 				     rc->extent_root->leafsize);
2889 	else
2890 		readahead_tree_block(rc->extent_root, block->bytenr,
2891 				     block->key.objectid, block->key.offset);
2892 	return 0;
2893 }
2894 
2895 /*
2896  * helper function to relocate a tree block
2897  */
2898 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2899 				struct reloc_control *rc,
2900 				struct backref_node *node,
2901 				struct btrfs_key *key,
2902 				struct btrfs_path *path)
2903 {
2904 	struct btrfs_root *root;
2905 	int ret = 0;
2906 
2907 	if (!node)
2908 		return 0;
2909 
2910 	BUG_ON(node->processed);
2911 	root = select_one_root(trans, node);
2912 	if (root == ERR_PTR(-ENOENT)) {
2913 		update_processed_blocks(rc, node);
2914 		goto out;
2915 	}
2916 
2917 	if (!root || root->ref_cows) {
2918 		ret = reserve_metadata_space(trans, rc, node);
2919 		if (ret)
2920 			goto out;
2921 	}
2922 
2923 	if (root) {
2924 		if (root->ref_cows) {
2925 			BUG_ON(node->new_bytenr);
2926 			BUG_ON(!list_empty(&node->list));
2927 			btrfs_record_root_in_trans(trans, root);
2928 			root = root->reloc_root;
2929 			node->new_bytenr = root->node->start;
2930 			node->root = root;
2931 			list_add_tail(&node->list, &rc->backref_cache.changed);
2932 		} else {
2933 			path->lowest_level = node->level;
2934 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2935 			btrfs_release_path(path);
2936 			if (ret > 0)
2937 				ret = 0;
2938 		}
2939 		if (!ret)
2940 			update_processed_blocks(rc, node);
2941 	} else {
2942 		ret = do_relocation(trans, rc, node, key, path, 1);
2943 	}
2944 out:
2945 	if (ret || node->level == 0 || node->cowonly)
2946 		remove_backref_node(&rc->backref_cache, node);
2947 	return ret;
2948 }
2949 
2950 /*
2951  * relocate a list of blocks
2952  */
2953 static noinline_for_stack
2954 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2955 			 struct reloc_control *rc, struct rb_root *blocks)
2956 {
2957 	struct backref_node *node;
2958 	struct btrfs_path *path;
2959 	struct tree_block *block;
2960 	struct rb_node *rb_node;
2961 	int ret;
2962 	int err = 0;
2963 
2964 	path = btrfs_alloc_path();
2965 	if (!path) {
2966 		err = -ENOMEM;
2967 		goto out_free_blocks;
2968 	}
2969 
2970 	rb_node = rb_first(blocks);
2971 	while (rb_node) {
2972 		block = rb_entry(rb_node, struct tree_block, rb_node);
2973 		if (!block->key_ready)
2974 			reada_tree_block(rc, block);
2975 		rb_node = rb_next(rb_node);
2976 	}
2977 
2978 	rb_node = rb_first(blocks);
2979 	while (rb_node) {
2980 		block = rb_entry(rb_node, struct tree_block, rb_node);
2981 		if (!block->key_ready) {
2982 			err = get_tree_block_key(rc, block);
2983 			if (err)
2984 				goto out_free_path;
2985 		}
2986 		rb_node = rb_next(rb_node);
2987 	}
2988 
2989 	rb_node = rb_first(blocks);
2990 	while (rb_node) {
2991 		block = rb_entry(rb_node, struct tree_block, rb_node);
2992 
2993 		node = build_backref_tree(rc, &block->key,
2994 					  block->level, block->bytenr);
2995 		if (IS_ERR(node)) {
2996 			err = PTR_ERR(node);
2997 			goto out;
2998 		}
2999 
3000 		ret = relocate_tree_block(trans, rc, node, &block->key,
3001 					  path);
3002 		if (ret < 0) {
3003 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3004 				err = ret;
3005 			goto out;
3006 		}
3007 		rb_node = rb_next(rb_node);
3008 	}
3009 out:
3010 	err = finish_pending_nodes(trans, rc, path, err);
3011 
3012 out_free_path:
3013 	btrfs_free_path(path);
3014 out_free_blocks:
3015 	free_block_list(blocks);
3016 	return err;
3017 }
3018 
3019 static noinline_for_stack
3020 int prealloc_file_extent_cluster(struct inode *inode,
3021 				 struct file_extent_cluster *cluster)
3022 {
3023 	u64 alloc_hint = 0;
3024 	u64 start;
3025 	u64 end;
3026 	u64 offset = BTRFS_I(inode)->index_cnt;
3027 	u64 num_bytes;
3028 	int nr = 0;
3029 	int ret = 0;
3030 
3031 	BUG_ON(cluster->start != cluster->boundary[0]);
3032 	mutex_lock(&inode->i_mutex);
3033 
3034 	ret = btrfs_check_data_free_space(inode, cluster->end +
3035 					  1 - cluster->start);
3036 	if (ret)
3037 		goto out;
3038 
3039 	while (nr < cluster->nr) {
3040 		start = cluster->boundary[nr] - offset;
3041 		if (nr + 1 < cluster->nr)
3042 			end = cluster->boundary[nr + 1] - 1 - offset;
3043 		else
3044 			end = cluster->end - offset;
3045 
3046 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3047 		num_bytes = end + 1 - start;
3048 		ret = btrfs_prealloc_file_range(inode, 0, start,
3049 						num_bytes, num_bytes,
3050 						end + 1, &alloc_hint);
3051 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3052 		if (ret)
3053 			break;
3054 		nr++;
3055 	}
3056 	btrfs_free_reserved_data_space(inode, cluster->end +
3057 				       1 - cluster->start);
3058 out:
3059 	mutex_unlock(&inode->i_mutex);
3060 	return ret;
3061 }
3062 
3063 static noinline_for_stack
3064 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3065 			 u64 block_start)
3066 {
3067 	struct btrfs_root *root = BTRFS_I(inode)->root;
3068 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3069 	struct extent_map *em;
3070 	int ret = 0;
3071 
3072 	em = alloc_extent_map();
3073 	if (!em)
3074 		return -ENOMEM;
3075 
3076 	em->start = start;
3077 	em->len = end + 1 - start;
3078 	em->block_len = em->len;
3079 	em->block_start = block_start;
3080 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3081 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3082 
3083 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3084 	while (1) {
3085 		write_lock(&em_tree->lock);
3086 		ret = add_extent_mapping(em_tree, em, 0);
3087 		write_unlock(&em_tree->lock);
3088 		if (ret != -EEXIST) {
3089 			free_extent_map(em);
3090 			break;
3091 		}
3092 		btrfs_drop_extent_cache(inode, start, end, 0);
3093 	}
3094 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3095 	return ret;
3096 }
3097 
3098 static int relocate_file_extent_cluster(struct inode *inode,
3099 					struct file_extent_cluster *cluster)
3100 {
3101 	u64 page_start;
3102 	u64 page_end;
3103 	u64 offset = BTRFS_I(inode)->index_cnt;
3104 	unsigned long index;
3105 	unsigned long last_index;
3106 	struct page *page;
3107 	struct file_ra_state *ra;
3108 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3109 	int nr = 0;
3110 	int ret = 0;
3111 
3112 	if (!cluster->nr)
3113 		return 0;
3114 
3115 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3116 	if (!ra)
3117 		return -ENOMEM;
3118 
3119 	ret = prealloc_file_extent_cluster(inode, cluster);
3120 	if (ret)
3121 		goto out;
3122 
3123 	file_ra_state_init(ra, inode->i_mapping);
3124 
3125 	ret = setup_extent_mapping(inode, cluster->start - offset,
3126 				   cluster->end - offset, cluster->start);
3127 	if (ret)
3128 		goto out;
3129 
3130 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3131 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3132 	while (index <= last_index) {
3133 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3134 		if (ret)
3135 			goto out;
3136 
3137 		page = find_lock_page(inode->i_mapping, index);
3138 		if (!page) {
3139 			page_cache_sync_readahead(inode->i_mapping,
3140 						  ra, NULL, index,
3141 						  last_index + 1 - index);
3142 			page = find_or_create_page(inode->i_mapping, index,
3143 						   mask);
3144 			if (!page) {
3145 				btrfs_delalloc_release_metadata(inode,
3146 							PAGE_CACHE_SIZE);
3147 				ret = -ENOMEM;
3148 				goto out;
3149 			}
3150 		}
3151 
3152 		if (PageReadahead(page)) {
3153 			page_cache_async_readahead(inode->i_mapping,
3154 						   ra, NULL, page, index,
3155 						   last_index + 1 - index);
3156 		}
3157 
3158 		if (!PageUptodate(page)) {
3159 			btrfs_readpage(NULL, page);
3160 			lock_page(page);
3161 			if (!PageUptodate(page)) {
3162 				unlock_page(page);
3163 				page_cache_release(page);
3164 				btrfs_delalloc_release_metadata(inode,
3165 							PAGE_CACHE_SIZE);
3166 				ret = -EIO;
3167 				goto out;
3168 			}
3169 		}
3170 
3171 		page_start = page_offset(page);
3172 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3173 
3174 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3175 
3176 		set_page_extent_mapped(page);
3177 
3178 		if (nr < cluster->nr &&
3179 		    page_start + offset == cluster->boundary[nr]) {
3180 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3181 					page_start, page_end,
3182 					EXTENT_BOUNDARY, GFP_NOFS);
3183 			nr++;
3184 		}
3185 
3186 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3187 		set_page_dirty(page);
3188 
3189 		unlock_extent(&BTRFS_I(inode)->io_tree,
3190 			      page_start, page_end);
3191 		unlock_page(page);
3192 		page_cache_release(page);
3193 
3194 		index++;
3195 		balance_dirty_pages_ratelimited(inode->i_mapping);
3196 		btrfs_throttle(BTRFS_I(inode)->root);
3197 	}
3198 	WARN_ON(nr != cluster->nr);
3199 out:
3200 	kfree(ra);
3201 	return ret;
3202 }
3203 
3204 static noinline_for_stack
3205 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3206 			 struct file_extent_cluster *cluster)
3207 {
3208 	int ret;
3209 
3210 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3211 		ret = relocate_file_extent_cluster(inode, cluster);
3212 		if (ret)
3213 			return ret;
3214 		cluster->nr = 0;
3215 	}
3216 
3217 	if (!cluster->nr)
3218 		cluster->start = extent_key->objectid;
3219 	else
3220 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3221 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3222 	cluster->boundary[cluster->nr] = extent_key->objectid;
3223 	cluster->nr++;
3224 
3225 	if (cluster->nr >= MAX_EXTENTS) {
3226 		ret = relocate_file_extent_cluster(inode, cluster);
3227 		if (ret)
3228 			return ret;
3229 		cluster->nr = 0;
3230 	}
3231 	return 0;
3232 }
3233 
3234 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3235 static int get_ref_objectid_v0(struct reloc_control *rc,
3236 			       struct btrfs_path *path,
3237 			       struct btrfs_key *extent_key,
3238 			       u64 *ref_objectid, int *path_change)
3239 {
3240 	struct btrfs_key key;
3241 	struct extent_buffer *leaf;
3242 	struct btrfs_extent_ref_v0 *ref0;
3243 	int ret;
3244 	int slot;
3245 
3246 	leaf = path->nodes[0];
3247 	slot = path->slots[0];
3248 	while (1) {
3249 		if (slot >= btrfs_header_nritems(leaf)) {
3250 			ret = btrfs_next_leaf(rc->extent_root, path);
3251 			if (ret < 0)
3252 				return ret;
3253 			BUG_ON(ret > 0);
3254 			leaf = path->nodes[0];
3255 			slot = path->slots[0];
3256 			if (path_change)
3257 				*path_change = 1;
3258 		}
3259 		btrfs_item_key_to_cpu(leaf, &key, slot);
3260 		if (key.objectid != extent_key->objectid)
3261 			return -ENOENT;
3262 
3263 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3264 			slot++;
3265 			continue;
3266 		}
3267 		ref0 = btrfs_item_ptr(leaf, slot,
3268 				struct btrfs_extent_ref_v0);
3269 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3270 		break;
3271 	}
3272 	return 0;
3273 }
3274 #endif
3275 
3276 /*
3277  * helper to add a tree block to the list.
3278  * the major work is getting the generation and level of the block
3279  */
3280 static int add_tree_block(struct reloc_control *rc,
3281 			  struct btrfs_key *extent_key,
3282 			  struct btrfs_path *path,
3283 			  struct rb_root *blocks)
3284 {
3285 	struct extent_buffer *eb;
3286 	struct btrfs_extent_item *ei;
3287 	struct btrfs_tree_block_info *bi;
3288 	struct tree_block *block;
3289 	struct rb_node *rb_node;
3290 	u32 item_size;
3291 	int level = -1;
3292 	u64 generation;
3293 
3294 	eb =  path->nodes[0];
3295 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3296 
3297 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3298 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3299 		ei = btrfs_item_ptr(eb, path->slots[0],
3300 				struct btrfs_extent_item);
3301 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3302 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3303 			level = btrfs_tree_block_level(eb, bi);
3304 		} else {
3305 			level = (int)extent_key->offset;
3306 		}
3307 		generation = btrfs_extent_generation(eb, ei);
3308 	} else {
3309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3310 		u64 ref_owner;
3311 		int ret;
3312 
3313 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3314 		ret = get_ref_objectid_v0(rc, path, extent_key,
3315 					  &ref_owner, NULL);
3316 		if (ret < 0)
3317 			return ret;
3318 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3319 		level = (int)ref_owner;
3320 		/* FIXME: get real generation */
3321 		generation = 0;
3322 #else
3323 		BUG();
3324 #endif
3325 	}
3326 
3327 	btrfs_release_path(path);
3328 
3329 	BUG_ON(level == -1);
3330 
3331 	block = kmalloc(sizeof(*block), GFP_NOFS);
3332 	if (!block)
3333 		return -ENOMEM;
3334 
3335 	block->bytenr = extent_key->objectid;
3336 	block->key.objectid = rc->extent_root->leafsize;
3337 	block->key.offset = generation;
3338 	block->level = level;
3339 	block->key_ready = 0;
3340 
3341 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3342 	if (rb_node)
3343 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3344 
3345 	return 0;
3346 }
3347 
3348 /*
3349  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3350  */
3351 static int __add_tree_block(struct reloc_control *rc,
3352 			    u64 bytenr, u32 blocksize,
3353 			    struct rb_root *blocks)
3354 {
3355 	struct btrfs_path *path;
3356 	struct btrfs_key key;
3357 	int ret;
3358 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3359 					SKINNY_METADATA);
3360 
3361 	if (tree_block_processed(bytenr, blocksize, rc))
3362 		return 0;
3363 
3364 	if (tree_search(blocks, bytenr))
3365 		return 0;
3366 
3367 	path = btrfs_alloc_path();
3368 	if (!path)
3369 		return -ENOMEM;
3370 again:
3371 	key.objectid = bytenr;
3372 	if (skinny) {
3373 		key.type = BTRFS_METADATA_ITEM_KEY;
3374 		key.offset = (u64)-1;
3375 	} else {
3376 		key.type = BTRFS_EXTENT_ITEM_KEY;
3377 		key.offset = blocksize;
3378 	}
3379 
3380 	path->search_commit_root = 1;
3381 	path->skip_locking = 1;
3382 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3383 	if (ret < 0)
3384 		goto out;
3385 
3386 	if (ret > 0 && skinny) {
3387 		if (path->slots[0]) {
3388 			path->slots[0]--;
3389 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3390 					      path->slots[0]);
3391 			if (key.objectid == bytenr &&
3392 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3393 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3394 			      key.offset == blocksize)))
3395 				ret = 0;
3396 		}
3397 
3398 		if (ret) {
3399 			skinny = false;
3400 			btrfs_release_path(path);
3401 			goto again;
3402 		}
3403 	}
3404 	BUG_ON(ret);
3405 
3406 	ret = add_tree_block(rc, &key, path, blocks);
3407 out:
3408 	btrfs_free_path(path);
3409 	return ret;
3410 }
3411 
3412 /*
3413  * helper to check if the block use full backrefs for pointers in it
3414  */
3415 static int block_use_full_backref(struct reloc_control *rc,
3416 				  struct extent_buffer *eb)
3417 {
3418 	u64 flags;
3419 	int ret;
3420 
3421 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3422 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3423 		return 1;
3424 
3425 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3426 				       eb->start, btrfs_header_level(eb), 1,
3427 				       NULL, &flags);
3428 	BUG_ON(ret);
3429 
3430 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3431 		ret = 1;
3432 	else
3433 		ret = 0;
3434 	return ret;
3435 }
3436 
3437 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3438 				    struct inode *inode, u64 ino)
3439 {
3440 	struct btrfs_key key;
3441 	struct btrfs_root *root = fs_info->tree_root;
3442 	struct btrfs_trans_handle *trans;
3443 	int ret = 0;
3444 
3445 	if (inode)
3446 		goto truncate;
3447 
3448 	key.objectid = ino;
3449 	key.type = BTRFS_INODE_ITEM_KEY;
3450 	key.offset = 0;
3451 
3452 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3453 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3454 		if (!IS_ERR(inode))
3455 			iput(inode);
3456 		return -ENOENT;
3457 	}
3458 
3459 truncate:
3460 	ret = btrfs_check_trunc_cache_free_space(root,
3461 						 &fs_info->global_block_rsv);
3462 	if (ret)
3463 		goto out;
3464 
3465 	trans = btrfs_join_transaction(root);
3466 	if (IS_ERR(trans)) {
3467 		ret = PTR_ERR(trans);
3468 		goto out;
3469 	}
3470 
3471 	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3472 
3473 	btrfs_end_transaction(trans, root);
3474 	btrfs_btree_balance_dirty(root);
3475 out:
3476 	iput(inode);
3477 	return ret;
3478 }
3479 
3480 /*
3481  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3482  * this function scans fs tree to find blocks reference the data extent
3483  */
3484 static int find_data_references(struct reloc_control *rc,
3485 				struct btrfs_key *extent_key,
3486 				struct extent_buffer *leaf,
3487 				struct btrfs_extent_data_ref *ref,
3488 				struct rb_root *blocks)
3489 {
3490 	struct btrfs_path *path;
3491 	struct tree_block *block;
3492 	struct btrfs_root *root;
3493 	struct btrfs_file_extent_item *fi;
3494 	struct rb_node *rb_node;
3495 	struct btrfs_key key;
3496 	u64 ref_root;
3497 	u64 ref_objectid;
3498 	u64 ref_offset;
3499 	u32 ref_count;
3500 	u32 nritems;
3501 	int err = 0;
3502 	int added = 0;
3503 	int counted;
3504 	int ret;
3505 
3506 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3507 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3508 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3509 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3510 
3511 	/*
3512 	 * This is an extent belonging to the free space cache, lets just delete
3513 	 * it and redo the search.
3514 	 */
3515 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3516 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3517 					       NULL, ref_objectid);
3518 		if (ret != -ENOENT)
3519 			return ret;
3520 		ret = 0;
3521 	}
3522 
3523 	path = btrfs_alloc_path();
3524 	if (!path)
3525 		return -ENOMEM;
3526 	path->reada = 1;
3527 
3528 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3529 	if (IS_ERR(root)) {
3530 		err = PTR_ERR(root);
3531 		goto out;
3532 	}
3533 
3534 	key.objectid = ref_objectid;
3535 	key.type = BTRFS_EXTENT_DATA_KEY;
3536 	if (ref_offset > ((u64)-1 << 32))
3537 		key.offset = 0;
3538 	else
3539 		key.offset = ref_offset;
3540 
3541 	path->search_commit_root = 1;
3542 	path->skip_locking = 1;
3543 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3544 	if (ret < 0) {
3545 		err = ret;
3546 		goto out;
3547 	}
3548 
3549 	leaf = path->nodes[0];
3550 	nritems = btrfs_header_nritems(leaf);
3551 	/*
3552 	 * the references in tree blocks that use full backrefs
3553 	 * are not counted in
3554 	 */
3555 	if (block_use_full_backref(rc, leaf))
3556 		counted = 0;
3557 	else
3558 		counted = 1;
3559 	rb_node = tree_search(blocks, leaf->start);
3560 	if (rb_node) {
3561 		if (counted)
3562 			added = 1;
3563 		else
3564 			path->slots[0] = nritems;
3565 	}
3566 
3567 	while (ref_count > 0) {
3568 		while (path->slots[0] >= nritems) {
3569 			ret = btrfs_next_leaf(root, path);
3570 			if (ret < 0) {
3571 				err = ret;
3572 				goto out;
3573 			}
3574 			if (WARN_ON(ret > 0))
3575 				goto out;
3576 
3577 			leaf = path->nodes[0];
3578 			nritems = btrfs_header_nritems(leaf);
3579 			added = 0;
3580 
3581 			if (block_use_full_backref(rc, leaf))
3582 				counted = 0;
3583 			else
3584 				counted = 1;
3585 			rb_node = tree_search(blocks, leaf->start);
3586 			if (rb_node) {
3587 				if (counted)
3588 					added = 1;
3589 				else
3590 					path->slots[0] = nritems;
3591 			}
3592 		}
3593 
3594 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3595 		if (WARN_ON(key.objectid != ref_objectid ||
3596 		    key.type != BTRFS_EXTENT_DATA_KEY))
3597 			break;
3598 
3599 		fi = btrfs_item_ptr(leaf, path->slots[0],
3600 				    struct btrfs_file_extent_item);
3601 
3602 		if (btrfs_file_extent_type(leaf, fi) ==
3603 		    BTRFS_FILE_EXTENT_INLINE)
3604 			goto next;
3605 
3606 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3607 		    extent_key->objectid)
3608 			goto next;
3609 
3610 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3611 		if (key.offset != ref_offset)
3612 			goto next;
3613 
3614 		if (counted)
3615 			ref_count--;
3616 		if (added)
3617 			goto next;
3618 
3619 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3620 			block = kmalloc(sizeof(*block), GFP_NOFS);
3621 			if (!block) {
3622 				err = -ENOMEM;
3623 				break;
3624 			}
3625 			block->bytenr = leaf->start;
3626 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3627 			block->level = 0;
3628 			block->key_ready = 1;
3629 			rb_node = tree_insert(blocks, block->bytenr,
3630 					      &block->rb_node);
3631 			if (rb_node)
3632 				backref_tree_panic(rb_node, -EEXIST,
3633 						   block->bytenr);
3634 		}
3635 		if (counted)
3636 			added = 1;
3637 		else
3638 			path->slots[0] = nritems;
3639 next:
3640 		path->slots[0]++;
3641 
3642 	}
3643 out:
3644 	btrfs_free_path(path);
3645 	return err;
3646 }
3647 
3648 /*
3649  * helper to find all tree blocks that reference a given data extent
3650  */
3651 static noinline_for_stack
3652 int add_data_references(struct reloc_control *rc,
3653 			struct btrfs_key *extent_key,
3654 			struct btrfs_path *path,
3655 			struct rb_root *blocks)
3656 {
3657 	struct btrfs_key key;
3658 	struct extent_buffer *eb;
3659 	struct btrfs_extent_data_ref *dref;
3660 	struct btrfs_extent_inline_ref *iref;
3661 	unsigned long ptr;
3662 	unsigned long end;
3663 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3664 	int ret = 0;
3665 	int err = 0;
3666 
3667 	eb = path->nodes[0];
3668 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3669 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3670 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3671 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3672 		ptr = end;
3673 	else
3674 #endif
3675 		ptr += sizeof(struct btrfs_extent_item);
3676 
3677 	while (ptr < end) {
3678 		iref = (struct btrfs_extent_inline_ref *)ptr;
3679 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3680 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3681 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3682 			ret = __add_tree_block(rc, key.offset, blocksize,
3683 					       blocks);
3684 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3685 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3686 			ret = find_data_references(rc, extent_key,
3687 						   eb, dref, blocks);
3688 		} else {
3689 			BUG();
3690 		}
3691 		if (ret) {
3692 			err = ret;
3693 			goto out;
3694 		}
3695 		ptr += btrfs_extent_inline_ref_size(key.type);
3696 	}
3697 	WARN_ON(ptr > end);
3698 
3699 	while (1) {
3700 		cond_resched();
3701 		eb = path->nodes[0];
3702 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3703 			ret = btrfs_next_leaf(rc->extent_root, path);
3704 			if (ret < 0) {
3705 				err = ret;
3706 				break;
3707 			}
3708 			if (ret > 0)
3709 				break;
3710 			eb = path->nodes[0];
3711 		}
3712 
3713 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3714 		if (key.objectid != extent_key->objectid)
3715 			break;
3716 
3717 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3718 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3719 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3720 #else
3721 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3722 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3723 #endif
3724 			ret = __add_tree_block(rc, key.offset, blocksize,
3725 					       blocks);
3726 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3727 			dref = btrfs_item_ptr(eb, path->slots[0],
3728 					      struct btrfs_extent_data_ref);
3729 			ret = find_data_references(rc, extent_key,
3730 						   eb, dref, blocks);
3731 		} else {
3732 			ret = 0;
3733 		}
3734 		if (ret) {
3735 			err = ret;
3736 			break;
3737 		}
3738 		path->slots[0]++;
3739 	}
3740 out:
3741 	btrfs_release_path(path);
3742 	if (err)
3743 		free_block_list(blocks);
3744 	return err;
3745 }
3746 
3747 /*
3748  * helper to find next unprocessed extent
3749  */
3750 static noinline_for_stack
3751 int find_next_extent(struct btrfs_trans_handle *trans,
3752 		     struct reloc_control *rc, struct btrfs_path *path,
3753 		     struct btrfs_key *extent_key)
3754 {
3755 	struct btrfs_key key;
3756 	struct extent_buffer *leaf;
3757 	u64 start, end, last;
3758 	int ret;
3759 
3760 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3761 	while (1) {
3762 		cond_resched();
3763 		if (rc->search_start >= last) {
3764 			ret = 1;
3765 			break;
3766 		}
3767 
3768 		key.objectid = rc->search_start;
3769 		key.type = BTRFS_EXTENT_ITEM_KEY;
3770 		key.offset = 0;
3771 
3772 		path->search_commit_root = 1;
3773 		path->skip_locking = 1;
3774 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3775 					0, 0);
3776 		if (ret < 0)
3777 			break;
3778 next:
3779 		leaf = path->nodes[0];
3780 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3781 			ret = btrfs_next_leaf(rc->extent_root, path);
3782 			if (ret != 0)
3783 				break;
3784 			leaf = path->nodes[0];
3785 		}
3786 
3787 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3788 		if (key.objectid >= last) {
3789 			ret = 1;
3790 			break;
3791 		}
3792 
3793 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3794 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3795 			path->slots[0]++;
3796 			goto next;
3797 		}
3798 
3799 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3800 		    key.objectid + key.offset <= rc->search_start) {
3801 			path->slots[0]++;
3802 			goto next;
3803 		}
3804 
3805 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3806 		    key.objectid + rc->extent_root->leafsize <=
3807 		    rc->search_start) {
3808 			path->slots[0]++;
3809 			goto next;
3810 		}
3811 
3812 		ret = find_first_extent_bit(&rc->processed_blocks,
3813 					    key.objectid, &start, &end,
3814 					    EXTENT_DIRTY, NULL);
3815 
3816 		if (ret == 0 && start <= key.objectid) {
3817 			btrfs_release_path(path);
3818 			rc->search_start = end + 1;
3819 		} else {
3820 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3821 				rc->search_start = key.objectid + key.offset;
3822 			else
3823 				rc->search_start = key.objectid +
3824 					rc->extent_root->leafsize;
3825 			memcpy(extent_key, &key, sizeof(key));
3826 			return 0;
3827 		}
3828 	}
3829 	btrfs_release_path(path);
3830 	return ret;
3831 }
3832 
3833 static void set_reloc_control(struct reloc_control *rc)
3834 {
3835 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3836 
3837 	mutex_lock(&fs_info->reloc_mutex);
3838 	fs_info->reloc_ctl = rc;
3839 	mutex_unlock(&fs_info->reloc_mutex);
3840 }
3841 
3842 static void unset_reloc_control(struct reloc_control *rc)
3843 {
3844 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3845 
3846 	mutex_lock(&fs_info->reloc_mutex);
3847 	fs_info->reloc_ctl = NULL;
3848 	mutex_unlock(&fs_info->reloc_mutex);
3849 }
3850 
3851 static int check_extent_flags(u64 flags)
3852 {
3853 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3854 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3855 		return 1;
3856 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3857 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3858 		return 1;
3859 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3860 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3861 		return 1;
3862 	return 0;
3863 }
3864 
3865 static noinline_for_stack
3866 int prepare_to_relocate(struct reloc_control *rc)
3867 {
3868 	struct btrfs_trans_handle *trans;
3869 
3870 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3871 					      BTRFS_BLOCK_RSV_TEMP);
3872 	if (!rc->block_rsv)
3873 		return -ENOMEM;
3874 
3875 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3876 	rc->search_start = rc->block_group->key.objectid;
3877 	rc->extents_found = 0;
3878 	rc->nodes_relocated = 0;
3879 	rc->merging_rsv_size = 0;
3880 	rc->reserved_bytes = 0;
3881 	rc->block_rsv->size = rc->extent_root->nodesize *
3882 			      RELOCATION_RESERVED_NODES;
3883 
3884 	rc->create_reloc_tree = 1;
3885 	set_reloc_control(rc);
3886 
3887 	trans = btrfs_join_transaction(rc->extent_root);
3888 	if (IS_ERR(trans)) {
3889 		unset_reloc_control(rc);
3890 		/*
3891 		 * extent tree is not a ref_cow tree and has no reloc_root to
3892 		 * cleanup.  And callers are responsible to free the above
3893 		 * block rsv.
3894 		 */
3895 		return PTR_ERR(trans);
3896 	}
3897 	btrfs_commit_transaction(trans, rc->extent_root);
3898 	return 0;
3899 }
3900 
3901 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3902 {
3903 	struct rb_root blocks = RB_ROOT;
3904 	struct btrfs_key key;
3905 	struct btrfs_trans_handle *trans = NULL;
3906 	struct btrfs_path *path;
3907 	struct btrfs_extent_item *ei;
3908 	u64 flags;
3909 	u32 item_size;
3910 	int ret;
3911 	int err = 0;
3912 	int progress = 0;
3913 
3914 	path = btrfs_alloc_path();
3915 	if (!path)
3916 		return -ENOMEM;
3917 	path->reada = 1;
3918 
3919 	ret = prepare_to_relocate(rc);
3920 	if (ret) {
3921 		err = ret;
3922 		goto out_free;
3923 	}
3924 
3925 	while (1) {
3926 		rc->reserved_bytes = 0;
3927 		ret = btrfs_block_rsv_refill(rc->extent_root,
3928 					rc->block_rsv, rc->block_rsv->size,
3929 					BTRFS_RESERVE_FLUSH_ALL);
3930 		if (ret) {
3931 			err = ret;
3932 			break;
3933 		}
3934 		progress++;
3935 		trans = btrfs_start_transaction(rc->extent_root, 0);
3936 		if (IS_ERR(trans)) {
3937 			err = PTR_ERR(trans);
3938 			trans = NULL;
3939 			break;
3940 		}
3941 restart:
3942 		if (update_backref_cache(trans, &rc->backref_cache)) {
3943 			btrfs_end_transaction(trans, rc->extent_root);
3944 			continue;
3945 		}
3946 
3947 		ret = find_next_extent(trans, rc, path, &key);
3948 		if (ret < 0)
3949 			err = ret;
3950 		if (ret != 0)
3951 			break;
3952 
3953 		rc->extents_found++;
3954 
3955 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3956 				    struct btrfs_extent_item);
3957 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3958 		if (item_size >= sizeof(*ei)) {
3959 			flags = btrfs_extent_flags(path->nodes[0], ei);
3960 			ret = check_extent_flags(flags);
3961 			BUG_ON(ret);
3962 
3963 		} else {
3964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3965 			u64 ref_owner;
3966 			int path_change = 0;
3967 
3968 			BUG_ON(item_size !=
3969 			       sizeof(struct btrfs_extent_item_v0));
3970 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3971 						  &path_change);
3972 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3973 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3974 			else
3975 				flags = BTRFS_EXTENT_FLAG_DATA;
3976 
3977 			if (path_change) {
3978 				btrfs_release_path(path);
3979 
3980 				path->search_commit_root = 1;
3981 				path->skip_locking = 1;
3982 				ret = btrfs_search_slot(NULL, rc->extent_root,
3983 							&key, path, 0, 0);
3984 				if (ret < 0) {
3985 					err = ret;
3986 					break;
3987 				}
3988 				BUG_ON(ret > 0);
3989 			}
3990 #else
3991 			BUG();
3992 #endif
3993 		}
3994 
3995 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3996 			ret = add_tree_block(rc, &key, path, &blocks);
3997 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3998 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3999 			ret = add_data_references(rc, &key, path, &blocks);
4000 		} else {
4001 			btrfs_release_path(path);
4002 			ret = 0;
4003 		}
4004 		if (ret < 0) {
4005 			err = ret;
4006 			break;
4007 		}
4008 
4009 		if (!RB_EMPTY_ROOT(&blocks)) {
4010 			ret = relocate_tree_blocks(trans, rc, &blocks);
4011 			if (ret < 0) {
4012 				/*
4013 				 * if we fail to relocate tree blocks, force to update
4014 				 * backref cache when committing transaction.
4015 				 */
4016 				rc->backref_cache.last_trans = trans->transid - 1;
4017 
4018 				if (ret != -EAGAIN) {
4019 					err = ret;
4020 					break;
4021 				}
4022 				rc->extents_found--;
4023 				rc->search_start = key.objectid;
4024 			}
4025 		}
4026 
4027 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4028 		btrfs_btree_balance_dirty(rc->extent_root);
4029 		trans = NULL;
4030 
4031 		if (rc->stage == MOVE_DATA_EXTENTS &&
4032 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4033 			rc->found_file_extent = 1;
4034 			ret = relocate_data_extent(rc->data_inode,
4035 						   &key, &rc->cluster);
4036 			if (ret < 0) {
4037 				err = ret;
4038 				break;
4039 			}
4040 		}
4041 	}
4042 	if (trans && progress && err == -ENOSPC) {
4043 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4044 					      rc->block_group->flags);
4045 		if (ret == 0) {
4046 			err = 0;
4047 			progress = 0;
4048 			goto restart;
4049 		}
4050 	}
4051 
4052 	btrfs_release_path(path);
4053 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4054 			  GFP_NOFS);
4055 
4056 	if (trans) {
4057 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4058 		btrfs_btree_balance_dirty(rc->extent_root);
4059 	}
4060 
4061 	if (!err) {
4062 		ret = relocate_file_extent_cluster(rc->data_inode,
4063 						   &rc->cluster);
4064 		if (ret < 0)
4065 			err = ret;
4066 	}
4067 
4068 	rc->create_reloc_tree = 0;
4069 	set_reloc_control(rc);
4070 
4071 	backref_cache_cleanup(&rc->backref_cache);
4072 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4073 
4074 	err = prepare_to_merge(rc, err);
4075 
4076 	merge_reloc_roots(rc);
4077 
4078 	rc->merge_reloc_tree = 0;
4079 	unset_reloc_control(rc);
4080 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4081 
4082 	/* get rid of pinned extents */
4083 	trans = btrfs_join_transaction(rc->extent_root);
4084 	if (IS_ERR(trans))
4085 		err = PTR_ERR(trans);
4086 	else
4087 		btrfs_commit_transaction(trans, rc->extent_root);
4088 out_free:
4089 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4090 	btrfs_free_path(path);
4091 	return err;
4092 }
4093 
4094 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4095 				 struct btrfs_root *root, u64 objectid)
4096 {
4097 	struct btrfs_path *path;
4098 	struct btrfs_inode_item *item;
4099 	struct extent_buffer *leaf;
4100 	int ret;
4101 
4102 	path = btrfs_alloc_path();
4103 	if (!path)
4104 		return -ENOMEM;
4105 
4106 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4107 	if (ret)
4108 		goto out;
4109 
4110 	leaf = path->nodes[0];
4111 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4112 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4113 	btrfs_set_inode_generation(leaf, item, 1);
4114 	btrfs_set_inode_size(leaf, item, 0);
4115 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4116 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4117 					  BTRFS_INODE_PREALLOC);
4118 	btrfs_mark_buffer_dirty(leaf);
4119 	btrfs_release_path(path);
4120 out:
4121 	btrfs_free_path(path);
4122 	return ret;
4123 }
4124 
4125 /*
4126  * helper to create inode for data relocation.
4127  * the inode is in data relocation tree and its link count is 0
4128  */
4129 static noinline_for_stack
4130 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4131 				 struct btrfs_block_group_cache *group)
4132 {
4133 	struct inode *inode = NULL;
4134 	struct btrfs_trans_handle *trans;
4135 	struct btrfs_root *root;
4136 	struct btrfs_key key;
4137 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4138 	int err = 0;
4139 
4140 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4141 	if (IS_ERR(root))
4142 		return ERR_CAST(root);
4143 
4144 	trans = btrfs_start_transaction(root, 6);
4145 	if (IS_ERR(trans))
4146 		return ERR_CAST(trans);
4147 
4148 	err = btrfs_find_free_objectid(root, &objectid);
4149 	if (err)
4150 		goto out;
4151 
4152 	err = __insert_orphan_inode(trans, root, objectid);
4153 	BUG_ON(err);
4154 
4155 	key.objectid = objectid;
4156 	key.type = BTRFS_INODE_ITEM_KEY;
4157 	key.offset = 0;
4158 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4159 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4160 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4161 
4162 	err = btrfs_orphan_add(trans, inode);
4163 out:
4164 	btrfs_end_transaction(trans, root);
4165 	btrfs_btree_balance_dirty(root);
4166 	if (err) {
4167 		if (inode)
4168 			iput(inode);
4169 		inode = ERR_PTR(err);
4170 	}
4171 	return inode;
4172 }
4173 
4174 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4175 {
4176 	struct reloc_control *rc;
4177 
4178 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4179 	if (!rc)
4180 		return NULL;
4181 
4182 	INIT_LIST_HEAD(&rc->reloc_roots);
4183 	backref_cache_init(&rc->backref_cache);
4184 	mapping_tree_init(&rc->reloc_root_tree);
4185 	extent_io_tree_init(&rc->processed_blocks,
4186 			    fs_info->btree_inode->i_mapping);
4187 	return rc;
4188 }
4189 
4190 /*
4191  * function to relocate all extents in a block group.
4192  */
4193 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4194 {
4195 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4196 	struct reloc_control *rc;
4197 	struct inode *inode;
4198 	struct btrfs_path *path;
4199 	int ret;
4200 	int rw = 0;
4201 	int err = 0;
4202 
4203 	rc = alloc_reloc_control(fs_info);
4204 	if (!rc)
4205 		return -ENOMEM;
4206 
4207 	rc->extent_root = extent_root;
4208 
4209 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4210 	BUG_ON(!rc->block_group);
4211 
4212 	if (!rc->block_group->ro) {
4213 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4214 		if (ret) {
4215 			err = ret;
4216 			goto out;
4217 		}
4218 		rw = 1;
4219 	}
4220 
4221 	path = btrfs_alloc_path();
4222 	if (!path) {
4223 		err = -ENOMEM;
4224 		goto out;
4225 	}
4226 
4227 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4228 					path);
4229 	btrfs_free_path(path);
4230 
4231 	if (!IS_ERR(inode))
4232 		ret = delete_block_group_cache(fs_info, inode, 0);
4233 	else
4234 		ret = PTR_ERR(inode);
4235 
4236 	if (ret && ret != -ENOENT) {
4237 		err = ret;
4238 		goto out;
4239 	}
4240 
4241 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4242 	if (IS_ERR(rc->data_inode)) {
4243 		err = PTR_ERR(rc->data_inode);
4244 		rc->data_inode = NULL;
4245 		goto out;
4246 	}
4247 
4248 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4249 	       rc->block_group->key.objectid, rc->block_group->flags);
4250 
4251 	ret = btrfs_start_delalloc_roots(fs_info, 0);
4252 	if (ret < 0) {
4253 		err = ret;
4254 		goto out;
4255 	}
4256 	btrfs_wait_ordered_roots(fs_info, -1);
4257 
4258 	while (1) {
4259 		mutex_lock(&fs_info->cleaner_mutex);
4260 		ret = relocate_block_group(rc);
4261 		mutex_unlock(&fs_info->cleaner_mutex);
4262 		if (ret < 0) {
4263 			err = ret;
4264 			goto out;
4265 		}
4266 
4267 		if (rc->extents_found == 0)
4268 			break;
4269 
4270 		btrfs_info(extent_root->fs_info, "found %llu extents",
4271 			rc->extents_found);
4272 
4273 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4274 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4275 						       (u64)-1);
4276 			if (ret) {
4277 				err = ret;
4278 				goto out;
4279 			}
4280 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4281 						 0, -1);
4282 			rc->stage = UPDATE_DATA_PTRS;
4283 		}
4284 	}
4285 
4286 	WARN_ON(rc->block_group->pinned > 0);
4287 	WARN_ON(rc->block_group->reserved > 0);
4288 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4289 out:
4290 	if (err && rw)
4291 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4292 	iput(rc->data_inode);
4293 	btrfs_put_block_group(rc->block_group);
4294 	kfree(rc);
4295 	return err;
4296 }
4297 
4298 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4299 {
4300 	struct btrfs_trans_handle *trans;
4301 	int ret, err;
4302 
4303 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4304 	if (IS_ERR(trans))
4305 		return PTR_ERR(trans);
4306 
4307 	memset(&root->root_item.drop_progress, 0,
4308 		sizeof(root->root_item.drop_progress));
4309 	root->root_item.drop_level = 0;
4310 	btrfs_set_root_refs(&root->root_item, 0);
4311 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4312 				&root->root_key, &root->root_item);
4313 
4314 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4315 	if (err)
4316 		return err;
4317 	return ret;
4318 }
4319 
4320 /*
4321  * recover relocation interrupted by system crash.
4322  *
4323  * this function resumes merging reloc trees with corresponding fs trees.
4324  * this is important for keeping the sharing of tree blocks
4325  */
4326 int btrfs_recover_relocation(struct btrfs_root *root)
4327 {
4328 	LIST_HEAD(reloc_roots);
4329 	struct btrfs_key key;
4330 	struct btrfs_root *fs_root;
4331 	struct btrfs_root *reloc_root;
4332 	struct btrfs_path *path;
4333 	struct extent_buffer *leaf;
4334 	struct reloc_control *rc = NULL;
4335 	struct btrfs_trans_handle *trans;
4336 	int ret;
4337 	int err = 0;
4338 
4339 	path = btrfs_alloc_path();
4340 	if (!path)
4341 		return -ENOMEM;
4342 	path->reada = -1;
4343 
4344 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4345 	key.type = BTRFS_ROOT_ITEM_KEY;
4346 	key.offset = (u64)-1;
4347 
4348 	while (1) {
4349 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4350 					path, 0, 0);
4351 		if (ret < 0) {
4352 			err = ret;
4353 			goto out;
4354 		}
4355 		if (ret > 0) {
4356 			if (path->slots[0] == 0)
4357 				break;
4358 			path->slots[0]--;
4359 		}
4360 		leaf = path->nodes[0];
4361 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4362 		btrfs_release_path(path);
4363 
4364 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4365 		    key.type != BTRFS_ROOT_ITEM_KEY)
4366 			break;
4367 
4368 		reloc_root = btrfs_read_fs_root(root, &key);
4369 		if (IS_ERR(reloc_root)) {
4370 			err = PTR_ERR(reloc_root);
4371 			goto out;
4372 		}
4373 
4374 		list_add(&reloc_root->root_list, &reloc_roots);
4375 
4376 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4377 			fs_root = read_fs_root(root->fs_info,
4378 					       reloc_root->root_key.offset);
4379 			if (IS_ERR(fs_root)) {
4380 				ret = PTR_ERR(fs_root);
4381 				if (ret != -ENOENT) {
4382 					err = ret;
4383 					goto out;
4384 				}
4385 				ret = mark_garbage_root(reloc_root);
4386 				if (ret < 0) {
4387 					err = ret;
4388 					goto out;
4389 				}
4390 			}
4391 		}
4392 
4393 		if (key.offset == 0)
4394 			break;
4395 
4396 		key.offset--;
4397 	}
4398 	btrfs_release_path(path);
4399 
4400 	if (list_empty(&reloc_roots))
4401 		goto out;
4402 
4403 	rc = alloc_reloc_control(root->fs_info);
4404 	if (!rc) {
4405 		err = -ENOMEM;
4406 		goto out;
4407 	}
4408 
4409 	rc->extent_root = root->fs_info->extent_root;
4410 
4411 	set_reloc_control(rc);
4412 
4413 	trans = btrfs_join_transaction(rc->extent_root);
4414 	if (IS_ERR(trans)) {
4415 		unset_reloc_control(rc);
4416 		err = PTR_ERR(trans);
4417 		goto out_free;
4418 	}
4419 
4420 	rc->merge_reloc_tree = 1;
4421 
4422 	while (!list_empty(&reloc_roots)) {
4423 		reloc_root = list_entry(reloc_roots.next,
4424 					struct btrfs_root, root_list);
4425 		list_del(&reloc_root->root_list);
4426 
4427 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4428 			list_add_tail(&reloc_root->root_list,
4429 				      &rc->reloc_roots);
4430 			continue;
4431 		}
4432 
4433 		fs_root = read_fs_root(root->fs_info,
4434 				       reloc_root->root_key.offset);
4435 		if (IS_ERR(fs_root)) {
4436 			err = PTR_ERR(fs_root);
4437 			goto out_free;
4438 		}
4439 
4440 		err = __add_reloc_root(reloc_root);
4441 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4442 		fs_root->reloc_root = reloc_root;
4443 	}
4444 
4445 	err = btrfs_commit_transaction(trans, rc->extent_root);
4446 	if (err)
4447 		goto out_free;
4448 
4449 	merge_reloc_roots(rc);
4450 
4451 	unset_reloc_control(rc);
4452 
4453 	trans = btrfs_join_transaction(rc->extent_root);
4454 	if (IS_ERR(trans))
4455 		err = PTR_ERR(trans);
4456 	else
4457 		err = btrfs_commit_transaction(trans, rc->extent_root);
4458 out_free:
4459 	kfree(rc);
4460 out:
4461 	if (!list_empty(&reloc_roots))
4462 		free_reloc_roots(&reloc_roots);
4463 
4464 	btrfs_free_path(path);
4465 
4466 	if (err == 0) {
4467 		/* cleanup orphan inode in data relocation tree */
4468 		fs_root = read_fs_root(root->fs_info,
4469 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4470 		if (IS_ERR(fs_root))
4471 			err = PTR_ERR(fs_root);
4472 		else
4473 			err = btrfs_orphan_cleanup(fs_root);
4474 	}
4475 	return err;
4476 }
4477 
4478 /*
4479  * helper to add ordered checksum for data relocation.
4480  *
4481  * cloning checksum properly handles the nodatasum extents.
4482  * it also saves CPU time to re-calculate the checksum.
4483  */
4484 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4485 {
4486 	struct btrfs_ordered_sum *sums;
4487 	struct btrfs_ordered_extent *ordered;
4488 	struct btrfs_root *root = BTRFS_I(inode)->root;
4489 	int ret;
4490 	u64 disk_bytenr;
4491 	u64 new_bytenr;
4492 	LIST_HEAD(list);
4493 
4494 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4495 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4496 
4497 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4498 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4499 				       disk_bytenr + len - 1, &list, 0);
4500 	if (ret)
4501 		goto out;
4502 
4503 	while (!list_empty(&list)) {
4504 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4505 		list_del_init(&sums->list);
4506 
4507 		/*
4508 		 * We need to offset the new_bytenr based on where the csum is.
4509 		 * We need to do this because we will read in entire prealloc
4510 		 * extents but we may have written to say the middle of the
4511 		 * prealloc extent, so we need to make sure the csum goes with
4512 		 * the right disk offset.
4513 		 *
4514 		 * We can do this because the data reloc inode refers strictly
4515 		 * to the on disk bytes, so we don't have to worry about
4516 		 * disk_len vs real len like with real inodes since it's all
4517 		 * disk length.
4518 		 */
4519 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4520 		sums->bytenr = new_bytenr;
4521 
4522 		btrfs_add_ordered_sum(inode, ordered, sums);
4523 	}
4524 out:
4525 	btrfs_put_ordered_extent(ordered);
4526 	return ret;
4527 }
4528 
4529 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4530 			  struct btrfs_root *root, struct extent_buffer *buf,
4531 			  struct extent_buffer *cow)
4532 {
4533 	struct reloc_control *rc;
4534 	struct backref_node *node;
4535 	int first_cow = 0;
4536 	int level;
4537 	int ret = 0;
4538 
4539 	rc = root->fs_info->reloc_ctl;
4540 	if (!rc)
4541 		return 0;
4542 
4543 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4544 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4545 
4546 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4547 		if (buf == root->node)
4548 			__update_reloc_root(root, cow->start);
4549 	}
4550 
4551 	level = btrfs_header_level(buf);
4552 	if (btrfs_header_generation(buf) <=
4553 	    btrfs_root_last_snapshot(&root->root_item))
4554 		first_cow = 1;
4555 
4556 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4557 	    rc->create_reloc_tree) {
4558 		WARN_ON(!first_cow && level == 0);
4559 
4560 		node = rc->backref_cache.path[level];
4561 		BUG_ON(node->bytenr != buf->start &&
4562 		       node->new_bytenr != buf->start);
4563 
4564 		drop_node_buffer(node);
4565 		extent_buffer_get(cow);
4566 		node->eb = cow;
4567 		node->new_bytenr = cow->start;
4568 
4569 		if (!node->pending) {
4570 			list_move_tail(&node->list,
4571 				       &rc->backref_cache.pending[level]);
4572 			node->pending = 1;
4573 		}
4574 
4575 		if (first_cow)
4576 			__mark_block_processed(rc, node);
4577 
4578 		if (first_cow && level > 0)
4579 			rc->nodes_relocated += buf->len;
4580 	}
4581 
4582 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4583 		ret = replace_file_extents(trans, rc, root, cow);
4584 	return ret;
4585 }
4586 
4587 /*
4588  * called before creating snapshot. it calculates metadata reservation
4589  * requried for relocating tree blocks in the snapshot
4590  */
4591 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4592 			      struct btrfs_pending_snapshot *pending,
4593 			      u64 *bytes_to_reserve)
4594 {
4595 	struct btrfs_root *root;
4596 	struct reloc_control *rc;
4597 
4598 	root = pending->root;
4599 	if (!root->reloc_root)
4600 		return;
4601 
4602 	rc = root->fs_info->reloc_ctl;
4603 	if (!rc->merge_reloc_tree)
4604 		return;
4605 
4606 	root = root->reloc_root;
4607 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4608 	/*
4609 	 * relocation is in the stage of merging trees. the space
4610 	 * used by merging a reloc tree is twice the size of
4611 	 * relocated tree nodes in the worst case. half for cowing
4612 	 * the reloc tree, half for cowing the fs tree. the space
4613 	 * used by cowing the reloc tree will be freed after the
4614 	 * tree is dropped. if we create snapshot, cowing the fs
4615 	 * tree may use more space than it frees. so we need
4616 	 * reserve extra space.
4617 	 */
4618 	*bytes_to_reserve += rc->nodes_relocated;
4619 }
4620 
4621 /*
4622  * called after snapshot is created. migrate block reservation
4623  * and create reloc root for the newly created snapshot
4624  */
4625 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4626 			       struct btrfs_pending_snapshot *pending)
4627 {
4628 	struct btrfs_root *root = pending->root;
4629 	struct btrfs_root *reloc_root;
4630 	struct btrfs_root *new_root;
4631 	struct reloc_control *rc;
4632 	int ret;
4633 
4634 	if (!root->reloc_root)
4635 		return 0;
4636 
4637 	rc = root->fs_info->reloc_ctl;
4638 	rc->merging_rsv_size += rc->nodes_relocated;
4639 
4640 	if (rc->merge_reloc_tree) {
4641 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4642 					      rc->block_rsv,
4643 					      rc->nodes_relocated);
4644 		if (ret)
4645 			return ret;
4646 	}
4647 
4648 	new_root = pending->snap;
4649 	reloc_root = create_reloc_root(trans, root->reloc_root,
4650 				       new_root->root_key.objectid);
4651 	if (IS_ERR(reloc_root))
4652 		return PTR_ERR(reloc_root);
4653 
4654 	ret = __add_reloc_root(reloc_root);
4655 	BUG_ON(ret < 0);
4656 	new_root->reloc_root = reloc_root;
4657 
4658 	if (rc->create_reloc_tree)
4659 		ret = clone_backref_node(trans, rc, root, reloc_root);
4660 	return ret;
4661 }
4662