1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "inode-map.h" 22 #include "qgroup.h" 23 #include "print-tree.h" 24 #include "delalloc-space.h" 25 #include "block-group.h" 26 #include "backref.h" 27 #include "misc.h" 28 29 /* 30 * Relocation overview 31 * 32 * [What does relocation do] 33 * 34 * The objective of relocation is to relocate all extents of the target block 35 * group to other block groups. 36 * This is utilized by resize (shrink only), profile converting, compacting 37 * space, or balance routine to spread chunks over devices. 38 * 39 * Before | After 40 * ------------------------------------------------------------------ 41 * BG A: 10 data extents | BG A: deleted 42 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 43 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 44 * 45 * [How does relocation work] 46 * 47 * 1. Mark the target block group read-only 48 * New extents won't be allocated from the target block group. 49 * 50 * 2.1 Record each extent in the target block group 51 * To build a proper map of extents to be relocated. 52 * 53 * 2.2 Build data reloc tree and reloc trees 54 * Data reloc tree will contain an inode, recording all newly relocated 55 * data extents. 56 * There will be only one data reloc tree for one data block group. 57 * 58 * Reloc tree will be a special snapshot of its source tree, containing 59 * relocated tree blocks. 60 * Each tree referring to a tree block in target block group will get its 61 * reloc tree built. 62 * 63 * 2.3 Swap source tree with its corresponding reloc tree 64 * Each involved tree only refers to new extents after swap. 65 * 66 * 3. Cleanup reloc trees and data reloc tree. 67 * As old extents in the target block group are still referenced by reloc 68 * trees, we need to clean them up before really freeing the target block 69 * group. 70 * 71 * The main complexity is in steps 2.2 and 2.3. 72 * 73 * The entry point of relocation is relocate_block_group() function. 74 */ 75 76 #define RELOCATION_RESERVED_NODES 256 77 /* 78 * map address of tree root to tree 79 */ 80 struct mapping_node { 81 struct { 82 struct rb_node rb_node; 83 u64 bytenr; 84 }; /* Use rb_simle_node for search/insert */ 85 void *data; 86 }; 87 88 struct mapping_tree { 89 struct rb_root rb_root; 90 spinlock_t lock; 91 }; 92 93 /* 94 * present a tree block to process 95 */ 96 struct tree_block { 97 struct { 98 struct rb_node rb_node; 99 u64 bytenr; 100 }; /* Use rb_simple_node for search/insert */ 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104 }; 105 106 #define MAX_EXTENTS 128 107 108 struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113 }; 114 115 struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150 }; 151 152 /* stages of data relocation */ 153 #define MOVE_DATA_EXTENTS 0 154 #define UPDATE_DATA_PTRS 1 155 156 static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158 { 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169 } 170 171 172 static void mapping_tree_init(struct mapping_tree *tree) 173 { 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176 } 177 178 /* 179 * walk up backref nodes until reach node presents tree root 180 */ 181 static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184 { 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197 } 198 199 /* 200 * walk down backref nodes to find start of next reference path 201 */ 202 static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204 { 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224 } 225 226 static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228 { 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235 } 236 237 /* 238 * update backref cache after a transaction commit 239 */ 240 static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242 { 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288 } 289 290 static bool reloc_root_is_dead(struct btrfs_root *root) 291 { 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301 } 302 303 /* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311 static bool have_reloc_root(struct btrfs_root *root) 312 { 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318 } 319 320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321 { 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345 } 346 347 /* 348 * find reloc tree by address of tree root 349 */ 350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351 { 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366 } 367 368 /* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381 static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383 { 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440 } 441 442 /* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459 { 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517 out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528 } 529 530 /* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535 static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539 { 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608 fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617 } 618 619 /* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622 static int __must_check __add_reloc_root(struct btrfs_root *root) 623 { 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_panic(fs_info, -EEXIST, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 } 645 646 list_add_tail(&root->root_list, &rc->reloc_roots); 647 return 0; 648 } 649 650 /* 651 * helper to delete the 'address of tree root -> reloc tree' 652 * mapping 653 */ 654 static void __del_reloc_root(struct btrfs_root *root) 655 { 656 struct btrfs_fs_info *fs_info = root->fs_info; 657 struct rb_node *rb_node; 658 struct mapping_node *node = NULL; 659 struct reloc_control *rc = fs_info->reloc_ctl; 660 bool put_ref = false; 661 662 if (rc && root->node) { 663 spin_lock(&rc->reloc_root_tree.lock); 664 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 665 root->commit_root->start); 666 if (rb_node) { 667 node = rb_entry(rb_node, struct mapping_node, rb_node); 668 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 669 RB_CLEAR_NODE(&node->rb_node); 670 } 671 spin_unlock(&rc->reloc_root_tree.lock); 672 if (!node) 673 return; 674 BUG_ON((struct btrfs_root *)node->data != root); 675 } 676 677 /* 678 * We only put the reloc root here if it's on the list. There's a lot 679 * of places where the pattern is to splice the rc->reloc_roots, process 680 * the reloc roots, and then add the reloc root back onto 681 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 682 * list we don't want the reference being dropped, because the guy 683 * messing with the list is in charge of the reference. 684 */ 685 spin_lock(&fs_info->trans_lock); 686 if (!list_empty(&root->root_list)) { 687 put_ref = true; 688 list_del_init(&root->root_list); 689 } 690 spin_unlock(&fs_info->trans_lock); 691 if (put_ref) 692 btrfs_put_root(root); 693 kfree(node); 694 } 695 696 /* 697 * helper to update the 'address of tree root -> reloc tree' 698 * mapping 699 */ 700 static int __update_reloc_root(struct btrfs_root *root) 701 { 702 struct btrfs_fs_info *fs_info = root->fs_info; 703 struct rb_node *rb_node; 704 struct mapping_node *node = NULL; 705 struct reloc_control *rc = fs_info->reloc_ctl; 706 707 spin_lock(&rc->reloc_root_tree.lock); 708 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 709 root->commit_root->start); 710 if (rb_node) { 711 node = rb_entry(rb_node, struct mapping_node, rb_node); 712 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 713 } 714 spin_unlock(&rc->reloc_root_tree.lock); 715 716 if (!node) 717 return 0; 718 BUG_ON((struct btrfs_root *)node->data != root); 719 720 spin_lock(&rc->reloc_root_tree.lock); 721 node->bytenr = root->node->start; 722 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 723 node->bytenr, &node->rb_node); 724 spin_unlock(&rc->reloc_root_tree.lock); 725 if (rb_node) 726 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 727 return 0; 728 } 729 730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 731 struct btrfs_root *root, u64 objectid) 732 { 733 struct btrfs_fs_info *fs_info = root->fs_info; 734 struct btrfs_root *reloc_root; 735 struct extent_buffer *eb; 736 struct btrfs_root_item *root_item; 737 struct btrfs_key root_key; 738 int ret; 739 740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 741 BUG_ON(!root_item); 742 743 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 744 root_key.type = BTRFS_ROOT_ITEM_KEY; 745 root_key.offset = objectid; 746 747 if (root->root_key.objectid == objectid) { 748 u64 commit_root_gen; 749 750 /* called by btrfs_init_reloc_root */ 751 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 752 BTRFS_TREE_RELOC_OBJECTID); 753 BUG_ON(ret); 754 /* 755 * Set the last_snapshot field to the generation of the commit 756 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 757 * correctly (returns true) when the relocation root is created 758 * either inside the critical section of a transaction commit 759 * (through transaction.c:qgroup_account_snapshot()) and when 760 * it's created before the transaction commit is started. 761 */ 762 commit_root_gen = btrfs_header_generation(root->commit_root); 763 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 764 } else { 765 /* 766 * called by btrfs_reloc_post_snapshot_hook. 767 * the source tree is a reloc tree, all tree blocks 768 * modified after it was created have RELOC flag 769 * set in their headers. so it's OK to not update 770 * the 'last_snapshot'. 771 */ 772 ret = btrfs_copy_root(trans, root, root->node, &eb, 773 BTRFS_TREE_RELOC_OBJECTID); 774 BUG_ON(ret); 775 } 776 777 memcpy(root_item, &root->root_item, sizeof(*root_item)); 778 btrfs_set_root_bytenr(root_item, eb->start); 779 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 780 btrfs_set_root_generation(root_item, trans->transid); 781 782 if (root->root_key.objectid == objectid) { 783 btrfs_set_root_refs(root_item, 0); 784 memset(&root_item->drop_progress, 0, 785 sizeof(struct btrfs_disk_key)); 786 root_item->drop_level = 0; 787 } 788 789 btrfs_tree_unlock(eb); 790 free_extent_buffer(eb); 791 792 ret = btrfs_insert_root(trans, fs_info->tree_root, 793 &root_key, root_item); 794 BUG_ON(ret); 795 kfree(root_item); 796 797 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 798 BUG_ON(IS_ERR(reloc_root)); 799 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 800 reloc_root->last_trans = trans->transid; 801 return reloc_root; 802 } 803 804 /* 805 * create reloc tree for a given fs tree. reloc tree is just a 806 * snapshot of the fs tree with special root objectid. 807 * 808 * The reloc_root comes out of here with two references, one for 809 * root->reloc_root, and another for being on the rc->reloc_roots list. 810 */ 811 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 812 struct btrfs_root *root) 813 { 814 struct btrfs_fs_info *fs_info = root->fs_info; 815 struct btrfs_root *reloc_root; 816 struct reloc_control *rc = fs_info->reloc_ctl; 817 struct btrfs_block_rsv *rsv; 818 int clear_rsv = 0; 819 int ret; 820 821 if (!rc) 822 return 0; 823 824 /* 825 * The subvolume has reloc tree but the swap is finished, no need to 826 * create/update the dead reloc tree 827 */ 828 if (reloc_root_is_dead(root)) 829 return 0; 830 831 /* 832 * This is subtle but important. We do not do 833 * record_root_in_transaction for reloc roots, instead we record their 834 * corresponding fs root, and then here we update the last trans for the 835 * reloc root. This means that we have to do this for the entire life 836 * of the reloc root, regardless of which stage of the relocation we are 837 * in. 838 */ 839 if (root->reloc_root) { 840 reloc_root = root->reloc_root; 841 reloc_root->last_trans = trans->transid; 842 return 0; 843 } 844 845 /* 846 * We are merging reloc roots, we do not need new reloc trees. Also 847 * reloc trees never need their own reloc tree. 848 */ 849 if (!rc->create_reloc_tree || 850 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 851 return 0; 852 853 if (!trans->reloc_reserved) { 854 rsv = trans->block_rsv; 855 trans->block_rsv = rc->block_rsv; 856 clear_rsv = 1; 857 } 858 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 859 if (clear_rsv) 860 trans->block_rsv = rsv; 861 862 ret = __add_reloc_root(reloc_root); 863 BUG_ON(ret < 0); 864 root->reloc_root = btrfs_grab_root(reloc_root); 865 return 0; 866 } 867 868 /* 869 * update root item of reloc tree 870 */ 871 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root) 873 { 874 struct btrfs_fs_info *fs_info = root->fs_info; 875 struct btrfs_root *reloc_root; 876 struct btrfs_root_item *root_item; 877 int ret; 878 879 if (!have_reloc_root(root)) 880 goto out; 881 882 reloc_root = root->reloc_root; 883 root_item = &reloc_root->root_item; 884 885 /* 886 * We are probably ok here, but __del_reloc_root() will drop its ref of 887 * the root. We have the ref for root->reloc_root, but just in case 888 * hold it while we update the reloc root. 889 */ 890 btrfs_grab_root(reloc_root); 891 892 /* root->reloc_root will stay until current relocation finished */ 893 if (fs_info->reloc_ctl->merge_reloc_tree && 894 btrfs_root_refs(root_item) == 0) { 895 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 896 /* 897 * Mark the tree as dead before we change reloc_root so 898 * have_reloc_root will not touch it from now on. 899 */ 900 smp_wmb(); 901 __del_reloc_root(reloc_root); 902 } 903 904 if (reloc_root->commit_root != reloc_root->node) { 905 __update_reloc_root(reloc_root); 906 btrfs_set_root_node(root_item, reloc_root->node); 907 free_extent_buffer(reloc_root->commit_root); 908 reloc_root->commit_root = btrfs_root_node(reloc_root); 909 } 910 911 ret = btrfs_update_root(trans, fs_info->tree_root, 912 &reloc_root->root_key, root_item); 913 BUG_ON(ret); 914 btrfs_put_root(reloc_root); 915 out: 916 return 0; 917 } 918 919 /* 920 * helper to find first cached inode with inode number >= objectid 921 * in a subvolume 922 */ 923 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 924 { 925 struct rb_node *node; 926 struct rb_node *prev; 927 struct btrfs_inode *entry; 928 struct inode *inode; 929 930 spin_lock(&root->inode_lock); 931 again: 932 node = root->inode_tree.rb_node; 933 prev = NULL; 934 while (node) { 935 prev = node; 936 entry = rb_entry(node, struct btrfs_inode, rb_node); 937 938 if (objectid < btrfs_ino(entry)) 939 node = node->rb_left; 940 else if (objectid > btrfs_ino(entry)) 941 node = node->rb_right; 942 else 943 break; 944 } 945 if (!node) { 946 while (prev) { 947 entry = rb_entry(prev, struct btrfs_inode, rb_node); 948 if (objectid <= btrfs_ino(entry)) { 949 node = prev; 950 break; 951 } 952 prev = rb_next(prev); 953 } 954 } 955 while (node) { 956 entry = rb_entry(node, struct btrfs_inode, rb_node); 957 inode = igrab(&entry->vfs_inode); 958 if (inode) { 959 spin_unlock(&root->inode_lock); 960 return inode; 961 } 962 963 objectid = btrfs_ino(entry) + 1; 964 if (cond_resched_lock(&root->inode_lock)) 965 goto again; 966 967 node = rb_next(node); 968 } 969 spin_unlock(&root->inode_lock); 970 return NULL; 971 } 972 973 /* 974 * get new location of data 975 */ 976 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 977 u64 bytenr, u64 num_bytes) 978 { 979 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 980 struct btrfs_path *path; 981 struct btrfs_file_extent_item *fi; 982 struct extent_buffer *leaf; 983 int ret; 984 985 path = btrfs_alloc_path(); 986 if (!path) 987 return -ENOMEM; 988 989 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 990 ret = btrfs_lookup_file_extent(NULL, root, path, 991 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 992 if (ret < 0) 993 goto out; 994 if (ret > 0) { 995 ret = -ENOENT; 996 goto out; 997 } 998 999 leaf = path->nodes[0]; 1000 fi = btrfs_item_ptr(leaf, path->slots[0], 1001 struct btrfs_file_extent_item); 1002 1003 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1004 btrfs_file_extent_compression(leaf, fi) || 1005 btrfs_file_extent_encryption(leaf, fi) || 1006 btrfs_file_extent_other_encoding(leaf, fi)); 1007 1008 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1009 ret = -EINVAL; 1010 goto out; 1011 } 1012 1013 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1014 ret = 0; 1015 out: 1016 btrfs_free_path(path); 1017 return ret; 1018 } 1019 1020 /* 1021 * update file extent items in the tree leaf to point to 1022 * the new locations. 1023 */ 1024 static noinline_for_stack 1025 int replace_file_extents(struct btrfs_trans_handle *trans, 1026 struct reloc_control *rc, 1027 struct btrfs_root *root, 1028 struct extent_buffer *leaf) 1029 { 1030 struct btrfs_fs_info *fs_info = root->fs_info; 1031 struct btrfs_key key; 1032 struct btrfs_file_extent_item *fi; 1033 struct inode *inode = NULL; 1034 u64 parent; 1035 u64 bytenr; 1036 u64 new_bytenr = 0; 1037 u64 num_bytes; 1038 u64 end; 1039 u32 nritems; 1040 u32 i; 1041 int ret = 0; 1042 int first = 1; 1043 int dirty = 0; 1044 1045 if (rc->stage != UPDATE_DATA_PTRS) 1046 return 0; 1047 1048 /* reloc trees always use full backref */ 1049 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1050 parent = leaf->start; 1051 else 1052 parent = 0; 1053 1054 nritems = btrfs_header_nritems(leaf); 1055 for (i = 0; i < nritems; i++) { 1056 struct btrfs_ref ref = { 0 }; 1057 1058 cond_resched(); 1059 btrfs_item_key_to_cpu(leaf, &key, i); 1060 if (key.type != BTRFS_EXTENT_DATA_KEY) 1061 continue; 1062 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1063 if (btrfs_file_extent_type(leaf, fi) == 1064 BTRFS_FILE_EXTENT_INLINE) 1065 continue; 1066 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1067 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1068 if (bytenr == 0) 1069 continue; 1070 if (!in_range(bytenr, rc->block_group->start, 1071 rc->block_group->length)) 1072 continue; 1073 1074 /* 1075 * if we are modifying block in fs tree, wait for readpage 1076 * to complete and drop the extent cache 1077 */ 1078 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1079 if (first) { 1080 inode = find_next_inode(root, key.objectid); 1081 first = 0; 1082 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1083 btrfs_add_delayed_iput(inode); 1084 inode = find_next_inode(root, key.objectid); 1085 } 1086 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1087 end = key.offset + 1088 btrfs_file_extent_num_bytes(leaf, fi); 1089 WARN_ON(!IS_ALIGNED(key.offset, 1090 fs_info->sectorsize)); 1091 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1092 end--; 1093 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1094 key.offset, end); 1095 if (!ret) 1096 continue; 1097 1098 btrfs_drop_extent_cache(BTRFS_I(inode), 1099 key.offset, end, 1); 1100 unlock_extent(&BTRFS_I(inode)->io_tree, 1101 key.offset, end); 1102 } 1103 } 1104 1105 ret = get_new_location(rc->data_inode, &new_bytenr, 1106 bytenr, num_bytes); 1107 if (ret) { 1108 /* 1109 * Don't have to abort since we've not changed anything 1110 * in the file extent yet. 1111 */ 1112 break; 1113 } 1114 1115 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1116 dirty = 1; 1117 1118 key.offset -= btrfs_file_extent_offset(leaf, fi); 1119 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1120 num_bytes, parent); 1121 ref.real_root = root->root_key.objectid; 1122 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1123 key.objectid, key.offset); 1124 ret = btrfs_inc_extent_ref(trans, &ref); 1125 if (ret) { 1126 btrfs_abort_transaction(trans, ret); 1127 break; 1128 } 1129 1130 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1131 num_bytes, parent); 1132 ref.real_root = root->root_key.objectid; 1133 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1134 key.objectid, key.offset); 1135 ret = btrfs_free_extent(trans, &ref); 1136 if (ret) { 1137 btrfs_abort_transaction(trans, ret); 1138 break; 1139 } 1140 } 1141 if (dirty) 1142 btrfs_mark_buffer_dirty(leaf); 1143 if (inode) 1144 btrfs_add_delayed_iput(inode); 1145 return ret; 1146 } 1147 1148 static noinline_for_stack 1149 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1150 struct btrfs_path *path, int level) 1151 { 1152 struct btrfs_disk_key key1; 1153 struct btrfs_disk_key key2; 1154 btrfs_node_key(eb, &key1, slot); 1155 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1156 return memcmp(&key1, &key2, sizeof(key1)); 1157 } 1158 1159 /* 1160 * try to replace tree blocks in fs tree with the new blocks 1161 * in reloc tree. tree blocks haven't been modified since the 1162 * reloc tree was create can be replaced. 1163 * 1164 * if a block was replaced, level of the block + 1 is returned. 1165 * if no block got replaced, 0 is returned. if there are other 1166 * errors, a negative error number is returned. 1167 */ 1168 static noinline_for_stack 1169 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1170 struct btrfs_root *dest, struct btrfs_root *src, 1171 struct btrfs_path *path, struct btrfs_key *next_key, 1172 int lowest_level, int max_level) 1173 { 1174 struct btrfs_fs_info *fs_info = dest->fs_info; 1175 struct extent_buffer *eb; 1176 struct extent_buffer *parent; 1177 struct btrfs_ref ref = { 0 }; 1178 struct btrfs_key key; 1179 u64 old_bytenr; 1180 u64 new_bytenr; 1181 u64 old_ptr_gen; 1182 u64 new_ptr_gen; 1183 u64 last_snapshot; 1184 u32 blocksize; 1185 int cow = 0; 1186 int level; 1187 int ret; 1188 int slot; 1189 1190 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1191 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1192 1193 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1194 again: 1195 slot = path->slots[lowest_level]; 1196 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1197 1198 eb = btrfs_lock_root_node(dest); 1199 btrfs_set_lock_blocking_write(eb); 1200 level = btrfs_header_level(eb); 1201 1202 if (level < lowest_level) { 1203 btrfs_tree_unlock(eb); 1204 free_extent_buffer(eb); 1205 return 0; 1206 } 1207 1208 if (cow) { 1209 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1210 BTRFS_NESTING_COW); 1211 BUG_ON(ret); 1212 } 1213 btrfs_set_lock_blocking_write(eb); 1214 1215 if (next_key) { 1216 next_key->objectid = (u64)-1; 1217 next_key->type = (u8)-1; 1218 next_key->offset = (u64)-1; 1219 } 1220 1221 parent = eb; 1222 while (1) { 1223 struct btrfs_key first_key; 1224 1225 level = btrfs_header_level(parent); 1226 BUG_ON(level < lowest_level); 1227 1228 ret = btrfs_bin_search(parent, &key, &slot); 1229 if (ret < 0) 1230 break; 1231 if (ret && slot > 0) 1232 slot--; 1233 1234 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1235 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1236 1237 old_bytenr = btrfs_node_blockptr(parent, slot); 1238 blocksize = fs_info->nodesize; 1239 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1240 btrfs_node_key_to_cpu(parent, &first_key, slot); 1241 1242 if (level <= max_level) { 1243 eb = path->nodes[level]; 1244 new_bytenr = btrfs_node_blockptr(eb, 1245 path->slots[level]); 1246 new_ptr_gen = btrfs_node_ptr_generation(eb, 1247 path->slots[level]); 1248 } else { 1249 new_bytenr = 0; 1250 new_ptr_gen = 0; 1251 } 1252 1253 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1254 ret = level; 1255 break; 1256 } 1257 1258 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1259 memcmp_node_keys(parent, slot, path, level)) { 1260 if (level <= lowest_level) { 1261 ret = 0; 1262 break; 1263 } 1264 1265 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1266 level - 1, &first_key); 1267 if (IS_ERR(eb)) { 1268 ret = PTR_ERR(eb); 1269 break; 1270 } else if (!extent_buffer_uptodate(eb)) { 1271 ret = -EIO; 1272 free_extent_buffer(eb); 1273 break; 1274 } 1275 btrfs_tree_lock(eb); 1276 if (cow) { 1277 ret = btrfs_cow_block(trans, dest, eb, parent, 1278 slot, &eb, 1279 BTRFS_NESTING_COW); 1280 BUG_ON(ret); 1281 } 1282 btrfs_set_lock_blocking_write(eb); 1283 1284 btrfs_tree_unlock(parent); 1285 free_extent_buffer(parent); 1286 1287 parent = eb; 1288 continue; 1289 } 1290 1291 if (!cow) { 1292 btrfs_tree_unlock(parent); 1293 free_extent_buffer(parent); 1294 cow = 1; 1295 goto again; 1296 } 1297 1298 btrfs_node_key_to_cpu(path->nodes[level], &key, 1299 path->slots[level]); 1300 btrfs_release_path(path); 1301 1302 path->lowest_level = level; 1303 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1304 path->lowest_level = 0; 1305 BUG_ON(ret); 1306 1307 /* 1308 * Info qgroup to trace both subtrees. 1309 * 1310 * We must trace both trees. 1311 * 1) Tree reloc subtree 1312 * If not traced, we will leak data numbers 1313 * 2) Fs subtree 1314 * If not traced, we will double count old data 1315 * 1316 * We don't scan the subtree right now, but only record 1317 * the swapped tree blocks. 1318 * The real subtree rescan is delayed until we have new 1319 * CoW on the subtree root node before transaction commit. 1320 */ 1321 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1322 rc->block_group, parent, slot, 1323 path->nodes[level], path->slots[level], 1324 last_snapshot); 1325 if (ret < 0) 1326 break; 1327 /* 1328 * swap blocks in fs tree and reloc tree. 1329 */ 1330 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1331 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1332 btrfs_mark_buffer_dirty(parent); 1333 1334 btrfs_set_node_blockptr(path->nodes[level], 1335 path->slots[level], old_bytenr); 1336 btrfs_set_node_ptr_generation(path->nodes[level], 1337 path->slots[level], old_ptr_gen); 1338 btrfs_mark_buffer_dirty(path->nodes[level]); 1339 1340 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1341 blocksize, path->nodes[level]->start); 1342 ref.skip_qgroup = true; 1343 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1344 ret = btrfs_inc_extent_ref(trans, &ref); 1345 BUG_ON(ret); 1346 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1347 blocksize, 0); 1348 ref.skip_qgroup = true; 1349 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1350 ret = btrfs_inc_extent_ref(trans, &ref); 1351 BUG_ON(ret); 1352 1353 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1354 blocksize, path->nodes[level]->start); 1355 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1356 ref.skip_qgroup = true; 1357 ret = btrfs_free_extent(trans, &ref); 1358 BUG_ON(ret); 1359 1360 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1361 blocksize, 0); 1362 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1363 ref.skip_qgroup = true; 1364 ret = btrfs_free_extent(trans, &ref); 1365 BUG_ON(ret); 1366 1367 btrfs_unlock_up_safe(path, 0); 1368 1369 ret = level; 1370 break; 1371 } 1372 btrfs_tree_unlock(parent); 1373 free_extent_buffer(parent); 1374 return ret; 1375 } 1376 1377 /* 1378 * helper to find next relocated block in reloc tree 1379 */ 1380 static noinline_for_stack 1381 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1382 int *level) 1383 { 1384 struct extent_buffer *eb; 1385 int i; 1386 u64 last_snapshot; 1387 u32 nritems; 1388 1389 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1390 1391 for (i = 0; i < *level; i++) { 1392 free_extent_buffer(path->nodes[i]); 1393 path->nodes[i] = NULL; 1394 } 1395 1396 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1397 eb = path->nodes[i]; 1398 nritems = btrfs_header_nritems(eb); 1399 while (path->slots[i] + 1 < nritems) { 1400 path->slots[i]++; 1401 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1402 last_snapshot) 1403 continue; 1404 1405 *level = i; 1406 return 0; 1407 } 1408 free_extent_buffer(path->nodes[i]); 1409 path->nodes[i] = NULL; 1410 } 1411 return 1; 1412 } 1413 1414 /* 1415 * walk down reloc tree to find relocated block of lowest level 1416 */ 1417 static noinline_for_stack 1418 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1419 int *level) 1420 { 1421 struct btrfs_fs_info *fs_info = root->fs_info; 1422 struct extent_buffer *eb = NULL; 1423 int i; 1424 u64 bytenr; 1425 u64 ptr_gen = 0; 1426 u64 last_snapshot; 1427 u32 nritems; 1428 1429 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1430 1431 for (i = *level; i > 0; i--) { 1432 struct btrfs_key first_key; 1433 1434 eb = path->nodes[i]; 1435 nritems = btrfs_header_nritems(eb); 1436 while (path->slots[i] < nritems) { 1437 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1438 if (ptr_gen > last_snapshot) 1439 break; 1440 path->slots[i]++; 1441 } 1442 if (path->slots[i] >= nritems) { 1443 if (i == *level) 1444 break; 1445 *level = i + 1; 1446 return 0; 1447 } 1448 if (i == 1) { 1449 *level = i; 1450 return 0; 1451 } 1452 1453 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1454 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 1455 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 1456 &first_key); 1457 if (IS_ERR(eb)) { 1458 return PTR_ERR(eb); 1459 } else if (!extent_buffer_uptodate(eb)) { 1460 free_extent_buffer(eb); 1461 return -EIO; 1462 } 1463 BUG_ON(btrfs_header_level(eb) != i - 1); 1464 path->nodes[i - 1] = eb; 1465 path->slots[i - 1] = 0; 1466 } 1467 return 1; 1468 } 1469 1470 /* 1471 * invalidate extent cache for file extents whose key in range of 1472 * [min_key, max_key) 1473 */ 1474 static int invalidate_extent_cache(struct btrfs_root *root, 1475 struct btrfs_key *min_key, 1476 struct btrfs_key *max_key) 1477 { 1478 struct btrfs_fs_info *fs_info = root->fs_info; 1479 struct inode *inode = NULL; 1480 u64 objectid; 1481 u64 start, end; 1482 u64 ino; 1483 1484 objectid = min_key->objectid; 1485 while (1) { 1486 cond_resched(); 1487 iput(inode); 1488 1489 if (objectid > max_key->objectid) 1490 break; 1491 1492 inode = find_next_inode(root, objectid); 1493 if (!inode) 1494 break; 1495 ino = btrfs_ino(BTRFS_I(inode)); 1496 1497 if (ino > max_key->objectid) { 1498 iput(inode); 1499 break; 1500 } 1501 1502 objectid = ino + 1; 1503 if (!S_ISREG(inode->i_mode)) 1504 continue; 1505 1506 if (unlikely(min_key->objectid == ino)) { 1507 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1508 continue; 1509 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1510 start = 0; 1511 else { 1512 start = min_key->offset; 1513 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1514 } 1515 } else { 1516 start = 0; 1517 } 1518 1519 if (unlikely(max_key->objectid == ino)) { 1520 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1521 continue; 1522 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1523 end = (u64)-1; 1524 } else { 1525 if (max_key->offset == 0) 1526 continue; 1527 end = max_key->offset; 1528 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1529 end--; 1530 } 1531 } else { 1532 end = (u64)-1; 1533 } 1534 1535 /* the lock_extent waits for readpage to complete */ 1536 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1537 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1538 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1539 } 1540 return 0; 1541 } 1542 1543 static int find_next_key(struct btrfs_path *path, int level, 1544 struct btrfs_key *key) 1545 1546 { 1547 while (level < BTRFS_MAX_LEVEL) { 1548 if (!path->nodes[level]) 1549 break; 1550 if (path->slots[level] + 1 < 1551 btrfs_header_nritems(path->nodes[level])) { 1552 btrfs_node_key_to_cpu(path->nodes[level], key, 1553 path->slots[level] + 1); 1554 return 0; 1555 } 1556 level++; 1557 } 1558 return 1; 1559 } 1560 1561 /* 1562 * Insert current subvolume into reloc_control::dirty_subvol_roots 1563 */ 1564 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1565 struct reloc_control *rc, 1566 struct btrfs_root *root) 1567 { 1568 struct btrfs_root *reloc_root = root->reloc_root; 1569 struct btrfs_root_item *reloc_root_item; 1570 1571 /* @root must be a subvolume tree root with a valid reloc tree */ 1572 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1573 ASSERT(reloc_root); 1574 1575 reloc_root_item = &reloc_root->root_item; 1576 memset(&reloc_root_item->drop_progress, 0, 1577 sizeof(reloc_root_item->drop_progress)); 1578 reloc_root_item->drop_level = 0; 1579 btrfs_set_root_refs(reloc_root_item, 0); 1580 btrfs_update_reloc_root(trans, root); 1581 1582 if (list_empty(&root->reloc_dirty_list)) { 1583 btrfs_grab_root(root); 1584 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1585 } 1586 } 1587 1588 static int clean_dirty_subvols(struct reloc_control *rc) 1589 { 1590 struct btrfs_root *root; 1591 struct btrfs_root *next; 1592 int ret = 0; 1593 int ret2; 1594 1595 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1596 reloc_dirty_list) { 1597 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1598 /* Merged subvolume, cleanup its reloc root */ 1599 struct btrfs_root *reloc_root = root->reloc_root; 1600 1601 list_del_init(&root->reloc_dirty_list); 1602 root->reloc_root = NULL; 1603 /* 1604 * Need barrier to ensure clear_bit() only happens after 1605 * root->reloc_root = NULL. Pairs with have_reloc_root. 1606 */ 1607 smp_wmb(); 1608 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1609 if (reloc_root) { 1610 /* 1611 * btrfs_drop_snapshot drops our ref we hold for 1612 * ->reloc_root. If it fails however we must 1613 * drop the ref ourselves. 1614 */ 1615 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1616 if (ret2 < 0) { 1617 btrfs_put_root(reloc_root); 1618 if (!ret) 1619 ret = ret2; 1620 } 1621 } 1622 btrfs_put_root(root); 1623 } else { 1624 /* Orphan reloc tree, just clean it up */ 1625 ret2 = btrfs_drop_snapshot(root, 0, 1); 1626 if (ret2 < 0) { 1627 btrfs_put_root(root); 1628 if (!ret) 1629 ret = ret2; 1630 } 1631 } 1632 } 1633 return ret; 1634 } 1635 1636 /* 1637 * merge the relocated tree blocks in reloc tree with corresponding 1638 * fs tree. 1639 */ 1640 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1641 struct btrfs_root *root) 1642 { 1643 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1644 struct btrfs_key key; 1645 struct btrfs_key next_key; 1646 struct btrfs_trans_handle *trans = NULL; 1647 struct btrfs_root *reloc_root; 1648 struct btrfs_root_item *root_item; 1649 struct btrfs_path *path; 1650 struct extent_buffer *leaf; 1651 int reserve_level; 1652 int level; 1653 int max_level; 1654 int replaced = 0; 1655 int ret; 1656 int err = 0; 1657 u32 min_reserved; 1658 1659 path = btrfs_alloc_path(); 1660 if (!path) 1661 return -ENOMEM; 1662 path->reada = READA_FORWARD; 1663 1664 reloc_root = root->reloc_root; 1665 root_item = &reloc_root->root_item; 1666 1667 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1668 level = btrfs_root_level(root_item); 1669 atomic_inc(&reloc_root->node->refs); 1670 path->nodes[level] = reloc_root->node; 1671 path->slots[level] = 0; 1672 } else { 1673 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1674 1675 level = root_item->drop_level; 1676 BUG_ON(level == 0); 1677 path->lowest_level = level; 1678 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1679 path->lowest_level = 0; 1680 if (ret < 0) { 1681 btrfs_free_path(path); 1682 return ret; 1683 } 1684 1685 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1686 path->slots[level]); 1687 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1688 1689 btrfs_unlock_up_safe(path, 0); 1690 } 1691 1692 /* 1693 * In merge_reloc_root(), we modify the upper level pointer to swap the 1694 * tree blocks between reloc tree and subvolume tree. Thus for tree 1695 * block COW, we COW at most from level 1 to root level for each tree. 1696 * 1697 * Thus the needed metadata size is at most root_level * nodesize, 1698 * and * 2 since we have two trees to COW. 1699 */ 1700 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1701 min_reserved = fs_info->nodesize * reserve_level * 2; 1702 memset(&next_key, 0, sizeof(next_key)); 1703 1704 while (1) { 1705 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1706 BTRFS_RESERVE_FLUSH_LIMIT); 1707 if (ret) { 1708 err = ret; 1709 goto out; 1710 } 1711 trans = btrfs_start_transaction(root, 0); 1712 if (IS_ERR(trans)) { 1713 err = PTR_ERR(trans); 1714 trans = NULL; 1715 goto out; 1716 } 1717 1718 /* 1719 * At this point we no longer have a reloc_control, so we can't 1720 * depend on btrfs_init_reloc_root to update our last_trans. 1721 * 1722 * But that's ok, we started the trans handle on our 1723 * corresponding fs_root, which means it's been added to the 1724 * dirty list. At commit time we'll still call 1725 * btrfs_update_reloc_root() and update our root item 1726 * appropriately. 1727 */ 1728 reloc_root->last_trans = trans->transid; 1729 trans->block_rsv = rc->block_rsv; 1730 1731 replaced = 0; 1732 max_level = level; 1733 1734 ret = walk_down_reloc_tree(reloc_root, path, &level); 1735 if (ret < 0) { 1736 err = ret; 1737 goto out; 1738 } 1739 if (ret > 0) 1740 break; 1741 1742 if (!find_next_key(path, level, &key) && 1743 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1744 ret = 0; 1745 } else { 1746 ret = replace_path(trans, rc, root, reloc_root, path, 1747 &next_key, level, max_level); 1748 } 1749 if (ret < 0) { 1750 err = ret; 1751 goto out; 1752 } 1753 1754 if (ret > 0) { 1755 level = ret; 1756 btrfs_node_key_to_cpu(path->nodes[level], &key, 1757 path->slots[level]); 1758 replaced = 1; 1759 } 1760 1761 ret = walk_up_reloc_tree(reloc_root, path, &level); 1762 if (ret > 0) 1763 break; 1764 1765 BUG_ON(level == 0); 1766 /* 1767 * save the merging progress in the drop_progress. 1768 * this is OK since root refs == 1 in this case. 1769 */ 1770 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1771 path->slots[level]); 1772 root_item->drop_level = level; 1773 1774 btrfs_end_transaction_throttle(trans); 1775 trans = NULL; 1776 1777 btrfs_btree_balance_dirty(fs_info); 1778 1779 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1780 invalidate_extent_cache(root, &key, &next_key); 1781 } 1782 1783 /* 1784 * handle the case only one block in the fs tree need to be 1785 * relocated and the block is tree root. 1786 */ 1787 leaf = btrfs_lock_root_node(root); 1788 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1789 BTRFS_NESTING_COW); 1790 btrfs_tree_unlock(leaf); 1791 free_extent_buffer(leaf); 1792 if (ret < 0) 1793 err = ret; 1794 out: 1795 btrfs_free_path(path); 1796 1797 if (err == 0) 1798 insert_dirty_subvol(trans, rc, root); 1799 1800 if (trans) 1801 btrfs_end_transaction_throttle(trans); 1802 1803 btrfs_btree_balance_dirty(fs_info); 1804 1805 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1806 invalidate_extent_cache(root, &key, &next_key); 1807 1808 return err; 1809 } 1810 1811 static noinline_for_stack 1812 int prepare_to_merge(struct reloc_control *rc, int err) 1813 { 1814 struct btrfs_root *root = rc->extent_root; 1815 struct btrfs_fs_info *fs_info = root->fs_info; 1816 struct btrfs_root *reloc_root; 1817 struct btrfs_trans_handle *trans; 1818 LIST_HEAD(reloc_roots); 1819 u64 num_bytes = 0; 1820 int ret; 1821 1822 mutex_lock(&fs_info->reloc_mutex); 1823 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1824 rc->merging_rsv_size += rc->nodes_relocated * 2; 1825 mutex_unlock(&fs_info->reloc_mutex); 1826 1827 again: 1828 if (!err) { 1829 num_bytes = rc->merging_rsv_size; 1830 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1831 BTRFS_RESERVE_FLUSH_ALL); 1832 if (ret) 1833 err = ret; 1834 } 1835 1836 trans = btrfs_join_transaction(rc->extent_root); 1837 if (IS_ERR(trans)) { 1838 if (!err) 1839 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1840 num_bytes, NULL); 1841 return PTR_ERR(trans); 1842 } 1843 1844 if (!err) { 1845 if (num_bytes != rc->merging_rsv_size) { 1846 btrfs_end_transaction(trans); 1847 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1848 num_bytes, NULL); 1849 goto again; 1850 } 1851 } 1852 1853 rc->merge_reloc_tree = 1; 1854 1855 while (!list_empty(&rc->reloc_roots)) { 1856 reloc_root = list_entry(rc->reloc_roots.next, 1857 struct btrfs_root, root_list); 1858 list_del_init(&reloc_root->root_list); 1859 1860 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1861 false); 1862 BUG_ON(IS_ERR(root)); 1863 BUG_ON(root->reloc_root != reloc_root); 1864 1865 /* 1866 * set reference count to 1, so btrfs_recover_relocation 1867 * knows it should resumes merging 1868 */ 1869 if (!err) 1870 btrfs_set_root_refs(&reloc_root->root_item, 1); 1871 btrfs_update_reloc_root(trans, root); 1872 1873 list_add(&reloc_root->root_list, &reloc_roots); 1874 btrfs_put_root(root); 1875 } 1876 1877 list_splice(&reloc_roots, &rc->reloc_roots); 1878 1879 if (!err) 1880 btrfs_commit_transaction(trans); 1881 else 1882 btrfs_end_transaction(trans); 1883 return err; 1884 } 1885 1886 static noinline_for_stack 1887 void free_reloc_roots(struct list_head *list) 1888 { 1889 struct btrfs_root *reloc_root, *tmp; 1890 1891 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1892 __del_reloc_root(reloc_root); 1893 } 1894 1895 static noinline_for_stack 1896 void merge_reloc_roots(struct reloc_control *rc) 1897 { 1898 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1899 struct btrfs_root *root; 1900 struct btrfs_root *reloc_root; 1901 LIST_HEAD(reloc_roots); 1902 int found = 0; 1903 int ret = 0; 1904 again: 1905 root = rc->extent_root; 1906 1907 /* 1908 * this serializes us with btrfs_record_root_in_transaction, 1909 * we have to make sure nobody is in the middle of 1910 * adding their roots to the list while we are 1911 * doing this splice 1912 */ 1913 mutex_lock(&fs_info->reloc_mutex); 1914 list_splice_init(&rc->reloc_roots, &reloc_roots); 1915 mutex_unlock(&fs_info->reloc_mutex); 1916 1917 while (!list_empty(&reloc_roots)) { 1918 found = 1; 1919 reloc_root = list_entry(reloc_roots.next, 1920 struct btrfs_root, root_list); 1921 1922 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1923 false); 1924 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1925 BUG_ON(IS_ERR(root)); 1926 BUG_ON(root->reloc_root != reloc_root); 1927 ret = merge_reloc_root(rc, root); 1928 btrfs_put_root(root); 1929 if (ret) { 1930 if (list_empty(&reloc_root->root_list)) 1931 list_add_tail(&reloc_root->root_list, 1932 &reloc_roots); 1933 goto out; 1934 } 1935 } else { 1936 if (!IS_ERR(root)) { 1937 if (root->reloc_root == reloc_root) { 1938 root->reloc_root = NULL; 1939 btrfs_put_root(reloc_root); 1940 } 1941 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1942 &root->state); 1943 btrfs_put_root(root); 1944 } 1945 1946 list_del_init(&reloc_root->root_list); 1947 /* Don't forget to queue this reloc root for cleanup */ 1948 list_add_tail(&reloc_root->reloc_dirty_list, 1949 &rc->dirty_subvol_roots); 1950 } 1951 } 1952 1953 if (found) { 1954 found = 0; 1955 goto again; 1956 } 1957 out: 1958 if (ret) { 1959 btrfs_handle_fs_error(fs_info, ret, NULL); 1960 free_reloc_roots(&reloc_roots); 1961 1962 /* new reloc root may be added */ 1963 mutex_lock(&fs_info->reloc_mutex); 1964 list_splice_init(&rc->reloc_roots, &reloc_roots); 1965 mutex_unlock(&fs_info->reloc_mutex); 1966 free_reloc_roots(&reloc_roots); 1967 } 1968 1969 /* 1970 * We used to have 1971 * 1972 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1973 * 1974 * here, but it's wrong. If we fail to start the transaction in 1975 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1976 * have actually been removed from the reloc_root_tree rb tree. This is 1977 * fine because we're bailing here, and we hold a reference on the root 1978 * for the list that holds it, so these roots will be cleaned up when we 1979 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1980 * will be cleaned up on unmount. 1981 * 1982 * The remaining nodes will be cleaned up by free_reloc_control. 1983 */ 1984 } 1985 1986 static void free_block_list(struct rb_root *blocks) 1987 { 1988 struct tree_block *block; 1989 struct rb_node *rb_node; 1990 while ((rb_node = rb_first(blocks))) { 1991 block = rb_entry(rb_node, struct tree_block, rb_node); 1992 rb_erase(rb_node, blocks); 1993 kfree(block); 1994 } 1995 } 1996 1997 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1998 struct btrfs_root *reloc_root) 1999 { 2000 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2001 struct btrfs_root *root; 2002 int ret; 2003 2004 if (reloc_root->last_trans == trans->transid) 2005 return 0; 2006 2007 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2008 BUG_ON(IS_ERR(root)); 2009 BUG_ON(root->reloc_root != reloc_root); 2010 ret = btrfs_record_root_in_trans(trans, root); 2011 btrfs_put_root(root); 2012 2013 return ret; 2014 } 2015 2016 static noinline_for_stack 2017 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2018 struct reloc_control *rc, 2019 struct btrfs_backref_node *node, 2020 struct btrfs_backref_edge *edges[]) 2021 { 2022 struct btrfs_backref_node *next; 2023 struct btrfs_root *root; 2024 int index = 0; 2025 2026 next = node; 2027 while (1) { 2028 cond_resched(); 2029 next = walk_up_backref(next, edges, &index); 2030 root = next->root; 2031 BUG_ON(!root); 2032 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 2033 2034 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2035 record_reloc_root_in_trans(trans, root); 2036 break; 2037 } 2038 2039 btrfs_record_root_in_trans(trans, root); 2040 root = root->reloc_root; 2041 2042 if (next->new_bytenr != root->node->start) { 2043 BUG_ON(next->new_bytenr); 2044 BUG_ON(!list_empty(&next->list)); 2045 next->new_bytenr = root->node->start; 2046 btrfs_put_root(next->root); 2047 next->root = btrfs_grab_root(root); 2048 ASSERT(next->root); 2049 list_add_tail(&next->list, 2050 &rc->backref_cache.changed); 2051 mark_block_processed(rc, next); 2052 break; 2053 } 2054 2055 WARN_ON(1); 2056 root = NULL; 2057 next = walk_down_backref(edges, &index); 2058 if (!next || next->level <= node->level) 2059 break; 2060 } 2061 if (!root) 2062 return NULL; 2063 2064 next = node; 2065 /* setup backref node path for btrfs_reloc_cow_block */ 2066 while (1) { 2067 rc->backref_cache.path[next->level] = next; 2068 if (--index < 0) 2069 break; 2070 next = edges[index]->node[UPPER]; 2071 } 2072 return root; 2073 } 2074 2075 /* 2076 * Select a tree root for relocation. 2077 * 2078 * Return NULL if the block is not shareable. We should use do_relocation() in 2079 * this case. 2080 * 2081 * Return a tree root pointer if the block is shareable. 2082 * Return -ENOENT if the block is root of reloc tree. 2083 */ 2084 static noinline_for_stack 2085 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2086 { 2087 struct btrfs_backref_node *next; 2088 struct btrfs_root *root; 2089 struct btrfs_root *fs_root = NULL; 2090 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2091 int index = 0; 2092 2093 next = node; 2094 while (1) { 2095 cond_resched(); 2096 next = walk_up_backref(next, edges, &index); 2097 root = next->root; 2098 BUG_ON(!root); 2099 2100 /* No other choice for non-shareable tree */ 2101 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2102 return root; 2103 2104 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2105 fs_root = root; 2106 2107 if (next != node) 2108 return NULL; 2109 2110 next = walk_down_backref(edges, &index); 2111 if (!next || next->level <= node->level) 2112 break; 2113 } 2114 2115 if (!fs_root) 2116 return ERR_PTR(-ENOENT); 2117 return fs_root; 2118 } 2119 2120 static noinline_for_stack 2121 u64 calcu_metadata_size(struct reloc_control *rc, 2122 struct btrfs_backref_node *node, int reserve) 2123 { 2124 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2125 struct btrfs_backref_node *next = node; 2126 struct btrfs_backref_edge *edge; 2127 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2128 u64 num_bytes = 0; 2129 int index = 0; 2130 2131 BUG_ON(reserve && node->processed); 2132 2133 while (next) { 2134 cond_resched(); 2135 while (1) { 2136 if (next->processed && (reserve || next != node)) 2137 break; 2138 2139 num_bytes += fs_info->nodesize; 2140 2141 if (list_empty(&next->upper)) 2142 break; 2143 2144 edge = list_entry(next->upper.next, 2145 struct btrfs_backref_edge, list[LOWER]); 2146 edges[index++] = edge; 2147 next = edge->node[UPPER]; 2148 } 2149 next = walk_down_backref(edges, &index); 2150 } 2151 return num_bytes; 2152 } 2153 2154 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2155 struct reloc_control *rc, 2156 struct btrfs_backref_node *node) 2157 { 2158 struct btrfs_root *root = rc->extent_root; 2159 struct btrfs_fs_info *fs_info = root->fs_info; 2160 u64 num_bytes; 2161 int ret; 2162 u64 tmp; 2163 2164 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2165 2166 trans->block_rsv = rc->block_rsv; 2167 rc->reserved_bytes += num_bytes; 2168 2169 /* 2170 * We are under a transaction here so we can only do limited flushing. 2171 * If we get an enospc just kick back -EAGAIN so we know to drop the 2172 * transaction and try to refill when we can flush all the things. 2173 */ 2174 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2175 BTRFS_RESERVE_FLUSH_LIMIT); 2176 if (ret) { 2177 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2178 while (tmp <= rc->reserved_bytes) 2179 tmp <<= 1; 2180 /* 2181 * only one thread can access block_rsv at this point, 2182 * so we don't need hold lock to protect block_rsv. 2183 * we expand more reservation size here to allow enough 2184 * space for relocation and we will return earlier in 2185 * enospc case. 2186 */ 2187 rc->block_rsv->size = tmp + fs_info->nodesize * 2188 RELOCATION_RESERVED_NODES; 2189 return -EAGAIN; 2190 } 2191 2192 return 0; 2193 } 2194 2195 /* 2196 * relocate a block tree, and then update pointers in upper level 2197 * blocks that reference the block to point to the new location. 2198 * 2199 * if called by link_to_upper, the block has already been relocated. 2200 * in that case this function just updates pointers. 2201 */ 2202 static int do_relocation(struct btrfs_trans_handle *trans, 2203 struct reloc_control *rc, 2204 struct btrfs_backref_node *node, 2205 struct btrfs_key *key, 2206 struct btrfs_path *path, int lowest) 2207 { 2208 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2209 struct btrfs_backref_node *upper; 2210 struct btrfs_backref_edge *edge; 2211 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2212 struct btrfs_root *root; 2213 struct extent_buffer *eb; 2214 u32 blocksize; 2215 u64 bytenr; 2216 u64 generation; 2217 int slot; 2218 int ret; 2219 int err = 0; 2220 2221 BUG_ON(lowest && node->eb); 2222 2223 path->lowest_level = node->level + 1; 2224 rc->backref_cache.path[node->level] = node; 2225 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2226 struct btrfs_key first_key; 2227 struct btrfs_ref ref = { 0 }; 2228 2229 cond_resched(); 2230 2231 upper = edge->node[UPPER]; 2232 root = select_reloc_root(trans, rc, upper, edges); 2233 BUG_ON(!root); 2234 2235 if (upper->eb && !upper->locked) { 2236 if (!lowest) { 2237 ret = btrfs_bin_search(upper->eb, key, &slot); 2238 if (ret < 0) { 2239 err = ret; 2240 goto next; 2241 } 2242 BUG_ON(ret); 2243 bytenr = btrfs_node_blockptr(upper->eb, slot); 2244 if (node->eb->start == bytenr) 2245 goto next; 2246 } 2247 btrfs_backref_drop_node_buffer(upper); 2248 } 2249 2250 if (!upper->eb) { 2251 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2252 if (ret) { 2253 if (ret < 0) 2254 err = ret; 2255 else 2256 err = -ENOENT; 2257 2258 btrfs_release_path(path); 2259 break; 2260 } 2261 2262 if (!upper->eb) { 2263 upper->eb = path->nodes[upper->level]; 2264 path->nodes[upper->level] = NULL; 2265 } else { 2266 BUG_ON(upper->eb != path->nodes[upper->level]); 2267 } 2268 2269 upper->locked = 1; 2270 path->locks[upper->level] = 0; 2271 2272 slot = path->slots[upper->level]; 2273 btrfs_release_path(path); 2274 } else { 2275 ret = btrfs_bin_search(upper->eb, key, &slot); 2276 if (ret < 0) { 2277 err = ret; 2278 goto next; 2279 } 2280 BUG_ON(ret); 2281 } 2282 2283 bytenr = btrfs_node_blockptr(upper->eb, slot); 2284 if (lowest) { 2285 if (bytenr != node->bytenr) { 2286 btrfs_err(root->fs_info, 2287 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2288 bytenr, node->bytenr, slot, 2289 upper->eb->start); 2290 err = -EIO; 2291 goto next; 2292 } 2293 } else { 2294 if (node->eb->start == bytenr) 2295 goto next; 2296 } 2297 2298 blocksize = root->fs_info->nodesize; 2299 generation = btrfs_node_ptr_generation(upper->eb, slot); 2300 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2301 eb = read_tree_block(fs_info, bytenr, generation, 2302 upper->level - 1, &first_key); 2303 if (IS_ERR(eb)) { 2304 err = PTR_ERR(eb); 2305 goto next; 2306 } else if (!extent_buffer_uptodate(eb)) { 2307 free_extent_buffer(eb); 2308 err = -EIO; 2309 goto next; 2310 } 2311 btrfs_tree_lock(eb); 2312 btrfs_set_lock_blocking_write(eb); 2313 2314 if (!node->eb) { 2315 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2316 slot, &eb, BTRFS_NESTING_COW); 2317 btrfs_tree_unlock(eb); 2318 free_extent_buffer(eb); 2319 if (ret < 0) { 2320 err = ret; 2321 goto next; 2322 } 2323 BUG_ON(node->eb != eb); 2324 } else { 2325 btrfs_set_node_blockptr(upper->eb, slot, 2326 node->eb->start); 2327 btrfs_set_node_ptr_generation(upper->eb, slot, 2328 trans->transid); 2329 btrfs_mark_buffer_dirty(upper->eb); 2330 2331 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2332 node->eb->start, blocksize, 2333 upper->eb->start); 2334 ref.real_root = root->root_key.objectid; 2335 btrfs_init_tree_ref(&ref, node->level, 2336 btrfs_header_owner(upper->eb)); 2337 ret = btrfs_inc_extent_ref(trans, &ref); 2338 BUG_ON(ret); 2339 2340 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2341 BUG_ON(ret); 2342 } 2343 next: 2344 if (!upper->pending) 2345 btrfs_backref_drop_node_buffer(upper); 2346 else 2347 btrfs_backref_unlock_node_buffer(upper); 2348 if (err) 2349 break; 2350 } 2351 2352 if (!err && node->pending) { 2353 btrfs_backref_drop_node_buffer(node); 2354 list_move_tail(&node->list, &rc->backref_cache.changed); 2355 node->pending = 0; 2356 } 2357 2358 path->lowest_level = 0; 2359 BUG_ON(err == -ENOSPC); 2360 return err; 2361 } 2362 2363 static int link_to_upper(struct btrfs_trans_handle *trans, 2364 struct reloc_control *rc, 2365 struct btrfs_backref_node *node, 2366 struct btrfs_path *path) 2367 { 2368 struct btrfs_key key; 2369 2370 btrfs_node_key_to_cpu(node->eb, &key, 0); 2371 return do_relocation(trans, rc, node, &key, path, 0); 2372 } 2373 2374 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2375 struct reloc_control *rc, 2376 struct btrfs_path *path, int err) 2377 { 2378 LIST_HEAD(list); 2379 struct btrfs_backref_cache *cache = &rc->backref_cache; 2380 struct btrfs_backref_node *node; 2381 int level; 2382 int ret; 2383 2384 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2385 while (!list_empty(&cache->pending[level])) { 2386 node = list_entry(cache->pending[level].next, 2387 struct btrfs_backref_node, list); 2388 list_move_tail(&node->list, &list); 2389 BUG_ON(!node->pending); 2390 2391 if (!err) { 2392 ret = link_to_upper(trans, rc, node, path); 2393 if (ret < 0) 2394 err = ret; 2395 } 2396 } 2397 list_splice_init(&list, &cache->pending[level]); 2398 } 2399 return err; 2400 } 2401 2402 /* 2403 * mark a block and all blocks directly/indirectly reference the block 2404 * as processed. 2405 */ 2406 static void update_processed_blocks(struct reloc_control *rc, 2407 struct btrfs_backref_node *node) 2408 { 2409 struct btrfs_backref_node *next = node; 2410 struct btrfs_backref_edge *edge; 2411 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2412 int index = 0; 2413 2414 while (next) { 2415 cond_resched(); 2416 while (1) { 2417 if (next->processed) 2418 break; 2419 2420 mark_block_processed(rc, next); 2421 2422 if (list_empty(&next->upper)) 2423 break; 2424 2425 edge = list_entry(next->upper.next, 2426 struct btrfs_backref_edge, list[LOWER]); 2427 edges[index++] = edge; 2428 next = edge->node[UPPER]; 2429 } 2430 next = walk_down_backref(edges, &index); 2431 } 2432 } 2433 2434 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2435 { 2436 u32 blocksize = rc->extent_root->fs_info->nodesize; 2437 2438 if (test_range_bit(&rc->processed_blocks, bytenr, 2439 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2440 return 1; 2441 return 0; 2442 } 2443 2444 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2445 struct tree_block *block) 2446 { 2447 struct extent_buffer *eb; 2448 2449 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 2450 block->level, NULL); 2451 if (IS_ERR(eb)) { 2452 return PTR_ERR(eb); 2453 } else if (!extent_buffer_uptodate(eb)) { 2454 free_extent_buffer(eb); 2455 return -EIO; 2456 } 2457 if (block->level == 0) 2458 btrfs_item_key_to_cpu(eb, &block->key, 0); 2459 else 2460 btrfs_node_key_to_cpu(eb, &block->key, 0); 2461 free_extent_buffer(eb); 2462 block->key_ready = 1; 2463 return 0; 2464 } 2465 2466 /* 2467 * helper function to relocate a tree block 2468 */ 2469 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2470 struct reloc_control *rc, 2471 struct btrfs_backref_node *node, 2472 struct btrfs_key *key, 2473 struct btrfs_path *path) 2474 { 2475 struct btrfs_root *root; 2476 int ret = 0; 2477 2478 if (!node) 2479 return 0; 2480 2481 /* 2482 * If we fail here we want to drop our backref_node because we are going 2483 * to start over and regenerate the tree for it. 2484 */ 2485 ret = reserve_metadata_space(trans, rc, node); 2486 if (ret) 2487 goto out; 2488 2489 BUG_ON(node->processed); 2490 root = select_one_root(node); 2491 if (root == ERR_PTR(-ENOENT)) { 2492 update_processed_blocks(rc, node); 2493 goto out; 2494 } 2495 2496 if (root) { 2497 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2498 BUG_ON(node->new_bytenr); 2499 BUG_ON(!list_empty(&node->list)); 2500 btrfs_record_root_in_trans(trans, root); 2501 root = root->reloc_root; 2502 node->new_bytenr = root->node->start; 2503 btrfs_put_root(node->root); 2504 node->root = btrfs_grab_root(root); 2505 ASSERT(node->root); 2506 list_add_tail(&node->list, &rc->backref_cache.changed); 2507 } else { 2508 path->lowest_level = node->level; 2509 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2510 btrfs_release_path(path); 2511 if (ret > 0) 2512 ret = 0; 2513 } 2514 if (!ret) 2515 update_processed_blocks(rc, node); 2516 } else { 2517 ret = do_relocation(trans, rc, node, key, path, 1); 2518 } 2519 out: 2520 if (ret || node->level == 0 || node->cowonly) 2521 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2522 return ret; 2523 } 2524 2525 /* 2526 * relocate a list of blocks 2527 */ 2528 static noinline_for_stack 2529 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2530 struct reloc_control *rc, struct rb_root *blocks) 2531 { 2532 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2533 struct btrfs_backref_node *node; 2534 struct btrfs_path *path; 2535 struct tree_block *block; 2536 struct tree_block *next; 2537 int ret; 2538 int err = 0; 2539 2540 path = btrfs_alloc_path(); 2541 if (!path) { 2542 err = -ENOMEM; 2543 goto out_free_blocks; 2544 } 2545 2546 /* Kick in readahead for tree blocks with missing keys */ 2547 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2548 if (!block->key_ready) 2549 readahead_tree_block(fs_info, block->bytenr); 2550 } 2551 2552 /* Get first keys */ 2553 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2554 if (!block->key_ready) { 2555 err = get_tree_block_key(fs_info, block); 2556 if (err) 2557 goto out_free_path; 2558 } 2559 } 2560 2561 /* Do tree relocation */ 2562 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2563 node = build_backref_tree(rc, &block->key, 2564 block->level, block->bytenr); 2565 if (IS_ERR(node)) { 2566 err = PTR_ERR(node); 2567 goto out; 2568 } 2569 2570 ret = relocate_tree_block(trans, rc, node, &block->key, 2571 path); 2572 if (ret < 0) { 2573 err = ret; 2574 break; 2575 } 2576 } 2577 out: 2578 err = finish_pending_nodes(trans, rc, path, err); 2579 2580 out_free_path: 2581 btrfs_free_path(path); 2582 out_free_blocks: 2583 free_block_list(blocks); 2584 return err; 2585 } 2586 2587 static noinline_for_stack int prealloc_file_extent_cluster( 2588 struct btrfs_inode *inode, 2589 struct file_extent_cluster *cluster) 2590 { 2591 u64 alloc_hint = 0; 2592 u64 start; 2593 u64 end; 2594 u64 offset = inode->index_cnt; 2595 u64 num_bytes; 2596 int nr; 2597 int ret = 0; 2598 u64 prealloc_start = cluster->start - offset; 2599 u64 prealloc_end = cluster->end - offset; 2600 u64 cur_offset = prealloc_start; 2601 2602 BUG_ON(cluster->start != cluster->boundary[0]); 2603 ret = btrfs_alloc_data_chunk_ondemand(inode, 2604 prealloc_end + 1 - prealloc_start); 2605 if (ret) 2606 return ret; 2607 2608 inode_lock(&inode->vfs_inode); 2609 for (nr = 0; nr < cluster->nr; nr++) { 2610 start = cluster->boundary[nr] - offset; 2611 if (nr + 1 < cluster->nr) 2612 end = cluster->boundary[nr + 1] - 1 - offset; 2613 else 2614 end = cluster->end - offset; 2615 2616 lock_extent(&inode->io_tree, start, end); 2617 num_bytes = end + 1 - start; 2618 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2619 num_bytes, num_bytes, 2620 end + 1, &alloc_hint); 2621 cur_offset = end + 1; 2622 unlock_extent(&inode->io_tree, start, end); 2623 if (ret) 2624 break; 2625 } 2626 inode_unlock(&inode->vfs_inode); 2627 2628 if (cur_offset < prealloc_end) 2629 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2630 prealloc_end + 1 - cur_offset); 2631 return ret; 2632 } 2633 2634 static noinline_for_stack 2635 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2636 u64 block_start) 2637 { 2638 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2639 struct extent_map *em; 2640 int ret = 0; 2641 2642 em = alloc_extent_map(); 2643 if (!em) 2644 return -ENOMEM; 2645 2646 em->start = start; 2647 em->len = end + 1 - start; 2648 em->block_len = em->len; 2649 em->block_start = block_start; 2650 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2651 2652 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2653 while (1) { 2654 write_lock(&em_tree->lock); 2655 ret = add_extent_mapping(em_tree, em, 0); 2656 write_unlock(&em_tree->lock); 2657 if (ret != -EEXIST) { 2658 free_extent_map(em); 2659 break; 2660 } 2661 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2662 } 2663 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2664 return ret; 2665 } 2666 2667 /* 2668 * Allow error injection to test balance cancellation 2669 */ 2670 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2671 { 2672 return atomic_read(&fs_info->balance_cancel_req) || 2673 fatal_signal_pending(current); 2674 } 2675 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2676 2677 static int relocate_file_extent_cluster(struct inode *inode, 2678 struct file_extent_cluster *cluster) 2679 { 2680 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2681 u64 page_start; 2682 u64 page_end; 2683 u64 offset = BTRFS_I(inode)->index_cnt; 2684 unsigned long index; 2685 unsigned long last_index; 2686 struct page *page; 2687 struct file_ra_state *ra; 2688 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2689 int nr = 0; 2690 int ret = 0; 2691 2692 if (!cluster->nr) 2693 return 0; 2694 2695 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2696 if (!ra) 2697 return -ENOMEM; 2698 2699 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2700 if (ret) 2701 goto out; 2702 2703 file_ra_state_init(ra, inode->i_mapping); 2704 2705 ret = setup_extent_mapping(inode, cluster->start - offset, 2706 cluster->end - offset, cluster->start); 2707 if (ret) 2708 goto out; 2709 2710 index = (cluster->start - offset) >> PAGE_SHIFT; 2711 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2712 while (index <= last_index) { 2713 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2714 PAGE_SIZE); 2715 if (ret) 2716 goto out; 2717 2718 page = find_lock_page(inode->i_mapping, index); 2719 if (!page) { 2720 page_cache_sync_readahead(inode->i_mapping, 2721 ra, NULL, index, 2722 last_index + 1 - index); 2723 page = find_or_create_page(inode->i_mapping, index, 2724 mask); 2725 if (!page) { 2726 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2727 PAGE_SIZE, true); 2728 btrfs_delalloc_release_extents(BTRFS_I(inode), 2729 PAGE_SIZE); 2730 ret = -ENOMEM; 2731 goto out; 2732 } 2733 } 2734 2735 if (PageReadahead(page)) { 2736 page_cache_async_readahead(inode->i_mapping, 2737 ra, NULL, page, index, 2738 last_index + 1 - index); 2739 } 2740 2741 if (!PageUptodate(page)) { 2742 btrfs_readpage(NULL, page); 2743 lock_page(page); 2744 if (!PageUptodate(page)) { 2745 unlock_page(page); 2746 put_page(page); 2747 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2748 PAGE_SIZE, true); 2749 btrfs_delalloc_release_extents(BTRFS_I(inode), 2750 PAGE_SIZE); 2751 ret = -EIO; 2752 goto out; 2753 } 2754 } 2755 2756 page_start = page_offset(page); 2757 page_end = page_start + PAGE_SIZE - 1; 2758 2759 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2760 2761 set_page_extent_mapped(page); 2762 2763 if (nr < cluster->nr && 2764 page_start + offset == cluster->boundary[nr]) { 2765 set_extent_bits(&BTRFS_I(inode)->io_tree, 2766 page_start, page_end, 2767 EXTENT_BOUNDARY); 2768 nr++; 2769 } 2770 2771 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2772 page_end, 0, NULL); 2773 if (ret) { 2774 unlock_page(page); 2775 put_page(page); 2776 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2777 PAGE_SIZE, true); 2778 btrfs_delalloc_release_extents(BTRFS_I(inode), 2779 PAGE_SIZE); 2780 2781 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2782 page_start, page_end, 2783 EXTENT_LOCKED | EXTENT_BOUNDARY); 2784 goto out; 2785 2786 } 2787 set_page_dirty(page); 2788 2789 unlock_extent(&BTRFS_I(inode)->io_tree, 2790 page_start, page_end); 2791 unlock_page(page); 2792 put_page(page); 2793 2794 index++; 2795 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2796 balance_dirty_pages_ratelimited(inode->i_mapping); 2797 btrfs_throttle(fs_info); 2798 if (btrfs_should_cancel_balance(fs_info)) { 2799 ret = -ECANCELED; 2800 goto out; 2801 } 2802 } 2803 WARN_ON(nr != cluster->nr); 2804 out: 2805 kfree(ra); 2806 return ret; 2807 } 2808 2809 static noinline_for_stack 2810 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2811 struct file_extent_cluster *cluster) 2812 { 2813 int ret; 2814 2815 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2816 ret = relocate_file_extent_cluster(inode, cluster); 2817 if (ret) 2818 return ret; 2819 cluster->nr = 0; 2820 } 2821 2822 if (!cluster->nr) 2823 cluster->start = extent_key->objectid; 2824 else 2825 BUG_ON(cluster->nr >= MAX_EXTENTS); 2826 cluster->end = extent_key->objectid + extent_key->offset - 1; 2827 cluster->boundary[cluster->nr] = extent_key->objectid; 2828 cluster->nr++; 2829 2830 if (cluster->nr >= MAX_EXTENTS) { 2831 ret = relocate_file_extent_cluster(inode, cluster); 2832 if (ret) 2833 return ret; 2834 cluster->nr = 0; 2835 } 2836 return 0; 2837 } 2838 2839 /* 2840 * helper to add a tree block to the list. 2841 * the major work is getting the generation and level of the block 2842 */ 2843 static int add_tree_block(struct reloc_control *rc, 2844 struct btrfs_key *extent_key, 2845 struct btrfs_path *path, 2846 struct rb_root *blocks) 2847 { 2848 struct extent_buffer *eb; 2849 struct btrfs_extent_item *ei; 2850 struct btrfs_tree_block_info *bi; 2851 struct tree_block *block; 2852 struct rb_node *rb_node; 2853 u32 item_size; 2854 int level = -1; 2855 u64 generation; 2856 2857 eb = path->nodes[0]; 2858 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2859 2860 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2861 item_size >= sizeof(*ei) + sizeof(*bi)) { 2862 ei = btrfs_item_ptr(eb, path->slots[0], 2863 struct btrfs_extent_item); 2864 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2865 bi = (struct btrfs_tree_block_info *)(ei + 1); 2866 level = btrfs_tree_block_level(eb, bi); 2867 } else { 2868 level = (int)extent_key->offset; 2869 } 2870 generation = btrfs_extent_generation(eb, ei); 2871 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2872 btrfs_print_v0_err(eb->fs_info); 2873 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2874 return -EINVAL; 2875 } else { 2876 BUG(); 2877 } 2878 2879 btrfs_release_path(path); 2880 2881 BUG_ON(level == -1); 2882 2883 block = kmalloc(sizeof(*block), GFP_NOFS); 2884 if (!block) 2885 return -ENOMEM; 2886 2887 block->bytenr = extent_key->objectid; 2888 block->key.objectid = rc->extent_root->fs_info->nodesize; 2889 block->key.offset = generation; 2890 block->level = level; 2891 block->key_ready = 0; 2892 2893 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2894 if (rb_node) 2895 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2896 -EEXIST); 2897 2898 return 0; 2899 } 2900 2901 /* 2902 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2903 */ 2904 static int __add_tree_block(struct reloc_control *rc, 2905 u64 bytenr, u32 blocksize, 2906 struct rb_root *blocks) 2907 { 2908 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2909 struct btrfs_path *path; 2910 struct btrfs_key key; 2911 int ret; 2912 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2913 2914 if (tree_block_processed(bytenr, rc)) 2915 return 0; 2916 2917 if (rb_simple_search(blocks, bytenr)) 2918 return 0; 2919 2920 path = btrfs_alloc_path(); 2921 if (!path) 2922 return -ENOMEM; 2923 again: 2924 key.objectid = bytenr; 2925 if (skinny) { 2926 key.type = BTRFS_METADATA_ITEM_KEY; 2927 key.offset = (u64)-1; 2928 } else { 2929 key.type = BTRFS_EXTENT_ITEM_KEY; 2930 key.offset = blocksize; 2931 } 2932 2933 path->search_commit_root = 1; 2934 path->skip_locking = 1; 2935 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2936 if (ret < 0) 2937 goto out; 2938 2939 if (ret > 0 && skinny) { 2940 if (path->slots[0]) { 2941 path->slots[0]--; 2942 btrfs_item_key_to_cpu(path->nodes[0], &key, 2943 path->slots[0]); 2944 if (key.objectid == bytenr && 2945 (key.type == BTRFS_METADATA_ITEM_KEY || 2946 (key.type == BTRFS_EXTENT_ITEM_KEY && 2947 key.offset == blocksize))) 2948 ret = 0; 2949 } 2950 2951 if (ret) { 2952 skinny = false; 2953 btrfs_release_path(path); 2954 goto again; 2955 } 2956 } 2957 if (ret) { 2958 ASSERT(ret == 1); 2959 btrfs_print_leaf(path->nodes[0]); 2960 btrfs_err(fs_info, 2961 "tree block extent item (%llu) is not found in extent tree", 2962 bytenr); 2963 WARN_ON(1); 2964 ret = -EINVAL; 2965 goto out; 2966 } 2967 2968 ret = add_tree_block(rc, &key, path, blocks); 2969 out: 2970 btrfs_free_path(path); 2971 return ret; 2972 } 2973 2974 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2975 struct btrfs_block_group *block_group, 2976 struct inode *inode, 2977 u64 ino) 2978 { 2979 struct btrfs_root *root = fs_info->tree_root; 2980 struct btrfs_trans_handle *trans; 2981 int ret = 0; 2982 2983 if (inode) 2984 goto truncate; 2985 2986 inode = btrfs_iget(fs_info->sb, ino, root); 2987 if (IS_ERR(inode)) 2988 return -ENOENT; 2989 2990 truncate: 2991 ret = btrfs_check_trunc_cache_free_space(fs_info, 2992 &fs_info->global_block_rsv); 2993 if (ret) 2994 goto out; 2995 2996 trans = btrfs_join_transaction(root); 2997 if (IS_ERR(trans)) { 2998 ret = PTR_ERR(trans); 2999 goto out; 3000 } 3001 3002 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3003 3004 btrfs_end_transaction(trans); 3005 btrfs_btree_balance_dirty(fs_info); 3006 out: 3007 iput(inode); 3008 return ret; 3009 } 3010 3011 /* 3012 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3013 * cache inode, to avoid free space cache data extent blocking data relocation. 3014 */ 3015 static int delete_v1_space_cache(struct extent_buffer *leaf, 3016 struct btrfs_block_group *block_group, 3017 u64 data_bytenr) 3018 { 3019 u64 space_cache_ino; 3020 struct btrfs_file_extent_item *ei; 3021 struct btrfs_key key; 3022 bool found = false; 3023 int i; 3024 int ret; 3025 3026 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3027 return 0; 3028 3029 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3030 btrfs_item_key_to_cpu(leaf, &key, i); 3031 if (key.type != BTRFS_EXTENT_DATA_KEY) 3032 continue; 3033 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3034 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG && 3035 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3036 found = true; 3037 space_cache_ino = key.objectid; 3038 break; 3039 } 3040 } 3041 if (!found) 3042 return -ENOENT; 3043 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3044 space_cache_ino); 3045 return ret; 3046 } 3047 3048 /* 3049 * helper to find all tree blocks that reference a given data extent 3050 */ 3051 static noinline_for_stack 3052 int add_data_references(struct reloc_control *rc, 3053 struct btrfs_key *extent_key, 3054 struct btrfs_path *path, 3055 struct rb_root *blocks) 3056 { 3057 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3058 struct ulist *leaves = NULL; 3059 struct ulist_iterator leaf_uiter; 3060 struct ulist_node *ref_node = NULL; 3061 const u32 blocksize = fs_info->nodesize; 3062 int ret = 0; 3063 3064 btrfs_release_path(path); 3065 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3066 0, &leaves, NULL, true); 3067 if (ret < 0) 3068 return ret; 3069 3070 ULIST_ITER_INIT(&leaf_uiter); 3071 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3072 struct extent_buffer *eb; 3073 3074 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL); 3075 if (IS_ERR(eb)) { 3076 ret = PTR_ERR(eb); 3077 break; 3078 } 3079 ret = delete_v1_space_cache(eb, rc->block_group, 3080 extent_key->objectid); 3081 free_extent_buffer(eb); 3082 if (ret < 0) 3083 break; 3084 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3085 if (ret < 0) 3086 break; 3087 } 3088 if (ret < 0) 3089 free_block_list(blocks); 3090 ulist_free(leaves); 3091 return ret; 3092 } 3093 3094 /* 3095 * helper to find next unprocessed extent 3096 */ 3097 static noinline_for_stack 3098 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3099 struct btrfs_key *extent_key) 3100 { 3101 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3102 struct btrfs_key key; 3103 struct extent_buffer *leaf; 3104 u64 start, end, last; 3105 int ret; 3106 3107 last = rc->block_group->start + rc->block_group->length; 3108 while (1) { 3109 cond_resched(); 3110 if (rc->search_start >= last) { 3111 ret = 1; 3112 break; 3113 } 3114 3115 key.objectid = rc->search_start; 3116 key.type = BTRFS_EXTENT_ITEM_KEY; 3117 key.offset = 0; 3118 3119 path->search_commit_root = 1; 3120 path->skip_locking = 1; 3121 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3122 0, 0); 3123 if (ret < 0) 3124 break; 3125 next: 3126 leaf = path->nodes[0]; 3127 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3128 ret = btrfs_next_leaf(rc->extent_root, path); 3129 if (ret != 0) 3130 break; 3131 leaf = path->nodes[0]; 3132 } 3133 3134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3135 if (key.objectid >= last) { 3136 ret = 1; 3137 break; 3138 } 3139 3140 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3141 key.type != BTRFS_METADATA_ITEM_KEY) { 3142 path->slots[0]++; 3143 goto next; 3144 } 3145 3146 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3147 key.objectid + key.offset <= rc->search_start) { 3148 path->slots[0]++; 3149 goto next; 3150 } 3151 3152 if (key.type == BTRFS_METADATA_ITEM_KEY && 3153 key.objectid + fs_info->nodesize <= 3154 rc->search_start) { 3155 path->slots[0]++; 3156 goto next; 3157 } 3158 3159 ret = find_first_extent_bit(&rc->processed_blocks, 3160 key.objectid, &start, &end, 3161 EXTENT_DIRTY, NULL); 3162 3163 if (ret == 0 && start <= key.objectid) { 3164 btrfs_release_path(path); 3165 rc->search_start = end + 1; 3166 } else { 3167 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3168 rc->search_start = key.objectid + key.offset; 3169 else 3170 rc->search_start = key.objectid + 3171 fs_info->nodesize; 3172 memcpy(extent_key, &key, sizeof(key)); 3173 return 0; 3174 } 3175 } 3176 btrfs_release_path(path); 3177 return ret; 3178 } 3179 3180 static void set_reloc_control(struct reloc_control *rc) 3181 { 3182 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3183 3184 mutex_lock(&fs_info->reloc_mutex); 3185 fs_info->reloc_ctl = rc; 3186 mutex_unlock(&fs_info->reloc_mutex); 3187 } 3188 3189 static void unset_reloc_control(struct reloc_control *rc) 3190 { 3191 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3192 3193 mutex_lock(&fs_info->reloc_mutex); 3194 fs_info->reloc_ctl = NULL; 3195 mutex_unlock(&fs_info->reloc_mutex); 3196 } 3197 3198 static int check_extent_flags(u64 flags) 3199 { 3200 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3201 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3202 return 1; 3203 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3204 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3205 return 1; 3206 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3207 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3208 return 1; 3209 return 0; 3210 } 3211 3212 static noinline_for_stack 3213 int prepare_to_relocate(struct reloc_control *rc) 3214 { 3215 struct btrfs_trans_handle *trans; 3216 int ret; 3217 3218 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3219 BTRFS_BLOCK_RSV_TEMP); 3220 if (!rc->block_rsv) 3221 return -ENOMEM; 3222 3223 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3224 rc->search_start = rc->block_group->start; 3225 rc->extents_found = 0; 3226 rc->nodes_relocated = 0; 3227 rc->merging_rsv_size = 0; 3228 rc->reserved_bytes = 0; 3229 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3230 RELOCATION_RESERVED_NODES; 3231 ret = btrfs_block_rsv_refill(rc->extent_root, 3232 rc->block_rsv, rc->block_rsv->size, 3233 BTRFS_RESERVE_FLUSH_ALL); 3234 if (ret) 3235 return ret; 3236 3237 rc->create_reloc_tree = 1; 3238 set_reloc_control(rc); 3239 3240 trans = btrfs_join_transaction(rc->extent_root); 3241 if (IS_ERR(trans)) { 3242 unset_reloc_control(rc); 3243 /* 3244 * extent tree is not a ref_cow tree and has no reloc_root to 3245 * cleanup. And callers are responsible to free the above 3246 * block rsv. 3247 */ 3248 return PTR_ERR(trans); 3249 } 3250 btrfs_commit_transaction(trans); 3251 return 0; 3252 } 3253 3254 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3255 { 3256 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3257 struct rb_root blocks = RB_ROOT; 3258 struct btrfs_key key; 3259 struct btrfs_trans_handle *trans = NULL; 3260 struct btrfs_path *path; 3261 struct btrfs_extent_item *ei; 3262 u64 flags; 3263 u32 item_size; 3264 int ret; 3265 int err = 0; 3266 int progress = 0; 3267 3268 path = btrfs_alloc_path(); 3269 if (!path) 3270 return -ENOMEM; 3271 path->reada = READA_FORWARD; 3272 3273 ret = prepare_to_relocate(rc); 3274 if (ret) { 3275 err = ret; 3276 goto out_free; 3277 } 3278 3279 while (1) { 3280 rc->reserved_bytes = 0; 3281 ret = btrfs_block_rsv_refill(rc->extent_root, 3282 rc->block_rsv, rc->block_rsv->size, 3283 BTRFS_RESERVE_FLUSH_ALL); 3284 if (ret) { 3285 err = ret; 3286 break; 3287 } 3288 progress++; 3289 trans = btrfs_start_transaction(rc->extent_root, 0); 3290 if (IS_ERR(trans)) { 3291 err = PTR_ERR(trans); 3292 trans = NULL; 3293 break; 3294 } 3295 restart: 3296 if (update_backref_cache(trans, &rc->backref_cache)) { 3297 btrfs_end_transaction(trans); 3298 trans = NULL; 3299 continue; 3300 } 3301 3302 ret = find_next_extent(rc, path, &key); 3303 if (ret < 0) 3304 err = ret; 3305 if (ret != 0) 3306 break; 3307 3308 rc->extents_found++; 3309 3310 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3311 struct btrfs_extent_item); 3312 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3313 if (item_size >= sizeof(*ei)) { 3314 flags = btrfs_extent_flags(path->nodes[0], ei); 3315 ret = check_extent_flags(flags); 3316 BUG_ON(ret); 3317 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3318 err = -EINVAL; 3319 btrfs_print_v0_err(trans->fs_info); 3320 btrfs_abort_transaction(trans, err); 3321 break; 3322 } else { 3323 BUG(); 3324 } 3325 3326 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3327 ret = add_tree_block(rc, &key, path, &blocks); 3328 } else if (rc->stage == UPDATE_DATA_PTRS && 3329 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3330 ret = add_data_references(rc, &key, path, &blocks); 3331 } else { 3332 btrfs_release_path(path); 3333 ret = 0; 3334 } 3335 if (ret < 0) { 3336 err = ret; 3337 break; 3338 } 3339 3340 if (!RB_EMPTY_ROOT(&blocks)) { 3341 ret = relocate_tree_blocks(trans, rc, &blocks); 3342 if (ret < 0) { 3343 if (ret != -EAGAIN) { 3344 err = ret; 3345 break; 3346 } 3347 rc->extents_found--; 3348 rc->search_start = key.objectid; 3349 } 3350 } 3351 3352 btrfs_end_transaction_throttle(trans); 3353 btrfs_btree_balance_dirty(fs_info); 3354 trans = NULL; 3355 3356 if (rc->stage == MOVE_DATA_EXTENTS && 3357 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3358 rc->found_file_extent = 1; 3359 ret = relocate_data_extent(rc->data_inode, 3360 &key, &rc->cluster); 3361 if (ret < 0) { 3362 err = ret; 3363 break; 3364 } 3365 } 3366 if (btrfs_should_cancel_balance(fs_info)) { 3367 err = -ECANCELED; 3368 break; 3369 } 3370 } 3371 if (trans && progress && err == -ENOSPC) { 3372 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3373 if (ret == 1) { 3374 err = 0; 3375 progress = 0; 3376 goto restart; 3377 } 3378 } 3379 3380 btrfs_release_path(path); 3381 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3382 3383 if (trans) { 3384 btrfs_end_transaction_throttle(trans); 3385 btrfs_btree_balance_dirty(fs_info); 3386 } 3387 3388 if (!err) { 3389 ret = relocate_file_extent_cluster(rc->data_inode, 3390 &rc->cluster); 3391 if (ret < 0) 3392 err = ret; 3393 } 3394 3395 rc->create_reloc_tree = 0; 3396 set_reloc_control(rc); 3397 3398 btrfs_backref_release_cache(&rc->backref_cache); 3399 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3400 3401 /* 3402 * Even in the case when the relocation is cancelled, we should all go 3403 * through prepare_to_merge() and merge_reloc_roots(). 3404 * 3405 * For error (including cancelled balance), prepare_to_merge() will 3406 * mark all reloc trees orphan, then queue them for cleanup in 3407 * merge_reloc_roots() 3408 */ 3409 err = prepare_to_merge(rc, err); 3410 3411 merge_reloc_roots(rc); 3412 3413 rc->merge_reloc_tree = 0; 3414 unset_reloc_control(rc); 3415 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3416 3417 /* get rid of pinned extents */ 3418 trans = btrfs_join_transaction(rc->extent_root); 3419 if (IS_ERR(trans)) { 3420 err = PTR_ERR(trans); 3421 goto out_free; 3422 } 3423 btrfs_commit_transaction(trans); 3424 out_free: 3425 ret = clean_dirty_subvols(rc); 3426 if (ret < 0 && !err) 3427 err = ret; 3428 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3429 btrfs_free_path(path); 3430 return err; 3431 } 3432 3433 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3434 struct btrfs_root *root, u64 objectid) 3435 { 3436 struct btrfs_path *path; 3437 struct btrfs_inode_item *item; 3438 struct extent_buffer *leaf; 3439 int ret; 3440 3441 path = btrfs_alloc_path(); 3442 if (!path) 3443 return -ENOMEM; 3444 3445 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3446 if (ret) 3447 goto out; 3448 3449 leaf = path->nodes[0]; 3450 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3451 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3452 btrfs_set_inode_generation(leaf, item, 1); 3453 btrfs_set_inode_size(leaf, item, 0); 3454 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3455 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3456 BTRFS_INODE_PREALLOC); 3457 btrfs_mark_buffer_dirty(leaf); 3458 out: 3459 btrfs_free_path(path); 3460 return ret; 3461 } 3462 3463 /* 3464 * helper to create inode for data relocation. 3465 * the inode is in data relocation tree and its link count is 0 3466 */ 3467 static noinline_for_stack 3468 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3469 struct btrfs_block_group *group) 3470 { 3471 struct inode *inode = NULL; 3472 struct btrfs_trans_handle *trans; 3473 struct btrfs_root *root; 3474 u64 objectid; 3475 int err = 0; 3476 3477 root = btrfs_grab_root(fs_info->data_reloc_root); 3478 trans = btrfs_start_transaction(root, 6); 3479 if (IS_ERR(trans)) { 3480 btrfs_put_root(root); 3481 return ERR_CAST(trans); 3482 } 3483 3484 err = btrfs_find_free_objectid(root, &objectid); 3485 if (err) 3486 goto out; 3487 3488 err = __insert_orphan_inode(trans, root, objectid); 3489 BUG_ON(err); 3490 3491 inode = btrfs_iget(fs_info->sb, objectid, root); 3492 BUG_ON(IS_ERR(inode)); 3493 BTRFS_I(inode)->index_cnt = group->start; 3494 3495 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3496 out: 3497 btrfs_put_root(root); 3498 btrfs_end_transaction(trans); 3499 btrfs_btree_balance_dirty(fs_info); 3500 if (err) { 3501 if (inode) 3502 iput(inode); 3503 inode = ERR_PTR(err); 3504 } 3505 return inode; 3506 } 3507 3508 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3509 { 3510 struct reloc_control *rc; 3511 3512 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3513 if (!rc) 3514 return NULL; 3515 3516 INIT_LIST_HEAD(&rc->reloc_roots); 3517 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3518 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3519 mapping_tree_init(&rc->reloc_root_tree); 3520 extent_io_tree_init(fs_info, &rc->processed_blocks, 3521 IO_TREE_RELOC_BLOCKS, NULL); 3522 return rc; 3523 } 3524 3525 static void free_reloc_control(struct reloc_control *rc) 3526 { 3527 struct mapping_node *node, *tmp; 3528 3529 free_reloc_roots(&rc->reloc_roots); 3530 rbtree_postorder_for_each_entry_safe(node, tmp, 3531 &rc->reloc_root_tree.rb_root, rb_node) 3532 kfree(node); 3533 3534 kfree(rc); 3535 } 3536 3537 /* 3538 * Print the block group being relocated 3539 */ 3540 static void describe_relocation(struct btrfs_fs_info *fs_info, 3541 struct btrfs_block_group *block_group) 3542 { 3543 char buf[128] = {'\0'}; 3544 3545 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3546 3547 btrfs_info(fs_info, 3548 "relocating block group %llu flags %s", 3549 block_group->start, buf); 3550 } 3551 3552 static const char *stage_to_string(int stage) 3553 { 3554 if (stage == MOVE_DATA_EXTENTS) 3555 return "move data extents"; 3556 if (stage == UPDATE_DATA_PTRS) 3557 return "update data pointers"; 3558 return "unknown"; 3559 } 3560 3561 /* 3562 * function to relocate all extents in a block group. 3563 */ 3564 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3565 { 3566 struct btrfs_block_group *bg; 3567 struct btrfs_root *extent_root = fs_info->extent_root; 3568 struct reloc_control *rc; 3569 struct inode *inode; 3570 struct btrfs_path *path; 3571 int ret; 3572 int rw = 0; 3573 int err = 0; 3574 3575 bg = btrfs_lookup_block_group(fs_info, group_start); 3576 if (!bg) 3577 return -ENOENT; 3578 3579 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3580 btrfs_put_block_group(bg); 3581 return -ETXTBSY; 3582 } 3583 3584 rc = alloc_reloc_control(fs_info); 3585 if (!rc) { 3586 btrfs_put_block_group(bg); 3587 return -ENOMEM; 3588 } 3589 3590 rc->extent_root = extent_root; 3591 rc->block_group = bg; 3592 3593 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3594 if (ret) { 3595 err = ret; 3596 goto out; 3597 } 3598 rw = 1; 3599 3600 path = btrfs_alloc_path(); 3601 if (!path) { 3602 err = -ENOMEM; 3603 goto out; 3604 } 3605 3606 inode = lookup_free_space_inode(rc->block_group, path); 3607 btrfs_free_path(path); 3608 3609 if (!IS_ERR(inode)) 3610 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3611 else 3612 ret = PTR_ERR(inode); 3613 3614 if (ret && ret != -ENOENT) { 3615 err = ret; 3616 goto out; 3617 } 3618 3619 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3620 if (IS_ERR(rc->data_inode)) { 3621 err = PTR_ERR(rc->data_inode); 3622 rc->data_inode = NULL; 3623 goto out; 3624 } 3625 3626 describe_relocation(fs_info, rc->block_group); 3627 3628 btrfs_wait_block_group_reservations(rc->block_group); 3629 btrfs_wait_nocow_writers(rc->block_group); 3630 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3631 rc->block_group->start, 3632 rc->block_group->length); 3633 3634 while (1) { 3635 int finishes_stage; 3636 3637 mutex_lock(&fs_info->cleaner_mutex); 3638 ret = relocate_block_group(rc); 3639 mutex_unlock(&fs_info->cleaner_mutex); 3640 if (ret < 0) 3641 err = ret; 3642 3643 finishes_stage = rc->stage; 3644 /* 3645 * We may have gotten ENOSPC after we already dirtied some 3646 * extents. If writeout happens while we're relocating a 3647 * different block group we could end up hitting the 3648 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3649 * btrfs_reloc_cow_block. Make sure we write everything out 3650 * properly so we don't trip over this problem, and then break 3651 * out of the loop if we hit an error. 3652 */ 3653 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3654 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3655 (u64)-1); 3656 if (ret) 3657 err = ret; 3658 invalidate_mapping_pages(rc->data_inode->i_mapping, 3659 0, -1); 3660 rc->stage = UPDATE_DATA_PTRS; 3661 } 3662 3663 if (err < 0) 3664 goto out; 3665 3666 if (rc->extents_found == 0) 3667 break; 3668 3669 btrfs_info(fs_info, "found %llu extents, stage: %s", 3670 rc->extents_found, stage_to_string(finishes_stage)); 3671 } 3672 3673 WARN_ON(rc->block_group->pinned > 0); 3674 WARN_ON(rc->block_group->reserved > 0); 3675 WARN_ON(rc->block_group->used > 0); 3676 out: 3677 if (err && rw) 3678 btrfs_dec_block_group_ro(rc->block_group); 3679 iput(rc->data_inode); 3680 btrfs_put_block_group(rc->block_group); 3681 free_reloc_control(rc); 3682 return err; 3683 } 3684 3685 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3686 { 3687 struct btrfs_fs_info *fs_info = root->fs_info; 3688 struct btrfs_trans_handle *trans; 3689 int ret, err; 3690 3691 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3692 if (IS_ERR(trans)) 3693 return PTR_ERR(trans); 3694 3695 memset(&root->root_item.drop_progress, 0, 3696 sizeof(root->root_item.drop_progress)); 3697 root->root_item.drop_level = 0; 3698 btrfs_set_root_refs(&root->root_item, 0); 3699 ret = btrfs_update_root(trans, fs_info->tree_root, 3700 &root->root_key, &root->root_item); 3701 3702 err = btrfs_end_transaction(trans); 3703 if (err) 3704 return err; 3705 return ret; 3706 } 3707 3708 /* 3709 * recover relocation interrupted by system crash. 3710 * 3711 * this function resumes merging reloc trees with corresponding fs trees. 3712 * this is important for keeping the sharing of tree blocks 3713 */ 3714 int btrfs_recover_relocation(struct btrfs_root *root) 3715 { 3716 struct btrfs_fs_info *fs_info = root->fs_info; 3717 LIST_HEAD(reloc_roots); 3718 struct btrfs_key key; 3719 struct btrfs_root *fs_root; 3720 struct btrfs_root *reloc_root; 3721 struct btrfs_path *path; 3722 struct extent_buffer *leaf; 3723 struct reloc_control *rc = NULL; 3724 struct btrfs_trans_handle *trans; 3725 int ret; 3726 int err = 0; 3727 3728 path = btrfs_alloc_path(); 3729 if (!path) 3730 return -ENOMEM; 3731 path->reada = READA_BACK; 3732 3733 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3734 key.type = BTRFS_ROOT_ITEM_KEY; 3735 key.offset = (u64)-1; 3736 3737 while (1) { 3738 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3739 path, 0, 0); 3740 if (ret < 0) { 3741 err = ret; 3742 goto out; 3743 } 3744 if (ret > 0) { 3745 if (path->slots[0] == 0) 3746 break; 3747 path->slots[0]--; 3748 } 3749 leaf = path->nodes[0]; 3750 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3751 btrfs_release_path(path); 3752 3753 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3754 key.type != BTRFS_ROOT_ITEM_KEY) 3755 break; 3756 3757 reloc_root = btrfs_read_tree_root(root, &key); 3758 if (IS_ERR(reloc_root)) { 3759 err = PTR_ERR(reloc_root); 3760 goto out; 3761 } 3762 3763 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3764 list_add(&reloc_root->root_list, &reloc_roots); 3765 3766 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3767 fs_root = btrfs_get_fs_root(fs_info, 3768 reloc_root->root_key.offset, false); 3769 if (IS_ERR(fs_root)) { 3770 ret = PTR_ERR(fs_root); 3771 if (ret != -ENOENT) { 3772 err = ret; 3773 goto out; 3774 } 3775 ret = mark_garbage_root(reloc_root); 3776 if (ret < 0) { 3777 err = ret; 3778 goto out; 3779 } 3780 } else { 3781 btrfs_put_root(fs_root); 3782 } 3783 } 3784 3785 if (key.offset == 0) 3786 break; 3787 3788 key.offset--; 3789 } 3790 btrfs_release_path(path); 3791 3792 if (list_empty(&reloc_roots)) 3793 goto out; 3794 3795 rc = alloc_reloc_control(fs_info); 3796 if (!rc) { 3797 err = -ENOMEM; 3798 goto out; 3799 } 3800 3801 rc->extent_root = fs_info->extent_root; 3802 3803 set_reloc_control(rc); 3804 3805 trans = btrfs_join_transaction(rc->extent_root); 3806 if (IS_ERR(trans)) { 3807 err = PTR_ERR(trans); 3808 goto out_unset; 3809 } 3810 3811 rc->merge_reloc_tree = 1; 3812 3813 while (!list_empty(&reloc_roots)) { 3814 reloc_root = list_entry(reloc_roots.next, 3815 struct btrfs_root, root_list); 3816 list_del(&reloc_root->root_list); 3817 3818 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3819 list_add_tail(&reloc_root->root_list, 3820 &rc->reloc_roots); 3821 continue; 3822 } 3823 3824 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3825 false); 3826 if (IS_ERR(fs_root)) { 3827 err = PTR_ERR(fs_root); 3828 list_add_tail(&reloc_root->root_list, &reloc_roots); 3829 btrfs_end_transaction(trans); 3830 goto out_unset; 3831 } 3832 3833 err = __add_reloc_root(reloc_root); 3834 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3835 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3836 btrfs_put_root(fs_root); 3837 } 3838 3839 err = btrfs_commit_transaction(trans); 3840 if (err) 3841 goto out_unset; 3842 3843 merge_reloc_roots(rc); 3844 3845 unset_reloc_control(rc); 3846 3847 trans = btrfs_join_transaction(rc->extent_root); 3848 if (IS_ERR(trans)) { 3849 err = PTR_ERR(trans); 3850 goto out_clean; 3851 } 3852 err = btrfs_commit_transaction(trans); 3853 out_clean: 3854 ret = clean_dirty_subvols(rc); 3855 if (ret < 0 && !err) 3856 err = ret; 3857 out_unset: 3858 unset_reloc_control(rc); 3859 free_reloc_control(rc); 3860 out: 3861 free_reloc_roots(&reloc_roots); 3862 3863 btrfs_free_path(path); 3864 3865 if (err == 0) { 3866 /* cleanup orphan inode in data relocation tree */ 3867 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3868 ASSERT(fs_root); 3869 err = btrfs_orphan_cleanup(fs_root); 3870 btrfs_put_root(fs_root); 3871 } 3872 return err; 3873 } 3874 3875 /* 3876 * helper to add ordered checksum for data relocation. 3877 * 3878 * cloning checksum properly handles the nodatasum extents. 3879 * it also saves CPU time to re-calculate the checksum. 3880 */ 3881 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 3882 { 3883 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3884 struct btrfs_ordered_sum *sums; 3885 struct btrfs_ordered_extent *ordered; 3886 int ret; 3887 u64 disk_bytenr; 3888 u64 new_bytenr; 3889 LIST_HEAD(list); 3890 3891 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3892 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3893 3894 disk_bytenr = file_pos + inode->index_cnt; 3895 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3896 disk_bytenr + len - 1, &list, 0); 3897 if (ret) 3898 goto out; 3899 3900 while (!list_empty(&list)) { 3901 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3902 list_del_init(&sums->list); 3903 3904 /* 3905 * We need to offset the new_bytenr based on where the csum is. 3906 * We need to do this because we will read in entire prealloc 3907 * extents but we may have written to say the middle of the 3908 * prealloc extent, so we need to make sure the csum goes with 3909 * the right disk offset. 3910 * 3911 * We can do this because the data reloc inode refers strictly 3912 * to the on disk bytes, so we don't have to worry about 3913 * disk_len vs real len like with real inodes since it's all 3914 * disk length. 3915 */ 3916 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3917 sums->bytenr = new_bytenr; 3918 3919 btrfs_add_ordered_sum(ordered, sums); 3920 } 3921 out: 3922 btrfs_put_ordered_extent(ordered); 3923 return ret; 3924 } 3925 3926 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3927 struct btrfs_root *root, struct extent_buffer *buf, 3928 struct extent_buffer *cow) 3929 { 3930 struct btrfs_fs_info *fs_info = root->fs_info; 3931 struct reloc_control *rc; 3932 struct btrfs_backref_node *node; 3933 int first_cow = 0; 3934 int level; 3935 int ret = 0; 3936 3937 rc = fs_info->reloc_ctl; 3938 if (!rc) 3939 return 0; 3940 3941 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3942 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3943 3944 level = btrfs_header_level(buf); 3945 if (btrfs_header_generation(buf) <= 3946 btrfs_root_last_snapshot(&root->root_item)) 3947 first_cow = 1; 3948 3949 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3950 rc->create_reloc_tree) { 3951 WARN_ON(!first_cow && level == 0); 3952 3953 node = rc->backref_cache.path[level]; 3954 BUG_ON(node->bytenr != buf->start && 3955 node->new_bytenr != buf->start); 3956 3957 btrfs_backref_drop_node_buffer(node); 3958 atomic_inc(&cow->refs); 3959 node->eb = cow; 3960 node->new_bytenr = cow->start; 3961 3962 if (!node->pending) { 3963 list_move_tail(&node->list, 3964 &rc->backref_cache.pending[level]); 3965 node->pending = 1; 3966 } 3967 3968 if (first_cow) 3969 mark_block_processed(rc, node); 3970 3971 if (first_cow && level > 0) 3972 rc->nodes_relocated += buf->len; 3973 } 3974 3975 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 3976 ret = replace_file_extents(trans, rc, root, cow); 3977 return ret; 3978 } 3979 3980 /* 3981 * called before creating snapshot. it calculates metadata reservation 3982 * required for relocating tree blocks in the snapshot 3983 */ 3984 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3985 u64 *bytes_to_reserve) 3986 { 3987 struct btrfs_root *root = pending->root; 3988 struct reloc_control *rc = root->fs_info->reloc_ctl; 3989 3990 if (!rc || !have_reloc_root(root)) 3991 return; 3992 3993 if (!rc->merge_reloc_tree) 3994 return; 3995 3996 root = root->reloc_root; 3997 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 3998 /* 3999 * relocation is in the stage of merging trees. the space 4000 * used by merging a reloc tree is twice the size of 4001 * relocated tree nodes in the worst case. half for cowing 4002 * the reloc tree, half for cowing the fs tree. the space 4003 * used by cowing the reloc tree will be freed after the 4004 * tree is dropped. if we create snapshot, cowing the fs 4005 * tree may use more space than it frees. so we need 4006 * reserve extra space. 4007 */ 4008 *bytes_to_reserve += rc->nodes_relocated; 4009 } 4010 4011 /* 4012 * called after snapshot is created. migrate block reservation 4013 * and create reloc root for the newly created snapshot 4014 * 4015 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4016 * references held on the reloc_root, one for root->reloc_root and one for 4017 * rc->reloc_roots. 4018 */ 4019 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4020 struct btrfs_pending_snapshot *pending) 4021 { 4022 struct btrfs_root *root = pending->root; 4023 struct btrfs_root *reloc_root; 4024 struct btrfs_root *new_root; 4025 struct reloc_control *rc = root->fs_info->reloc_ctl; 4026 int ret; 4027 4028 if (!rc || !have_reloc_root(root)) 4029 return 0; 4030 4031 rc = root->fs_info->reloc_ctl; 4032 rc->merging_rsv_size += rc->nodes_relocated; 4033 4034 if (rc->merge_reloc_tree) { 4035 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4036 rc->block_rsv, 4037 rc->nodes_relocated, true); 4038 if (ret) 4039 return ret; 4040 } 4041 4042 new_root = pending->snap; 4043 reloc_root = create_reloc_root(trans, root->reloc_root, 4044 new_root->root_key.objectid); 4045 if (IS_ERR(reloc_root)) 4046 return PTR_ERR(reloc_root); 4047 4048 ret = __add_reloc_root(reloc_root); 4049 BUG_ON(ret < 0); 4050 new_root->reloc_root = btrfs_grab_root(reloc_root); 4051 4052 if (rc->create_reloc_tree) 4053 ret = clone_backref_node(trans, rc, root, reloc_root); 4054 return ret; 4055 } 4056