1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 31 /* 32 * Relocation overview 33 * 34 * [What does relocation do] 35 * 36 * The objective of relocation is to relocate all extents of the target block 37 * group to other block groups. 38 * This is utilized by resize (shrink only), profile converting, compacting 39 * space, or balance routine to spread chunks over devices. 40 * 41 * Before | After 42 * ------------------------------------------------------------------ 43 * BG A: 10 data extents | BG A: deleted 44 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 45 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 46 * 47 * [How does relocation work] 48 * 49 * 1. Mark the target block group read-only 50 * New extents won't be allocated from the target block group. 51 * 52 * 2.1 Record each extent in the target block group 53 * To build a proper map of extents to be relocated. 54 * 55 * 2.2 Build data reloc tree and reloc trees 56 * Data reloc tree will contain an inode, recording all newly relocated 57 * data extents. 58 * There will be only one data reloc tree for one data block group. 59 * 60 * Reloc tree will be a special snapshot of its source tree, containing 61 * relocated tree blocks. 62 * Each tree referring to a tree block in target block group will get its 63 * reloc tree built. 64 * 65 * 2.3 Swap source tree with its corresponding reloc tree 66 * Each involved tree only refers to new extents after swap. 67 * 68 * 3. Cleanup reloc trees and data reloc tree. 69 * As old extents in the target block group are still referenced by reloc 70 * trees, we need to clean them up before really freeing the target block 71 * group. 72 * 73 * The main complexity is in steps 2.2 and 2.3. 74 * 75 * The entry point of relocation is relocate_block_group() function. 76 */ 77 78 #define RELOCATION_RESERVED_NODES 256 79 /* 80 * map address of tree root to tree 81 */ 82 struct mapping_node { 83 struct { 84 struct rb_node rb_node; 85 u64 bytenr; 86 }; /* Use rb_simle_node for search/insert */ 87 void *data; 88 }; 89 90 struct mapping_tree { 91 struct rb_root rb_root; 92 spinlock_t lock; 93 }; 94 95 /* 96 * present a tree block to process 97 */ 98 struct tree_block { 99 struct { 100 struct rb_node rb_node; 101 u64 bytenr; 102 }; /* Use rb_simple_node for search/insert */ 103 u64 owner; 104 struct btrfs_key key; 105 unsigned int level:8; 106 unsigned int key_ready:1; 107 }; 108 109 #define MAX_EXTENTS 128 110 111 struct file_extent_cluster { 112 u64 start; 113 u64 end; 114 u64 boundary[MAX_EXTENTS]; 115 unsigned int nr; 116 }; 117 118 struct reloc_control { 119 /* block group to relocate */ 120 struct btrfs_block_group *block_group; 121 /* extent tree */ 122 struct btrfs_root *extent_root; 123 /* inode for moving data */ 124 struct inode *data_inode; 125 126 struct btrfs_block_rsv *block_rsv; 127 128 struct btrfs_backref_cache backref_cache; 129 130 struct file_extent_cluster cluster; 131 /* tree blocks have been processed */ 132 struct extent_io_tree processed_blocks; 133 /* map start of tree root to corresponding reloc tree */ 134 struct mapping_tree reloc_root_tree; 135 /* list of reloc trees */ 136 struct list_head reloc_roots; 137 /* list of subvolume trees that get relocated */ 138 struct list_head dirty_subvol_roots; 139 /* size of metadata reservation for merging reloc trees */ 140 u64 merging_rsv_size; 141 /* size of relocated tree nodes */ 142 u64 nodes_relocated; 143 /* reserved size for block group relocation*/ 144 u64 reserved_bytes; 145 146 u64 search_start; 147 u64 extents_found; 148 149 unsigned int stage:8; 150 unsigned int create_reloc_tree:1; 151 unsigned int merge_reloc_tree:1; 152 unsigned int found_file_extent:1; 153 }; 154 155 /* stages of data relocation */ 156 #define MOVE_DATA_EXTENTS 0 157 #define UPDATE_DATA_PTRS 1 158 159 static void mark_block_processed(struct reloc_control *rc, 160 struct btrfs_backref_node *node) 161 { 162 u32 blocksize; 163 164 if (node->level == 0 || 165 in_range(node->bytenr, rc->block_group->start, 166 rc->block_group->length)) { 167 blocksize = rc->extent_root->fs_info->nodesize; 168 set_extent_bits(&rc->processed_blocks, node->bytenr, 169 node->bytenr + blocksize - 1, EXTENT_DIRTY); 170 } 171 node->processed = 1; 172 } 173 174 175 static void mapping_tree_init(struct mapping_tree *tree) 176 { 177 tree->rb_root = RB_ROOT; 178 spin_lock_init(&tree->lock); 179 } 180 181 /* 182 * walk up backref nodes until reach node presents tree root 183 */ 184 static struct btrfs_backref_node *walk_up_backref( 185 struct btrfs_backref_node *node, 186 struct btrfs_backref_edge *edges[], int *index) 187 { 188 struct btrfs_backref_edge *edge; 189 int idx = *index; 190 191 while (!list_empty(&node->upper)) { 192 edge = list_entry(node->upper.next, 193 struct btrfs_backref_edge, list[LOWER]); 194 edges[idx++] = edge; 195 node = edge->node[UPPER]; 196 } 197 BUG_ON(node->detached); 198 *index = idx; 199 return node; 200 } 201 202 /* 203 * walk down backref nodes to find start of next reference path 204 */ 205 static struct btrfs_backref_node *walk_down_backref( 206 struct btrfs_backref_edge *edges[], int *index) 207 { 208 struct btrfs_backref_edge *edge; 209 struct btrfs_backref_node *lower; 210 int idx = *index; 211 212 while (idx > 0) { 213 edge = edges[idx - 1]; 214 lower = edge->node[LOWER]; 215 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 216 idx--; 217 continue; 218 } 219 edge = list_entry(edge->list[LOWER].next, 220 struct btrfs_backref_edge, list[LOWER]); 221 edges[idx - 1] = edge; 222 *index = idx; 223 return edge->node[UPPER]; 224 } 225 *index = 0; 226 return NULL; 227 } 228 229 static void update_backref_node(struct btrfs_backref_cache *cache, 230 struct btrfs_backref_node *node, u64 bytenr) 231 { 232 struct rb_node *rb_node; 233 rb_erase(&node->rb_node, &cache->rb_root); 234 node->bytenr = bytenr; 235 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 236 if (rb_node) 237 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 238 } 239 240 /* 241 * update backref cache after a transaction commit 242 */ 243 static int update_backref_cache(struct btrfs_trans_handle *trans, 244 struct btrfs_backref_cache *cache) 245 { 246 struct btrfs_backref_node *node; 247 int level = 0; 248 249 if (cache->last_trans == 0) { 250 cache->last_trans = trans->transid; 251 return 0; 252 } 253 254 if (cache->last_trans == trans->transid) 255 return 0; 256 257 /* 258 * detached nodes are used to avoid unnecessary backref 259 * lookup. transaction commit changes the extent tree. 260 * so the detached nodes are no longer useful. 261 */ 262 while (!list_empty(&cache->detached)) { 263 node = list_entry(cache->detached.next, 264 struct btrfs_backref_node, list); 265 btrfs_backref_cleanup_node(cache, node); 266 } 267 268 while (!list_empty(&cache->changed)) { 269 node = list_entry(cache->changed.next, 270 struct btrfs_backref_node, list); 271 list_del_init(&node->list); 272 BUG_ON(node->pending); 273 update_backref_node(cache, node, node->new_bytenr); 274 } 275 276 /* 277 * some nodes can be left in the pending list if there were 278 * errors during processing the pending nodes. 279 */ 280 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 281 list_for_each_entry(node, &cache->pending[level], list) { 282 BUG_ON(!node->pending); 283 if (node->bytenr == node->new_bytenr) 284 continue; 285 update_backref_node(cache, node, node->new_bytenr); 286 } 287 } 288 289 cache->last_trans = 0; 290 return 1; 291 } 292 293 static bool reloc_root_is_dead(struct btrfs_root *root) 294 { 295 /* 296 * Pair with set_bit/clear_bit in clean_dirty_subvols and 297 * btrfs_update_reloc_root. We need to see the updated bit before 298 * trying to access reloc_root 299 */ 300 smp_rmb(); 301 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 302 return true; 303 return false; 304 } 305 306 /* 307 * Check if this subvolume tree has valid reloc tree. 308 * 309 * Reloc tree after swap is considered dead, thus not considered as valid. 310 * This is enough for most callers, as they don't distinguish dead reloc root 311 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 312 * special case. 313 */ 314 static bool have_reloc_root(struct btrfs_root *root) 315 { 316 if (reloc_root_is_dead(root)) 317 return false; 318 if (!root->reloc_root) 319 return false; 320 return true; 321 } 322 323 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 324 { 325 struct btrfs_root *reloc_root; 326 327 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 328 return 0; 329 330 /* This root has been merged with its reloc tree, we can ignore it */ 331 if (reloc_root_is_dead(root)) 332 return 1; 333 334 reloc_root = root->reloc_root; 335 if (!reloc_root) 336 return 0; 337 338 if (btrfs_header_generation(reloc_root->commit_root) == 339 root->fs_info->running_transaction->transid) 340 return 0; 341 /* 342 * if there is reloc tree and it was created in previous 343 * transaction backref lookup can find the reloc tree, 344 * so backref node for the fs tree root is useless for 345 * relocation. 346 */ 347 return 1; 348 } 349 350 /* 351 * find reloc tree by address of tree root 352 */ 353 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 354 { 355 struct reloc_control *rc = fs_info->reloc_ctl; 356 struct rb_node *rb_node; 357 struct mapping_node *node; 358 struct btrfs_root *root = NULL; 359 360 ASSERT(rc); 361 spin_lock(&rc->reloc_root_tree.lock); 362 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 363 if (rb_node) { 364 node = rb_entry(rb_node, struct mapping_node, rb_node); 365 root = node->data; 366 } 367 spin_unlock(&rc->reloc_root_tree.lock); 368 return btrfs_grab_root(root); 369 } 370 371 /* 372 * For useless nodes, do two major clean ups: 373 * 374 * - Cleanup the children edges and nodes 375 * If child node is also orphan (no parent) during cleanup, then the child 376 * node will also be cleaned up. 377 * 378 * - Freeing up leaves (level 0), keeps nodes detached 379 * For nodes, the node is still cached as "detached" 380 * 381 * Return false if @node is not in the @useless_nodes list. 382 * Return true if @node is in the @useless_nodes list. 383 */ 384 static bool handle_useless_nodes(struct reloc_control *rc, 385 struct btrfs_backref_node *node) 386 { 387 struct btrfs_backref_cache *cache = &rc->backref_cache; 388 struct list_head *useless_node = &cache->useless_node; 389 bool ret = false; 390 391 while (!list_empty(useless_node)) { 392 struct btrfs_backref_node *cur; 393 394 cur = list_first_entry(useless_node, struct btrfs_backref_node, 395 list); 396 list_del_init(&cur->list); 397 398 /* Only tree root nodes can be added to @useless_nodes */ 399 ASSERT(list_empty(&cur->upper)); 400 401 if (cur == node) 402 ret = true; 403 404 /* The node is the lowest node */ 405 if (cur->lowest) { 406 list_del_init(&cur->lower); 407 cur->lowest = 0; 408 } 409 410 /* Cleanup the lower edges */ 411 while (!list_empty(&cur->lower)) { 412 struct btrfs_backref_edge *edge; 413 struct btrfs_backref_node *lower; 414 415 edge = list_entry(cur->lower.next, 416 struct btrfs_backref_edge, list[UPPER]); 417 list_del(&edge->list[UPPER]); 418 list_del(&edge->list[LOWER]); 419 lower = edge->node[LOWER]; 420 btrfs_backref_free_edge(cache, edge); 421 422 /* Child node is also orphan, queue for cleanup */ 423 if (list_empty(&lower->upper)) 424 list_add(&lower->list, useless_node); 425 } 426 /* Mark this block processed for relocation */ 427 mark_block_processed(rc, cur); 428 429 /* 430 * Backref nodes for tree leaves are deleted from the cache. 431 * Backref nodes for upper level tree blocks are left in the 432 * cache to avoid unnecessary backref lookup. 433 */ 434 if (cur->level > 0) { 435 list_add(&cur->list, &cache->detached); 436 cur->detached = 1; 437 } else { 438 rb_erase(&cur->rb_node, &cache->rb_root); 439 btrfs_backref_free_node(cache, cur); 440 } 441 } 442 return ret; 443 } 444 445 /* 446 * Build backref tree for a given tree block. Root of the backref tree 447 * corresponds the tree block, leaves of the backref tree correspond roots of 448 * b-trees that reference the tree block. 449 * 450 * The basic idea of this function is check backrefs of a given block to find 451 * upper level blocks that reference the block, and then check backrefs of 452 * these upper level blocks recursively. The recursion stops when tree root is 453 * reached or backrefs for the block is cached. 454 * 455 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 456 * all upper level blocks that directly/indirectly reference the block are also 457 * cached. 458 */ 459 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 460 struct reloc_control *rc, struct btrfs_key *node_key, 461 int level, u64 bytenr) 462 { 463 struct btrfs_backref_iter *iter; 464 struct btrfs_backref_cache *cache = &rc->backref_cache; 465 /* For searching parent of TREE_BLOCK_REF */ 466 struct btrfs_path *path; 467 struct btrfs_backref_node *cur; 468 struct btrfs_backref_node *node = NULL; 469 struct btrfs_backref_edge *edge; 470 int ret; 471 int err = 0; 472 473 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 474 if (!iter) 475 return ERR_PTR(-ENOMEM); 476 path = btrfs_alloc_path(); 477 if (!path) { 478 err = -ENOMEM; 479 goto out; 480 } 481 482 node = btrfs_backref_alloc_node(cache, bytenr, level); 483 if (!node) { 484 err = -ENOMEM; 485 goto out; 486 } 487 488 node->lowest = 1; 489 cur = node; 490 491 /* Breadth-first search to build backref cache */ 492 do { 493 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 494 cur); 495 if (ret < 0) { 496 err = ret; 497 goto out; 498 } 499 edge = list_first_entry_or_null(&cache->pending_edge, 500 struct btrfs_backref_edge, list[UPPER]); 501 /* 502 * The pending list isn't empty, take the first block to 503 * process 504 */ 505 if (edge) { 506 list_del_init(&edge->list[UPPER]); 507 cur = edge->node[UPPER]; 508 } 509 } while (edge); 510 511 /* Finish the upper linkage of newly added edges/nodes */ 512 ret = btrfs_backref_finish_upper_links(cache, node); 513 if (ret < 0) { 514 err = ret; 515 goto out; 516 } 517 518 if (handle_useless_nodes(rc, node)) 519 node = NULL; 520 out: 521 btrfs_backref_iter_free(iter); 522 btrfs_free_path(path); 523 if (err) { 524 btrfs_backref_error_cleanup(cache, node); 525 return ERR_PTR(err); 526 } 527 ASSERT(!node || !node->detached); 528 ASSERT(list_empty(&cache->useless_node) && 529 list_empty(&cache->pending_edge)); 530 return node; 531 } 532 533 /* 534 * helper to add backref node for the newly created snapshot. 535 * the backref node is created by cloning backref node that 536 * corresponds to root of source tree 537 */ 538 static int clone_backref_node(struct btrfs_trans_handle *trans, 539 struct reloc_control *rc, 540 struct btrfs_root *src, 541 struct btrfs_root *dest) 542 { 543 struct btrfs_root *reloc_root = src->reloc_root; 544 struct btrfs_backref_cache *cache = &rc->backref_cache; 545 struct btrfs_backref_node *node = NULL; 546 struct btrfs_backref_node *new_node; 547 struct btrfs_backref_edge *edge; 548 struct btrfs_backref_edge *new_edge; 549 struct rb_node *rb_node; 550 551 if (cache->last_trans > 0) 552 update_backref_cache(trans, cache); 553 554 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 555 if (rb_node) { 556 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 557 if (node->detached) 558 node = NULL; 559 else 560 BUG_ON(node->new_bytenr != reloc_root->node->start); 561 } 562 563 if (!node) { 564 rb_node = rb_simple_search(&cache->rb_root, 565 reloc_root->commit_root->start); 566 if (rb_node) { 567 node = rb_entry(rb_node, struct btrfs_backref_node, 568 rb_node); 569 BUG_ON(node->detached); 570 } 571 } 572 573 if (!node) 574 return 0; 575 576 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 577 node->level); 578 if (!new_node) 579 return -ENOMEM; 580 581 new_node->lowest = node->lowest; 582 new_node->checked = 1; 583 new_node->root = btrfs_grab_root(dest); 584 ASSERT(new_node->root); 585 586 if (!node->lowest) { 587 list_for_each_entry(edge, &node->lower, list[UPPER]) { 588 new_edge = btrfs_backref_alloc_edge(cache); 589 if (!new_edge) 590 goto fail; 591 592 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 593 new_node, LINK_UPPER); 594 } 595 } else { 596 list_add_tail(&new_node->lower, &cache->leaves); 597 } 598 599 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 600 &new_node->rb_node); 601 if (rb_node) 602 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 603 604 if (!new_node->lowest) { 605 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 606 list_add_tail(&new_edge->list[LOWER], 607 &new_edge->node[LOWER]->upper); 608 } 609 } 610 return 0; 611 fail: 612 while (!list_empty(&new_node->lower)) { 613 new_edge = list_entry(new_node->lower.next, 614 struct btrfs_backref_edge, list[UPPER]); 615 list_del(&new_edge->list[UPPER]); 616 btrfs_backref_free_edge(cache, new_edge); 617 } 618 btrfs_backref_free_node(cache, new_node); 619 return -ENOMEM; 620 } 621 622 /* 623 * helper to add 'address of tree root -> reloc tree' mapping 624 */ 625 static int __must_check __add_reloc_root(struct btrfs_root *root) 626 { 627 struct btrfs_fs_info *fs_info = root->fs_info; 628 struct rb_node *rb_node; 629 struct mapping_node *node; 630 struct reloc_control *rc = fs_info->reloc_ctl; 631 632 node = kmalloc(sizeof(*node), GFP_NOFS); 633 if (!node) 634 return -ENOMEM; 635 636 node->bytenr = root->commit_root->start; 637 node->data = root; 638 639 spin_lock(&rc->reloc_root_tree.lock); 640 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 641 node->bytenr, &node->rb_node); 642 spin_unlock(&rc->reloc_root_tree.lock); 643 if (rb_node) { 644 btrfs_err(fs_info, 645 "Duplicate root found for start=%llu while inserting into relocation tree", 646 node->bytenr); 647 return -EEXIST; 648 } 649 650 list_add_tail(&root->root_list, &rc->reloc_roots); 651 return 0; 652 } 653 654 /* 655 * helper to delete the 'address of tree root -> reloc tree' 656 * mapping 657 */ 658 static void __del_reloc_root(struct btrfs_root *root) 659 { 660 struct btrfs_fs_info *fs_info = root->fs_info; 661 struct rb_node *rb_node; 662 struct mapping_node *node = NULL; 663 struct reloc_control *rc = fs_info->reloc_ctl; 664 bool put_ref = false; 665 666 if (rc && root->node) { 667 spin_lock(&rc->reloc_root_tree.lock); 668 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 669 root->commit_root->start); 670 if (rb_node) { 671 node = rb_entry(rb_node, struct mapping_node, rb_node); 672 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 673 RB_CLEAR_NODE(&node->rb_node); 674 } 675 spin_unlock(&rc->reloc_root_tree.lock); 676 ASSERT(!node || (struct btrfs_root *)node->data == root); 677 } 678 679 /* 680 * We only put the reloc root here if it's on the list. There's a lot 681 * of places where the pattern is to splice the rc->reloc_roots, process 682 * the reloc roots, and then add the reloc root back onto 683 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 684 * list we don't want the reference being dropped, because the guy 685 * messing with the list is in charge of the reference. 686 */ 687 spin_lock(&fs_info->trans_lock); 688 if (!list_empty(&root->root_list)) { 689 put_ref = true; 690 list_del_init(&root->root_list); 691 } 692 spin_unlock(&fs_info->trans_lock); 693 if (put_ref) 694 btrfs_put_root(root); 695 kfree(node); 696 } 697 698 /* 699 * helper to update the 'address of tree root -> reloc tree' 700 * mapping 701 */ 702 static int __update_reloc_root(struct btrfs_root *root) 703 { 704 struct btrfs_fs_info *fs_info = root->fs_info; 705 struct rb_node *rb_node; 706 struct mapping_node *node = NULL; 707 struct reloc_control *rc = fs_info->reloc_ctl; 708 709 spin_lock(&rc->reloc_root_tree.lock); 710 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 711 root->commit_root->start); 712 if (rb_node) { 713 node = rb_entry(rb_node, struct mapping_node, rb_node); 714 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 715 } 716 spin_unlock(&rc->reloc_root_tree.lock); 717 718 if (!node) 719 return 0; 720 BUG_ON((struct btrfs_root *)node->data != root); 721 722 spin_lock(&rc->reloc_root_tree.lock); 723 node->bytenr = root->node->start; 724 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 725 node->bytenr, &node->rb_node); 726 spin_unlock(&rc->reloc_root_tree.lock); 727 if (rb_node) 728 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 729 return 0; 730 } 731 732 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 733 struct btrfs_root *root, u64 objectid) 734 { 735 struct btrfs_fs_info *fs_info = root->fs_info; 736 struct btrfs_root *reloc_root; 737 struct extent_buffer *eb; 738 struct btrfs_root_item *root_item; 739 struct btrfs_key root_key; 740 int ret = 0; 741 bool must_abort = false; 742 743 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 744 if (!root_item) 745 return ERR_PTR(-ENOMEM); 746 747 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 748 root_key.type = BTRFS_ROOT_ITEM_KEY; 749 root_key.offset = objectid; 750 751 if (root->root_key.objectid == objectid) { 752 u64 commit_root_gen; 753 754 /* called by btrfs_init_reloc_root */ 755 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 756 BTRFS_TREE_RELOC_OBJECTID); 757 if (ret) 758 goto fail; 759 760 /* 761 * Set the last_snapshot field to the generation of the commit 762 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 763 * correctly (returns true) when the relocation root is created 764 * either inside the critical section of a transaction commit 765 * (through transaction.c:qgroup_account_snapshot()) and when 766 * it's created before the transaction commit is started. 767 */ 768 commit_root_gen = btrfs_header_generation(root->commit_root); 769 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 770 } else { 771 /* 772 * called by btrfs_reloc_post_snapshot_hook. 773 * the source tree is a reloc tree, all tree blocks 774 * modified after it was created have RELOC flag 775 * set in their headers. so it's OK to not update 776 * the 'last_snapshot'. 777 */ 778 ret = btrfs_copy_root(trans, root, root->node, &eb, 779 BTRFS_TREE_RELOC_OBJECTID); 780 if (ret) 781 goto fail; 782 } 783 784 /* 785 * We have changed references at this point, we must abort the 786 * transaction if anything fails. 787 */ 788 must_abort = true; 789 790 memcpy(root_item, &root->root_item, sizeof(*root_item)); 791 btrfs_set_root_bytenr(root_item, eb->start); 792 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 793 btrfs_set_root_generation(root_item, trans->transid); 794 795 if (root->root_key.objectid == objectid) { 796 btrfs_set_root_refs(root_item, 0); 797 memset(&root_item->drop_progress, 0, 798 sizeof(struct btrfs_disk_key)); 799 btrfs_set_root_drop_level(root_item, 0); 800 } 801 802 btrfs_tree_unlock(eb); 803 free_extent_buffer(eb); 804 805 ret = btrfs_insert_root(trans, fs_info->tree_root, 806 &root_key, root_item); 807 if (ret) 808 goto fail; 809 810 kfree(root_item); 811 812 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 813 if (IS_ERR(reloc_root)) { 814 ret = PTR_ERR(reloc_root); 815 goto abort; 816 } 817 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 818 reloc_root->last_trans = trans->transid; 819 return reloc_root; 820 fail: 821 kfree(root_item); 822 abort: 823 if (must_abort) 824 btrfs_abort_transaction(trans, ret); 825 return ERR_PTR(ret); 826 } 827 828 /* 829 * create reloc tree for a given fs tree. reloc tree is just a 830 * snapshot of the fs tree with special root objectid. 831 * 832 * The reloc_root comes out of here with two references, one for 833 * root->reloc_root, and another for being on the rc->reloc_roots list. 834 */ 835 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 836 struct btrfs_root *root) 837 { 838 struct btrfs_fs_info *fs_info = root->fs_info; 839 struct btrfs_root *reloc_root; 840 struct reloc_control *rc = fs_info->reloc_ctl; 841 struct btrfs_block_rsv *rsv; 842 int clear_rsv = 0; 843 int ret; 844 845 if (!rc) 846 return 0; 847 848 /* 849 * The subvolume has reloc tree but the swap is finished, no need to 850 * create/update the dead reloc tree 851 */ 852 if (reloc_root_is_dead(root)) 853 return 0; 854 855 /* 856 * This is subtle but important. We do not do 857 * record_root_in_transaction for reloc roots, instead we record their 858 * corresponding fs root, and then here we update the last trans for the 859 * reloc root. This means that we have to do this for the entire life 860 * of the reloc root, regardless of which stage of the relocation we are 861 * in. 862 */ 863 if (root->reloc_root) { 864 reloc_root = root->reloc_root; 865 reloc_root->last_trans = trans->transid; 866 return 0; 867 } 868 869 /* 870 * We are merging reloc roots, we do not need new reloc trees. Also 871 * reloc trees never need their own reloc tree. 872 */ 873 if (!rc->create_reloc_tree || 874 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 875 return 0; 876 877 if (!trans->reloc_reserved) { 878 rsv = trans->block_rsv; 879 trans->block_rsv = rc->block_rsv; 880 clear_rsv = 1; 881 } 882 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 883 if (clear_rsv) 884 trans->block_rsv = rsv; 885 if (IS_ERR(reloc_root)) 886 return PTR_ERR(reloc_root); 887 888 ret = __add_reloc_root(reloc_root); 889 ASSERT(ret != -EEXIST); 890 if (ret) { 891 /* Pairs with create_reloc_root */ 892 btrfs_put_root(reloc_root); 893 return ret; 894 } 895 root->reloc_root = btrfs_grab_root(reloc_root); 896 return 0; 897 } 898 899 /* 900 * update root item of reloc tree 901 */ 902 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 903 struct btrfs_root *root) 904 { 905 struct btrfs_fs_info *fs_info = root->fs_info; 906 struct btrfs_root *reloc_root; 907 struct btrfs_root_item *root_item; 908 int ret; 909 910 if (!have_reloc_root(root)) 911 return 0; 912 913 reloc_root = root->reloc_root; 914 root_item = &reloc_root->root_item; 915 916 /* 917 * We are probably ok here, but __del_reloc_root() will drop its ref of 918 * the root. We have the ref for root->reloc_root, but just in case 919 * hold it while we update the reloc root. 920 */ 921 btrfs_grab_root(reloc_root); 922 923 /* root->reloc_root will stay until current relocation finished */ 924 if (fs_info->reloc_ctl->merge_reloc_tree && 925 btrfs_root_refs(root_item) == 0) { 926 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 927 /* 928 * Mark the tree as dead before we change reloc_root so 929 * have_reloc_root will not touch it from now on. 930 */ 931 smp_wmb(); 932 __del_reloc_root(reloc_root); 933 } 934 935 if (reloc_root->commit_root != reloc_root->node) { 936 __update_reloc_root(reloc_root); 937 btrfs_set_root_node(root_item, reloc_root->node); 938 free_extent_buffer(reloc_root->commit_root); 939 reloc_root->commit_root = btrfs_root_node(reloc_root); 940 } 941 942 ret = btrfs_update_root(trans, fs_info->tree_root, 943 &reloc_root->root_key, root_item); 944 btrfs_put_root(reloc_root); 945 return ret; 946 } 947 948 /* 949 * helper to find first cached inode with inode number >= objectid 950 * in a subvolume 951 */ 952 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 953 { 954 struct rb_node *node; 955 struct rb_node *prev; 956 struct btrfs_inode *entry; 957 struct inode *inode; 958 959 spin_lock(&root->inode_lock); 960 again: 961 node = root->inode_tree.rb_node; 962 prev = NULL; 963 while (node) { 964 prev = node; 965 entry = rb_entry(node, struct btrfs_inode, rb_node); 966 967 if (objectid < btrfs_ino(entry)) 968 node = node->rb_left; 969 else if (objectid > btrfs_ino(entry)) 970 node = node->rb_right; 971 else 972 break; 973 } 974 if (!node) { 975 while (prev) { 976 entry = rb_entry(prev, struct btrfs_inode, rb_node); 977 if (objectid <= btrfs_ino(entry)) { 978 node = prev; 979 break; 980 } 981 prev = rb_next(prev); 982 } 983 } 984 while (node) { 985 entry = rb_entry(node, struct btrfs_inode, rb_node); 986 inode = igrab(&entry->vfs_inode); 987 if (inode) { 988 spin_unlock(&root->inode_lock); 989 return inode; 990 } 991 992 objectid = btrfs_ino(entry) + 1; 993 if (cond_resched_lock(&root->inode_lock)) 994 goto again; 995 996 node = rb_next(node); 997 } 998 spin_unlock(&root->inode_lock); 999 return NULL; 1000 } 1001 1002 /* 1003 * get new location of data 1004 */ 1005 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1006 u64 bytenr, u64 num_bytes) 1007 { 1008 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1009 struct btrfs_path *path; 1010 struct btrfs_file_extent_item *fi; 1011 struct extent_buffer *leaf; 1012 int ret; 1013 1014 path = btrfs_alloc_path(); 1015 if (!path) 1016 return -ENOMEM; 1017 1018 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1019 ret = btrfs_lookup_file_extent(NULL, root, path, 1020 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1021 if (ret < 0) 1022 goto out; 1023 if (ret > 0) { 1024 ret = -ENOENT; 1025 goto out; 1026 } 1027 1028 leaf = path->nodes[0]; 1029 fi = btrfs_item_ptr(leaf, path->slots[0], 1030 struct btrfs_file_extent_item); 1031 1032 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1033 btrfs_file_extent_compression(leaf, fi) || 1034 btrfs_file_extent_encryption(leaf, fi) || 1035 btrfs_file_extent_other_encoding(leaf, fi)); 1036 1037 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1038 ret = -EINVAL; 1039 goto out; 1040 } 1041 1042 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1043 ret = 0; 1044 out: 1045 btrfs_free_path(path); 1046 return ret; 1047 } 1048 1049 /* 1050 * update file extent items in the tree leaf to point to 1051 * the new locations. 1052 */ 1053 static noinline_for_stack 1054 int replace_file_extents(struct btrfs_trans_handle *trans, 1055 struct reloc_control *rc, 1056 struct btrfs_root *root, 1057 struct extent_buffer *leaf) 1058 { 1059 struct btrfs_fs_info *fs_info = root->fs_info; 1060 struct btrfs_key key; 1061 struct btrfs_file_extent_item *fi; 1062 struct inode *inode = NULL; 1063 u64 parent; 1064 u64 bytenr; 1065 u64 new_bytenr = 0; 1066 u64 num_bytes; 1067 u64 end; 1068 u32 nritems; 1069 u32 i; 1070 int ret = 0; 1071 int first = 1; 1072 int dirty = 0; 1073 1074 if (rc->stage != UPDATE_DATA_PTRS) 1075 return 0; 1076 1077 /* reloc trees always use full backref */ 1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1079 parent = leaf->start; 1080 else 1081 parent = 0; 1082 1083 nritems = btrfs_header_nritems(leaf); 1084 for (i = 0; i < nritems; i++) { 1085 struct btrfs_ref ref = { 0 }; 1086 1087 cond_resched(); 1088 btrfs_item_key_to_cpu(leaf, &key, i); 1089 if (key.type != BTRFS_EXTENT_DATA_KEY) 1090 continue; 1091 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1092 if (btrfs_file_extent_type(leaf, fi) == 1093 BTRFS_FILE_EXTENT_INLINE) 1094 continue; 1095 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1096 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1097 if (bytenr == 0) 1098 continue; 1099 if (!in_range(bytenr, rc->block_group->start, 1100 rc->block_group->length)) 1101 continue; 1102 1103 /* 1104 * if we are modifying block in fs tree, wait for read_folio 1105 * to complete and drop the extent cache 1106 */ 1107 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1108 if (first) { 1109 inode = find_next_inode(root, key.objectid); 1110 first = 0; 1111 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1112 btrfs_add_delayed_iput(inode); 1113 inode = find_next_inode(root, key.objectid); 1114 } 1115 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1116 end = key.offset + 1117 btrfs_file_extent_num_bytes(leaf, fi); 1118 WARN_ON(!IS_ALIGNED(key.offset, 1119 fs_info->sectorsize)); 1120 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1121 end--; 1122 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1123 key.offset, end); 1124 if (!ret) 1125 continue; 1126 1127 btrfs_drop_extent_cache(BTRFS_I(inode), 1128 key.offset, end, 1); 1129 unlock_extent(&BTRFS_I(inode)->io_tree, 1130 key.offset, end); 1131 } 1132 } 1133 1134 ret = get_new_location(rc->data_inode, &new_bytenr, 1135 bytenr, num_bytes); 1136 if (ret) { 1137 /* 1138 * Don't have to abort since we've not changed anything 1139 * in the file extent yet. 1140 */ 1141 break; 1142 } 1143 1144 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1145 dirty = 1; 1146 1147 key.offset -= btrfs_file_extent_offset(leaf, fi); 1148 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1149 num_bytes, parent); 1150 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1151 key.objectid, key.offset, 1152 root->root_key.objectid, false); 1153 ret = btrfs_inc_extent_ref(trans, &ref); 1154 if (ret) { 1155 btrfs_abort_transaction(trans, ret); 1156 break; 1157 } 1158 1159 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1160 num_bytes, parent); 1161 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1162 key.objectid, key.offset, 1163 root->root_key.objectid, false); 1164 ret = btrfs_free_extent(trans, &ref); 1165 if (ret) { 1166 btrfs_abort_transaction(trans, ret); 1167 break; 1168 } 1169 } 1170 if (dirty) 1171 btrfs_mark_buffer_dirty(leaf); 1172 if (inode) 1173 btrfs_add_delayed_iput(inode); 1174 return ret; 1175 } 1176 1177 static noinline_for_stack 1178 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1179 struct btrfs_path *path, int level) 1180 { 1181 struct btrfs_disk_key key1; 1182 struct btrfs_disk_key key2; 1183 btrfs_node_key(eb, &key1, slot); 1184 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1185 return memcmp(&key1, &key2, sizeof(key1)); 1186 } 1187 1188 /* 1189 * try to replace tree blocks in fs tree with the new blocks 1190 * in reloc tree. tree blocks haven't been modified since the 1191 * reloc tree was create can be replaced. 1192 * 1193 * if a block was replaced, level of the block + 1 is returned. 1194 * if no block got replaced, 0 is returned. if there are other 1195 * errors, a negative error number is returned. 1196 */ 1197 static noinline_for_stack 1198 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1199 struct btrfs_root *dest, struct btrfs_root *src, 1200 struct btrfs_path *path, struct btrfs_key *next_key, 1201 int lowest_level, int max_level) 1202 { 1203 struct btrfs_fs_info *fs_info = dest->fs_info; 1204 struct extent_buffer *eb; 1205 struct extent_buffer *parent; 1206 struct btrfs_ref ref = { 0 }; 1207 struct btrfs_key key; 1208 u64 old_bytenr; 1209 u64 new_bytenr; 1210 u64 old_ptr_gen; 1211 u64 new_ptr_gen; 1212 u64 last_snapshot; 1213 u32 blocksize; 1214 int cow = 0; 1215 int level; 1216 int ret; 1217 int slot; 1218 1219 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1220 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1221 1222 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1223 again: 1224 slot = path->slots[lowest_level]; 1225 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1226 1227 eb = btrfs_lock_root_node(dest); 1228 level = btrfs_header_level(eb); 1229 1230 if (level < lowest_level) { 1231 btrfs_tree_unlock(eb); 1232 free_extent_buffer(eb); 1233 return 0; 1234 } 1235 1236 if (cow) { 1237 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1238 BTRFS_NESTING_COW); 1239 if (ret) { 1240 btrfs_tree_unlock(eb); 1241 free_extent_buffer(eb); 1242 return ret; 1243 } 1244 } 1245 1246 if (next_key) { 1247 next_key->objectid = (u64)-1; 1248 next_key->type = (u8)-1; 1249 next_key->offset = (u64)-1; 1250 } 1251 1252 parent = eb; 1253 while (1) { 1254 level = btrfs_header_level(parent); 1255 ASSERT(level >= lowest_level); 1256 1257 ret = btrfs_bin_search(parent, &key, &slot); 1258 if (ret < 0) 1259 break; 1260 if (ret && slot > 0) 1261 slot--; 1262 1263 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1264 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1265 1266 old_bytenr = btrfs_node_blockptr(parent, slot); 1267 blocksize = fs_info->nodesize; 1268 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1269 1270 if (level <= max_level) { 1271 eb = path->nodes[level]; 1272 new_bytenr = btrfs_node_blockptr(eb, 1273 path->slots[level]); 1274 new_ptr_gen = btrfs_node_ptr_generation(eb, 1275 path->slots[level]); 1276 } else { 1277 new_bytenr = 0; 1278 new_ptr_gen = 0; 1279 } 1280 1281 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1282 ret = level; 1283 break; 1284 } 1285 1286 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1287 memcmp_node_keys(parent, slot, path, level)) { 1288 if (level <= lowest_level) { 1289 ret = 0; 1290 break; 1291 } 1292 1293 eb = btrfs_read_node_slot(parent, slot); 1294 if (IS_ERR(eb)) { 1295 ret = PTR_ERR(eb); 1296 break; 1297 } 1298 btrfs_tree_lock(eb); 1299 if (cow) { 1300 ret = btrfs_cow_block(trans, dest, eb, parent, 1301 slot, &eb, 1302 BTRFS_NESTING_COW); 1303 if (ret) { 1304 btrfs_tree_unlock(eb); 1305 free_extent_buffer(eb); 1306 break; 1307 } 1308 } 1309 1310 btrfs_tree_unlock(parent); 1311 free_extent_buffer(parent); 1312 1313 parent = eb; 1314 continue; 1315 } 1316 1317 if (!cow) { 1318 btrfs_tree_unlock(parent); 1319 free_extent_buffer(parent); 1320 cow = 1; 1321 goto again; 1322 } 1323 1324 btrfs_node_key_to_cpu(path->nodes[level], &key, 1325 path->slots[level]); 1326 btrfs_release_path(path); 1327 1328 path->lowest_level = level; 1329 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1330 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1331 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1332 path->lowest_level = 0; 1333 if (ret) { 1334 if (ret > 0) 1335 ret = -ENOENT; 1336 break; 1337 } 1338 1339 /* 1340 * Info qgroup to trace both subtrees. 1341 * 1342 * We must trace both trees. 1343 * 1) Tree reloc subtree 1344 * If not traced, we will leak data numbers 1345 * 2) Fs subtree 1346 * If not traced, we will double count old data 1347 * 1348 * We don't scan the subtree right now, but only record 1349 * the swapped tree blocks. 1350 * The real subtree rescan is delayed until we have new 1351 * CoW on the subtree root node before transaction commit. 1352 */ 1353 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1354 rc->block_group, parent, slot, 1355 path->nodes[level], path->slots[level], 1356 last_snapshot); 1357 if (ret < 0) 1358 break; 1359 /* 1360 * swap blocks in fs tree and reloc tree. 1361 */ 1362 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1363 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1364 btrfs_mark_buffer_dirty(parent); 1365 1366 btrfs_set_node_blockptr(path->nodes[level], 1367 path->slots[level], old_bytenr); 1368 btrfs_set_node_ptr_generation(path->nodes[level], 1369 path->slots[level], old_ptr_gen); 1370 btrfs_mark_buffer_dirty(path->nodes[level]); 1371 1372 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1373 blocksize, path->nodes[level]->start); 1374 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1375 0, true); 1376 ret = btrfs_inc_extent_ref(trans, &ref); 1377 if (ret) { 1378 btrfs_abort_transaction(trans, ret); 1379 break; 1380 } 1381 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1382 blocksize, 0); 1383 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1384 true); 1385 ret = btrfs_inc_extent_ref(trans, &ref); 1386 if (ret) { 1387 btrfs_abort_transaction(trans, ret); 1388 break; 1389 } 1390 1391 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1392 blocksize, path->nodes[level]->start); 1393 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1394 0, true); 1395 ret = btrfs_free_extent(trans, &ref); 1396 if (ret) { 1397 btrfs_abort_transaction(trans, ret); 1398 break; 1399 } 1400 1401 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1402 blocksize, 0); 1403 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1404 0, true); 1405 ret = btrfs_free_extent(trans, &ref); 1406 if (ret) { 1407 btrfs_abort_transaction(trans, ret); 1408 break; 1409 } 1410 1411 btrfs_unlock_up_safe(path, 0); 1412 1413 ret = level; 1414 break; 1415 } 1416 btrfs_tree_unlock(parent); 1417 free_extent_buffer(parent); 1418 return ret; 1419 } 1420 1421 /* 1422 * helper to find next relocated block in reloc tree 1423 */ 1424 static noinline_for_stack 1425 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1426 int *level) 1427 { 1428 struct extent_buffer *eb; 1429 int i; 1430 u64 last_snapshot; 1431 u32 nritems; 1432 1433 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1434 1435 for (i = 0; i < *level; i++) { 1436 free_extent_buffer(path->nodes[i]); 1437 path->nodes[i] = NULL; 1438 } 1439 1440 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1441 eb = path->nodes[i]; 1442 nritems = btrfs_header_nritems(eb); 1443 while (path->slots[i] + 1 < nritems) { 1444 path->slots[i]++; 1445 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1446 last_snapshot) 1447 continue; 1448 1449 *level = i; 1450 return 0; 1451 } 1452 free_extent_buffer(path->nodes[i]); 1453 path->nodes[i] = NULL; 1454 } 1455 return 1; 1456 } 1457 1458 /* 1459 * walk down reloc tree to find relocated block of lowest level 1460 */ 1461 static noinline_for_stack 1462 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1463 int *level) 1464 { 1465 struct extent_buffer *eb = NULL; 1466 int i; 1467 u64 ptr_gen = 0; 1468 u64 last_snapshot; 1469 u32 nritems; 1470 1471 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1472 1473 for (i = *level; i > 0; i--) { 1474 eb = path->nodes[i]; 1475 nritems = btrfs_header_nritems(eb); 1476 while (path->slots[i] < nritems) { 1477 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1478 if (ptr_gen > last_snapshot) 1479 break; 1480 path->slots[i]++; 1481 } 1482 if (path->slots[i] >= nritems) { 1483 if (i == *level) 1484 break; 1485 *level = i + 1; 1486 return 0; 1487 } 1488 if (i == 1) { 1489 *level = i; 1490 return 0; 1491 } 1492 1493 eb = btrfs_read_node_slot(eb, path->slots[i]); 1494 if (IS_ERR(eb)) 1495 return PTR_ERR(eb); 1496 BUG_ON(btrfs_header_level(eb) != i - 1); 1497 path->nodes[i - 1] = eb; 1498 path->slots[i - 1] = 0; 1499 } 1500 return 1; 1501 } 1502 1503 /* 1504 * invalidate extent cache for file extents whose key in range of 1505 * [min_key, max_key) 1506 */ 1507 static int invalidate_extent_cache(struct btrfs_root *root, 1508 struct btrfs_key *min_key, 1509 struct btrfs_key *max_key) 1510 { 1511 struct btrfs_fs_info *fs_info = root->fs_info; 1512 struct inode *inode = NULL; 1513 u64 objectid; 1514 u64 start, end; 1515 u64 ino; 1516 1517 objectid = min_key->objectid; 1518 while (1) { 1519 cond_resched(); 1520 iput(inode); 1521 1522 if (objectid > max_key->objectid) 1523 break; 1524 1525 inode = find_next_inode(root, objectid); 1526 if (!inode) 1527 break; 1528 ino = btrfs_ino(BTRFS_I(inode)); 1529 1530 if (ino > max_key->objectid) { 1531 iput(inode); 1532 break; 1533 } 1534 1535 objectid = ino + 1; 1536 if (!S_ISREG(inode->i_mode)) 1537 continue; 1538 1539 if (unlikely(min_key->objectid == ino)) { 1540 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1541 continue; 1542 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1543 start = 0; 1544 else { 1545 start = min_key->offset; 1546 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1547 } 1548 } else { 1549 start = 0; 1550 } 1551 1552 if (unlikely(max_key->objectid == ino)) { 1553 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1554 continue; 1555 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1556 end = (u64)-1; 1557 } else { 1558 if (max_key->offset == 0) 1559 continue; 1560 end = max_key->offset; 1561 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1562 end--; 1563 } 1564 } else { 1565 end = (u64)-1; 1566 } 1567 1568 /* the lock_extent waits for read_folio to complete */ 1569 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1570 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1571 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1572 } 1573 return 0; 1574 } 1575 1576 static int find_next_key(struct btrfs_path *path, int level, 1577 struct btrfs_key *key) 1578 1579 { 1580 while (level < BTRFS_MAX_LEVEL) { 1581 if (!path->nodes[level]) 1582 break; 1583 if (path->slots[level] + 1 < 1584 btrfs_header_nritems(path->nodes[level])) { 1585 btrfs_node_key_to_cpu(path->nodes[level], key, 1586 path->slots[level] + 1); 1587 return 0; 1588 } 1589 level++; 1590 } 1591 return 1; 1592 } 1593 1594 /* 1595 * Insert current subvolume into reloc_control::dirty_subvol_roots 1596 */ 1597 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1598 struct reloc_control *rc, 1599 struct btrfs_root *root) 1600 { 1601 struct btrfs_root *reloc_root = root->reloc_root; 1602 struct btrfs_root_item *reloc_root_item; 1603 int ret; 1604 1605 /* @root must be a subvolume tree root with a valid reloc tree */ 1606 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1607 ASSERT(reloc_root); 1608 1609 reloc_root_item = &reloc_root->root_item; 1610 memset(&reloc_root_item->drop_progress, 0, 1611 sizeof(reloc_root_item->drop_progress)); 1612 btrfs_set_root_drop_level(reloc_root_item, 0); 1613 btrfs_set_root_refs(reloc_root_item, 0); 1614 ret = btrfs_update_reloc_root(trans, root); 1615 if (ret) 1616 return ret; 1617 1618 if (list_empty(&root->reloc_dirty_list)) { 1619 btrfs_grab_root(root); 1620 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1621 } 1622 1623 return 0; 1624 } 1625 1626 static int clean_dirty_subvols(struct reloc_control *rc) 1627 { 1628 struct btrfs_root *root; 1629 struct btrfs_root *next; 1630 int ret = 0; 1631 int ret2; 1632 1633 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1634 reloc_dirty_list) { 1635 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1636 /* Merged subvolume, cleanup its reloc root */ 1637 struct btrfs_root *reloc_root = root->reloc_root; 1638 1639 list_del_init(&root->reloc_dirty_list); 1640 root->reloc_root = NULL; 1641 /* 1642 * Need barrier to ensure clear_bit() only happens after 1643 * root->reloc_root = NULL. Pairs with have_reloc_root. 1644 */ 1645 smp_wmb(); 1646 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1647 if (reloc_root) { 1648 /* 1649 * btrfs_drop_snapshot drops our ref we hold for 1650 * ->reloc_root. If it fails however we must 1651 * drop the ref ourselves. 1652 */ 1653 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1654 if (ret2 < 0) { 1655 btrfs_put_root(reloc_root); 1656 if (!ret) 1657 ret = ret2; 1658 } 1659 } 1660 btrfs_put_root(root); 1661 } else { 1662 /* Orphan reloc tree, just clean it up */ 1663 ret2 = btrfs_drop_snapshot(root, 0, 1); 1664 if (ret2 < 0) { 1665 btrfs_put_root(root); 1666 if (!ret) 1667 ret = ret2; 1668 } 1669 } 1670 } 1671 return ret; 1672 } 1673 1674 /* 1675 * merge the relocated tree blocks in reloc tree with corresponding 1676 * fs tree. 1677 */ 1678 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1679 struct btrfs_root *root) 1680 { 1681 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1682 struct btrfs_key key; 1683 struct btrfs_key next_key; 1684 struct btrfs_trans_handle *trans = NULL; 1685 struct btrfs_root *reloc_root; 1686 struct btrfs_root_item *root_item; 1687 struct btrfs_path *path; 1688 struct extent_buffer *leaf; 1689 int reserve_level; 1690 int level; 1691 int max_level; 1692 int replaced = 0; 1693 int ret = 0; 1694 u32 min_reserved; 1695 1696 path = btrfs_alloc_path(); 1697 if (!path) 1698 return -ENOMEM; 1699 path->reada = READA_FORWARD; 1700 1701 reloc_root = root->reloc_root; 1702 root_item = &reloc_root->root_item; 1703 1704 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1705 level = btrfs_root_level(root_item); 1706 atomic_inc(&reloc_root->node->refs); 1707 path->nodes[level] = reloc_root->node; 1708 path->slots[level] = 0; 1709 } else { 1710 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1711 1712 level = btrfs_root_drop_level(root_item); 1713 BUG_ON(level == 0); 1714 path->lowest_level = level; 1715 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1716 path->lowest_level = 0; 1717 if (ret < 0) { 1718 btrfs_free_path(path); 1719 return ret; 1720 } 1721 1722 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1723 path->slots[level]); 1724 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1725 1726 btrfs_unlock_up_safe(path, 0); 1727 } 1728 1729 /* 1730 * In merge_reloc_root(), we modify the upper level pointer to swap the 1731 * tree blocks between reloc tree and subvolume tree. Thus for tree 1732 * block COW, we COW at most from level 1 to root level for each tree. 1733 * 1734 * Thus the needed metadata size is at most root_level * nodesize, 1735 * and * 2 since we have two trees to COW. 1736 */ 1737 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1738 min_reserved = fs_info->nodesize * reserve_level * 2; 1739 memset(&next_key, 0, sizeof(next_key)); 1740 1741 while (1) { 1742 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1743 min_reserved, 1744 BTRFS_RESERVE_FLUSH_LIMIT); 1745 if (ret) 1746 goto out; 1747 trans = btrfs_start_transaction(root, 0); 1748 if (IS_ERR(trans)) { 1749 ret = PTR_ERR(trans); 1750 trans = NULL; 1751 goto out; 1752 } 1753 1754 /* 1755 * At this point we no longer have a reloc_control, so we can't 1756 * depend on btrfs_init_reloc_root to update our last_trans. 1757 * 1758 * But that's ok, we started the trans handle on our 1759 * corresponding fs_root, which means it's been added to the 1760 * dirty list. At commit time we'll still call 1761 * btrfs_update_reloc_root() and update our root item 1762 * appropriately. 1763 */ 1764 reloc_root->last_trans = trans->transid; 1765 trans->block_rsv = rc->block_rsv; 1766 1767 replaced = 0; 1768 max_level = level; 1769 1770 ret = walk_down_reloc_tree(reloc_root, path, &level); 1771 if (ret < 0) 1772 goto out; 1773 if (ret > 0) 1774 break; 1775 1776 if (!find_next_key(path, level, &key) && 1777 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1778 ret = 0; 1779 } else { 1780 ret = replace_path(trans, rc, root, reloc_root, path, 1781 &next_key, level, max_level); 1782 } 1783 if (ret < 0) 1784 goto out; 1785 if (ret > 0) { 1786 level = ret; 1787 btrfs_node_key_to_cpu(path->nodes[level], &key, 1788 path->slots[level]); 1789 replaced = 1; 1790 } 1791 1792 ret = walk_up_reloc_tree(reloc_root, path, &level); 1793 if (ret > 0) 1794 break; 1795 1796 BUG_ON(level == 0); 1797 /* 1798 * save the merging progress in the drop_progress. 1799 * this is OK since root refs == 1 in this case. 1800 */ 1801 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1802 path->slots[level]); 1803 btrfs_set_root_drop_level(root_item, level); 1804 1805 btrfs_end_transaction_throttle(trans); 1806 trans = NULL; 1807 1808 btrfs_btree_balance_dirty(fs_info); 1809 1810 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1811 invalidate_extent_cache(root, &key, &next_key); 1812 } 1813 1814 /* 1815 * handle the case only one block in the fs tree need to be 1816 * relocated and the block is tree root. 1817 */ 1818 leaf = btrfs_lock_root_node(root); 1819 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1820 BTRFS_NESTING_COW); 1821 btrfs_tree_unlock(leaf); 1822 free_extent_buffer(leaf); 1823 out: 1824 btrfs_free_path(path); 1825 1826 if (ret == 0) { 1827 ret = insert_dirty_subvol(trans, rc, root); 1828 if (ret) 1829 btrfs_abort_transaction(trans, ret); 1830 } 1831 1832 if (trans) 1833 btrfs_end_transaction_throttle(trans); 1834 1835 btrfs_btree_balance_dirty(fs_info); 1836 1837 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1838 invalidate_extent_cache(root, &key, &next_key); 1839 1840 return ret; 1841 } 1842 1843 static noinline_for_stack 1844 int prepare_to_merge(struct reloc_control *rc, int err) 1845 { 1846 struct btrfs_root *root = rc->extent_root; 1847 struct btrfs_fs_info *fs_info = root->fs_info; 1848 struct btrfs_root *reloc_root; 1849 struct btrfs_trans_handle *trans; 1850 LIST_HEAD(reloc_roots); 1851 u64 num_bytes = 0; 1852 int ret; 1853 1854 mutex_lock(&fs_info->reloc_mutex); 1855 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1856 rc->merging_rsv_size += rc->nodes_relocated * 2; 1857 mutex_unlock(&fs_info->reloc_mutex); 1858 1859 again: 1860 if (!err) { 1861 num_bytes = rc->merging_rsv_size; 1862 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1863 BTRFS_RESERVE_FLUSH_ALL); 1864 if (ret) 1865 err = ret; 1866 } 1867 1868 trans = btrfs_join_transaction(rc->extent_root); 1869 if (IS_ERR(trans)) { 1870 if (!err) 1871 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1872 num_bytes, NULL); 1873 return PTR_ERR(trans); 1874 } 1875 1876 if (!err) { 1877 if (num_bytes != rc->merging_rsv_size) { 1878 btrfs_end_transaction(trans); 1879 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1880 num_bytes, NULL); 1881 goto again; 1882 } 1883 } 1884 1885 rc->merge_reloc_tree = 1; 1886 1887 while (!list_empty(&rc->reloc_roots)) { 1888 reloc_root = list_entry(rc->reloc_roots.next, 1889 struct btrfs_root, root_list); 1890 list_del_init(&reloc_root->root_list); 1891 1892 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1893 false); 1894 if (IS_ERR(root)) { 1895 /* 1896 * Even if we have an error we need this reloc root 1897 * back on our list so we can clean up properly. 1898 */ 1899 list_add(&reloc_root->root_list, &reloc_roots); 1900 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1901 if (!err) 1902 err = PTR_ERR(root); 1903 break; 1904 } 1905 ASSERT(root->reloc_root == reloc_root); 1906 1907 /* 1908 * set reference count to 1, so btrfs_recover_relocation 1909 * knows it should resumes merging 1910 */ 1911 if (!err) 1912 btrfs_set_root_refs(&reloc_root->root_item, 1); 1913 ret = btrfs_update_reloc_root(trans, root); 1914 1915 /* 1916 * Even if we have an error we need this reloc root back on our 1917 * list so we can clean up properly. 1918 */ 1919 list_add(&reloc_root->root_list, &reloc_roots); 1920 btrfs_put_root(root); 1921 1922 if (ret) { 1923 btrfs_abort_transaction(trans, ret); 1924 if (!err) 1925 err = ret; 1926 break; 1927 } 1928 } 1929 1930 list_splice(&reloc_roots, &rc->reloc_roots); 1931 1932 if (!err) 1933 err = btrfs_commit_transaction(trans); 1934 else 1935 btrfs_end_transaction(trans); 1936 return err; 1937 } 1938 1939 static noinline_for_stack 1940 void free_reloc_roots(struct list_head *list) 1941 { 1942 struct btrfs_root *reloc_root, *tmp; 1943 1944 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1945 __del_reloc_root(reloc_root); 1946 } 1947 1948 static noinline_for_stack 1949 void merge_reloc_roots(struct reloc_control *rc) 1950 { 1951 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1952 struct btrfs_root *root; 1953 struct btrfs_root *reloc_root; 1954 LIST_HEAD(reloc_roots); 1955 int found = 0; 1956 int ret = 0; 1957 again: 1958 root = rc->extent_root; 1959 1960 /* 1961 * this serializes us with btrfs_record_root_in_transaction, 1962 * we have to make sure nobody is in the middle of 1963 * adding their roots to the list while we are 1964 * doing this splice 1965 */ 1966 mutex_lock(&fs_info->reloc_mutex); 1967 list_splice_init(&rc->reloc_roots, &reloc_roots); 1968 mutex_unlock(&fs_info->reloc_mutex); 1969 1970 while (!list_empty(&reloc_roots)) { 1971 found = 1; 1972 reloc_root = list_entry(reloc_roots.next, 1973 struct btrfs_root, root_list); 1974 1975 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1976 false); 1977 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1978 if (IS_ERR(root)) { 1979 /* 1980 * For recovery we read the fs roots on mount, 1981 * and if we didn't find the root then we marked 1982 * the reloc root as a garbage root. For normal 1983 * relocation obviously the root should exist in 1984 * memory. However there's no reason we can't 1985 * handle the error properly here just in case. 1986 */ 1987 ASSERT(0); 1988 ret = PTR_ERR(root); 1989 goto out; 1990 } 1991 if (root->reloc_root != reloc_root) { 1992 /* 1993 * This is actually impossible without something 1994 * going really wrong (like weird race condition 1995 * or cosmic rays). 1996 */ 1997 ASSERT(0); 1998 ret = -EINVAL; 1999 goto out; 2000 } 2001 ret = merge_reloc_root(rc, root); 2002 btrfs_put_root(root); 2003 if (ret) { 2004 if (list_empty(&reloc_root->root_list)) 2005 list_add_tail(&reloc_root->root_list, 2006 &reloc_roots); 2007 goto out; 2008 } 2009 } else { 2010 if (!IS_ERR(root)) { 2011 if (root->reloc_root == reloc_root) { 2012 root->reloc_root = NULL; 2013 btrfs_put_root(reloc_root); 2014 } 2015 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2016 &root->state); 2017 btrfs_put_root(root); 2018 } 2019 2020 list_del_init(&reloc_root->root_list); 2021 /* Don't forget to queue this reloc root for cleanup */ 2022 list_add_tail(&reloc_root->reloc_dirty_list, 2023 &rc->dirty_subvol_roots); 2024 } 2025 } 2026 2027 if (found) { 2028 found = 0; 2029 goto again; 2030 } 2031 out: 2032 if (ret) { 2033 btrfs_handle_fs_error(fs_info, ret, NULL); 2034 free_reloc_roots(&reloc_roots); 2035 2036 /* new reloc root may be added */ 2037 mutex_lock(&fs_info->reloc_mutex); 2038 list_splice_init(&rc->reloc_roots, &reloc_roots); 2039 mutex_unlock(&fs_info->reloc_mutex); 2040 free_reloc_roots(&reloc_roots); 2041 } 2042 2043 /* 2044 * We used to have 2045 * 2046 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2047 * 2048 * here, but it's wrong. If we fail to start the transaction in 2049 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2050 * have actually been removed from the reloc_root_tree rb tree. This is 2051 * fine because we're bailing here, and we hold a reference on the root 2052 * for the list that holds it, so these roots will be cleaned up when we 2053 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2054 * will be cleaned up on unmount. 2055 * 2056 * The remaining nodes will be cleaned up by free_reloc_control. 2057 */ 2058 } 2059 2060 static void free_block_list(struct rb_root *blocks) 2061 { 2062 struct tree_block *block; 2063 struct rb_node *rb_node; 2064 while ((rb_node = rb_first(blocks))) { 2065 block = rb_entry(rb_node, struct tree_block, rb_node); 2066 rb_erase(rb_node, blocks); 2067 kfree(block); 2068 } 2069 } 2070 2071 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2072 struct btrfs_root *reloc_root) 2073 { 2074 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2075 struct btrfs_root *root; 2076 int ret; 2077 2078 if (reloc_root->last_trans == trans->transid) 2079 return 0; 2080 2081 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2082 2083 /* 2084 * This should succeed, since we can't have a reloc root without having 2085 * already looked up the actual root and created the reloc root for this 2086 * root. 2087 * 2088 * However if there's some sort of corruption where we have a ref to a 2089 * reloc root without a corresponding root this could return ENOENT. 2090 */ 2091 if (IS_ERR(root)) { 2092 ASSERT(0); 2093 return PTR_ERR(root); 2094 } 2095 if (root->reloc_root != reloc_root) { 2096 ASSERT(0); 2097 btrfs_err(fs_info, 2098 "root %llu has two reloc roots associated with it", 2099 reloc_root->root_key.offset); 2100 btrfs_put_root(root); 2101 return -EUCLEAN; 2102 } 2103 ret = btrfs_record_root_in_trans(trans, root); 2104 btrfs_put_root(root); 2105 2106 return ret; 2107 } 2108 2109 static noinline_for_stack 2110 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2111 struct reloc_control *rc, 2112 struct btrfs_backref_node *node, 2113 struct btrfs_backref_edge *edges[]) 2114 { 2115 struct btrfs_backref_node *next; 2116 struct btrfs_root *root; 2117 int index = 0; 2118 int ret; 2119 2120 next = node; 2121 while (1) { 2122 cond_resched(); 2123 next = walk_up_backref(next, edges, &index); 2124 root = next->root; 2125 2126 /* 2127 * If there is no root, then our references for this block are 2128 * incomplete, as we should be able to walk all the way up to a 2129 * block that is owned by a root. 2130 * 2131 * This path is only for SHAREABLE roots, so if we come upon a 2132 * non-SHAREABLE root then we have backrefs that resolve 2133 * improperly. 2134 * 2135 * Both of these cases indicate file system corruption, or a bug 2136 * in the backref walking code. 2137 */ 2138 if (!root) { 2139 ASSERT(0); 2140 btrfs_err(trans->fs_info, 2141 "bytenr %llu doesn't have a backref path ending in a root", 2142 node->bytenr); 2143 return ERR_PTR(-EUCLEAN); 2144 } 2145 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2146 ASSERT(0); 2147 btrfs_err(trans->fs_info, 2148 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2149 node->bytenr); 2150 return ERR_PTR(-EUCLEAN); 2151 } 2152 2153 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2154 ret = record_reloc_root_in_trans(trans, root); 2155 if (ret) 2156 return ERR_PTR(ret); 2157 break; 2158 } 2159 2160 ret = btrfs_record_root_in_trans(trans, root); 2161 if (ret) 2162 return ERR_PTR(ret); 2163 root = root->reloc_root; 2164 2165 /* 2166 * We could have raced with another thread which failed, so 2167 * root->reloc_root may not be set, return ENOENT in this case. 2168 */ 2169 if (!root) 2170 return ERR_PTR(-ENOENT); 2171 2172 if (next->new_bytenr != root->node->start) { 2173 /* 2174 * We just created the reloc root, so we shouldn't have 2175 * ->new_bytenr set and this shouldn't be in the changed 2176 * list. If it is then we have multiple roots pointing 2177 * at the same bytenr which indicates corruption, or 2178 * we've made a mistake in the backref walking code. 2179 */ 2180 ASSERT(next->new_bytenr == 0); 2181 ASSERT(list_empty(&next->list)); 2182 if (next->new_bytenr || !list_empty(&next->list)) { 2183 btrfs_err(trans->fs_info, 2184 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2185 node->bytenr, next->bytenr); 2186 return ERR_PTR(-EUCLEAN); 2187 } 2188 2189 next->new_bytenr = root->node->start; 2190 btrfs_put_root(next->root); 2191 next->root = btrfs_grab_root(root); 2192 ASSERT(next->root); 2193 list_add_tail(&next->list, 2194 &rc->backref_cache.changed); 2195 mark_block_processed(rc, next); 2196 break; 2197 } 2198 2199 WARN_ON(1); 2200 root = NULL; 2201 next = walk_down_backref(edges, &index); 2202 if (!next || next->level <= node->level) 2203 break; 2204 } 2205 if (!root) { 2206 /* 2207 * This can happen if there's fs corruption or if there's a bug 2208 * in the backref lookup code. 2209 */ 2210 ASSERT(0); 2211 return ERR_PTR(-ENOENT); 2212 } 2213 2214 next = node; 2215 /* setup backref node path for btrfs_reloc_cow_block */ 2216 while (1) { 2217 rc->backref_cache.path[next->level] = next; 2218 if (--index < 0) 2219 break; 2220 next = edges[index]->node[UPPER]; 2221 } 2222 return root; 2223 } 2224 2225 /* 2226 * Select a tree root for relocation. 2227 * 2228 * Return NULL if the block is not shareable. We should use do_relocation() in 2229 * this case. 2230 * 2231 * Return a tree root pointer if the block is shareable. 2232 * Return -ENOENT if the block is root of reloc tree. 2233 */ 2234 static noinline_for_stack 2235 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2236 { 2237 struct btrfs_backref_node *next; 2238 struct btrfs_root *root; 2239 struct btrfs_root *fs_root = NULL; 2240 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2241 int index = 0; 2242 2243 next = node; 2244 while (1) { 2245 cond_resched(); 2246 next = walk_up_backref(next, edges, &index); 2247 root = next->root; 2248 2249 /* 2250 * This can occur if we have incomplete extent refs leading all 2251 * the way up a particular path, in this case return -EUCLEAN. 2252 */ 2253 if (!root) 2254 return ERR_PTR(-EUCLEAN); 2255 2256 /* No other choice for non-shareable tree */ 2257 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2258 return root; 2259 2260 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2261 fs_root = root; 2262 2263 if (next != node) 2264 return NULL; 2265 2266 next = walk_down_backref(edges, &index); 2267 if (!next || next->level <= node->level) 2268 break; 2269 } 2270 2271 if (!fs_root) 2272 return ERR_PTR(-ENOENT); 2273 return fs_root; 2274 } 2275 2276 static noinline_for_stack 2277 u64 calcu_metadata_size(struct reloc_control *rc, 2278 struct btrfs_backref_node *node, int reserve) 2279 { 2280 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2281 struct btrfs_backref_node *next = node; 2282 struct btrfs_backref_edge *edge; 2283 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2284 u64 num_bytes = 0; 2285 int index = 0; 2286 2287 BUG_ON(reserve && node->processed); 2288 2289 while (next) { 2290 cond_resched(); 2291 while (1) { 2292 if (next->processed && (reserve || next != node)) 2293 break; 2294 2295 num_bytes += fs_info->nodesize; 2296 2297 if (list_empty(&next->upper)) 2298 break; 2299 2300 edge = list_entry(next->upper.next, 2301 struct btrfs_backref_edge, list[LOWER]); 2302 edges[index++] = edge; 2303 next = edge->node[UPPER]; 2304 } 2305 next = walk_down_backref(edges, &index); 2306 } 2307 return num_bytes; 2308 } 2309 2310 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2311 struct reloc_control *rc, 2312 struct btrfs_backref_node *node) 2313 { 2314 struct btrfs_root *root = rc->extent_root; 2315 struct btrfs_fs_info *fs_info = root->fs_info; 2316 u64 num_bytes; 2317 int ret; 2318 u64 tmp; 2319 2320 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2321 2322 trans->block_rsv = rc->block_rsv; 2323 rc->reserved_bytes += num_bytes; 2324 2325 /* 2326 * We are under a transaction here so we can only do limited flushing. 2327 * If we get an enospc just kick back -EAGAIN so we know to drop the 2328 * transaction and try to refill when we can flush all the things. 2329 */ 2330 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2331 BTRFS_RESERVE_FLUSH_LIMIT); 2332 if (ret) { 2333 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2334 while (tmp <= rc->reserved_bytes) 2335 tmp <<= 1; 2336 /* 2337 * only one thread can access block_rsv at this point, 2338 * so we don't need hold lock to protect block_rsv. 2339 * we expand more reservation size here to allow enough 2340 * space for relocation and we will return earlier in 2341 * enospc case. 2342 */ 2343 rc->block_rsv->size = tmp + fs_info->nodesize * 2344 RELOCATION_RESERVED_NODES; 2345 return -EAGAIN; 2346 } 2347 2348 return 0; 2349 } 2350 2351 /* 2352 * relocate a block tree, and then update pointers in upper level 2353 * blocks that reference the block to point to the new location. 2354 * 2355 * if called by link_to_upper, the block has already been relocated. 2356 * in that case this function just updates pointers. 2357 */ 2358 static int do_relocation(struct btrfs_trans_handle *trans, 2359 struct reloc_control *rc, 2360 struct btrfs_backref_node *node, 2361 struct btrfs_key *key, 2362 struct btrfs_path *path, int lowest) 2363 { 2364 struct btrfs_backref_node *upper; 2365 struct btrfs_backref_edge *edge; 2366 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2367 struct btrfs_root *root; 2368 struct extent_buffer *eb; 2369 u32 blocksize; 2370 u64 bytenr; 2371 int slot; 2372 int ret = 0; 2373 2374 /* 2375 * If we are lowest then this is the first time we're processing this 2376 * block, and thus shouldn't have an eb associated with it yet. 2377 */ 2378 ASSERT(!lowest || !node->eb); 2379 2380 path->lowest_level = node->level + 1; 2381 rc->backref_cache.path[node->level] = node; 2382 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2383 struct btrfs_ref ref = { 0 }; 2384 2385 cond_resched(); 2386 2387 upper = edge->node[UPPER]; 2388 root = select_reloc_root(trans, rc, upper, edges); 2389 if (IS_ERR(root)) { 2390 ret = PTR_ERR(root); 2391 goto next; 2392 } 2393 2394 if (upper->eb && !upper->locked) { 2395 if (!lowest) { 2396 ret = btrfs_bin_search(upper->eb, key, &slot); 2397 if (ret < 0) 2398 goto next; 2399 BUG_ON(ret); 2400 bytenr = btrfs_node_blockptr(upper->eb, slot); 2401 if (node->eb->start == bytenr) 2402 goto next; 2403 } 2404 btrfs_backref_drop_node_buffer(upper); 2405 } 2406 2407 if (!upper->eb) { 2408 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2409 if (ret) { 2410 if (ret > 0) 2411 ret = -ENOENT; 2412 2413 btrfs_release_path(path); 2414 break; 2415 } 2416 2417 if (!upper->eb) { 2418 upper->eb = path->nodes[upper->level]; 2419 path->nodes[upper->level] = NULL; 2420 } else { 2421 BUG_ON(upper->eb != path->nodes[upper->level]); 2422 } 2423 2424 upper->locked = 1; 2425 path->locks[upper->level] = 0; 2426 2427 slot = path->slots[upper->level]; 2428 btrfs_release_path(path); 2429 } else { 2430 ret = btrfs_bin_search(upper->eb, key, &slot); 2431 if (ret < 0) 2432 goto next; 2433 BUG_ON(ret); 2434 } 2435 2436 bytenr = btrfs_node_blockptr(upper->eb, slot); 2437 if (lowest) { 2438 if (bytenr != node->bytenr) { 2439 btrfs_err(root->fs_info, 2440 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2441 bytenr, node->bytenr, slot, 2442 upper->eb->start); 2443 ret = -EIO; 2444 goto next; 2445 } 2446 } else { 2447 if (node->eb->start == bytenr) 2448 goto next; 2449 } 2450 2451 blocksize = root->fs_info->nodesize; 2452 eb = btrfs_read_node_slot(upper->eb, slot); 2453 if (IS_ERR(eb)) { 2454 ret = PTR_ERR(eb); 2455 goto next; 2456 } 2457 btrfs_tree_lock(eb); 2458 2459 if (!node->eb) { 2460 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2461 slot, &eb, BTRFS_NESTING_COW); 2462 btrfs_tree_unlock(eb); 2463 free_extent_buffer(eb); 2464 if (ret < 0) 2465 goto next; 2466 /* 2467 * We've just COWed this block, it should have updated 2468 * the correct backref node entry. 2469 */ 2470 ASSERT(node->eb == eb); 2471 } else { 2472 btrfs_set_node_blockptr(upper->eb, slot, 2473 node->eb->start); 2474 btrfs_set_node_ptr_generation(upper->eb, slot, 2475 trans->transid); 2476 btrfs_mark_buffer_dirty(upper->eb); 2477 2478 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2479 node->eb->start, blocksize, 2480 upper->eb->start); 2481 btrfs_init_tree_ref(&ref, node->level, 2482 btrfs_header_owner(upper->eb), 2483 root->root_key.objectid, false); 2484 ret = btrfs_inc_extent_ref(trans, &ref); 2485 if (!ret) 2486 ret = btrfs_drop_subtree(trans, root, eb, 2487 upper->eb); 2488 if (ret) 2489 btrfs_abort_transaction(trans, ret); 2490 } 2491 next: 2492 if (!upper->pending) 2493 btrfs_backref_drop_node_buffer(upper); 2494 else 2495 btrfs_backref_unlock_node_buffer(upper); 2496 if (ret) 2497 break; 2498 } 2499 2500 if (!ret && node->pending) { 2501 btrfs_backref_drop_node_buffer(node); 2502 list_move_tail(&node->list, &rc->backref_cache.changed); 2503 node->pending = 0; 2504 } 2505 2506 path->lowest_level = 0; 2507 2508 /* 2509 * We should have allocated all of our space in the block rsv and thus 2510 * shouldn't ENOSPC. 2511 */ 2512 ASSERT(ret != -ENOSPC); 2513 return ret; 2514 } 2515 2516 static int link_to_upper(struct btrfs_trans_handle *trans, 2517 struct reloc_control *rc, 2518 struct btrfs_backref_node *node, 2519 struct btrfs_path *path) 2520 { 2521 struct btrfs_key key; 2522 2523 btrfs_node_key_to_cpu(node->eb, &key, 0); 2524 return do_relocation(trans, rc, node, &key, path, 0); 2525 } 2526 2527 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2528 struct reloc_control *rc, 2529 struct btrfs_path *path, int err) 2530 { 2531 LIST_HEAD(list); 2532 struct btrfs_backref_cache *cache = &rc->backref_cache; 2533 struct btrfs_backref_node *node; 2534 int level; 2535 int ret; 2536 2537 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2538 while (!list_empty(&cache->pending[level])) { 2539 node = list_entry(cache->pending[level].next, 2540 struct btrfs_backref_node, list); 2541 list_move_tail(&node->list, &list); 2542 BUG_ON(!node->pending); 2543 2544 if (!err) { 2545 ret = link_to_upper(trans, rc, node, path); 2546 if (ret < 0) 2547 err = ret; 2548 } 2549 } 2550 list_splice_init(&list, &cache->pending[level]); 2551 } 2552 return err; 2553 } 2554 2555 /* 2556 * mark a block and all blocks directly/indirectly reference the block 2557 * as processed. 2558 */ 2559 static void update_processed_blocks(struct reloc_control *rc, 2560 struct btrfs_backref_node *node) 2561 { 2562 struct btrfs_backref_node *next = node; 2563 struct btrfs_backref_edge *edge; 2564 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2565 int index = 0; 2566 2567 while (next) { 2568 cond_resched(); 2569 while (1) { 2570 if (next->processed) 2571 break; 2572 2573 mark_block_processed(rc, next); 2574 2575 if (list_empty(&next->upper)) 2576 break; 2577 2578 edge = list_entry(next->upper.next, 2579 struct btrfs_backref_edge, list[LOWER]); 2580 edges[index++] = edge; 2581 next = edge->node[UPPER]; 2582 } 2583 next = walk_down_backref(edges, &index); 2584 } 2585 } 2586 2587 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2588 { 2589 u32 blocksize = rc->extent_root->fs_info->nodesize; 2590 2591 if (test_range_bit(&rc->processed_blocks, bytenr, 2592 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2593 return 1; 2594 return 0; 2595 } 2596 2597 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2598 struct tree_block *block) 2599 { 2600 struct extent_buffer *eb; 2601 2602 eb = read_tree_block(fs_info, block->bytenr, block->owner, 2603 block->key.offset, block->level, NULL); 2604 if (IS_ERR(eb)) 2605 return PTR_ERR(eb); 2606 if (!extent_buffer_uptodate(eb)) { 2607 free_extent_buffer(eb); 2608 return -EIO; 2609 } 2610 if (block->level == 0) 2611 btrfs_item_key_to_cpu(eb, &block->key, 0); 2612 else 2613 btrfs_node_key_to_cpu(eb, &block->key, 0); 2614 free_extent_buffer(eb); 2615 block->key_ready = 1; 2616 return 0; 2617 } 2618 2619 /* 2620 * helper function to relocate a tree block 2621 */ 2622 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2623 struct reloc_control *rc, 2624 struct btrfs_backref_node *node, 2625 struct btrfs_key *key, 2626 struct btrfs_path *path) 2627 { 2628 struct btrfs_root *root; 2629 int ret = 0; 2630 2631 if (!node) 2632 return 0; 2633 2634 /* 2635 * If we fail here we want to drop our backref_node because we are going 2636 * to start over and regenerate the tree for it. 2637 */ 2638 ret = reserve_metadata_space(trans, rc, node); 2639 if (ret) 2640 goto out; 2641 2642 BUG_ON(node->processed); 2643 root = select_one_root(node); 2644 if (IS_ERR(root)) { 2645 ret = PTR_ERR(root); 2646 2647 /* See explanation in select_one_root for the -EUCLEAN case. */ 2648 ASSERT(ret == -ENOENT); 2649 if (ret == -ENOENT) { 2650 ret = 0; 2651 update_processed_blocks(rc, node); 2652 } 2653 goto out; 2654 } 2655 2656 if (root) { 2657 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2658 /* 2659 * This block was the root block of a root, and this is 2660 * the first time we're processing the block and thus it 2661 * should not have had the ->new_bytenr modified and 2662 * should have not been included on the changed list. 2663 * 2664 * However in the case of corruption we could have 2665 * multiple refs pointing to the same block improperly, 2666 * and thus we would trip over these checks. ASSERT() 2667 * for the developer case, because it could indicate a 2668 * bug in the backref code, however error out for a 2669 * normal user in the case of corruption. 2670 */ 2671 ASSERT(node->new_bytenr == 0); 2672 ASSERT(list_empty(&node->list)); 2673 if (node->new_bytenr || !list_empty(&node->list)) { 2674 btrfs_err(root->fs_info, 2675 "bytenr %llu has improper references to it", 2676 node->bytenr); 2677 ret = -EUCLEAN; 2678 goto out; 2679 } 2680 ret = btrfs_record_root_in_trans(trans, root); 2681 if (ret) 2682 goto out; 2683 /* 2684 * Another thread could have failed, need to check if we 2685 * have reloc_root actually set. 2686 */ 2687 if (!root->reloc_root) { 2688 ret = -ENOENT; 2689 goto out; 2690 } 2691 root = root->reloc_root; 2692 node->new_bytenr = root->node->start; 2693 btrfs_put_root(node->root); 2694 node->root = btrfs_grab_root(root); 2695 ASSERT(node->root); 2696 list_add_tail(&node->list, &rc->backref_cache.changed); 2697 } else { 2698 path->lowest_level = node->level; 2699 if (root == root->fs_info->chunk_root) 2700 btrfs_reserve_chunk_metadata(trans, false); 2701 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2702 btrfs_release_path(path); 2703 if (root == root->fs_info->chunk_root) 2704 btrfs_trans_release_chunk_metadata(trans); 2705 if (ret > 0) 2706 ret = 0; 2707 } 2708 if (!ret) 2709 update_processed_blocks(rc, node); 2710 } else { 2711 ret = do_relocation(trans, rc, node, key, path, 1); 2712 } 2713 out: 2714 if (ret || node->level == 0 || node->cowonly) 2715 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2716 return ret; 2717 } 2718 2719 /* 2720 * relocate a list of blocks 2721 */ 2722 static noinline_for_stack 2723 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2724 struct reloc_control *rc, struct rb_root *blocks) 2725 { 2726 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2727 struct btrfs_backref_node *node; 2728 struct btrfs_path *path; 2729 struct tree_block *block; 2730 struct tree_block *next; 2731 int ret; 2732 int err = 0; 2733 2734 path = btrfs_alloc_path(); 2735 if (!path) { 2736 err = -ENOMEM; 2737 goto out_free_blocks; 2738 } 2739 2740 /* Kick in readahead for tree blocks with missing keys */ 2741 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2742 if (!block->key_ready) 2743 btrfs_readahead_tree_block(fs_info, block->bytenr, 2744 block->owner, 0, 2745 block->level); 2746 } 2747 2748 /* Get first keys */ 2749 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2750 if (!block->key_ready) { 2751 err = get_tree_block_key(fs_info, block); 2752 if (err) 2753 goto out_free_path; 2754 } 2755 } 2756 2757 /* Do tree relocation */ 2758 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2759 node = build_backref_tree(rc, &block->key, 2760 block->level, block->bytenr); 2761 if (IS_ERR(node)) { 2762 err = PTR_ERR(node); 2763 goto out; 2764 } 2765 2766 ret = relocate_tree_block(trans, rc, node, &block->key, 2767 path); 2768 if (ret < 0) { 2769 err = ret; 2770 break; 2771 } 2772 } 2773 out: 2774 err = finish_pending_nodes(trans, rc, path, err); 2775 2776 out_free_path: 2777 btrfs_free_path(path); 2778 out_free_blocks: 2779 free_block_list(blocks); 2780 return err; 2781 } 2782 2783 static noinline_for_stack int prealloc_file_extent_cluster( 2784 struct btrfs_inode *inode, 2785 struct file_extent_cluster *cluster) 2786 { 2787 u64 alloc_hint = 0; 2788 u64 start; 2789 u64 end; 2790 u64 offset = inode->index_cnt; 2791 u64 num_bytes; 2792 int nr; 2793 int ret = 0; 2794 u64 i_size = i_size_read(&inode->vfs_inode); 2795 u64 prealloc_start = cluster->start - offset; 2796 u64 prealloc_end = cluster->end - offset; 2797 u64 cur_offset = prealloc_start; 2798 2799 /* 2800 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2801 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2802 * btrfs_do_readpage() call of previously relocated file cluster. 2803 * 2804 * If the current cluster starts in the above range, btrfs_do_readpage() 2805 * will skip the read, and relocate_one_page() will later writeback 2806 * the padding zeros as new data, causing data corruption. 2807 * 2808 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2809 */ 2810 if (!IS_ALIGNED(i_size, PAGE_SIZE)) { 2811 struct address_space *mapping = inode->vfs_inode.i_mapping; 2812 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2813 const u32 sectorsize = fs_info->sectorsize; 2814 struct page *page; 2815 2816 ASSERT(sectorsize < PAGE_SIZE); 2817 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2818 2819 /* 2820 * Subpage can't handle page with DIRTY but without UPTODATE 2821 * bit as it can lead to the following deadlock: 2822 * 2823 * btrfs_read_folio() 2824 * | Page already *locked* 2825 * |- btrfs_lock_and_flush_ordered_range() 2826 * |- btrfs_start_ordered_extent() 2827 * |- extent_write_cache_pages() 2828 * |- lock_page() 2829 * We try to lock the page we already hold. 2830 * 2831 * Here we just writeback the whole data reloc inode, so that 2832 * we will be ensured to have no dirty range in the page, and 2833 * are safe to clear the uptodate bits. 2834 * 2835 * This shouldn't cause too much overhead, as we need to write 2836 * the data back anyway. 2837 */ 2838 ret = filemap_write_and_wait(mapping); 2839 if (ret < 0) 2840 return ret; 2841 2842 clear_extent_bits(&inode->io_tree, i_size, 2843 round_up(i_size, PAGE_SIZE) - 1, 2844 EXTENT_UPTODATE); 2845 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2846 /* 2847 * If page is freed we don't need to do anything then, as we 2848 * will re-read the whole page anyway. 2849 */ 2850 if (page) { 2851 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2852 round_up(i_size, PAGE_SIZE) - i_size); 2853 unlock_page(page); 2854 put_page(page); 2855 } 2856 } 2857 2858 BUG_ON(cluster->start != cluster->boundary[0]); 2859 ret = btrfs_alloc_data_chunk_ondemand(inode, 2860 prealloc_end + 1 - prealloc_start); 2861 if (ret) 2862 return ret; 2863 2864 btrfs_inode_lock(&inode->vfs_inode, 0); 2865 for (nr = 0; nr < cluster->nr; nr++) { 2866 start = cluster->boundary[nr] - offset; 2867 if (nr + 1 < cluster->nr) 2868 end = cluster->boundary[nr + 1] - 1 - offset; 2869 else 2870 end = cluster->end - offset; 2871 2872 lock_extent(&inode->io_tree, start, end); 2873 num_bytes = end + 1 - start; 2874 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2875 num_bytes, num_bytes, 2876 end + 1, &alloc_hint); 2877 cur_offset = end + 1; 2878 unlock_extent(&inode->io_tree, start, end); 2879 if (ret) 2880 break; 2881 } 2882 btrfs_inode_unlock(&inode->vfs_inode, 0); 2883 2884 if (cur_offset < prealloc_end) 2885 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2886 prealloc_end + 1 - cur_offset); 2887 return ret; 2888 } 2889 2890 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2891 u64 start, u64 end, u64 block_start) 2892 { 2893 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2894 struct extent_map *em; 2895 int ret = 0; 2896 2897 em = alloc_extent_map(); 2898 if (!em) 2899 return -ENOMEM; 2900 2901 em->start = start; 2902 em->len = end + 1 - start; 2903 em->block_len = em->len; 2904 em->block_start = block_start; 2905 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2906 2907 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2908 while (1) { 2909 write_lock(&em_tree->lock); 2910 ret = add_extent_mapping(em_tree, em, 0); 2911 write_unlock(&em_tree->lock); 2912 if (ret != -EEXIST) { 2913 free_extent_map(em); 2914 break; 2915 } 2916 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2917 } 2918 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2919 return ret; 2920 } 2921 2922 /* 2923 * Allow error injection to test balance/relocation cancellation 2924 */ 2925 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2926 { 2927 return atomic_read(&fs_info->balance_cancel_req) || 2928 atomic_read(&fs_info->reloc_cancel_req) || 2929 fatal_signal_pending(current); 2930 } 2931 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2932 2933 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2934 int cluster_nr) 2935 { 2936 /* Last extent, use cluster end directly */ 2937 if (cluster_nr >= cluster->nr - 1) 2938 return cluster->end; 2939 2940 /* Use next boundary start*/ 2941 return cluster->boundary[cluster_nr + 1] - 1; 2942 } 2943 2944 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2945 struct file_extent_cluster *cluster, 2946 int *cluster_nr, unsigned long page_index) 2947 { 2948 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2949 u64 offset = BTRFS_I(inode)->index_cnt; 2950 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2951 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2952 struct page *page; 2953 u64 page_start; 2954 u64 page_end; 2955 u64 cur; 2956 int ret; 2957 2958 ASSERT(page_index <= last_index); 2959 page = find_lock_page(inode->i_mapping, page_index); 2960 if (!page) { 2961 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 2962 page_index, last_index + 1 - page_index); 2963 page = find_or_create_page(inode->i_mapping, page_index, mask); 2964 if (!page) 2965 return -ENOMEM; 2966 } 2967 ret = set_page_extent_mapped(page); 2968 if (ret < 0) 2969 goto release_page; 2970 2971 if (PageReadahead(page)) 2972 page_cache_async_readahead(inode->i_mapping, ra, NULL, 2973 page_folio(page), page_index, 2974 last_index + 1 - page_index); 2975 2976 if (!PageUptodate(page)) { 2977 btrfs_read_folio(NULL, page_folio(page)); 2978 lock_page(page); 2979 if (!PageUptodate(page)) { 2980 ret = -EIO; 2981 goto release_page; 2982 } 2983 } 2984 2985 page_start = page_offset(page); 2986 page_end = page_start + PAGE_SIZE - 1; 2987 2988 /* 2989 * Start from the cluster, as for subpage case, the cluster can start 2990 * inside the page. 2991 */ 2992 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 2993 while (cur <= page_end) { 2994 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 2995 u64 extent_end = get_cluster_boundary_end(cluster, 2996 *cluster_nr) - offset; 2997 u64 clamped_start = max(page_start, extent_start); 2998 u64 clamped_end = min(page_end, extent_end); 2999 u32 clamped_len = clamped_end + 1 - clamped_start; 3000 3001 /* Reserve metadata for this range */ 3002 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3003 clamped_len, clamped_len, 3004 false); 3005 if (ret) 3006 goto release_page; 3007 3008 /* Mark the range delalloc and dirty for later writeback */ 3009 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end); 3010 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3011 clamped_end, 0, NULL); 3012 if (ret) { 3013 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3014 clamped_start, clamped_end, 3015 EXTENT_LOCKED | EXTENT_BOUNDARY); 3016 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3017 clamped_len, true); 3018 btrfs_delalloc_release_extents(BTRFS_I(inode), 3019 clamped_len); 3020 goto release_page; 3021 } 3022 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3023 3024 /* 3025 * Set the boundary if it's inside the page. 3026 * Data relocation requires the destination extents to have the 3027 * same size as the source. 3028 * EXTENT_BOUNDARY bit prevents current extent from being merged 3029 * with previous extent. 3030 */ 3031 if (in_range(cluster->boundary[*cluster_nr] - offset, 3032 page_start, PAGE_SIZE)) { 3033 u64 boundary_start = cluster->boundary[*cluster_nr] - 3034 offset; 3035 u64 boundary_end = boundary_start + 3036 fs_info->sectorsize - 1; 3037 3038 set_extent_bits(&BTRFS_I(inode)->io_tree, 3039 boundary_start, boundary_end, 3040 EXTENT_BOUNDARY); 3041 } 3042 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end); 3043 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3044 cur += clamped_len; 3045 3046 /* Crossed extent end, go to next extent */ 3047 if (cur >= extent_end) { 3048 (*cluster_nr)++; 3049 /* Just finished the last extent of the cluster, exit. */ 3050 if (*cluster_nr >= cluster->nr) 3051 break; 3052 } 3053 } 3054 unlock_page(page); 3055 put_page(page); 3056 3057 balance_dirty_pages_ratelimited(inode->i_mapping); 3058 btrfs_throttle(fs_info); 3059 if (btrfs_should_cancel_balance(fs_info)) 3060 ret = -ECANCELED; 3061 return ret; 3062 3063 release_page: 3064 unlock_page(page); 3065 put_page(page); 3066 return ret; 3067 } 3068 3069 static int relocate_file_extent_cluster(struct inode *inode, 3070 struct file_extent_cluster *cluster) 3071 { 3072 u64 offset = BTRFS_I(inode)->index_cnt; 3073 unsigned long index; 3074 unsigned long last_index; 3075 struct file_ra_state *ra; 3076 int cluster_nr = 0; 3077 int ret = 0; 3078 3079 if (!cluster->nr) 3080 return 0; 3081 3082 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3083 if (!ra) 3084 return -ENOMEM; 3085 3086 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3087 if (ret) 3088 goto out; 3089 3090 file_ra_state_init(ra, inode->i_mapping); 3091 3092 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3093 cluster->end - offset, cluster->start); 3094 if (ret) 3095 goto out; 3096 3097 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3098 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3099 index <= last_index && !ret; index++) 3100 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3101 if (ret == 0) 3102 WARN_ON(cluster_nr != cluster->nr); 3103 out: 3104 kfree(ra); 3105 return ret; 3106 } 3107 3108 static noinline_for_stack 3109 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3110 struct file_extent_cluster *cluster) 3111 { 3112 int ret; 3113 3114 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3115 ret = relocate_file_extent_cluster(inode, cluster); 3116 if (ret) 3117 return ret; 3118 cluster->nr = 0; 3119 } 3120 3121 if (!cluster->nr) 3122 cluster->start = extent_key->objectid; 3123 else 3124 BUG_ON(cluster->nr >= MAX_EXTENTS); 3125 cluster->end = extent_key->objectid + extent_key->offset - 1; 3126 cluster->boundary[cluster->nr] = extent_key->objectid; 3127 cluster->nr++; 3128 3129 if (cluster->nr >= MAX_EXTENTS) { 3130 ret = relocate_file_extent_cluster(inode, cluster); 3131 if (ret) 3132 return ret; 3133 cluster->nr = 0; 3134 } 3135 return 0; 3136 } 3137 3138 /* 3139 * helper to add a tree block to the list. 3140 * the major work is getting the generation and level of the block 3141 */ 3142 static int add_tree_block(struct reloc_control *rc, 3143 struct btrfs_key *extent_key, 3144 struct btrfs_path *path, 3145 struct rb_root *blocks) 3146 { 3147 struct extent_buffer *eb; 3148 struct btrfs_extent_item *ei; 3149 struct btrfs_tree_block_info *bi; 3150 struct tree_block *block; 3151 struct rb_node *rb_node; 3152 u32 item_size; 3153 int level = -1; 3154 u64 generation; 3155 u64 owner = 0; 3156 3157 eb = path->nodes[0]; 3158 item_size = btrfs_item_size(eb, path->slots[0]); 3159 3160 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3161 item_size >= sizeof(*ei) + sizeof(*bi)) { 3162 unsigned long ptr = 0, end; 3163 3164 ei = btrfs_item_ptr(eb, path->slots[0], 3165 struct btrfs_extent_item); 3166 end = (unsigned long)ei + item_size; 3167 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3168 bi = (struct btrfs_tree_block_info *)(ei + 1); 3169 level = btrfs_tree_block_level(eb, bi); 3170 ptr = (unsigned long)(bi + 1); 3171 } else { 3172 level = (int)extent_key->offset; 3173 ptr = (unsigned long)(ei + 1); 3174 } 3175 generation = btrfs_extent_generation(eb, ei); 3176 3177 /* 3178 * We're reading random blocks without knowing their owner ahead 3179 * of time. This is ok most of the time, as all reloc roots and 3180 * fs roots have the same lock type. However normal trees do 3181 * not, and the only way to know ahead of time is to read the 3182 * inline ref offset. We know it's an fs root if 3183 * 3184 * 1. There's more than one ref. 3185 * 2. There's a SHARED_DATA_REF_KEY set. 3186 * 3. FULL_BACKREF is set on the flags. 3187 * 3188 * Otherwise it's safe to assume that the ref offset == the 3189 * owner of this block, so we can use that when calling 3190 * read_tree_block. 3191 */ 3192 if (btrfs_extent_refs(eb, ei) == 1 && 3193 !(btrfs_extent_flags(eb, ei) & 3194 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3195 ptr < end) { 3196 struct btrfs_extent_inline_ref *iref; 3197 int type; 3198 3199 iref = (struct btrfs_extent_inline_ref *)ptr; 3200 type = btrfs_get_extent_inline_ref_type(eb, iref, 3201 BTRFS_REF_TYPE_BLOCK); 3202 if (type == BTRFS_REF_TYPE_INVALID) 3203 return -EINVAL; 3204 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3205 owner = btrfs_extent_inline_ref_offset(eb, iref); 3206 } 3207 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3208 btrfs_print_v0_err(eb->fs_info); 3209 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3210 return -EINVAL; 3211 } else { 3212 BUG(); 3213 } 3214 3215 btrfs_release_path(path); 3216 3217 BUG_ON(level == -1); 3218 3219 block = kmalloc(sizeof(*block), GFP_NOFS); 3220 if (!block) 3221 return -ENOMEM; 3222 3223 block->bytenr = extent_key->objectid; 3224 block->key.objectid = rc->extent_root->fs_info->nodesize; 3225 block->key.offset = generation; 3226 block->level = level; 3227 block->key_ready = 0; 3228 block->owner = owner; 3229 3230 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3231 if (rb_node) 3232 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3233 -EEXIST); 3234 3235 return 0; 3236 } 3237 3238 /* 3239 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3240 */ 3241 static int __add_tree_block(struct reloc_control *rc, 3242 u64 bytenr, u32 blocksize, 3243 struct rb_root *blocks) 3244 { 3245 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3246 struct btrfs_path *path; 3247 struct btrfs_key key; 3248 int ret; 3249 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3250 3251 if (tree_block_processed(bytenr, rc)) 3252 return 0; 3253 3254 if (rb_simple_search(blocks, bytenr)) 3255 return 0; 3256 3257 path = btrfs_alloc_path(); 3258 if (!path) 3259 return -ENOMEM; 3260 again: 3261 key.objectid = bytenr; 3262 if (skinny) { 3263 key.type = BTRFS_METADATA_ITEM_KEY; 3264 key.offset = (u64)-1; 3265 } else { 3266 key.type = BTRFS_EXTENT_ITEM_KEY; 3267 key.offset = blocksize; 3268 } 3269 3270 path->search_commit_root = 1; 3271 path->skip_locking = 1; 3272 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3273 if (ret < 0) 3274 goto out; 3275 3276 if (ret > 0 && skinny) { 3277 if (path->slots[0]) { 3278 path->slots[0]--; 3279 btrfs_item_key_to_cpu(path->nodes[0], &key, 3280 path->slots[0]); 3281 if (key.objectid == bytenr && 3282 (key.type == BTRFS_METADATA_ITEM_KEY || 3283 (key.type == BTRFS_EXTENT_ITEM_KEY && 3284 key.offset == blocksize))) 3285 ret = 0; 3286 } 3287 3288 if (ret) { 3289 skinny = false; 3290 btrfs_release_path(path); 3291 goto again; 3292 } 3293 } 3294 if (ret) { 3295 ASSERT(ret == 1); 3296 btrfs_print_leaf(path->nodes[0]); 3297 btrfs_err(fs_info, 3298 "tree block extent item (%llu) is not found in extent tree", 3299 bytenr); 3300 WARN_ON(1); 3301 ret = -EINVAL; 3302 goto out; 3303 } 3304 3305 ret = add_tree_block(rc, &key, path, blocks); 3306 out: 3307 btrfs_free_path(path); 3308 return ret; 3309 } 3310 3311 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3312 struct btrfs_block_group *block_group, 3313 struct inode *inode, 3314 u64 ino) 3315 { 3316 struct btrfs_root *root = fs_info->tree_root; 3317 struct btrfs_trans_handle *trans; 3318 int ret = 0; 3319 3320 if (inode) 3321 goto truncate; 3322 3323 inode = btrfs_iget(fs_info->sb, ino, root); 3324 if (IS_ERR(inode)) 3325 return -ENOENT; 3326 3327 truncate: 3328 ret = btrfs_check_trunc_cache_free_space(fs_info, 3329 &fs_info->global_block_rsv); 3330 if (ret) 3331 goto out; 3332 3333 trans = btrfs_join_transaction(root); 3334 if (IS_ERR(trans)) { 3335 ret = PTR_ERR(trans); 3336 goto out; 3337 } 3338 3339 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3340 3341 btrfs_end_transaction(trans); 3342 btrfs_btree_balance_dirty(fs_info); 3343 out: 3344 iput(inode); 3345 return ret; 3346 } 3347 3348 /* 3349 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3350 * cache inode, to avoid free space cache data extent blocking data relocation. 3351 */ 3352 static int delete_v1_space_cache(struct extent_buffer *leaf, 3353 struct btrfs_block_group *block_group, 3354 u64 data_bytenr) 3355 { 3356 u64 space_cache_ino; 3357 struct btrfs_file_extent_item *ei; 3358 struct btrfs_key key; 3359 bool found = false; 3360 int i; 3361 int ret; 3362 3363 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3364 return 0; 3365 3366 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3367 u8 type; 3368 3369 btrfs_item_key_to_cpu(leaf, &key, i); 3370 if (key.type != BTRFS_EXTENT_DATA_KEY) 3371 continue; 3372 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3373 type = btrfs_file_extent_type(leaf, ei); 3374 3375 if ((type == BTRFS_FILE_EXTENT_REG || 3376 type == BTRFS_FILE_EXTENT_PREALLOC) && 3377 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3378 found = true; 3379 space_cache_ino = key.objectid; 3380 break; 3381 } 3382 } 3383 if (!found) 3384 return -ENOENT; 3385 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3386 space_cache_ino); 3387 return ret; 3388 } 3389 3390 /* 3391 * helper to find all tree blocks that reference a given data extent 3392 */ 3393 static noinline_for_stack 3394 int add_data_references(struct reloc_control *rc, 3395 struct btrfs_key *extent_key, 3396 struct btrfs_path *path, 3397 struct rb_root *blocks) 3398 { 3399 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3400 struct ulist *leaves = NULL; 3401 struct ulist_iterator leaf_uiter; 3402 struct ulist_node *ref_node = NULL; 3403 const u32 blocksize = fs_info->nodesize; 3404 int ret = 0; 3405 3406 btrfs_release_path(path); 3407 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3408 0, &leaves, NULL, true); 3409 if (ret < 0) 3410 return ret; 3411 3412 ULIST_ITER_INIT(&leaf_uiter); 3413 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3414 struct extent_buffer *eb; 3415 3416 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3417 if (IS_ERR(eb)) { 3418 ret = PTR_ERR(eb); 3419 break; 3420 } 3421 ret = delete_v1_space_cache(eb, rc->block_group, 3422 extent_key->objectid); 3423 free_extent_buffer(eb); 3424 if (ret < 0) 3425 break; 3426 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3427 if (ret < 0) 3428 break; 3429 } 3430 if (ret < 0) 3431 free_block_list(blocks); 3432 ulist_free(leaves); 3433 return ret; 3434 } 3435 3436 /* 3437 * helper to find next unprocessed extent 3438 */ 3439 static noinline_for_stack 3440 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3441 struct btrfs_key *extent_key) 3442 { 3443 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3444 struct btrfs_key key; 3445 struct extent_buffer *leaf; 3446 u64 start, end, last; 3447 int ret; 3448 3449 last = rc->block_group->start + rc->block_group->length; 3450 while (1) { 3451 cond_resched(); 3452 if (rc->search_start >= last) { 3453 ret = 1; 3454 break; 3455 } 3456 3457 key.objectid = rc->search_start; 3458 key.type = BTRFS_EXTENT_ITEM_KEY; 3459 key.offset = 0; 3460 3461 path->search_commit_root = 1; 3462 path->skip_locking = 1; 3463 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3464 0, 0); 3465 if (ret < 0) 3466 break; 3467 next: 3468 leaf = path->nodes[0]; 3469 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3470 ret = btrfs_next_leaf(rc->extent_root, path); 3471 if (ret != 0) 3472 break; 3473 leaf = path->nodes[0]; 3474 } 3475 3476 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3477 if (key.objectid >= last) { 3478 ret = 1; 3479 break; 3480 } 3481 3482 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3483 key.type != BTRFS_METADATA_ITEM_KEY) { 3484 path->slots[0]++; 3485 goto next; 3486 } 3487 3488 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3489 key.objectid + key.offset <= rc->search_start) { 3490 path->slots[0]++; 3491 goto next; 3492 } 3493 3494 if (key.type == BTRFS_METADATA_ITEM_KEY && 3495 key.objectid + fs_info->nodesize <= 3496 rc->search_start) { 3497 path->slots[0]++; 3498 goto next; 3499 } 3500 3501 ret = find_first_extent_bit(&rc->processed_blocks, 3502 key.objectid, &start, &end, 3503 EXTENT_DIRTY, NULL); 3504 3505 if (ret == 0 && start <= key.objectid) { 3506 btrfs_release_path(path); 3507 rc->search_start = end + 1; 3508 } else { 3509 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3510 rc->search_start = key.objectid + key.offset; 3511 else 3512 rc->search_start = key.objectid + 3513 fs_info->nodesize; 3514 memcpy(extent_key, &key, sizeof(key)); 3515 return 0; 3516 } 3517 } 3518 btrfs_release_path(path); 3519 return ret; 3520 } 3521 3522 static void set_reloc_control(struct reloc_control *rc) 3523 { 3524 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3525 3526 mutex_lock(&fs_info->reloc_mutex); 3527 fs_info->reloc_ctl = rc; 3528 mutex_unlock(&fs_info->reloc_mutex); 3529 } 3530 3531 static void unset_reloc_control(struct reloc_control *rc) 3532 { 3533 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3534 3535 mutex_lock(&fs_info->reloc_mutex); 3536 fs_info->reloc_ctl = NULL; 3537 mutex_unlock(&fs_info->reloc_mutex); 3538 } 3539 3540 static noinline_for_stack 3541 int prepare_to_relocate(struct reloc_control *rc) 3542 { 3543 struct btrfs_trans_handle *trans; 3544 int ret; 3545 3546 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3547 BTRFS_BLOCK_RSV_TEMP); 3548 if (!rc->block_rsv) 3549 return -ENOMEM; 3550 3551 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3552 rc->search_start = rc->block_group->start; 3553 rc->extents_found = 0; 3554 rc->nodes_relocated = 0; 3555 rc->merging_rsv_size = 0; 3556 rc->reserved_bytes = 0; 3557 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3558 RELOCATION_RESERVED_NODES; 3559 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3560 rc->block_rsv, rc->block_rsv->size, 3561 BTRFS_RESERVE_FLUSH_ALL); 3562 if (ret) 3563 return ret; 3564 3565 rc->create_reloc_tree = 1; 3566 set_reloc_control(rc); 3567 3568 trans = btrfs_join_transaction(rc->extent_root); 3569 if (IS_ERR(trans)) { 3570 unset_reloc_control(rc); 3571 /* 3572 * extent tree is not a ref_cow tree and has no reloc_root to 3573 * cleanup. And callers are responsible to free the above 3574 * block rsv. 3575 */ 3576 return PTR_ERR(trans); 3577 } 3578 3579 ret = btrfs_commit_transaction(trans); 3580 if (ret) 3581 unset_reloc_control(rc); 3582 3583 return ret; 3584 } 3585 3586 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3587 { 3588 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3589 struct rb_root blocks = RB_ROOT; 3590 struct btrfs_key key; 3591 struct btrfs_trans_handle *trans = NULL; 3592 struct btrfs_path *path; 3593 struct btrfs_extent_item *ei; 3594 u64 flags; 3595 int ret; 3596 int err = 0; 3597 int progress = 0; 3598 3599 path = btrfs_alloc_path(); 3600 if (!path) 3601 return -ENOMEM; 3602 path->reada = READA_FORWARD; 3603 3604 ret = prepare_to_relocate(rc); 3605 if (ret) { 3606 err = ret; 3607 goto out_free; 3608 } 3609 3610 while (1) { 3611 rc->reserved_bytes = 0; 3612 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3613 rc->block_rsv->size, 3614 BTRFS_RESERVE_FLUSH_ALL); 3615 if (ret) { 3616 err = ret; 3617 break; 3618 } 3619 progress++; 3620 trans = btrfs_start_transaction(rc->extent_root, 0); 3621 if (IS_ERR(trans)) { 3622 err = PTR_ERR(trans); 3623 trans = NULL; 3624 break; 3625 } 3626 restart: 3627 if (update_backref_cache(trans, &rc->backref_cache)) { 3628 btrfs_end_transaction(trans); 3629 trans = NULL; 3630 continue; 3631 } 3632 3633 ret = find_next_extent(rc, path, &key); 3634 if (ret < 0) 3635 err = ret; 3636 if (ret != 0) 3637 break; 3638 3639 rc->extents_found++; 3640 3641 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3642 struct btrfs_extent_item); 3643 flags = btrfs_extent_flags(path->nodes[0], ei); 3644 3645 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3646 ret = add_tree_block(rc, &key, path, &blocks); 3647 } else if (rc->stage == UPDATE_DATA_PTRS && 3648 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3649 ret = add_data_references(rc, &key, path, &blocks); 3650 } else { 3651 btrfs_release_path(path); 3652 ret = 0; 3653 } 3654 if (ret < 0) { 3655 err = ret; 3656 break; 3657 } 3658 3659 if (!RB_EMPTY_ROOT(&blocks)) { 3660 ret = relocate_tree_blocks(trans, rc, &blocks); 3661 if (ret < 0) { 3662 if (ret != -EAGAIN) { 3663 err = ret; 3664 break; 3665 } 3666 rc->extents_found--; 3667 rc->search_start = key.objectid; 3668 } 3669 } 3670 3671 btrfs_end_transaction_throttle(trans); 3672 btrfs_btree_balance_dirty(fs_info); 3673 trans = NULL; 3674 3675 if (rc->stage == MOVE_DATA_EXTENTS && 3676 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3677 rc->found_file_extent = 1; 3678 ret = relocate_data_extent(rc->data_inode, 3679 &key, &rc->cluster); 3680 if (ret < 0) { 3681 err = ret; 3682 break; 3683 } 3684 } 3685 if (btrfs_should_cancel_balance(fs_info)) { 3686 err = -ECANCELED; 3687 break; 3688 } 3689 } 3690 if (trans && progress && err == -ENOSPC) { 3691 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3692 if (ret == 1) { 3693 err = 0; 3694 progress = 0; 3695 goto restart; 3696 } 3697 } 3698 3699 btrfs_release_path(path); 3700 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3701 3702 if (trans) { 3703 btrfs_end_transaction_throttle(trans); 3704 btrfs_btree_balance_dirty(fs_info); 3705 } 3706 3707 if (!err) { 3708 ret = relocate_file_extent_cluster(rc->data_inode, 3709 &rc->cluster); 3710 if (ret < 0) 3711 err = ret; 3712 } 3713 3714 rc->create_reloc_tree = 0; 3715 set_reloc_control(rc); 3716 3717 btrfs_backref_release_cache(&rc->backref_cache); 3718 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3719 3720 /* 3721 * Even in the case when the relocation is cancelled, we should all go 3722 * through prepare_to_merge() and merge_reloc_roots(). 3723 * 3724 * For error (including cancelled balance), prepare_to_merge() will 3725 * mark all reloc trees orphan, then queue them for cleanup in 3726 * merge_reloc_roots() 3727 */ 3728 err = prepare_to_merge(rc, err); 3729 3730 merge_reloc_roots(rc); 3731 3732 rc->merge_reloc_tree = 0; 3733 unset_reloc_control(rc); 3734 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3735 3736 /* get rid of pinned extents */ 3737 trans = btrfs_join_transaction(rc->extent_root); 3738 if (IS_ERR(trans)) { 3739 err = PTR_ERR(trans); 3740 goto out_free; 3741 } 3742 ret = btrfs_commit_transaction(trans); 3743 if (ret && !err) 3744 err = ret; 3745 out_free: 3746 ret = clean_dirty_subvols(rc); 3747 if (ret < 0 && !err) 3748 err = ret; 3749 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3750 btrfs_free_path(path); 3751 return err; 3752 } 3753 3754 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3755 struct btrfs_root *root, u64 objectid) 3756 { 3757 struct btrfs_path *path; 3758 struct btrfs_inode_item *item; 3759 struct extent_buffer *leaf; 3760 int ret; 3761 3762 path = btrfs_alloc_path(); 3763 if (!path) 3764 return -ENOMEM; 3765 3766 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3767 if (ret) 3768 goto out; 3769 3770 leaf = path->nodes[0]; 3771 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3772 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3773 btrfs_set_inode_generation(leaf, item, 1); 3774 btrfs_set_inode_size(leaf, item, 0); 3775 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3776 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3777 BTRFS_INODE_PREALLOC); 3778 btrfs_mark_buffer_dirty(leaf); 3779 out: 3780 btrfs_free_path(path); 3781 return ret; 3782 } 3783 3784 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3785 struct btrfs_root *root, u64 objectid) 3786 { 3787 struct btrfs_path *path; 3788 struct btrfs_key key; 3789 int ret = 0; 3790 3791 path = btrfs_alloc_path(); 3792 if (!path) { 3793 ret = -ENOMEM; 3794 goto out; 3795 } 3796 3797 key.objectid = objectid; 3798 key.type = BTRFS_INODE_ITEM_KEY; 3799 key.offset = 0; 3800 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3801 if (ret) { 3802 if (ret > 0) 3803 ret = -ENOENT; 3804 goto out; 3805 } 3806 ret = btrfs_del_item(trans, root, path); 3807 out: 3808 if (ret) 3809 btrfs_abort_transaction(trans, ret); 3810 btrfs_free_path(path); 3811 } 3812 3813 /* 3814 * helper to create inode for data relocation. 3815 * the inode is in data relocation tree and its link count is 0 3816 */ 3817 static noinline_for_stack 3818 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3819 struct btrfs_block_group *group) 3820 { 3821 struct inode *inode = NULL; 3822 struct btrfs_trans_handle *trans; 3823 struct btrfs_root *root; 3824 u64 objectid; 3825 int err = 0; 3826 3827 root = btrfs_grab_root(fs_info->data_reloc_root); 3828 trans = btrfs_start_transaction(root, 6); 3829 if (IS_ERR(trans)) { 3830 btrfs_put_root(root); 3831 return ERR_CAST(trans); 3832 } 3833 3834 err = btrfs_get_free_objectid(root, &objectid); 3835 if (err) 3836 goto out; 3837 3838 err = __insert_orphan_inode(trans, root, objectid); 3839 if (err) 3840 goto out; 3841 3842 inode = btrfs_iget(fs_info->sb, objectid, root); 3843 if (IS_ERR(inode)) { 3844 delete_orphan_inode(trans, root, objectid); 3845 err = PTR_ERR(inode); 3846 inode = NULL; 3847 goto out; 3848 } 3849 BTRFS_I(inode)->index_cnt = group->start; 3850 3851 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3852 out: 3853 btrfs_put_root(root); 3854 btrfs_end_transaction(trans); 3855 btrfs_btree_balance_dirty(fs_info); 3856 if (err) { 3857 iput(inode); 3858 inode = ERR_PTR(err); 3859 } 3860 return inode; 3861 } 3862 3863 /* 3864 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3865 * has been requested meanwhile and don't start in that case. 3866 * 3867 * Return: 3868 * 0 success 3869 * -EINPROGRESS operation is already in progress, that's probably a bug 3870 * -ECANCELED cancellation request was set before the operation started 3871 */ 3872 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3873 { 3874 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3875 /* This should not happen */ 3876 btrfs_err(fs_info, "reloc already running, cannot start"); 3877 return -EINPROGRESS; 3878 } 3879 3880 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3881 btrfs_info(fs_info, "chunk relocation canceled on start"); 3882 /* 3883 * On cancel, clear all requests but let the caller mark 3884 * the end after cleanup operations. 3885 */ 3886 atomic_set(&fs_info->reloc_cancel_req, 0); 3887 return -ECANCELED; 3888 } 3889 return 0; 3890 } 3891 3892 /* 3893 * Mark end of chunk relocation that is cancellable and wake any waiters. 3894 */ 3895 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3896 { 3897 /* Requested after start, clear bit first so any waiters can continue */ 3898 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3899 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3900 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3901 atomic_set(&fs_info->reloc_cancel_req, 0); 3902 } 3903 3904 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3905 { 3906 struct reloc_control *rc; 3907 3908 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3909 if (!rc) 3910 return NULL; 3911 3912 INIT_LIST_HEAD(&rc->reloc_roots); 3913 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3914 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3915 mapping_tree_init(&rc->reloc_root_tree); 3916 extent_io_tree_init(fs_info, &rc->processed_blocks, 3917 IO_TREE_RELOC_BLOCKS, NULL); 3918 return rc; 3919 } 3920 3921 static void free_reloc_control(struct reloc_control *rc) 3922 { 3923 struct mapping_node *node, *tmp; 3924 3925 free_reloc_roots(&rc->reloc_roots); 3926 rbtree_postorder_for_each_entry_safe(node, tmp, 3927 &rc->reloc_root_tree.rb_root, rb_node) 3928 kfree(node); 3929 3930 kfree(rc); 3931 } 3932 3933 /* 3934 * Print the block group being relocated 3935 */ 3936 static void describe_relocation(struct btrfs_fs_info *fs_info, 3937 struct btrfs_block_group *block_group) 3938 { 3939 char buf[128] = {'\0'}; 3940 3941 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3942 3943 btrfs_info(fs_info, 3944 "relocating block group %llu flags %s", 3945 block_group->start, buf); 3946 } 3947 3948 static const char *stage_to_string(int stage) 3949 { 3950 if (stage == MOVE_DATA_EXTENTS) 3951 return "move data extents"; 3952 if (stage == UPDATE_DATA_PTRS) 3953 return "update data pointers"; 3954 return "unknown"; 3955 } 3956 3957 /* 3958 * function to relocate all extents in a block group. 3959 */ 3960 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3961 { 3962 struct btrfs_block_group *bg; 3963 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 3964 struct reloc_control *rc; 3965 struct inode *inode; 3966 struct btrfs_path *path; 3967 int ret; 3968 int rw = 0; 3969 int err = 0; 3970 3971 /* 3972 * This only gets set if we had a half-deleted snapshot on mount. We 3973 * cannot allow relocation to start while we're still trying to clean up 3974 * these pending deletions. 3975 */ 3976 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 3977 if (ret) 3978 return ret; 3979 3980 /* We may have been woken up by close_ctree, so bail if we're closing. */ 3981 if (btrfs_fs_closing(fs_info)) 3982 return -EINTR; 3983 3984 bg = btrfs_lookup_block_group(fs_info, group_start); 3985 if (!bg) 3986 return -ENOENT; 3987 3988 /* 3989 * Relocation of a data block group creates ordered extents. Without 3990 * sb_start_write(), we can freeze the filesystem while unfinished 3991 * ordered extents are left. Such ordered extents can cause a deadlock 3992 * e.g. when syncfs() is waiting for their completion but they can't 3993 * finish because they block when joining a transaction, due to the 3994 * fact that the freeze locks are being held in write mode. 3995 */ 3996 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 3997 ASSERT(sb_write_started(fs_info->sb)); 3998 3999 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4000 btrfs_put_block_group(bg); 4001 return -ETXTBSY; 4002 } 4003 4004 rc = alloc_reloc_control(fs_info); 4005 if (!rc) { 4006 btrfs_put_block_group(bg); 4007 return -ENOMEM; 4008 } 4009 4010 ret = reloc_chunk_start(fs_info); 4011 if (ret < 0) { 4012 err = ret; 4013 goto out_put_bg; 4014 } 4015 4016 rc->extent_root = extent_root; 4017 rc->block_group = bg; 4018 4019 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4020 if (ret) { 4021 err = ret; 4022 goto out; 4023 } 4024 rw = 1; 4025 4026 path = btrfs_alloc_path(); 4027 if (!path) { 4028 err = -ENOMEM; 4029 goto out; 4030 } 4031 4032 inode = lookup_free_space_inode(rc->block_group, path); 4033 btrfs_free_path(path); 4034 4035 if (!IS_ERR(inode)) 4036 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4037 else 4038 ret = PTR_ERR(inode); 4039 4040 if (ret && ret != -ENOENT) { 4041 err = ret; 4042 goto out; 4043 } 4044 4045 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4046 if (IS_ERR(rc->data_inode)) { 4047 err = PTR_ERR(rc->data_inode); 4048 rc->data_inode = NULL; 4049 goto out; 4050 } 4051 4052 describe_relocation(fs_info, rc->block_group); 4053 4054 btrfs_wait_block_group_reservations(rc->block_group); 4055 btrfs_wait_nocow_writers(rc->block_group); 4056 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4057 rc->block_group->start, 4058 rc->block_group->length); 4059 4060 ret = btrfs_zone_finish(rc->block_group); 4061 WARN_ON(ret && ret != -EAGAIN); 4062 4063 while (1) { 4064 int finishes_stage; 4065 4066 mutex_lock(&fs_info->cleaner_mutex); 4067 ret = relocate_block_group(rc); 4068 mutex_unlock(&fs_info->cleaner_mutex); 4069 if (ret < 0) 4070 err = ret; 4071 4072 finishes_stage = rc->stage; 4073 /* 4074 * We may have gotten ENOSPC after we already dirtied some 4075 * extents. If writeout happens while we're relocating a 4076 * different block group we could end up hitting the 4077 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4078 * btrfs_reloc_cow_block. Make sure we write everything out 4079 * properly so we don't trip over this problem, and then break 4080 * out of the loop if we hit an error. 4081 */ 4082 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4083 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4084 (u64)-1); 4085 if (ret) 4086 err = ret; 4087 invalidate_mapping_pages(rc->data_inode->i_mapping, 4088 0, -1); 4089 rc->stage = UPDATE_DATA_PTRS; 4090 } 4091 4092 if (err < 0) 4093 goto out; 4094 4095 if (rc->extents_found == 0) 4096 break; 4097 4098 btrfs_info(fs_info, "found %llu extents, stage: %s", 4099 rc->extents_found, stage_to_string(finishes_stage)); 4100 } 4101 4102 WARN_ON(rc->block_group->pinned > 0); 4103 WARN_ON(rc->block_group->reserved > 0); 4104 WARN_ON(rc->block_group->used > 0); 4105 out: 4106 if (err && rw) 4107 btrfs_dec_block_group_ro(rc->block_group); 4108 iput(rc->data_inode); 4109 out_put_bg: 4110 btrfs_put_block_group(bg); 4111 reloc_chunk_end(fs_info); 4112 free_reloc_control(rc); 4113 return err; 4114 } 4115 4116 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4117 { 4118 struct btrfs_fs_info *fs_info = root->fs_info; 4119 struct btrfs_trans_handle *trans; 4120 int ret, err; 4121 4122 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4123 if (IS_ERR(trans)) 4124 return PTR_ERR(trans); 4125 4126 memset(&root->root_item.drop_progress, 0, 4127 sizeof(root->root_item.drop_progress)); 4128 btrfs_set_root_drop_level(&root->root_item, 0); 4129 btrfs_set_root_refs(&root->root_item, 0); 4130 ret = btrfs_update_root(trans, fs_info->tree_root, 4131 &root->root_key, &root->root_item); 4132 4133 err = btrfs_end_transaction(trans); 4134 if (err) 4135 return err; 4136 return ret; 4137 } 4138 4139 /* 4140 * recover relocation interrupted by system crash. 4141 * 4142 * this function resumes merging reloc trees with corresponding fs trees. 4143 * this is important for keeping the sharing of tree blocks 4144 */ 4145 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4146 { 4147 LIST_HEAD(reloc_roots); 4148 struct btrfs_key key; 4149 struct btrfs_root *fs_root; 4150 struct btrfs_root *reloc_root; 4151 struct btrfs_path *path; 4152 struct extent_buffer *leaf; 4153 struct reloc_control *rc = NULL; 4154 struct btrfs_trans_handle *trans; 4155 int ret; 4156 int err = 0; 4157 4158 path = btrfs_alloc_path(); 4159 if (!path) 4160 return -ENOMEM; 4161 path->reada = READA_BACK; 4162 4163 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4164 key.type = BTRFS_ROOT_ITEM_KEY; 4165 key.offset = (u64)-1; 4166 4167 while (1) { 4168 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4169 path, 0, 0); 4170 if (ret < 0) { 4171 err = ret; 4172 goto out; 4173 } 4174 if (ret > 0) { 4175 if (path->slots[0] == 0) 4176 break; 4177 path->slots[0]--; 4178 } 4179 leaf = path->nodes[0]; 4180 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4181 btrfs_release_path(path); 4182 4183 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4184 key.type != BTRFS_ROOT_ITEM_KEY) 4185 break; 4186 4187 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4188 if (IS_ERR(reloc_root)) { 4189 err = PTR_ERR(reloc_root); 4190 goto out; 4191 } 4192 4193 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4194 list_add(&reloc_root->root_list, &reloc_roots); 4195 4196 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4197 fs_root = btrfs_get_fs_root(fs_info, 4198 reloc_root->root_key.offset, false); 4199 if (IS_ERR(fs_root)) { 4200 ret = PTR_ERR(fs_root); 4201 if (ret != -ENOENT) { 4202 err = ret; 4203 goto out; 4204 } 4205 ret = mark_garbage_root(reloc_root); 4206 if (ret < 0) { 4207 err = ret; 4208 goto out; 4209 } 4210 } else { 4211 btrfs_put_root(fs_root); 4212 } 4213 } 4214 4215 if (key.offset == 0) 4216 break; 4217 4218 key.offset--; 4219 } 4220 btrfs_release_path(path); 4221 4222 if (list_empty(&reloc_roots)) 4223 goto out; 4224 4225 rc = alloc_reloc_control(fs_info); 4226 if (!rc) { 4227 err = -ENOMEM; 4228 goto out; 4229 } 4230 4231 ret = reloc_chunk_start(fs_info); 4232 if (ret < 0) { 4233 err = ret; 4234 goto out_end; 4235 } 4236 4237 rc->extent_root = btrfs_extent_root(fs_info, 0); 4238 4239 set_reloc_control(rc); 4240 4241 trans = btrfs_join_transaction(rc->extent_root); 4242 if (IS_ERR(trans)) { 4243 err = PTR_ERR(trans); 4244 goto out_unset; 4245 } 4246 4247 rc->merge_reloc_tree = 1; 4248 4249 while (!list_empty(&reloc_roots)) { 4250 reloc_root = list_entry(reloc_roots.next, 4251 struct btrfs_root, root_list); 4252 list_del(&reloc_root->root_list); 4253 4254 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4255 list_add_tail(&reloc_root->root_list, 4256 &rc->reloc_roots); 4257 continue; 4258 } 4259 4260 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4261 false); 4262 if (IS_ERR(fs_root)) { 4263 err = PTR_ERR(fs_root); 4264 list_add_tail(&reloc_root->root_list, &reloc_roots); 4265 btrfs_end_transaction(trans); 4266 goto out_unset; 4267 } 4268 4269 err = __add_reloc_root(reloc_root); 4270 ASSERT(err != -EEXIST); 4271 if (err) { 4272 list_add_tail(&reloc_root->root_list, &reloc_roots); 4273 btrfs_put_root(fs_root); 4274 btrfs_end_transaction(trans); 4275 goto out_unset; 4276 } 4277 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4278 btrfs_put_root(fs_root); 4279 } 4280 4281 err = btrfs_commit_transaction(trans); 4282 if (err) 4283 goto out_unset; 4284 4285 merge_reloc_roots(rc); 4286 4287 unset_reloc_control(rc); 4288 4289 trans = btrfs_join_transaction(rc->extent_root); 4290 if (IS_ERR(trans)) { 4291 err = PTR_ERR(trans); 4292 goto out_clean; 4293 } 4294 err = btrfs_commit_transaction(trans); 4295 out_clean: 4296 ret = clean_dirty_subvols(rc); 4297 if (ret < 0 && !err) 4298 err = ret; 4299 out_unset: 4300 unset_reloc_control(rc); 4301 out_end: 4302 reloc_chunk_end(fs_info); 4303 free_reloc_control(rc); 4304 out: 4305 free_reloc_roots(&reloc_roots); 4306 4307 btrfs_free_path(path); 4308 4309 if (err == 0) { 4310 /* cleanup orphan inode in data relocation tree */ 4311 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4312 ASSERT(fs_root); 4313 err = btrfs_orphan_cleanup(fs_root); 4314 btrfs_put_root(fs_root); 4315 } 4316 return err; 4317 } 4318 4319 /* 4320 * helper to add ordered checksum for data relocation. 4321 * 4322 * cloning checksum properly handles the nodatasum extents. 4323 * it also saves CPU time to re-calculate the checksum. 4324 */ 4325 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 4326 { 4327 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4328 struct btrfs_root *csum_root; 4329 struct btrfs_ordered_sum *sums; 4330 struct btrfs_ordered_extent *ordered; 4331 int ret; 4332 u64 disk_bytenr; 4333 u64 new_bytenr; 4334 LIST_HEAD(list); 4335 4336 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4337 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4338 4339 disk_bytenr = file_pos + inode->index_cnt; 4340 csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4341 ret = btrfs_lookup_csums_range(csum_root, disk_bytenr, 4342 disk_bytenr + len - 1, &list, 0); 4343 if (ret) 4344 goto out; 4345 4346 while (!list_empty(&list)) { 4347 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4348 list_del_init(&sums->list); 4349 4350 /* 4351 * We need to offset the new_bytenr based on where the csum is. 4352 * We need to do this because we will read in entire prealloc 4353 * extents but we may have written to say the middle of the 4354 * prealloc extent, so we need to make sure the csum goes with 4355 * the right disk offset. 4356 * 4357 * We can do this because the data reloc inode refers strictly 4358 * to the on disk bytes, so we don't have to worry about 4359 * disk_len vs real len like with real inodes since it's all 4360 * disk length. 4361 */ 4362 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4363 sums->bytenr = new_bytenr; 4364 4365 btrfs_add_ordered_sum(ordered, sums); 4366 } 4367 out: 4368 btrfs_put_ordered_extent(ordered); 4369 return ret; 4370 } 4371 4372 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4373 struct btrfs_root *root, struct extent_buffer *buf, 4374 struct extent_buffer *cow) 4375 { 4376 struct btrfs_fs_info *fs_info = root->fs_info; 4377 struct reloc_control *rc; 4378 struct btrfs_backref_node *node; 4379 int first_cow = 0; 4380 int level; 4381 int ret = 0; 4382 4383 rc = fs_info->reloc_ctl; 4384 if (!rc) 4385 return 0; 4386 4387 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4388 4389 level = btrfs_header_level(buf); 4390 if (btrfs_header_generation(buf) <= 4391 btrfs_root_last_snapshot(&root->root_item)) 4392 first_cow = 1; 4393 4394 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4395 rc->create_reloc_tree) { 4396 WARN_ON(!first_cow && level == 0); 4397 4398 node = rc->backref_cache.path[level]; 4399 BUG_ON(node->bytenr != buf->start && 4400 node->new_bytenr != buf->start); 4401 4402 btrfs_backref_drop_node_buffer(node); 4403 atomic_inc(&cow->refs); 4404 node->eb = cow; 4405 node->new_bytenr = cow->start; 4406 4407 if (!node->pending) { 4408 list_move_tail(&node->list, 4409 &rc->backref_cache.pending[level]); 4410 node->pending = 1; 4411 } 4412 4413 if (first_cow) 4414 mark_block_processed(rc, node); 4415 4416 if (first_cow && level > 0) 4417 rc->nodes_relocated += buf->len; 4418 } 4419 4420 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4421 ret = replace_file_extents(trans, rc, root, cow); 4422 return ret; 4423 } 4424 4425 /* 4426 * called before creating snapshot. it calculates metadata reservation 4427 * required for relocating tree blocks in the snapshot 4428 */ 4429 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4430 u64 *bytes_to_reserve) 4431 { 4432 struct btrfs_root *root = pending->root; 4433 struct reloc_control *rc = root->fs_info->reloc_ctl; 4434 4435 if (!rc || !have_reloc_root(root)) 4436 return; 4437 4438 if (!rc->merge_reloc_tree) 4439 return; 4440 4441 root = root->reloc_root; 4442 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4443 /* 4444 * relocation is in the stage of merging trees. the space 4445 * used by merging a reloc tree is twice the size of 4446 * relocated tree nodes in the worst case. half for cowing 4447 * the reloc tree, half for cowing the fs tree. the space 4448 * used by cowing the reloc tree will be freed after the 4449 * tree is dropped. if we create snapshot, cowing the fs 4450 * tree may use more space than it frees. so we need 4451 * reserve extra space. 4452 */ 4453 *bytes_to_reserve += rc->nodes_relocated; 4454 } 4455 4456 /* 4457 * called after snapshot is created. migrate block reservation 4458 * and create reloc root for the newly created snapshot 4459 * 4460 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4461 * references held on the reloc_root, one for root->reloc_root and one for 4462 * rc->reloc_roots. 4463 */ 4464 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4465 struct btrfs_pending_snapshot *pending) 4466 { 4467 struct btrfs_root *root = pending->root; 4468 struct btrfs_root *reloc_root; 4469 struct btrfs_root *new_root; 4470 struct reloc_control *rc = root->fs_info->reloc_ctl; 4471 int ret; 4472 4473 if (!rc || !have_reloc_root(root)) 4474 return 0; 4475 4476 rc = root->fs_info->reloc_ctl; 4477 rc->merging_rsv_size += rc->nodes_relocated; 4478 4479 if (rc->merge_reloc_tree) { 4480 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4481 rc->block_rsv, 4482 rc->nodes_relocated, true); 4483 if (ret) 4484 return ret; 4485 } 4486 4487 new_root = pending->snap; 4488 reloc_root = create_reloc_root(trans, root->reloc_root, 4489 new_root->root_key.objectid); 4490 if (IS_ERR(reloc_root)) 4491 return PTR_ERR(reloc_root); 4492 4493 ret = __add_reloc_root(reloc_root); 4494 ASSERT(ret != -EEXIST); 4495 if (ret) { 4496 /* Pairs with create_reloc_root */ 4497 btrfs_put_root(reloc_root); 4498 return ret; 4499 } 4500 new_root->reloc_root = btrfs_grab_root(reloc_root); 4501 4502 if (rc->create_reloc_tree) 4503 ret = clone_backref_node(trans, rc, root, reloc_root); 4504 return ret; 4505 } 4506