1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 40 /* 41 * Relocation overview 42 * 43 * [What does relocation do] 44 * 45 * The objective of relocation is to relocate all extents of the target block 46 * group to other block groups. 47 * This is utilized by resize (shrink only), profile converting, compacting 48 * space, or balance routine to spread chunks over devices. 49 * 50 * Before | After 51 * ------------------------------------------------------------------ 52 * BG A: 10 data extents | BG A: deleted 53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 55 * 56 * [How does relocation work] 57 * 58 * 1. Mark the target block group read-only 59 * New extents won't be allocated from the target block group. 60 * 61 * 2.1 Record each extent in the target block group 62 * To build a proper map of extents to be relocated. 63 * 64 * 2.2 Build data reloc tree and reloc trees 65 * Data reloc tree will contain an inode, recording all newly relocated 66 * data extents. 67 * There will be only one data reloc tree for one data block group. 68 * 69 * Reloc tree will be a special snapshot of its source tree, containing 70 * relocated tree blocks. 71 * Each tree referring to a tree block in target block group will get its 72 * reloc tree built. 73 * 74 * 2.3 Swap source tree with its corresponding reloc tree 75 * Each involved tree only refers to new extents after swap. 76 * 77 * 3. Cleanup reloc trees and data reloc tree. 78 * As old extents in the target block group are still referenced by reloc 79 * trees, we need to clean them up before really freeing the target block 80 * group. 81 * 82 * The main complexity is in steps 2.2 and 2.3. 83 * 84 * The entry point of relocation is relocate_block_group() function. 85 */ 86 87 #define RELOCATION_RESERVED_NODES 256 88 /* 89 * map address of tree root to tree 90 */ 91 struct mapping_node { 92 struct { 93 struct rb_node rb_node; 94 u64 bytenr; 95 }; /* Use rb_simle_node for search/insert */ 96 void *data; 97 }; 98 99 struct mapping_tree { 100 struct rb_root rb_root; 101 spinlock_t lock; 102 }; 103 104 /* 105 * present a tree block to process 106 */ 107 struct tree_block { 108 struct { 109 struct rb_node rb_node; 110 u64 bytenr; 111 }; /* Use rb_simple_node for search/insert */ 112 u64 owner; 113 struct btrfs_key key; 114 unsigned int level:8; 115 unsigned int key_ready:1; 116 }; 117 118 #define MAX_EXTENTS 128 119 120 struct file_extent_cluster { 121 u64 start; 122 u64 end; 123 u64 boundary[MAX_EXTENTS]; 124 unsigned int nr; 125 }; 126 127 struct reloc_control { 128 /* block group to relocate */ 129 struct btrfs_block_group *block_group; 130 /* extent tree */ 131 struct btrfs_root *extent_root; 132 /* inode for moving data */ 133 struct inode *data_inode; 134 135 struct btrfs_block_rsv *block_rsv; 136 137 struct btrfs_backref_cache backref_cache; 138 139 struct file_extent_cluster cluster; 140 /* tree blocks have been processed */ 141 struct extent_io_tree processed_blocks; 142 /* map start of tree root to corresponding reloc tree */ 143 struct mapping_tree reloc_root_tree; 144 /* list of reloc trees */ 145 struct list_head reloc_roots; 146 /* list of subvolume trees that get relocated */ 147 struct list_head dirty_subvol_roots; 148 /* size of metadata reservation for merging reloc trees */ 149 u64 merging_rsv_size; 150 /* size of relocated tree nodes */ 151 u64 nodes_relocated; 152 /* reserved size for block group relocation*/ 153 u64 reserved_bytes; 154 155 u64 search_start; 156 u64 extents_found; 157 158 unsigned int stage:8; 159 unsigned int create_reloc_tree:1; 160 unsigned int merge_reloc_tree:1; 161 unsigned int found_file_extent:1; 162 }; 163 164 /* stages of data relocation */ 165 #define MOVE_DATA_EXTENTS 0 166 #define UPDATE_DATA_PTRS 1 167 168 static void mark_block_processed(struct reloc_control *rc, 169 struct btrfs_backref_node *node) 170 { 171 u32 blocksize; 172 173 if (node->level == 0 || 174 in_range(node->bytenr, rc->block_group->start, 175 rc->block_group->length)) { 176 blocksize = rc->extent_root->fs_info->nodesize; 177 set_extent_bit(&rc->processed_blocks, node->bytenr, 178 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL); 179 } 180 node->processed = 1; 181 } 182 183 184 static void mapping_tree_init(struct mapping_tree *tree) 185 { 186 tree->rb_root = RB_ROOT; 187 spin_lock_init(&tree->lock); 188 } 189 190 /* 191 * walk up backref nodes until reach node presents tree root 192 */ 193 static struct btrfs_backref_node *walk_up_backref( 194 struct btrfs_backref_node *node, 195 struct btrfs_backref_edge *edges[], int *index) 196 { 197 struct btrfs_backref_edge *edge; 198 int idx = *index; 199 200 while (!list_empty(&node->upper)) { 201 edge = list_entry(node->upper.next, 202 struct btrfs_backref_edge, list[LOWER]); 203 edges[idx++] = edge; 204 node = edge->node[UPPER]; 205 } 206 BUG_ON(node->detached); 207 *index = idx; 208 return node; 209 } 210 211 /* 212 * walk down backref nodes to find start of next reference path 213 */ 214 static struct btrfs_backref_node *walk_down_backref( 215 struct btrfs_backref_edge *edges[], int *index) 216 { 217 struct btrfs_backref_edge *edge; 218 struct btrfs_backref_node *lower; 219 int idx = *index; 220 221 while (idx > 0) { 222 edge = edges[idx - 1]; 223 lower = edge->node[LOWER]; 224 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 225 idx--; 226 continue; 227 } 228 edge = list_entry(edge->list[LOWER].next, 229 struct btrfs_backref_edge, list[LOWER]); 230 edges[idx - 1] = edge; 231 *index = idx; 232 return edge->node[UPPER]; 233 } 234 *index = 0; 235 return NULL; 236 } 237 238 static void update_backref_node(struct btrfs_backref_cache *cache, 239 struct btrfs_backref_node *node, u64 bytenr) 240 { 241 struct rb_node *rb_node; 242 rb_erase(&node->rb_node, &cache->rb_root); 243 node->bytenr = bytenr; 244 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 245 if (rb_node) 246 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 247 } 248 249 /* 250 * update backref cache after a transaction commit 251 */ 252 static int update_backref_cache(struct btrfs_trans_handle *trans, 253 struct btrfs_backref_cache *cache) 254 { 255 struct btrfs_backref_node *node; 256 int level = 0; 257 258 if (cache->last_trans == 0) { 259 cache->last_trans = trans->transid; 260 return 0; 261 } 262 263 if (cache->last_trans == trans->transid) 264 return 0; 265 266 /* 267 * detached nodes are used to avoid unnecessary backref 268 * lookup. transaction commit changes the extent tree. 269 * so the detached nodes are no longer useful. 270 */ 271 while (!list_empty(&cache->detached)) { 272 node = list_entry(cache->detached.next, 273 struct btrfs_backref_node, list); 274 btrfs_backref_cleanup_node(cache, node); 275 } 276 277 while (!list_empty(&cache->changed)) { 278 node = list_entry(cache->changed.next, 279 struct btrfs_backref_node, list); 280 list_del_init(&node->list); 281 BUG_ON(node->pending); 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 285 /* 286 * some nodes can be left in the pending list if there were 287 * errors during processing the pending nodes. 288 */ 289 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 290 list_for_each_entry(node, &cache->pending[level], list) { 291 BUG_ON(!node->pending); 292 if (node->bytenr == node->new_bytenr) 293 continue; 294 update_backref_node(cache, node, node->new_bytenr); 295 } 296 } 297 298 cache->last_trans = 0; 299 return 1; 300 } 301 302 static bool reloc_root_is_dead(struct btrfs_root *root) 303 { 304 /* 305 * Pair with set_bit/clear_bit in clean_dirty_subvols and 306 * btrfs_update_reloc_root. We need to see the updated bit before 307 * trying to access reloc_root 308 */ 309 smp_rmb(); 310 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 311 return true; 312 return false; 313 } 314 315 /* 316 * Check if this subvolume tree has valid reloc tree. 317 * 318 * Reloc tree after swap is considered dead, thus not considered as valid. 319 * This is enough for most callers, as they don't distinguish dead reloc root 320 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 321 * special case. 322 */ 323 static bool have_reloc_root(struct btrfs_root *root) 324 { 325 if (reloc_root_is_dead(root)) 326 return false; 327 if (!root->reloc_root) 328 return false; 329 return true; 330 } 331 332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 333 { 334 struct btrfs_root *reloc_root; 335 336 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 337 return 0; 338 339 /* This root has been merged with its reloc tree, we can ignore it */ 340 if (reloc_root_is_dead(root)) 341 return 1; 342 343 reloc_root = root->reloc_root; 344 if (!reloc_root) 345 return 0; 346 347 if (btrfs_header_generation(reloc_root->commit_root) == 348 root->fs_info->running_transaction->transid) 349 return 0; 350 /* 351 * if there is reloc tree and it was created in previous 352 * transaction backref lookup can find the reloc tree, 353 * so backref node for the fs tree root is useless for 354 * relocation. 355 */ 356 return 1; 357 } 358 359 /* 360 * find reloc tree by address of tree root 361 */ 362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 363 { 364 struct reloc_control *rc = fs_info->reloc_ctl; 365 struct rb_node *rb_node; 366 struct mapping_node *node; 367 struct btrfs_root *root = NULL; 368 369 ASSERT(rc); 370 spin_lock(&rc->reloc_root_tree.lock); 371 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 372 if (rb_node) { 373 node = rb_entry(rb_node, struct mapping_node, rb_node); 374 root = node->data; 375 } 376 spin_unlock(&rc->reloc_root_tree.lock); 377 return btrfs_grab_root(root); 378 } 379 380 /* 381 * For useless nodes, do two major clean ups: 382 * 383 * - Cleanup the children edges and nodes 384 * If child node is also orphan (no parent) during cleanup, then the child 385 * node will also be cleaned up. 386 * 387 * - Freeing up leaves (level 0), keeps nodes detached 388 * For nodes, the node is still cached as "detached" 389 * 390 * Return false if @node is not in the @useless_nodes list. 391 * Return true if @node is in the @useless_nodes list. 392 */ 393 static bool handle_useless_nodes(struct reloc_control *rc, 394 struct btrfs_backref_node *node) 395 { 396 struct btrfs_backref_cache *cache = &rc->backref_cache; 397 struct list_head *useless_node = &cache->useless_node; 398 bool ret = false; 399 400 while (!list_empty(useless_node)) { 401 struct btrfs_backref_node *cur; 402 403 cur = list_first_entry(useless_node, struct btrfs_backref_node, 404 list); 405 list_del_init(&cur->list); 406 407 /* Only tree root nodes can be added to @useless_nodes */ 408 ASSERT(list_empty(&cur->upper)); 409 410 if (cur == node) 411 ret = true; 412 413 /* The node is the lowest node */ 414 if (cur->lowest) { 415 list_del_init(&cur->lower); 416 cur->lowest = 0; 417 } 418 419 /* Cleanup the lower edges */ 420 while (!list_empty(&cur->lower)) { 421 struct btrfs_backref_edge *edge; 422 struct btrfs_backref_node *lower; 423 424 edge = list_entry(cur->lower.next, 425 struct btrfs_backref_edge, list[UPPER]); 426 list_del(&edge->list[UPPER]); 427 list_del(&edge->list[LOWER]); 428 lower = edge->node[LOWER]; 429 btrfs_backref_free_edge(cache, edge); 430 431 /* Child node is also orphan, queue for cleanup */ 432 if (list_empty(&lower->upper)) 433 list_add(&lower->list, useless_node); 434 } 435 /* Mark this block processed for relocation */ 436 mark_block_processed(rc, cur); 437 438 /* 439 * Backref nodes for tree leaves are deleted from the cache. 440 * Backref nodes for upper level tree blocks are left in the 441 * cache to avoid unnecessary backref lookup. 442 */ 443 if (cur->level > 0) { 444 list_add(&cur->list, &cache->detached); 445 cur->detached = 1; 446 } else { 447 rb_erase(&cur->rb_node, &cache->rb_root); 448 btrfs_backref_free_node(cache, cur); 449 } 450 } 451 return ret; 452 } 453 454 /* 455 * Build backref tree for a given tree block. Root of the backref tree 456 * corresponds the tree block, leaves of the backref tree correspond roots of 457 * b-trees that reference the tree block. 458 * 459 * The basic idea of this function is check backrefs of a given block to find 460 * upper level blocks that reference the block, and then check backrefs of 461 * these upper level blocks recursively. The recursion stops when tree root is 462 * reached or backrefs for the block is cached. 463 * 464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 465 * all upper level blocks that directly/indirectly reference the block are also 466 * cached. 467 */ 468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 469 struct btrfs_trans_handle *trans, 470 struct reloc_control *rc, struct btrfs_key *node_key, 471 int level, u64 bytenr) 472 { 473 struct btrfs_backref_iter *iter; 474 struct btrfs_backref_cache *cache = &rc->backref_cache; 475 /* For searching parent of TREE_BLOCK_REF */ 476 struct btrfs_path *path; 477 struct btrfs_backref_node *cur; 478 struct btrfs_backref_node *node = NULL; 479 struct btrfs_backref_edge *edge; 480 int ret; 481 int err = 0; 482 483 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 484 if (!iter) 485 return ERR_PTR(-ENOMEM); 486 path = btrfs_alloc_path(); 487 if (!path) { 488 err = -ENOMEM; 489 goto out; 490 } 491 492 node = btrfs_backref_alloc_node(cache, bytenr, level); 493 if (!node) { 494 err = -ENOMEM; 495 goto out; 496 } 497 498 node->lowest = 1; 499 cur = node; 500 501 /* Breadth-first search to build backref cache */ 502 do { 503 ret = btrfs_backref_add_tree_node(trans, cache, path, iter, 504 node_key, cur); 505 if (ret < 0) { 506 err = ret; 507 goto out; 508 } 509 edge = list_first_entry_or_null(&cache->pending_edge, 510 struct btrfs_backref_edge, list[UPPER]); 511 /* 512 * The pending list isn't empty, take the first block to 513 * process 514 */ 515 if (edge) { 516 list_del_init(&edge->list[UPPER]); 517 cur = edge->node[UPPER]; 518 } 519 } while (edge); 520 521 /* Finish the upper linkage of newly added edges/nodes */ 522 ret = btrfs_backref_finish_upper_links(cache, node); 523 if (ret < 0) { 524 err = ret; 525 goto out; 526 } 527 528 if (handle_useless_nodes(rc, node)) 529 node = NULL; 530 out: 531 btrfs_backref_iter_free(iter); 532 btrfs_free_path(path); 533 if (err) { 534 btrfs_backref_error_cleanup(cache, node); 535 return ERR_PTR(err); 536 } 537 ASSERT(!node || !node->detached); 538 ASSERT(list_empty(&cache->useless_node) && 539 list_empty(&cache->pending_edge)); 540 return node; 541 } 542 543 /* 544 * helper to add backref node for the newly created snapshot. 545 * the backref node is created by cloning backref node that 546 * corresponds to root of source tree 547 */ 548 static int clone_backref_node(struct btrfs_trans_handle *trans, 549 struct reloc_control *rc, 550 struct btrfs_root *src, 551 struct btrfs_root *dest) 552 { 553 struct btrfs_root *reloc_root = src->reloc_root; 554 struct btrfs_backref_cache *cache = &rc->backref_cache; 555 struct btrfs_backref_node *node = NULL; 556 struct btrfs_backref_node *new_node; 557 struct btrfs_backref_edge *edge; 558 struct btrfs_backref_edge *new_edge; 559 struct rb_node *rb_node; 560 561 if (cache->last_trans > 0) 562 update_backref_cache(trans, cache); 563 564 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 565 if (rb_node) { 566 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 567 if (node->detached) 568 node = NULL; 569 else 570 BUG_ON(node->new_bytenr != reloc_root->node->start); 571 } 572 573 if (!node) { 574 rb_node = rb_simple_search(&cache->rb_root, 575 reloc_root->commit_root->start); 576 if (rb_node) { 577 node = rb_entry(rb_node, struct btrfs_backref_node, 578 rb_node); 579 BUG_ON(node->detached); 580 } 581 } 582 583 if (!node) 584 return 0; 585 586 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 587 node->level); 588 if (!new_node) 589 return -ENOMEM; 590 591 new_node->lowest = node->lowest; 592 new_node->checked = 1; 593 new_node->root = btrfs_grab_root(dest); 594 ASSERT(new_node->root); 595 596 if (!node->lowest) { 597 list_for_each_entry(edge, &node->lower, list[UPPER]) { 598 new_edge = btrfs_backref_alloc_edge(cache); 599 if (!new_edge) 600 goto fail; 601 602 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 603 new_node, LINK_UPPER); 604 } 605 } else { 606 list_add_tail(&new_node->lower, &cache->leaves); 607 } 608 609 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 610 &new_node->rb_node); 611 if (rb_node) 612 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 613 614 if (!new_node->lowest) { 615 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 616 list_add_tail(&new_edge->list[LOWER], 617 &new_edge->node[LOWER]->upper); 618 } 619 } 620 return 0; 621 fail: 622 while (!list_empty(&new_node->lower)) { 623 new_edge = list_entry(new_node->lower.next, 624 struct btrfs_backref_edge, list[UPPER]); 625 list_del(&new_edge->list[UPPER]); 626 btrfs_backref_free_edge(cache, new_edge); 627 } 628 btrfs_backref_free_node(cache, new_node); 629 return -ENOMEM; 630 } 631 632 /* 633 * helper to add 'address of tree root -> reloc tree' mapping 634 */ 635 static int __must_check __add_reloc_root(struct btrfs_root *root) 636 { 637 struct btrfs_fs_info *fs_info = root->fs_info; 638 struct rb_node *rb_node; 639 struct mapping_node *node; 640 struct reloc_control *rc = fs_info->reloc_ctl; 641 642 node = kmalloc(sizeof(*node), GFP_NOFS); 643 if (!node) 644 return -ENOMEM; 645 646 node->bytenr = root->commit_root->start; 647 node->data = root; 648 649 spin_lock(&rc->reloc_root_tree.lock); 650 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 651 node->bytenr, &node->rb_node); 652 spin_unlock(&rc->reloc_root_tree.lock); 653 if (rb_node) { 654 btrfs_err(fs_info, 655 "Duplicate root found for start=%llu while inserting into relocation tree", 656 node->bytenr); 657 return -EEXIST; 658 } 659 660 list_add_tail(&root->root_list, &rc->reloc_roots); 661 return 0; 662 } 663 664 /* 665 * helper to delete the 'address of tree root -> reloc tree' 666 * mapping 667 */ 668 static void __del_reloc_root(struct btrfs_root *root) 669 { 670 struct btrfs_fs_info *fs_info = root->fs_info; 671 struct rb_node *rb_node; 672 struct mapping_node *node = NULL; 673 struct reloc_control *rc = fs_info->reloc_ctl; 674 bool put_ref = false; 675 676 if (rc && root->node) { 677 spin_lock(&rc->reloc_root_tree.lock); 678 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 679 root->commit_root->start); 680 if (rb_node) { 681 node = rb_entry(rb_node, struct mapping_node, rb_node); 682 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 683 RB_CLEAR_NODE(&node->rb_node); 684 } 685 spin_unlock(&rc->reloc_root_tree.lock); 686 ASSERT(!node || (struct btrfs_root *)node->data == root); 687 } 688 689 /* 690 * We only put the reloc root here if it's on the list. There's a lot 691 * of places where the pattern is to splice the rc->reloc_roots, process 692 * the reloc roots, and then add the reloc root back onto 693 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 694 * list we don't want the reference being dropped, because the guy 695 * messing with the list is in charge of the reference. 696 */ 697 spin_lock(&fs_info->trans_lock); 698 if (!list_empty(&root->root_list)) { 699 put_ref = true; 700 list_del_init(&root->root_list); 701 } 702 spin_unlock(&fs_info->trans_lock); 703 if (put_ref) 704 btrfs_put_root(root); 705 kfree(node); 706 } 707 708 /* 709 * helper to update the 'address of tree root -> reloc tree' 710 * mapping 711 */ 712 static int __update_reloc_root(struct btrfs_root *root) 713 { 714 struct btrfs_fs_info *fs_info = root->fs_info; 715 struct rb_node *rb_node; 716 struct mapping_node *node = NULL; 717 struct reloc_control *rc = fs_info->reloc_ctl; 718 719 spin_lock(&rc->reloc_root_tree.lock); 720 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 721 root->commit_root->start); 722 if (rb_node) { 723 node = rb_entry(rb_node, struct mapping_node, rb_node); 724 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 725 } 726 spin_unlock(&rc->reloc_root_tree.lock); 727 728 if (!node) 729 return 0; 730 BUG_ON((struct btrfs_root *)node->data != root); 731 732 spin_lock(&rc->reloc_root_tree.lock); 733 node->bytenr = root->node->start; 734 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 735 node->bytenr, &node->rb_node); 736 spin_unlock(&rc->reloc_root_tree.lock); 737 if (rb_node) 738 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 739 return 0; 740 } 741 742 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root, u64 objectid) 744 { 745 struct btrfs_fs_info *fs_info = root->fs_info; 746 struct btrfs_root *reloc_root; 747 struct extent_buffer *eb; 748 struct btrfs_root_item *root_item; 749 struct btrfs_key root_key; 750 int ret = 0; 751 bool must_abort = false; 752 753 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 754 if (!root_item) 755 return ERR_PTR(-ENOMEM); 756 757 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 758 root_key.type = BTRFS_ROOT_ITEM_KEY; 759 root_key.offset = objectid; 760 761 if (root->root_key.objectid == objectid) { 762 u64 commit_root_gen; 763 764 /* called by btrfs_init_reloc_root */ 765 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 766 BTRFS_TREE_RELOC_OBJECTID); 767 if (ret) 768 goto fail; 769 770 /* 771 * Set the last_snapshot field to the generation of the commit 772 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 773 * correctly (returns true) when the relocation root is created 774 * either inside the critical section of a transaction commit 775 * (through transaction.c:qgroup_account_snapshot()) and when 776 * it's created before the transaction commit is started. 777 */ 778 commit_root_gen = btrfs_header_generation(root->commit_root); 779 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 780 } else { 781 /* 782 * called by btrfs_reloc_post_snapshot_hook. 783 * the source tree is a reloc tree, all tree blocks 784 * modified after it was created have RELOC flag 785 * set in their headers. so it's OK to not update 786 * the 'last_snapshot'. 787 */ 788 ret = btrfs_copy_root(trans, root, root->node, &eb, 789 BTRFS_TREE_RELOC_OBJECTID); 790 if (ret) 791 goto fail; 792 } 793 794 /* 795 * We have changed references at this point, we must abort the 796 * transaction if anything fails. 797 */ 798 must_abort = true; 799 800 memcpy(root_item, &root->root_item, sizeof(*root_item)); 801 btrfs_set_root_bytenr(root_item, eb->start); 802 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 803 btrfs_set_root_generation(root_item, trans->transid); 804 805 if (root->root_key.objectid == objectid) { 806 btrfs_set_root_refs(root_item, 0); 807 memset(&root_item->drop_progress, 0, 808 sizeof(struct btrfs_disk_key)); 809 btrfs_set_root_drop_level(root_item, 0); 810 } 811 812 btrfs_tree_unlock(eb); 813 free_extent_buffer(eb); 814 815 ret = btrfs_insert_root(trans, fs_info->tree_root, 816 &root_key, root_item); 817 if (ret) 818 goto fail; 819 820 kfree(root_item); 821 822 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 823 if (IS_ERR(reloc_root)) { 824 ret = PTR_ERR(reloc_root); 825 goto abort; 826 } 827 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 828 reloc_root->last_trans = trans->transid; 829 return reloc_root; 830 fail: 831 kfree(root_item); 832 abort: 833 if (must_abort) 834 btrfs_abort_transaction(trans, ret); 835 return ERR_PTR(ret); 836 } 837 838 /* 839 * create reloc tree for a given fs tree. reloc tree is just a 840 * snapshot of the fs tree with special root objectid. 841 * 842 * The reloc_root comes out of here with two references, one for 843 * root->reloc_root, and another for being on the rc->reloc_roots list. 844 */ 845 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 846 struct btrfs_root *root) 847 { 848 struct btrfs_fs_info *fs_info = root->fs_info; 849 struct btrfs_root *reloc_root; 850 struct reloc_control *rc = fs_info->reloc_ctl; 851 struct btrfs_block_rsv *rsv; 852 int clear_rsv = 0; 853 int ret; 854 855 if (!rc) 856 return 0; 857 858 /* 859 * The subvolume has reloc tree but the swap is finished, no need to 860 * create/update the dead reloc tree 861 */ 862 if (reloc_root_is_dead(root)) 863 return 0; 864 865 /* 866 * This is subtle but important. We do not do 867 * record_root_in_transaction for reloc roots, instead we record their 868 * corresponding fs root, and then here we update the last trans for the 869 * reloc root. This means that we have to do this for the entire life 870 * of the reloc root, regardless of which stage of the relocation we are 871 * in. 872 */ 873 if (root->reloc_root) { 874 reloc_root = root->reloc_root; 875 reloc_root->last_trans = trans->transid; 876 return 0; 877 } 878 879 /* 880 * We are merging reloc roots, we do not need new reloc trees. Also 881 * reloc trees never need their own reloc tree. 882 */ 883 if (!rc->create_reloc_tree || 884 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 885 return 0; 886 887 if (!trans->reloc_reserved) { 888 rsv = trans->block_rsv; 889 trans->block_rsv = rc->block_rsv; 890 clear_rsv = 1; 891 } 892 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 893 if (clear_rsv) 894 trans->block_rsv = rsv; 895 if (IS_ERR(reloc_root)) 896 return PTR_ERR(reloc_root); 897 898 ret = __add_reloc_root(reloc_root); 899 ASSERT(ret != -EEXIST); 900 if (ret) { 901 /* Pairs with create_reloc_root */ 902 btrfs_put_root(reloc_root); 903 return ret; 904 } 905 root->reloc_root = btrfs_grab_root(reloc_root); 906 return 0; 907 } 908 909 /* 910 * update root item of reloc tree 911 */ 912 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 913 struct btrfs_root *root) 914 { 915 struct btrfs_fs_info *fs_info = root->fs_info; 916 struct btrfs_root *reloc_root; 917 struct btrfs_root_item *root_item; 918 int ret; 919 920 if (!have_reloc_root(root)) 921 return 0; 922 923 reloc_root = root->reloc_root; 924 root_item = &reloc_root->root_item; 925 926 /* 927 * We are probably ok here, but __del_reloc_root() will drop its ref of 928 * the root. We have the ref for root->reloc_root, but just in case 929 * hold it while we update the reloc root. 930 */ 931 btrfs_grab_root(reloc_root); 932 933 /* root->reloc_root will stay until current relocation finished */ 934 if (fs_info->reloc_ctl->merge_reloc_tree && 935 btrfs_root_refs(root_item) == 0) { 936 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 937 /* 938 * Mark the tree as dead before we change reloc_root so 939 * have_reloc_root will not touch it from now on. 940 */ 941 smp_wmb(); 942 __del_reloc_root(reloc_root); 943 } 944 945 if (reloc_root->commit_root != reloc_root->node) { 946 __update_reloc_root(reloc_root); 947 btrfs_set_root_node(root_item, reloc_root->node); 948 free_extent_buffer(reloc_root->commit_root); 949 reloc_root->commit_root = btrfs_root_node(reloc_root); 950 } 951 952 ret = btrfs_update_root(trans, fs_info->tree_root, 953 &reloc_root->root_key, root_item); 954 btrfs_put_root(reloc_root); 955 return ret; 956 } 957 958 /* 959 * helper to find first cached inode with inode number >= objectid 960 * in a subvolume 961 */ 962 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 963 { 964 struct rb_node *node; 965 struct rb_node *prev; 966 struct btrfs_inode *entry; 967 struct inode *inode; 968 969 spin_lock(&root->inode_lock); 970 again: 971 node = root->inode_tree.rb_node; 972 prev = NULL; 973 while (node) { 974 prev = node; 975 entry = rb_entry(node, struct btrfs_inode, rb_node); 976 977 if (objectid < btrfs_ino(entry)) 978 node = node->rb_left; 979 else if (objectid > btrfs_ino(entry)) 980 node = node->rb_right; 981 else 982 break; 983 } 984 if (!node) { 985 while (prev) { 986 entry = rb_entry(prev, struct btrfs_inode, rb_node); 987 if (objectid <= btrfs_ino(entry)) { 988 node = prev; 989 break; 990 } 991 prev = rb_next(prev); 992 } 993 } 994 while (node) { 995 entry = rb_entry(node, struct btrfs_inode, rb_node); 996 inode = igrab(&entry->vfs_inode); 997 if (inode) { 998 spin_unlock(&root->inode_lock); 999 return inode; 1000 } 1001 1002 objectid = btrfs_ino(entry) + 1; 1003 if (cond_resched_lock(&root->inode_lock)) 1004 goto again; 1005 1006 node = rb_next(node); 1007 } 1008 spin_unlock(&root->inode_lock); 1009 return NULL; 1010 } 1011 1012 /* 1013 * get new location of data 1014 */ 1015 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1016 u64 bytenr, u64 num_bytes) 1017 { 1018 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1019 struct btrfs_path *path; 1020 struct btrfs_file_extent_item *fi; 1021 struct extent_buffer *leaf; 1022 int ret; 1023 1024 path = btrfs_alloc_path(); 1025 if (!path) 1026 return -ENOMEM; 1027 1028 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1029 ret = btrfs_lookup_file_extent(NULL, root, path, 1030 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1031 if (ret < 0) 1032 goto out; 1033 if (ret > 0) { 1034 ret = -ENOENT; 1035 goto out; 1036 } 1037 1038 leaf = path->nodes[0]; 1039 fi = btrfs_item_ptr(leaf, path->slots[0], 1040 struct btrfs_file_extent_item); 1041 1042 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1043 btrfs_file_extent_compression(leaf, fi) || 1044 btrfs_file_extent_encryption(leaf, fi) || 1045 btrfs_file_extent_other_encoding(leaf, fi)); 1046 1047 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1048 ret = -EINVAL; 1049 goto out; 1050 } 1051 1052 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1053 ret = 0; 1054 out: 1055 btrfs_free_path(path); 1056 return ret; 1057 } 1058 1059 /* 1060 * update file extent items in the tree leaf to point to 1061 * the new locations. 1062 */ 1063 static noinline_for_stack 1064 int replace_file_extents(struct btrfs_trans_handle *trans, 1065 struct reloc_control *rc, 1066 struct btrfs_root *root, 1067 struct extent_buffer *leaf) 1068 { 1069 struct btrfs_fs_info *fs_info = root->fs_info; 1070 struct btrfs_key key; 1071 struct btrfs_file_extent_item *fi; 1072 struct inode *inode = NULL; 1073 u64 parent; 1074 u64 bytenr; 1075 u64 new_bytenr = 0; 1076 u64 num_bytes; 1077 u64 end; 1078 u32 nritems; 1079 u32 i; 1080 int ret = 0; 1081 int first = 1; 1082 int dirty = 0; 1083 1084 if (rc->stage != UPDATE_DATA_PTRS) 1085 return 0; 1086 1087 /* reloc trees always use full backref */ 1088 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1089 parent = leaf->start; 1090 else 1091 parent = 0; 1092 1093 nritems = btrfs_header_nritems(leaf); 1094 for (i = 0; i < nritems; i++) { 1095 struct btrfs_ref ref = { 0 }; 1096 1097 cond_resched(); 1098 btrfs_item_key_to_cpu(leaf, &key, i); 1099 if (key.type != BTRFS_EXTENT_DATA_KEY) 1100 continue; 1101 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1102 if (btrfs_file_extent_type(leaf, fi) == 1103 BTRFS_FILE_EXTENT_INLINE) 1104 continue; 1105 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1106 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1107 if (bytenr == 0) 1108 continue; 1109 if (!in_range(bytenr, rc->block_group->start, 1110 rc->block_group->length)) 1111 continue; 1112 1113 /* 1114 * if we are modifying block in fs tree, wait for read_folio 1115 * to complete and drop the extent cache 1116 */ 1117 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1118 if (first) { 1119 inode = find_next_inode(root, key.objectid); 1120 first = 0; 1121 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1122 btrfs_add_delayed_iput(BTRFS_I(inode)); 1123 inode = find_next_inode(root, key.objectid); 1124 } 1125 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1126 struct extent_state *cached_state = NULL; 1127 1128 end = key.offset + 1129 btrfs_file_extent_num_bytes(leaf, fi); 1130 WARN_ON(!IS_ALIGNED(key.offset, 1131 fs_info->sectorsize)); 1132 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1133 end--; 1134 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1135 key.offset, end, 1136 &cached_state); 1137 if (!ret) 1138 continue; 1139 1140 btrfs_drop_extent_map_range(BTRFS_I(inode), 1141 key.offset, end, true); 1142 unlock_extent(&BTRFS_I(inode)->io_tree, 1143 key.offset, end, &cached_state); 1144 } 1145 } 1146 1147 ret = get_new_location(rc->data_inode, &new_bytenr, 1148 bytenr, num_bytes); 1149 if (ret) { 1150 /* 1151 * Don't have to abort since we've not changed anything 1152 * in the file extent yet. 1153 */ 1154 break; 1155 } 1156 1157 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1158 dirty = 1; 1159 1160 key.offset -= btrfs_file_extent_offset(leaf, fi); 1161 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1162 num_bytes, parent); 1163 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1164 key.objectid, key.offset, 1165 root->root_key.objectid, false); 1166 ret = btrfs_inc_extent_ref(trans, &ref); 1167 if (ret) { 1168 btrfs_abort_transaction(trans, ret); 1169 break; 1170 } 1171 1172 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1173 num_bytes, parent); 1174 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1175 key.objectid, key.offset, 1176 root->root_key.objectid, false); 1177 ret = btrfs_free_extent(trans, &ref); 1178 if (ret) { 1179 btrfs_abort_transaction(trans, ret); 1180 break; 1181 } 1182 } 1183 if (dirty) 1184 btrfs_mark_buffer_dirty(leaf); 1185 if (inode) 1186 btrfs_add_delayed_iput(BTRFS_I(inode)); 1187 return ret; 1188 } 1189 1190 static noinline_for_stack 1191 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1192 struct btrfs_path *path, int level) 1193 { 1194 struct btrfs_disk_key key1; 1195 struct btrfs_disk_key key2; 1196 btrfs_node_key(eb, &key1, slot); 1197 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1198 return memcmp(&key1, &key2, sizeof(key1)); 1199 } 1200 1201 /* 1202 * try to replace tree blocks in fs tree with the new blocks 1203 * in reloc tree. tree blocks haven't been modified since the 1204 * reloc tree was create can be replaced. 1205 * 1206 * if a block was replaced, level of the block + 1 is returned. 1207 * if no block got replaced, 0 is returned. if there are other 1208 * errors, a negative error number is returned. 1209 */ 1210 static noinline_for_stack 1211 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1212 struct btrfs_root *dest, struct btrfs_root *src, 1213 struct btrfs_path *path, struct btrfs_key *next_key, 1214 int lowest_level, int max_level) 1215 { 1216 struct btrfs_fs_info *fs_info = dest->fs_info; 1217 struct extent_buffer *eb; 1218 struct extent_buffer *parent; 1219 struct btrfs_ref ref = { 0 }; 1220 struct btrfs_key key; 1221 u64 old_bytenr; 1222 u64 new_bytenr; 1223 u64 old_ptr_gen; 1224 u64 new_ptr_gen; 1225 u64 last_snapshot; 1226 u32 blocksize; 1227 int cow = 0; 1228 int level; 1229 int ret; 1230 int slot; 1231 1232 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1233 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1234 1235 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1236 again: 1237 slot = path->slots[lowest_level]; 1238 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1239 1240 eb = btrfs_lock_root_node(dest); 1241 level = btrfs_header_level(eb); 1242 1243 if (level < lowest_level) { 1244 btrfs_tree_unlock(eb); 1245 free_extent_buffer(eb); 1246 return 0; 1247 } 1248 1249 if (cow) { 1250 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1251 BTRFS_NESTING_COW); 1252 if (ret) { 1253 btrfs_tree_unlock(eb); 1254 free_extent_buffer(eb); 1255 return ret; 1256 } 1257 } 1258 1259 if (next_key) { 1260 next_key->objectid = (u64)-1; 1261 next_key->type = (u8)-1; 1262 next_key->offset = (u64)-1; 1263 } 1264 1265 parent = eb; 1266 while (1) { 1267 level = btrfs_header_level(parent); 1268 ASSERT(level >= lowest_level); 1269 1270 ret = btrfs_bin_search(parent, 0, &key, &slot); 1271 if (ret < 0) 1272 break; 1273 if (ret && slot > 0) 1274 slot--; 1275 1276 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1277 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1278 1279 old_bytenr = btrfs_node_blockptr(parent, slot); 1280 blocksize = fs_info->nodesize; 1281 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1282 1283 if (level <= max_level) { 1284 eb = path->nodes[level]; 1285 new_bytenr = btrfs_node_blockptr(eb, 1286 path->slots[level]); 1287 new_ptr_gen = btrfs_node_ptr_generation(eb, 1288 path->slots[level]); 1289 } else { 1290 new_bytenr = 0; 1291 new_ptr_gen = 0; 1292 } 1293 1294 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1295 ret = level; 1296 break; 1297 } 1298 1299 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1300 memcmp_node_keys(parent, slot, path, level)) { 1301 if (level <= lowest_level) { 1302 ret = 0; 1303 break; 1304 } 1305 1306 eb = btrfs_read_node_slot(parent, slot); 1307 if (IS_ERR(eb)) { 1308 ret = PTR_ERR(eb); 1309 break; 1310 } 1311 btrfs_tree_lock(eb); 1312 if (cow) { 1313 ret = btrfs_cow_block(trans, dest, eb, parent, 1314 slot, &eb, 1315 BTRFS_NESTING_COW); 1316 if (ret) { 1317 btrfs_tree_unlock(eb); 1318 free_extent_buffer(eb); 1319 break; 1320 } 1321 } 1322 1323 btrfs_tree_unlock(parent); 1324 free_extent_buffer(parent); 1325 1326 parent = eb; 1327 continue; 1328 } 1329 1330 if (!cow) { 1331 btrfs_tree_unlock(parent); 1332 free_extent_buffer(parent); 1333 cow = 1; 1334 goto again; 1335 } 1336 1337 btrfs_node_key_to_cpu(path->nodes[level], &key, 1338 path->slots[level]); 1339 btrfs_release_path(path); 1340 1341 path->lowest_level = level; 1342 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1343 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1344 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1345 path->lowest_level = 0; 1346 if (ret) { 1347 if (ret > 0) 1348 ret = -ENOENT; 1349 break; 1350 } 1351 1352 /* 1353 * Info qgroup to trace both subtrees. 1354 * 1355 * We must trace both trees. 1356 * 1) Tree reloc subtree 1357 * If not traced, we will leak data numbers 1358 * 2) Fs subtree 1359 * If not traced, we will double count old data 1360 * 1361 * We don't scan the subtree right now, but only record 1362 * the swapped tree blocks. 1363 * The real subtree rescan is delayed until we have new 1364 * CoW on the subtree root node before transaction commit. 1365 */ 1366 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1367 rc->block_group, parent, slot, 1368 path->nodes[level], path->slots[level], 1369 last_snapshot); 1370 if (ret < 0) 1371 break; 1372 /* 1373 * swap blocks in fs tree and reloc tree. 1374 */ 1375 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1376 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1377 btrfs_mark_buffer_dirty(parent); 1378 1379 btrfs_set_node_blockptr(path->nodes[level], 1380 path->slots[level], old_bytenr); 1381 btrfs_set_node_ptr_generation(path->nodes[level], 1382 path->slots[level], old_ptr_gen); 1383 btrfs_mark_buffer_dirty(path->nodes[level]); 1384 1385 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1386 blocksize, path->nodes[level]->start); 1387 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1388 0, true); 1389 ret = btrfs_inc_extent_ref(trans, &ref); 1390 if (ret) { 1391 btrfs_abort_transaction(trans, ret); 1392 break; 1393 } 1394 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1395 blocksize, 0); 1396 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1397 true); 1398 ret = btrfs_inc_extent_ref(trans, &ref); 1399 if (ret) { 1400 btrfs_abort_transaction(trans, ret); 1401 break; 1402 } 1403 1404 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1405 blocksize, path->nodes[level]->start); 1406 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1407 0, true); 1408 ret = btrfs_free_extent(trans, &ref); 1409 if (ret) { 1410 btrfs_abort_transaction(trans, ret); 1411 break; 1412 } 1413 1414 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1415 blocksize, 0); 1416 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1417 0, true); 1418 ret = btrfs_free_extent(trans, &ref); 1419 if (ret) { 1420 btrfs_abort_transaction(trans, ret); 1421 break; 1422 } 1423 1424 btrfs_unlock_up_safe(path, 0); 1425 1426 ret = level; 1427 break; 1428 } 1429 btrfs_tree_unlock(parent); 1430 free_extent_buffer(parent); 1431 return ret; 1432 } 1433 1434 /* 1435 * helper to find next relocated block in reloc tree 1436 */ 1437 static noinline_for_stack 1438 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1439 int *level) 1440 { 1441 struct extent_buffer *eb; 1442 int i; 1443 u64 last_snapshot; 1444 u32 nritems; 1445 1446 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1447 1448 for (i = 0; i < *level; i++) { 1449 free_extent_buffer(path->nodes[i]); 1450 path->nodes[i] = NULL; 1451 } 1452 1453 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1454 eb = path->nodes[i]; 1455 nritems = btrfs_header_nritems(eb); 1456 while (path->slots[i] + 1 < nritems) { 1457 path->slots[i]++; 1458 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1459 last_snapshot) 1460 continue; 1461 1462 *level = i; 1463 return 0; 1464 } 1465 free_extent_buffer(path->nodes[i]); 1466 path->nodes[i] = NULL; 1467 } 1468 return 1; 1469 } 1470 1471 /* 1472 * walk down reloc tree to find relocated block of lowest level 1473 */ 1474 static noinline_for_stack 1475 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1476 int *level) 1477 { 1478 struct extent_buffer *eb = NULL; 1479 int i; 1480 u64 ptr_gen = 0; 1481 u64 last_snapshot; 1482 u32 nritems; 1483 1484 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1485 1486 for (i = *level; i > 0; i--) { 1487 eb = path->nodes[i]; 1488 nritems = btrfs_header_nritems(eb); 1489 while (path->slots[i] < nritems) { 1490 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1491 if (ptr_gen > last_snapshot) 1492 break; 1493 path->slots[i]++; 1494 } 1495 if (path->slots[i] >= nritems) { 1496 if (i == *level) 1497 break; 1498 *level = i + 1; 1499 return 0; 1500 } 1501 if (i == 1) { 1502 *level = i; 1503 return 0; 1504 } 1505 1506 eb = btrfs_read_node_slot(eb, path->slots[i]); 1507 if (IS_ERR(eb)) 1508 return PTR_ERR(eb); 1509 BUG_ON(btrfs_header_level(eb) != i - 1); 1510 path->nodes[i - 1] = eb; 1511 path->slots[i - 1] = 0; 1512 } 1513 return 1; 1514 } 1515 1516 /* 1517 * invalidate extent cache for file extents whose key in range of 1518 * [min_key, max_key) 1519 */ 1520 static int invalidate_extent_cache(struct btrfs_root *root, 1521 struct btrfs_key *min_key, 1522 struct btrfs_key *max_key) 1523 { 1524 struct btrfs_fs_info *fs_info = root->fs_info; 1525 struct inode *inode = NULL; 1526 u64 objectid; 1527 u64 start, end; 1528 u64 ino; 1529 1530 objectid = min_key->objectid; 1531 while (1) { 1532 struct extent_state *cached_state = NULL; 1533 1534 cond_resched(); 1535 iput(inode); 1536 1537 if (objectid > max_key->objectid) 1538 break; 1539 1540 inode = find_next_inode(root, objectid); 1541 if (!inode) 1542 break; 1543 ino = btrfs_ino(BTRFS_I(inode)); 1544 1545 if (ino > max_key->objectid) { 1546 iput(inode); 1547 break; 1548 } 1549 1550 objectid = ino + 1; 1551 if (!S_ISREG(inode->i_mode)) 1552 continue; 1553 1554 if (unlikely(min_key->objectid == ino)) { 1555 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1556 continue; 1557 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1558 start = 0; 1559 else { 1560 start = min_key->offset; 1561 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1562 } 1563 } else { 1564 start = 0; 1565 } 1566 1567 if (unlikely(max_key->objectid == ino)) { 1568 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1569 continue; 1570 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1571 end = (u64)-1; 1572 } else { 1573 if (max_key->offset == 0) 1574 continue; 1575 end = max_key->offset; 1576 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1577 end--; 1578 } 1579 } else { 1580 end = (u64)-1; 1581 } 1582 1583 /* the lock_extent waits for read_folio to complete */ 1584 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1585 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); 1586 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1587 } 1588 return 0; 1589 } 1590 1591 static int find_next_key(struct btrfs_path *path, int level, 1592 struct btrfs_key *key) 1593 1594 { 1595 while (level < BTRFS_MAX_LEVEL) { 1596 if (!path->nodes[level]) 1597 break; 1598 if (path->slots[level] + 1 < 1599 btrfs_header_nritems(path->nodes[level])) { 1600 btrfs_node_key_to_cpu(path->nodes[level], key, 1601 path->slots[level] + 1); 1602 return 0; 1603 } 1604 level++; 1605 } 1606 return 1; 1607 } 1608 1609 /* 1610 * Insert current subvolume into reloc_control::dirty_subvol_roots 1611 */ 1612 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1613 struct reloc_control *rc, 1614 struct btrfs_root *root) 1615 { 1616 struct btrfs_root *reloc_root = root->reloc_root; 1617 struct btrfs_root_item *reloc_root_item; 1618 int ret; 1619 1620 /* @root must be a subvolume tree root with a valid reloc tree */ 1621 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1622 ASSERT(reloc_root); 1623 1624 reloc_root_item = &reloc_root->root_item; 1625 memset(&reloc_root_item->drop_progress, 0, 1626 sizeof(reloc_root_item->drop_progress)); 1627 btrfs_set_root_drop_level(reloc_root_item, 0); 1628 btrfs_set_root_refs(reloc_root_item, 0); 1629 ret = btrfs_update_reloc_root(trans, root); 1630 if (ret) 1631 return ret; 1632 1633 if (list_empty(&root->reloc_dirty_list)) { 1634 btrfs_grab_root(root); 1635 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1636 } 1637 1638 return 0; 1639 } 1640 1641 static int clean_dirty_subvols(struct reloc_control *rc) 1642 { 1643 struct btrfs_root *root; 1644 struct btrfs_root *next; 1645 int ret = 0; 1646 int ret2; 1647 1648 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1649 reloc_dirty_list) { 1650 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1651 /* Merged subvolume, cleanup its reloc root */ 1652 struct btrfs_root *reloc_root = root->reloc_root; 1653 1654 list_del_init(&root->reloc_dirty_list); 1655 root->reloc_root = NULL; 1656 /* 1657 * Need barrier to ensure clear_bit() only happens after 1658 * root->reloc_root = NULL. Pairs with have_reloc_root. 1659 */ 1660 smp_wmb(); 1661 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1662 if (reloc_root) { 1663 /* 1664 * btrfs_drop_snapshot drops our ref we hold for 1665 * ->reloc_root. If it fails however we must 1666 * drop the ref ourselves. 1667 */ 1668 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1669 if (ret2 < 0) { 1670 btrfs_put_root(reloc_root); 1671 if (!ret) 1672 ret = ret2; 1673 } 1674 } 1675 btrfs_put_root(root); 1676 } else { 1677 /* Orphan reloc tree, just clean it up */ 1678 ret2 = btrfs_drop_snapshot(root, 0, 1); 1679 if (ret2 < 0) { 1680 btrfs_put_root(root); 1681 if (!ret) 1682 ret = ret2; 1683 } 1684 } 1685 } 1686 return ret; 1687 } 1688 1689 /* 1690 * merge the relocated tree blocks in reloc tree with corresponding 1691 * fs tree. 1692 */ 1693 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1694 struct btrfs_root *root) 1695 { 1696 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1697 struct btrfs_key key; 1698 struct btrfs_key next_key; 1699 struct btrfs_trans_handle *trans = NULL; 1700 struct btrfs_root *reloc_root; 1701 struct btrfs_root_item *root_item; 1702 struct btrfs_path *path; 1703 struct extent_buffer *leaf; 1704 int reserve_level; 1705 int level; 1706 int max_level; 1707 int replaced = 0; 1708 int ret = 0; 1709 u32 min_reserved; 1710 1711 path = btrfs_alloc_path(); 1712 if (!path) 1713 return -ENOMEM; 1714 path->reada = READA_FORWARD; 1715 1716 reloc_root = root->reloc_root; 1717 root_item = &reloc_root->root_item; 1718 1719 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1720 level = btrfs_root_level(root_item); 1721 atomic_inc(&reloc_root->node->refs); 1722 path->nodes[level] = reloc_root->node; 1723 path->slots[level] = 0; 1724 } else { 1725 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1726 1727 level = btrfs_root_drop_level(root_item); 1728 BUG_ON(level == 0); 1729 path->lowest_level = level; 1730 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1731 path->lowest_level = 0; 1732 if (ret < 0) { 1733 btrfs_free_path(path); 1734 return ret; 1735 } 1736 1737 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1738 path->slots[level]); 1739 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1740 1741 btrfs_unlock_up_safe(path, 0); 1742 } 1743 1744 /* 1745 * In merge_reloc_root(), we modify the upper level pointer to swap the 1746 * tree blocks between reloc tree and subvolume tree. Thus for tree 1747 * block COW, we COW at most from level 1 to root level for each tree. 1748 * 1749 * Thus the needed metadata size is at most root_level * nodesize, 1750 * and * 2 since we have two trees to COW. 1751 */ 1752 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1753 min_reserved = fs_info->nodesize * reserve_level * 2; 1754 memset(&next_key, 0, sizeof(next_key)); 1755 1756 while (1) { 1757 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1758 min_reserved, 1759 BTRFS_RESERVE_FLUSH_LIMIT); 1760 if (ret) 1761 goto out; 1762 trans = btrfs_start_transaction(root, 0); 1763 if (IS_ERR(trans)) { 1764 ret = PTR_ERR(trans); 1765 trans = NULL; 1766 goto out; 1767 } 1768 1769 /* 1770 * At this point we no longer have a reloc_control, so we can't 1771 * depend on btrfs_init_reloc_root to update our last_trans. 1772 * 1773 * But that's ok, we started the trans handle on our 1774 * corresponding fs_root, which means it's been added to the 1775 * dirty list. At commit time we'll still call 1776 * btrfs_update_reloc_root() and update our root item 1777 * appropriately. 1778 */ 1779 reloc_root->last_trans = trans->transid; 1780 trans->block_rsv = rc->block_rsv; 1781 1782 replaced = 0; 1783 max_level = level; 1784 1785 ret = walk_down_reloc_tree(reloc_root, path, &level); 1786 if (ret < 0) 1787 goto out; 1788 if (ret > 0) 1789 break; 1790 1791 if (!find_next_key(path, level, &key) && 1792 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1793 ret = 0; 1794 } else { 1795 ret = replace_path(trans, rc, root, reloc_root, path, 1796 &next_key, level, max_level); 1797 } 1798 if (ret < 0) 1799 goto out; 1800 if (ret > 0) { 1801 level = ret; 1802 btrfs_node_key_to_cpu(path->nodes[level], &key, 1803 path->slots[level]); 1804 replaced = 1; 1805 } 1806 1807 ret = walk_up_reloc_tree(reloc_root, path, &level); 1808 if (ret > 0) 1809 break; 1810 1811 BUG_ON(level == 0); 1812 /* 1813 * save the merging progress in the drop_progress. 1814 * this is OK since root refs == 1 in this case. 1815 */ 1816 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1817 path->slots[level]); 1818 btrfs_set_root_drop_level(root_item, level); 1819 1820 btrfs_end_transaction_throttle(trans); 1821 trans = NULL; 1822 1823 btrfs_btree_balance_dirty(fs_info); 1824 1825 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1826 invalidate_extent_cache(root, &key, &next_key); 1827 } 1828 1829 /* 1830 * handle the case only one block in the fs tree need to be 1831 * relocated and the block is tree root. 1832 */ 1833 leaf = btrfs_lock_root_node(root); 1834 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1835 BTRFS_NESTING_COW); 1836 btrfs_tree_unlock(leaf); 1837 free_extent_buffer(leaf); 1838 out: 1839 btrfs_free_path(path); 1840 1841 if (ret == 0) { 1842 ret = insert_dirty_subvol(trans, rc, root); 1843 if (ret) 1844 btrfs_abort_transaction(trans, ret); 1845 } 1846 1847 if (trans) 1848 btrfs_end_transaction_throttle(trans); 1849 1850 btrfs_btree_balance_dirty(fs_info); 1851 1852 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1853 invalidate_extent_cache(root, &key, &next_key); 1854 1855 return ret; 1856 } 1857 1858 static noinline_for_stack 1859 int prepare_to_merge(struct reloc_control *rc, int err) 1860 { 1861 struct btrfs_root *root = rc->extent_root; 1862 struct btrfs_fs_info *fs_info = root->fs_info; 1863 struct btrfs_root *reloc_root; 1864 struct btrfs_trans_handle *trans; 1865 LIST_HEAD(reloc_roots); 1866 u64 num_bytes = 0; 1867 int ret; 1868 1869 mutex_lock(&fs_info->reloc_mutex); 1870 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1871 rc->merging_rsv_size += rc->nodes_relocated * 2; 1872 mutex_unlock(&fs_info->reloc_mutex); 1873 1874 again: 1875 if (!err) { 1876 num_bytes = rc->merging_rsv_size; 1877 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1878 BTRFS_RESERVE_FLUSH_ALL); 1879 if (ret) 1880 err = ret; 1881 } 1882 1883 trans = btrfs_join_transaction(rc->extent_root); 1884 if (IS_ERR(trans)) { 1885 if (!err) 1886 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1887 num_bytes, NULL); 1888 return PTR_ERR(trans); 1889 } 1890 1891 if (!err) { 1892 if (num_bytes != rc->merging_rsv_size) { 1893 btrfs_end_transaction(trans); 1894 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1895 num_bytes, NULL); 1896 goto again; 1897 } 1898 } 1899 1900 rc->merge_reloc_tree = 1; 1901 1902 while (!list_empty(&rc->reloc_roots)) { 1903 reloc_root = list_entry(rc->reloc_roots.next, 1904 struct btrfs_root, root_list); 1905 list_del_init(&reloc_root->root_list); 1906 1907 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1908 false); 1909 if (IS_ERR(root)) { 1910 /* 1911 * Even if we have an error we need this reloc root 1912 * back on our list so we can clean up properly. 1913 */ 1914 list_add(&reloc_root->root_list, &reloc_roots); 1915 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1916 if (!err) 1917 err = PTR_ERR(root); 1918 break; 1919 } 1920 1921 if (unlikely(root->reloc_root != reloc_root)) { 1922 if (root->reloc_root) { 1923 btrfs_err(fs_info, 1924 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", 1925 root->root_key.objectid, 1926 root->reloc_root->root_key.objectid, 1927 root->reloc_root->root_key.type, 1928 root->reloc_root->root_key.offset, 1929 btrfs_root_generation( 1930 &root->reloc_root->root_item), 1931 reloc_root->root_key.objectid, 1932 reloc_root->root_key.type, 1933 reloc_root->root_key.offset, 1934 btrfs_root_generation( 1935 &reloc_root->root_item)); 1936 } else { 1937 btrfs_err(fs_info, 1938 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", 1939 root->root_key.objectid, 1940 reloc_root->root_key.objectid, 1941 reloc_root->root_key.type, 1942 reloc_root->root_key.offset, 1943 btrfs_root_generation( 1944 &reloc_root->root_item)); 1945 } 1946 list_add(&reloc_root->root_list, &reloc_roots); 1947 btrfs_put_root(root); 1948 btrfs_abort_transaction(trans, -EUCLEAN); 1949 if (!err) 1950 err = -EUCLEAN; 1951 break; 1952 } 1953 1954 /* 1955 * set reference count to 1, so btrfs_recover_relocation 1956 * knows it should resumes merging 1957 */ 1958 if (!err) 1959 btrfs_set_root_refs(&reloc_root->root_item, 1); 1960 ret = btrfs_update_reloc_root(trans, root); 1961 1962 /* 1963 * Even if we have an error we need this reloc root back on our 1964 * list so we can clean up properly. 1965 */ 1966 list_add(&reloc_root->root_list, &reloc_roots); 1967 btrfs_put_root(root); 1968 1969 if (ret) { 1970 btrfs_abort_transaction(trans, ret); 1971 if (!err) 1972 err = ret; 1973 break; 1974 } 1975 } 1976 1977 list_splice(&reloc_roots, &rc->reloc_roots); 1978 1979 if (!err) 1980 err = btrfs_commit_transaction(trans); 1981 else 1982 btrfs_end_transaction(trans); 1983 return err; 1984 } 1985 1986 static noinline_for_stack 1987 void free_reloc_roots(struct list_head *list) 1988 { 1989 struct btrfs_root *reloc_root, *tmp; 1990 1991 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1992 __del_reloc_root(reloc_root); 1993 } 1994 1995 static noinline_for_stack 1996 void merge_reloc_roots(struct reloc_control *rc) 1997 { 1998 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1999 struct btrfs_root *root; 2000 struct btrfs_root *reloc_root; 2001 LIST_HEAD(reloc_roots); 2002 int found = 0; 2003 int ret = 0; 2004 again: 2005 root = rc->extent_root; 2006 2007 /* 2008 * this serializes us with btrfs_record_root_in_transaction, 2009 * we have to make sure nobody is in the middle of 2010 * adding their roots to the list while we are 2011 * doing this splice 2012 */ 2013 mutex_lock(&fs_info->reloc_mutex); 2014 list_splice_init(&rc->reloc_roots, &reloc_roots); 2015 mutex_unlock(&fs_info->reloc_mutex); 2016 2017 while (!list_empty(&reloc_roots)) { 2018 found = 1; 2019 reloc_root = list_entry(reloc_roots.next, 2020 struct btrfs_root, root_list); 2021 2022 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 2023 false); 2024 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2025 if (WARN_ON(IS_ERR(root))) { 2026 /* 2027 * For recovery we read the fs roots on mount, 2028 * and if we didn't find the root then we marked 2029 * the reloc root as a garbage root. For normal 2030 * relocation obviously the root should exist in 2031 * memory. However there's no reason we can't 2032 * handle the error properly here just in case. 2033 */ 2034 ret = PTR_ERR(root); 2035 goto out; 2036 } 2037 if (WARN_ON(root->reloc_root != reloc_root)) { 2038 /* 2039 * This can happen if on-disk metadata has some 2040 * corruption, e.g. bad reloc tree key offset. 2041 */ 2042 ret = -EINVAL; 2043 goto out; 2044 } 2045 ret = merge_reloc_root(rc, root); 2046 btrfs_put_root(root); 2047 if (ret) { 2048 if (list_empty(&reloc_root->root_list)) 2049 list_add_tail(&reloc_root->root_list, 2050 &reloc_roots); 2051 goto out; 2052 } 2053 } else { 2054 if (!IS_ERR(root)) { 2055 if (root->reloc_root == reloc_root) { 2056 root->reloc_root = NULL; 2057 btrfs_put_root(reloc_root); 2058 } 2059 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2060 &root->state); 2061 btrfs_put_root(root); 2062 } 2063 2064 list_del_init(&reloc_root->root_list); 2065 /* Don't forget to queue this reloc root for cleanup */ 2066 list_add_tail(&reloc_root->reloc_dirty_list, 2067 &rc->dirty_subvol_roots); 2068 } 2069 } 2070 2071 if (found) { 2072 found = 0; 2073 goto again; 2074 } 2075 out: 2076 if (ret) { 2077 btrfs_handle_fs_error(fs_info, ret, NULL); 2078 free_reloc_roots(&reloc_roots); 2079 2080 /* new reloc root may be added */ 2081 mutex_lock(&fs_info->reloc_mutex); 2082 list_splice_init(&rc->reloc_roots, &reloc_roots); 2083 mutex_unlock(&fs_info->reloc_mutex); 2084 free_reloc_roots(&reloc_roots); 2085 } 2086 2087 /* 2088 * We used to have 2089 * 2090 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2091 * 2092 * here, but it's wrong. If we fail to start the transaction in 2093 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2094 * have actually been removed from the reloc_root_tree rb tree. This is 2095 * fine because we're bailing here, and we hold a reference on the root 2096 * for the list that holds it, so these roots will be cleaned up when we 2097 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2098 * will be cleaned up on unmount. 2099 * 2100 * The remaining nodes will be cleaned up by free_reloc_control. 2101 */ 2102 } 2103 2104 static void free_block_list(struct rb_root *blocks) 2105 { 2106 struct tree_block *block; 2107 struct rb_node *rb_node; 2108 while ((rb_node = rb_first(blocks))) { 2109 block = rb_entry(rb_node, struct tree_block, rb_node); 2110 rb_erase(rb_node, blocks); 2111 kfree(block); 2112 } 2113 } 2114 2115 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2116 struct btrfs_root *reloc_root) 2117 { 2118 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2119 struct btrfs_root *root; 2120 int ret; 2121 2122 if (reloc_root->last_trans == trans->transid) 2123 return 0; 2124 2125 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2126 2127 /* 2128 * This should succeed, since we can't have a reloc root without having 2129 * already looked up the actual root and created the reloc root for this 2130 * root. 2131 * 2132 * However if there's some sort of corruption where we have a ref to a 2133 * reloc root without a corresponding root this could return ENOENT. 2134 */ 2135 if (IS_ERR(root)) { 2136 ASSERT(0); 2137 return PTR_ERR(root); 2138 } 2139 if (root->reloc_root != reloc_root) { 2140 ASSERT(0); 2141 btrfs_err(fs_info, 2142 "root %llu has two reloc roots associated with it", 2143 reloc_root->root_key.offset); 2144 btrfs_put_root(root); 2145 return -EUCLEAN; 2146 } 2147 ret = btrfs_record_root_in_trans(trans, root); 2148 btrfs_put_root(root); 2149 2150 return ret; 2151 } 2152 2153 static noinline_for_stack 2154 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2155 struct reloc_control *rc, 2156 struct btrfs_backref_node *node, 2157 struct btrfs_backref_edge *edges[]) 2158 { 2159 struct btrfs_backref_node *next; 2160 struct btrfs_root *root; 2161 int index = 0; 2162 int ret; 2163 2164 next = node; 2165 while (1) { 2166 cond_resched(); 2167 next = walk_up_backref(next, edges, &index); 2168 root = next->root; 2169 2170 /* 2171 * If there is no root, then our references for this block are 2172 * incomplete, as we should be able to walk all the way up to a 2173 * block that is owned by a root. 2174 * 2175 * This path is only for SHAREABLE roots, so if we come upon a 2176 * non-SHAREABLE root then we have backrefs that resolve 2177 * improperly. 2178 * 2179 * Both of these cases indicate file system corruption, or a bug 2180 * in the backref walking code. 2181 */ 2182 if (!root) { 2183 ASSERT(0); 2184 btrfs_err(trans->fs_info, 2185 "bytenr %llu doesn't have a backref path ending in a root", 2186 node->bytenr); 2187 return ERR_PTR(-EUCLEAN); 2188 } 2189 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2190 ASSERT(0); 2191 btrfs_err(trans->fs_info, 2192 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2193 node->bytenr); 2194 return ERR_PTR(-EUCLEAN); 2195 } 2196 2197 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2198 ret = record_reloc_root_in_trans(trans, root); 2199 if (ret) 2200 return ERR_PTR(ret); 2201 break; 2202 } 2203 2204 ret = btrfs_record_root_in_trans(trans, root); 2205 if (ret) 2206 return ERR_PTR(ret); 2207 root = root->reloc_root; 2208 2209 /* 2210 * We could have raced with another thread which failed, so 2211 * root->reloc_root may not be set, return ENOENT in this case. 2212 */ 2213 if (!root) 2214 return ERR_PTR(-ENOENT); 2215 2216 if (next->new_bytenr != root->node->start) { 2217 /* 2218 * We just created the reloc root, so we shouldn't have 2219 * ->new_bytenr set and this shouldn't be in the changed 2220 * list. If it is then we have multiple roots pointing 2221 * at the same bytenr which indicates corruption, or 2222 * we've made a mistake in the backref walking code. 2223 */ 2224 ASSERT(next->new_bytenr == 0); 2225 ASSERT(list_empty(&next->list)); 2226 if (next->new_bytenr || !list_empty(&next->list)) { 2227 btrfs_err(trans->fs_info, 2228 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2229 node->bytenr, next->bytenr); 2230 return ERR_PTR(-EUCLEAN); 2231 } 2232 2233 next->new_bytenr = root->node->start; 2234 btrfs_put_root(next->root); 2235 next->root = btrfs_grab_root(root); 2236 ASSERT(next->root); 2237 list_add_tail(&next->list, 2238 &rc->backref_cache.changed); 2239 mark_block_processed(rc, next); 2240 break; 2241 } 2242 2243 WARN_ON(1); 2244 root = NULL; 2245 next = walk_down_backref(edges, &index); 2246 if (!next || next->level <= node->level) 2247 break; 2248 } 2249 if (!root) { 2250 /* 2251 * This can happen if there's fs corruption or if there's a bug 2252 * in the backref lookup code. 2253 */ 2254 ASSERT(0); 2255 return ERR_PTR(-ENOENT); 2256 } 2257 2258 next = node; 2259 /* setup backref node path for btrfs_reloc_cow_block */ 2260 while (1) { 2261 rc->backref_cache.path[next->level] = next; 2262 if (--index < 0) 2263 break; 2264 next = edges[index]->node[UPPER]; 2265 } 2266 return root; 2267 } 2268 2269 /* 2270 * Select a tree root for relocation. 2271 * 2272 * Return NULL if the block is not shareable. We should use do_relocation() in 2273 * this case. 2274 * 2275 * Return a tree root pointer if the block is shareable. 2276 * Return -ENOENT if the block is root of reloc tree. 2277 */ 2278 static noinline_for_stack 2279 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2280 { 2281 struct btrfs_backref_node *next; 2282 struct btrfs_root *root; 2283 struct btrfs_root *fs_root = NULL; 2284 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2285 int index = 0; 2286 2287 next = node; 2288 while (1) { 2289 cond_resched(); 2290 next = walk_up_backref(next, edges, &index); 2291 root = next->root; 2292 2293 /* 2294 * This can occur if we have incomplete extent refs leading all 2295 * the way up a particular path, in this case return -EUCLEAN. 2296 */ 2297 if (!root) 2298 return ERR_PTR(-EUCLEAN); 2299 2300 /* No other choice for non-shareable tree */ 2301 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2302 return root; 2303 2304 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2305 fs_root = root; 2306 2307 if (next != node) 2308 return NULL; 2309 2310 next = walk_down_backref(edges, &index); 2311 if (!next || next->level <= node->level) 2312 break; 2313 } 2314 2315 if (!fs_root) 2316 return ERR_PTR(-ENOENT); 2317 return fs_root; 2318 } 2319 2320 static noinline_for_stack 2321 u64 calcu_metadata_size(struct reloc_control *rc, 2322 struct btrfs_backref_node *node, int reserve) 2323 { 2324 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2325 struct btrfs_backref_node *next = node; 2326 struct btrfs_backref_edge *edge; 2327 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2328 u64 num_bytes = 0; 2329 int index = 0; 2330 2331 BUG_ON(reserve && node->processed); 2332 2333 while (next) { 2334 cond_resched(); 2335 while (1) { 2336 if (next->processed && (reserve || next != node)) 2337 break; 2338 2339 num_bytes += fs_info->nodesize; 2340 2341 if (list_empty(&next->upper)) 2342 break; 2343 2344 edge = list_entry(next->upper.next, 2345 struct btrfs_backref_edge, list[LOWER]); 2346 edges[index++] = edge; 2347 next = edge->node[UPPER]; 2348 } 2349 next = walk_down_backref(edges, &index); 2350 } 2351 return num_bytes; 2352 } 2353 2354 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2355 struct reloc_control *rc, 2356 struct btrfs_backref_node *node) 2357 { 2358 struct btrfs_root *root = rc->extent_root; 2359 struct btrfs_fs_info *fs_info = root->fs_info; 2360 u64 num_bytes; 2361 int ret; 2362 u64 tmp; 2363 2364 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2365 2366 trans->block_rsv = rc->block_rsv; 2367 rc->reserved_bytes += num_bytes; 2368 2369 /* 2370 * We are under a transaction here so we can only do limited flushing. 2371 * If we get an enospc just kick back -EAGAIN so we know to drop the 2372 * transaction and try to refill when we can flush all the things. 2373 */ 2374 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2375 BTRFS_RESERVE_FLUSH_LIMIT); 2376 if (ret) { 2377 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2378 while (tmp <= rc->reserved_bytes) 2379 tmp <<= 1; 2380 /* 2381 * only one thread can access block_rsv at this point, 2382 * so we don't need hold lock to protect block_rsv. 2383 * we expand more reservation size here to allow enough 2384 * space for relocation and we will return earlier in 2385 * enospc case. 2386 */ 2387 rc->block_rsv->size = tmp + fs_info->nodesize * 2388 RELOCATION_RESERVED_NODES; 2389 return -EAGAIN; 2390 } 2391 2392 return 0; 2393 } 2394 2395 /* 2396 * relocate a block tree, and then update pointers in upper level 2397 * blocks that reference the block to point to the new location. 2398 * 2399 * if called by link_to_upper, the block has already been relocated. 2400 * in that case this function just updates pointers. 2401 */ 2402 static int do_relocation(struct btrfs_trans_handle *trans, 2403 struct reloc_control *rc, 2404 struct btrfs_backref_node *node, 2405 struct btrfs_key *key, 2406 struct btrfs_path *path, int lowest) 2407 { 2408 struct btrfs_backref_node *upper; 2409 struct btrfs_backref_edge *edge; 2410 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2411 struct btrfs_root *root; 2412 struct extent_buffer *eb; 2413 u32 blocksize; 2414 u64 bytenr; 2415 int slot; 2416 int ret = 0; 2417 2418 /* 2419 * If we are lowest then this is the first time we're processing this 2420 * block, and thus shouldn't have an eb associated with it yet. 2421 */ 2422 ASSERT(!lowest || !node->eb); 2423 2424 path->lowest_level = node->level + 1; 2425 rc->backref_cache.path[node->level] = node; 2426 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2427 struct btrfs_ref ref = { 0 }; 2428 2429 cond_resched(); 2430 2431 upper = edge->node[UPPER]; 2432 root = select_reloc_root(trans, rc, upper, edges); 2433 if (IS_ERR(root)) { 2434 ret = PTR_ERR(root); 2435 goto next; 2436 } 2437 2438 if (upper->eb && !upper->locked) { 2439 if (!lowest) { 2440 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2441 if (ret < 0) 2442 goto next; 2443 BUG_ON(ret); 2444 bytenr = btrfs_node_blockptr(upper->eb, slot); 2445 if (node->eb->start == bytenr) 2446 goto next; 2447 } 2448 btrfs_backref_drop_node_buffer(upper); 2449 } 2450 2451 if (!upper->eb) { 2452 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2453 if (ret) { 2454 if (ret > 0) 2455 ret = -ENOENT; 2456 2457 btrfs_release_path(path); 2458 break; 2459 } 2460 2461 if (!upper->eb) { 2462 upper->eb = path->nodes[upper->level]; 2463 path->nodes[upper->level] = NULL; 2464 } else { 2465 BUG_ON(upper->eb != path->nodes[upper->level]); 2466 } 2467 2468 upper->locked = 1; 2469 path->locks[upper->level] = 0; 2470 2471 slot = path->slots[upper->level]; 2472 btrfs_release_path(path); 2473 } else { 2474 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2475 if (ret < 0) 2476 goto next; 2477 BUG_ON(ret); 2478 } 2479 2480 bytenr = btrfs_node_blockptr(upper->eb, slot); 2481 if (lowest) { 2482 if (bytenr != node->bytenr) { 2483 btrfs_err(root->fs_info, 2484 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2485 bytenr, node->bytenr, slot, 2486 upper->eb->start); 2487 ret = -EIO; 2488 goto next; 2489 } 2490 } else { 2491 if (node->eb->start == bytenr) 2492 goto next; 2493 } 2494 2495 blocksize = root->fs_info->nodesize; 2496 eb = btrfs_read_node_slot(upper->eb, slot); 2497 if (IS_ERR(eb)) { 2498 ret = PTR_ERR(eb); 2499 goto next; 2500 } 2501 btrfs_tree_lock(eb); 2502 2503 if (!node->eb) { 2504 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2505 slot, &eb, BTRFS_NESTING_COW); 2506 btrfs_tree_unlock(eb); 2507 free_extent_buffer(eb); 2508 if (ret < 0) 2509 goto next; 2510 /* 2511 * We've just COWed this block, it should have updated 2512 * the correct backref node entry. 2513 */ 2514 ASSERT(node->eb == eb); 2515 } else { 2516 btrfs_set_node_blockptr(upper->eb, slot, 2517 node->eb->start); 2518 btrfs_set_node_ptr_generation(upper->eb, slot, 2519 trans->transid); 2520 btrfs_mark_buffer_dirty(upper->eb); 2521 2522 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2523 node->eb->start, blocksize, 2524 upper->eb->start); 2525 btrfs_init_tree_ref(&ref, node->level, 2526 btrfs_header_owner(upper->eb), 2527 root->root_key.objectid, false); 2528 ret = btrfs_inc_extent_ref(trans, &ref); 2529 if (!ret) 2530 ret = btrfs_drop_subtree(trans, root, eb, 2531 upper->eb); 2532 if (ret) 2533 btrfs_abort_transaction(trans, ret); 2534 } 2535 next: 2536 if (!upper->pending) 2537 btrfs_backref_drop_node_buffer(upper); 2538 else 2539 btrfs_backref_unlock_node_buffer(upper); 2540 if (ret) 2541 break; 2542 } 2543 2544 if (!ret && node->pending) { 2545 btrfs_backref_drop_node_buffer(node); 2546 list_move_tail(&node->list, &rc->backref_cache.changed); 2547 node->pending = 0; 2548 } 2549 2550 path->lowest_level = 0; 2551 2552 /* 2553 * We should have allocated all of our space in the block rsv and thus 2554 * shouldn't ENOSPC. 2555 */ 2556 ASSERT(ret != -ENOSPC); 2557 return ret; 2558 } 2559 2560 static int link_to_upper(struct btrfs_trans_handle *trans, 2561 struct reloc_control *rc, 2562 struct btrfs_backref_node *node, 2563 struct btrfs_path *path) 2564 { 2565 struct btrfs_key key; 2566 2567 btrfs_node_key_to_cpu(node->eb, &key, 0); 2568 return do_relocation(trans, rc, node, &key, path, 0); 2569 } 2570 2571 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2572 struct reloc_control *rc, 2573 struct btrfs_path *path, int err) 2574 { 2575 LIST_HEAD(list); 2576 struct btrfs_backref_cache *cache = &rc->backref_cache; 2577 struct btrfs_backref_node *node; 2578 int level; 2579 int ret; 2580 2581 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2582 while (!list_empty(&cache->pending[level])) { 2583 node = list_entry(cache->pending[level].next, 2584 struct btrfs_backref_node, list); 2585 list_move_tail(&node->list, &list); 2586 BUG_ON(!node->pending); 2587 2588 if (!err) { 2589 ret = link_to_upper(trans, rc, node, path); 2590 if (ret < 0) 2591 err = ret; 2592 } 2593 } 2594 list_splice_init(&list, &cache->pending[level]); 2595 } 2596 return err; 2597 } 2598 2599 /* 2600 * mark a block and all blocks directly/indirectly reference the block 2601 * as processed. 2602 */ 2603 static void update_processed_blocks(struct reloc_control *rc, 2604 struct btrfs_backref_node *node) 2605 { 2606 struct btrfs_backref_node *next = node; 2607 struct btrfs_backref_edge *edge; 2608 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2609 int index = 0; 2610 2611 while (next) { 2612 cond_resched(); 2613 while (1) { 2614 if (next->processed) 2615 break; 2616 2617 mark_block_processed(rc, next); 2618 2619 if (list_empty(&next->upper)) 2620 break; 2621 2622 edge = list_entry(next->upper.next, 2623 struct btrfs_backref_edge, list[LOWER]); 2624 edges[index++] = edge; 2625 next = edge->node[UPPER]; 2626 } 2627 next = walk_down_backref(edges, &index); 2628 } 2629 } 2630 2631 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2632 { 2633 u32 blocksize = rc->extent_root->fs_info->nodesize; 2634 2635 if (test_range_bit(&rc->processed_blocks, bytenr, 2636 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2637 return 1; 2638 return 0; 2639 } 2640 2641 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2642 struct tree_block *block) 2643 { 2644 struct btrfs_tree_parent_check check = { 2645 .level = block->level, 2646 .owner_root = block->owner, 2647 .transid = block->key.offset 2648 }; 2649 struct extent_buffer *eb; 2650 2651 eb = read_tree_block(fs_info, block->bytenr, &check); 2652 if (IS_ERR(eb)) 2653 return PTR_ERR(eb); 2654 if (!extent_buffer_uptodate(eb)) { 2655 free_extent_buffer(eb); 2656 return -EIO; 2657 } 2658 if (block->level == 0) 2659 btrfs_item_key_to_cpu(eb, &block->key, 0); 2660 else 2661 btrfs_node_key_to_cpu(eb, &block->key, 0); 2662 free_extent_buffer(eb); 2663 block->key_ready = 1; 2664 return 0; 2665 } 2666 2667 /* 2668 * helper function to relocate a tree block 2669 */ 2670 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2671 struct reloc_control *rc, 2672 struct btrfs_backref_node *node, 2673 struct btrfs_key *key, 2674 struct btrfs_path *path) 2675 { 2676 struct btrfs_root *root; 2677 int ret = 0; 2678 2679 if (!node) 2680 return 0; 2681 2682 /* 2683 * If we fail here we want to drop our backref_node because we are going 2684 * to start over and regenerate the tree for it. 2685 */ 2686 ret = reserve_metadata_space(trans, rc, node); 2687 if (ret) 2688 goto out; 2689 2690 BUG_ON(node->processed); 2691 root = select_one_root(node); 2692 if (IS_ERR(root)) { 2693 ret = PTR_ERR(root); 2694 2695 /* See explanation in select_one_root for the -EUCLEAN case. */ 2696 ASSERT(ret == -ENOENT); 2697 if (ret == -ENOENT) { 2698 ret = 0; 2699 update_processed_blocks(rc, node); 2700 } 2701 goto out; 2702 } 2703 2704 if (root) { 2705 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2706 /* 2707 * This block was the root block of a root, and this is 2708 * the first time we're processing the block and thus it 2709 * should not have had the ->new_bytenr modified and 2710 * should have not been included on the changed list. 2711 * 2712 * However in the case of corruption we could have 2713 * multiple refs pointing to the same block improperly, 2714 * and thus we would trip over these checks. ASSERT() 2715 * for the developer case, because it could indicate a 2716 * bug in the backref code, however error out for a 2717 * normal user in the case of corruption. 2718 */ 2719 ASSERT(node->new_bytenr == 0); 2720 ASSERT(list_empty(&node->list)); 2721 if (node->new_bytenr || !list_empty(&node->list)) { 2722 btrfs_err(root->fs_info, 2723 "bytenr %llu has improper references to it", 2724 node->bytenr); 2725 ret = -EUCLEAN; 2726 goto out; 2727 } 2728 ret = btrfs_record_root_in_trans(trans, root); 2729 if (ret) 2730 goto out; 2731 /* 2732 * Another thread could have failed, need to check if we 2733 * have reloc_root actually set. 2734 */ 2735 if (!root->reloc_root) { 2736 ret = -ENOENT; 2737 goto out; 2738 } 2739 root = root->reloc_root; 2740 node->new_bytenr = root->node->start; 2741 btrfs_put_root(node->root); 2742 node->root = btrfs_grab_root(root); 2743 ASSERT(node->root); 2744 list_add_tail(&node->list, &rc->backref_cache.changed); 2745 } else { 2746 path->lowest_level = node->level; 2747 if (root == root->fs_info->chunk_root) 2748 btrfs_reserve_chunk_metadata(trans, false); 2749 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2750 btrfs_release_path(path); 2751 if (root == root->fs_info->chunk_root) 2752 btrfs_trans_release_chunk_metadata(trans); 2753 if (ret > 0) 2754 ret = 0; 2755 } 2756 if (!ret) 2757 update_processed_blocks(rc, node); 2758 } else { 2759 ret = do_relocation(trans, rc, node, key, path, 1); 2760 } 2761 out: 2762 if (ret || node->level == 0 || node->cowonly) 2763 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2764 return ret; 2765 } 2766 2767 /* 2768 * relocate a list of blocks 2769 */ 2770 static noinline_for_stack 2771 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2772 struct reloc_control *rc, struct rb_root *blocks) 2773 { 2774 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2775 struct btrfs_backref_node *node; 2776 struct btrfs_path *path; 2777 struct tree_block *block; 2778 struct tree_block *next; 2779 int ret; 2780 int err = 0; 2781 2782 path = btrfs_alloc_path(); 2783 if (!path) { 2784 err = -ENOMEM; 2785 goto out_free_blocks; 2786 } 2787 2788 /* Kick in readahead for tree blocks with missing keys */ 2789 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2790 if (!block->key_ready) 2791 btrfs_readahead_tree_block(fs_info, block->bytenr, 2792 block->owner, 0, 2793 block->level); 2794 } 2795 2796 /* Get first keys */ 2797 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2798 if (!block->key_ready) { 2799 err = get_tree_block_key(fs_info, block); 2800 if (err) 2801 goto out_free_path; 2802 } 2803 } 2804 2805 /* Do tree relocation */ 2806 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2807 node = build_backref_tree(trans, rc, &block->key, 2808 block->level, block->bytenr); 2809 if (IS_ERR(node)) { 2810 err = PTR_ERR(node); 2811 goto out; 2812 } 2813 2814 ret = relocate_tree_block(trans, rc, node, &block->key, 2815 path); 2816 if (ret < 0) { 2817 err = ret; 2818 break; 2819 } 2820 } 2821 out: 2822 err = finish_pending_nodes(trans, rc, path, err); 2823 2824 out_free_path: 2825 btrfs_free_path(path); 2826 out_free_blocks: 2827 free_block_list(blocks); 2828 return err; 2829 } 2830 2831 static noinline_for_stack int prealloc_file_extent_cluster( 2832 struct btrfs_inode *inode, 2833 struct file_extent_cluster *cluster) 2834 { 2835 u64 alloc_hint = 0; 2836 u64 start; 2837 u64 end; 2838 u64 offset = inode->index_cnt; 2839 u64 num_bytes; 2840 int nr; 2841 int ret = 0; 2842 u64 i_size = i_size_read(&inode->vfs_inode); 2843 u64 prealloc_start = cluster->start - offset; 2844 u64 prealloc_end = cluster->end - offset; 2845 u64 cur_offset = prealloc_start; 2846 2847 /* 2848 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2849 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2850 * btrfs_do_readpage() call of previously relocated file cluster. 2851 * 2852 * If the current cluster starts in the above range, btrfs_do_readpage() 2853 * will skip the read, and relocate_one_page() will later writeback 2854 * the padding zeros as new data, causing data corruption. 2855 * 2856 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2857 */ 2858 if (!PAGE_ALIGNED(i_size)) { 2859 struct address_space *mapping = inode->vfs_inode.i_mapping; 2860 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2861 const u32 sectorsize = fs_info->sectorsize; 2862 struct page *page; 2863 2864 ASSERT(sectorsize < PAGE_SIZE); 2865 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2866 2867 /* 2868 * Subpage can't handle page with DIRTY but without UPTODATE 2869 * bit as it can lead to the following deadlock: 2870 * 2871 * btrfs_read_folio() 2872 * | Page already *locked* 2873 * |- btrfs_lock_and_flush_ordered_range() 2874 * |- btrfs_start_ordered_extent() 2875 * |- extent_write_cache_pages() 2876 * |- lock_page() 2877 * We try to lock the page we already hold. 2878 * 2879 * Here we just writeback the whole data reloc inode, so that 2880 * we will be ensured to have no dirty range in the page, and 2881 * are safe to clear the uptodate bits. 2882 * 2883 * This shouldn't cause too much overhead, as we need to write 2884 * the data back anyway. 2885 */ 2886 ret = filemap_write_and_wait(mapping); 2887 if (ret < 0) 2888 return ret; 2889 2890 clear_extent_bits(&inode->io_tree, i_size, 2891 round_up(i_size, PAGE_SIZE) - 1, 2892 EXTENT_UPTODATE); 2893 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2894 /* 2895 * If page is freed we don't need to do anything then, as we 2896 * will re-read the whole page anyway. 2897 */ 2898 if (page) { 2899 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2900 round_up(i_size, PAGE_SIZE) - i_size); 2901 unlock_page(page); 2902 put_page(page); 2903 } 2904 } 2905 2906 BUG_ON(cluster->start != cluster->boundary[0]); 2907 ret = btrfs_alloc_data_chunk_ondemand(inode, 2908 prealloc_end + 1 - prealloc_start); 2909 if (ret) 2910 return ret; 2911 2912 btrfs_inode_lock(inode, 0); 2913 for (nr = 0; nr < cluster->nr; nr++) { 2914 struct extent_state *cached_state = NULL; 2915 2916 start = cluster->boundary[nr] - offset; 2917 if (nr + 1 < cluster->nr) 2918 end = cluster->boundary[nr + 1] - 1 - offset; 2919 else 2920 end = cluster->end - offset; 2921 2922 lock_extent(&inode->io_tree, start, end, &cached_state); 2923 num_bytes = end + 1 - start; 2924 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2925 num_bytes, num_bytes, 2926 end + 1, &alloc_hint); 2927 cur_offset = end + 1; 2928 unlock_extent(&inode->io_tree, start, end, &cached_state); 2929 if (ret) 2930 break; 2931 } 2932 btrfs_inode_unlock(inode, 0); 2933 2934 if (cur_offset < prealloc_end) 2935 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2936 prealloc_end + 1 - cur_offset); 2937 return ret; 2938 } 2939 2940 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2941 u64 start, u64 end, u64 block_start) 2942 { 2943 struct extent_map *em; 2944 struct extent_state *cached_state = NULL; 2945 int ret = 0; 2946 2947 em = alloc_extent_map(); 2948 if (!em) 2949 return -ENOMEM; 2950 2951 em->start = start; 2952 em->len = end + 1 - start; 2953 em->block_len = em->len; 2954 em->block_start = block_start; 2955 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2956 2957 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2958 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); 2959 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2960 free_extent_map(em); 2961 2962 return ret; 2963 } 2964 2965 /* 2966 * Allow error injection to test balance/relocation cancellation 2967 */ 2968 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2969 { 2970 return atomic_read(&fs_info->balance_cancel_req) || 2971 atomic_read(&fs_info->reloc_cancel_req) || 2972 fatal_signal_pending(current); 2973 } 2974 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2975 2976 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2977 int cluster_nr) 2978 { 2979 /* Last extent, use cluster end directly */ 2980 if (cluster_nr >= cluster->nr - 1) 2981 return cluster->end; 2982 2983 /* Use next boundary start*/ 2984 return cluster->boundary[cluster_nr + 1] - 1; 2985 } 2986 2987 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2988 struct file_extent_cluster *cluster, 2989 int *cluster_nr, unsigned long page_index) 2990 { 2991 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2992 u64 offset = BTRFS_I(inode)->index_cnt; 2993 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2994 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2995 struct page *page; 2996 u64 page_start; 2997 u64 page_end; 2998 u64 cur; 2999 int ret; 3000 3001 ASSERT(page_index <= last_index); 3002 page = find_lock_page(inode->i_mapping, page_index); 3003 if (!page) { 3004 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 3005 page_index, last_index + 1 - page_index); 3006 page = find_or_create_page(inode->i_mapping, page_index, mask); 3007 if (!page) 3008 return -ENOMEM; 3009 } 3010 3011 if (PageReadahead(page)) 3012 page_cache_async_readahead(inode->i_mapping, ra, NULL, 3013 page_folio(page), page_index, 3014 last_index + 1 - page_index); 3015 3016 if (!PageUptodate(page)) { 3017 btrfs_read_folio(NULL, page_folio(page)); 3018 lock_page(page); 3019 if (!PageUptodate(page)) { 3020 ret = -EIO; 3021 goto release_page; 3022 } 3023 } 3024 3025 /* 3026 * We could have lost page private when we dropped the lock to read the 3027 * page above, make sure we set_page_extent_mapped here so we have any 3028 * of the subpage blocksize stuff we need in place. 3029 */ 3030 ret = set_page_extent_mapped(page); 3031 if (ret < 0) 3032 goto release_page; 3033 3034 page_start = page_offset(page); 3035 page_end = page_start + PAGE_SIZE - 1; 3036 3037 /* 3038 * Start from the cluster, as for subpage case, the cluster can start 3039 * inside the page. 3040 */ 3041 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 3042 while (cur <= page_end) { 3043 struct extent_state *cached_state = NULL; 3044 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3045 u64 extent_end = get_cluster_boundary_end(cluster, 3046 *cluster_nr) - offset; 3047 u64 clamped_start = max(page_start, extent_start); 3048 u64 clamped_end = min(page_end, extent_end); 3049 u32 clamped_len = clamped_end + 1 - clamped_start; 3050 3051 /* Reserve metadata for this range */ 3052 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3053 clamped_len, clamped_len, 3054 false); 3055 if (ret) 3056 goto release_page; 3057 3058 /* Mark the range delalloc and dirty for later writeback */ 3059 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3060 &cached_state); 3061 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3062 clamped_end, 0, &cached_state); 3063 if (ret) { 3064 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3065 clamped_start, clamped_end, 3066 EXTENT_LOCKED | EXTENT_BOUNDARY, 3067 &cached_state); 3068 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3069 clamped_len, true); 3070 btrfs_delalloc_release_extents(BTRFS_I(inode), 3071 clamped_len); 3072 goto release_page; 3073 } 3074 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3075 3076 /* 3077 * Set the boundary if it's inside the page. 3078 * Data relocation requires the destination extents to have the 3079 * same size as the source. 3080 * EXTENT_BOUNDARY bit prevents current extent from being merged 3081 * with previous extent. 3082 */ 3083 if (in_range(cluster->boundary[*cluster_nr] - offset, 3084 page_start, PAGE_SIZE)) { 3085 u64 boundary_start = cluster->boundary[*cluster_nr] - 3086 offset; 3087 u64 boundary_end = boundary_start + 3088 fs_info->sectorsize - 1; 3089 3090 set_extent_bit(&BTRFS_I(inode)->io_tree, 3091 boundary_start, boundary_end, 3092 EXTENT_BOUNDARY, NULL); 3093 } 3094 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3095 &cached_state); 3096 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3097 cur += clamped_len; 3098 3099 /* Crossed extent end, go to next extent */ 3100 if (cur >= extent_end) { 3101 (*cluster_nr)++; 3102 /* Just finished the last extent of the cluster, exit. */ 3103 if (*cluster_nr >= cluster->nr) 3104 break; 3105 } 3106 } 3107 unlock_page(page); 3108 put_page(page); 3109 3110 balance_dirty_pages_ratelimited(inode->i_mapping); 3111 btrfs_throttle(fs_info); 3112 if (btrfs_should_cancel_balance(fs_info)) 3113 ret = -ECANCELED; 3114 return ret; 3115 3116 release_page: 3117 unlock_page(page); 3118 put_page(page); 3119 return ret; 3120 } 3121 3122 static int relocate_file_extent_cluster(struct inode *inode, 3123 struct file_extent_cluster *cluster) 3124 { 3125 u64 offset = BTRFS_I(inode)->index_cnt; 3126 unsigned long index; 3127 unsigned long last_index; 3128 struct file_ra_state *ra; 3129 int cluster_nr = 0; 3130 int ret = 0; 3131 3132 if (!cluster->nr) 3133 return 0; 3134 3135 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3136 if (!ra) 3137 return -ENOMEM; 3138 3139 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3140 if (ret) 3141 goto out; 3142 3143 file_ra_state_init(ra, inode->i_mapping); 3144 3145 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3146 cluster->end - offset, cluster->start); 3147 if (ret) 3148 goto out; 3149 3150 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3151 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3152 index <= last_index && !ret; index++) 3153 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3154 if (ret == 0) 3155 WARN_ON(cluster_nr != cluster->nr); 3156 out: 3157 kfree(ra); 3158 return ret; 3159 } 3160 3161 static noinline_for_stack 3162 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3163 struct file_extent_cluster *cluster) 3164 { 3165 int ret; 3166 3167 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3168 ret = relocate_file_extent_cluster(inode, cluster); 3169 if (ret) 3170 return ret; 3171 cluster->nr = 0; 3172 } 3173 3174 if (!cluster->nr) 3175 cluster->start = extent_key->objectid; 3176 else 3177 BUG_ON(cluster->nr >= MAX_EXTENTS); 3178 cluster->end = extent_key->objectid + extent_key->offset - 1; 3179 cluster->boundary[cluster->nr] = extent_key->objectid; 3180 cluster->nr++; 3181 3182 if (cluster->nr >= MAX_EXTENTS) { 3183 ret = relocate_file_extent_cluster(inode, cluster); 3184 if (ret) 3185 return ret; 3186 cluster->nr = 0; 3187 } 3188 return 0; 3189 } 3190 3191 /* 3192 * helper to add a tree block to the list. 3193 * the major work is getting the generation and level of the block 3194 */ 3195 static int add_tree_block(struct reloc_control *rc, 3196 struct btrfs_key *extent_key, 3197 struct btrfs_path *path, 3198 struct rb_root *blocks) 3199 { 3200 struct extent_buffer *eb; 3201 struct btrfs_extent_item *ei; 3202 struct btrfs_tree_block_info *bi; 3203 struct tree_block *block; 3204 struct rb_node *rb_node; 3205 u32 item_size; 3206 int level = -1; 3207 u64 generation; 3208 u64 owner = 0; 3209 3210 eb = path->nodes[0]; 3211 item_size = btrfs_item_size(eb, path->slots[0]); 3212 3213 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3214 item_size >= sizeof(*ei) + sizeof(*bi)) { 3215 unsigned long ptr = 0, end; 3216 3217 ei = btrfs_item_ptr(eb, path->slots[0], 3218 struct btrfs_extent_item); 3219 end = (unsigned long)ei + item_size; 3220 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3221 bi = (struct btrfs_tree_block_info *)(ei + 1); 3222 level = btrfs_tree_block_level(eb, bi); 3223 ptr = (unsigned long)(bi + 1); 3224 } else { 3225 level = (int)extent_key->offset; 3226 ptr = (unsigned long)(ei + 1); 3227 } 3228 generation = btrfs_extent_generation(eb, ei); 3229 3230 /* 3231 * We're reading random blocks without knowing their owner ahead 3232 * of time. This is ok most of the time, as all reloc roots and 3233 * fs roots have the same lock type. However normal trees do 3234 * not, and the only way to know ahead of time is to read the 3235 * inline ref offset. We know it's an fs root if 3236 * 3237 * 1. There's more than one ref. 3238 * 2. There's a SHARED_DATA_REF_KEY set. 3239 * 3. FULL_BACKREF is set on the flags. 3240 * 3241 * Otherwise it's safe to assume that the ref offset == the 3242 * owner of this block, so we can use that when calling 3243 * read_tree_block. 3244 */ 3245 if (btrfs_extent_refs(eb, ei) == 1 && 3246 !(btrfs_extent_flags(eb, ei) & 3247 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3248 ptr < end) { 3249 struct btrfs_extent_inline_ref *iref; 3250 int type; 3251 3252 iref = (struct btrfs_extent_inline_ref *)ptr; 3253 type = btrfs_get_extent_inline_ref_type(eb, iref, 3254 BTRFS_REF_TYPE_BLOCK); 3255 if (type == BTRFS_REF_TYPE_INVALID) 3256 return -EINVAL; 3257 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3258 owner = btrfs_extent_inline_ref_offset(eb, iref); 3259 } 3260 } else { 3261 btrfs_print_leaf(eb); 3262 btrfs_err(rc->block_group->fs_info, 3263 "unrecognized tree backref at tree block %llu slot %u", 3264 eb->start, path->slots[0]); 3265 btrfs_release_path(path); 3266 return -EUCLEAN; 3267 } 3268 3269 btrfs_release_path(path); 3270 3271 BUG_ON(level == -1); 3272 3273 block = kmalloc(sizeof(*block), GFP_NOFS); 3274 if (!block) 3275 return -ENOMEM; 3276 3277 block->bytenr = extent_key->objectid; 3278 block->key.objectid = rc->extent_root->fs_info->nodesize; 3279 block->key.offset = generation; 3280 block->level = level; 3281 block->key_ready = 0; 3282 block->owner = owner; 3283 3284 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3285 if (rb_node) 3286 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3287 -EEXIST); 3288 3289 return 0; 3290 } 3291 3292 /* 3293 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3294 */ 3295 static int __add_tree_block(struct reloc_control *rc, 3296 u64 bytenr, u32 blocksize, 3297 struct rb_root *blocks) 3298 { 3299 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3300 struct btrfs_path *path; 3301 struct btrfs_key key; 3302 int ret; 3303 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3304 3305 if (tree_block_processed(bytenr, rc)) 3306 return 0; 3307 3308 if (rb_simple_search(blocks, bytenr)) 3309 return 0; 3310 3311 path = btrfs_alloc_path(); 3312 if (!path) 3313 return -ENOMEM; 3314 again: 3315 key.objectid = bytenr; 3316 if (skinny) { 3317 key.type = BTRFS_METADATA_ITEM_KEY; 3318 key.offset = (u64)-1; 3319 } else { 3320 key.type = BTRFS_EXTENT_ITEM_KEY; 3321 key.offset = blocksize; 3322 } 3323 3324 path->search_commit_root = 1; 3325 path->skip_locking = 1; 3326 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3327 if (ret < 0) 3328 goto out; 3329 3330 if (ret > 0 && skinny) { 3331 if (path->slots[0]) { 3332 path->slots[0]--; 3333 btrfs_item_key_to_cpu(path->nodes[0], &key, 3334 path->slots[0]); 3335 if (key.objectid == bytenr && 3336 (key.type == BTRFS_METADATA_ITEM_KEY || 3337 (key.type == BTRFS_EXTENT_ITEM_KEY && 3338 key.offset == blocksize))) 3339 ret = 0; 3340 } 3341 3342 if (ret) { 3343 skinny = false; 3344 btrfs_release_path(path); 3345 goto again; 3346 } 3347 } 3348 if (ret) { 3349 ASSERT(ret == 1); 3350 btrfs_print_leaf(path->nodes[0]); 3351 btrfs_err(fs_info, 3352 "tree block extent item (%llu) is not found in extent tree", 3353 bytenr); 3354 WARN_ON(1); 3355 ret = -EINVAL; 3356 goto out; 3357 } 3358 3359 ret = add_tree_block(rc, &key, path, blocks); 3360 out: 3361 btrfs_free_path(path); 3362 return ret; 3363 } 3364 3365 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3366 struct btrfs_block_group *block_group, 3367 struct inode *inode, 3368 u64 ino) 3369 { 3370 struct btrfs_root *root = fs_info->tree_root; 3371 struct btrfs_trans_handle *trans; 3372 int ret = 0; 3373 3374 if (inode) 3375 goto truncate; 3376 3377 inode = btrfs_iget(fs_info->sb, ino, root); 3378 if (IS_ERR(inode)) 3379 return -ENOENT; 3380 3381 truncate: 3382 ret = btrfs_check_trunc_cache_free_space(fs_info, 3383 &fs_info->global_block_rsv); 3384 if (ret) 3385 goto out; 3386 3387 trans = btrfs_join_transaction(root); 3388 if (IS_ERR(trans)) { 3389 ret = PTR_ERR(trans); 3390 goto out; 3391 } 3392 3393 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3394 3395 btrfs_end_transaction(trans); 3396 btrfs_btree_balance_dirty(fs_info); 3397 out: 3398 iput(inode); 3399 return ret; 3400 } 3401 3402 /* 3403 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3404 * cache inode, to avoid free space cache data extent blocking data relocation. 3405 */ 3406 static int delete_v1_space_cache(struct extent_buffer *leaf, 3407 struct btrfs_block_group *block_group, 3408 u64 data_bytenr) 3409 { 3410 u64 space_cache_ino; 3411 struct btrfs_file_extent_item *ei; 3412 struct btrfs_key key; 3413 bool found = false; 3414 int i; 3415 int ret; 3416 3417 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3418 return 0; 3419 3420 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3421 u8 type; 3422 3423 btrfs_item_key_to_cpu(leaf, &key, i); 3424 if (key.type != BTRFS_EXTENT_DATA_KEY) 3425 continue; 3426 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3427 type = btrfs_file_extent_type(leaf, ei); 3428 3429 if ((type == BTRFS_FILE_EXTENT_REG || 3430 type == BTRFS_FILE_EXTENT_PREALLOC) && 3431 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3432 found = true; 3433 space_cache_ino = key.objectid; 3434 break; 3435 } 3436 } 3437 if (!found) 3438 return -ENOENT; 3439 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3440 space_cache_ino); 3441 return ret; 3442 } 3443 3444 /* 3445 * helper to find all tree blocks that reference a given data extent 3446 */ 3447 static noinline_for_stack 3448 int add_data_references(struct reloc_control *rc, 3449 struct btrfs_key *extent_key, 3450 struct btrfs_path *path, 3451 struct rb_root *blocks) 3452 { 3453 struct btrfs_backref_walk_ctx ctx = { 0 }; 3454 struct ulist_iterator leaf_uiter; 3455 struct ulist_node *ref_node = NULL; 3456 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3457 int ret = 0; 3458 3459 btrfs_release_path(path); 3460 3461 ctx.bytenr = extent_key->objectid; 3462 ctx.skip_inode_ref_list = true; 3463 ctx.fs_info = rc->extent_root->fs_info; 3464 3465 ret = btrfs_find_all_leafs(&ctx); 3466 if (ret < 0) 3467 return ret; 3468 3469 ULIST_ITER_INIT(&leaf_uiter); 3470 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3471 struct btrfs_tree_parent_check check = { 0 }; 3472 struct extent_buffer *eb; 3473 3474 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3475 if (IS_ERR(eb)) { 3476 ret = PTR_ERR(eb); 3477 break; 3478 } 3479 ret = delete_v1_space_cache(eb, rc->block_group, 3480 extent_key->objectid); 3481 free_extent_buffer(eb); 3482 if (ret < 0) 3483 break; 3484 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3485 if (ret < 0) 3486 break; 3487 } 3488 if (ret < 0) 3489 free_block_list(blocks); 3490 ulist_free(ctx.refs); 3491 return ret; 3492 } 3493 3494 /* 3495 * helper to find next unprocessed extent 3496 */ 3497 static noinline_for_stack 3498 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3499 struct btrfs_key *extent_key) 3500 { 3501 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3502 struct btrfs_key key; 3503 struct extent_buffer *leaf; 3504 u64 start, end, last; 3505 int ret; 3506 3507 last = rc->block_group->start + rc->block_group->length; 3508 while (1) { 3509 bool block_found; 3510 3511 cond_resched(); 3512 if (rc->search_start >= last) { 3513 ret = 1; 3514 break; 3515 } 3516 3517 key.objectid = rc->search_start; 3518 key.type = BTRFS_EXTENT_ITEM_KEY; 3519 key.offset = 0; 3520 3521 path->search_commit_root = 1; 3522 path->skip_locking = 1; 3523 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3524 0, 0); 3525 if (ret < 0) 3526 break; 3527 next: 3528 leaf = path->nodes[0]; 3529 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3530 ret = btrfs_next_leaf(rc->extent_root, path); 3531 if (ret != 0) 3532 break; 3533 leaf = path->nodes[0]; 3534 } 3535 3536 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3537 if (key.objectid >= last) { 3538 ret = 1; 3539 break; 3540 } 3541 3542 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3543 key.type != BTRFS_METADATA_ITEM_KEY) { 3544 path->slots[0]++; 3545 goto next; 3546 } 3547 3548 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3549 key.objectid + key.offset <= rc->search_start) { 3550 path->slots[0]++; 3551 goto next; 3552 } 3553 3554 if (key.type == BTRFS_METADATA_ITEM_KEY && 3555 key.objectid + fs_info->nodesize <= 3556 rc->search_start) { 3557 path->slots[0]++; 3558 goto next; 3559 } 3560 3561 block_found = find_first_extent_bit(&rc->processed_blocks, 3562 key.objectid, &start, &end, 3563 EXTENT_DIRTY, NULL); 3564 3565 if (block_found && start <= key.objectid) { 3566 btrfs_release_path(path); 3567 rc->search_start = end + 1; 3568 } else { 3569 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3570 rc->search_start = key.objectid + key.offset; 3571 else 3572 rc->search_start = key.objectid + 3573 fs_info->nodesize; 3574 memcpy(extent_key, &key, sizeof(key)); 3575 return 0; 3576 } 3577 } 3578 btrfs_release_path(path); 3579 return ret; 3580 } 3581 3582 static void set_reloc_control(struct reloc_control *rc) 3583 { 3584 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3585 3586 mutex_lock(&fs_info->reloc_mutex); 3587 fs_info->reloc_ctl = rc; 3588 mutex_unlock(&fs_info->reloc_mutex); 3589 } 3590 3591 static void unset_reloc_control(struct reloc_control *rc) 3592 { 3593 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3594 3595 mutex_lock(&fs_info->reloc_mutex); 3596 fs_info->reloc_ctl = NULL; 3597 mutex_unlock(&fs_info->reloc_mutex); 3598 } 3599 3600 static noinline_for_stack 3601 int prepare_to_relocate(struct reloc_control *rc) 3602 { 3603 struct btrfs_trans_handle *trans; 3604 int ret; 3605 3606 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3607 BTRFS_BLOCK_RSV_TEMP); 3608 if (!rc->block_rsv) 3609 return -ENOMEM; 3610 3611 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3612 rc->search_start = rc->block_group->start; 3613 rc->extents_found = 0; 3614 rc->nodes_relocated = 0; 3615 rc->merging_rsv_size = 0; 3616 rc->reserved_bytes = 0; 3617 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3618 RELOCATION_RESERVED_NODES; 3619 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3620 rc->block_rsv, rc->block_rsv->size, 3621 BTRFS_RESERVE_FLUSH_ALL); 3622 if (ret) 3623 return ret; 3624 3625 rc->create_reloc_tree = 1; 3626 set_reloc_control(rc); 3627 3628 trans = btrfs_join_transaction(rc->extent_root); 3629 if (IS_ERR(trans)) { 3630 unset_reloc_control(rc); 3631 /* 3632 * extent tree is not a ref_cow tree and has no reloc_root to 3633 * cleanup. And callers are responsible to free the above 3634 * block rsv. 3635 */ 3636 return PTR_ERR(trans); 3637 } 3638 3639 ret = btrfs_commit_transaction(trans); 3640 if (ret) 3641 unset_reloc_control(rc); 3642 3643 return ret; 3644 } 3645 3646 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3647 { 3648 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3649 struct rb_root blocks = RB_ROOT; 3650 struct btrfs_key key; 3651 struct btrfs_trans_handle *trans = NULL; 3652 struct btrfs_path *path; 3653 struct btrfs_extent_item *ei; 3654 u64 flags; 3655 int ret; 3656 int err = 0; 3657 int progress = 0; 3658 3659 path = btrfs_alloc_path(); 3660 if (!path) 3661 return -ENOMEM; 3662 path->reada = READA_FORWARD; 3663 3664 ret = prepare_to_relocate(rc); 3665 if (ret) { 3666 err = ret; 3667 goto out_free; 3668 } 3669 3670 while (1) { 3671 rc->reserved_bytes = 0; 3672 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3673 rc->block_rsv->size, 3674 BTRFS_RESERVE_FLUSH_ALL); 3675 if (ret) { 3676 err = ret; 3677 break; 3678 } 3679 progress++; 3680 trans = btrfs_start_transaction(rc->extent_root, 0); 3681 if (IS_ERR(trans)) { 3682 err = PTR_ERR(trans); 3683 trans = NULL; 3684 break; 3685 } 3686 restart: 3687 if (update_backref_cache(trans, &rc->backref_cache)) { 3688 btrfs_end_transaction(trans); 3689 trans = NULL; 3690 continue; 3691 } 3692 3693 ret = find_next_extent(rc, path, &key); 3694 if (ret < 0) 3695 err = ret; 3696 if (ret != 0) 3697 break; 3698 3699 rc->extents_found++; 3700 3701 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3702 struct btrfs_extent_item); 3703 flags = btrfs_extent_flags(path->nodes[0], ei); 3704 3705 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3706 ret = add_tree_block(rc, &key, path, &blocks); 3707 } else if (rc->stage == UPDATE_DATA_PTRS && 3708 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3709 ret = add_data_references(rc, &key, path, &blocks); 3710 } else { 3711 btrfs_release_path(path); 3712 ret = 0; 3713 } 3714 if (ret < 0) { 3715 err = ret; 3716 break; 3717 } 3718 3719 if (!RB_EMPTY_ROOT(&blocks)) { 3720 ret = relocate_tree_blocks(trans, rc, &blocks); 3721 if (ret < 0) { 3722 if (ret != -EAGAIN) { 3723 err = ret; 3724 break; 3725 } 3726 rc->extents_found--; 3727 rc->search_start = key.objectid; 3728 } 3729 } 3730 3731 btrfs_end_transaction_throttle(trans); 3732 btrfs_btree_balance_dirty(fs_info); 3733 trans = NULL; 3734 3735 if (rc->stage == MOVE_DATA_EXTENTS && 3736 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3737 rc->found_file_extent = 1; 3738 ret = relocate_data_extent(rc->data_inode, 3739 &key, &rc->cluster); 3740 if (ret < 0) { 3741 err = ret; 3742 break; 3743 } 3744 } 3745 if (btrfs_should_cancel_balance(fs_info)) { 3746 err = -ECANCELED; 3747 break; 3748 } 3749 } 3750 if (trans && progress && err == -ENOSPC) { 3751 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3752 if (ret == 1) { 3753 err = 0; 3754 progress = 0; 3755 goto restart; 3756 } 3757 } 3758 3759 btrfs_release_path(path); 3760 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3761 3762 if (trans) { 3763 btrfs_end_transaction_throttle(trans); 3764 btrfs_btree_balance_dirty(fs_info); 3765 } 3766 3767 if (!err) { 3768 ret = relocate_file_extent_cluster(rc->data_inode, 3769 &rc->cluster); 3770 if (ret < 0) 3771 err = ret; 3772 } 3773 3774 rc->create_reloc_tree = 0; 3775 set_reloc_control(rc); 3776 3777 btrfs_backref_release_cache(&rc->backref_cache); 3778 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3779 3780 /* 3781 * Even in the case when the relocation is cancelled, we should all go 3782 * through prepare_to_merge() and merge_reloc_roots(). 3783 * 3784 * For error (including cancelled balance), prepare_to_merge() will 3785 * mark all reloc trees orphan, then queue them for cleanup in 3786 * merge_reloc_roots() 3787 */ 3788 err = prepare_to_merge(rc, err); 3789 3790 merge_reloc_roots(rc); 3791 3792 rc->merge_reloc_tree = 0; 3793 unset_reloc_control(rc); 3794 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3795 3796 /* get rid of pinned extents */ 3797 trans = btrfs_join_transaction(rc->extent_root); 3798 if (IS_ERR(trans)) { 3799 err = PTR_ERR(trans); 3800 goto out_free; 3801 } 3802 ret = btrfs_commit_transaction(trans); 3803 if (ret && !err) 3804 err = ret; 3805 out_free: 3806 ret = clean_dirty_subvols(rc); 3807 if (ret < 0 && !err) 3808 err = ret; 3809 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3810 btrfs_free_path(path); 3811 return err; 3812 } 3813 3814 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3815 struct btrfs_root *root, u64 objectid) 3816 { 3817 struct btrfs_path *path; 3818 struct btrfs_inode_item *item; 3819 struct extent_buffer *leaf; 3820 int ret; 3821 3822 path = btrfs_alloc_path(); 3823 if (!path) 3824 return -ENOMEM; 3825 3826 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3827 if (ret) 3828 goto out; 3829 3830 leaf = path->nodes[0]; 3831 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3832 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3833 btrfs_set_inode_generation(leaf, item, 1); 3834 btrfs_set_inode_size(leaf, item, 0); 3835 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3836 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3837 BTRFS_INODE_PREALLOC); 3838 btrfs_mark_buffer_dirty(leaf); 3839 out: 3840 btrfs_free_path(path); 3841 return ret; 3842 } 3843 3844 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3845 struct btrfs_root *root, u64 objectid) 3846 { 3847 struct btrfs_path *path; 3848 struct btrfs_key key; 3849 int ret = 0; 3850 3851 path = btrfs_alloc_path(); 3852 if (!path) { 3853 ret = -ENOMEM; 3854 goto out; 3855 } 3856 3857 key.objectid = objectid; 3858 key.type = BTRFS_INODE_ITEM_KEY; 3859 key.offset = 0; 3860 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3861 if (ret) { 3862 if (ret > 0) 3863 ret = -ENOENT; 3864 goto out; 3865 } 3866 ret = btrfs_del_item(trans, root, path); 3867 out: 3868 if (ret) 3869 btrfs_abort_transaction(trans, ret); 3870 btrfs_free_path(path); 3871 } 3872 3873 /* 3874 * helper to create inode for data relocation. 3875 * the inode is in data relocation tree and its link count is 0 3876 */ 3877 static noinline_for_stack 3878 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3879 struct btrfs_block_group *group) 3880 { 3881 struct inode *inode = NULL; 3882 struct btrfs_trans_handle *trans; 3883 struct btrfs_root *root; 3884 u64 objectid; 3885 int err = 0; 3886 3887 root = btrfs_grab_root(fs_info->data_reloc_root); 3888 trans = btrfs_start_transaction(root, 6); 3889 if (IS_ERR(trans)) { 3890 btrfs_put_root(root); 3891 return ERR_CAST(trans); 3892 } 3893 3894 err = btrfs_get_free_objectid(root, &objectid); 3895 if (err) 3896 goto out; 3897 3898 err = __insert_orphan_inode(trans, root, objectid); 3899 if (err) 3900 goto out; 3901 3902 inode = btrfs_iget(fs_info->sb, objectid, root); 3903 if (IS_ERR(inode)) { 3904 delete_orphan_inode(trans, root, objectid); 3905 err = PTR_ERR(inode); 3906 inode = NULL; 3907 goto out; 3908 } 3909 BTRFS_I(inode)->index_cnt = group->start; 3910 3911 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3912 out: 3913 btrfs_put_root(root); 3914 btrfs_end_transaction(trans); 3915 btrfs_btree_balance_dirty(fs_info); 3916 if (err) { 3917 iput(inode); 3918 inode = ERR_PTR(err); 3919 } 3920 return inode; 3921 } 3922 3923 /* 3924 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3925 * has been requested meanwhile and don't start in that case. 3926 * 3927 * Return: 3928 * 0 success 3929 * -EINPROGRESS operation is already in progress, that's probably a bug 3930 * -ECANCELED cancellation request was set before the operation started 3931 */ 3932 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3933 { 3934 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3935 /* This should not happen */ 3936 btrfs_err(fs_info, "reloc already running, cannot start"); 3937 return -EINPROGRESS; 3938 } 3939 3940 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3941 btrfs_info(fs_info, "chunk relocation canceled on start"); 3942 /* 3943 * On cancel, clear all requests but let the caller mark 3944 * the end after cleanup operations. 3945 */ 3946 atomic_set(&fs_info->reloc_cancel_req, 0); 3947 return -ECANCELED; 3948 } 3949 return 0; 3950 } 3951 3952 /* 3953 * Mark end of chunk relocation that is cancellable and wake any waiters. 3954 */ 3955 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3956 { 3957 /* Requested after start, clear bit first so any waiters can continue */ 3958 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3959 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3960 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3961 atomic_set(&fs_info->reloc_cancel_req, 0); 3962 } 3963 3964 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3965 { 3966 struct reloc_control *rc; 3967 3968 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3969 if (!rc) 3970 return NULL; 3971 3972 INIT_LIST_HEAD(&rc->reloc_roots); 3973 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3974 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3975 mapping_tree_init(&rc->reloc_root_tree); 3976 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 3977 return rc; 3978 } 3979 3980 static void free_reloc_control(struct reloc_control *rc) 3981 { 3982 struct mapping_node *node, *tmp; 3983 3984 free_reloc_roots(&rc->reloc_roots); 3985 rbtree_postorder_for_each_entry_safe(node, tmp, 3986 &rc->reloc_root_tree.rb_root, rb_node) 3987 kfree(node); 3988 3989 kfree(rc); 3990 } 3991 3992 /* 3993 * Print the block group being relocated 3994 */ 3995 static void describe_relocation(struct btrfs_fs_info *fs_info, 3996 struct btrfs_block_group *block_group) 3997 { 3998 char buf[128] = {'\0'}; 3999 4000 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4001 4002 btrfs_info(fs_info, 4003 "relocating block group %llu flags %s", 4004 block_group->start, buf); 4005 } 4006 4007 static const char *stage_to_string(int stage) 4008 { 4009 if (stage == MOVE_DATA_EXTENTS) 4010 return "move data extents"; 4011 if (stage == UPDATE_DATA_PTRS) 4012 return "update data pointers"; 4013 return "unknown"; 4014 } 4015 4016 /* 4017 * function to relocate all extents in a block group. 4018 */ 4019 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4020 { 4021 struct btrfs_block_group *bg; 4022 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 4023 struct reloc_control *rc; 4024 struct inode *inode; 4025 struct btrfs_path *path; 4026 int ret; 4027 int rw = 0; 4028 int err = 0; 4029 4030 /* 4031 * This only gets set if we had a half-deleted snapshot on mount. We 4032 * cannot allow relocation to start while we're still trying to clean up 4033 * these pending deletions. 4034 */ 4035 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 4036 if (ret) 4037 return ret; 4038 4039 /* We may have been woken up by close_ctree, so bail if we're closing. */ 4040 if (btrfs_fs_closing(fs_info)) 4041 return -EINTR; 4042 4043 bg = btrfs_lookup_block_group(fs_info, group_start); 4044 if (!bg) 4045 return -ENOENT; 4046 4047 /* 4048 * Relocation of a data block group creates ordered extents. Without 4049 * sb_start_write(), we can freeze the filesystem while unfinished 4050 * ordered extents are left. Such ordered extents can cause a deadlock 4051 * e.g. when syncfs() is waiting for their completion but they can't 4052 * finish because they block when joining a transaction, due to the 4053 * fact that the freeze locks are being held in write mode. 4054 */ 4055 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 4056 ASSERT(sb_write_started(fs_info->sb)); 4057 4058 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4059 btrfs_put_block_group(bg); 4060 return -ETXTBSY; 4061 } 4062 4063 rc = alloc_reloc_control(fs_info); 4064 if (!rc) { 4065 btrfs_put_block_group(bg); 4066 return -ENOMEM; 4067 } 4068 4069 ret = reloc_chunk_start(fs_info); 4070 if (ret < 0) { 4071 err = ret; 4072 goto out_put_bg; 4073 } 4074 4075 rc->extent_root = extent_root; 4076 rc->block_group = bg; 4077 4078 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4079 if (ret) { 4080 err = ret; 4081 goto out; 4082 } 4083 rw = 1; 4084 4085 path = btrfs_alloc_path(); 4086 if (!path) { 4087 err = -ENOMEM; 4088 goto out; 4089 } 4090 4091 inode = lookup_free_space_inode(rc->block_group, path); 4092 btrfs_free_path(path); 4093 4094 if (!IS_ERR(inode)) 4095 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4096 else 4097 ret = PTR_ERR(inode); 4098 4099 if (ret && ret != -ENOENT) { 4100 err = ret; 4101 goto out; 4102 } 4103 4104 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4105 if (IS_ERR(rc->data_inode)) { 4106 err = PTR_ERR(rc->data_inode); 4107 rc->data_inode = NULL; 4108 goto out; 4109 } 4110 4111 describe_relocation(fs_info, rc->block_group); 4112 4113 btrfs_wait_block_group_reservations(rc->block_group); 4114 btrfs_wait_nocow_writers(rc->block_group); 4115 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4116 rc->block_group->start, 4117 rc->block_group->length); 4118 4119 ret = btrfs_zone_finish(rc->block_group); 4120 WARN_ON(ret && ret != -EAGAIN); 4121 4122 while (1) { 4123 int finishes_stage; 4124 4125 mutex_lock(&fs_info->cleaner_mutex); 4126 ret = relocate_block_group(rc); 4127 mutex_unlock(&fs_info->cleaner_mutex); 4128 if (ret < 0) 4129 err = ret; 4130 4131 finishes_stage = rc->stage; 4132 /* 4133 * We may have gotten ENOSPC after we already dirtied some 4134 * extents. If writeout happens while we're relocating a 4135 * different block group we could end up hitting the 4136 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4137 * btrfs_reloc_cow_block. Make sure we write everything out 4138 * properly so we don't trip over this problem, and then break 4139 * out of the loop if we hit an error. 4140 */ 4141 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4142 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4143 (u64)-1); 4144 if (ret) 4145 err = ret; 4146 invalidate_mapping_pages(rc->data_inode->i_mapping, 4147 0, -1); 4148 rc->stage = UPDATE_DATA_PTRS; 4149 } 4150 4151 if (err < 0) 4152 goto out; 4153 4154 if (rc->extents_found == 0) 4155 break; 4156 4157 btrfs_info(fs_info, "found %llu extents, stage: %s", 4158 rc->extents_found, stage_to_string(finishes_stage)); 4159 } 4160 4161 WARN_ON(rc->block_group->pinned > 0); 4162 WARN_ON(rc->block_group->reserved > 0); 4163 WARN_ON(rc->block_group->used > 0); 4164 out: 4165 if (err && rw) 4166 btrfs_dec_block_group_ro(rc->block_group); 4167 iput(rc->data_inode); 4168 out_put_bg: 4169 btrfs_put_block_group(bg); 4170 reloc_chunk_end(fs_info); 4171 free_reloc_control(rc); 4172 return err; 4173 } 4174 4175 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4176 { 4177 struct btrfs_fs_info *fs_info = root->fs_info; 4178 struct btrfs_trans_handle *trans; 4179 int ret, err; 4180 4181 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4182 if (IS_ERR(trans)) 4183 return PTR_ERR(trans); 4184 4185 memset(&root->root_item.drop_progress, 0, 4186 sizeof(root->root_item.drop_progress)); 4187 btrfs_set_root_drop_level(&root->root_item, 0); 4188 btrfs_set_root_refs(&root->root_item, 0); 4189 ret = btrfs_update_root(trans, fs_info->tree_root, 4190 &root->root_key, &root->root_item); 4191 4192 err = btrfs_end_transaction(trans); 4193 if (err) 4194 return err; 4195 return ret; 4196 } 4197 4198 /* 4199 * recover relocation interrupted by system crash. 4200 * 4201 * this function resumes merging reloc trees with corresponding fs trees. 4202 * this is important for keeping the sharing of tree blocks 4203 */ 4204 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4205 { 4206 LIST_HEAD(reloc_roots); 4207 struct btrfs_key key; 4208 struct btrfs_root *fs_root; 4209 struct btrfs_root *reloc_root; 4210 struct btrfs_path *path; 4211 struct extent_buffer *leaf; 4212 struct reloc_control *rc = NULL; 4213 struct btrfs_trans_handle *trans; 4214 int ret; 4215 int err = 0; 4216 4217 path = btrfs_alloc_path(); 4218 if (!path) 4219 return -ENOMEM; 4220 path->reada = READA_BACK; 4221 4222 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4223 key.type = BTRFS_ROOT_ITEM_KEY; 4224 key.offset = (u64)-1; 4225 4226 while (1) { 4227 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4228 path, 0, 0); 4229 if (ret < 0) { 4230 err = ret; 4231 goto out; 4232 } 4233 if (ret > 0) { 4234 if (path->slots[0] == 0) 4235 break; 4236 path->slots[0]--; 4237 } 4238 leaf = path->nodes[0]; 4239 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4240 btrfs_release_path(path); 4241 4242 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4243 key.type != BTRFS_ROOT_ITEM_KEY) 4244 break; 4245 4246 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4247 if (IS_ERR(reloc_root)) { 4248 err = PTR_ERR(reloc_root); 4249 goto out; 4250 } 4251 4252 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4253 list_add(&reloc_root->root_list, &reloc_roots); 4254 4255 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4256 fs_root = btrfs_get_fs_root(fs_info, 4257 reloc_root->root_key.offset, false); 4258 if (IS_ERR(fs_root)) { 4259 ret = PTR_ERR(fs_root); 4260 if (ret != -ENOENT) { 4261 err = ret; 4262 goto out; 4263 } 4264 ret = mark_garbage_root(reloc_root); 4265 if (ret < 0) { 4266 err = ret; 4267 goto out; 4268 } 4269 } else { 4270 btrfs_put_root(fs_root); 4271 } 4272 } 4273 4274 if (key.offset == 0) 4275 break; 4276 4277 key.offset--; 4278 } 4279 btrfs_release_path(path); 4280 4281 if (list_empty(&reloc_roots)) 4282 goto out; 4283 4284 rc = alloc_reloc_control(fs_info); 4285 if (!rc) { 4286 err = -ENOMEM; 4287 goto out; 4288 } 4289 4290 ret = reloc_chunk_start(fs_info); 4291 if (ret < 0) { 4292 err = ret; 4293 goto out_end; 4294 } 4295 4296 rc->extent_root = btrfs_extent_root(fs_info, 0); 4297 4298 set_reloc_control(rc); 4299 4300 trans = btrfs_join_transaction(rc->extent_root); 4301 if (IS_ERR(trans)) { 4302 err = PTR_ERR(trans); 4303 goto out_unset; 4304 } 4305 4306 rc->merge_reloc_tree = 1; 4307 4308 while (!list_empty(&reloc_roots)) { 4309 reloc_root = list_entry(reloc_roots.next, 4310 struct btrfs_root, root_list); 4311 list_del(&reloc_root->root_list); 4312 4313 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4314 list_add_tail(&reloc_root->root_list, 4315 &rc->reloc_roots); 4316 continue; 4317 } 4318 4319 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4320 false); 4321 if (IS_ERR(fs_root)) { 4322 err = PTR_ERR(fs_root); 4323 list_add_tail(&reloc_root->root_list, &reloc_roots); 4324 btrfs_end_transaction(trans); 4325 goto out_unset; 4326 } 4327 4328 err = __add_reloc_root(reloc_root); 4329 ASSERT(err != -EEXIST); 4330 if (err) { 4331 list_add_tail(&reloc_root->root_list, &reloc_roots); 4332 btrfs_put_root(fs_root); 4333 btrfs_end_transaction(trans); 4334 goto out_unset; 4335 } 4336 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4337 btrfs_put_root(fs_root); 4338 } 4339 4340 err = btrfs_commit_transaction(trans); 4341 if (err) 4342 goto out_unset; 4343 4344 merge_reloc_roots(rc); 4345 4346 unset_reloc_control(rc); 4347 4348 trans = btrfs_join_transaction(rc->extent_root); 4349 if (IS_ERR(trans)) { 4350 err = PTR_ERR(trans); 4351 goto out_clean; 4352 } 4353 err = btrfs_commit_transaction(trans); 4354 out_clean: 4355 ret = clean_dirty_subvols(rc); 4356 if (ret < 0 && !err) 4357 err = ret; 4358 out_unset: 4359 unset_reloc_control(rc); 4360 out_end: 4361 reloc_chunk_end(fs_info); 4362 free_reloc_control(rc); 4363 out: 4364 free_reloc_roots(&reloc_roots); 4365 4366 btrfs_free_path(path); 4367 4368 if (err == 0) { 4369 /* cleanup orphan inode in data relocation tree */ 4370 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4371 ASSERT(fs_root); 4372 err = btrfs_orphan_cleanup(fs_root); 4373 btrfs_put_root(fs_root); 4374 } 4375 return err; 4376 } 4377 4378 /* 4379 * helper to add ordered checksum for data relocation. 4380 * 4381 * cloning checksum properly handles the nodatasum extents. 4382 * it also saves CPU time to re-calculate the checksum. 4383 */ 4384 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) 4385 { 4386 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 4387 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4388 u64 disk_bytenr = ordered->file_offset + inode->index_cnt; 4389 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4390 LIST_HEAD(list); 4391 int ret; 4392 4393 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4394 disk_bytenr + ordered->num_bytes - 1, 4395 &list, 0, false); 4396 if (ret) 4397 return ret; 4398 4399 while (!list_empty(&list)) { 4400 struct btrfs_ordered_sum *sums = 4401 list_entry(list.next, struct btrfs_ordered_sum, list); 4402 4403 list_del_init(&sums->list); 4404 4405 /* 4406 * We need to offset the new_bytenr based on where the csum is. 4407 * We need to do this because we will read in entire prealloc 4408 * extents but we may have written to say the middle of the 4409 * prealloc extent, so we need to make sure the csum goes with 4410 * the right disk offset. 4411 * 4412 * We can do this because the data reloc inode refers strictly 4413 * to the on disk bytes, so we don't have to worry about 4414 * disk_len vs real len like with real inodes since it's all 4415 * disk length. 4416 */ 4417 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; 4418 btrfs_add_ordered_sum(ordered, sums); 4419 } 4420 4421 return 0; 4422 } 4423 4424 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4425 struct btrfs_root *root, struct extent_buffer *buf, 4426 struct extent_buffer *cow) 4427 { 4428 struct btrfs_fs_info *fs_info = root->fs_info; 4429 struct reloc_control *rc; 4430 struct btrfs_backref_node *node; 4431 int first_cow = 0; 4432 int level; 4433 int ret = 0; 4434 4435 rc = fs_info->reloc_ctl; 4436 if (!rc) 4437 return 0; 4438 4439 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4440 4441 level = btrfs_header_level(buf); 4442 if (btrfs_header_generation(buf) <= 4443 btrfs_root_last_snapshot(&root->root_item)) 4444 first_cow = 1; 4445 4446 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4447 rc->create_reloc_tree) { 4448 WARN_ON(!first_cow && level == 0); 4449 4450 node = rc->backref_cache.path[level]; 4451 BUG_ON(node->bytenr != buf->start && 4452 node->new_bytenr != buf->start); 4453 4454 btrfs_backref_drop_node_buffer(node); 4455 atomic_inc(&cow->refs); 4456 node->eb = cow; 4457 node->new_bytenr = cow->start; 4458 4459 if (!node->pending) { 4460 list_move_tail(&node->list, 4461 &rc->backref_cache.pending[level]); 4462 node->pending = 1; 4463 } 4464 4465 if (first_cow) 4466 mark_block_processed(rc, node); 4467 4468 if (first_cow && level > 0) 4469 rc->nodes_relocated += buf->len; 4470 } 4471 4472 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4473 ret = replace_file_extents(trans, rc, root, cow); 4474 return ret; 4475 } 4476 4477 /* 4478 * called before creating snapshot. it calculates metadata reservation 4479 * required for relocating tree blocks in the snapshot 4480 */ 4481 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4482 u64 *bytes_to_reserve) 4483 { 4484 struct btrfs_root *root = pending->root; 4485 struct reloc_control *rc = root->fs_info->reloc_ctl; 4486 4487 if (!rc || !have_reloc_root(root)) 4488 return; 4489 4490 if (!rc->merge_reloc_tree) 4491 return; 4492 4493 root = root->reloc_root; 4494 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4495 /* 4496 * relocation is in the stage of merging trees. the space 4497 * used by merging a reloc tree is twice the size of 4498 * relocated tree nodes in the worst case. half for cowing 4499 * the reloc tree, half for cowing the fs tree. the space 4500 * used by cowing the reloc tree will be freed after the 4501 * tree is dropped. if we create snapshot, cowing the fs 4502 * tree may use more space than it frees. so we need 4503 * reserve extra space. 4504 */ 4505 *bytes_to_reserve += rc->nodes_relocated; 4506 } 4507 4508 /* 4509 * called after snapshot is created. migrate block reservation 4510 * and create reloc root for the newly created snapshot 4511 * 4512 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4513 * references held on the reloc_root, one for root->reloc_root and one for 4514 * rc->reloc_roots. 4515 */ 4516 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4517 struct btrfs_pending_snapshot *pending) 4518 { 4519 struct btrfs_root *root = pending->root; 4520 struct btrfs_root *reloc_root; 4521 struct btrfs_root *new_root; 4522 struct reloc_control *rc = root->fs_info->reloc_ctl; 4523 int ret; 4524 4525 if (!rc || !have_reloc_root(root)) 4526 return 0; 4527 4528 rc = root->fs_info->reloc_ctl; 4529 rc->merging_rsv_size += rc->nodes_relocated; 4530 4531 if (rc->merge_reloc_tree) { 4532 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4533 rc->block_rsv, 4534 rc->nodes_relocated, true); 4535 if (ret) 4536 return ret; 4537 } 4538 4539 new_root = pending->snap; 4540 reloc_root = create_reloc_root(trans, root->reloc_root, 4541 new_root->root_key.objectid); 4542 if (IS_ERR(reloc_root)) 4543 return PTR_ERR(reloc_root); 4544 4545 ret = __add_reloc_root(reloc_root); 4546 ASSERT(ret != -EEXIST); 4547 if (ret) { 4548 /* Pairs with create_reloc_root */ 4549 btrfs_put_root(reloc_root); 4550 return ret; 4551 } 4552 new_root->reloc_root = btrfs_grab_root(reloc_root); 4553 4554 if (rc->create_reloc_tree) 4555 ret = clone_backref_node(trans, rc, root, reloc_root); 4556 return ret; 4557 } 4558 4559 /* 4560 * Get the current bytenr for the block group which is being relocated. 4561 * 4562 * Return U64_MAX if no running relocation. 4563 */ 4564 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info) 4565 { 4566 u64 logical = U64_MAX; 4567 4568 lockdep_assert_held(&fs_info->reloc_mutex); 4569 4570 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) 4571 logical = fs_info->reloc_ctl->block_group->start; 4572 return logical; 4573 } 4574