xref: /openbmc/linux/fs/btrfs/relocation.c (revision aa74c44b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 
31 /*
32  * Relocation overview
33  *
34  * [What does relocation do]
35  *
36  * The objective of relocation is to relocate all extents of the target block
37  * group to other block groups.
38  * This is utilized by resize (shrink only), profile converting, compacting
39  * space, or balance routine to spread chunks over devices.
40  *
41  * 		Before		|		After
42  * ------------------------------------------------------------------
43  *  BG A: 10 data extents	| BG A: deleted
44  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
45  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
46  *
47  * [How does relocation work]
48  *
49  * 1.   Mark the target block group read-only
50  *      New extents won't be allocated from the target block group.
51  *
52  * 2.1  Record each extent in the target block group
53  *      To build a proper map of extents to be relocated.
54  *
55  * 2.2  Build data reloc tree and reloc trees
56  *      Data reloc tree will contain an inode, recording all newly relocated
57  *      data extents.
58  *      There will be only one data reloc tree for one data block group.
59  *
60  *      Reloc tree will be a special snapshot of its source tree, containing
61  *      relocated tree blocks.
62  *      Each tree referring to a tree block in target block group will get its
63  *      reloc tree built.
64  *
65  * 2.3  Swap source tree with its corresponding reloc tree
66  *      Each involved tree only refers to new extents after swap.
67  *
68  * 3.   Cleanup reloc trees and data reloc tree.
69  *      As old extents in the target block group are still referenced by reloc
70  *      trees, we need to clean them up before really freeing the target block
71  *      group.
72  *
73  * The main complexity is in steps 2.2 and 2.3.
74  *
75  * The entry point of relocation is relocate_block_group() function.
76  */
77 
78 #define RELOCATION_RESERVED_NODES	256
79 /*
80  * map address of tree root to tree
81  */
82 struct mapping_node {
83 	struct {
84 		struct rb_node rb_node;
85 		u64 bytenr;
86 	}; /* Use rb_simle_node for search/insert */
87 	void *data;
88 };
89 
90 struct mapping_tree {
91 	struct rb_root rb_root;
92 	spinlock_t lock;
93 };
94 
95 /*
96  * present a tree block to process
97  */
98 struct tree_block {
99 	struct {
100 		struct rb_node rb_node;
101 		u64 bytenr;
102 	}; /* Use rb_simple_node for search/insert */
103 	u64 owner;
104 	struct btrfs_key key;
105 	unsigned int level:8;
106 	unsigned int key_ready:1;
107 };
108 
109 #define MAX_EXTENTS 128
110 
111 struct file_extent_cluster {
112 	u64 start;
113 	u64 end;
114 	u64 boundary[MAX_EXTENTS];
115 	unsigned int nr;
116 };
117 
118 struct reloc_control {
119 	/* block group to relocate */
120 	struct btrfs_block_group *block_group;
121 	/* extent tree */
122 	struct btrfs_root *extent_root;
123 	/* inode for moving data */
124 	struct inode *data_inode;
125 
126 	struct btrfs_block_rsv *block_rsv;
127 
128 	struct btrfs_backref_cache backref_cache;
129 
130 	struct file_extent_cluster cluster;
131 	/* tree blocks have been processed */
132 	struct extent_io_tree processed_blocks;
133 	/* map start of tree root to corresponding reloc tree */
134 	struct mapping_tree reloc_root_tree;
135 	/* list of reloc trees */
136 	struct list_head reloc_roots;
137 	/* list of subvolume trees that get relocated */
138 	struct list_head dirty_subvol_roots;
139 	/* size of metadata reservation for merging reloc trees */
140 	u64 merging_rsv_size;
141 	/* size of relocated tree nodes */
142 	u64 nodes_relocated;
143 	/* reserved size for block group relocation*/
144 	u64 reserved_bytes;
145 
146 	u64 search_start;
147 	u64 extents_found;
148 
149 	unsigned int stage:8;
150 	unsigned int create_reloc_tree:1;
151 	unsigned int merge_reloc_tree:1;
152 	unsigned int found_file_extent:1;
153 };
154 
155 /* stages of data relocation */
156 #define MOVE_DATA_EXTENTS	0
157 #define UPDATE_DATA_PTRS	1
158 
159 static void mark_block_processed(struct reloc_control *rc,
160 				 struct btrfs_backref_node *node)
161 {
162 	u32 blocksize;
163 
164 	if (node->level == 0 ||
165 	    in_range(node->bytenr, rc->block_group->start,
166 		     rc->block_group->length)) {
167 		blocksize = rc->extent_root->fs_info->nodesize;
168 		set_extent_bits(&rc->processed_blocks, node->bytenr,
169 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
170 	}
171 	node->processed = 1;
172 }
173 
174 
175 static void mapping_tree_init(struct mapping_tree *tree)
176 {
177 	tree->rb_root = RB_ROOT;
178 	spin_lock_init(&tree->lock);
179 }
180 
181 /*
182  * walk up backref nodes until reach node presents tree root
183  */
184 static struct btrfs_backref_node *walk_up_backref(
185 		struct btrfs_backref_node *node,
186 		struct btrfs_backref_edge *edges[], int *index)
187 {
188 	struct btrfs_backref_edge *edge;
189 	int idx = *index;
190 
191 	while (!list_empty(&node->upper)) {
192 		edge = list_entry(node->upper.next,
193 				  struct btrfs_backref_edge, list[LOWER]);
194 		edges[idx++] = edge;
195 		node = edge->node[UPPER];
196 	}
197 	BUG_ON(node->detached);
198 	*index = idx;
199 	return node;
200 }
201 
202 /*
203  * walk down backref nodes to find start of next reference path
204  */
205 static struct btrfs_backref_node *walk_down_backref(
206 		struct btrfs_backref_edge *edges[], int *index)
207 {
208 	struct btrfs_backref_edge *edge;
209 	struct btrfs_backref_node *lower;
210 	int idx = *index;
211 
212 	while (idx > 0) {
213 		edge = edges[idx - 1];
214 		lower = edge->node[LOWER];
215 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
216 			idx--;
217 			continue;
218 		}
219 		edge = list_entry(edge->list[LOWER].next,
220 				  struct btrfs_backref_edge, list[LOWER]);
221 		edges[idx - 1] = edge;
222 		*index = idx;
223 		return edge->node[UPPER];
224 	}
225 	*index = 0;
226 	return NULL;
227 }
228 
229 static void update_backref_node(struct btrfs_backref_cache *cache,
230 				struct btrfs_backref_node *node, u64 bytenr)
231 {
232 	struct rb_node *rb_node;
233 	rb_erase(&node->rb_node, &cache->rb_root);
234 	node->bytenr = bytenr;
235 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
236 	if (rb_node)
237 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
238 }
239 
240 /*
241  * update backref cache after a transaction commit
242  */
243 static int update_backref_cache(struct btrfs_trans_handle *trans,
244 				struct btrfs_backref_cache *cache)
245 {
246 	struct btrfs_backref_node *node;
247 	int level = 0;
248 
249 	if (cache->last_trans == 0) {
250 		cache->last_trans = trans->transid;
251 		return 0;
252 	}
253 
254 	if (cache->last_trans == trans->transid)
255 		return 0;
256 
257 	/*
258 	 * detached nodes are used to avoid unnecessary backref
259 	 * lookup. transaction commit changes the extent tree.
260 	 * so the detached nodes are no longer useful.
261 	 */
262 	while (!list_empty(&cache->detached)) {
263 		node = list_entry(cache->detached.next,
264 				  struct btrfs_backref_node, list);
265 		btrfs_backref_cleanup_node(cache, node);
266 	}
267 
268 	while (!list_empty(&cache->changed)) {
269 		node = list_entry(cache->changed.next,
270 				  struct btrfs_backref_node, list);
271 		list_del_init(&node->list);
272 		BUG_ON(node->pending);
273 		update_backref_node(cache, node, node->new_bytenr);
274 	}
275 
276 	/*
277 	 * some nodes can be left in the pending list if there were
278 	 * errors during processing the pending nodes.
279 	 */
280 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
281 		list_for_each_entry(node, &cache->pending[level], list) {
282 			BUG_ON(!node->pending);
283 			if (node->bytenr == node->new_bytenr)
284 				continue;
285 			update_backref_node(cache, node, node->new_bytenr);
286 		}
287 	}
288 
289 	cache->last_trans = 0;
290 	return 1;
291 }
292 
293 static bool reloc_root_is_dead(struct btrfs_root *root)
294 {
295 	/*
296 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
297 	 * btrfs_update_reloc_root. We need to see the updated bit before
298 	 * trying to access reloc_root
299 	 */
300 	smp_rmb();
301 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
302 		return true;
303 	return false;
304 }
305 
306 /*
307  * Check if this subvolume tree has valid reloc tree.
308  *
309  * Reloc tree after swap is considered dead, thus not considered as valid.
310  * This is enough for most callers, as they don't distinguish dead reloc root
311  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
312  * special case.
313  */
314 static bool have_reloc_root(struct btrfs_root *root)
315 {
316 	if (reloc_root_is_dead(root))
317 		return false;
318 	if (!root->reloc_root)
319 		return false;
320 	return true;
321 }
322 
323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
324 {
325 	struct btrfs_root *reloc_root;
326 
327 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
328 		return 0;
329 
330 	/* This root has been merged with its reloc tree, we can ignore it */
331 	if (reloc_root_is_dead(root))
332 		return 1;
333 
334 	reloc_root = root->reloc_root;
335 	if (!reloc_root)
336 		return 0;
337 
338 	if (btrfs_header_generation(reloc_root->commit_root) ==
339 	    root->fs_info->running_transaction->transid)
340 		return 0;
341 	/*
342 	 * if there is reloc tree and it was created in previous
343 	 * transaction backref lookup can find the reloc tree,
344 	 * so backref node for the fs tree root is useless for
345 	 * relocation.
346 	 */
347 	return 1;
348 }
349 
350 /*
351  * find reloc tree by address of tree root
352  */
353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
354 {
355 	struct reloc_control *rc = fs_info->reloc_ctl;
356 	struct rb_node *rb_node;
357 	struct mapping_node *node;
358 	struct btrfs_root *root = NULL;
359 
360 	ASSERT(rc);
361 	spin_lock(&rc->reloc_root_tree.lock);
362 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
363 	if (rb_node) {
364 		node = rb_entry(rb_node, struct mapping_node, rb_node);
365 		root = (struct btrfs_root *)node->data;
366 	}
367 	spin_unlock(&rc->reloc_root_tree.lock);
368 	return btrfs_grab_root(root);
369 }
370 
371 /*
372  * For useless nodes, do two major clean ups:
373  *
374  * - Cleanup the children edges and nodes
375  *   If child node is also orphan (no parent) during cleanup, then the child
376  *   node will also be cleaned up.
377  *
378  * - Freeing up leaves (level 0), keeps nodes detached
379  *   For nodes, the node is still cached as "detached"
380  *
381  * Return false if @node is not in the @useless_nodes list.
382  * Return true if @node is in the @useless_nodes list.
383  */
384 static bool handle_useless_nodes(struct reloc_control *rc,
385 				 struct btrfs_backref_node *node)
386 {
387 	struct btrfs_backref_cache *cache = &rc->backref_cache;
388 	struct list_head *useless_node = &cache->useless_node;
389 	bool ret = false;
390 
391 	while (!list_empty(useless_node)) {
392 		struct btrfs_backref_node *cur;
393 
394 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
395 				 list);
396 		list_del_init(&cur->list);
397 
398 		/* Only tree root nodes can be added to @useless_nodes */
399 		ASSERT(list_empty(&cur->upper));
400 
401 		if (cur == node)
402 			ret = true;
403 
404 		/* The node is the lowest node */
405 		if (cur->lowest) {
406 			list_del_init(&cur->lower);
407 			cur->lowest = 0;
408 		}
409 
410 		/* Cleanup the lower edges */
411 		while (!list_empty(&cur->lower)) {
412 			struct btrfs_backref_edge *edge;
413 			struct btrfs_backref_node *lower;
414 
415 			edge = list_entry(cur->lower.next,
416 					struct btrfs_backref_edge, list[UPPER]);
417 			list_del(&edge->list[UPPER]);
418 			list_del(&edge->list[LOWER]);
419 			lower = edge->node[LOWER];
420 			btrfs_backref_free_edge(cache, edge);
421 
422 			/* Child node is also orphan, queue for cleanup */
423 			if (list_empty(&lower->upper))
424 				list_add(&lower->list, useless_node);
425 		}
426 		/* Mark this block processed for relocation */
427 		mark_block_processed(rc, cur);
428 
429 		/*
430 		 * Backref nodes for tree leaves are deleted from the cache.
431 		 * Backref nodes for upper level tree blocks are left in the
432 		 * cache to avoid unnecessary backref lookup.
433 		 */
434 		if (cur->level > 0) {
435 			list_add(&cur->list, &cache->detached);
436 			cur->detached = 1;
437 		} else {
438 			rb_erase(&cur->rb_node, &cache->rb_root);
439 			btrfs_backref_free_node(cache, cur);
440 		}
441 	}
442 	return ret;
443 }
444 
445 /*
446  * Build backref tree for a given tree block. Root of the backref tree
447  * corresponds the tree block, leaves of the backref tree correspond roots of
448  * b-trees that reference the tree block.
449  *
450  * The basic idea of this function is check backrefs of a given block to find
451  * upper level blocks that reference the block, and then check backrefs of
452  * these upper level blocks recursively. The recursion stops when tree root is
453  * reached or backrefs for the block is cached.
454  *
455  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
456  * all upper level blocks that directly/indirectly reference the block are also
457  * cached.
458  */
459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
460 			struct reloc_control *rc, struct btrfs_key *node_key,
461 			int level, u64 bytenr)
462 {
463 	struct btrfs_backref_iter *iter;
464 	struct btrfs_backref_cache *cache = &rc->backref_cache;
465 	/* For searching parent of TREE_BLOCK_REF */
466 	struct btrfs_path *path;
467 	struct btrfs_backref_node *cur;
468 	struct btrfs_backref_node *node = NULL;
469 	struct btrfs_backref_edge *edge;
470 	int ret;
471 	int err = 0;
472 
473 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
474 	if (!iter)
475 		return ERR_PTR(-ENOMEM);
476 	path = btrfs_alloc_path();
477 	if (!path) {
478 		err = -ENOMEM;
479 		goto out;
480 	}
481 
482 	node = btrfs_backref_alloc_node(cache, bytenr, level);
483 	if (!node) {
484 		err = -ENOMEM;
485 		goto out;
486 	}
487 
488 	node->lowest = 1;
489 	cur = node;
490 
491 	/* Breadth-first search to build backref cache */
492 	do {
493 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
494 						  cur);
495 		if (ret < 0) {
496 			err = ret;
497 			goto out;
498 		}
499 		edge = list_first_entry_or_null(&cache->pending_edge,
500 				struct btrfs_backref_edge, list[UPPER]);
501 		/*
502 		 * The pending list isn't empty, take the first block to
503 		 * process
504 		 */
505 		if (edge) {
506 			list_del_init(&edge->list[UPPER]);
507 			cur = edge->node[UPPER];
508 		}
509 	} while (edge);
510 
511 	/* Finish the upper linkage of newly added edges/nodes */
512 	ret = btrfs_backref_finish_upper_links(cache, node);
513 	if (ret < 0) {
514 		err = ret;
515 		goto out;
516 	}
517 
518 	if (handle_useless_nodes(rc, node))
519 		node = NULL;
520 out:
521 	btrfs_backref_iter_free(iter);
522 	btrfs_free_path(path);
523 	if (err) {
524 		btrfs_backref_error_cleanup(cache, node);
525 		return ERR_PTR(err);
526 	}
527 	ASSERT(!node || !node->detached);
528 	ASSERT(list_empty(&cache->useless_node) &&
529 	       list_empty(&cache->pending_edge));
530 	return node;
531 }
532 
533 /*
534  * helper to add backref node for the newly created snapshot.
535  * the backref node is created by cloning backref node that
536  * corresponds to root of source tree
537  */
538 static int clone_backref_node(struct btrfs_trans_handle *trans,
539 			      struct reloc_control *rc,
540 			      struct btrfs_root *src,
541 			      struct btrfs_root *dest)
542 {
543 	struct btrfs_root *reloc_root = src->reloc_root;
544 	struct btrfs_backref_cache *cache = &rc->backref_cache;
545 	struct btrfs_backref_node *node = NULL;
546 	struct btrfs_backref_node *new_node;
547 	struct btrfs_backref_edge *edge;
548 	struct btrfs_backref_edge *new_edge;
549 	struct rb_node *rb_node;
550 
551 	if (cache->last_trans > 0)
552 		update_backref_cache(trans, cache);
553 
554 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
555 	if (rb_node) {
556 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
557 		if (node->detached)
558 			node = NULL;
559 		else
560 			BUG_ON(node->new_bytenr != reloc_root->node->start);
561 	}
562 
563 	if (!node) {
564 		rb_node = rb_simple_search(&cache->rb_root,
565 					   reloc_root->commit_root->start);
566 		if (rb_node) {
567 			node = rb_entry(rb_node, struct btrfs_backref_node,
568 					rb_node);
569 			BUG_ON(node->detached);
570 		}
571 	}
572 
573 	if (!node)
574 		return 0;
575 
576 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
577 					    node->level);
578 	if (!new_node)
579 		return -ENOMEM;
580 
581 	new_node->lowest = node->lowest;
582 	new_node->checked = 1;
583 	new_node->root = btrfs_grab_root(dest);
584 	ASSERT(new_node->root);
585 
586 	if (!node->lowest) {
587 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
588 			new_edge = btrfs_backref_alloc_edge(cache);
589 			if (!new_edge)
590 				goto fail;
591 
592 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
593 						new_node, LINK_UPPER);
594 		}
595 	} else {
596 		list_add_tail(&new_node->lower, &cache->leaves);
597 	}
598 
599 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
600 				   &new_node->rb_node);
601 	if (rb_node)
602 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
603 
604 	if (!new_node->lowest) {
605 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
606 			list_add_tail(&new_edge->list[LOWER],
607 				      &new_edge->node[LOWER]->upper);
608 		}
609 	}
610 	return 0;
611 fail:
612 	while (!list_empty(&new_node->lower)) {
613 		new_edge = list_entry(new_node->lower.next,
614 				      struct btrfs_backref_edge, list[UPPER]);
615 		list_del(&new_edge->list[UPPER]);
616 		btrfs_backref_free_edge(cache, new_edge);
617 	}
618 	btrfs_backref_free_node(cache, new_node);
619 	return -ENOMEM;
620 }
621 
622 /*
623  * helper to add 'address of tree root -> reloc tree' mapping
624  */
625 static int __must_check __add_reloc_root(struct btrfs_root *root)
626 {
627 	struct btrfs_fs_info *fs_info = root->fs_info;
628 	struct rb_node *rb_node;
629 	struct mapping_node *node;
630 	struct reloc_control *rc = fs_info->reloc_ctl;
631 
632 	node = kmalloc(sizeof(*node), GFP_NOFS);
633 	if (!node)
634 		return -ENOMEM;
635 
636 	node->bytenr = root->commit_root->start;
637 	node->data = root;
638 
639 	spin_lock(&rc->reloc_root_tree.lock);
640 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
641 				   node->bytenr, &node->rb_node);
642 	spin_unlock(&rc->reloc_root_tree.lock);
643 	if (rb_node) {
644 		btrfs_err(fs_info,
645 			    "Duplicate root found for start=%llu while inserting into relocation tree",
646 			    node->bytenr);
647 		return -EEXIST;
648 	}
649 
650 	list_add_tail(&root->root_list, &rc->reloc_roots);
651 	return 0;
652 }
653 
654 /*
655  * helper to delete the 'address of tree root -> reloc tree'
656  * mapping
657  */
658 static void __del_reloc_root(struct btrfs_root *root)
659 {
660 	struct btrfs_fs_info *fs_info = root->fs_info;
661 	struct rb_node *rb_node;
662 	struct mapping_node *node = NULL;
663 	struct reloc_control *rc = fs_info->reloc_ctl;
664 	bool put_ref = false;
665 
666 	if (rc && root->node) {
667 		spin_lock(&rc->reloc_root_tree.lock);
668 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
669 					   root->commit_root->start);
670 		if (rb_node) {
671 			node = rb_entry(rb_node, struct mapping_node, rb_node);
672 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
673 			RB_CLEAR_NODE(&node->rb_node);
674 		}
675 		spin_unlock(&rc->reloc_root_tree.lock);
676 		ASSERT(!node || (struct btrfs_root *)node->data == root);
677 	}
678 
679 	/*
680 	 * We only put the reloc root here if it's on the list.  There's a lot
681 	 * of places where the pattern is to splice the rc->reloc_roots, process
682 	 * the reloc roots, and then add the reloc root back onto
683 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
684 	 * list we don't want the reference being dropped, because the guy
685 	 * messing with the list is in charge of the reference.
686 	 */
687 	spin_lock(&fs_info->trans_lock);
688 	if (!list_empty(&root->root_list)) {
689 		put_ref = true;
690 		list_del_init(&root->root_list);
691 	}
692 	spin_unlock(&fs_info->trans_lock);
693 	if (put_ref)
694 		btrfs_put_root(root);
695 	kfree(node);
696 }
697 
698 /*
699  * helper to update the 'address of tree root -> reloc tree'
700  * mapping
701  */
702 static int __update_reloc_root(struct btrfs_root *root)
703 {
704 	struct btrfs_fs_info *fs_info = root->fs_info;
705 	struct rb_node *rb_node;
706 	struct mapping_node *node = NULL;
707 	struct reloc_control *rc = fs_info->reloc_ctl;
708 
709 	spin_lock(&rc->reloc_root_tree.lock);
710 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
711 				   root->commit_root->start);
712 	if (rb_node) {
713 		node = rb_entry(rb_node, struct mapping_node, rb_node);
714 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
715 	}
716 	spin_unlock(&rc->reloc_root_tree.lock);
717 
718 	if (!node)
719 		return 0;
720 	BUG_ON((struct btrfs_root *)node->data != root);
721 
722 	spin_lock(&rc->reloc_root_tree.lock);
723 	node->bytenr = root->node->start;
724 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
725 				   node->bytenr, &node->rb_node);
726 	spin_unlock(&rc->reloc_root_tree.lock);
727 	if (rb_node)
728 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
729 	return 0;
730 }
731 
732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
733 					struct btrfs_root *root, u64 objectid)
734 {
735 	struct btrfs_fs_info *fs_info = root->fs_info;
736 	struct btrfs_root *reloc_root;
737 	struct extent_buffer *eb;
738 	struct btrfs_root_item *root_item;
739 	struct btrfs_key root_key;
740 	int ret = 0;
741 	bool must_abort = false;
742 
743 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
744 	if (!root_item)
745 		return ERR_PTR(-ENOMEM);
746 
747 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
748 	root_key.type = BTRFS_ROOT_ITEM_KEY;
749 	root_key.offset = objectid;
750 
751 	if (root->root_key.objectid == objectid) {
752 		u64 commit_root_gen;
753 
754 		/* called by btrfs_init_reloc_root */
755 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
756 				      BTRFS_TREE_RELOC_OBJECTID);
757 		if (ret)
758 			goto fail;
759 
760 		/*
761 		 * Set the last_snapshot field to the generation of the commit
762 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
763 		 * correctly (returns true) when the relocation root is created
764 		 * either inside the critical section of a transaction commit
765 		 * (through transaction.c:qgroup_account_snapshot()) and when
766 		 * it's created before the transaction commit is started.
767 		 */
768 		commit_root_gen = btrfs_header_generation(root->commit_root);
769 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
770 	} else {
771 		/*
772 		 * called by btrfs_reloc_post_snapshot_hook.
773 		 * the source tree is a reloc tree, all tree blocks
774 		 * modified after it was created have RELOC flag
775 		 * set in their headers. so it's OK to not update
776 		 * the 'last_snapshot'.
777 		 */
778 		ret = btrfs_copy_root(trans, root, root->node, &eb,
779 				      BTRFS_TREE_RELOC_OBJECTID);
780 		if (ret)
781 			goto fail;
782 	}
783 
784 	/*
785 	 * We have changed references at this point, we must abort the
786 	 * transaction if anything fails.
787 	 */
788 	must_abort = true;
789 
790 	memcpy(root_item, &root->root_item, sizeof(*root_item));
791 	btrfs_set_root_bytenr(root_item, eb->start);
792 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
793 	btrfs_set_root_generation(root_item, trans->transid);
794 
795 	if (root->root_key.objectid == objectid) {
796 		btrfs_set_root_refs(root_item, 0);
797 		memset(&root_item->drop_progress, 0,
798 		       sizeof(struct btrfs_disk_key));
799 		btrfs_set_root_drop_level(root_item, 0);
800 	}
801 
802 	btrfs_tree_unlock(eb);
803 	free_extent_buffer(eb);
804 
805 	ret = btrfs_insert_root(trans, fs_info->tree_root,
806 				&root_key, root_item);
807 	if (ret)
808 		goto fail;
809 
810 	kfree(root_item);
811 
812 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
813 	if (IS_ERR(reloc_root)) {
814 		ret = PTR_ERR(reloc_root);
815 		goto abort;
816 	}
817 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
818 	reloc_root->last_trans = trans->transid;
819 	return reloc_root;
820 fail:
821 	kfree(root_item);
822 abort:
823 	if (must_abort)
824 		btrfs_abort_transaction(trans, ret);
825 	return ERR_PTR(ret);
826 }
827 
828 /*
829  * create reloc tree for a given fs tree. reloc tree is just a
830  * snapshot of the fs tree with special root objectid.
831  *
832  * The reloc_root comes out of here with two references, one for
833  * root->reloc_root, and another for being on the rc->reloc_roots list.
834  */
835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
836 			  struct btrfs_root *root)
837 {
838 	struct btrfs_fs_info *fs_info = root->fs_info;
839 	struct btrfs_root *reloc_root;
840 	struct reloc_control *rc = fs_info->reloc_ctl;
841 	struct btrfs_block_rsv *rsv;
842 	int clear_rsv = 0;
843 	int ret;
844 
845 	if (!rc)
846 		return 0;
847 
848 	/*
849 	 * The subvolume has reloc tree but the swap is finished, no need to
850 	 * create/update the dead reloc tree
851 	 */
852 	if (reloc_root_is_dead(root))
853 		return 0;
854 
855 	/*
856 	 * This is subtle but important.  We do not do
857 	 * record_root_in_transaction for reloc roots, instead we record their
858 	 * corresponding fs root, and then here we update the last trans for the
859 	 * reloc root.  This means that we have to do this for the entire life
860 	 * of the reloc root, regardless of which stage of the relocation we are
861 	 * in.
862 	 */
863 	if (root->reloc_root) {
864 		reloc_root = root->reloc_root;
865 		reloc_root->last_trans = trans->transid;
866 		return 0;
867 	}
868 
869 	/*
870 	 * We are merging reloc roots, we do not need new reloc trees.  Also
871 	 * reloc trees never need their own reloc tree.
872 	 */
873 	if (!rc->create_reloc_tree ||
874 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
875 		return 0;
876 
877 	if (!trans->reloc_reserved) {
878 		rsv = trans->block_rsv;
879 		trans->block_rsv = rc->block_rsv;
880 		clear_rsv = 1;
881 	}
882 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
883 	if (clear_rsv)
884 		trans->block_rsv = rsv;
885 	if (IS_ERR(reloc_root))
886 		return PTR_ERR(reloc_root);
887 
888 	ret = __add_reloc_root(reloc_root);
889 	ASSERT(ret != -EEXIST);
890 	if (ret) {
891 		/* Pairs with create_reloc_root */
892 		btrfs_put_root(reloc_root);
893 		return ret;
894 	}
895 	root->reloc_root = btrfs_grab_root(reloc_root);
896 	return 0;
897 }
898 
899 /*
900  * update root item of reloc tree
901  */
902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
903 			    struct btrfs_root *root)
904 {
905 	struct btrfs_fs_info *fs_info = root->fs_info;
906 	struct btrfs_root *reloc_root;
907 	struct btrfs_root_item *root_item;
908 	int ret;
909 
910 	if (!have_reloc_root(root))
911 		return 0;
912 
913 	reloc_root = root->reloc_root;
914 	root_item = &reloc_root->root_item;
915 
916 	/*
917 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
918 	 * the root.  We have the ref for root->reloc_root, but just in case
919 	 * hold it while we update the reloc root.
920 	 */
921 	btrfs_grab_root(reloc_root);
922 
923 	/* root->reloc_root will stay until current relocation finished */
924 	if (fs_info->reloc_ctl->merge_reloc_tree &&
925 	    btrfs_root_refs(root_item) == 0) {
926 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
927 		/*
928 		 * Mark the tree as dead before we change reloc_root so
929 		 * have_reloc_root will not touch it from now on.
930 		 */
931 		smp_wmb();
932 		__del_reloc_root(reloc_root);
933 	}
934 
935 	if (reloc_root->commit_root != reloc_root->node) {
936 		__update_reloc_root(reloc_root);
937 		btrfs_set_root_node(root_item, reloc_root->node);
938 		free_extent_buffer(reloc_root->commit_root);
939 		reloc_root->commit_root = btrfs_root_node(reloc_root);
940 	}
941 
942 	ret = btrfs_update_root(trans, fs_info->tree_root,
943 				&reloc_root->root_key, root_item);
944 	btrfs_put_root(reloc_root);
945 	return ret;
946 }
947 
948 /*
949  * helper to find first cached inode with inode number >= objectid
950  * in a subvolume
951  */
952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
953 {
954 	struct rb_node *node;
955 	struct rb_node *prev;
956 	struct btrfs_inode *entry;
957 	struct inode *inode;
958 
959 	spin_lock(&root->inode_lock);
960 again:
961 	node = root->inode_tree.rb_node;
962 	prev = NULL;
963 	while (node) {
964 		prev = node;
965 		entry = rb_entry(node, struct btrfs_inode, rb_node);
966 
967 		if (objectid < btrfs_ino(entry))
968 			node = node->rb_left;
969 		else if (objectid > btrfs_ino(entry))
970 			node = node->rb_right;
971 		else
972 			break;
973 	}
974 	if (!node) {
975 		while (prev) {
976 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
977 			if (objectid <= btrfs_ino(entry)) {
978 				node = prev;
979 				break;
980 			}
981 			prev = rb_next(prev);
982 		}
983 	}
984 	while (node) {
985 		entry = rb_entry(node, struct btrfs_inode, rb_node);
986 		inode = igrab(&entry->vfs_inode);
987 		if (inode) {
988 			spin_unlock(&root->inode_lock);
989 			return inode;
990 		}
991 
992 		objectid = btrfs_ino(entry) + 1;
993 		if (cond_resched_lock(&root->inode_lock))
994 			goto again;
995 
996 		node = rb_next(node);
997 	}
998 	spin_unlock(&root->inode_lock);
999 	return NULL;
1000 }
1001 
1002 /*
1003  * get new location of data
1004  */
1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1006 			    u64 bytenr, u64 num_bytes)
1007 {
1008 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1009 	struct btrfs_path *path;
1010 	struct btrfs_file_extent_item *fi;
1011 	struct extent_buffer *leaf;
1012 	int ret;
1013 
1014 	path = btrfs_alloc_path();
1015 	if (!path)
1016 		return -ENOMEM;
1017 
1018 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1019 	ret = btrfs_lookup_file_extent(NULL, root, path,
1020 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1021 	if (ret < 0)
1022 		goto out;
1023 	if (ret > 0) {
1024 		ret = -ENOENT;
1025 		goto out;
1026 	}
1027 
1028 	leaf = path->nodes[0];
1029 	fi = btrfs_item_ptr(leaf, path->slots[0],
1030 			    struct btrfs_file_extent_item);
1031 
1032 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1033 	       btrfs_file_extent_compression(leaf, fi) ||
1034 	       btrfs_file_extent_encryption(leaf, fi) ||
1035 	       btrfs_file_extent_other_encoding(leaf, fi));
1036 
1037 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1038 		ret = -EINVAL;
1039 		goto out;
1040 	}
1041 
1042 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1043 	ret = 0;
1044 out:
1045 	btrfs_free_path(path);
1046 	return ret;
1047 }
1048 
1049 /*
1050  * update file extent items in the tree leaf to point to
1051  * the new locations.
1052  */
1053 static noinline_for_stack
1054 int replace_file_extents(struct btrfs_trans_handle *trans,
1055 			 struct reloc_control *rc,
1056 			 struct btrfs_root *root,
1057 			 struct extent_buffer *leaf)
1058 {
1059 	struct btrfs_fs_info *fs_info = root->fs_info;
1060 	struct btrfs_key key;
1061 	struct btrfs_file_extent_item *fi;
1062 	struct inode *inode = NULL;
1063 	u64 parent;
1064 	u64 bytenr;
1065 	u64 new_bytenr = 0;
1066 	u64 num_bytes;
1067 	u64 end;
1068 	u32 nritems;
1069 	u32 i;
1070 	int ret = 0;
1071 	int first = 1;
1072 	int dirty = 0;
1073 
1074 	if (rc->stage != UPDATE_DATA_PTRS)
1075 		return 0;
1076 
1077 	/* reloc trees always use full backref */
1078 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1079 		parent = leaf->start;
1080 	else
1081 		parent = 0;
1082 
1083 	nritems = btrfs_header_nritems(leaf);
1084 	for (i = 0; i < nritems; i++) {
1085 		struct btrfs_ref ref = { 0 };
1086 
1087 		cond_resched();
1088 		btrfs_item_key_to_cpu(leaf, &key, i);
1089 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1090 			continue;
1091 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1092 		if (btrfs_file_extent_type(leaf, fi) ==
1093 		    BTRFS_FILE_EXTENT_INLINE)
1094 			continue;
1095 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1096 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1097 		if (bytenr == 0)
1098 			continue;
1099 		if (!in_range(bytenr, rc->block_group->start,
1100 			      rc->block_group->length))
1101 			continue;
1102 
1103 		/*
1104 		 * if we are modifying block in fs tree, wait for readpage
1105 		 * to complete and drop the extent cache
1106 		 */
1107 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1108 			if (first) {
1109 				inode = find_next_inode(root, key.objectid);
1110 				first = 0;
1111 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1112 				btrfs_add_delayed_iput(inode);
1113 				inode = find_next_inode(root, key.objectid);
1114 			}
1115 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1116 				end = key.offset +
1117 				      btrfs_file_extent_num_bytes(leaf, fi);
1118 				WARN_ON(!IS_ALIGNED(key.offset,
1119 						    fs_info->sectorsize));
1120 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1121 				end--;
1122 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1123 						      key.offset, end);
1124 				if (!ret)
1125 					continue;
1126 
1127 				btrfs_drop_extent_cache(BTRFS_I(inode),
1128 						key.offset,	end, 1);
1129 				unlock_extent(&BTRFS_I(inode)->io_tree,
1130 					      key.offset, end);
1131 			}
1132 		}
1133 
1134 		ret = get_new_location(rc->data_inode, &new_bytenr,
1135 				       bytenr, num_bytes);
1136 		if (ret) {
1137 			/*
1138 			 * Don't have to abort since we've not changed anything
1139 			 * in the file extent yet.
1140 			 */
1141 			break;
1142 		}
1143 
1144 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1145 		dirty = 1;
1146 
1147 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1148 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1149 				       num_bytes, parent);
1150 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1151 				    key.objectid, key.offset,
1152 				    root->root_key.objectid, false);
1153 		ret = btrfs_inc_extent_ref(trans, &ref);
1154 		if (ret) {
1155 			btrfs_abort_transaction(trans, ret);
1156 			break;
1157 		}
1158 
1159 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1160 				       num_bytes, parent);
1161 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1162 				    key.objectid, key.offset,
1163 				    root->root_key.objectid, false);
1164 		ret = btrfs_free_extent(trans, &ref);
1165 		if (ret) {
1166 			btrfs_abort_transaction(trans, ret);
1167 			break;
1168 		}
1169 	}
1170 	if (dirty)
1171 		btrfs_mark_buffer_dirty(leaf);
1172 	if (inode)
1173 		btrfs_add_delayed_iput(inode);
1174 	return ret;
1175 }
1176 
1177 static noinline_for_stack
1178 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1179 		     struct btrfs_path *path, int level)
1180 {
1181 	struct btrfs_disk_key key1;
1182 	struct btrfs_disk_key key2;
1183 	btrfs_node_key(eb, &key1, slot);
1184 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1185 	return memcmp(&key1, &key2, sizeof(key1));
1186 }
1187 
1188 /*
1189  * try to replace tree blocks in fs tree with the new blocks
1190  * in reloc tree. tree blocks haven't been modified since the
1191  * reloc tree was create can be replaced.
1192  *
1193  * if a block was replaced, level of the block + 1 is returned.
1194  * if no block got replaced, 0 is returned. if there are other
1195  * errors, a negative error number is returned.
1196  */
1197 static noinline_for_stack
1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1199 		 struct btrfs_root *dest, struct btrfs_root *src,
1200 		 struct btrfs_path *path, struct btrfs_key *next_key,
1201 		 int lowest_level, int max_level)
1202 {
1203 	struct btrfs_fs_info *fs_info = dest->fs_info;
1204 	struct extent_buffer *eb;
1205 	struct extent_buffer *parent;
1206 	struct btrfs_ref ref = { 0 };
1207 	struct btrfs_key key;
1208 	u64 old_bytenr;
1209 	u64 new_bytenr;
1210 	u64 old_ptr_gen;
1211 	u64 new_ptr_gen;
1212 	u64 last_snapshot;
1213 	u32 blocksize;
1214 	int cow = 0;
1215 	int level;
1216 	int ret;
1217 	int slot;
1218 
1219 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1220 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1221 
1222 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1223 again:
1224 	slot = path->slots[lowest_level];
1225 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1226 
1227 	eb = btrfs_lock_root_node(dest);
1228 	level = btrfs_header_level(eb);
1229 
1230 	if (level < lowest_level) {
1231 		btrfs_tree_unlock(eb);
1232 		free_extent_buffer(eb);
1233 		return 0;
1234 	}
1235 
1236 	if (cow) {
1237 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1238 				      BTRFS_NESTING_COW);
1239 		if (ret) {
1240 			btrfs_tree_unlock(eb);
1241 			free_extent_buffer(eb);
1242 			return ret;
1243 		}
1244 	}
1245 
1246 	if (next_key) {
1247 		next_key->objectid = (u64)-1;
1248 		next_key->type = (u8)-1;
1249 		next_key->offset = (u64)-1;
1250 	}
1251 
1252 	parent = eb;
1253 	while (1) {
1254 		level = btrfs_header_level(parent);
1255 		ASSERT(level >= lowest_level);
1256 
1257 		ret = btrfs_bin_search(parent, &key, &slot);
1258 		if (ret < 0)
1259 			break;
1260 		if (ret && slot > 0)
1261 			slot--;
1262 
1263 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1264 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1265 
1266 		old_bytenr = btrfs_node_blockptr(parent, slot);
1267 		blocksize = fs_info->nodesize;
1268 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1269 
1270 		if (level <= max_level) {
1271 			eb = path->nodes[level];
1272 			new_bytenr = btrfs_node_blockptr(eb,
1273 							path->slots[level]);
1274 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1275 							path->slots[level]);
1276 		} else {
1277 			new_bytenr = 0;
1278 			new_ptr_gen = 0;
1279 		}
1280 
1281 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1282 			ret = level;
1283 			break;
1284 		}
1285 
1286 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1287 		    memcmp_node_keys(parent, slot, path, level)) {
1288 			if (level <= lowest_level) {
1289 				ret = 0;
1290 				break;
1291 			}
1292 
1293 			eb = btrfs_read_node_slot(parent, slot);
1294 			if (IS_ERR(eb)) {
1295 				ret = PTR_ERR(eb);
1296 				break;
1297 			}
1298 			btrfs_tree_lock(eb);
1299 			if (cow) {
1300 				ret = btrfs_cow_block(trans, dest, eb, parent,
1301 						      slot, &eb,
1302 						      BTRFS_NESTING_COW);
1303 				if (ret) {
1304 					btrfs_tree_unlock(eb);
1305 					free_extent_buffer(eb);
1306 					break;
1307 				}
1308 			}
1309 
1310 			btrfs_tree_unlock(parent);
1311 			free_extent_buffer(parent);
1312 
1313 			parent = eb;
1314 			continue;
1315 		}
1316 
1317 		if (!cow) {
1318 			btrfs_tree_unlock(parent);
1319 			free_extent_buffer(parent);
1320 			cow = 1;
1321 			goto again;
1322 		}
1323 
1324 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1325 				      path->slots[level]);
1326 		btrfs_release_path(path);
1327 
1328 		path->lowest_level = level;
1329 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1330 		path->lowest_level = 0;
1331 		if (ret) {
1332 			if (ret > 0)
1333 				ret = -ENOENT;
1334 			break;
1335 		}
1336 
1337 		/*
1338 		 * Info qgroup to trace both subtrees.
1339 		 *
1340 		 * We must trace both trees.
1341 		 * 1) Tree reloc subtree
1342 		 *    If not traced, we will leak data numbers
1343 		 * 2) Fs subtree
1344 		 *    If not traced, we will double count old data
1345 		 *
1346 		 * We don't scan the subtree right now, but only record
1347 		 * the swapped tree blocks.
1348 		 * The real subtree rescan is delayed until we have new
1349 		 * CoW on the subtree root node before transaction commit.
1350 		 */
1351 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1352 				rc->block_group, parent, slot,
1353 				path->nodes[level], path->slots[level],
1354 				last_snapshot);
1355 		if (ret < 0)
1356 			break;
1357 		/*
1358 		 * swap blocks in fs tree and reloc tree.
1359 		 */
1360 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1361 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1362 		btrfs_mark_buffer_dirty(parent);
1363 
1364 		btrfs_set_node_blockptr(path->nodes[level],
1365 					path->slots[level], old_bytenr);
1366 		btrfs_set_node_ptr_generation(path->nodes[level],
1367 					      path->slots[level], old_ptr_gen);
1368 		btrfs_mark_buffer_dirty(path->nodes[level]);
1369 
1370 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1371 				       blocksize, path->nodes[level]->start);
1372 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1373 				    0, true);
1374 		ret = btrfs_inc_extent_ref(trans, &ref);
1375 		if (ret) {
1376 			btrfs_abort_transaction(trans, ret);
1377 			break;
1378 		}
1379 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1380 				       blocksize, 0);
1381 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1382 				    true);
1383 		ret = btrfs_inc_extent_ref(trans, &ref);
1384 		if (ret) {
1385 			btrfs_abort_transaction(trans, ret);
1386 			break;
1387 		}
1388 
1389 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1390 				       blocksize, path->nodes[level]->start);
1391 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1392 				    0, true);
1393 		ret = btrfs_free_extent(trans, &ref);
1394 		if (ret) {
1395 			btrfs_abort_transaction(trans, ret);
1396 			break;
1397 		}
1398 
1399 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1400 				       blocksize, 0);
1401 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1402 				    0, true);
1403 		ret = btrfs_free_extent(trans, &ref);
1404 		if (ret) {
1405 			btrfs_abort_transaction(trans, ret);
1406 			break;
1407 		}
1408 
1409 		btrfs_unlock_up_safe(path, 0);
1410 
1411 		ret = level;
1412 		break;
1413 	}
1414 	btrfs_tree_unlock(parent);
1415 	free_extent_buffer(parent);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * helper to find next relocated block in reloc tree
1421  */
1422 static noinline_for_stack
1423 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1424 		       int *level)
1425 {
1426 	struct extent_buffer *eb;
1427 	int i;
1428 	u64 last_snapshot;
1429 	u32 nritems;
1430 
1431 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1432 
1433 	for (i = 0; i < *level; i++) {
1434 		free_extent_buffer(path->nodes[i]);
1435 		path->nodes[i] = NULL;
1436 	}
1437 
1438 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1439 		eb = path->nodes[i];
1440 		nritems = btrfs_header_nritems(eb);
1441 		while (path->slots[i] + 1 < nritems) {
1442 			path->slots[i]++;
1443 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1444 			    last_snapshot)
1445 				continue;
1446 
1447 			*level = i;
1448 			return 0;
1449 		}
1450 		free_extent_buffer(path->nodes[i]);
1451 		path->nodes[i] = NULL;
1452 	}
1453 	return 1;
1454 }
1455 
1456 /*
1457  * walk down reloc tree to find relocated block of lowest level
1458  */
1459 static noinline_for_stack
1460 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1461 			 int *level)
1462 {
1463 	struct extent_buffer *eb = NULL;
1464 	int i;
1465 	u64 ptr_gen = 0;
1466 	u64 last_snapshot;
1467 	u32 nritems;
1468 
1469 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1470 
1471 	for (i = *level; i > 0; i--) {
1472 		eb = path->nodes[i];
1473 		nritems = btrfs_header_nritems(eb);
1474 		while (path->slots[i] < nritems) {
1475 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1476 			if (ptr_gen > last_snapshot)
1477 				break;
1478 			path->slots[i]++;
1479 		}
1480 		if (path->slots[i] >= nritems) {
1481 			if (i == *level)
1482 				break;
1483 			*level = i + 1;
1484 			return 0;
1485 		}
1486 		if (i == 1) {
1487 			*level = i;
1488 			return 0;
1489 		}
1490 
1491 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1492 		if (IS_ERR(eb))
1493 			return PTR_ERR(eb);
1494 		BUG_ON(btrfs_header_level(eb) != i - 1);
1495 		path->nodes[i - 1] = eb;
1496 		path->slots[i - 1] = 0;
1497 	}
1498 	return 1;
1499 }
1500 
1501 /*
1502  * invalidate extent cache for file extents whose key in range of
1503  * [min_key, max_key)
1504  */
1505 static int invalidate_extent_cache(struct btrfs_root *root,
1506 				   struct btrfs_key *min_key,
1507 				   struct btrfs_key *max_key)
1508 {
1509 	struct btrfs_fs_info *fs_info = root->fs_info;
1510 	struct inode *inode = NULL;
1511 	u64 objectid;
1512 	u64 start, end;
1513 	u64 ino;
1514 
1515 	objectid = min_key->objectid;
1516 	while (1) {
1517 		cond_resched();
1518 		iput(inode);
1519 
1520 		if (objectid > max_key->objectid)
1521 			break;
1522 
1523 		inode = find_next_inode(root, objectid);
1524 		if (!inode)
1525 			break;
1526 		ino = btrfs_ino(BTRFS_I(inode));
1527 
1528 		if (ino > max_key->objectid) {
1529 			iput(inode);
1530 			break;
1531 		}
1532 
1533 		objectid = ino + 1;
1534 		if (!S_ISREG(inode->i_mode))
1535 			continue;
1536 
1537 		if (unlikely(min_key->objectid == ino)) {
1538 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1539 				continue;
1540 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1541 				start = 0;
1542 			else {
1543 				start = min_key->offset;
1544 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1545 			}
1546 		} else {
1547 			start = 0;
1548 		}
1549 
1550 		if (unlikely(max_key->objectid == ino)) {
1551 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1552 				continue;
1553 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1554 				end = (u64)-1;
1555 			} else {
1556 				if (max_key->offset == 0)
1557 					continue;
1558 				end = max_key->offset;
1559 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1560 				end--;
1561 			}
1562 		} else {
1563 			end = (u64)-1;
1564 		}
1565 
1566 		/* the lock_extent waits for readpage to complete */
1567 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1568 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1569 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1570 	}
1571 	return 0;
1572 }
1573 
1574 static int find_next_key(struct btrfs_path *path, int level,
1575 			 struct btrfs_key *key)
1576 
1577 {
1578 	while (level < BTRFS_MAX_LEVEL) {
1579 		if (!path->nodes[level])
1580 			break;
1581 		if (path->slots[level] + 1 <
1582 		    btrfs_header_nritems(path->nodes[level])) {
1583 			btrfs_node_key_to_cpu(path->nodes[level], key,
1584 					      path->slots[level] + 1);
1585 			return 0;
1586 		}
1587 		level++;
1588 	}
1589 	return 1;
1590 }
1591 
1592 /*
1593  * Insert current subvolume into reloc_control::dirty_subvol_roots
1594  */
1595 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1596 			       struct reloc_control *rc,
1597 			       struct btrfs_root *root)
1598 {
1599 	struct btrfs_root *reloc_root = root->reloc_root;
1600 	struct btrfs_root_item *reloc_root_item;
1601 	int ret;
1602 
1603 	/* @root must be a subvolume tree root with a valid reloc tree */
1604 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1605 	ASSERT(reloc_root);
1606 
1607 	reloc_root_item = &reloc_root->root_item;
1608 	memset(&reloc_root_item->drop_progress, 0,
1609 		sizeof(reloc_root_item->drop_progress));
1610 	btrfs_set_root_drop_level(reloc_root_item, 0);
1611 	btrfs_set_root_refs(reloc_root_item, 0);
1612 	ret = btrfs_update_reloc_root(trans, root);
1613 	if (ret)
1614 		return ret;
1615 
1616 	if (list_empty(&root->reloc_dirty_list)) {
1617 		btrfs_grab_root(root);
1618 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1619 	}
1620 
1621 	return 0;
1622 }
1623 
1624 static int clean_dirty_subvols(struct reloc_control *rc)
1625 {
1626 	struct btrfs_root *root;
1627 	struct btrfs_root *next;
1628 	int ret = 0;
1629 	int ret2;
1630 
1631 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1632 				 reloc_dirty_list) {
1633 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1634 			/* Merged subvolume, cleanup its reloc root */
1635 			struct btrfs_root *reloc_root = root->reloc_root;
1636 
1637 			list_del_init(&root->reloc_dirty_list);
1638 			root->reloc_root = NULL;
1639 			/*
1640 			 * Need barrier to ensure clear_bit() only happens after
1641 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1642 			 */
1643 			smp_wmb();
1644 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1645 			if (reloc_root) {
1646 				/*
1647 				 * btrfs_drop_snapshot drops our ref we hold for
1648 				 * ->reloc_root.  If it fails however we must
1649 				 * drop the ref ourselves.
1650 				 */
1651 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1652 				if (ret2 < 0) {
1653 					btrfs_put_root(reloc_root);
1654 					if (!ret)
1655 						ret = ret2;
1656 				}
1657 			}
1658 			btrfs_put_root(root);
1659 		} else {
1660 			/* Orphan reloc tree, just clean it up */
1661 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1662 			if (ret2 < 0) {
1663 				btrfs_put_root(root);
1664 				if (!ret)
1665 					ret = ret2;
1666 			}
1667 		}
1668 	}
1669 	return ret;
1670 }
1671 
1672 /*
1673  * merge the relocated tree blocks in reloc tree with corresponding
1674  * fs tree.
1675  */
1676 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1677 					       struct btrfs_root *root)
1678 {
1679 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1680 	struct btrfs_key key;
1681 	struct btrfs_key next_key;
1682 	struct btrfs_trans_handle *trans = NULL;
1683 	struct btrfs_root *reloc_root;
1684 	struct btrfs_root_item *root_item;
1685 	struct btrfs_path *path;
1686 	struct extent_buffer *leaf;
1687 	int reserve_level;
1688 	int level;
1689 	int max_level;
1690 	int replaced = 0;
1691 	int ret = 0;
1692 	u32 min_reserved;
1693 
1694 	path = btrfs_alloc_path();
1695 	if (!path)
1696 		return -ENOMEM;
1697 	path->reada = READA_FORWARD;
1698 
1699 	reloc_root = root->reloc_root;
1700 	root_item = &reloc_root->root_item;
1701 
1702 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1703 		level = btrfs_root_level(root_item);
1704 		atomic_inc(&reloc_root->node->refs);
1705 		path->nodes[level] = reloc_root->node;
1706 		path->slots[level] = 0;
1707 	} else {
1708 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1709 
1710 		level = btrfs_root_drop_level(root_item);
1711 		BUG_ON(level == 0);
1712 		path->lowest_level = level;
1713 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1714 		path->lowest_level = 0;
1715 		if (ret < 0) {
1716 			btrfs_free_path(path);
1717 			return ret;
1718 		}
1719 
1720 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1721 				      path->slots[level]);
1722 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1723 
1724 		btrfs_unlock_up_safe(path, 0);
1725 	}
1726 
1727 	/*
1728 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1729 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1730 	 * block COW, we COW at most from level 1 to root level for each tree.
1731 	 *
1732 	 * Thus the needed metadata size is at most root_level * nodesize,
1733 	 * and * 2 since we have two trees to COW.
1734 	 */
1735 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1736 	min_reserved = fs_info->nodesize * reserve_level * 2;
1737 	memset(&next_key, 0, sizeof(next_key));
1738 
1739 	while (1) {
1740 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1741 					     min_reserved,
1742 					     BTRFS_RESERVE_FLUSH_LIMIT);
1743 		if (ret)
1744 			goto out;
1745 		trans = btrfs_start_transaction(root, 0);
1746 		if (IS_ERR(trans)) {
1747 			ret = PTR_ERR(trans);
1748 			trans = NULL;
1749 			goto out;
1750 		}
1751 
1752 		/*
1753 		 * At this point we no longer have a reloc_control, so we can't
1754 		 * depend on btrfs_init_reloc_root to update our last_trans.
1755 		 *
1756 		 * But that's ok, we started the trans handle on our
1757 		 * corresponding fs_root, which means it's been added to the
1758 		 * dirty list.  At commit time we'll still call
1759 		 * btrfs_update_reloc_root() and update our root item
1760 		 * appropriately.
1761 		 */
1762 		reloc_root->last_trans = trans->transid;
1763 		trans->block_rsv = rc->block_rsv;
1764 
1765 		replaced = 0;
1766 		max_level = level;
1767 
1768 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1769 		if (ret < 0)
1770 			goto out;
1771 		if (ret > 0)
1772 			break;
1773 
1774 		if (!find_next_key(path, level, &key) &&
1775 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1776 			ret = 0;
1777 		} else {
1778 			ret = replace_path(trans, rc, root, reloc_root, path,
1779 					   &next_key, level, max_level);
1780 		}
1781 		if (ret < 0)
1782 			goto out;
1783 		if (ret > 0) {
1784 			level = ret;
1785 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1786 					      path->slots[level]);
1787 			replaced = 1;
1788 		}
1789 
1790 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1791 		if (ret > 0)
1792 			break;
1793 
1794 		BUG_ON(level == 0);
1795 		/*
1796 		 * save the merging progress in the drop_progress.
1797 		 * this is OK since root refs == 1 in this case.
1798 		 */
1799 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1800 			       path->slots[level]);
1801 		btrfs_set_root_drop_level(root_item, level);
1802 
1803 		btrfs_end_transaction_throttle(trans);
1804 		trans = NULL;
1805 
1806 		btrfs_btree_balance_dirty(fs_info);
1807 
1808 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1809 			invalidate_extent_cache(root, &key, &next_key);
1810 	}
1811 
1812 	/*
1813 	 * handle the case only one block in the fs tree need to be
1814 	 * relocated and the block is tree root.
1815 	 */
1816 	leaf = btrfs_lock_root_node(root);
1817 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1818 			      BTRFS_NESTING_COW);
1819 	btrfs_tree_unlock(leaf);
1820 	free_extent_buffer(leaf);
1821 out:
1822 	btrfs_free_path(path);
1823 
1824 	if (ret == 0) {
1825 		ret = insert_dirty_subvol(trans, rc, root);
1826 		if (ret)
1827 			btrfs_abort_transaction(trans, ret);
1828 	}
1829 
1830 	if (trans)
1831 		btrfs_end_transaction_throttle(trans);
1832 
1833 	btrfs_btree_balance_dirty(fs_info);
1834 
1835 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1836 		invalidate_extent_cache(root, &key, &next_key);
1837 
1838 	return ret;
1839 }
1840 
1841 static noinline_for_stack
1842 int prepare_to_merge(struct reloc_control *rc, int err)
1843 {
1844 	struct btrfs_root *root = rc->extent_root;
1845 	struct btrfs_fs_info *fs_info = root->fs_info;
1846 	struct btrfs_root *reloc_root;
1847 	struct btrfs_trans_handle *trans;
1848 	LIST_HEAD(reloc_roots);
1849 	u64 num_bytes = 0;
1850 	int ret;
1851 
1852 	mutex_lock(&fs_info->reloc_mutex);
1853 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1854 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1855 	mutex_unlock(&fs_info->reloc_mutex);
1856 
1857 again:
1858 	if (!err) {
1859 		num_bytes = rc->merging_rsv_size;
1860 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1861 					  BTRFS_RESERVE_FLUSH_ALL);
1862 		if (ret)
1863 			err = ret;
1864 	}
1865 
1866 	trans = btrfs_join_transaction(rc->extent_root);
1867 	if (IS_ERR(trans)) {
1868 		if (!err)
1869 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1870 						num_bytes, NULL);
1871 		return PTR_ERR(trans);
1872 	}
1873 
1874 	if (!err) {
1875 		if (num_bytes != rc->merging_rsv_size) {
1876 			btrfs_end_transaction(trans);
1877 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1878 						num_bytes, NULL);
1879 			goto again;
1880 		}
1881 	}
1882 
1883 	rc->merge_reloc_tree = 1;
1884 
1885 	while (!list_empty(&rc->reloc_roots)) {
1886 		reloc_root = list_entry(rc->reloc_roots.next,
1887 					struct btrfs_root, root_list);
1888 		list_del_init(&reloc_root->root_list);
1889 
1890 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1891 				false);
1892 		if (IS_ERR(root)) {
1893 			/*
1894 			 * Even if we have an error we need this reloc root
1895 			 * back on our list so we can clean up properly.
1896 			 */
1897 			list_add(&reloc_root->root_list, &reloc_roots);
1898 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1899 			if (!err)
1900 				err = PTR_ERR(root);
1901 			break;
1902 		}
1903 		ASSERT(root->reloc_root == reloc_root);
1904 
1905 		/*
1906 		 * set reference count to 1, so btrfs_recover_relocation
1907 		 * knows it should resumes merging
1908 		 */
1909 		if (!err)
1910 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1911 		ret = btrfs_update_reloc_root(trans, root);
1912 
1913 		/*
1914 		 * Even if we have an error we need this reloc root back on our
1915 		 * list so we can clean up properly.
1916 		 */
1917 		list_add(&reloc_root->root_list, &reloc_roots);
1918 		btrfs_put_root(root);
1919 
1920 		if (ret) {
1921 			btrfs_abort_transaction(trans, ret);
1922 			if (!err)
1923 				err = ret;
1924 			break;
1925 		}
1926 	}
1927 
1928 	list_splice(&reloc_roots, &rc->reloc_roots);
1929 
1930 	if (!err)
1931 		err = btrfs_commit_transaction(trans);
1932 	else
1933 		btrfs_end_transaction(trans);
1934 	return err;
1935 }
1936 
1937 static noinline_for_stack
1938 void free_reloc_roots(struct list_head *list)
1939 {
1940 	struct btrfs_root *reloc_root, *tmp;
1941 
1942 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1943 		__del_reloc_root(reloc_root);
1944 }
1945 
1946 static noinline_for_stack
1947 void merge_reloc_roots(struct reloc_control *rc)
1948 {
1949 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1950 	struct btrfs_root *root;
1951 	struct btrfs_root *reloc_root;
1952 	LIST_HEAD(reloc_roots);
1953 	int found = 0;
1954 	int ret = 0;
1955 again:
1956 	root = rc->extent_root;
1957 
1958 	/*
1959 	 * this serializes us with btrfs_record_root_in_transaction,
1960 	 * we have to make sure nobody is in the middle of
1961 	 * adding their roots to the list while we are
1962 	 * doing this splice
1963 	 */
1964 	mutex_lock(&fs_info->reloc_mutex);
1965 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1966 	mutex_unlock(&fs_info->reloc_mutex);
1967 
1968 	while (!list_empty(&reloc_roots)) {
1969 		found = 1;
1970 		reloc_root = list_entry(reloc_roots.next,
1971 					struct btrfs_root, root_list);
1972 
1973 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1974 					 false);
1975 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1976 			if (IS_ERR(root)) {
1977 				/*
1978 				 * For recovery we read the fs roots on mount,
1979 				 * and if we didn't find the root then we marked
1980 				 * the reloc root as a garbage root.  For normal
1981 				 * relocation obviously the root should exist in
1982 				 * memory.  However there's no reason we can't
1983 				 * handle the error properly here just in case.
1984 				 */
1985 				ASSERT(0);
1986 				ret = PTR_ERR(root);
1987 				goto out;
1988 			}
1989 			if (root->reloc_root != reloc_root) {
1990 				/*
1991 				 * This is actually impossible without something
1992 				 * going really wrong (like weird race condition
1993 				 * or cosmic rays).
1994 				 */
1995 				ASSERT(0);
1996 				ret = -EINVAL;
1997 				goto out;
1998 			}
1999 			ret = merge_reloc_root(rc, root);
2000 			btrfs_put_root(root);
2001 			if (ret) {
2002 				if (list_empty(&reloc_root->root_list))
2003 					list_add_tail(&reloc_root->root_list,
2004 						      &reloc_roots);
2005 				goto out;
2006 			}
2007 		} else {
2008 			if (!IS_ERR(root)) {
2009 				if (root->reloc_root == reloc_root) {
2010 					root->reloc_root = NULL;
2011 					btrfs_put_root(reloc_root);
2012 				}
2013 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2014 					  &root->state);
2015 				btrfs_put_root(root);
2016 			}
2017 
2018 			list_del_init(&reloc_root->root_list);
2019 			/* Don't forget to queue this reloc root for cleanup */
2020 			list_add_tail(&reloc_root->reloc_dirty_list,
2021 				      &rc->dirty_subvol_roots);
2022 		}
2023 	}
2024 
2025 	if (found) {
2026 		found = 0;
2027 		goto again;
2028 	}
2029 out:
2030 	if (ret) {
2031 		btrfs_handle_fs_error(fs_info, ret, NULL);
2032 		free_reloc_roots(&reloc_roots);
2033 
2034 		/* new reloc root may be added */
2035 		mutex_lock(&fs_info->reloc_mutex);
2036 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2037 		mutex_unlock(&fs_info->reloc_mutex);
2038 		free_reloc_roots(&reloc_roots);
2039 	}
2040 
2041 	/*
2042 	 * We used to have
2043 	 *
2044 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2045 	 *
2046 	 * here, but it's wrong.  If we fail to start the transaction in
2047 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2048 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2049 	 * fine because we're bailing here, and we hold a reference on the root
2050 	 * for the list that holds it, so these roots will be cleaned up when we
2051 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2052 	 * will be cleaned up on unmount.
2053 	 *
2054 	 * The remaining nodes will be cleaned up by free_reloc_control.
2055 	 */
2056 }
2057 
2058 static void free_block_list(struct rb_root *blocks)
2059 {
2060 	struct tree_block *block;
2061 	struct rb_node *rb_node;
2062 	while ((rb_node = rb_first(blocks))) {
2063 		block = rb_entry(rb_node, struct tree_block, rb_node);
2064 		rb_erase(rb_node, blocks);
2065 		kfree(block);
2066 	}
2067 }
2068 
2069 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2070 				      struct btrfs_root *reloc_root)
2071 {
2072 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2073 	struct btrfs_root *root;
2074 	int ret;
2075 
2076 	if (reloc_root->last_trans == trans->transid)
2077 		return 0;
2078 
2079 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2080 
2081 	/*
2082 	 * This should succeed, since we can't have a reloc root without having
2083 	 * already looked up the actual root and created the reloc root for this
2084 	 * root.
2085 	 *
2086 	 * However if there's some sort of corruption where we have a ref to a
2087 	 * reloc root without a corresponding root this could return ENOENT.
2088 	 */
2089 	if (IS_ERR(root)) {
2090 		ASSERT(0);
2091 		return PTR_ERR(root);
2092 	}
2093 	if (root->reloc_root != reloc_root) {
2094 		ASSERT(0);
2095 		btrfs_err(fs_info,
2096 			  "root %llu has two reloc roots associated with it",
2097 			  reloc_root->root_key.offset);
2098 		btrfs_put_root(root);
2099 		return -EUCLEAN;
2100 	}
2101 	ret = btrfs_record_root_in_trans(trans, root);
2102 	btrfs_put_root(root);
2103 
2104 	return ret;
2105 }
2106 
2107 static noinline_for_stack
2108 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2109 				     struct reloc_control *rc,
2110 				     struct btrfs_backref_node *node,
2111 				     struct btrfs_backref_edge *edges[])
2112 {
2113 	struct btrfs_backref_node *next;
2114 	struct btrfs_root *root;
2115 	int index = 0;
2116 	int ret;
2117 
2118 	next = node;
2119 	while (1) {
2120 		cond_resched();
2121 		next = walk_up_backref(next, edges, &index);
2122 		root = next->root;
2123 
2124 		/*
2125 		 * If there is no root, then our references for this block are
2126 		 * incomplete, as we should be able to walk all the way up to a
2127 		 * block that is owned by a root.
2128 		 *
2129 		 * This path is only for SHAREABLE roots, so if we come upon a
2130 		 * non-SHAREABLE root then we have backrefs that resolve
2131 		 * improperly.
2132 		 *
2133 		 * Both of these cases indicate file system corruption, or a bug
2134 		 * in the backref walking code.
2135 		 */
2136 		if (!root) {
2137 			ASSERT(0);
2138 			btrfs_err(trans->fs_info,
2139 		"bytenr %llu doesn't have a backref path ending in a root",
2140 				  node->bytenr);
2141 			return ERR_PTR(-EUCLEAN);
2142 		}
2143 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2144 			ASSERT(0);
2145 			btrfs_err(trans->fs_info,
2146 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2147 				  node->bytenr);
2148 			return ERR_PTR(-EUCLEAN);
2149 		}
2150 
2151 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2152 			ret = record_reloc_root_in_trans(trans, root);
2153 			if (ret)
2154 				return ERR_PTR(ret);
2155 			break;
2156 		}
2157 
2158 		ret = btrfs_record_root_in_trans(trans, root);
2159 		if (ret)
2160 			return ERR_PTR(ret);
2161 		root = root->reloc_root;
2162 
2163 		/*
2164 		 * We could have raced with another thread which failed, so
2165 		 * root->reloc_root may not be set, return ENOENT in this case.
2166 		 */
2167 		if (!root)
2168 			return ERR_PTR(-ENOENT);
2169 
2170 		if (next->new_bytenr != root->node->start) {
2171 			/*
2172 			 * We just created the reloc root, so we shouldn't have
2173 			 * ->new_bytenr set and this shouldn't be in the changed
2174 			 *  list.  If it is then we have multiple roots pointing
2175 			 *  at the same bytenr which indicates corruption, or
2176 			 *  we've made a mistake in the backref walking code.
2177 			 */
2178 			ASSERT(next->new_bytenr == 0);
2179 			ASSERT(list_empty(&next->list));
2180 			if (next->new_bytenr || !list_empty(&next->list)) {
2181 				btrfs_err(trans->fs_info,
2182 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2183 					  node->bytenr, next->bytenr);
2184 				return ERR_PTR(-EUCLEAN);
2185 			}
2186 
2187 			next->new_bytenr = root->node->start;
2188 			btrfs_put_root(next->root);
2189 			next->root = btrfs_grab_root(root);
2190 			ASSERT(next->root);
2191 			list_add_tail(&next->list,
2192 				      &rc->backref_cache.changed);
2193 			mark_block_processed(rc, next);
2194 			break;
2195 		}
2196 
2197 		WARN_ON(1);
2198 		root = NULL;
2199 		next = walk_down_backref(edges, &index);
2200 		if (!next || next->level <= node->level)
2201 			break;
2202 	}
2203 	if (!root) {
2204 		/*
2205 		 * This can happen if there's fs corruption or if there's a bug
2206 		 * in the backref lookup code.
2207 		 */
2208 		ASSERT(0);
2209 		return ERR_PTR(-ENOENT);
2210 	}
2211 
2212 	next = node;
2213 	/* setup backref node path for btrfs_reloc_cow_block */
2214 	while (1) {
2215 		rc->backref_cache.path[next->level] = next;
2216 		if (--index < 0)
2217 			break;
2218 		next = edges[index]->node[UPPER];
2219 	}
2220 	return root;
2221 }
2222 
2223 /*
2224  * Select a tree root for relocation.
2225  *
2226  * Return NULL if the block is not shareable. We should use do_relocation() in
2227  * this case.
2228  *
2229  * Return a tree root pointer if the block is shareable.
2230  * Return -ENOENT if the block is root of reloc tree.
2231  */
2232 static noinline_for_stack
2233 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2234 {
2235 	struct btrfs_backref_node *next;
2236 	struct btrfs_root *root;
2237 	struct btrfs_root *fs_root = NULL;
2238 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2239 	int index = 0;
2240 
2241 	next = node;
2242 	while (1) {
2243 		cond_resched();
2244 		next = walk_up_backref(next, edges, &index);
2245 		root = next->root;
2246 
2247 		/*
2248 		 * This can occur if we have incomplete extent refs leading all
2249 		 * the way up a particular path, in this case return -EUCLEAN.
2250 		 */
2251 		if (!root)
2252 			return ERR_PTR(-EUCLEAN);
2253 
2254 		/* No other choice for non-shareable tree */
2255 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2256 			return root;
2257 
2258 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2259 			fs_root = root;
2260 
2261 		if (next != node)
2262 			return NULL;
2263 
2264 		next = walk_down_backref(edges, &index);
2265 		if (!next || next->level <= node->level)
2266 			break;
2267 	}
2268 
2269 	if (!fs_root)
2270 		return ERR_PTR(-ENOENT);
2271 	return fs_root;
2272 }
2273 
2274 static noinline_for_stack
2275 u64 calcu_metadata_size(struct reloc_control *rc,
2276 			struct btrfs_backref_node *node, int reserve)
2277 {
2278 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2279 	struct btrfs_backref_node *next = node;
2280 	struct btrfs_backref_edge *edge;
2281 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2282 	u64 num_bytes = 0;
2283 	int index = 0;
2284 
2285 	BUG_ON(reserve && node->processed);
2286 
2287 	while (next) {
2288 		cond_resched();
2289 		while (1) {
2290 			if (next->processed && (reserve || next != node))
2291 				break;
2292 
2293 			num_bytes += fs_info->nodesize;
2294 
2295 			if (list_empty(&next->upper))
2296 				break;
2297 
2298 			edge = list_entry(next->upper.next,
2299 					struct btrfs_backref_edge, list[LOWER]);
2300 			edges[index++] = edge;
2301 			next = edge->node[UPPER];
2302 		}
2303 		next = walk_down_backref(edges, &index);
2304 	}
2305 	return num_bytes;
2306 }
2307 
2308 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2309 				  struct reloc_control *rc,
2310 				  struct btrfs_backref_node *node)
2311 {
2312 	struct btrfs_root *root = rc->extent_root;
2313 	struct btrfs_fs_info *fs_info = root->fs_info;
2314 	u64 num_bytes;
2315 	int ret;
2316 	u64 tmp;
2317 
2318 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2319 
2320 	trans->block_rsv = rc->block_rsv;
2321 	rc->reserved_bytes += num_bytes;
2322 
2323 	/*
2324 	 * We are under a transaction here so we can only do limited flushing.
2325 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2326 	 * transaction and try to refill when we can flush all the things.
2327 	 */
2328 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2329 				     BTRFS_RESERVE_FLUSH_LIMIT);
2330 	if (ret) {
2331 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2332 		while (tmp <= rc->reserved_bytes)
2333 			tmp <<= 1;
2334 		/*
2335 		 * only one thread can access block_rsv at this point,
2336 		 * so we don't need hold lock to protect block_rsv.
2337 		 * we expand more reservation size here to allow enough
2338 		 * space for relocation and we will return earlier in
2339 		 * enospc case.
2340 		 */
2341 		rc->block_rsv->size = tmp + fs_info->nodesize *
2342 				      RELOCATION_RESERVED_NODES;
2343 		return -EAGAIN;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /*
2350  * relocate a block tree, and then update pointers in upper level
2351  * blocks that reference the block to point to the new location.
2352  *
2353  * if called by link_to_upper, the block has already been relocated.
2354  * in that case this function just updates pointers.
2355  */
2356 static int do_relocation(struct btrfs_trans_handle *trans,
2357 			 struct reloc_control *rc,
2358 			 struct btrfs_backref_node *node,
2359 			 struct btrfs_key *key,
2360 			 struct btrfs_path *path, int lowest)
2361 {
2362 	struct btrfs_backref_node *upper;
2363 	struct btrfs_backref_edge *edge;
2364 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2365 	struct btrfs_root *root;
2366 	struct extent_buffer *eb;
2367 	u32 blocksize;
2368 	u64 bytenr;
2369 	int slot;
2370 	int ret = 0;
2371 
2372 	/*
2373 	 * If we are lowest then this is the first time we're processing this
2374 	 * block, and thus shouldn't have an eb associated with it yet.
2375 	 */
2376 	ASSERT(!lowest || !node->eb);
2377 
2378 	path->lowest_level = node->level + 1;
2379 	rc->backref_cache.path[node->level] = node;
2380 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2381 		struct btrfs_ref ref = { 0 };
2382 
2383 		cond_resched();
2384 
2385 		upper = edge->node[UPPER];
2386 		root = select_reloc_root(trans, rc, upper, edges);
2387 		if (IS_ERR(root)) {
2388 			ret = PTR_ERR(root);
2389 			goto next;
2390 		}
2391 
2392 		if (upper->eb && !upper->locked) {
2393 			if (!lowest) {
2394 				ret = btrfs_bin_search(upper->eb, key, &slot);
2395 				if (ret < 0)
2396 					goto next;
2397 				BUG_ON(ret);
2398 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2399 				if (node->eb->start == bytenr)
2400 					goto next;
2401 			}
2402 			btrfs_backref_drop_node_buffer(upper);
2403 		}
2404 
2405 		if (!upper->eb) {
2406 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2407 			if (ret) {
2408 				if (ret > 0)
2409 					ret = -ENOENT;
2410 
2411 				btrfs_release_path(path);
2412 				break;
2413 			}
2414 
2415 			if (!upper->eb) {
2416 				upper->eb = path->nodes[upper->level];
2417 				path->nodes[upper->level] = NULL;
2418 			} else {
2419 				BUG_ON(upper->eb != path->nodes[upper->level]);
2420 			}
2421 
2422 			upper->locked = 1;
2423 			path->locks[upper->level] = 0;
2424 
2425 			slot = path->slots[upper->level];
2426 			btrfs_release_path(path);
2427 		} else {
2428 			ret = btrfs_bin_search(upper->eb, key, &slot);
2429 			if (ret < 0)
2430 				goto next;
2431 			BUG_ON(ret);
2432 		}
2433 
2434 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2435 		if (lowest) {
2436 			if (bytenr != node->bytenr) {
2437 				btrfs_err(root->fs_info,
2438 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2439 					  bytenr, node->bytenr, slot,
2440 					  upper->eb->start);
2441 				ret = -EIO;
2442 				goto next;
2443 			}
2444 		} else {
2445 			if (node->eb->start == bytenr)
2446 				goto next;
2447 		}
2448 
2449 		blocksize = root->fs_info->nodesize;
2450 		eb = btrfs_read_node_slot(upper->eb, slot);
2451 		if (IS_ERR(eb)) {
2452 			ret = PTR_ERR(eb);
2453 			goto next;
2454 		}
2455 		btrfs_tree_lock(eb);
2456 
2457 		if (!node->eb) {
2458 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2459 					      slot, &eb, BTRFS_NESTING_COW);
2460 			btrfs_tree_unlock(eb);
2461 			free_extent_buffer(eb);
2462 			if (ret < 0)
2463 				goto next;
2464 			/*
2465 			 * We've just COWed this block, it should have updated
2466 			 * the correct backref node entry.
2467 			 */
2468 			ASSERT(node->eb == eb);
2469 		} else {
2470 			btrfs_set_node_blockptr(upper->eb, slot,
2471 						node->eb->start);
2472 			btrfs_set_node_ptr_generation(upper->eb, slot,
2473 						      trans->transid);
2474 			btrfs_mark_buffer_dirty(upper->eb);
2475 
2476 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2477 					       node->eb->start, blocksize,
2478 					       upper->eb->start);
2479 			btrfs_init_tree_ref(&ref, node->level,
2480 					    btrfs_header_owner(upper->eb),
2481 					    root->root_key.objectid, false);
2482 			ret = btrfs_inc_extent_ref(trans, &ref);
2483 			if (!ret)
2484 				ret = btrfs_drop_subtree(trans, root, eb,
2485 							 upper->eb);
2486 			if (ret)
2487 				btrfs_abort_transaction(trans, ret);
2488 		}
2489 next:
2490 		if (!upper->pending)
2491 			btrfs_backref_drop_node_buffer(upper);
2492 		else
2493 			btrfs_backref_unlock_node_buffer(upper);
2494 		if (ret)
2495 			break;
2496 	}
2497 
2498 	if (!ret && node->pending) {
2499 		btrfs_backref_drop_node_buffer(node);
2500 		list_move_tail(&node->list, &rc->backref_cache.changed);
2501 		node->pending = 0;
2502 	}
2503 
2504 	path->lowest_level = 0;
2505 
2506 	/*
2507 	 * We should have allocated all of our space in the block rsv and thus
2508 	 * shouldn't ENOSPC.
2509 	 */
2510 	ASSERT(ret != -ENOSPC);
2511 	return ret;
2512 }
2513 
2514 static int link_to_upper(struct btrfs_trans_handle *trans,
2515 			 struct reloc_control *rc,
2516 			 struct btrfs_backref_node *node,
2517 			 struct btrfs_path *path)
2518 {
2519 	struct btrfs_key key;
2520 
2521 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2522 	return do_relocation(trans, rc, node, &key, path, 0);
2523 }
2524 
2525 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2526 				struct reloc_control *rc,
2527 				struct btrfs_path *path, int err)
2528 {
2529 	LIST_HEAD(list);
2530 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2531 	struct btrfs_backref_node *node;
2532 	int level;
2533 	int ret;
2534 
2535 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2536 		while (!list_empty(&cache->pending[level])) {
2537 			node = list_entry(cache->pending[level].next,
2538 					  struct btrfs_backref_node, list);
2539 			list_move_tail(&node->list, &list);
2540 			BUG_ON(!node->pending);
2541 
2542 			if (!err) {
2543 				ret = link_to_upper(trans, rc, node, path);
2544 				if (ret < 0)
2545 					err = ret;
2546 			}
2547 		}
2548 		list_splice_init(&list, &cache->pending[level]);
2549 	}
2550 	return err;
2551 }
2552 
2553 /*
2554  * mark a block and all blocks directly/indirectly reference the block
2555  * as processed.
2556  */
2557 static void update_processed_blocks(struct reloc_control *rc,
2558 				    struct btrfs_backref_node *node)
2559 {
2560 	struct btrfs_backref_node *next = node;
2561 	struct btrfs_backref_edge *edge;
2562 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2563 	int index = 0;
2564 
2565 	while (next) {
2566 		cond_resched();
2567 		while (1) {
2568 			if (next->processed)
2569 				break;
2570 
2571 			mark_block_processed(rc, next);
2572 
2573 			if (list_empty(&next->upper))
2574 				break;
2575 
2576 			edge = list_entry(next->upper.next,
2577 					struct btrfs_backref_edge, list[LOWER]);
2578 			edges[index++] = edge;
2579 			next = edge->node[UPPER];
2580 		}
2581 		next = walk_down_backref(edges, &index);
2582 	}
2583 }
2584 
2585 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2586 {
2587 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2588 
2589 	if (test_range_bit(&rc->processed_blocks, bytenr,
2590 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2591 		return 1;
2592 	return 0;
2593 }
2594 
2595 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2596 			      struct tree_block *block)
2597 {
2598 	struct extent_buffer *eb;
2599 
2600 	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2601 			     block->key.offset, block->level, NULL);
2602 	if (IS_ERR(eb)) {
2603 		return PTR_ERR(eb);
2604 	} else if (!extent_buffer_uptodate(eb)) {
2605 		free_extent_buffer(eb);
2606 		return -EIO;
2607 	}
2608 	if (block->level == 0)
2609 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2610 	else
2611 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2612 	free_extent_buffer(eb);
2613 	block->key_ready = 1;
2614 	return 0;
2615 }
2616 
2617 /*
2618  * helper function to relocate a tree block
2619  */
2620 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2621 				struct reloc_control *rc,
2622 				struct btrfs_backref_node *node,
2623 				struct btrfs_key *key,
2624 				struct btrfs_path *path)
2625 {
2626 	struct btrfs_root *root;
2627 	int ret = 0;
2628 
2629 	if (!node)
2630 		return 0;
2631 
2632 	/*
2633 	 * If we fail here we want to drop our backref_node because we are going
2634 	 * to start over and regenerate the tree for it.
2635 	 */
2636 	ret = reserve_metadata_space(trans, rc, node);
2637 	if (ret)
2638 		goto out;
2639 
2640 	BUG_ON(node->processed);
2641 	root = select_one_root(node);
2642 	if (IS_ERR(root)) {
2643 		ret = PTR_ERR(root);
2644 
2645 		/* See explanation in select_one_root for the -EUCLEAN case. */
2646 		ASSERT(ret == -ENOENT);
2647 		if (ret == -ENOENT) {
2648 			ret = 0;
2649 			update_processed_blocks(rc, node);
2650 		}
2651 		goto out;
2652 	}
2653 
2654 	if (root) {
2655 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2656 			/*
2657 			 * This block was the root block of a root, and this is
2658 			 * the first time we're processing the block and thus it
2659 			 * should not have had the ->new_bytenr modified and
2660 			 * should have not been included on the changed list.
2661 			 *
2662 			 * However in the case of corruption we could have
2663 			 * multiple refs pointing to the same block improperly,
2664 			 * and thus we would trip over these checks.  ASSERT()
2665 			 * for the developer case, because it could indicate a
2666 			 * bug in the backref code, however error out for a
2667 			 * normal user in the case of corruption.
2668 			 */
2669 			ASSERT(node->new_bytenr == 0);
2670 			ASSERT(list_empty(&node->list));
2671 			if (node->new_bytenr || !list_empty(&node->list)) {
2672 				btrfs_err(root->fs_info,
2673 				  "bytenr %llu has improper references to it",
2674 					  node->bytenr);
2675 				ret = -EUCLEAN;
2676 				goto out;
2677 			}
2678 			ret = btrfs_record_root_in_trans(trans, root);
2679 			if (ret)
2680 				goto out;
2681 			/*
2682 			 * Another thread could have failed, need to check if we
2683 			 * have reloc_root actually set.
2684 			 */
2685 			if (!root->reloc_root) {
2686 				ret = -ENOENT;
2687 				goto out;
2688 			}
2689 			root = root->reloc_root;
2690 			node->new_bytenr = root->node->start;
2691 			btrfs_put_root(node->root);
2692 			node->root = btrfs_grab_root(root);
2693 			ASSERT(node->root);
2694 			list_add_tail(&node->list, &rc->backref_cache.changed);
2695 		} else {
2696 			path->lowest_level = node->level;
2697 			if (root == root->fs_info->chunk_root)
2698 				btrfs_reserve_chunk_metadata(trans, false);
2699 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2700 			btrfs_release_path(path);
2701 			if (root == root->fs_info->chunk_root)
2702 				btrfs_trans_release_chunk_metadata(trans);
2703 			if (ret > 0)
2704 				ret = 0;
2705 		}
2706 		if (!ret)
2707 			update_processed_blocks(rc, node);
2708 	} else {
2709 		ret = do_relocation(trans, rc, node, key, path, 1);
2710 	}
2711 out:
2712 	if (ret || node->level == 0 || node->cowonly)
2713 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2714 	return ret;
2715 }
2716 
2717 /*
2718  * relocate a list of blocks
2719  */
2720 static noinline_for_stack
2721 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2722 			 struct reloc_control *rc, struct rb_root *blocks)
2723 {
2724 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2725 	struct btrfs_backref_node *node;
2726 	struct btrfs_path *path;
2727 	struct tree_block *block;
2728 	struct tree_block *next;
2729 	int ret;
2730 	int err = 0;
2731 
2732 	path = btrfs_alloc_path();
2733 	if (!path) {
2734 		err = -ENOMEM;
2735 		goto out_free_blocks;
2736 	}
2737 
2738 	/* Kick in readahead for tree blocks with missing keys */
2739 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2740 		if (!block->key_ready)
2741 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2742 						   block->owner, 0,
2743 						   block->level);
2744 	}
2745 
2746 	/* Get first keys */
2747 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2748 		if (!block->key_ready) {
2749 			err = get_tree_block_key(fs_info, block);
2750 			if (err)
2751 				goto out_free_path;
2752 		}
2753 	}
2754 
2755 	/* Do tree relocation */
2756 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2757 		node = build_backref_tree(rc, &block->key,
2758 					  block->level, block->bytenr);
2759 		if (IS_ERR(node)) {
2760 			err = PTR_ERR(node);
2761 			goto out;
2762 		}
2763 
2764 		ret = relocate_tree_block(trans, rc, node, &block->key,
2765 					  path);
2766 		if (ret < 0) {
2767 			err = ret;
2768 			break;
2769 		}
2770 	}
2771 out:
2772 	err = finish_pending_nodes(trans, rc, path, err);
2773 
2774 out_free_path:
2775 	btrfs_free_path(path);
2776 out_free_blocks:
2777 	free_block_list(blocks);
2778 	return err;
2779 }
2780 
2781 static noinline_for_stack int prealloc_file_extent_cluster(
2782 				struct btrfs_inode *inode,
2783 				struct file_extent_cluster *cluster)
2784 {
2785 	u64 alloc_hint = 0;
2786 	u64 start;
2787 	u64 end;
2788 	u64 offset = inode->index_cnt;
2789 	u64 num_bytes;
2790 	int nr;
2791 	int ret = 0;
2792 	u64 i_size = i_size_read(&inode->vfs_inode);
2793 	u64 prealloc_start = cluster->start - offset;
2794 	u64 prealloc_end = cluster->end - offset;
2795 	u64 cur_offset = prealloc_start;
2796 
2797 	/*
2798 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2799 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2800 	 * btrfs_do_readpage() call of previously relocated file cluster.
2801 	 *
2802 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2803 	 * will skip the read, and relocate_one_page() will later writeback
2804 	 * the padding zeros as new data, causing data corruption.
2805 	 *
2806 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2807 	 */
2808 	if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2809 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2810 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2811 		const u32 sectorsize = fs_info->sectorsize;
2812 		struct page *page;
2813 
2814 		ASSERT(sectorsize < PAGE_SIZE);
2815 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2816 
2817 		/*
2818 		 * Subpage can't handle page with DIRTY but without UPTODATE
2819 		 * bit as it can lead to the following deadlock:
2820 		 *
2821 		 * btrfs_readpage()
2822 		 * | Page already *locked*
2823 		 * |- btrfs_lock_and_flush_ordered_range()
2824 		 *    |- btrfs_start_ordered_extent()
2825 		 *       |- extent_write_cache_pages()
2826 		 *          |- lock_page()
2827 		 *             We try to lock the page we already hold.
2828 		 *
2829 		 * Here we just writeback the whole data reloc inode, so that
2830 		 * we will be ensured to have no dirty range in the page, and
2831 		 * are safe to clear the uptodate bits.
2832 		 *
2833 		 * This shouldn't cause too much overhead, as we need to write
2834 		 * the data back anyway.
2835 		 */
2836 		ret = filemap_write_and_wait(mapping);
2837 		if (ret < 0)
2838 			return ret;
2839 
2840 		clear_extent_bits(&inode->io_tree, i_size,
2841 				  round_up(i_size, PAGE_SIZE) - 1,
2842 				  EXTENT_UPTODATE);
2843 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2844 		/*
2845 		 * If page is freed we don't need to do anything then, as we
2846 		 * will re-read the whole page anyway.
2847 		 */
2848 		if (page) {
2849 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2850 					round_up(i_size, PAGE_SIZE) - i_size);
2851 			unlock_page(page);
2852 			put_page(page);
2853 		}
2854 	}
2855 
2856 	BUG_ON(cluster->start != cluster->boundary[0]);
2857 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2858 					      prealloc_end + 1 - prealloc_start);
2859 	if (ret)
2860 		return ret;
2861 
2862 	btrfs_inode_lock(&inode->vfs_inode, 0);
2863 	for (nr = 0; nr < cluster->nr; nr++) {
2864 		start = cluster->boundary[nr] - offset;
2865 		if (nr + 1 < cluster->nr)
2866 			end = cluster->boundary[nr + 1] - 1 - offset;
2867 		else
2868 			end = cluster->end - offset;
2869 
2870 		lock_extent(&inode->io_tree, start, end);
2871 		num_bytes = end + 1 - start;
2872 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2873 						num_bytes, num_bytes,
2874 						end + 1, &alloc_hint);
2875 		cur_offset = end + 1;
2876 		unlock_extent(&inode->io_tree, start, end);
2877 		if (ret)
2878 			break;
2879 	}
2880 	btrfs_inode_unlock(&inode->vfs_inode, 0);
2881 
2882 	if (cur_offset < prealloc_end)
2883 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2884 					       prealloc_end + 1 - cur_offset);
2885 	return ret;
2886 }
2887 
2888 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2889 				u64 start, u64 end, u64 block_start)
2890 {
2891 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2892 	struct extent_map *em;
2893 	int ret = 0;
2894 
2895 	em = alloc_extent_map();
2896 	if (!em)
2897 		return -ENOMEM;
2898 
2899 	em->start = start;
2900 	em->len = end + 1 - start;
2901 	em->block_len = em->len;
2902 	em->block_start = block_start;
2903 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2904 
2905 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2906 	while (1) {
2907 		write_lock(&em_tree->lock);
2908 		ret = add_extent_mapping(em_tree, em, 0);
2909 		write_unlock(&em_tree->lock);
2910 		if (ret != -EEXIST) {
2911 			free_extent_map(em);
2912 			break;
2913 		}
2914 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2915 	}
2916 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2917 	return ret;
2918 }
2919 
2920 /*
2921  * Allow error injection to test balance/relocation cancellation
2922  */
2923 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2924 {
2925 	return atomic_read(&fs_info->balance_cancel_req) ||
2926 		atomic_read(&fs_info->reloc_cancel_req) ||
2927 		fatal_signal_pending(current);
2928 }
2929 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2930 
2931 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2932 				    int cluster_nr)
2933 {
2934 	/* Last extent, use cluster end directly */
2935 	if (cluster_nr >= cluster->nr - 1)
2936 		return cluster->end;
2937 
2938 	/* Use next boundary start*/
2939 	return cluster->boundary[cluster_nr + 1] - 1;
2940 }
2941 
2942 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2943 			     struct file_extent_cluster *cluster,
2944 			     int *cluster_nr, unsigned long page_index)
2945 {
2946 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2947 	u64 offset = BTRFS_I(inode)->index_cnt;
2948 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2949 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2950 	struct page *page;
2951 	u64 page_start;
2952 	u64 page_end;
2953 	u64 cur;
2954 	int ret;
2955 
2956 	ASSERT(page_index <= last_index);
2957 	page = find_lock_page(inode->i_mapping, page_index);
2958 	if (!page) {
2959 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2960 				page_index, last_index + 1 - page_index);
2961 		page = find_or_create_page(inode->i_mapping, page_index, mask);
2962 		if (!page)
2963 			return -ENOMEM;
2964 	}
2965 	ret = set_page_extent_mapped(page);
2966 	if (ret < 0)
2967 		goto release_page;
2968 
2969 	if (PageReadahead(page))
2970 		page_cache_async_readahead(inode->i_mapping, ra, NULL, page,
2971 				   page_index, last_index + 1 - page_index);
2972 
2973 	if (!PageUptodate(page)) {
2974 		btrfs_readpage(NULL, page);
2975 		lock_page(page);
2976 		if (!PageUptodate(page)) {
2977 			ret = -EIO;
2978 			goto release_page;
2979 		}
2980 	}
2981 
2982 	page_start = page_offset(page);
2983 	page_end = page_start + PAGE_SIZE - 1;
2984 
2985 	/*
2986 	 * Start from the cluster, as for subpage case, the cluster can start
2987 	 * inside the page.
2988 	 */
2989 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
2990 	while (cur <= page_end) {
2991 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
2992 		u64 extent_end = get_cluster_boundary_end(cluster,
2993 						*cluster_nr) - offset;
2994 		u64 clamped_start = max(page_start, extent_start);
2995 		u64 clamped_end = min(page_end, extent_end);
2996 		u32 clamped_len = clamped_end + 1 - clamped_start;
2997 
2998 		/* Reserve metadata for this range */
2999 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3000 						      clamped_len);
3001 		if (ret)
3002 			goto release_page;
3003 
3004 		/* Mark the range delalloc and dirty for later writeback */
3005 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3006 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3007 						clamped_end, 0, NULL);
3008 		if (ret) {
3009 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3010 					clamped_start, clamped_end,
3011 					EXTENT_LOCKED | EXTENT_BOUNDARY);
3012 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3013 							clamped_len, true);
3014 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3015 						       clamped_len);
3016 			goto release_page;
3017 		}
3018 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3019 
3020 		/*
3021 		 * Set the boundary if it's inside the page.
3022 		 * Data relocation requires the destination extents to have the
3023 		 * same size as the source.
3024 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3025 		 * with previous extent.
3026 		 */
3027 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3028 			     page_start, PAGE_SIZE)) {
3029 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3030 						offset;
3031 			u64 boundary_end = boundary_start +
3032 					   fs_info->sectorsize - 1;
3033 
3034 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3035 					boundary_start, boundary_end,
3036 					EXTENT_BOUNDARY);
3037 		}
3038 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3039 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3040 		cur += clamped_len;
3041 
3042 		/* Crossed extent end, go to next extent */
3043 		if (cur >= extent_end) {
3044 			(*cluster_nr)++;
3045 			/* Just finished the last extent of the cluster, exit. */
3046 			if (*cluster_nr >= cluster->nr)
3047 				break;
3048 		}
3049 	}
3050 	unlock_page(page);
3051 	put_page(page);
3052 
3053 	balance_dirty_pages_ratelimited(inode->i_mapping);
3054 	btrfs_throttle(fs_info);
3055 	if (btrfs_should_cancel_balance(fs_info))
3056 		ret = -ECANCELED;
3057 	return ret;
3058 
3059 release_page:
3060 	unlock_page(page);
3061 	put_page(page);
3062 	return ret;
3063 }
3064 
3065 static int relocate_file_extent_cluster(struct inode *inode,
3066 					struct file_extent_cluster *cluster)
3067 {
3068 	u64 offset = BTRFS_I(inode)->index_cnt;
3069 	unsigned long index;
3070 	unsigned long last_index;
3071 	struct file_ra_state *ra;
3072 	int cluster_nr = 0;
3073 	int ret = 0;
3074 
3075 	if (!cluster->nr)
3076 		return 0;
3077 
3078 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3079 	if (!ra)
3080 		return -ENOMEM;
3081 
3082 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3083 	if (ret)
3084 		goto out;
3085 
3086 	file_ra_state_init(ra, inode->i_mapping);
3087 
3088 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3089 				   cluster->end - offset, cluster->start);
3090 	if (ret)
3091 		goto out;
3092 
3093 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3094 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3095 	     index <= last_index && !ret; index++)
3096 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3097 	if (ret == 0)
3098 		WARN_ON(cluster_nr != cluster->nr);
3099 out:
3100 	kfree(ra);
3101 	return ret;
3102 }
3103 
3104 static noinline_for_stack
3105 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3106 			 struct file_extent_cluster *cluster)
3107 {
3108 	int ret;
3109 
3110 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3111 		ret = relocate_file_extent_cluster(inode, cluster);
3112 		if (ret)
3113 			return ret;
3114 		cluster->nr = 0;
3115 	}
3116 
3117 	if (!cluster->nr)
3118 		cluster->start = extent_key->objectid;
3119 	else
3120 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3121 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3122 	cluster->boundary[cluster->nr] = extent_key->objectid;
3123 	cluster->nr++;
3124 
3125 	if (cluster->nr >= MAX_EXTENTS) {
3126 		ret = relocate_file_extent_cluster(inode, cluster);
3127 		if (ret)
3128 			return ret;
3129 		cluster->nr = 0;
3130 	}
3131 	return 0;
3132 }
3133 
3134 /*
3135  * helper to add a tree block to the list.
3136  * the major work is getting the generation and level of the block
3137  */
3138 static int add_tree_block(struct reloc_control *rc,
3139 			  struct btrfs_key *extent_key,
3140 			  struct btrfs_path *path,
3141 			  struct rb_root *blocks)
3142 {
3143 	struct extent_buffer *eb;
3144 	struct btrfs_extent_item *ei;
3145 	struct btrfs_tree_block_info *bi;
3146 	struct tree_block *block;
3147 	struct rb_node *rb_node;
3148 	u32 item_size;
3149 	int level = -1;
3150 	u64 generation;
3151 	u64 owner = 0;
3152 
3153 	eb =  path->nodes[0];
3154 	item_size = btrfs_item_size(eb, path->slots[0]);
3155 
3156 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3157 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3158 		unsigned long ptr = 0, end;
3159 
3160 		ei = btrfs_item_ptr(eb, path->slots[0],
3161 				struct btrfs_extent_item);
3162 		end = (unsigned long)ei + item_size;
3163 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3164 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3165 			level = btrfs_tree_block_level(eb, bi);
3166 			ptr = (unsigned long)(bi + 1);
3167 		} else {
3168 			level = (int)extent_key->offset;
3169 			ptr = (unsigned long)(ei + 1);
3170 		}
3171 		generation = btrfs_extent_generation(eb, ei);
3172 
3173 		/*
3174 		 * We're reading random blocks without knowing their owner ahead
3175 		 * of time.  This is ok most of the time, as all reloc roots and
3176 		 * fs roots have the same lock type.  However normal trees do
3177 		 * not, and the only way to know ahead of time is to read the
3178 		 * inline ref offset.  We know it's an fs root if
3179 		 *
3180 		 * 1. There's more than one ref.
3181 		 * 2. There's a SHARED_DATA_REF_KEY set.
3182 		 * 3. FULL_BACKREF is set on the flags.
3183 		 *
3184 		 * Otherwise it's safe to assume that the ref offset == the
3185 		 * owner of this block, so we can use that when calling
3186 		 * read_tree_block.
3187 		 */
3188 		if (btrfs_extent_refs(eb, ei) == 1 &&
3189 		    !(btrfs_extent_flags(eb, ei) &
3190 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3191 		    ptr < end) {
3192 			struct btrfs_extent_inline_ref *iref;
3193 			int type;
3194 
3195 			iref = (struct btrfs_extent_inline_ref *)ptr;
3196 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3197 							BTRFS_REF_TYPE_BLOCK);
3198 			if (type == BTRFS_REF_TYPE_INVALID)
3199 				return -EINVAL;
3200 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3201 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3202 		}
3203 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3204 		btrfs_print_v0_err(eb->fs_info);
3205 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3206 		return -EINVAL;
3207 	} else {
3208 		BUG();
3209 	}
3210 
3211 	btrfs_release_path(path);
3212 
3213 	BUG_ON(level == -1);
3214 
3215 	block = kmalloc(sizeof(*block), GFP_NOFS);
3216 	if (!block)
3217 		return -ENOMEM;
3218 
3219 	block->bytenr = extent_key->objectid;
3220 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3221 	block->key.offset = generation;
3222 	block->level = level;
3223 	block->key_ready = 0;
3224 	block->owner = owner;
3225 
3226 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3227 	if (rb_node)
3228 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3229 				    -EEXIST);
3230 
3231 	return 0;
3232 }
3233 
3234 /*
3235  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3236  */
3237 static int __add_tree_block(struct reloc_control *rc,
3238 			    u64 bytenr, u32 blocksize,
3239 			    struct rb_root *blocks)
3240 {
3241 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3242 	struct btrfs_path *path;
3243 	struct btrfs_key key;
3244 	int ret;
3245 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3246 
3247 	if (tree_block_processed(bytenr, rc))
3248 		return 0;
3249 
3250 	if (rb_simple_search(blocks, bytenr))
3251 		return 0;
3252 
3253 	path = btrfs_alloc_path();
3254 	if (!path)
3255 		return -ENOMEM;
3256 again:
3257 	key.objectid = bytenr;
3258 	if (skinny) {
3259 		key.type = BTRFS_METADATA_ITEM_KEY;
3260 		key.offset = (u64)-1;
3261 	} else {
3262 		key.type = BTRFS_EXTENT_ITEM_KEY;
3263 		key.offset = blocksize;
3264 	}
3265 
3266 	path->search_commit_root = 1;
3267 	path->skip_locking = 1;
3268 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3269 	if (ret < 0)
3270 		goto out;
3271 
3272 	if (ret > 0 && skinny) {
3273 		if (path->slots[0]) {
3274 			path->slots[0]--;
3275 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3276 					      path->slots[0]);
3277 			if (key.objectid == bytenr &&
3278 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3279 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3280 			      key.offset == blocksize)))
3281 				ret = 0;
3282 		}
3283 
3284 		if (ret) {
3285 			skinny = false;
3286 			btrfs_release_path(path);
3287 			goto again;
3288 		}
3289 	}
3290 	if (ret) {
3291 		ASSERT(ret == 1);
3292 		btrfs_print_leaf(path->nodes[0]);
3293 		btrfs_err(fs_info,
3294 	     "tree block extent item (%llu) is not found in extent tree",
3295 		     bytenr);
3296 		WARN_ON(1);
3297 		ret = -EINVAL;
3298 		goto out;
3299 	}
3300 
3301 	ret = add_tree_block(rc, &key, path, blocks);
3302 out:
3303 	btrfs_free_path(path);
3304 	return ret;
3305 }
3306 
3307 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3308 				    struct btrfs_block_group *block_group,
3309 				    struct inode *inode,
3310 				    u64 ino)
3311 {
3312 	struct btrfs_root *root = fs_info->tree_root;
3313 	struct btrfs_trans_handle *trans;
3314 	int ret = 0;
3315 
3316 	if (inode)
3317 		goto truncate;
3318 
3319 	inode = btrfs_iget(fs_info->sb, ino, root);
3320 	if (IS_ERR(inode))
3321 		return -ENOENT;
3322 
3323 truncate:
3324 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3325 						 &fs_info->global_block_rsv);
3326 	if (ret)
3327 		goto out;
3328 
3329 	trans = btrfs_join_transaction(root);
3330 	if (IS_ERR(trans)) {
3331 		ret = PTR_ERR(trans);
3332 		goto out;
3333 	}
3334 
3335 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3336 
3337 	btrfs_end_transaction(trans);
3338 	btrfs_btree_balance_dirty(fs_info);
3339 out:
3340 	iput(inode);
3341 	return ret;
3342 }
3343 
3344 /*
3345  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3346  * cache inode, to avoid free space cache data extent blocking data relocation.
3347  */
3348 static int delete_v1_space_cache(struct extent_buffer *leaf,
3349 				 struct btrfs_block_group *block_group,
3350 				 u64 data_bytenr)
3351 {
3352 	u64 space_cache_ino;
3353 	struct btrfs_file_extent_item *ei;
3354 	struct btrfs_key key;
3355 	bool found = false;
3356 	int i;
3357 	int ret;
3358 
3359 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3360 		return 0;
3361 
3362 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3363 		u8 type;
3364 
3365 		btrfs_item_key_to_cpu(leaf, &key, i);
3366 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3367 			continue;
3368 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3369 		type = btrfs_file_extent_type(leaf, ei);
3370 
3371 		if ((type == BTRFS_FILE_EXTENT_REG ||
3372 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3373 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3374 			found = true;
3375 			space_cache_ino = key.objectid;
3376 			break;
3377 		}
3378 	}
3379 	if (!found)
3380 		return -ENOENT;
3381 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3382 					space_cache_ino);
3383 	return ret;
3384 }
3385 
3386 /*
3387  * helper to find all tree blocks that reference a given data extent
3388  */
3389 static noinline_for_stack
3390 int add_data_references(struct reloc_control *rc,
3391 			struct btrfs_key *extent_key,
3392 			struct btrfs_path *path,
3393 			struct rb_root *blocks)
3394 {
3395 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3396 	struct ulist *leaves = NULL;
3397 	struct ulist_iterator leaf_uiter;
3398 	struct ulist_node *ref_node = NULL;
3399 	const u32 blocksize = fs_info->nodesize;
3400 	int ret = 0;
3401 
3402 	btrfs_release_path(path);
3403 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3404 				   0, &leaves, NULL, true);
3405 	if (ret < 0)
3406 		return ret;
3407 
3408 	ULIST_ITER_INIT(&leaf_uiter);
3409 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3410 		struct extent_buffer *eb;
3411 
3412 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3413 		if (IS_ERR(eb)) {
3414 			ret = PTR_ERR(eb);
3415 			break;
3416 		}
3417 		ret = delete_v1_space_cache(eb, rc->block_group,
3418 					    extent_key->objectid);
3419 		free_extent_buffer(eb);
3420 		if (ret < 0)
3421 			break;
3422 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3423 		if (ret < 0)
3424 			break;
3425 	}
3426 	if (ret < 0)
3427 		free_block_list(blocks);
3428 	ulist_free(leaves);
3429 	return ret;
3430 }
3431 
3432 /*
3433  * helper to find next unprocessed extent
3434  */
3435 static noinline_for_stack
3436 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3437 		     struct btrfs_key *extent_key)
3438 {
3439 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3440 	struct btrfs_key key;
3441 	struct extent_buffer *leaf;
3442 	u64 start, end, last;
3443 	int ret;
3444 
3445 	last = rc->block_group->start + rc->block_group->length;
3446 	while (1) {
3447 		cond_resched();
3448 		if (rc->search_start >= last) {
3449 			ret = 1;
3450 			break;
3451 		}
3452 
3453 		key.objectid = rc->search_start;
3454 		key.type = BTRFS_EXTENT_ITEM_KEY;
3455 		key.offset = 0;
3456 
3457 		path->search_commit_root = 1;
3458 		path->skip_locking = 1;
3459 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3460 					0, 0);
3461 		if (ret < 0)
3462 			break;
3463 next:
3464 		leaf = path->nodes[0];
3465 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3466 			ret = btrfs_next_leaf(rc->extent_root, path);
3467 			if (ret != 0)
3468 				break;
3469 			leaf = path->nodes[0];
3470 		}
3471 
3472 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3473 		if (key.objectid >= last) {
3474 			ret = 1;
3475 			break;
3476 		}
3477 
3478 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3479 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3480 			path->slots[0]++;
3481 			goto next;
3482 		}
3483 
3484 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3485 		    key.objectid + key.offset <= rc->search_start) {
3486 			path->slots[0]++;
3487 			goto next;
3488 		}
3489 
3490 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3491 		    key.objectid + fs_info->nodesize <=
3492 		    rc->search_start) {
3493 			path->slots[0]++;
3494 			goto next;
3495 		}
3496 
3497 		ret = find_first_extent_bit(&rc->processed_blocks,
3498 					    key.objectid, &start, &end,
3499 					    EXTENT_DIRTY, NULL);
3500 
3501 		if (ret == 0 && start <= key.objectid) {
3502 			btrfs_release_path(path);
3503 			rc->search_start = end + 1;
3504 		} else {
3505 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3506 				rc->search_start = key.objectid + key.offset;
3507 			else
3508 				rc->search_start = key.objectid +
3509 					fs_info->nodesize;
3510 			memcpy(extent_key, &key, sizeof(key));
3511 			return 0;
3512 		}
3513 	}
3514 	btrfs_release_path(path);
3515 	return ret;
3516 }
3517 
3518 static void set_reloc_control(struct reloc_control *rc)
3519 {
3520 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3521 
3522 	mutex_lock(&fs_info->reloc_mutex);
3523 	fs_info->reloc_ctl = rc;
3524 	mutex_unlock(&fs_info->reloc_mutex);
3525 }
3526 
3527 static void unset_reloc_control(struct reloc_control *rc)
3528 {
3529 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3530 
3531 	mutex_lock(&fs_info->reloc_mutex);
3532 	fs_info->reloc_ctl = NULL;
3533 	mutex_unlock(&fs_info->reloc_mutex);
3534 }
3535 
3536 static noinline_for_stack
3537 int prepare_to_relocate(struct reloc_control *rc)
3538 {
3539 	struct btrfs_trans_handle *trans;
3540 	int ret;
3541 
3542 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3543 					      BTRFS_BLOCK_RSV_TEMP);
3544 	if (!rc->block_rsv)
3545 		return -ENOMEM;
3546 
3547 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3548 	rc->search_start = rc->block_group->start;
3549 	rc->extents_found = 0;
3550 	rc->nodes_relocated = 0;
3551 	rc->merging_rsv_size = 0;
3552 	rc->reserved_bytes = 0;
3553 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3554 			      RELOCATION_RESERVED_NODES;
3555 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3556 				     rc->block_rsv, rc->block_rsv->size,
3557 				     BTRFS_RESERVE_FLUSH_ALL);
3558 	if (ret)
3559 		return ret;
3560 
3561 	rc->create_reloc_tree = 1;
3562 	set_reloc_control(rc);
3563 
3564 	trans = btrfs_join_transaction(rc->extent_root);
3565 	if (IS_ERR(trans)) {
3566 		unset_reloc_control(rc);
3567 		/*
3568 		 * extent tree is not a ref_cow tree and has no reloc_root to
3569 		 * cleanup.  And callers are responsible to free the above
3570 		 * block rsv.
3571 		 */
3572 		return PTR_ERR(trans);
3573 	}
3574 	return btrfs_commit_transaction(trans);
3575 }
3576 
3577 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3578 {
3579 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3580 	struct rb_root blocks = RB_ROOT;
3581 	struct btrfs_key key;
3582 	struct btrfs_trans_handle *trans = NULL;
3583 	struct btrfs_path *path;
3584 	struct btrfs_extent_item *ei;
3585 	u64 flags;
3586 	int ret;
3587 	int err = 0;
3588 	int progress = 0;
3589 
3590 	path = btrfs_alloc_path();
3591 	if (!path)
3592 		return -ENOMEM;
3593 	path->reada = READA_FORWARD;
3594 
3595 	ret = prepare_to_relocate(rc);
3596 	if (ret) {
3597 		err = ret;
3598 		goto out_free;
3599 	}
3600 
3601 	while (1) {
3602 		rc->reserved_bytes = 0;
3603 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3604 					     rc->block_rsv->size,
3605 					     BTRFS_RESERVE_FLUSH_ALL);
3606 		if (ret) {
3607 			err = ret;
3608 			break;
3609 		}
3610 		progress++;
3611 		trans = btrfs_start_transaction(rc->extent_root, 0);
3612 		if (IS_ERR(trans)) {
3613 			err = PTR_ERR(trans);
3614 			trans = NULL;
3615 			break;
3616 		}
3617 restart:
3618 		if (update_backref_cache(trans, &rc->backref_cache)) {
3619 			btrfs_end_transaction(trans);
3620 			trans = NULL;
3621 			continue;
3622 		}
3623 
3624 		ret = find_next_extent(rc, path, &key);
3625 		if (ret < 0)
3626 			err = ret;
3627 		if (ret != 0)
3628 			break;
3629 
3630 		rc->extents_found++;
3631 
3632 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3633 				    struct btrfs_extent_item);
3634 		flags = btrfs_extent_flags(path->nodes[0], ei);
3635 
3636 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3637 			ret = add_tree_block(rc, &key, path, &blocks);
3638 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3639 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3640 			ret = add_data_references(rc, &key, path, &blocks);
3641 		} else {
3642 			btrfs_release_path(path);
3643 			ret = 0;
3644 		}
3645 		if (ret < 0) {
3646 			err = ret;
3647 			break;
3648 		}
3649 
3650 		if (!RB_EMPTY_ROOT(&blocks)) {
3651 			ret = relocate_tree_blocks(trans, rc, &blocks);
3652 			if (ret < 0) {
3653 				if (ret != -EAGAIN) {
3654 					err = ret;
3655 					break;
3656 				}
3657 				rc->extents_found--;
3658 				rc->search_start = key.objectid;
3659 			}
3660 		}
3661 
3662 		btrfs_end_transaction_throttle(trans);
3663 		btrfs_btree_balance_dirty(fs_info);
3664 		trans = NULL;
3665 
3666 		if (rc->stage == MOVE_DATA_EXTENTS &&
3667 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3668 			rc->found_file_extent = 1;
3669 			ret = relocate_data_extent(rc->data_inode,
3670 						   &key, &rc->cluster);
3671 			if (ret < 0) {
3672 				err = ret;
3673 				break;
3674 			}
3675 		}
3676 		if (btrfs_should_cancel_balance(fs_info)) {
3677 			err = -ECANCELED;
3678 			break;
3679 		}
3680 	}
3681 	if (trans && progress && err == -ENOSPC) {
3682 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3683 		if (ret == 1) {
3684 			err = 0;
3685 			progress = 0;
3686 			goto restart;
3687 		}
3688 	}
3689 
3690 	btrfs_release_path(path);
3691 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3692 
3693 	if (trans) {
3694 		btrfs_end_transaction_throttle(trans);
3695 		btrfs_btree_balance_dirty(fs_info);
3696 	}
3697 
3698 	if (!err) {
3699 		ret = relocate_file_extent_cluster(rc->data_inode,
3700 						   &rc->cluster);
3701 		if (ret < 0)
3702 			err = ret;
3703 	}
3704 
3705 	rc->create_reloc_tree = 0;
3706 	set_reloc_control(rc);
3707 
3708 	btrfs_backref_release_cache(&rc->backref_cache);
3709 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3710 
3711 	/*
3712 	 * Even in the case when the relocation is cancelled, we should all go
3713 	 * through prepare_to_merge() and merge_reloc_roots().
3714 	 *
3715 	 * For error (including cancelled balance), prepare_to_merge() will
3716 	 * mark all reloc trees orphan, then queue them for cleanup in
3717 	 * merge_reloc_roots()
3718 	 */
3719 	err = prepare_to_merge(rc, err);
3720 
3721 	merge_reloc_roots(rc);
3722 
3723 	rc->merge_reloc_tree = 0;
3724 	unset_reloc_control(rc);
3725 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3726 
3727 	/* get rid of pinned extents */
3728 	trans = btrfs_join_transaction(rc->extent_root);
3729 	if (IS_ERR(trans)) {
3730 		err = PTR_ERR(trans);
3731 		goto out_free;
3732 	}
3733 	ret = btrfs_commit_transaction(trans);
3734 	if (ret && !err)
3735 		err = ret;
3736 out_free:
3737 	ret = clean_dirty_subvols(rc);
3738 	if (ret < 0 && !err)
3739 		err = ret;
3740 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3741 	btrfs_free_path(path);
3742 	return err;
3743 }
3744 
3745 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3746 				 struct btrfs_root *root, u64 objectid)
3747 {
3748 	struct btrfs_path *path;
3749 	struct btrfs_inode_item *item;
3750 	struct extent_buffer *leaf;
3751 	int ret;
3752 
3753 	path = btrfs_alloc_path();
3754 	if (!path)
3755 		return -ENOMEM;
3756 
3757 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3758 	if (ret)
3759 		goto out;
3760 
3761 	leaf = path->nodes[0];
3762 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3763 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3764 	btrfs_set_inode_generation(leaf, item, 1);
3765 	btrfs_set_inode_size(leaf, item, 0);
3766 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3767 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3768 					  BTRFS_INODE_PREALLOC);
3769 	btrfs_mark_buffer_dirty(leaf);
3770 out:
3771 	btrfs_free_path(path);
3772 	return ret;
3773 }
3774 
3775 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3776 				struct btrfs_root *root, u64 objectid)
3777 {
3778 	struct btrfs_path *path;
3779 	struct btrfs_key key;
3780 	int ret = 0;
3781 
3782 	path = btrfs_alloc_path();
3783 	if (!path) {
3784 		ret = -ENOMEM;
3785 		goto out;
3786 	}
3787 
3788 	key.objectid = objectid;
3789 	key.type = BTRFS_INODE_ITEM_KEY;
3790 	key.offset = 0;
3791 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3792 	if (ret) {
3793 		if (ret > 0)
3794 			ret = -ENOENT;
3795 		goto out;
3796 	}
3797 	ret = btrfs_del_item(trans, root, path);
3798 out:
3799 	if (ret)
3800 		btrfs_abort_transaction(trans, ret);
3801 	btrfs_free_path(path);
3802 }
3803 
3804 /*
3805  * helper to create inode for data relocation.
3806  * the inode is in data relocation tree and its link count is 0
3807  */
3808 static noinline_for_stack
3809 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3810 				 struct btrfs_block_group *group)
3811 {
3812 	struct inode *inode = NULL;
3813 	struct btrfs_trans_handle *trans;
3814 	struct btrfs_root *root;
3815 	u64 objectid;
3816 	int err = 0;
3817 
3818 	root = btrfs_grab_root(fs_info->data_reloc_root);
3819 	trans = btrfs_start_transaction(root, 6);
3820 	if (IS_ERR(trans)) {
3821 		btrfs_put_root(root);
3822 		return ERR_CAST(trans);
3823 	}
3824 
3825 	err = btrfs_get_free_objectid(root, &objectid);
3826 	if (err)
3827 		goto out;
3828 
3829 	err = __insert_orphan_inode(trans, root, objectid);
3830 	if (err)
3831 		goto out;
3832 
3833 	inode = btrfs_iget(fs_info->sb, objectid, root);
3834 	if (IS_ERR(inode)) {
3835 		delete_orphan_inode(trans, root, objectid);
3836 		err = PTR_ERR(inode);
3837 		inode = NULL;
3838 		goto out;
3839 	}
3840 	BTRFS_I(inode)->index_cnt = group->start;
3841 
3842 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3843 out:
3844 	btrfs_put_root(root);
3845 	btrfs_end_transaction(trans);
3846 	btrfs_btree_balance_dirty(fs_info);
3847 	if (err) {
3848 		if (inode)
3849 			iput(inode);
3850 		inode = ERR_PTR(err);
3851 	}
3852 	return inode;
3853 }
3854 
3855 /*
3856  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3857  * has been requested meanwhile and don't start in that case.
3858  *
3859  * Return:
3860  *   0             success
3861  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3862  *   -ECANCELED    cancellation request was set before the operation started
3863  */
3864 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3865 {
3866 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3867 		/* This should not happen */
3868 		btrfs_err(fs_info, "reloc already running, cannot start");
3869 		return -EINPROGRESS;
3870 	}
3871 
3872 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3873 		btrfs_info(fs_info, "chunk relocation canceled on start");
3874 		/*
3875 		 * On cancel, clear all requests but let the caller mark
3876 		 * the end after cleanup operations.
3877 		 */
3878 		atomic_set(&fs_info->reloc_cancel_req, 0);
3879 		return -ECANCELED;
3880 	}
3881 	return 0;
3882 }
3883 
3884 /*
3885  * Mark end of chunk relocation that is cancellable and wake any waiters.
3886  */
3887 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3888 {
3889 	/* Requested after start, clear bit first so any waiters can continue */
3890 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3891 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3892 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3893 	atomic_set(&fs_info->reloc_cancel_req, 0);
3894 }
3895 
3896 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3897 {
3898 	struct reloc_control *rc;
3899 
3900 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3901 	if (!rc)
3902 		return NULL;
3903 
3904 	INIT_LIST_HEAD(&rc->reloc_roots);
3905 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3906 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3907 	mapping_tree_init(&rc->reloc_root_tree);
3908 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3909 			    IO_TREE_RELOC_BLOCKS, NULL);
3910 	return rc;
3911 }
3912 
3913 static void free_reloc_control(struct reloc_control *rc)
3914 {
3915 	struct mapping_node *node, *tmp;
3916 
3917 	free_reloc_roots(&rc->reloc_roots);
3918 	rbtree_postorder_for_each_entry_safe(node, tmp,
3919 			&rc->reloc_root_tree.rb_root, rb_node)
3920 		kfree(node);
3921 
3922 	kfree(rc);
3923 }
3924 
3925 /*
3926  * Print the block group being relocated
3927  */
3928 static void describe_relocation(struct btrfs_fs_info *fs_info,
3929 				struct btrfs_block_group *block_group)
3930 {
3931 	char buf[128] = {'\0'};
3932 
3933 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3934 
3935 	btrfs_info(fs_info,
3936 		   "relocating block group %llu flags %s",
3937 		   block_group->start, buf);
3938 }
3939 
3940 static const char *stage_to_string(int stage)
3941 {
3942 	if (stage == MOVE_DATA_EXTENTS)
3943 		return "move data extents";
3944 	if (stage == UPDATE_DATA_PTRS)
3945 		return "update data pointers";
3946 	return "unknown";
3947 }
3948 
3949 /*
3950  * function to relocate all extents in a block group.
3951  */
3952 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3953 {
3954 	struct btrfs_block_group *bg;
3955 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3956 	struct reloc_control *rc;
3957 	struct inode *inode;
3958 	struct btrfs_path *path;
3959 	int ret;
3960 	int rw = 0;
3961 	int err = 0;
3962 
3963 	bg = btrfs_lookup_block_group(fs_info, group_start);
3964 	if (!bg)
3965 		return -ENOENT;
3966 
3967 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3968 		btrfs_put_block_group(bg);
3969 		return -ETXTBSY;
3970 	}
3971 
3972 	rc = alloc_reloc_control(fs_info);
3973 	if (!rc) {
3974 		btrfs_put_block_group(bg);
3975 		return -ENOMEM;
3976 	}
3977 
3978 	ret = reloc_chunk_start(fs_info);
3979 	if (ret < 0) {
3980 		err = ret;
3981 		goto out_put_bg;
3982 	}
3983 
3984 	rc->extent_root = extent_root;
3985 	rc->block_group = bg;
3986 
3987 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3988 	if (ret) {
3989 		err = ret;
3990 		goto out;
3991 	}
3992 	rw = 1;
3993 
3994 	path = btrfs_alloc_path();
3995 	if (!path) {
3996 		err = -ENOMEM;
3997 		goto out;
3998 	}
3999 
4000 	inode = lookup_free_space_inode(rc->block_group, path);
4001 	btrfs_free_path(path);
4002 
4003 	if (!IS_ERR(inode))
4004 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4005 	else
4006 		ret = PTR_ERR(inode);
4007 
4008 	if (ret && ret != -ENOENT) {
4009 		err = ret;
4010 		goto out;
4011 	}
4012 
4013 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4014 	if (IS_ERR(rc->data_inode)) {
4015 		err = PTR_ERR(rc->data_inode);
4016 		rc->data_inode = NULL;
4017 		goto out;
4018 	}
4019 
4020 	describe_relocation(fs_info, rc->block_group);
4021 
4022 	btrfs_wait_block_group_reservations(rc->block_group);
4023 	btrfs_wait_nocow_writers(rc->block_group);
4024 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4025 				 rc->block_group->start,
4026 				 rc->block_group->length);
4027 
4028 	ret = btrfs_zone_finish(rc->block_group);
4029 	WARN_ON(ret && ret != -EAGAIN);
4030 
4031 	while (1) {
4032 		int finishes_stage;
4033 
4034 		mutex_lock(&fs_info->cleaner_mutex);
4035 		ret = relocate_block_group(rc);
4036 		mutex_unlock(&fs_info->cleaner_mutex);
4037 		if (ret < 0)
4038 			err = ret;
4039 
4040 		finishes_stage = rc->stage;
4041 		/*
4042 		 * We may have gotten ENOSPC after we already dirtied some
4043 		 * extents.  If writeout happens while we're relocating a
4044 		 * different block group we could end up hitting the
4045 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4046 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4047 		 * properly so we don't trip over this problem, and then break
4048 		 * out of the loop if we hit an error.
4049 		 */
4050 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4051 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4052 						       (u64)-1);
4053 			if (ret)
4054 				err = ret;
4055 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4056 						 0, -1);
4057 			rc->stage = UPDATE_DATA_PTRS;
4058 		}
4059 
4060 		if (err < 0)
4061 			goto out;
4062 
4063 		if (rc->extents_found == 0)
4064 			break;
4065 
4066 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4067 			   rc->extents_found, stage_to_string(finishes_stage));
4068 	}
4069 
4070 	WARN_ON(rc->block_group->pinned > 0);
4071 	WARN_ON(rc->block_group->reserved > 0);
4072 	WARN_ON(rc->block_group->used > 0);
4073 out:
4074 	if (err && rw)
4075 		btrfs_dec_block_group_ro(rc->block_group);
4076 	iput(rc->data_inode);
4077 out_put_bg:
4078 	btrfs_put_block_group(bg);
4079 	reloc_chunk_end(fs_info);
4080 	free_reloc_control(rc);
4081 	return err;
4082 }
4083 
4084 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4085 {
4086 	struct btrfs_fs_info *fs_info = root->fs_info;
4087 	struct btrfs_trans_handle *trans;
4088 	int ret, err;
4089 
4090 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4091 	if (IS_ERR(trans))
4092 		return PTR_ERR(trans);
4093 
4094 	memset(&root->root_item.drop_progress, 0,
4095 		sizeof(root->root_item.drop_progress));
4096 	btrfs_set_root_drop_level(&root->root_item, 0);
4097 	btrfs_set_root_refs(&root->root_item, 0);
4098 	ret = btrfs_update_root(trans, fs_info->tree_root,
4099 				&root->root_key, &root->root_item);
4100 
4101 	err = btrfs_end_transaction(trans);
4102 	if (err)
4103 		return err;
4104 	return ret;
4105 }
4106 
4107 /*
4108  * recover relocation interrupted by system crash.
4109  *
4110  * this function resumes merging reloc trees with corresponding fs trees.
4111  * this is important for keeping the sharing of tree blocks
4112  */
4113 int btrfs_recover_relocation(struct btrfs_root *root)
4114 {
4115 	struct btrfs_fs_info *fs_info = root->fs_info;
4116 	LIST_HEAD(reloc_roots);
4117 	struct btrfs_key key;
4118 	struct btrfs_root *fs_root;
4119 	struct btrfs_root *reloc_root;
4120 	struct btrfs_path *path;
4121 	struct extent_buffer *leaf;
4122 	struct reloc_control *rc = NULL;
4123 	struct btrfs_trans_handle *trans;
4124 	int ret;
4125 	int err = 0;
4126 
4127 	path = btrfs_alloc_path();
4128 	if (!path)
4129 		return -ENOMEM;
4130 	path->reada = READA_BACK;
4131 
4132 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4133 	key.type = BTRFS_ROOT_ITEM_KEY;
4134 	key.offset = (u64)-1;
4135 
4136 	while (1) {
4137 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4138 					path, 0, 0);
4139 		if (ret < 0) {
4140 			err = ret;
4141 			goto out;
4142 		}
4143 		if (ret > 0) {
4144 			if (path->slots[0] == 0)
4145 				break;
4146 			path->slots[0]--;
4147 		}
4148 		leaf = path->nodes[0];
4149 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4150 		btrfs_release_path(path);
4151 
4152 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4153 		    key.type != BTRFS_ROOT_ITEM_KEY)
4154 			break;
4155 
4156 		reloc_root = btrfs_read_tree_root(root, &key);
4157 		if (IS_ERR(reloc_root)) {
4158 			err = PTR_ERR(reloc_root);
4159 			goto out;
4160 		}
4161 
4162 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4163 		list_add(&reloc_root->root_list, &reloc_roots);
4164 
4165 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4166 			fs_root = btrfs_get_fs_root(fs_info,
4167 					reloc_root->root_key.offset, false);
4168 			if (IS_ERR(fs_root)) {
4169 				ret = PTR_ERR(fs_root);
4170 				if (ret != -ENOENT) {
4171 					err = ret;
4172 					goto out;
4173 				}
4174 				ret = mark_garbage_root(reloc_root);
4175 				if (ret < 0) {
4176 					err = ret;
4177 					goto out;
4178 				}
4179 			} else {
4180 				btrfs_put_root(fs_root);
4181 			}
4182 		}
4183 
4184 		if (key.offset == 0)
4185 			break;
4186 
4187 		key.offset--;
4188 	}
4189 	btrfs_release_path(path);
4190 
4191 	if (list_empty(&reloc_roots))
4192 		goto out;
4193 
4194 	rc = alloc_reloc_control(fs_info);
4195 	if (!rc) {
4196 		err = -ENOMEM;
4197 		goto out;
4198 	}
4199 
4200 	ret = reloc_chunk_start(fs_info);
4201 	if (ret < 0) {
4202 		err = ret;
4203 		goto out_end;
4204 	}
4205 
4206 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4207 
4208 	set_reloc_control(rc);
4209 
4210 	trans = btrfs_join_transaction(rc->extent_root);
4211 	if (IS_ERR(trans)) {
4212 		err = PTR_ERR(trans);
4213 		goto out_unset;
4214 	}
4215 
4216 	rc->merge_reloc_tree = 1;
4217 
4218 	while (!list_empty(&reloc_roots)) {
4219 		reloc_root = list_entry(reloc_roots.next,
4220 					struct btrfs_root, root_list);
4221 		list_del(&reloc_root->root_list);
4222 
4223 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4224 			list_add_tail(&reloc_root->root_list,
4225 				      &rc->reloc_roots);
4226 			continue;
4227 		}
4228 
4229 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4230 					    false);
4231 		if (IS_ERR(fs_root)) {
4232 			err = PTR_ERR(fs_root);
4233 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4234 			btrfs_end_transaction(trans);
4235 			goto out_unset;
4236 		}
4237 
4238 		err = __add_reloc_root(reloc_root);
4239 		ASSERT(err != -EEXIST);
4240 		if (err) {
4241 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4242 			btrfs_put_root(fs_root);
4243 			btrfs_end_transaction(trans);
4244 			goto out_unset;
4245 		}
4246 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4247 		btrfs_put_root(fs_root);
4248 	}
4249 
4250 	err = btrfs_commit_transaction(trans);
4251 	if (err)
4252 		goto out_unset;
4253 
4254 	merge_reloc_roots(rc);
4255 
4256 	unset_reloc_control(rc);
4257 
4258 	trans = btrfs_join_transaction(rc->extent_root);
4259 	if (IS_ERR(trans)) {
4260 		err = PTR_ERR(trans);
4261 		goto out_clean;
4262 	}
4263 	err = btrfs_commit_transaction(trans);
4264 out_clean:
4265 	ret = clean_dirty_subvols(rc);
4266 	if (ret < 0 && !err)
4267 		err = ret;
4268 out_unset:
4269 	unset_reloc_control(rc);
4270 out_end:
4271 	reloc_chunk_end(fs_info);
4272 	free_reloc_control(rc);
4273 out:
4274 	free_reloc_roots(&reloc_roots);
4275 
4276 	btrfs_free_path(path);
4277 
4278 	if (err == 0) {
4279 		/* cleanup orphan inode in data relocation tree */
4280 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4281 		ASSERT(fs_root);
4282 		err = btrfs_orphan_cleanup(fs_root);
4283 		btrfs_put_root(fs_root);
4284 	}
4285 	return err;
4286 }
4287 
4288 /*
4289  * helper to add ordered checksum for data relocation.
4290  *
4291  * cloning checksum properly handles the nodatasum extents.
4292  * it also saves CPU time to re-calculate the checksum.
4293  */
4294 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4295 {
4296 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4297 	struct btrfs_root *csum_root;
4298 	struct btrfs_ordered_sum *sums;
4299 	struct btrfs_ordered_extent *ordered;
4300 	int ret;
4301 	u64 disk_bytenr;
4302 	u64 new_bytenr;
4303 	LIST_HEAD(list);
4304 
4305 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4306 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4307 
4308 	disk_bytenr = file_pos + inode->index_cnt;
4309 	csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4310 	ret = btrfs_lookup_csums_range(csum_root, disk_bytenr,
4311 				       disk_bytenr + len - 1, &list, 0);
4312 	if (ret)
4313 		goto out;
4314 
4315 	while (!list_empty(&list)) {
4316 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4317 		list_del_init(&sums->list);
4318 
4319 		/*
4320 		 * We need to offset the new_bytenr based on where the csum is.
4321 		 * We need to do this because we will read in entire prealloc
4322 		 * extents but we may have written to say the middle of the
4323 		 * prealloc extent, so we need to make sure the csum goes with
4324 		 * the right disk offset.
4325 		 *
4326 		 * We can do this because the data reloc inode refers strictly
4327 		 * to the on disk bytes, so we don't have to worry about
4328 		 * disk_len vs real len like with real inodes since it's all
4329 		 * disk length.
4330 		 */
4331 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4332 		sums->bytenr = new_bytenr;
4333 
4334 		btrfs_add_ordered_sum(ordered, sums);
4335 	}
4336 out:
4337 	btrfs_put_ordered_extent(ordered);
4338 	return ret;
4339 }
4340 
4341 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4342 			  struct btrfs_root *root, struct extent_buffer *buf,
4343 			  struct extent_buffer *cow)
4344 {
4345 	struct btrfs_fs_info *fs_info = root->fs_info;
4346 	struct reloc_control *rc;
4347 	struct btrfs_backref_node *node;
4348 	int first_cow = 0;
4349 	int level;
4350 	int ret = 0;
4351 
4352 	rc = fs_info->reloc_ctl;
4353 	if (!rc)
4354 		return 0;
4355 
4356 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4357 
4358 	level = btrfs_header_level(buf);
4359 	if (btrfs_header_generation(buf) <=
4360 	    btrfs_root_last_snapshot(&root->root_item))
4361 		first_cow = 1;
4362 
4363 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4364 	    rc->create_reloc_tree) {
4365 		WARN_ON(!first_cow && level == 0);
4366 
4367 		node = rc->backref_cache.path[level];
4368 		BUG_ON(node->bytenr != buf->start &&
4369 		       node->new_bytenr != buf->start);
4370 
4371 		btrfs_backref_drop_node_buffer(node);
4372 		atomic_inc(&cow->refs);
4373 		node->eb = cow;
4374 		node->new_bytenr = cow->start;
4375 
4376 		if (!node->pending) {
4377 			list_move_tail(&node->list,
4378 				       &rc->backref_cache.pending[level]);
4379 			node->pending = 1;
4380 		}
4381 
4382 		if (first_cow)
4383 			mark_block_processed(rc, node);
4384 
4385 		if (first_cow && level > 0)
4386 			rc->nodes_relocated += buf->len;
4387 	}
4388 
4389 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4390 		ret = replace_file_extents(trans, rc, root, cow);
4391 	return ret;
4392 }
4393 
4394 /*
4395  * called before creating snapshot. it calculates metadata reservation
4396  * required for relocating tree blocks in the snapshot
4397  */
4398 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4399 			      u64 *bytes_to_reserve)
4400 {
4401 	struct btrfs_root *root = pending->root;
4402 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4403 
4404 	if (!rc || !have_reloc_root(root))
4405 		return;
4406 
4407 	if (!rc->merge_reloc_tree)
4408 		return;
4409 
4410 	root = root->reloc_root;
4411 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4412 	/*
4413 	 * relocation is in the stage of merging trees. the space
4414 	 * used by merging a reloc tree is twice the size of
4415 	 * relocated tree nodes in the worst case. half for cowing
4416 	 * the reloc tree, half for cowing the fs tree. the space
4417 	 * used by cowing the reloc tree will be freed after the
4418 	 * tree is dropped. if we create snapshot, cowing the fs
4419 	 * tree may use more space than it frees. so we need
4420 	 * reserve extra space.
4421 	 */
4422 	*bytes_to_reserve += rc->nodes_relocated;
4423 }
4424 
4425 /*
4426  * called after snapshot is created. migrate block reservation
4427  * and create reloc root for the newly created snapshot
4428  *
4429  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4430  * references held on the reloc_root, one for root->reloc_root and one for
4431  * rc->reloc_roots.
4432  */
4433 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4434 			       struct btrfs_pending_snapshot *pending)
4435 {
4436 	struct btrfs_root *root = pending->root;
4437 	struct btrfs_root *reloc_root;
4438 	struct btrfs_root *new_root;
4439 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4440 	int ret;
4441 
4442 	if (!rc || !have_reloc_root(root))
4443 		return 0;
4444 
4445 	rc = root->fs_info->reloc_ctl;
4446 	rc->merging_rsv_size += rc->nodes_relocated;
4447 
4448 	if (rc->merge_reloc_tree) {
4449 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4450 					      rc->block_rsv,
4451 					      rc->nodes_relocated, true);
4452 		if (ret)
4453 			return ret;
4454 	}
4455 
4456 	new_root = pending->snap;
4457 	reloc_root = create_reloc_root(trans, root->reloc_root,
4458 				       new_root->root_key.objectid);
4459 	if (IS_ERR(reloc_root))
4460 		return PTR_ERR(reloc_root);
4461 
4462 	ret = __add_reloc_root(reloc_root);
4463 	ASSERT(ret != -EEXIST);
4464 	if (ret) {
4465 		/* Pairs with create_reloc_root */
4466 		btrfs_put_root(reloc_root);
4467 		return ret;
4468 	}
4469 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4470 
4471 	if (rc->create_reloc_tree)
4472 		ret = clone_backref_node(trans, rc, root, reloc_root);
4473 	return ret;
4474 }
4475