1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 #define RELOCATION_RESERVED_NODES 256 98 99 struct backref_cache { 100 /* red black tree of all backref nodes in the cache */ 101 struct rb_root rb_root; 102 /* for passing backref nodes to btrfs_reloc_cow_block */ 103 struct backref_node *path[BTRFS_MAX_LEVEL]; 104 /* 105 * list of blocks that have been cowed but some block 106 * pointers in upper level blocks may not reflect the 107 * new location 108 */ 109 struct list_head pending[BTRFS_MAX_LEVEL]; 110 /* list of backref nodes with no child node */ 111 struct list_head leaves; 112 /* list of blocks that have been cowed in current transaction */ 113 struct list_head changed; 114 /* list of detached backref node. */ 115 struct list_head detached; 116 117 u64 last_trans; 118 119 int nr_nodes; 120 int nr_edges; 121 }; 122 123 /* 124 * map address of tree root to tree 125 */ 126 struct mapping_node { 127 struct rb_node rb_node; 128 u64 bytenr; 129 void *data; 130 }; 131 132 struct mapping_tree { 133 struct rb_root rb_root; 134 spinlock_t lock; 135 }; 136 137 /* 138 * present a tree block to process 139 */ 140 struct tree_block { 141 struct rb_node rb_node; 142 u64 bytenr; 143 struct btrfs_key key; 144 unsigned int level:8; 145 unsigned int key_ready:1; 146 }; 147 148 #define MAX_EXTENTS 128 149 150 struct file_extent_cluster { 151 u64 start; 152 u64 end; 153 u64 boundary[MAX_EXTENTS]; 154 unsigned int nr; 155 }; 156 157 struct reloc_control { 158 /* block group to relocate */ 159 struct btrfs_block_group_cache *block_group; 160 /* extent tree */ 161 struct btrfs_root *extent_root; 162 /* inode for moving data */ 163 struct inode *data_inode; 164 165 struct btrfs_block_rsv *block_rsv; 166 167 struct backref_cache backref_cache; 168 169 struct file_extent_cluster cluster; 170 /* tree blocks have been processed */ 171 struct extent_io_tree processed_blocks; 172 /* map start of tree root to corresponding reloc tree */ 173 struct mapping_tree reloc_root_tree; 174 /* list of reloc trees */ 175 struct list_head reloc_roots; 176 /* size of metadata reservation for merging reloc trees */ 177 u64 merging_rsv_size; 178 /* size of relocated tree nodes */ 179 u64 nodes_relocated; 180 /* reserved size for block group relocation*/ 181 u64 reserved_bytes; 182 183 u64 search_start; 184 u64 extents_found; 185 186 unsigned int stage:8; 187 unsigned int create_reloc_tree:1; 188 unsigned int merge_reloc_tree:1; 189 unsigned int found_file_extent:1; 190 }; 191 192 /* stages of data relocation */ 193 #define MOVE_DATA_EXTENTS 0 194 #define UPDATE_DATA_PTRS 1 195 196 static void remove_backref_node(struct backref_cache *cache, 197 struct backref_node *node); 198 static void __mark_block_processed(struct reloc_control *rc, 199 struct backref_node *node); 200 201 static void mapping_tree_init(struct mapping_tree *tree) 202 { 203 tree->rb_root = RB_ROOT; 204 spin_lock_init(&tree->lock); 205 } 206 207 static void backref_cache_init(struct backref_cache *cache) 208 { 209 int i; 210 cache->rb_root = RB_ROOT; 211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 212 INIT_LIST_HEAD(&cache->pending[i]); 213 INIT_LIST_HEAD(&cache->changed); 214 INIT_LIST_HEAD(&cache->detached); 215 INIT_LIST_HEAD(&cache->leaves); 216 } 217 218 static void backref_cache_cleanup(struct backref_cache *cache) 219 { 220 struct backref_node *node; 221 int i; 222 223 while (!list_empty(&cache->detached)) { 224 node = list_entry(cache->detached.next, 225 struct backref_node, list); 226 remove_backref_node(cache, node); 227 } 228 229 while (!list_empty(&cache->leaves)) { 230 node = list_entry(cache->leaves.next, 231 struct backref_node, lower); 232 remove_backref_node(cache, node); 233 } 234 235 cache->last_trans = 0; 236 237 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 238 BUG_ON(!list_empty(&cache->pending[i])); 239 BUG_ON(!list_empty(&cache->changed)); 240 BUG_ON(!list_empty(&cache->detached)); 241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 242 BUG_ON(cache->nr_nodes); 243 BUG_ON(cache->nr_edges); 244 } 245 246 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 247 { 248 struct backref_node *node; 249 250 node = kzalloc(sizeof(*node), GFP_NOFS); 251 if (node) { 252 INIT_LIST_HEAD(&node->list); 253 INIT_LIST_HEAD(&node->upper); 254 INIT_LIST_HEAD(&node->lower); 255 RB_CLEAR_NODE(&node->rb_node); 256 cache->nr_nodes++; 257 } 258 return node; 259 } 260 261 static void free_backref_node(struct backref_cache *cache, 262 struct backref_node *node) 263 { 264 if (node) { 265 cache->nr_nodes--; 266 kfree(node); 267 } 268 } 269 270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 271 { 272 struct backref_edge *edge; 273 274 edge = kzalloc(sizeof(*edge), GFP_NOFS); 275 if (edge) 276 cache->nr_edges++; 277 return edge; 278 } 279 280 static void free_backref_edge(struct backref_cache *cache, 281 struct backref_edge *edge) 282 { 283 if (edge) { 284 cache->nr_edges--; 285 kfree(edge); 286 } 287 } 288 289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 290 struct rb_node *node) 291 { 292 struct rb_node **p = &root->rb_node; 293 struct rb_node *parent = NULL; 294 struct tree_entry *entry; 295 296 while (*p) { 297 parent = *p; 298 entry = rb_entry(parent, struct tree_entry, rb_node); 299 300 if (bytenr < entry->bytenr) 301 p = &(*p)->rb_left; 302 else if (bytenr > entry->bytenr) 303 p = &(*p)->rb_right; 304 else 305 return parent; 306 } 307 308 rb_link_node(node, parent, p); 309 rb_insert_color(node, root); 310 return NULL; 311 } 312 313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 314 { 315 struct rb_node *n = root->rb_node; 316 struct tree_entry *entry; 317 318 while (n) { 319 entry = rb_entry(n, struct tree_entry, rb_node); 320 321 if (bytenr < entry->bytenr) 322 n = n->rb_left; 323 else if (bytenr > entry->bytenr) 324 n = n->rb_right; 325 else 326 return n; 327 } 328 return NULL; 329 } 330 331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 332 { 333 334 struct btrfs_fs_info *fs_info = NULL; 335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 336 rb_node); 337 if (bnode->root) 338 fs_info = bnode->root->fs_info; 339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 340 "found at offset %llu\n", bytenr); 341 } 342 343 /* 344 * walk up backref nodes until reach node presents tree root 345 */ 346 static struct backref_node *walk_up_backref(struct backref_node *node, 347 struct backref_edge *edges[], 348 int *index) 349 { 350 struct backref_edge *edge; 351 int idx = *index; 352 353 while (!list_empty(&node->upper)) { 354 edge = list_entry(node->upper.next, 355 struct backref_edge, list[LOWER]); 356 edges[idx++] = edge; 357 node = edge->node[UPPER]; 358 } 359 BUG_ON(node->detached); 360 *index = idx; 361 return node; 362 } 363 364 /* 365 * walk down backref nodes to find start of next reference path 366 */ 367 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 368 int *index) 369 { 370 struct backref_edge *edge; 371 struct backref_node *lower; 372 int idx = *index; 373 374 while (idx > 0) { 375 edge = edges[idx - 1]; 376 lower = edge->node[LOWER]; 377 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 378 idx--; 379 continue; 380 } 381 edge = list_entry(edge->list[LOWER].next, 382 struct backref_edge, list[LOWER]); 383 edges[idx - 1] = edge; 384 *index = idx; 385 return edge->node[UPPER]; 386 } 387 *index = 0; 388 return NULL; 389 } 390 391 static void unlock_node_buffer(struct backref_node *node) 392 { 393 if (node->locked) { 394 btrfs_tree_unlock(node->eb); 395 node->locked = 0; 396 } 397 } 398 399 static void drop_node_buffer(struct backref_node *node) 400 { 401 if (node->eb) { 402 unlock_node_buffer(node); 403 free_extent_buffer(node->eb); 404 node->eb = NULL; 405 } 406 } 407 408 static void drop_backref_node(struct backref_cache *tree, 409 struct backref_node *node) 410 { 411 BUG_ON(!list_empty(&node->upper)); 412 413 drop_node_buffer(node); 414 list_del(&node->list); 415 list_del(&node->lower); 416 if (!RB_EMPTY_NODE(&node->rb_node)) 417 rb_erase(&node->rb_node, &tree->rb_root); 418 free_backref_node(tree, node); 419 } 420 421 /* 422 * remove a backref node from the backref cache 423 */ 424 static void remove_backref_node(struct backref_cache *cache, 425 struct backref_node *node) 426 { 427 struct backref_node *upper; 428 struct backref_edge *edge; 429 430 if (!node) 431 return; 432 433 BUG_ON(!node->lowest && !node->detached); 434 while (!list_empty(&node->upper)) { 435 edge = list_entry(node->upper.next, struct backref_edge, 436 list[LOWER]); 437 upper = edge->node[UPPER]; 438 list_del(&edge->list[LOWER]); 439 list_del(&edge->list[UPPER]); 440 free_backref_edge(cache, edge); 441 442 if (RB_EMPTY_NODE(&upper->rb_node)) { 443 BUG_ON(!list_empty(&node->upper)); 444 drop_backref_node(cache, node); 445 node = upper; 446 node->lowest = 1; 447 continue; 448 } 449 /* 450 * add the node to leaf node list if no other 451 * child block cached. 452 */ 453 if (list_empty(&upper->lower)) { 454 list_add_tail(&upper->lower, &cache->leaves); 455 upper->lowest = 1; 456 } 457 } 458 459 drop_backref_node(cache, node); 460 } 461 462 static void update_backref_node(struct backref_cache *cache, 463 struct backref_node *node, u64 bytenr) 464 { 465 struct rb_node *rb_node; 466 rb_erase(&node->rb_node, &cache->rb_root); 467 node->bytenr = bytenr; 468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 469 if (rb_node) 470 backref_tree_panic(rb_node, -EEXIST, bytenr); 471 } 472 473 /* 474 * update backref cache after a transaction commit 475 */ 476 static int update_backref_cache(struct btrfs_trans_handle *trans, 477 struct backref_cache *cache) 478 { 479 struct backref_node *node; 480 int level = 0; 481 482 if (cache->last_trans == 0) { 483 cache->last_trans = trans->transid; 484 return 0; 485 } 486 487 if (cache->last_trans == trans->transid) 488 return 0; 489 490 /* 491 * detached nodes are used to avoid unnecessary backref 492 * lookup. transaction commit changes the extent tree. 493 * so the detached nodes are no longer useful. 494 */ 495 while (!list_empty(&cache->detached)) { 496 node = list_entry(cache->detached.next, 497 struct backref_node, list); 498 remove_backref_node(cache, node); 499 } 500 501 while (!list_empty(&cache->changed)) { 502 node = list_entry(cache->changed.next, 503 struct backref_node, list); 504 list_del_init(&node->list); 505 BUG_ON(node->pending); 506 update_backref_node(cache, node, node->new_bytenr); 507 } 508 509 /* 510 * some nodes can be left in the pending list if there were 511 * errors during processing the pending nodes. 512 */ 513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 514 list_for_each_entry(node, &cache->pending[level], list) { 515 BUG_ON(!node->pending); 516 if (node->bytenr == node->new_bytenr) 517 continue; 518 update_backref_node(cache, node, node->new_bytenr); 519 } 520 } 521 522 cache->last_trans = 0; 523 return 1; 524 } 525 526 527 static int should_ignore_root(struct btrfs_root *root) 528 { 529 struct btrfs_root *reloc_root; 530 531 if (!root->ref_cows) 532 return 0; 533 534 reloc_root = root->reloc_root; 535 if (!reloc_root) 536 return 0; 537 538 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 539 root->fs_info->running_transaction->transid - 1) 540 return 0; 541 /* 542 * if there is reloc tree and it was created in previous 543 * transaction backref lookup can find the reloc tree, 544 * so backref node for the fs tree root is useless for 545 * relocation. 546 */ 547 return 1; 548 } 549 /* 550 * find reloc tree by address of tree root 551 */ 552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 553 u64 bytenr) 554 { 555 struct rb_node *rb_node; 556 struct mapping_node *node; 557 struct btrfs_root *root = NULL; 558 559 spin_lock(&rc->reloc_root_tree.lock); 560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 561 if (rb_node) { 562 node = rb_entry(rb_node, struct mapping_node, rb_node); 563 root = (struct btrfs_root *)node->data; 564 } 565 spin_unlock(&rc->reloc_root_tree.lock); 566 return root; 567 } 568 569 static int is_cowonly_root(u64 root_objectid) 570 { 571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 574 root_objectid == BTRFS_DEV_TREE_OBJECTID || 575 root_objectid == BTRFS_TREE_LOG_OBJECTID || 576 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 577 root_objectid == BTRFS_UUID_TREE_OBJECTID || 578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID) 579 return 1; 580 return 0; 581 } 582 583 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 584 u64 root_objectid) 585 { 586 struct btrfs_key key; 587 588 key.objectid = root_objectid; 589 key.type = BTRFS_ROOT_ITEM_KEY; 590 if (is_cowonly_root(root_objectid)) 591 key.offset = 0; 592 else 593 key.offset = (u64)-1; 594 595 return btrfs_get_fs_root(fs_info, &key, false); 596 } 597 598 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 599 static noinline_for_stack 600 struct btrfs_root *find_tree_root(struct reloc_control *rc, 601 struct extent_buffer *leaf, 602 struct btrfs_extent_ref_v0 *ref0) 603 { 604 struct btrfs_root *root; 605 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 606 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 607 608 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 609 610 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 611 BUG_ON(IS_ERR(root)); 612 613 if (root->ref_cows && 614 generation != btrfs_root_generation(&root->root_item)) 615 return NULL; 616 617 return root; 618 } 619 #endif 620 621 static noinline_for_stack 622 int find_inline_backref(struct extent_buffer *leaf, int slot, 623 unsigned long *ptr, unsigned long *end) 624 { 625 struct btrfs_key key; 626 struct btrfs_extent_item *ei; 627 struct btrfs_tree_block_info *bi; 628 u32 item_size; 629 630 btrfs_item_key_to_cpu(leaf, &key, slot); 631 632 item_size = btrfs_item_size_nr(leaf, slot); 633 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 634 if (item_size < sizeof(*ei)) { 635 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 636 return 1; 637 } 638 #endif 639 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 640 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 641 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 642 643 if (key.type == BTRFS_EXTENT_ITEM_KEY && 644 item_size <= sizeof(*ei) + sizeof(*bi)) { 645 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 646 return 1; 647 } 648 if (key.type == BTRFS_METADATA_ITEM_KEY && 649 item_size <= sizeof(*ei)) { 650 WARN_ON(item_size < sizeof(*ei)); 651 return 1; 652 } 653 654 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 655 bi = (struct btrfs_tree_block_info *)(ei + 1); 656 *ptr = (unsigned long)(bi + 1); 657 } else { 658 *ptr = (unsigned long)(ei + 1); 659 } 660 *end = (unsigned long)ei + item_size; 661 return 0; 662 } 663 664 /* 665 * build backref tree for a given tree block. root of the backref tree 666 * corresponds the tree block, leaves of the backref tree correspond 667 * roots of b-trees that reference the tree block. 668 * 669 * the basic idea of this function is check backrefs of a given block 670 * to find upper level blocks that refernece the block, and then check 671 * bakcrefs of these upper level blocks recursively. the recursion stop 672 * when tree root is reached or backrefs for the block is cached. 673 * 674 * NOTE: if we find backrefs for a block are cached, we know backrefs 675 * for all upper level blocks that directly/indirectly reference the 676 * block are also cached. 677 */ 678 static noinline_for_stack 679 struct backref_node *build_backref_tree(struct reloc_control *rc, 680 struct btrfs_key *node_key, 681 int level, u64 bytenr) 682 { 683 struct backref_cache *cache = &rc->backref_cache; 684 struct btrfs_path *path1; 685 struct btrfs_path *path2; 686 struct extent_buffer *eb; 687 struct btrfs_root *root; 688 struct backref_node *cur; 689 struct backref_node *upper; 690 struct backref_node *lower; 691 struct backref_node *node = NULL; 692 struct backref_node *exist = NULL; 693 struct backref_edge *edge; 694 struct rb_node *rb_node; 695 struct btrfs_key key; 696 unsigned long end; 697 unsigned long ptr; 698 LIST_HEAD(list); 699 LIST_HEAD(useless); 700 int cowonly; 701 int ret; 702 int err = 0; 703 bool need_check = true; 704 705 path1 = btrfs_alloc_path(); 706 path2 = btrfs_alloc_path(); 707 if (!path1 || !path2) { 708 err = -ENOMEM; 709 goto out; 710 } 711 path1->reada = 1; 712 path2->reada = 2; 713 714 node = alloc_backref_node(cache); 715 if (!node) { 716 err = -ENOMEM; 717 goto out; 718 } 719 720 node->bytenr = bytenr; 721 node->level = level; 722 node->lowest = 1; 723 cur = node; 724 again: 725 end = 0; 726 ptr = 0; 727 key.objectid = cur->bytenr; 728 key.type = BTRFS_METADATA_ITEM_KEY; 729 key.offset = (u64)-1; 730 731 path1->search_commit_root = 1; 732 path1->skip_locking = 1; 733 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 734 0, 0); 735 if (ret < 0) { 736 err = ret; 737 goto out; 738 } 739 BUG_ON(!ret || !path1->slots[0]); 740 741 path1->slots[0]--; 742 743 WARN_ON(cur->checked); 744 if (!list_empty(&cur->upper)) { 745 /* 746 * the backref was added previously when processing 747 * backref of type BTRFS_TREE_BLOCK_REF_KEY 748 */ 749 BUG_ON(!list_is_singular(&cur->upper)); 750 edge = list_entry(cur->upper.next, struct backref_edge, 751 list[LOWER]); 752 BUG_ON(!list_empty(&edge->list[UPPER])); 753 exist = edge->node[UPPER]; 754 /* 755 * add the upper level block to pending list if we need 756 * check its backrefs 757 */ 758 if (!exist->checked) 759 list_add_tail(&edge->list[UPPER], &list); 760 } else { 761 exist = NULL; 762 } 763 764 while (1) { 765 cond_resched(); 766 eb = path1->nodes[0]; 767 768 if (ptr >= end) { 769 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 770 ret = btrfs_next_leaf(rc->extent_root, path1); 771 if (ret < 0) { 772 err = ret; 773 goto out; 774 } 775 if (ret > 0) 776 break; 777 eb = path1->nodes[0]; 778 } 779 780 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 781 if (key.objectid != cur->bytenr) { 782 WARN_ON(exist); 783 break; 784 } 785 786 if (key.type == BTRFS_EXTENT_ITEM_KEY || 787 key.type == BTRFS_METADATA_ITEM_KEY) { 788 ret = find_inline_backref(eb, path1->slots[0], 789 &ptr, &end); 790 if (ret) 791 goto next; 792 } 793 } 794 795 if (ptr < end) { 796 /* update key for inline back ref */ 797 struct btrfs_extent_inline_ref *iref; 798 iref = (struct btrfs_extent_inline_ref *)ptr; 799 key.type = btrfs_extent_inline_ref_type(eb, iref); 800 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 801 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 802 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 803 } 804 805 if (exist && 806 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 807 exist->owner == key.offset) || 808 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 809 exist->bytenr == key.offset))) { 810 exist = NULL; 811 goto next; 812 } 813 814 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 815 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 816 key.type == BTRFS_EXTENT_REF_V0_KEY) { 817 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 818 struct btrfs_extent_ref_v0 *ref0; 819 ref0 = btrfs_item_ptr(eb, path1->slots[0], 820 struct btrfs_extent_ref_v0); 821 if (key.objectid == key.offset) { 822 root = find_tree_root(rc, eb, ref0); 823 if (root && !should_ignore_root(root)) 824 cur->root = root; 825 else 826 list_add(&cur->list, &useless); 827 break; 828 } 829 if (is_cowonly_root(btrfs_ref_root_v0(eb, 830 ref0))) 831 cur->cowonly = 1; 832 } 833 #else 834 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 835 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 836 #endif 837 if (key.objectid == key.offset) { 838 /* 839 * only root blocks of reloc trees use 840 * backref of this type. 841 */ 842 root = find_reloc_root(rc, cur->bytenr); 843 BUG_ON(!root); 844 cur->root = root; 845 break; 846 } 847 848 edge = alloc_backref_edge(cache); 849 if (!edge) { 850 err = -ENOMEM; 851 goto out; 852 } 853 rb_node = tree_search(&cache->rb_root, key.offset); 854 if (!rb_node) { 855 upper = alloc_backref_node(cache); 856 if (!upper) { 857 free_backref_edge(cache, edge); 858 err = -ENOMEM; 859 goto out; 860 } 861 upper->bytenr = key.offset; 862 upper->level = cur->level + 1; 863 /* 864 * backrefs for the upper level block isn't 865 * cached, add the block to pending list 866 */ 867 list_add_tail(&edge->list[UPPER], &list); 868 } else { 869 upper = rb_entry(rb_node, struct backref_node, 870 rb_node); 871 BUG_ON(!upper->checked); 872 INIT_LIST_HEAD(&edge->list[UPPER]); 873 } 874 list_add_tail(&edge->list[LOWER], &cur->upper); 875 edge->node[LOWER] = cur; 876 edge->node[UPPER] = upper; 877 878 goto next; 879 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 880 goto next; 881 } 882 883 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 884 root = read_fs_root(rc->extent_root->fs_info, key.offset); 885 if (IS_ERR(root)) { 886 err = PTR_ERR(root); 887 goto out; 888 } 889 890 if (!root->ref_cows) 891 cur->cowonly = 1; 892 893 if (btrfs_root_level(&root->root_item) == cur->level) { 894 /* tree root */ 895 BUG_ON(btrfs_root_bytenr(&root->root_item) != 896 cur->bytenr); 897 if (should_ignore_root(root)) 898 list_add(&cur->list, &useless); 899 else 900 cur->root = root; 901 break; 902 } 903 904 level = cur->level + 1; 905 906 /* 907 * searching the tree to find upper level blocks 908 * reference the block. 909 */ 910 path2->search_commit_root = 1; 911 path2->skip_locking = 1; 912 path2->lowest_level = level; 913 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 914 path2->lowest_level = 0; 915 if (ret < 0) { 916 err = ret; 917 goto out; 918 } 919 if (ret > 0 && path2->slots[level] > 0) 920 path2->slots[level]--; 921 922 eb = path2->nodes[level]; 923 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 924 cur->bytenr); 925 926 lower = cur; 927 need_check = true; 928 for (; level < BTRFS_MAX_LEVEL; level++) { 929 if (!path2->nodes[level]) { 930 BUG_ON(btrfs_root_bytenr(&root->root_item) != 931 lower->bytenr); 932 if (should_ignore_root(root)) 933 list_add(&lower->list, &useless); 934 else 935 lower->root = root; 936 break; 937 } 938 939 edge = alloc_backref_edge(cache); 940 if (!edge) { 941 err = -ENOMEM; 942 goto out; 943 } 944 945 eb = path2->nodes[level]; 946 rb_node = tree_search(&cache->rb_root, eb->start); 947 if (!rb_node) { 948 upper = alloc_backref_node(cache); 949 if (!upper) { 950 free_backref_edge(cache, edge); 951 err = -ENOMEM; 952 goto out; 953 } 954 upper->bytenr = eb->start; 955 upper->owner = btrfs_header_owner(eb); 956 upper->level = lower->level + 1; 957 if (!root->ref_cows) 958 upper->cowonly = 1; 959 960 /* 961 * if we know the block isn't shared 962 * we can void checking its backrefs. 963 */ 964 if (btrfs_block_can_be_shared(root, eb)) 965 upper->checked = 0; 966 else 967 upper->checked = 1; 968 969 /* 970 * add the block to pending list if we 971 * need check its backrefs, we only do this once 972 * while walking up a tree as we will catch 973 * anything else later on. 974 */ 975 if (!upper->checked && need_check) { 976 need_check = false; 977 list_add_tail(&edge->list[UPPER], 978 &list); 979 } else 980 INIT_LIST_HEAD(&edge->list[UPPER]); 981 } else { 982 upper = rb_entry(rb_node, struct backref_node, 983 rb_node); 984 BUG_ON(!upper->checked); 985 INIT_LIST_HEAD(&edge->list[UPPER]); 986 if (!upper->owner) 987 upper->owner = btrfs_header_owner(eb); 988 } 989 list_add_tail(&edge->list[LOWER], &lower->upper); 990 edge->node[LOWER] = lower; 991 edge->node[UPPER] = upper; 992 993 if (rb_node) 994 break; 995 lower = upper; 996 upper = NULL; 997 } 998 btrfs_release_path(path2); 999 next: 1000 if (ptr < end) { 1001 ptr += btrfs_extent_inline_ref_size(key.type); 1002 if (ptr >= end) { 1003 WARN_ON(ptr > end); 1004 ptr = 0; 1005 end = 0; 1006 } 1007 } 1008 if (ptr >= end) 1009 path1->slots[0]++; 1010 } 1011 btrfs_release_path(path1); 1012 1013 cur->checked = 1; 1014 WARN_ON(exist); 1015 1016 /* the pending list isn't empty, take the first block to process */ 1017 if (!list_empty(&list)) { 1018 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1019 list_del_init(&edge->list[UPPER]); 1020 cur = edge->node[UPPER]; 1021 goto again; 1022 } 1023 1024 /* 1025 * everything goes well, connect backref nodes and insert backref nodes 1026 * into the cache. 1027 */ 1028 BUG_ON(!node->checked); 1029 cowonly = node->cowonly; 1030 if (!cowonly) { 1031 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1032 &node->rb_node); 1033 if (rb_node) 1034 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1035 list_add_tail(&node->lower, &cache->leaves); 1036 } 1037 1038 list_for_each_entry(edge, &node->upper, list[LOWER]) 1039 list_add_tail(&edge->list[UPPER], &list); 1040 1041 while (!list_empty(&list)) { 1042 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1043 list_del_init(&edge->list[UPPER]); 1044 upper = edge->node[UPPER]; 1045 if (upper->detached) { 1046 list_del(&edge->list[LOWER]); 1047 lower = edge->node[LOWER]; 1048 free_backref_edge(cache, edge); 1049 if (list_empty(&lower->upper)) 1050 list_add(&lower->list, &useless); 1051 continue; 1052 } 1053 1054 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1055 if (upper->lowest) { 1056 list_del_init(&upper->lower); 1057 upper->lowest = 0; 1058 } 1059 1060 list_add_tail(&edge->list[UPPER], &upper->lower); 1061 continue; 1062 } 1063 1064 BUG_ON(!upper->checked); 1065 BUG_ON(cowonly != upper->cowonly); 1066 if (!cowonly) { 1067 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1068 &upper->rb_node); 1069 if (rb_node) 1070 backref_tree_panic(rb_node, -EEXIST, 1071 upper->bytenr); 1072 } 1073 1074 list_add_tail(&edge->list[UPPER], &upper->lower); 1075 1076 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1077 list_add_tail(&edge->list[UPPER], &list); 1078 } 1079 /* 1080 * process useless backref nodes. backref nodes for tree leaves 1081 * are deleted from the cache. backref nodes for upper level 1082 * tree blocks are left in the cache to avoid unnecessary backref 1083 * lookup. 1084 */ 1085 while (!list_empty(&useless)) { 1086 upper = list_entry(useless.next, struct backref_node, list); 1087 list_del_init(&upper->list); 1088 BUG_ON(!list_empty(&upper->upper)); 1089 if (upper == node) 1090 node = NULL; 1091 if (upper->lowest) { 1092 list_del_init(&upper->lower); 1093 upper->lowest = 0; 1094 } 1095 while (!list_empty(&upper->lower)) { 1096 edge = list_entry(upper->lower.next, 1097 struct backref_edge, list[UPPER]); 1098 list_del(&edge->list[UPPER]); 1099 list_del(&edge->list[LOWER]); 1100 lower = edge->node[LOWER]; 1101 free_backref_edge(cache, edge); 1102 1103 if (list_empty(&lower->upper)) 1104 list_add(&lower->list, &useless); 1105 } 1106 __mark_block_processed(rc, upper); 1107 if (upper->level > 0) { 1108 list_add(&upper->list, &cache->detached); 1109 upper->detached = 1; 1110 } else { 1111 rb_erase(&upper->rb_node, &cache->rb_root); 1112 free_backref_node(cache, upper); 1113 } 1114 } 1115 out: 1116 btrfs_free_path(path1); 1117 btrfs_free_path(path2); 1118 if (err) { 1119 while (!list_empty(&useless)) { 1120 lower = list_entry(useless.next, 1121 struct backref_node, upper); 1122 list_del_init(&lower->upper); 1123 } 1124 upper = node; 1125 INIT_LIST_HEAD(&list); 1126 while (upper) { 1127 if (RB_EMPTY_NODE(&upper->rb_node)) { 1128 list_splice_tail(&upper->upper, &list); 1129 free_backref_node(cache, upper); 1130 } 1131 1132 if (list_empty(&list)) 1133 break; 1134 1135 edge = list_entry(list.next, struct backref_edge, 1136 list[LOWER]); 1137 list_del(&edge->list[LOWER]); 1138 upper = edge->node[UPPER]; 1139 free_backref_edge(cache, edge); 1140 } 1141 return ERR_PTR(err); 1142 } 1143 BUG_ON(node && node->detached); 1144 return node; 1145 } 1146 1147 /* 1148 * helper to add backref node for the newly created snapshot. 1149 * the backref node is created by cloning backref node that 1150 * corresponds to root of source tree 1151 */ 1152 static int clone_backref_node(struct btrfs_trans_handle *trans, 1153 struct reloc_control *rc, 1154 struct btrfs_root *src, 1155 struct btrfs_root *dest) 1156 { 1157 struct btrfs_root *reloc_root = src->reloc_root; 1158 struct backref_cache *cache = &rc->backref_cache; 1159 struct backref_node *node = NULL; 1160 struct backref_node *new_node; 1161 struct backref_edge *edge; 1162 struct backref_edge *new_edge; 1163 struct rb_node *rb_node; 1164 1165 if (cache->last_trans > 0) 1166 update_backref_cache(trans, cache); 1167 1168 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1169 if (rb_node) { 1170 node = rb_entry(rb_node, struct backref_node, rb_node); 1171 if (node->detached) 1172 node = NULL; 1173 else 1174 BUG_ON(node->new_bytenr != reloc_root->node->start); 1175 } 1176 1177 if (!node) { 1178 rb_node = tree_search(&cache->rb_root, 1179 reloc_root->commit_root->start); 1180 if (rb_node) { 1181 node = rb_entry(rb_node, struct backref_node, 1182 rb_node); 1183 BUG_ON(node->detached); 1184 } 1185 } 1186 1187 if (!node) 1188 return 0; 1189 1190 new_node = alloc_backref_node(cache); 1191 if (!new_node) 1192 return -ENOMEM; 1193 1194 new_node->bytenr = dest->node->start; 1195 new_node->level = node->level; 1196 new_node->lowest = node->lowest; 1197 new_node->checked = 1; 1198 new_node->root = dest; 1199 1200 if (!node->lowest) { 1201 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1202 new_edge = alloc_backref_edge(cache); 1203 if (!new_edge) 1204 goto fail; 1205 1206 new_edge->node[UPPER] = new_node; 1207 new_edge->node[LOWER] = edge->node[LOWER]; 1208 list_add_tail(&new_edge->list[UPPER], 1209 &new_node->lower); 1210 } 1211 } else { 1212 list_add_tail(&new_node->lower, &cache->leaves); 1213 } 1214 1215 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1216 &new_node->rb_node); 1217 if (rb_node) 1218 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1219 1220 if (!new_node->lowest) { 1221 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1222 list_add_tail(&new_edge->list[LOWER], 1223 &new_edge->node[LOWER]->upper); 1224 } 1225 } 1226 return 0; 1227 fail: 1228 while (!list_empty(&new_node->lower)) { 1229 new_edge = list_entry(new_node->lower.next, 1230 struct backref_edge, list[UPPER]); 1231 list_del(&new_edge->list[UPPER]); 1232 free_backref_edge(cache, new_edge); 1233 } 1234 free_backref_node(cache, new_node); 1235 return -ENOMEM; 1236 } 1237 1238 /* 1239 * helper to add 'address of tree root -> reloc tree' mapping 1240 */ 1241 static int __must_check __add_reloc_root(struct btrfs_root *root) 1242 { 1243 struct rb_node *rb_node; 1244 struct mapping_node *node; 1245 struct reloc_control *rc = root->fs_info->reloc_ctl; 1246 1247 node = kmalloc(sizeof(*node), GFP_NOFS); 1248 if (!node) 1249 return -ENOMEM; 1250 1251 node->bytenr = root->node->start; 1252 node->data = root; 1253 1254 spin_lock(&rc->reloc_root_tree.lock); 1255 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1256 node->bytenr, &node->rb_node); 1257 spin_unlock(&rc->reloc_root_tree.lock); 1258 if (rb_node) { 1259 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1260 "for start=%llu while inserting into relocation " 1261 "tree\n", node->bytenr); 1262 kfree(node); 1263 return -EEXIST; 1264 } 1265 1266 list_add_tail(&root->root_list, &rc->reloc_roots); 1267 return 0; 1268 } 1269 1270 /* 1271 * helper to delete the 'address of tree root -> reloc tree' 1272 * mapping 1273 */ 1274 static void __del_reloc_root(struct btrfs_root *root) 1275 { 1276 struct rb_node *rb_node; 1277 struct mapping_node *node = NULL; 1278 struct reloc_control *rc = root->fs_info->reloc_ctl; 1279 1280 spin_lock(&rc->reloc_root_tree.lock); 1281 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1282 root->node->start); 1283 if (rb_node) { 1284 node = rb_entry(rb_node, struct mapping_node, rb_node); 1285 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1286 } 1287 spin_unlock(&rc->reloc_root_tree.lock); 1288 1289 if (!node) 1290 return; 1291 BUG_ON((struct btrfs_root *)node->data != root); 1292 1293 spin_lock(&root->fs_info->trans_lock); 1294 list_del_init(&root->root_list); 1295 spin_unlock(&root->fs_info->trans_lock); 1296 kfree(node); 1297 } 1298 1299 /* 1300 * helper to update the 'address of tree root -> reloc tree' 1301 * mapping 1302 */ 1303 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1304 { 1305 struct rb_node *rb_node; 1306 struct mapping_node *node = NULL; 1307 struct reloc_control *rc = root->fs_info->reloc_ctl; 1308 1309 spin_lock(&rc->reloc_root_tree.lock); 1310 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1311 root->node->start); 1312 if (rb_node) { 1313 node = rb_entry(rb_node, struct mapping_node, rb_node); 1314 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1315 } 1316 spin_unlock(&rc->reloc_root_tree.lock); 1317 1318 if (!node) 1319 return 0; 1320 BUG_ON((struct btrfs_root *)node->data != root); 1321 1322 spin_lock(&rc->reloc_root_tree.lock); 1323 node->bytenr = new_bytenr; 1324 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1325 node->bytenr, &node->rb_node); 1326 spin_unlock(&rc->reloc_root_tree.lock); 1327 if (rb_node) 1328 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1329 return 0; 1330 } 1331 1332 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1333 struct btrfs_root *root, u64 objectid) 1334 { 1335 struct btrfs_root *reloc_root; 1336 struct extent_buffer *eb; 1337 struct btrfs_root_item *root_item; 1338 struct btrfs_key root_key; 1339 u64 last_snap = 0; 1340 int ret; 1341 1342 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1343 BUG_ON(!root_item); 1344 1345 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1346 root_key.type = BTRFS_ROOT_ITEM_KEY; 1347 root_key.offset = objectid; 1348 1349 if (root->root_key.objectid == objectid) { 1350 /* called by btrfs_init_reloc_root */ 1351 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1352 BTRFS_TREE_RELOC_OBJECTID); 1353 BUG_ON(ret); 1354 1355 last_snap = btrfs_root_last_snapshot(&root->root_item); 1356 btrfs_set_root_last_snapshot(&root->root_item, 1357 trans->transid - 1); 1358 } else { 1359 /* 1360 * called by btrfs_reloc_post_snapshot_hook. 1361 * the source tree is a reloc tree, all tree blocks 1362 * modified after it was created have RELOC flag 1363 * set in their headers. so it's OK to not update 1364 * the 'last_snapshot'. 1365 */ 1366 ret = btrfs_copy_root(trans, root, root->node, &eb, 1367 BTRFS_TREE_RELOC_OBJECTID); 1368 BUG_ON(ret); 1369 } 1370 1371 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1372 btrfs_set_root_bytenr(root_item, eb->start); 1373 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1374 btrfs_set_root_generation(root_item, trans->transid); 1375 1376 if (root->root_key.objectid == objectid) { 1377 btrfs_set_root_refs(root_item, 0); 1378 memset(&root_item->drop_progress, 0, 1379 sizeof(struct btrfs_disk_key)); 1380 root_item->drop_level = 0; 1381 /* 1382 * abuse rtransid, it is safe because it is impossible to 1383 * receive data into a relocation tree. 1384 */ 1385 btrfs_set_root_rtransid(root_item, last_snap); 1386 btrfs_set_root_otransid(root_item, trans->transid); 1387 } 1388 1389 btrfs_tree_unlock(eb); 1390 free_extent_buffer(eb); 1391 1392 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1393 &root_key, root_item); 1394 BUG_ON(ret); 1395 kfree(root_item); 1396 1397 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1398 BUG_ON(IS_ERR(reloc_root)); 1399 reloc_root->last_trans = trans->transid; 1400 return reloc_root; 1401 } 1402 1403 /* 1404 * create reloc tree for a given fs tree. reloc tree is just a 1405 * snapshot of the fs tree with special root objectid. 1406 */ 1407 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1408 struct btrfs_root *root) 1409 { 1410 struct btrfs_root *reloc_root; 1411 struct reloc_control *rc = root->fs_info->reloc_ctl; 1412 struct btrfs_block_rsv *rsv; 1413 int clear_rsv = 0; 1414 int ret; 1415 1416 if (root->reloc_root) { 1417 reloc_root = root->reloc_root; 1418 reloc_root->last_trans = trans->transid; 1419 return 0; 1420 } 1421 1422 if (!rc || !rc->create_reloc_tree || 1423 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1424 return 0; 1425 1426 if (!trans->reloc_reserved) { 1427 rsv = trans->block_rsv; 1428 trans->block_rsv = rc->block_rsv; 1429 clear_rsv = 1; 1430 } 1431 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1432 if (clear_rsv) 1433 trans->block_rsv = rsv; 1434 1435 ret = __add_reloc_root(reloc_root); 1436 BUG_ON(ret < 0); 1437 root->reloc_root = reloc_root; 1438 return 0; 1439 } 1440 1441 /* 1442 * update root item of reloc tree 1443 */ 1444 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1445 struct btrfs_root *root) 1446 { 1447 struct btrfs_root *reloc_root; 1448 struct btrfs_root_item *root_item; 1449 int ret; 1450 1451 if (!root->reloc_root) 1452 goto out; 1453 1454 reloc_root = root->reloc_root; 1455 root_item = &reloc_root->root_item; 1456 1457 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1458 btrfs_root_refs(root_item) == 0) { 1459 root->reloc_root = NULL; 1460 __del_reloc_root(reloc_root); 1461 } 1462 1463 if (reloc_root->commit_root != reloc_root->node) { 1464 btrfs_set_root_node(root_item, reloc_root->node); 1465 free_extent_buffer(reloc_root->commit_root); 1466 reloc_root->commit_root = btrfs_root_node(reloc_root); 1467 } 1468 1469 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1470 &reloc_root->root_key, root_item); 1471 BUG_ON(ret); 1472 1473 out: 1474 return 0; 1475 } 1476 1477 /* 1478 * helper to find first cached inode with inode number >= objectid 1479 * in a subvolume 1480 */ 1481 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1482 { 1483 struct rb_node *node; 1484 struct rb_node *prev; 1485 struct btrfs_inode *entry; 1486 struct inode *inode; 1487 1488 spin_lock(&root->inode_lock); 1489 again: 1490 node = root->inode_tree.rb_node; 1491 prev = NULL; 1492 while (node) { 1493 prev = node; 1494 entry = rb_entry(node, struct btrfs_inode, rb_node); 1495 1496 if (objectid < btrfs_ino(&entry->vfs_inode)) 1497 node = node->rb_left; 1498 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1499 node = node->rb_right; 1500 else 1501 break; 1502 } 1503 if (!node) { 1504 while (prev) { 1505 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1506 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1507 node = prev; 1508 break; 1509 } 1510 prev = rb_next(prev); 1511 } 1512 } 1513 while (node) { 1514 entry = rb_entry(node, struct btrfs_inode, rb_node); 1515 inode = igrab(&entry->vfs_inode); 1516 if (inode) { 1517 spin_unlock(&root->inode_lock); 1518 return inode; 1519 } 1520 1521 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1522 if (cond_resched_lock(&root->inode_lock)) 1523 goto again; 1524 1525 node = rb_next(node); 1526 } 1527 spin_unlock(&root->inode_lock); 1528 return NULL; 1529 } 1530 1531 static int in_block_group(u64 bytenr, 1532 struct btrfs_block_group_cache *block_group) 1533 { 1534 if (bytenr >= block_group->key.objectid && 1535 bytenr < block_group->key.objectid + block_group->key.offset) 1536 return 1; 1537 return 0; 1538 } 1539 1540 /* 1541 * get new location of data 1542 */ 1543 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1544 u64 bytenr, u64 num_bytes) 1545 { 1546 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1547 struct btrfs_path *path; 1548 struct btrfs_file_extent_item *fi; 1549 struct extent_buffer *leaf; 1550 int ret; 1551 1552 path = btrfs_alloc_path(); 1553 if (!path) 1554 return -ENOMEM; 1555 1556 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1557 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1558 bytenr, 0); 1559 if (ret < 0) 1560 goto out; 1561 if (ret > 0) { 1562 ret = -ENOENT; 1563 goto out; 1564 } 1565 1566 leaf = path->nodes[0]; 1567 fi = btrfs_item_ptr(leaf, path->slots[0], 1568 struct btrfs_file_extent_item); 1569 1570 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1571 btrfs_file_extent_compression(leaf, fi) || 1572 btrfs_file_extent_encryption(leaf, fi) || 1573 btrfs_file_extent_other_encoding(leaf, fi)); 1574 1575 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1576 ret = -EINVAL; 1577 goto out; 1578 } 1579 1580 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1581 ret = 0; 1582 out: 1583 btrfs_free_path(path); 1584 return ret; 1585 } 1586 1587 /* 1588 * update file extent items in the tree leaf to point to 1589 * the new locations. 1590 */ 1591 static noinline_for_stack 1592 int replace_file_extents(struct btrfs_trans_handle *trans, 1593 struct reloc_control *rc, 1594 struct btrfs_root *root, 1595 struct extent_buffer *leaf) 1596 { 1597 struct btrfs_key key; 1598 struct btrfs_file_extent_item *fi; 1599 struct inode *inode = NULL; 1600 u64 parent; 1601 u64 bytenr; 1602 u64 new_bytenr = 0; 1603 u64 num_bytes; 1604 u64 end; 1605 u32 nritems; 1606 u32 i; 1607 int ret = 0; 1608 int first = 1; 1609 int dirty = 0; 1610 1611 if (rc->stage != UPDATE_DATA_PTRS) 1612 return 0; 1613 1614 /* reloc trees always use full backref */ 1615 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1616 parent = leaf->start; 1617 else 1618 parent = 0; 1619 1620 nritems = btrfs_header_nritems(leaf); 1621 for (i = 0; i < nritems; i++) { 1622 cond_resched(); 1623 btrfs_item_key_to_cpu(leaf, &key, i); 1624 if (key.type != BTRFS_EXTENT_DATA_KEY) 1625 continue; 1626 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1627 if (btrfs_file_extent_type(leaf, fi) == 1628 BTRFS_FILE_EXTENT_INLINE) 1629 continue; 1630 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1631 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1632 if (bytenr == 0) 1633 continue; 1634 if (!in_block_group(bytenr, rc->block_group)) 1635 continue; 1636 1637 /* 1638 * if we are modifying block in fs tree, wait for readpage 1639 * to complete and drop the extent cache 1640 */ 1641 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1642 if (first) { 1643 inode = find_next_inode(root, key.objectid); 1644 first = 0; 1645 } else if (inode && btrfs_ino(inode) < key.objectid) { 1646 btrfs_add_delayed_iput(inode); 1647 inode = find_next_inode(root, key.objectid); 1648 } 1649 if (inode && btrfs_ino(inode) == key.objectid) { 1650 end = key.offset + 1651 btrfs_file_extent_num_bytes(leaf, fi); 1652 WARN_ON(!IS_ALIGNED(key.offset, 1653 root->sectorsize)); 1654 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1655 end--; 1656 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1657 key.offset, end); 1658 if (!ret) 1659 continue; 1660 1661 btrfs_drop_extent_cache(inode, key.offset, end, 1662 1); 1663 unlock_extent(&BTRFS_I(inode)->io_tree, 1664 key.offset, end); 1665 } 1666 } 1667 1668 ret = get_new_location(rc->data_inode, &new_bytenr, 1669 bytenr, num_bytes); 1670 if (ret) { 1671 /* 1672 * Don't have to abort since we've not changed anything 1673 * in the file extent yet. 1674 */ 1675 break; 1676 } 1677 1678 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1679 dirty = 1; 1680 1681 key.offset -= btrfs_file_extent_offset(leaf, fi); 1682 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1683 num_bytes, parent, 1684 btrfs_header_owner(leaf), 1685 key.objectid, key.offset, 1); 1686 if (ret) { 1687 btrfs_abort_transaction(trans, root, ret); 1688 break; 1689 } 1690 1691 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1692 parent, btrfs_header_owner(leaf), 1693 key.objectid, key.offset, 1); 1694 if (ret) { 1695 btrfs_abort_transaction(trans, root, ret); 1696 break; 1697 } 1698 } 1699 if (dirty) 1700 btrfs_mark_buffer_dirty(leaf); 1701 if (inode) 1702 btrfs_add_delayed_iput(inode); 1703 return ret; 1704 } 1705 1706 static noinline_for_stack 1707 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1708 struct btrfs_path *path, int level) 1709 { 1710 struct btrfs_disk_key key1; 1711 struct btrfs_disk_key key2; 1712 btrfs_node_key(eb, &key1, slot); 1713 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1714 return memcmp(&key1, &key2, sizeof(key1)); 1715 } 1716 1717 /* 1718 * try to replace tree blocks in fs tree with the new blocks 1719 * in reloc tree. tree blocks haven't been modified since the 1720 * reloc tree was create can be replaced. 1721 * 1722 * if a block was replaced, level of the block + 1 is returned. 1723 * if no block got replaced, 0 is returned. if there are other 1724 * errors, a negative error number is returned. 1725 */ 1726 static noinline_for_stack 1727 int replace_path(struct btrfs_trans_handle *trans, 1728 struct btrfs_root *dest, struct btrfs_root *src, 1729 struct btrfs_path *path, struct btrfs_key *next_key, 1730 int lowest_level, int max_level) 1731 { 1732 struct extent_buffer *eb; 1733 struct extent_buffer *parent; 1734 struct btrfs_key key; 1735 u64 old_bytenr; 1736 u64 new_bytenr; 1737 u64 old_ptr_gen; 1738 u64 new_ptr_gen; 1739 u64 last_snapshot; 1740 u32 blocksize; 1741 int cow = 0; 1742 int level; 1743 int ret; 1744 int slot; 1745 1746 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1747 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1748 1749 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1750 again: 1751 slot = path->slots[lowest_level]; 1752 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1753 1754 eb = btrfs_lock_root_node(dest); 1755 btrfs_set_lock_blocking(eb); 1756 level = btrfs_header_level(eb); 1757 1758 if (level < lowest_level) { 1759 btrfs_tree_unlock(eb); 1760 free_extent_buffer(eb); 1761 return 0; 1762 } 1763 1764 if (cow) { 1765 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1766 BUG_ON(ret); 1767 } 1768 btrfs_set_lock_blocking(eb); 1769 1770 if (next_key) { 1771 next_key->objectid = (u64)-1; 1772 next_key->type = (u8)-1; 1773 next_key->offset = (u64)-1; 1774 } 1775 1776 parent = eb; 1777 while (1) { 1778 level = btrfs_header_level(parent); 1779 BUG_ON(level < lowest_level); 1780 1781 ret = btrfs_bin_search(parent, &key, level, &slot); 1782 if (ret && slot > 0) 1783 slot--; 1784 1785 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1786 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1787 1788 old_bytenr = btrfs_node_blockptr(parent, slot); 1789 blocksize = btrfs_level_size(dest, level - 1); 1790 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1791 1792 if (level <= max_level) { 1793 eb = path->nodes[level]; 1794 new_bytenr = btrfs_node_blockptr(eb, 1795 path->slots[level]); 1796 new_ptr_gen = btrfs_node_ptr_generation(eb, 1797 path->slots[level]); 1798 } else { 1799 new_bytenr = 0; 1800 new_ptr_gen = 0; 1801 } 1802 1803 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1804 ret = level; 1805 break; 1806 } 1807 1808 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1809 memcmp_node_keys(parent, slot, path, level)) { 1810 if (level <= lowest_level) { 1811 ret = 0; 1812 break; 1813 } 1814 1815 eb = read_tree_block(dest, old_bytenr, blocksize, 1816 old_ptr_gen); 1817 if (!eb || !extent_buffer_uptodate(eb)) { 1818 ret = (!eb) ? -ENOMEM : -EIO; 1819 free_extent_buffer(eb); 1820 break; 1821 } 1822 btrfs_tree_lock(eb); 1823 if (cow) { 1824 ret = btrfs_cow_block(trans, dest, eb, parent, 1825 slot, &eb); 1826 BUG_ON(ret); 1827 } 1828 btrfs_set_lock_blocking(eb); 1829 1830 btrfs_tree_unlock(parent); 1831 free_extent_buffer(parent); 1832 1833 parent = eb; 1834 continue; 1835 } 1836 1837 if (!cow) { 1838 btrfs_tree_unlock(parent); 1839 free_extent_buffer(parent); 1840 cow = 1; 1841 goto again; 1842 } 1843 1844 btrfs_node_key_to_cpu(path->nodes[level], &key, 1845 path->slots[level]); 1846 btrfs_release_path(path); 1847 1848 path->lowest_level = level; 1849 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1850 path->lowest_level = 0; 1851 BUG_ON(ret); 1852 1853 /* 1854 * swap blocks in fs tree and reloc tree. 1855 */ 1856 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1857 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1858 btrfs_mark_buffer_dirty(parent); 1859 1860 btrfs_set_node_blockptr(path->nodes[level], 1861 path->slots[level], old_bytenr); 1862 btrfs_set_node_ptr_generation(path->nodes[level], 1863 path->slots[level], old_ptr_gen); 1864 btrfs_mark_buffer_dirty(path->nodes[level]); 1865 1866 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1867 path->nodes[level]->start, 1868 src->root_key.objectid, level - 1, 0, 1869 1); 1870 BUG_ON(ret); 1871 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1872 0, dest->root_key.objectid, level - 1, 1873 0, 1); 1874 BUG_ON(ret); 1875 1876 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1877 path->nodes[level]->start, 1878 src->root_key.objectid, level - 1, 0, 1879 1); 1880 BUG_ON(ret); 1881 1882 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1883 0, dest->root_key.objectid, level - 1, 1884 0, 1); 1885 BUG_ON(ret); 1886 1887 btrfs_unlock_up_safe(path, 0); 1888 1889 ret = level; 1890 break; 1891 } 1892 btrfs_tree_unlock(parent); 1893 free_extent_buffer(parent); 1894 return ret; 1895 } 1896 1897 /* 1898 * helper to find next relocated block in reloc tree 1899 */ 1900 static noinline_for_stack 1901 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1902 int *level) 1903 { 1904 struct extent_buffer *eb; 1905 int i; 1906 u64 last_snapshot; 1907 u32 nritems; 1908 1909 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1910 1911 for (i = 0; i < *level; i++) { 1912 free_extent_buffer(path->nodes[i]); 1913 path->nodes[i] = NULL; 1914 } 1915 1916 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1917 eb = path->nodes[i]; 1918 nritems = btrfs_header_nritems(eb); 1919 while (path->slots[i] + 1 < nritems) { 1920 path->slots[i]++; 1921 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1922 last_snapshot) 1923 continue; 1924 1925 *level = i; 1926 return 0; 1927 } 1928 free_extent_buffer(path->nodes[i]); 1929 path->nodes[i] = NULL; 1930 } 1931 return 1; 1932 } 1933 1934 /* 1935 * walk down reloc tree to find relocated block of lowest level 1936 */ 1937 static noinline_for_stack 1938 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1939 int *level) 1940 { 1941 struct extent_buffer *eb = NULL; 1942 int i; 1943 u64 bytenr; 1944 u64 ptr_gen = 0; 1945 u64 last_snapshot; 1946 u32 blocksize; 1947 u32 nritems; 1948 1949 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1950 1951 for (i = *level; i > 0; i--) { 1952 eb = path->nodes[i]; 1953 nritems = btrfs_header_nritems(eb); 1954 while (path->slots[i] < nritems) { 1955 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1956 if (ptr_gen > last_snapshot) 1957 break; 1958 path->slots[i]++; 1959 } 1960 if (path->slots[i] >= nritems) { 1961 if (i == *level) 1962 break; 1963 *level = i + 1; 1964 return 0; 1965 } 1966 if (i == 1) { 1967 *level = i; 1968 return 0; 1969 } 1970 1971 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1972 blocksize = btrfs_level_size(root, i - 1); 1973 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1974 if (!eb || !extent_buffer_uptodate(eb)) { 1975 free_extent_buffer(eb); 1976 return -EIO; 1977 } 1978 BUG_ON(btrfs_header_level(eb) != i - 1); 1979 path->nodes[i - 1] = eb; 1980 path->slots[i - 1] = 0; 1981 } 1982 return 1; 1983 } 1984 1985 /* 1986 * invalidate extent cache for file extents whose key in range of 1987 * [min_key, max_key) 1988 */ 1989 static int invalidate_extent_cache(struct btrfs_root *root, 1990 struct btrfs_key *min_key, 1991 struct btrfs_key *max_key) 1992 { 1993 struct inode *inode = NULL; 1994 u64 objectid; 1995 u64 start, end; 1996 u64 ino; 1997 1998 objectid = min_key->objectid; 1999 while (1) { 2000 cond_resched(); 2001 iput(inode); 2002 2003 if (objectid > max_key->objectid) 2004 break; 2005 2006 inode = find_next_inode(root, objectid); 2007 if (!inode) 2008 break; 2009 ino = btrfs_ino(inode); 2010 2011 if (ino > max_key->objectid) { 2012 iput(inode); 2013 break; 2014 } 2015 2016 objectid = ino + 1; 2017 if (!S_ISREG(inode->i_mode)) 2018 continue; 2019 2020 if (unlikely(min_key->objectid == ino)) { 2021 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2022 continue; 2023 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2024 start = 0; 2025 else { 2026 start = min_key->offset; 2027 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2028 } 2029 } else { 2030 start = 0; 2031 } 2032 2033 if (unlikely(max_key->objectid == ino)) { 2034 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2035 continue; 2036 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2037 end = (u64)-1; 2038 } else { 2039 if (max_key->offset == 0) 2040 continue; 2041 end = max_key->offset; 2042 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2043 end--; 2044 } 2045 } else { 2046 end = (u64)-1; 2047 } 2048 2049 /* the lock_extent waits for readpage to complete */ 2050 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2051 btrfs_drop_extent_cache(inode, start, end, 1); 2052 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2053 } 2054 return 0; 2055 } 2056 2057 static int find_next_key(struct btrfs_path *path, int level, 2058 struct btrfs_key *key) 2059 2060 { 2061 while (level < BTRFS_MAX_LEVEL) { 2062 if (!path->nodes[level]) 2063 break; 2064 if (path->slots[level] + 1 < 2065 btrfs_header_nritems(path->nodes[level])) { 2066 btrfs_node_key_to_cpu(path->nodes[level], key, 2067 path->slots[level] + 1); 2068 return 0; 2069 } 2070 level++; 2071 } 2072 return 1; 2073 } 2074 2075 /* 2076 * merge the relocated tree blocks in reloc tree with corresponding 2077 * fs tree. 2078 */ 2079 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2080 struct btrfs_root *root) 2081 { 2082 LIST_HEAD(inode_list); 2083 struct btrfs_key key; 2084 struct btrfs_key next_key; 2085 struct btrfs_trans_handle *trans = NULL; 2086 struct btrfs_root *reloc_root; 2087 struct btrfs_root_item *root_item; 2088 struct btrfs_path *path; 2089 struct extent_buffer *leaf; 2090 int level; 2091 int max_level; 2092 int replaced = 0; 2093 int ret; 2094 int err = 0; 2095 u32 min_reserved; 2096 2097 path = btrfs_alloc_path(); 2098 if (!path) 2099 return -ENOMEM; 2100 path->reada = 1; 2101 2102 reloc_root = root->reloc_root; 2103 root_item = &reloc_root->root_item; 2104 2105 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2106 level = btrfs_root_level(root_item); 2107 extent_buffer_get(reloc_root->node); 2108 path->nodes[level] = reloc_root->node; 2109 path->slots[level] = 0; 2110 } else { 2111 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2112 2113 level = root_item->drop_level; 2114 BUG_ON(level == 0); 2115 path->lowest_level = level; 2116 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2117 path->lowest_level = 0; 2118 if (ret < 0) { 2119 btrfs_free_path(path); 2120 return ret; 2121 } 2122 2123 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2124 path->slots[level]); 2125 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2126 2127 btrfs_unlock_up_safe(path, 0); 2128 } 2129 2130 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2131 memset(&next_key, 0, sizeof(next_key)); 2132 2133 while (1) { 2134 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2135 BTRFS_RESERVE_FLUSH_ALL); 2136 if (ret) { 2137 err = ret; 2138 goto out; 2139 } 2140 trans = btrfs_start_transaction(root, 0); 2141 if (IS_ERR(trans)) { 2142 err = PTR_ERR(trans); 2143 trans = NULL; 2144 goto out; 2145 } 2146 trans->block_rsv = rc->block_rsv; 2147 2148 replaced = 0; 2149 max_level = level; 2150 2151 ret = walk_down_reloc_tree(reloc_root, path, &level); 2152 if (ret < 0) { 2153 err = ret; 2154 goto out; 2155 } 2156 if (ret > 0) 2157 break; 2158 2159 if (!find_next_key(path, level, &key) && 2160 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2161 ret = 0; 2162 } else { 2163 ret = replace_path(trans, root, reloc_root, path, 2164 &next_key, level, max_level); 2165 } 2166 if (ret < 0) { 2167 err = ret; 2168 goto out; 2169 } 2170 2171 if (ret > 0) { 2172 level = ret; 2173 btrfs_node_key_to_cpu(path->nodes[level], &key, 2174 path->slots[level]); 2175 replaced = 1; 2176 } 2177 2178 ret = walk_up_reloc_tree(reloc_root, path, &level); 2179 if (ret > 0) 2180 break; 2181 2182 BUG_ON(level == 0); 2183 /* 2184 * save the merging progress in the drop_progress. 2185 * this is OK since root refs == 1 in this case. 2186 */ 2187 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2188 path->slots[level]); 2189 root_item->drop_level = level; 2190 2191 btrfs_end_transaction_throttle(trans, root); 2192 trans = NULL; 2193 2194 btrfs_btree_balance_dirty(root); 2195 2196 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2197 invalidate_extent_cache(root, &key, &next_key); 2198 } 2199 2200 /* 2201 * handle the case only one block in the fs tree need to be 2202 * relocated and the block is tree root. 2203 */ 2204 leaf = btrfs_lock_root_node(root); 2205 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2206 btrfs_tree_unlock(leaf); 2207 free_extent_buffer(leaf); 2208 if (ret < 0) 2209 err = ret; 2210 out: 2211 btrfs_free_path(path); 2212 2213 if (err == 0) { 2214 memset(&root_item->drop_progress, 0, 2215 sizeof(root_item->drop_progress)); 2216 root_item->drop_level = 0; 2217 btrfs_set_root_refs(root_item, 0); 2218 btrfs_update_reloc_root(trans, root); 2219 } 2220 2221 if (trans) 2222 btrfs_end_transaction_throttle(trans, root); 2223 2224 btrfs_btree_balance_dirty(root); 2225 2226 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2227 invalidate_extent_cache(root, &key, &next_key); 2228 2229 return err; 2230 } 2231 2232 static noinline_for_stack 2233 int prepare_to_merge(struct reloc_control *rc, int err) 2234 { 2235 struct btrfs_root *root = rc->extent_root; 2236 struct btrfs_root *reloc_root; 2237 struct btrfs_trans_handle *trans; 2238 LIST_HEAD(reloc_roots); 2239 u64 num_bytes = 0; 2240 int ret; 2241 2242 mutex_lock(&root->fs_info->reloc_mutex); 2243 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2244 rc->merging_rsv_size += rc->nodes_relocated * 2; 2245 mutex_unlock(&root->fs_info->reloc_mutex); 2246 2247 again: 2248 if (!err) { 2249 num_bytes = rc->merging_rsv_size; 2250 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2251 BTRFS_RESERVE_FLUSH_ALL); 2252 if (ret) 2253 err = ret; 2254 } 2255 2256 trans = btrfs_join_transaction(rc->extent_root); 2257 if (IS_ERR(trans)) { 2258 if (!err) 2259 btrfs_block_rsv_release(rc->extent_root, 2260 rc->block_rsv, num_bytes); 2261 return PTR_ERR(trans); 2262 } 2263 2264 if (!err) { 2265 if (num_bytes != rc->merging_rsv_size) { 2266 btrfs_end_transaction(trans, rc->extent_root); 2267 btrfs_block_rsv_release(rc->extent_root, 2268 rc->block_rsv, num_bytes); 2269 goto again; 2270 } 2271 } 2272 2273 rc->merge_reloc_tree = 1; 2274 2275 while (!list_empty(&rc->reloc_roots)) { 2276 reloc_root = list_entry(rc->reloc_roots.next, 2277 struct btrfs_root, root_list); 2278 list_del_init(&reloc_root->root_list); 2279 2280 root = read_fs_root(reloc_root->fs_info, 2281 reloc_root->root_key.offset); 2282 BUG_ON(IS_ERR(root)); 2283 BUG_ON(root->reloc_root != reloc_root); 2284 2285 /* 2286 * set reference count to 1, so btrfs_recover_relocation 2287 * knows it should resumes merging 2288 */ 2289 if (!err) 2290 btrfs_set_root_refs(&reloc_root->root_item, 1); 2291 btrfs_update_reloc_root(trans, root); 2292 2293 list_add(&reloc_root->root_list, &reloc_roots); 2294 } 2295 2296 list_splice(&reloc_roots, &rc->reloc_roots); 2297 2298 if (!err) 2299 btrfs_commit_transaction(trans, rc->extent_root); 2300 else 2301 btrfs_end_transaction(trans, rc->extent_root); 2302 return err; 2303 } 2304 2305 static noinline_for_stack 2306 void free_reloc_roots(struct list_head *list) 2307 { 2308 struct btrfs_root *reloc_root; 2309 2310 while (!list_empty(list)) { 2311 reloc_root = list_entry(list->next, struct btrfs_root, 2312 root_list); 2313 __del_reloc_root(reloc_root); 2314 } 2315 } 2316 2317 static noinline_for_stack 2318 int merge_reloc_roots(struct reloc_control *rc) 2319 { 2320 struct btrfs_trans_handle *trans; 2321 struct btrfs_root *root; 2322 struct btrfs_root *reloc_root; 2323 u64 last_snap; 2324 u64 otransid; 2325 u64 objectid; 2326 LIST_HEAD(reloc_roots); 2327 int found = 0; 2328 int ret = 0; 2329 again: 2330 root = rc->extent_root; 2331 2332 /* 2333 * this serializes us with btrfs_record_root_in_transaction, 2334 * we have to make sure nobody is in the middle of 2335 * adding their roots to the list while we are 2336 * doing this splice 2337 */ 2338 mutex_lock(&root->fs_info->reloc_mutex); 2339 list_splice_init(&rc->reloc_roots, &reloc_roots); 2340 mutex_unlock(&root->fs_info->reloc_mutex); 2341 2342 while (!list_empty(&reloc_roots)) { 2343 found = 1; 2344 reloc_root = list_entry(reloc_roots.next, 2345 struct btrfs_root, root_list); 2346 2347 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2348 root = read_fs_root(reloc_root->fs_info, 2349 reloc_root->root_key.offset); 2350 BUG_ON(IS_ERR(root)); 2351 BUG_ON(root->reloc_root != reloc_root); 2352 2353 ret = merge_reloc_root(rc, root); 2354 if (ret) { 2355 if (list_empty(&reloc_root->root_list)) 2356 list_add_tail(&reloc_root->root_list, 2357 &reloc_roots); 2358 goto out; 2359 } 2360 } else { 2361 list_del_init(&reloc_root->root_list); 2362 } 2363 2364 /* 2365 * we keep the old last snapshod transid in rtranid when we 2366 * created the relocation tree. 2367 */ 2368 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2369 otransid = btrfs_root_otransid(&reloc_root->root_item); 2370 objectid = reloc_root->root_key.offset; 2371 2372 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2373 if (ret < 0) { 2374 if (list_empty(&reloc_root->root_list)) 2375 list_add_tail(&reloc_root->root_list, 2376 &reloc_roots); 2377 goto out; 2378 } else if (!ret) { 2379 /* 2380 * recover the last snapshot tranid to avoid 2381 * the space balance break NOCOW. 2382 */ 2383 root = read_fs_root(rc->extent_root->fs_info, 2384 objectid); 2385 if (IS_ERR(root)) 2386 continue; 2387 2388 trans = btrfs_join_transaction(root); 2389 BUG_ON(IS_ERR(trans)); 2390 2391 /* Check if the fs/file tree was snapshoted or not. */ 2392 if (btrfs_root_last_snapshot(&root->root_item) == 2393 otransid - 1) 2394 btrfs_set_root_last_snapshot(&root->root_item, 2395 last_snap); 2396 2397 btrfs_end_transaction(trans, root); 2398 } 2399 } 2400 2401 if (found) { 2402 found = 0; 2403 goto again; 2404 } 2405 out: 2406 if (ret) { 2407 btrfs_std_error(root->fs_info, ret); 2408 if (!list_empty(&reloc_roots)) 2409 free_reloc_roots(&reloc_roots); 2410 2411 /* new reloc root may be added */ 2412 mutex_lock(&root->fs_info->reloc_mutex); 2413 list_splice_init(&rc->reloc_roots, &reloc_roots); 2414 mutex_unlock(&root->fs_info->reloc_mutex); 2415 if (!list_empty(&reloc_roots)) 2416 free_reloc_roots(&reloc_roots); 2417 } 2418 2419 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2420 return ret; 2421 } 2422 2423 static void free_block_list(struct rb_root *blocks) 2424 { 2425 struct tree_block *block; 2426 struct rb_node *rb_node; 2427 while ((rb_node = rb_first(blocks))) { 2428 block = rb_entry(rb_node, struct tree_block, rb_node); 2429 rb_erase(rb_node, blocks); 2430 kfree(block); 2431 } 2432 } 2433 2434 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2435 struct btrfs_root *reloc_root) 2436 { 2437 struct btrfs_root *root; 2438 2439 if (reloc_root->last_trans == trans->transid) 2440 return 0; 2441 2442 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2443 BUG_ON(IS_ERR(root)); 2444 BUG_ON(root->reloc_root != reloc_root); 2445 2446 return btrfs_record_root_in_trans(trans, root); 2447 } 2448 2449 static noinline_for_stack 2450 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2451 struct reloc_control *rc, 2452 struct backref_node *node, 2453 struct backref_edge *edges[]) 2454 { 2455 struct backref_node *next; 2456 struct btrfs_root *root; 2457 int index = 0; 2458 2459 next = node; 2460 while (1) { 2461 cond_resched(); 2462 next = walk_up_backref(next, edges, &index); 2463 root = next->root; 2464 BUG_ON(!root); 2465 BUG_ON(!root->ref_cows); 2466 2467 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2468 record_reloc_root_in_trans(trans, root); 2469 break; 2470 } 2471 2472 btrfs_record_root_in_trans(trans, root); 2473 root = root->reloc_root; 2474 2475 if (next->new_bytenr != root->node->start) { 2476 BUG_ON(next->new_bytenr); 2477 BUG_ON(!list_empty(&next->list)); 2478 next->new_bytenr = root->node->start; 2479 next->root = root; 2480 list_add_tail(&next->list, 2481 &rc->backref_cache.changed); 2482 __mark_block_processed(rc, next); 2483 break; 2484 } 2485 2486 WARN_ON(1); 2487 root = NULL; 2488 next = walk_down_backref(edges, &index); 2489 if (!next || next->level <= node->level) 2490 break; 2491 } 2492 if (!root) 2493 return NULL; 2494 2495 next = node; 2496 /* setup backref node path for btrfs_reloc_cow_block */ 2497 while (1) { 2498 rc->backref_cache.path[next->level] = next; 2499 if (--index < 0) 2500 break; 2501 next = edges[index]->node[UPPER]; 2502 } 2503 return root; 2504 } 2505 2506 /* 2507 * select a tree root for relocation. return NULL if the block 2508 * is reference counted. we should use do_relocation() in this 2509 * case. return a tree root pointer if the block isn't reference 2510 * counted. return -ENOENT if the block is root of reloc tree. 2511 */ 2512 static noinline_for_stack 2513 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2514 struct backref_node *node) 2515 { 2516 struct backref_node *next; 2517 struct btrfs_root *root; 2518 struct btrfs_root *fs_root = NULL; 2519 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2520 int index = 0; 2521 2522 next = node; 2523 while (1) { 2524 cond_resched(); 2525 next = walk_up_backref(next, edges, &index); 2526 root = next->root; 2527 BUG_ON(!root); 2528 2529 /* no other choice for non-references counted tree */ 2530 if (!root->ref_cows) 2531 return root; 2532 2533 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2534 fs_root = root; 2535 2536 if (next != node) 2537 return NULL; 2538 2539 next = walk_down_backref(edges, &index); 2540 if (!next || next->level <= node->level) 2541 break; 2542 } 2543 2544 if (!fs_root) 2545 return ERR_PTR(-ENOENT); 2546 return fs_root; 2547 } 2548 2549 static noinline_for_stack 2550 u64 calcu_metadata_size(struct reloc_control *rc, 2551 struct backref_node *node, int reserve) 2552 { 2553 struct backref_node *next = node; 2554 struct backref_edge *edge; 2555 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2556 u64 num_bytes = 0; 2557 int index = 0; 2558 2559 BUG_ON(reserve && node->processed); 2560 2561 while (next) { 2562 cond_resched(); 2563 while (1) { 2564 if (next->processed && (reserve || next != node)) 2565 break; 2566 2567 num_bytes += btrfs_level_size(rc->extent_root, 2568 next->level); 2569 2570 if (list_empty(&next->upper)) 2571 break; 2572 2573 edge = list_entry(next->upper.next, 2574 struct backref_edge, list[LOWER]); 2575 edges[index++] = edge; 2576 next = edge->node[UPPER]; 2577 } 2578 next = walk_down_backref(edges, &index); 2579 } 2580 return num_bytes; 2581 } 2582 2583 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2584 struct reloc_control *rc, 2585 struct backref_node *node) 2586 { 2587 struct btrfs_root *root = rc->extent_root; 2588 u64 num_bytes; 2589 int ret; 2590 u64 tmp; 2591 2592 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2593 2594 trans->block_rsv = rc->block_rsv; 2595 rc->reserved_bytes += num_bytes; 2596 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2597 BTRFS_RESERVE_FLUSH_ALL); 2598 if (ret) { 2599 if (ret == -EAGAIN) { 2600 tmp = rc->extent_root->nodesize * 2601 RELOCATION_RESERVED_NODES; 2602 while (tmp <= rc->reserved_bytes) 2603 tmp <<= 1; 2604 /* 2605 * only one thread can access block_rsv at this point, 2606 * so we don't need hold lock to protect block_rsv. 2607 * we expand more reservation size here to allow enough 2608 * space for relocation and we will return eailer in 2609 * enospc case. 2610 */ 2611 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2612 RELOCATION_RESERVED_NODES; 2613 } 2614 return ret; 2615 } 2616 2617 return 0; 2618 } 2619 2620 /* 2621 * relocate a block tree, and then update pointers in upper level 2622 * blocks that reference the block to point to the new location. 2623 * 2624 * if called by link_to_upper, the block has already been relocated. 2625 * in that case this function just updates pointers. 2626 */ 2627 static int do_relocation(struct btrfs_trans_handle *trans, 2628 struct reloc_control *rc, 2629 struct backref_node *node, 2630 struct btrfs_key *key, 2631 struct btrfs_path *path, int lowest) 2632 { 2633 struct backref_node *upper; 2634 struct backref_edge *edge; 2635 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2636 struct btrfs_root *root; 2637 struct extent_buffer *eb; 2638 u32 blocksize; 2639 u64 bytenr; 2640 u64 generation; 2641 int slot; 2642 int ret; 2643 int err = 0; 2644 2645 BUG_ON(lowest && node->eb); 2646 2647 path->lowest_level = node->level + 1; 2648 rc->backref_cache.path[node->level] = node; 2649 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2650 cond_resched(); 2651 2652 upper = edge->node[UPPER]; 2653 root = select_reloc_root(trans, rc, upper, edges); 2654 BUG_ON(!root); 2655 2656 if (upper->eb && !upper->locked) { 2657 if (!lowest) { 2658 ret = btrfs_bin_search(upper->eb, key, 2659 upper->level, &slot); 2660 BUG_ON(ret); 2661 bytenr = btrfs_node_blockptr(upper->eb, slot); 2662 if (node->eb->start == bytenr) 2663 goto next; 2664 } 2665 drop_node_buffer(upper); 2666 } 2667 2668 if (!upper->eb) { 2669 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2670 if (ret < 0) { 2671 err = ret; 2672 break; 2673 } 2674 BUG_ON(ret > 0); 2675 2676 if (!upper->eb) { 2677 upper->eb = path->nodes[upper->level]; 2678 path->nodes[upper->level] = NULL; 2679 } else { 2680 BUG_ON(upper->eb != path->nodes[upper->level]); 2681 } 2682 2683 upper->locked = 1; 2684 path->locks[upper->level] = 0; 2685 2686 slot = path->slots[upper->level]; 2687 btrfs_release_path(path); 2688 } else { 2689 ret = btrfs_bin_search(upper->eb, key, upper->level, 2690 &slot); 2691 BUG_ON(ret); 2692 } 2693 2694 bytenr = btrfs_node_blockptr(upper->eb, slot); 2695 if (lowest) { 2696 BUG_ON(bytenr != node->bytenr); 2697 } else { 2698 if (node->eb->start == bytenr) 2699 goto next; 2700 } 2701 2702 blocksize = btrfs_level_size(root, node->level); 2703 generation = btrfs_node_ptr_generation(upper->eb, slot); 2704 eb = read_tree_block(root, bytenr, blocksize, generation); 2705 if (!eb || !extent_buffer_uptodate(eb)) { 2706 free_extent_buffer(eb); 2707 err = -EIO; 2708 goto next; 2709 } 2710 btrfs_tree_lock(eb); 2711 btrfs_set_lock_blocking(eb); 2712 2713 if (!node->eb) { 2714 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2715 slot, &eb); 2716 btrfs_tree_unlock(eb); 2717 free_extent_buffer(eb); 2718 if (ret < 0) { 2719 err = ret; 2720 goto next; 2721 } 2722 BUG_ON(node->eb != eb); 2723 } else { 2724 btrfs_set_node_blockptr(upper->eb, slot, 2725 node->eb->start); 2726 btrfs_set_node_ptr_generation(upper->eb, slot, 2727 trans->transid); 2728 btrfs_mark_buffer_dirty(upper->eb); 2729 2730 ret = btrfs_inc_extent_ref(trans, root, 2731 node->eb->start, blocksize, 2732 upper->eb->start, 2733 btrfs_header_owner(upper->eb), 2734 node->level, 0, 1); 2735 BUG_ON(ret); 2736 2737 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2738 BUG_ON(ret); 2739 } 2740 next: 2741 if (!upper->pending) 2742 drop_node_buffer(upper); 2743 else 2744 unlock_node_buffer(upper); 2745 if (err) 2746 break; 2747 } 2748 2749 if (!err && node->pending) { 2750 drop_node_buffer(node); 2751 list_move_tail(&node->list, &rc->backref_cache.changed); 2752 node->pending = 0; 2753 } 2754 2755 path->lowest_level = 0; 2756 BUG_ON(err == -ENOSPC); 2757 return err; 2758 } 2759 2760 static int link_to_upper(struct btrfs_trans_handle *trans, 2761 struct reloc_control *rc, 2762 struct backref_node *node, 2763 struct btrfs_path *path) 2764 { 2765 struct btrfs_key key; 2766 2767 btrfs_node_key_to_cpu(node->eb, &key, 0); 2768 return do_relocation(trans, rc, node, &key, path, 0); 2769 } 2770 2771 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2772 struct reloc_control *rc, 2773 struct btrfs_path *path, int err) 2774 { 2775 LIST_HEAD(list); 2776 struct backref_cache *cache = &rc->backref_cache; 2777 struct backref_node *node; 2778 int level; 2779 int ret; 2780 2781 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2782 while (!list_empty(&cache->pending[level])) { 2783 node = list_entry(cache->pending[level].next, 2784 struct backref_node, list); 2785 list_move_tail(&node->list, &list); 2786 BUG_ON(!node->pending); 2787 2788 if (!err) { 2789 ret = link_to_upper(trans, rc, node, path); 2790 if (ret < 0) 2791 err = ret; 2792 } 2793 } 2794 list_splice_init(&list, &cache->pending[level]); 2795 } 2796 return err; 2797 } 2798 2799 static void mark_block_processed(struct reloc_control *rc, 2800 u64 bytenr, u32 blocksize) 2801 { 2802 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2803 EXTENT_DIRTY, GFP_NOFS); 2804 } 2805 2806 static void __mark_block_processed(struct reloc_control *rc, 2807 struct backref_node *node) 2808 { 2809 u32 blocksize; 2810 if (node->level == 0 || 2811 in_block_group(node->bytenr, rc->block_group)) { 2812 blocksize = btrfs_level_size(rc->extent_root, node->level); 2813 mark_block_processed(rc, node->bytenr, blocksize); 2814 } 2815 node->processed = 1; 2816 } 2817 2818 /* 2819 * mark a block and all blocks directly/indirectly reference the block 2820 * as processed. 2821 */ 2822 static void update_processed_blocks(struct reloc_control *rc, 2823 struct backref_node *node) 2824 { 2825 struct backref_node *next = node; 2826 struct backref_edge *edge; 2827 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2828 int index = 0; 2829 2830 while (next) { 2831 cond_resched(); 2832 while (1) { 2833 if (next->processed) 2834 break; 2835 2836 __mark_block_processed(rc, next); 2837 2838 if (list_empty(&next->upper)) 2839 break; 2840 2841 edge = list_entry(next->upper.next, 2842 struct backref_edge, list[LOWER]); 2843 edges[index++] = edge; 2844 next = edge->node[UPPER]; 2845 } 2846 next = walk_down_backref(edges, &index); 2847 } 2848 } 2849 2850 static int tree_block_processed(u64 bytenr, u32 blocksize, 2851 struct reloc_control *rc) 2852 { 2853 if (test_range_bit(&rc->processed_blocks, bytenr, 2854 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2855 return 1; 2856 return 0; 2857 } 2858 2859 static int get_tree_block_key(struct reloc_control *rc, 2860 struct tree_block *block) 2861 { 2862 struct extent_buffer *eb; 2863 2864 BUG_ON(block->key_ready); 2865 eb = read_tree_block(rc->extent_root, block->bytenr, 2866 block->key.objectid, block->key.offset); 2867 if (!eb || !extent_buffer_uptodate(eb)) { 2868 free_extent_buffer(eb); 2869 return -EIO; 2870 } 2871 WARN_ON(btrfs_header_level(eb) != block->level); 2872 if (block->level == 0) 2873 btrfs_item_key_to_cpu(eb, &block->key, 0); 2874 else 2875 btrfs_node_key_to_cpu(eb, &block->key, 0); 2876 free_extent_buffer(eb); 2877 block->key_ready = 1; 2878 return 0; 2879 } 2880 2881 static int reada_tree_block(struct reloc_control *rc, 2882 struct tree_block *block) 2883 { 2884 BUG_ON(block->key_ready); 2885 if (block->key.type == BTRFS_METADATA_ITEM_KEY) 2886 readahead_tree_block(rc->extent_root, block->bytenr, 2887 block->key.objectid, 2888 rc->extent_root->leafsize); 2889 else 2890 readahead_tree_block(rc->extent_root, block->bytenr, 2891 block->key.objectid, block->key.offset); 2892 return 0; 2893 } 2894 2895 /* 2896 * helper function to relocate a tree block 2897 */ 2898 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2899 struct reloc_control *rc, 2900 struct backref_node *node, 2901 struct btrfs_key *key, 2902 struct btrfs_path *path) 2903 { 2904 struct btrfs_root *root; 2905 int ret = 0; 2906 2907 if (!node) 2908 return 0; 2909 2910 BUG_ON(node->processed); 2911 root = select_one_root(trans, node); 2912 if (root == ERR_PTR(-ENOENT)) { 2913 update_processed_blocks(rc, node); 2914 goto out; 2915 } 2916 2917 if (!root || root->ref_cows) { 2918 ret = reserve_metadata_space(trans, rc, node); 2919 if (ret) 2920 goto out; 2921 } 2922 2923 if (root) { 2924 if (root->ref_cows) { 2925 BUG_ON(node->new_bytenr); 2926 BUG_ON(!list_empty(&node->list)); 2927 btrfs_record_root_in_trans(trans, root); 2928 root = root->reloc_root; 2929 node->new_bytenr = root->node->start; 2930 node->root = root; 2931 list_add_tail(&node->list, &rc->backref_cache.changed); 2932 } else { 2933 path->lowest_level = node->level; 2934 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2935 btrfs_release_path(path); 2936 if (ret > 0) 2937 ret = 0; 2938 } 2939 if (!ret) 2940 update_processed_blocks(rc, node); 2941 } else { 2942 ret = do_relocation(trans, rc, node, key, path, 1); 2943 } 2944 out: 2945 if (ret || node->level == 0 || node->cowonly) 2946 remove_backref_node(&rc->backref_cache, node); 2947 return ret; 2948 } 2949 2950 /* 2951 * relocate a list of blocks 2952 */ 2953 static noinline_for_stack 2954 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2955 struct reloc_control *rc, struct rb_root *blocks) 2956 { 2957 struct backref_node *node; 2958 struct btrfs_path *path; 2959 struct tree_block *block; 2960 struct rb_node *rb_node; 2961 int ret; 2962 int err = 0; 2963 2964 path = btrfs_alloc_path(); 2965 if (!path) { 2966 err = -ENOMEM; 2967 goto out_free_blocks; 2968 } 2969 2970 rb_node = rb_first(blocks); 2971 while (rb_node) { 2972 block = rb_entry(rb_node, struct tree_block, rb_node); 2973 if (!block->key_ready) 2974 reada_tree_block(rc, block); 2975 rb_node = rb_next(rb_node); 2976 } 2977 2978 rb_node = rb_first(blocks); 2979 while (rb_node) { 2980 block = rb_entry(rb_node, struct tree_block, rb_node); 2981 if (!block->key_ready) { 2982 err = get_tree_block_key(rc, block); 2983 if (err) 2984 goto out_free_path; 2985 } 2986 rb_node = rb_next(rb_node); 2987 } 2988 2989 rb_node = rb_first(blocks); 2990 while (rb_node) { 2991 block = rb_entry(rb_node, struct tree_block, rb_node); 2992 2993 node = build_backref_tree(rc, &block->key, 2994 block->level, block->bytenr); 2995 if (IS_ERR(node)) { 2996 err = PTR_ERR(node); 2997 goto out; 2998 } 2999 3000 ret = relocate_tree_block(trans, rc, node, &block->key, 3001 path); 3002 if (ret < 0) { 3003 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3004 err = ret; 3005 goto out; 3006 } 3007 rb_node = rb_next(rb_node); 3008 } 3009 out: 3010 err = finish_pending_nodes(trans, rc, path, err); 3011 3012 out_free_path: 3013 btrfs_free_path(path); 3014 out_free_blocks: 3015 free_block_list(blocks); 3016 return err; 3017 } 3018 3019 static noinline_for_stack 3020 int prealloc_file_extent_cluster(struct inode *inode, 3021 struct file_extent_cluster *cluster) 3022 { 3023 u64 alloc_hint = 0; 3024 u64 start; 3025 u64 end; 3026 u64 offset = BTRFS_I(inode)->index_cnt; 3027 u64 num_bytes; 3028 int nr = 0; 3029 int ret = 0; 3030 3031 BUG_ON(cluster->start != cluster->boundary[0]); 3032 mutex_lock(&inode->i_mutex); 3033 3034 ret = btrfs_check_data_free_space(inode, cluster->end + 3035 1 - cluster->start); 3036 if (ret) 3037 goto out; 3038 3039 while (nr < cluster->nr) { 3040 start = cluster->boundary[nr] - offset; 3041 if (nr + 1 < cluster->nr) 3042 end = cluster->boundary[nr + 1] - 1 - offset; 3043 else 3044 end = cluster->end - offset; 3045 3046 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3047 num_bytes = end + 1 - start; 3048 ret = btrfs_prealloc_file_range(inode, 0, start, 3049 num_bytes, num_bytes, 3050 end + 1, &alloc_hint); 3051 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3052 if (ret) 3053 break; 3054 nr++; 3055 } 3056 btrfs_free_reserved_data_space(inode, cluster->end + 3057 1 - cluster->start); 3058 out: 3059 mutex_unlock(&inode->i_mutex); 3060 return ret; 3061 } 3062 3063 static noinline_for_stack 3064 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3065 u64 block_start) 3066 { 3067 struct btrfs_root *root = BTRFS_I(inode)->root; 3068 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3069 struct extent_map *em; 3070 int ret = 0; 3071 3072 em = alloc_extent_map(); 3073 if (!em) 3074 return -ENOMEM; 3075 3076 em->start = start; 3077 em->len = end + 1 - start; 3078 em->block_len = em->len; 3079 em->block_start = block_start; 3080 em->bdev = root->fs_info->fs_devices->latest_bdev; 3081 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3082 3083 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3084 while (1) { 3085 write_lock(&em_tree->lock); 3086 ret = add_extent_mapping(em_tree, em, 0); 3087 write_unlock(&em_tree->lock); 3088 if (ret != -EEXIST) { 3089 free_extent_map(em); 3090 break; 3091 } 3092 btrfs_drop_extent_cache(inode, start, end, 0); 3093 } 3094 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3095 return ret; 3096 } 3097 3098 static int relocate_file_extent_cluster(struct inode *inode, 3099 struct file_extent_cluster *cluster) 3100 { 3101 u64 page_start; 3102 u64 page_end; 3103 u64 offset = BTRFS_I(inode)->index_cnt; 3104 unsigned long index; 3105 unsigned long last_index; 3106 struct page *page; 3107 struct file_ra_state *ra; 3108 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3109 int nr = 0; 3110 int ret = 0; 3111 3112 if (!cluster->nr) 3113 return 0; 3114 3115 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3116 if (!ra) 3117 return -ENOMEM; 3118 3119 ret = prealloc_file_extent_cluster(inode, cluster); 3120 if (ret) 3121 goto out; 3122 3123 file_ra_state_init(ra, inode->i_mapping); 3124 3125 ret = setup_extent_mapping(inode, cluster->start - offset, 3126 cluster->end - offset, cluster->start); 3127 if (ret) 3128 goto out; 3129 3130 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3131 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3132 while (index <= last_index) { 3133 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3134 if (ret) 3135 goto out; 3136 3137 page = find_lock_page(inode->i_mapping, index); 3138 if (!page) { 3139 page_cache_sync_readahead(inode->i_mapping, 3140 ra, NULL, index, 3141 last_index + 1 - index); 3142 page = find_or_create_page(inode->i_mapping, index, 3143 mask); 3144 if (!page) { 3145 btrfs_delalloc_release_metadata(inode, 3146 PAGE_CACHE_SIZE); 3147 ret = -ENOMEM; 3148 goto out; 3149 } 3150 } 3151 3152 if (PageReadahead(page)) { 3153 page_cache_async_readahead(inode->i_mapping, 3154 ra, NULL, page, index, 3155 last_index + 1 - index); 3156 } 3157 3158 if (!PageUptodate(page)) { 3159 btrfs_readpage(NULL, page); 3160 lock_page(page); 3161 if (!PageUptodate(page)) { 3162 unlock_page(page); 3163 page_cache_release(page); 3164 btrfs_delalloc_release_metadata(inode, 3165 PAGE_CACHE_SIZE); 3166 ret = -EIO; 3167 goto out; 3168 } 3169 } 3170 3171 page_start = page_offset(page); 3172 page_end = page_start + PAGE_CACHE_SIZE - 1; 3173 3174 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3175 3176 set_page_extent_mapped(page); 3177 3178 if (nr < cluster->nr && 3179 page_start + offset == cluster->boundary[nr]) { 3180 set_extent_bits(&BTRFS_I(inode)->io_tree, 3181 page_start, page_end, 3182 EXTENT_BOUNDARY, GFP_NOFS); 3183 nr++; 3184 } 3185 3186 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3187 set_page_dirty(page); 3188 3189 unlock_extent(&BTRFS_I(inode)->io_tree, 3190 page_start, page_end); 3191 unlock_page(page); 3192 page_cache_release(page); 3193 3194 index++; 3195 balance_dirty_pages_ratelimited(inode->i_mapping); 3196 btrfs_throttle(BTRFS_I(inode)->root); 3197 } 3198 WARN_ON(nr != cluster->nr); 3199 out: 3200 kfree(ra); 3201 return ret; 3202 } 3203 3204 static noinline_for_stack 3205 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3206 struct file_extent_cluster *cluster) 3207 { 3208 int ret; 3209 3210 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3211 ret = relocate_file_extent_cluster(inode, cluster); 3212 if (ret) 3213 return ret; 3214 cluster->nr = 0; 3215 } 3216 3217 if (!cluster->nr) 3218 cluster->start = extent_key->objectid; 3219 else 3220 BUG_ON(cluster->nr >= MAX_EXTENTS); 3221 cluster->end = extent_key->objectid + extent_key->offset - 1; 3222 cluster->boundary[cluster->nr] = extent_key->objectid; 3223 cluster->nr++; 3224 3225 if (cluster->nr >= MAX_EXTENTS) { 3226 ret = relocate_file_extent_cluster(inode, cluster); 3227 if (ret) 3228 return ret; 3229 cluster->nr = 0; 3230 } 3231 return 0; 3232 } 3233 3234 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3235 static int get_ref_objectid_v0(struct reloc_control *rc, 3236 struct btrfs_path *path, 3237 struct btrfs_key *extent_key, 3238 u64 *ref_objectid, int *path_change) 3239 { 3240 struct btrfs_key key; 3241 struct extent_buffer *leaf; 3242 struct btrfs_extent_ref_v0 *ref0; 3243 int ret; 3244 int slot; 3245 3246 leaf = path->nodes[0]; 3247 slot = path->slots[0]; 3248 while (1) { 3249 if (slot >= btrfs_header_nritems(leaf)) { 3250 ret = btrfs_next_leaf(rc->extent_root, path); 3251 if (ret < 0) 3252 return ret; 3253 BUG_ON(ret > 0); 3254 leaf = path->nodes[0]; 3255 slot = path->slots[0]; 3256 if (path_change) 3257 *path_change = 1; 3258 } 3259 btrfs_item_key_to_cpu(leaf, &key, slot); 3260 if (key.objectid != extent_key->objectid) 3261 return -ENOENT; 3262 3263 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3264 slot++; 3265 continue; 3266 } 3267 ref0 = btrfs_item_ptr(leaf, slot, 3268 struct btrfs_extent_ref_v0); 3269 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3270 break; 3271 } 3272 return 0; 3273 } 3274 #endif 3275 3276 /* 3277 * helper to add a tree block to the list. 3278 * the major work is getting the generation and level of the block 3279 */ 3280 static int add_tree_block(struct reloc_control *rc, 3281 struct btrfs_key *extent_key, 3282 struct btrfs_path *path, 3283 struct rb_root *blocks) 3284 { 3285 struct extent_buffer *eb; 3286 struct btrfs_extent_item *ei; 3287 struct btrfs_tree_block_info *bi; 3288 struct tree_block *block; 3289 struct rb_node *rb_node; 3290 u32 item_size; 3291 int level = -1; 3292 u64 generation; 3293 3294 eb = path->nodes[0]; 3295 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3296 3297 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3298 item_size >= sizeof(*ei) + sizeof(*bi)) { 3299 ei = btrfs_item_ptr(eb, path->slots[0], 3300 struct btrfs_extent_item); 3301 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3302 bi = (struct btrfs_tree_block_info *)(ei + 1); 3303 level = btrfs_tree_block_level(eb, bi); 3304 } else { 3305 level = (int)extent_key->offset; 3306 } 3307 generation = btrfs_extent_generation(eb, ei); 3308 } else { 3309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3310 u64 ref_owner; 3311 int ret; 3312 3313 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3314 ret = get_ref_objectid_v0(rc, path, extent_key, 3315 &ref_owner, NULL); 3316 if (ret < 0) 3317 return ret; 3318 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3319 level = (int)ref_owner; 3320 /* FIXME: get real generation */ 3321 generation = 0; 3322 #else 3323 BUG(); 3324 #endif 3325 } 3326 3327 btrfs_release_path(path); 3328 3329 BUG_ON(level == -1); 3330 3331 block = kmalloc(sizeof(*block), GFP_NOFS); 3332 if (!block) 3333 return -ENOMEM; 3334 3335 block->bytenr = extent_key->objectid; 3336 block->key.objectid = rc->extent_root->leafsize; 3337 block->key.offset = generation; 3338 block->level = level; 3339 block->key_ready = 0; 3340 3341 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3342 if (rb_node) 3343 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3344 3345 return 0; 3346 } 3347 3348 /* 3349 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3350 */ 3351 static int __add_tree_block(struct reloc_control *rc, 3352 u64 bytenr, u32 blocksize, 3353 struct rb_root *blocks) 3354 { 3355 struct btrfs_path *path; 3356 struct btrfs_key key; 3357 int ret; 3358 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3359 SKINNY_METADATA); 3360 3361 if (tree_block_processed(bytenr, blocksize, rc)) 3362 return 0; 3363 3364 if (tree_search(blocks, bytenr)) 3365 return 0; 3366 3367 path = btrfs_alloc_path(); 3368 if (!path) 3369 return -ENOMEM; 3370 again: 3371 key.objectid = bytenr; 3372 if (skinny) { 3373 key.type = BTRFS_METADATA_ITEM_KEY; 3374 key.offset = (u64)-1; 3375 } else { 3376 key.type = BTRFS_EXTENT_ITEM_KEY; 3377 key.offset = blocksize; 3378 } 3379 3380 path->search_commit_root = 1; 3381 path->skip_locking = 1; 3382 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3383 if (ret < 0) 3384 goto out; 3385 3386 if (ret > 0 && skinny) { 3387 if (path->slots[0]) { 3388 path->slots[0]--; 3389 btrfs_item_key_to_cpu(path->nodes[0], &key, 3390 path->slots[0]); 3391 if (key.objectid == bytenr && 3392 (key.type == BTRFS_METADATA_ITEM_KEY || 3393 (key.type == BTRFS_EXTENT_ITEM_KEY && 3394 key.offset == blocksize))) 3395 ret = 0; 3396 } 3397 3398 if (ret) { 3399 skinny = false; 3400 btrfs_release_path(path); 3401 goto again; 3402 } 3403 } 3404 BUG_ON(ret); 3405 3406 ret = add_tree_block(rc, &key, path, blocks); 3407 out: 3408 btrfs_free_path(path); 3409 return ret; 3410 } 3411 3412 /* 3413 * helper to check if the block use full backrefs for pointers in it 3414 */ 3415 static int block_use_full_backref(struct reloc_control *rc, 3416 struct extent_buffer *eb) 3417 { 3418 u64 flags; 3419 int ret; 3420 3421 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3422 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3423 return 1; 3424 3425 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3426 eb->start, btrfs_header_level(eb), 1, 3427 NULL, &flags); 3428 BUG_ON(ret); 3429 3430 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3431 ret = 1; 3432 else 3433 ret = 0; 3434 return ret; 3435 } 3436 3437 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3438 struct inode *inode, u64 ino) 3439 { 3440 struct btrfs_key key; 3441 struct btrfs_root *root = fs_info->tree_root; 3442 struct btrfs_trans_handle *trans; 3443 int ret = 0; 3444 3445 if (inode) 3446 goto truncate; 3447 3448 key.objectid = ino; 3449 key.type = BTRFS_INODE_ITEM_KEY; 3450 key.offset = 0; 3451 3452 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3453 if (IS_ERR(inode) || is_bad_inode(inode)) { 3454 if (!IS_ERR(inode)) 3455 iput(inode); 3456 return -ENOENT; 3457 } 3458 3459 truncate: 3460 ret = btrfs_check_trunc_cache_free_space(root, 3461 &fs_info->global_block_rsv); 3462 if (ret) 3463 goto out; 3464 3465 trans = btrfs_join_transaction(root); 3466 if (IS_ERR(trans)) { 3467 ret = PTR_ERR(trans); 3468 goto out; 3469 } 3470 3471 ret = btrfs_truncate_free_space_cache(root, trans, inode); 3472 3473 btrfs_end_transaction(trans, root); 3474 btrfs_btree_balance_dirty(root); 3475 out: 3476 iput(inode); 3477 return ret; 3478 } 3479 3480 /* 3481 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3482 * this function scans fs tree to find blocks reference the data extent 3483 */ 3484 static int find_data_references(struct reloc_control *rc, 3485 struct btrfs_key *extent_key, 3486 struct extent_buffer *leaf, 3487 struct btrfs_extent_data_ref *ref, 3488 struct rb_root *blocks) 3489 { 3490 struct btrfs_path *path; 3491 struct tree_block *block; 3492 struct btrfs_root *root; 3493 struct btrfs_file_extent_item *fi; 3494 struct rb_node *rb_node; 3495 struct btrfs_key key; 3496 u64 ref_root; 3497 u64 ref_objectid; 3498 u64 ref_offset; 3499 u32 ref_count; 3500 u32 nritems; 3501 int err = 0; 3502 int added = 0; 3503 int counted; 3504 int ret; 3505 3506 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3507 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3508 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3509 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3510 3511 /* 3512 * This is an extent belonging to the free space cache, lets just delete 3513 * it and redo the search. 3514 */ 3515 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3516 ret = delete_block_group_cache(rc->extent_root->fs_info, 3517 NULL, ref_objectid); 3518 if (ret != -ENOENT) 3519 return ret; 3520 ret = 0; 3521 } 3522 3523 path = btrfs_alloc_path(); 3524 if (!path) 3525 return -ENOMEM; 3526 path->reada = 1; 3527 3528 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3529 if (IS_ERR(root)) { 3530 err = PTR_ERR(root); 3531 goto out; 3532 } 3533 3534 key.objectid = ref_objectid; 3535 key.type = BTRFS_EXTENT_DATA_KEY; 3536 if (ref_offset > ((u64)-1 << 32)) 3537 key.offset = 0; 3538 else 3539 key.offset = ref_offset; 3540 3541 path->search_commit_root = 1; 3542 path->skip_locking = 1; 3543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3544 if (ret < 0) { 3545 err = ret; 3546 goto out; 3547 } 3548 3549 leaf = path->nodes[0]; 3550 nritems = btrfs_header_nritems(leaf); 3551 /* 3552 * the references in tree blocks that use full backrefs 3553 * are not counted in 3554 */ 3555 if (block_use_full_backref(rc, leaf)) 3556 counted = 0; 3557 else 3558 counted = 1; 3559 rb_node = tree_search(blocks, leaf->start); 3560 if (rb_node) { 3561 if (counted) 3562 added = 1; 3563 else 3564 path->slots[0] = nritems; 3565 } 3566 3567 while (ref_count > 0) { 3568 while (path->slots[0] >= nritems) { 3569 ret = btrfs_next_leaf(root, path); 3570 if (ret < 0) { 3571 err = ret; 3572 goto out; 3573 } 3574 if (WARN_ON(ret > 0)) 3575 goto out; 3576 3577 leaf = path->nodes[0]; 3578 nritems = btrfs_header_nritems(leaf); 3579 added = 0; 3580 3581 if (block_use_full_backref(rc, leaf)) 3582 counted = 0; 3583 else 3584 counted = 1; 3585 rb_node = tree_search(blocks, leaf->start); 3586 if (rb_node) { 3587 if (counted) 3588 added = 1; 3589 else 3590 path->slots[0] = nritems; 3591 } 3592 } 3593 3594 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3595 if (WARN_ON(key.objectid != ref_objectid || 3596 key.type != BTRFS_EXTENT_DATA_KEY)) 3597 break; 3598 3599 fi = btrfs_item_ptr(leaf, path->slots[0], 3600 struct btrfs_file_extent_item); 3601 3602 if (btrfs_file_extent_type(leaf, fi) == 3603 BTRFS_FILE_EXTENT_INLINE) 3604 goto next; 3605 3606 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3607 extent_key->objectid) 3608 goto next; 3609 3610 key.offset -= btrfs_file_extent_offset(leaf, fi); 3611 if (key.offset != ref_offset) 3612 goto next; 3613 3614 if (counted) 3615 ref_count--; 3616 if (added) 3617 goto next; 3618 3619 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3620 block = kmalloc(sizeof(*block), GFP_NOFS); 3621 if (!block) { 3622 err = -ENOMEM; 3623 break; 3624 } 3625 block->bytenr = leaf->start; 3626 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3627 block->level = 0; 3628 block->key_ready = 1; 3629 rb_node = tree_insert(blocks, block->bytenr, 3630 &block->rb_node); 3631 if (rb_node) 3632 backref_tree_panic(rb_node, -EEXIST, 3633 block->bytenr); 3634 } 3635 if (counted) 3636 added = 1; 3637 else 3638 path->slots[0] = nritems; 3639 next: 3640 path->slots[0]++; 3641 3642 } 3643 out: 3644 btrfs_free_path(path); 3645 return err; 3646 } 3647 3648 /* 3649 * helper to find all tree blocks that reference a given data extent 3650 */ 3651 static noinline_for_stack 3652 int add_data_references(struct reloc_control *rc, 3653 struct btrfs_key *extent_key, 3654 struct btrfs_path *path, 3655 struct rb_root *blocks) 3656 { 3657 struct btrfs_key key; 3658 struct extent_buffer *eb; 3659 struct btrfs_extent_data_ref *dref; 3660 struct btrfs_extent_inline_ref *iref; 3661 unsigned long ptr; 3662 unsigned long end; 3663 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3664 int ret = 0; 3665 int err = 0; 3666 3667 eb = path->nodes[0]; 3668 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3669 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3670 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3671 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3672 ptr = end; 3673 else 3674 #endif 3675 ptr += sizeof(struct btrfs_extent_item); 3676 3677 while (ptr < end) { 3678 iref = (struct btrfs_extent_inline_ref *)ptr; 3679 key.type = btrfs_extent_inline_ref_type(eb, iref); 3680 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3681 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3682 ret = __add_tree_block(rc, key.offset, blocksize, 3683 blocks); 3684 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3685 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3686 ret = find_data_references(rc, extent_key, 3687 eb, dref, blocks); 3688 } else { 3689 BUG(); 3690 } 3691 if (ret) { 3692 err = ret; 3693 goto out; 3694 } 3695 ptr += btrfs_extent_inline_ref_size(key.type); 3696 } 3697 WARN_ON(ptr > end); 3698 3699 while (1) { 3700 cond_resched(); 3701 eb = path->nodes[0]; 3702 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3703 ret = btrfs_next_leaf(rc->extent_root, path); 3704 if (ret < 0) { 3705 err = ret; 3706 break; 3707 } 3708 if (ret > 0) 3709 break; 3710 eb = path->nodes[0]; 3711 } 3712 3713 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3714 if (key.objectid != extent_key->objectid) 3715 break; 3716 3717 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3718 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3719 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3720 #else 3721 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3722 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3723 #endif 3724 ret = __add_tree_block(rc, key.offset, blocksize, 3725 blocks); 3726 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3727 dref = btrfs_item_ptr(eb, path->slots[0], 3728 struct btrfs_extent_data_ref); 3729 ret = find_data_references(rc, extent_key, 3730 eb, dref, blocks); 3731 } else { 3732 ret = 0; 3733 } 3734 if (ret) { 3735 err = ret; 3736 break; 3737 } 3738 path->slots[0]++; 3739 } 3740 out: 3741 btrfs_release_path(path); 3742 if (err) 3743 free_block_list(blocks); 3744 return err; 3745 } 3746 3747 /* 3748 * helper to find next unprocessed extent 3749 */ 3750 static noinline_for_stack 3751 int find_next_extent(struct btrfs_trans_handle *trans, 3752 struct reloc_control *rc, struct btrfs_path *path, 3753 struct btrfs_key *extent_key) 3754 { 3755 struct btrfs_key key; 3756 struct extent_buffer *leaf; 3757 u64 start, end, last; 3758 int ret; 3759 3760 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3761 while (1) { 3762 cond_resched(); 3763 if (rc->search_start >= last) { 3764 ret = 1; 3765 break; 3766 } 3767 3768 key.objectid = rc->search_start; 3769 key.type = BTRFS_EXTENT_ITEM_KEY; 3770 key.offset = 0; 3771 3772 path->search_commit_root = 1; 3773 path->skip_locking = 1; 3774 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3775 0, 0); 3776 if (ret < 0) 3777 break; 3778 next: 3779 leaf = path->nodes[0]; 3780 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3781 ret = btrfs_next_leaf(rc->extent_root, path); 3782 if (ret != 0) 3783 break; 3784 leaf = path->nodes[0]; 3785 } 3786 3787 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3788 if (key.objectid >= last) { 3789 ret = 1; 3790 break; 3791 } 3792 3793 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3794 key.type != BTRFS_METADATA_ITEM_KEY) { 3795 path->slots[0]++; 3796 goto next; 3797 } 3798 3799 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3800 key.objectid + key.offset <= rc->search_start) { 3801 path->slots[0]++; 3802 goto next; 3803 } 3804 3805 if (key.type == BTRFS_METADATA_ITEM_KEY && 3806 key.objectid + rc->extent_root->leafsize <= 3807 rc->search_start) { 3808 path->slots[0]++; 3809 goto next; 3810 } 3811 3812 ret = find_first_extent_bit(&rc->processed_blocks, 3813 key.objectid, &start, &end, 3814 EXTENT_DIRTY, NULL); 3815 3816 if (ret == 0 && start <= key.objectid) { 3817 btrfs_release_path(path); 3818 rc->search_start = end + 1; 3819 } else { 3820 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3821 rc->search_start = key.objectid + key.offset; 3822 else 3823 rc->search_start = key.objectid + 3824 rc->extent_root->leafsize; 3825 memcpy(extent_key, &key, sizeof(key)); 3826 return 0; 3827 } 3828 } 3829 btrfs_release_path(path); 3830 return ret; 3831 } 3832 3833 static void set_reloc_control(struct reloc_control *rc) 3834 { 3835 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3836 3837 mutex_lock(&fs_info->reloc_mutex); 3838 fs_info->reloc_ctl = rc; 3839 mutex_unlock(&fs_info->reloc_mutex); 3840 } 3841 3842 static void unset_reloc_control(struct reloc_control *rc) 3843 { 3844 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3845 3846 mutex_lock(&fs_info->reloc_mutex); 3847 fs_info->reloc_ctl = NULL; 3848 mutex_unlock(&fs_info->reloc_mutex); 3849 } 3850 3851 static int check_extent_flags(u64 flags) 3852 { 3853 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3854 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3855 return 1; 3856 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3857 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3858 return 1; 3859 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3860 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3861 return 1; 3862 return 0; 3863 } 3864 3865 static noinline_for_stack 3866 int prepare_to_relocate(struct reloc_control *rc) 3867 { 3868 struct btrfs_trans_handle *trans; 3869 3870 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3871 BTRFS_BLOCK_RSV_TEMP); 3872 if (!rc->block_rsv) 3873 return -ENOMEM; 3874 3875 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3876 rc->search_start = rc->block_group->key.objectid; 3877 rc->extents_found = 0; 3878 rc->nodes_relocated = 0; 3879 rc->merging_rsv_size = 0; 3880 rc->reserved_bytes = 0; 3881 rc->block_rsv->size = rc->extent_root->nodesize * 3882 RELOCATION_RESERVED_NODES; 3883 3884 rc->create_reloc_tree = 1; 3885 set_reloc_control(rc); 3886 3887 trans = btrfs_join_transaction(rc->extent_root); 3888 if (IS_ERR(trans)) { 3889 unset_reloc_control(rc); 3890 /* 3891 * extent tree is not a ref_cow tree and has no reloc_root to 3892 * cleanup. And callers are responsible to free the above 3893 * block rsv. 3894 */ 3895 return PTR_ERR(trans); 3896 } 3897 btrfs_commit_transaction(trans, rc->extent_root); 3898 return 0; 3899 } 3900 3901 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3902 { 3903 struct rb_root blocks = RB_ROOT; 3904 struct btrfs_key key; 3905 struct btrfs_trans_handle *trans = NULL; 3906 struct btrfs_path *path; 3907 struct btrfs_extent_item *ei; 3908 u64 flags; 3909 u32 item_size; 3910 int ret; 3911 int err = 0; 3912 int progress = 0; 3913 3914 path = btrfs_alloc_path(); 3915 if (!path) 3916 return -ENOMEM; 3917 path->reada = 1; 3918 3919 ret = prepare_to_relocate(rc); 3920 if (ret) { 3921 err = ret; 3922 goto out_free; 3923 } 3924 3925 while (1) { 3926 rc->reserved_bytes = 0; 3927 ret = btrfs_block_rsv_refill(rc->extent_root, 3928 rc->block_rsv, rc->block_rsv->size, 3929 BTRFS_RESERVE_FLUSH_ALL); 3930 if (ret) { 3931 err = ret; 3932 break; 3933 } 3934 progress++; 3935 trans = btrfs_start_transaction(rc->extent_root, 0); 3936 if (IS_ERR(trans)) { 3937 err = PTR_ERR(trans); 3938 trans = NULL; 3939 break; 3940 } 3941 restart: 3942 if (update_backref_cache(trans, &rc->backref_cache)) { 3943 btrfs_end_transaction(trans, rc->extent_root); 3944 continue; 3945 } 3946 3947 ret = find_next_extent(trans, rc, path, &key); 3948 if (ret < 0) 3949 err = ret; 3950 if (ret != 0) 3951 break; 3952 3953 rc->extents_found++; 3954 3955 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3956 struct btrfs_extent_item); 3957 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3958 if (item_size >= sizeof(*ei)) { 3959 flags = btrfs_extent_flags(path->nodes[0], ei); 3960 ret = check_extent_flags(flags); 3961 BUG_ON(ret); 3962 3963 } else { 3964 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3965 u64 ref_owner; 3966 int path_change = 0; 3967 3968 BUG_ON(item_size != 3969 sizeof(struct btrfs_extent_item_v0)); 3970 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3971 &path_change); 3972 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3973 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3974 else 3975 flags = BTRFS_EXTENT_FLAG_DATA; 3976 3977 if (path_change) { 3978 btrfs_release_path(path); 3979 3980 path->search_commit_root = 1; 3981 path->skip_locking = 1; 3982 ret = btrfs_search_slot(NULL, rc->extent_root, 3983 &key, path, 0, 0); 3984 if (ret < 0) { 3985 err = ret; 3986 break; 3987 } 3988 BUG_ON(ret > 0); 3989 } 3990 #else 3991 BUG(); 3992 #endif 3993 } 3994 3995 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3996 ret = add_tree_block(rc, &key, path, &blocks); 3997 } else if (rc->stage == UPDATE_DATA_PTRS && 3998 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3999 ret = add_data_references(rc, &key, path, &blocks); 4000 } else { 4001 btrfs_release_path(path); 4002 ret = 0; 4003 } 4004 if (ret < 0) { 4005 err = ret; 4006 break; 4007 } 4008 4009 if (!RB_EMPTY_ROOT(&blocks)) { 4010 ret = relocate_tree_blocks(trans, rc, &blocks); 4011 if (ret < 0) { 4012 /* 4013 * if we fail to relocate tree blocks, force to update 4014 * backref cache when committing transaction. 4015 */ 4016 rc->backref_cache.last_trans = trans->transid - 1; 4017 4018 if (ret != -EAGAIN) { 4019 err = ret; 4020 break; 4021 } 4022 rc->extents_found--; 4023 rc->search_start = key.objectid; 4024 } 4025 } 4026 4027 btrfs_end_transaction_throttle(trans, rc->extent_root); 4028 btrfs_btree_balance_dirty(rc->extent_root); 4029 trans = NULL; 4030 4031 if (rc->stage == MOVE_DATA_EXTENTS && 4032 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4033 rc->found_file_extent = 1; 4034 ret = relocate_data_extent(rc->data_inode, 4035 &key, &rc->cluster); 4036 if (ret < 0) { 4037 err = ret; 4038 break; 4039 } 4040 } 4041 } 4042 if (trans && progress && err == -ENOSPC) { 4043 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4044 rc->block_group->flags); 4045 if (ret == 0) { 4046 err = 0; 4047 progress = 0; 4048 goto restart; 4049 } 4050 } 4051 4052 btrfs_release_path(path); 4053 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4054 GFP_NOFS); 4055 4056 if (trans) { 4057 btrfs_end_transaction_throttle(trans, rc->extent_root); 4058 btrfs_btree_balance_dirty(rc->extent_root); 4059 } 4060 4061 if (!err) { 4062 ret = relocate_file_extent_cluster(rc->data_inode, 4063 &rc->cluster); 4064 if (ret < 0) 4065 err = ret; 4066 } 4067 4068 rc->create_reloc_tree = 0; 4069 set_reloc_control(rc); 4070 4071 backref_cache_cleanup(&rc->backref_cache); 4072 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4073 4074 err = prepare_to_merge(rc, err); 4075 4076 merge_reloc_roots(rc); 4077 4078 rc->merge_reloc_tree = 0; 4079 unset_reloc_control(rc); 4080 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4081 4082 /* get rid of pinned extents */ 4083 trans = btrfs_join_transaction(rc->extent_root); 4084 if (IS_ERR(trans)) 4085 err = PTR_ERR(trans); 4086 else 4087 btrfs_commit_transaction(trans, rc->extent_root); 4088 out_free: 4089 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4090 btrfs_free_path(path); 4091 return err; 4092 } 4093 4094 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4095 struct btrfs_root *root, u64 objectid) 4096 { 4097 struct btrfs_path *path; 4098 struct btrfs_inode_item *item; 4099 struct extent_buffer *leaf; 4100 int ret; 4101 4102 path = btrfs_alloc_path(); 4103 if (!path) 4104 return -ENOMEM; 4105 4106 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4107 if (ret) 4108 goto out; 4109 4110 leaf = path->nodes[0]; 4111 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4112 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4113 btrfs_set_inode_generation(leaf, item, 1); 4114 btrfs_set_inode_size(leaf, item, 0); 4115 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4116 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4117 BTRFS_INODE_PREALLOC); 4118 btrfs_mark_buffer_dirty(leaf); 4119 btrfs_release_path(path); 4120 out: 4121 btrfs_free_path(path); 4122 return ret; 4123 } 4124 4125 /* 4126 * helper to create inode for data relocation. 4127 * the inode is in data relocation tree and its link count is 0 4128 */ 4129 static noinline_for_stack 4130 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4131 struct btrfs_block_group_cache *group) 4132 { 4133 struct inode *inode = NULL; 4134 struct btrfs_trans_handle *trans; 4135 struct btrfs_root *root; 4136 struct btrfs_key key; 4137 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4138 int err = 0; 4139 4140 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4141 if (IS_ERR(root)) 4142 return ERR_CAST(root); 4143 4144 trans = btrfs_start_transaction(root, 6); 4145 if (IS_ERR(trans)) 4146 return ERR_CAST(trans); 4147 4148 err = btrfs_find_free_objectid(root, &objectid); 4149 if (err) 4150 goto out; 4151 4152 err = __insert_orphan_inode(trans, root, objectid); 4153 BUG_ON(err); 4154 4155 key.objectid = objectid; 4156 key.type = BTRFS_INODE_ITEM_KEY; 4157 key.offset = 0; 4158 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4159 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4160 BTRFS_I(inode)->index_cnt = group->key.objectid; 4161 4162 err = btrfs_orphan_add(trans, inode); 4163 out: 4164 btrfs_end_transaction(trans, root); 4165 btrfs_btree_balance_dirty(root); 4166 if (err) { 4167 if (inode) 4168 iput(inode); 4169 inode = ERR_PTR(err); 4170 } 4171 return inode; 4172 } 4173 4174 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4175 { 4176 struct reloc_control *rc; 4177 4178 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4179 if (!rc) 4180 return NULL; 4181 4182 INIT_LIST_HEAD(&rc->reloc_roots); 4183 backref_cache_init(&rc->backref_cache); 4184 mapping_tree_init(&rc->reloc_root_tree); 4185 extent_io_tree_init(&rc->processed_blocks, 4186 fs_info->btree_inode->i_mapping); 4187 return rc; 4188 } 4189 4190 /* 4191 * function to relocate all extents in a block group. 4192 */ 4193 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4194 { 4195 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4196 struct reloc_control *rc; 4197 struct inode *inode; 4198 struct btrfs_path *path; 4199 int ret; 4200 int rw = 0; 4201 int err = 0; 4202 4203 rc = alloc_reloc_control(fs_info); 4204 if (!rc) 4205 return -ENOMEM; 4206 4207 rc->extent_root = extent_root; 4208 4209 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4210 BUG_ON(!rc->block_group); 4211 4212 if (!rc->block_group->ro) { 4213 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4214 if (ret) { 4215 err = ret; 4216 goto out; 4217 } 4218 rw = 1; 4219 } 4220 4221 path = btrfs_alloc_path(); 4222 if (!path) { 4223 err = -ENOMEM; 4224 goto out; 4225 } 4226 4227 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4228 path); 4229 btrfs_free_path(path); 4230 4231 if (!IS_ERR(inode)) 4232 ret = delete_block_group_cache(fs_info, inode, 0); 4233 else 4234 ret = PTR_ERR(inode); 4235 4236 if (ret && ret != -ENOENT) { 4237 err = ret; 4238 goto out; 4239 } 4240 4241 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4242 if (IS_ERR(rc->data_inode)) { 4243 err = PTR_ERR(rc->data_inode); 4244 rc->data_inode = NULL; 4245 goto out; 4246 } 4247 4248 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu", 4249 rc->block_group->key.objectid, rc->block_group->flags); 4250 4251 ret = btrfs_start_delalloc_roots(fs_info, 0); 4252 if (ret < 0) { 4253 err = ret; 4254 goto out; 4255 } 4256 btrfs_wait_ordered_roots(fs_info, -1); 4257 4258 while (1) { 4259 mutex_lock(&fs_info->cleaner_mutex); 4260 ret = relocate_block_group(rc); 4261 mutex_unlock(&fs_info->cleaner_mutex); 4262 if (ret < 0) { 4263 err = ret; 4264 goto out; 4265 } 4266 4267 if (rc->extents_found == 0) 4268 break; 4269 4270 btrfs_info(extent_root->fs_info, "found %llu extents", 4271 rc->extents_found); 4272 4273 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4274 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4275 (u64)-1); 4276 if (ret) { 4277 err = ret; 4278 goto out; 4279 } 4280 invalidate_mapping_pages(rc->data_inode->i_mapping, 4281 0, -1); 4282 rc->stage = UPDATE_DATA_PTRS; 4283 } 4284 } 4285 4286 WARN_ON(rc->block_group->pinned > 0); 4287 WARN_ON(rc->block_group->reserved > 0); 4288 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4289 out: 4290 if (err && rw) 4291 btrfs_set_block_group_rw(extent_root, rc->block_group); 4292 iput(rc->data_inode); 4293 btrfs_put_block_group(rc->block_group); 4294 kfree(rc); 4295 return err; 4296 } 4297 4298 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4299 { 4300 struct btrfs_trans_handle *trans; 4301 int ret, err; 4302 4303 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4304 if (IS_ERR(trans)) 4305 return PTR_ERR(trans); 4306 4307 memset(&root->root_item.drop_progress, 0, 4308 sizeof(root->root_item.drop_progress)); 4309 root->root_item.drop_level = 0; 4310 btrfs_set_root_refs(&root->root_item, 0); 4311 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4312 &root->root_key, &root->root_item); 4313 4314 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4315 if (err) 4316 return err; 4317 return ret; 4318 } 4319 4320 /* 4321 * recover relocation interrupted by system crash. 4322 * 4323 * this function resumes merging reloc trees with corresponding fs trees. 4324 * this is important for keeping the sharing of tree blocks 4325 */ 4326 int btrfs_recover_relocation(struct btrfs_root *root) 4327 { 4328 LIST_HEAD(reloc_roots); 4329 struct btrfs_key key; 4330 struct btrfs_root *fs_root; 4331 struct btrfs_root *reloc_root; 4332 struct btrfs_path *path; 4333 struct extent_buffer *leaf; 4334 struct reloc_control *rc = NULL; 4335 struct btrfs_trans_handle *trans; 4336 int ret; 4337 int err = 0; 4338 4339 path = btrfs_alloc_path(); 4340 if (!path) 4341 return -ENOMEM; 4342 path->reada = -1; 4343 4344 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4345 key.type = BTRFS_ROOT_ITEM_KEY; 4346 key.offset = (u64)-1; 4347 4348 while (1) { 4349 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4350 path, 0, 0); 4351 if (ret < 0) { 4352 err = ret; 4353 goto out; 4354 } 4355 if (ret > 0) { 4356 if (path->slots[0] == 0) 4357 break; 4358 path->slots[0]--; 4359 } 4360 leaf = path->nodes[0]; 4361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4362 btrfs_release_path(path); 4363 4364 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4365 key.type != BTRFS_ROOT_ITEM_KEY) 4366 break; 4367 4368 reloc_root = btrfs_read_fs_root(root, &key); 4369 if (IS_ERR(reloc_root)) { 4370 err = PTR_ERR(reloc_root); 4371 goto out; 4372 } 4373 4374 list_add(&reloc_root->root_list, &reloc_roots); 4375 4376 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4377 fs_root = read_fs_root(root->fs_info, 4378 reloc_root->root_key.offset); 4379 if (IS_ERR(fs_root)) { 4380 ret = PTR_ERR(fs_root); 4381 if (ret != -ENOENT) { 4382 err = ret; 4383 goto out; 4384 } 4385 ret = mark_garbage_root(reloc_root); 4386 if (ret < 0) { 4387 err = ret; 4388 goto out; 4389 } 4390 } 4391 } 4392 4393 if (key.offset == 0) 4394 break; 4395 4396 key.offset--; 4397 } 4398 btrfs_release_path(path); 4399 4400 if (list_empty(&reloc_roots)) 4401 goto out; 4402 4403 rc = alloc_reloc_control(root->fs_info); 4404 if (!rc) { 4405 err = -ENOMEM; 4406 goto out; 4407 } 4408 4409 rc->extent_root = root->fs_info->extent_root; 4410 4411 set_reloc_control(rc); 4412 4413 trans = btrfs_join_transaction(rc->extent_root); 4414 if (IS_ERR(trans)) { 4415 unset_reloc_control(rc); 4416 err = PTR_ERR(trans); 4417 goto out_free; 4418 } 4419 4420 rc->merge_reloc_tree = 1; 4421 4422 while (!list_empty(&reloc_roots)) { 4423 reloc_root = list_entry(reloc_roots.next, 4424 struct btrfs_root, root_list); 4425 list_del(&reloc_root->root_list); 4426 4427 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4428 list_add_tail(&reloc_root->root_list, 4429 &rc->reloc_roots); 4430 continue; 4431 } 4432 4433 fs_root = read_fs_root(root->fs_info, 4434 reloc_root->root_key.offset); 4435 if (IS_ERR(fs_root)) { 4436 err = PTR_ERR(fs_root); 4437 goto out_free; 4438 } 4439 4440 err = __add_reloc_root(reloc_root); 4441 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4442 fs_root->reloc_root = reloc_root; 4443 } 4444 4445 err = btrfs_commit_transaction(trans, rc->extent_root); 4446 if (err) 4447 goto out_free; 4448 4449 merge_reloc_roots(rc); 4450 4451 unset_reloc_control(rc); 4452 4453 trans = btrfs_join_transaction(rc->extent_root); 4454 if (IS_ERR(trans)) 4455 err = PTR_ERR(trans); 4456 else 4457 err = btrfs_commit_transaction(trans, rc->extent_root); 4458 out_free: 4459 kfree(rc); 4460 out: 4461 if (!list_empty(&reloc_roots)) 4462 free_reloc_roots(&reloc_roots); 4463 4464 btrfs_free_path(path); 4465 4466 if (err == 0) { 4467 /* cleanup orphan inode in data relocation tree */ 4468 fs_root = read_fs_root(root->fs_info, 4469 BTRFS_DATA_RELOC_TREE_OBJECTID); 4470 if (IS_ERR(fs_root)) 4471 err = PTR_ERR(fs_root); 4472 else 4473 err = btrfs_orphan_cleanup(fs_root); 4474 } 4475 return err; 4476 } 4477 4478 /* 4479 * helper to add ordered checksum for data relocation. 4480 * 4481 * cloning checksum properly handles the nodatasum extents. 4482 * it also saves CPU time to re-calculate the checksum. 4483 */ 4484 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4485 { 4486 struct btrfs_ordered_sum *sums; 4487 struct btrfs_ordered_extent *ordered; 4488 struct btrfs_root *root = BTRFS_I(inode)->root; 4489 int ret; 4490 u64 disk_bytenr; 4491 u64 new_bytenr; 4492 LIST_HEAD(list); 4493 4494 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4495 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4496 4497 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4498 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4499 disk_bytenr + len - 1, &list, 0); 4500 if (ret) 4501 goto out; 4502 4503 while (!list_empty(&list)) { 4504 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4505 list_del_init(&sums->list); 4506 4507 /* 4508 * We need to offset the new_bytenr based on where the csum is. 4509 * We need to do this because we will read in entire prealloc 4510 * extents but we may have written to say the middle of the 4511 * prealloc extent, so we need to make sure the csum goes with 4512 * the right disk offset. 4513 * 4514 * We can do this because the data reloc inode refers strictly 4515 * to the on disk bytes, so we don't have to worry about 4516 * disk_len vs real len like with real inodes since it's all 4517 * disk length. 4518 */ 4519 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4520 sums->bytenr = new_bytenr; 4521 4522 btrfs_add_ordered_sum(inode, ordered, sums); 4523 } 4524 out: 4525 btrfs_put_ordered_extent(ordered); 4526 return ret; 4527 } 4528 4529 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4530 struct btrfs_root *root, struct extent_buffer *buf, 4531 struct extent_buffer *cow) 4532 { 4533 struct reloc_control *rc; 4534 struct backref_node *node; 4535 int first_cow = 0; 4536 int level; 4537 int ret = 0; 4538 4539 rc = root->fs_info->reloc_ctl; 4540 if (!rc) 4541 return 0; 4542 4543 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4544 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4545 4546 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4547 if (buf == root->node) 4548 __update_reloc_root(root, cow->start); 4549 } 4550 4551 level = btrfs_header_level(buf); 4552 if (btrfs_header_generation(buf) <= 4553 btrfs_root_last_snapshot(&root->root_item)) 4554 first_cow = 1; 4555 4556 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4557 rc->create_reloc_tree) { 4558 WARN_ON(!first_cow && level == 0); 4559 4560 node = rc->backref_cache.path[level]; 4561 BUG_ON(node->bytenr != buf->start && 4562 node->new_bytenr != buf->start); 4563 4564 drop_node_buffer(node); 4565 extent_buffer_get(cow); 4566 node->eb = cow; 4567 node->new_bytenr = cow->start; 4568 4569 if (!node->pending) { 4570 list_move_tail(&node->list, 4571 &rc->backref_cache.pending[level]); 4572 node->pending = 1; 4573 } 4574 4575 if (first_cow) 4576 __mark_block_processed(rc, node); 4577 4578 if (first_cow && level > 0) 4579 rc->nodes_relocated += buf->len; 4580 } 4581 4582 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4583 ret = replace_file_extents(trans, rc, root, cow); 4584 return ret; 4585 } 4586 4587 /* 4588 * called before creating snapshot. it calculates metadata reservation 4589 * requried for relocating tree blocks in the snapshot 4590 */ 4591 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4592 struct btrfs_pending_snapshot *pending, 4593 u64 *bytes_to_reserve) 4594 { 4595 struct btrfs_root *root; 4596 struct reloc_control *rc; 4597 4598 root = pending->root; 4599 if (!root->reloc_root) 4600 return; 4601 4602 rc = root->fs_info->reloc_ctl; 4603 if (!rc->merge_reloc_tree) 4604 return; 4605 4606 root = root->reloc_root; 4607 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4608 /* 4609 * relocation is in the stage of merging trees. the space 4610 * used by merging a reloc tree is twice the size of 4611 * relocated tree nodes in the worst case. half for cowing 4612 * the reloc tree, half for cowing the fs tree. the space 4613 * used by cowing the reloc tree will be freed after the 4614 * tree is dropped. if we create snapshot, cowing the fs 4615 * tree may use more space than it frees. so we need 4616 * reserve extra space. 4617 */ 4618 *bytes_to_reserve += rc->nodes_relocated; 4619 } 4620 4621 /* 4622 * called after snapshot is created. migrate block reservation 4623 * and create reloc root for the newly created snapshot 4624 */ 4625 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4626 struct btrfs_pending_snapshot *pending) 4627 { 4628 struct btrfs_root *root = pending->root; 4629 struct btrfs_root *reloc_root; 4630 struct btrfs_root *new_root; 4631 struct reloc_control *rc; 4632 int ret; 4633 4634 if (!root->reloc_root) 4635 return 0; 4636 4637 rc = root->fs_info->reloc_ctl; 4638 rc->merging_rsv_size += rc->nodes_relocated; 4639 4640 if (rc->merge_reloc_tree) { 4641 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4642 rc->block_rsv, 4643 rc->nodes_relocated); 4644 if (ret) 4645 return ret; 4646 } 4647 4648 new_root = pending->snap; 4649 reloc_root = create_reloc_root(trans, root->reloc_root, 4650 new_root->root_key.objectid); 4651 if (IS_ERR(reloc_root)) 4652 return PTR_ERR(reloc_root); 4653 4654 ret = __add_reloc_root(reloc_root); 4655 BUG_ON(ret < 0); 4656 new_root->reloc_root = reloc_root; 4657 4658 if (rc->create_reloc_tree) 4659 ret = clone_backref_node(trans, rc, root, reloc_root); 4660 return ret; 4661 } 4662