xref: /openbmc/linux/fs/btrfs/relocation.c (revision 97e6ea6d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 
29 /*
30  * Relocation overview
31  *
32  * [What does relocation do]
33  *
34  * The objective of relocation is to relocate all extents of the target block
35  * group to other block groups.
36  * This is utilized by resize (shrink only), profile converting, compacting
37  * space, or balance routine to spread chunks over devices.
38  *
39  * 		Before		|		After
40  * ------------------------------------------------------------------
41  *  BG A: 10 data extents	| BG A: deleted
42  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
43  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
44  *
45  * [How does relocation work]
46  *
47  * 1.   Mark the target block group read-only
48  *      New extents won't be allocated from the target block group.
49  *
50  * 2.1  Record each extent in the target block group
51  *      To build a proper map of extents to be relocated.
52  *
53  * 2.2  Build data reloc tree and reloc trees
54  *      Data reloc tree will contain an inode, recording all newly relocated
55  *      data extents.
56  *      There will be only one data reloc tree for one data block group.
57  *
58  *      Reloc tree will be a special snapshot of its source tree, containing
59  *      relocated tree blocks.
60  *      Each tree referring to a tree block in target block group will get its
61  *      reloc tree built.
62  *
63  * 2.3  Swap source tree with its corresponding reloc tree
64  *      Each involved tree only refers to new extents after swap.
65  *
66  * 3.   Cleanup reloc trees and data reloc tree.
67  *      As old extents in the target block group are still referenced by reloc
68  *      trees, we need to clean them up before really freeing the target block
69  *      group.
70  *
71  * The main complexity is in steps 2.2 and 2.3.
72  *
73  * The entry point of relocation is relocate_block_group() function.
74  */
75 
76 #define RELOCATION_RESERVED_NODES	256
77 /*
78  * map address of tree root to tree
79  */
80 struct mapping_node {
81 	struct {
82 		struct rb_node rb_node;
83 		u64 bytenr;
84 	}; /* Use rb_simle_node for search/insert */
85 	void *data;
86 };
87 
88 struct mapping_tree {
89 	struct rb_root rb_root;
90 	spinlock_t lock;
91 };
92 
93 /*
94  * present a tree block to process
95  */
96 struct tree_block {
97 	struct {
98 		struct rb_node rb_node;
99 		u64 bytenr;
100 	}; /* Use rb_simple_node for search/insert */
101 	u64 owner;
102 	struct btrfs_key key;
103 	unsigned int level:8;
104 	unsigned int key_ready:1;
105 };
106 
107 #define MAX_EXTENTS 128
108 
109 struct file_extent_cluster {
110 	u64 start;
111 	u64 end;
112 	u64 boundary[MAX_EXTENTS];
113 	unsigned int nr;
114 };
115 
116 struct reloc_control {
117 	/* block group to relocate */
118 	struct btrfs_block_group *block_group;
119 	/* extent tree */
120 	struct btrfs_root *extent_root;
121 	/* inode for moving data */
122 	struct inode *data_inode;
123 
124 	struct btrfs_block_rsv *block_rsv;
125 
126 	struct btrfs_backref_cache backref_cache;
127 
128 	struct file_extent_cluster cluster;
129 	/* tree blocks have been processed */
130 	struct extent_io_tree processed_blocks;
131 	/* map start of tree root to corresponding reloc tree */
132 	struct mapping_tree reloc_root_tree;
133 	/* list of reloc trees */
134 	struct list_head reloc_roots;
135 	/* list of subvolume trees that get relocated */
136 	struct list_head dirty_subvol_roots;
137 	/* size of metadata reservation for merging reloc trees */
138 	u64 merging_rsv_size;
139 	/* size of relocated tree nodes */
140 	u64 nodes_relocated;
141 	/* reserved size for block group relocation*/
142 	u64 reserved_bytes;
143 
144 	u64 search_start;
145 	u64 extents_found;
146 
147 	unsigned int stage:8;
148 	unsigned int create_reloc_tree:1;
149 	unsigned int merge_reloc_tree:1;
150 	unsigned int found_file_extent:1;
151 };
152 
153 /* stages of data relocation */
154 #define MOVE_DATA_EXTENTS	0
155 #define UPDATE_DATA_PTRS	1
156 
157 static void mark_block_processed(struct reloc_control *rc,
158 				 struct btrfs_backref_node *node)
159 {
160 	u32 blocksize;
161 
162 	if (node->level == 0 ||
163 	    in_range(node->bytenr, rc->block_group->start,
164 		     rc->block_group->length)) {
165 		blocksize = rc->extent_root->fs_info->nodesize;
166 		set_extent_bits(&rc->processed_blocks, node->bytenr,
167 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
168 	}
169 	node->processed = 1;
170 }
171 
172 
173 static void mapping_tree_init(struct mapping_tree *tree)
174 {
175 	tree->rb_root = RB_ROOT;
176 	spin_lock_init(&tree->lock);
177 }
178 
179 /*
180  * walk up backref nodes until reach node presents tree root
181  */
182 static struct btrfs_backref_node *walk_up_backref(
183 		struct btrfs_backref_node *node,
184 		struct btrfs_backref_edge *edges[], int *index)
185 {
186 	struct btrfs_backref_edge *edge;
187 	int idx = *index;
188 
189 	while (!list_empty(&node->upper)) {
190 		edge = list_entry(node->upper.next,
191 				  struct btrfs_backref_edge, list[LOWER]);
192 		edges[idx++] = edge;
193 		node = edge->node[UPPER];
194 	}
195 	BUG_ON(node->detached);
196 	*index = idx;
197 	return node;
198 }
199 
200 /*
201  * walk down backref nodes to find start of next reference path
202  */
203 static struct btrfs_backref_node *walk_down_backref(
204 		struct btrfs_backref_edge *edges[], int *index)
205 {
206 	struct btrfs_backref_edge *edge;
207 	struct btrfs_backref_node *lower;
208 	int idx = *index;
209 
210 	while (idx > 0) {
211 		edge = edges[idx - 1];
212 		lower = edge->node[LOWER];
213 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
214 			idx--;
215 			continue;
216 		}
217 		edge = list_entry(edge->list[LOWER].next,
218 				  struct btrfs_backref_edge, list[LOWER]);
219 		edges[idx - 1] = edge;
220 		*index = idx;
221 		return edge->node[UPPER];
222 	}
223 	*index = 0;
224 	return NULL;
225 }
226 
227 static void update_backref_node(struct btrfs_backref_cache *cache,
228 				struct btrfs_backref_node *node, u64 bytenr)
229 {
230 	struct rb_node *rb_node;
231 	rb_erase(&node->rb_node, &cache->rb_root);
232 	node->bytenr = bytenr;
233 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
234 	if (rb_node)
235 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
236 }
237 
238 /*
239  * update backref cache after a transaction commit
240  */
241 static int update_backref_cache(struct btrfs_trans_handle *trans,
242 				struct btrfs_backref_cache *cache)
243 {
244 	struct btrfs_backref_node *node;
245 	int level = 0;
246 
247 	if (cache->last_trans == 0) {
248 		cache->last_trans = trans->transid;
249 		return 0;
250 	}
251 
252 	if (cache->last_trans == trans->transid)
253 		return 0;
254 
255 	/*
256 	 * detached nodes are used to avoid unnecessary backref
257 	 * lookup. transaction commit changes the extent tree.
258 	 * so the detached nodes are no longer useful.
259 	 */
260 	while (!list_empty(&cache->detached)) {
261 		node = list_entry(cache->detached.next,
262 				  struct btrfs_backref_node, list);
263 		btrfs_backref_cleanup_node(cache, node);
264 	}
265 
266 	while (!list_empty(&cache->changed)) {
267 		node = list_entry(cache->changed.next,
268 				  struct btrfs_backref_node, list);
269 		list_del_init(&node->list);
270 		BUG_ON(node->pending);
271 		update_backref_node(cache, node, node->new_bytenr);
272 	}
273 
274 	/*
275 	 * some nodes can be left in the pending list if there were
276 	 * errors during processing the pending nodes.
277 	 */
278 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
279 		list_for_each_entry(node, &cache->pending[level], list) {
280 			BUG_ON(!node->pending);
281 			if (node->bytenr == node->new_bytenr)
282 				continue;
283 			update_backref_node(cache, node, node->new_bytenr);
284 		}
285 	}
286 
287 	cache->last_trans = 0;
288 	return 1;
289 }
290 
291 static bool reloc_root_is_dead(struct btrfs_root *root)
292 {
293 	/*
294 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
295 	 * btrfs_update_reloc_root. We need to see the updated bit before
296 	 * trying to access reloc_root
297 	 */
298 	smp_rmb();
299 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
300 		return true;
301 	return false;
302 }
303 
304 /*
305  * Check if this subvolume tree has valid reloc tree.
306  *
307  * Reloc tree after swap is considered dead, thus not considered as valid.
308  * This is enough for most callers, as they don't distinguish dead reloc root
309  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
310  * special case.
311  */
312 static bool have_reloc_root(struct btrfs_root *root)
313 {
314 	if (reloc_root_is_dead(root))
315 		return false;
316 	if (!root->reloc_root)
317 		return false;
318 	return true;
319 }
320 
321 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
322 {
323 	struct btrfs_root *reloc_root;
324 
325 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
326 		return 0;
327 
328 	/* This root has been merged with its reloc tree, we can ignore it */
329 	if (reloc_root_is_dead(root))
330 		return 1;
331 
332 	reloc_root = root->reloc_root;
333 	if (!reloc_root)
334 		return 0;
335 
336 	if (btrfs_header_generation(reloc_root->commit_root) ==
337 	    root->fs_info->running_transaction->transid)
338 		return 0;
339 	/*
340 	 * if there is reloc tree and it was created in previous
341 	 * transaction backref lookup can find the reloc tree,
342 	 * so backref node for the fs tree root is useless for
343 	 * relocation.
344 	 */
345 	return 1;
346 }
347 
348 /*
349  * find reloc tree by address of tree root
350  */
351 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
352 {
353 	struct reloc_control *rc = fs_info->reloc_ctl;
354 	struct rb_node *rb_node;
355 	struct mapping_node *node;
356 	struct btrfs_root *root = NULL;
357 
358 	ASSERT(rc);
359 	spin_lock(&rc->reloc_root_tree.lock);
360 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
361 	if (rb_node) {
362 		node = rb_entry(rb_node, struct mapping_node, rb_node);
363 		root = (struct btrfs_root *)node->data;
364 	}
365 	spin_unlock(&rc->reloc_root_tree.lock);
366 	return btrfs_grab_root(root);
367 }
368 
369 /*
370  * For useless nodes, do two major clean ups:
371  *
372  * - Cleanup the children edges and nodes
373  *   If child node is also orphan (no parent) during cleanup, then the child
374  *   node will also be cleaned up.
375  *
376  * - Freeing up leaves (level 0), keeps nodes detached
377  *   For nodes, the node is still cached as "detached"
378  *
379  * Return false if @node is not in the @useless_nodes list.
380  * Return true if @node is in the @useless_nodes list.
381  */
382 static bool handle_useless_nodes(struct reloc_control *rc,
383 				 struct btrfs_backref_node *node)
384 {
385 	struct btrfs_backref_cache *cache = &rc->backref_cache;
386 	struct list_head *useless_node = &cache->useless_node;
387 	bool ret = false;
388 
389 	while (!list_empty(useless_node)) {
390 		struct btrfs_backref_node *cur;
391 
392 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
393 				 list);
394 		list_del_init(&cur->list);
395 
396 		/* Only tree root nodes can be added to @useless_nodes */
397 		ASSERT(list_empty(&cur->upper));
398 
399 		if (cur == node)
400 			ret = true;
401 
402 		/* The node is the lowest node */
403 		if (cur->lowest) {
404 			list_del_init(&cur->lower);
405 			cur->lowest = 0;
406 		}
407 
408 		/* Cleanup the lower edges */
409 		while (!list_empty(&cur->lower)) {
410 			struct btrfs_backref_edge *edge;
411 			struct btrfs_backref_node *lower;
412 
413 			edge = list_entry(cur->lower.next,
414 					struct btrfs_backref_edge, list[UPPER]);
415 			list_del(&edge->list[UPPER]);
416 			list_del(&edge->list[LOWER]);
417 			lower = edge->node[LOWER];
418 			btrfs_backref_free_edge(cache, edge);
419 
420 			/* Child node is also orphan, queue for cleanup */
421 			if (list_empty(&lower->upper))
422 				list_add(&lower->list, useless_node);
423 		}
424 		/* Mark this block processed for relocation */
425 		mark_block_processed(rc, cur);
426 
427 		/*
428 		 * Backref nodes for tree leaves are deleted from the cache.
429 		 * Backref nodes for upper level tree blocks are left in the
430 		 * cache to avoid unnecessary backref lookup.
431 		 */
432 		if (cur->level > 0) {
433 			list_add(&cur->list, &cache->detached);
434 			cur->detached = 1;
435 		} else {
436 			rb_erase(&cur->rb_node, &cache->rb_root);
437 			btrfs_backref_free_node(cache, cur);
438 		}
439 	}
440 	return ret;
441 }
442 
443 /*
444  * Build backref tree for a given tree block. Root of the backref tree
445  * corresponds the tree block, leaves of the backref tree correspond roots of
446  * b-trees that reference the tree block.
447  *
448  * The basic idea of this function is check backrefs of a given block to find
449  * upper level blocks that reference the block, and then check backrefs of
450  * these upper level blocks recursively. The recursion stops when tree root is
451  * reached or backrefs for the block is cached.
452  *
453  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
454  * all upper level blocks that directly/indirectly reference the block are also
455  * cached.
456  */
457 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
458 			struct reloc_control *rc, struct btrfs_key *node_key,
459 			int level, u64 bytenr)
460 {
461 	struct btrfs_backref_iter *iter;
462 	struct btrfs_backref_cache *cache = &rc->backref_cache;
463 	/* For searching parent of TREE_BLOCK_REF */
464 	struct btrfs_path *path;
465 	struct btrfs_backref_node *cur;
466 	struct btrfs_backref_node *node = NULL;
467 	struct btrfs_backref_edge *edge;
468 	int ret;
469 	int err = 0;
470 
471 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
472 	if (!iter)
473 		return ERR_PTR(-ENOMEM);
474 	path = btrfs_alloc_path();
475 	if (!path) {
476 		err = -ENOMEM;
477 		goto out;
478 	}
479 
480 	node = btrfs_backref_alloc_node(cache, bytenr, level);
481 	if (!node) {
482 		err = -ENOMEM;
483 		goto out;
484 	}
485 
486 	node->lowest = 1;
487 	cur = node;
488 
489 	/* Breadth-first search to build backref cache */
490 	do {
491 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
492 						  cur);
493 		if (ret < 0) {
494 			err = ret;
495 			goto out;
496 		}
497 		edge = list_first_entry_or_null(&cache->pending_edge,
498 				struct btrfs_backref_edge, list[UPPER]);
499 		/*
500 		 * The pending list isn't empty, take the first block to
501 		 * process
502 		 */
503 		if (edge) {
504 			list_del_init(&edge->list[UPPER]);
505 			cur = edge->node[UPPER];
506 		}
507 	} while (edge);
508 
509 	/* Finish the upper linkage of newly added edges/nodes */
510 	ret = btrfs_backref_finish_upper_links(cache, node);
511 	if (ret < 0) {
512 		err = ret;
513 		goto out;
514 	}
515 
516 	if (handle_useless_nodes(rc, node))
517 		node = NULL;
518 out:
519 	btrfs_backref_iter_free(iter);
520 	btrfs_free_path(path);
521 	if (err) {
522 		btrfs_backref_error_cleanup(cache, node);
523 		return ERR_PTR(err);
524 	}
525 	ASSERT(!node || !node->detached);
526 	ASSERT(list_empty(&cache->useless_node) &&
527 	       list_empty(&cache->pending_edge));
528 	return node;
529 }
530 
531 /*
532  * helper to add backref node for the newly created snapshot.
533  * the backref node is created by cloning backref node that
534  * corresponds to root of source tree
535  */
536 static int clone_backref_node(struct btrfs_trans_handle *trans,
537 			      struct reloc_control *rc,
538 			      struct btrfs_root *src,
539 			      struct btrfs_root *dest)
540 {
541 	struct btrfs_root *reloc_root = src->reloc_root;
542 	struct btrfs_backref_cache *cache = &rc->backref_cache;
543 	struct btrfs_backref_node *node = NULL;
544 	struct btrfs_backref_node *new_node;
545 	struct btrfs_backref_edge *edge;
546 	struct btrfs_backref_edge *new_edge;
547 	struct rb_node *rb_node;
548 
549 	if (cache->last_trans > 0)
550 		update_backref_cache(trans, cache);
551 
552 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
553 	if (rb_node) {
554 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
555 		if (node->detached)
556 			node = NULL;
557 		else
558 			BUG_ON(node->new_bytenr != reloc_root->node->start);
559 	}
560 
561 	if (!node) {
562 		rb_node = rb_simple_search(&cache->rb_root,
563 					   reloc_root->commit_root->start);
564 		if (rb_node) {
565 			node = rb_entry(rb_node, struct btrfs_backref_node,
566 					rb_node);
567 			BUG_ON(node->detached);
568 		}
569 	}
570 
571 	if (!node)
572 		return 0;
573 
574 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
575 					    node->level);
576 	if (!new_node)
577 		return -ENOMEM;
578 
579 	new_node->lowest = node->lowest;
580 	new_node->checked = 1;
581 	new_node->root = btrfs_grab_root(dest);
582 	ASSERT(new_node->root);
583 
584 	if (!node->lowest) {
585 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
586 			new_edge = btrfs_backref_alloc_edge(cache);
587 			if (!new_edge)
588 				goto fail;
589 
590 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
591 						new_node, LINK_UPPER);
592 		}
593 	} else {
594 		list_add_tail(&new_node->lower, &cache->leaves);
595 	}
596 
597 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
598 				   &new_node->rb_node);
599 	if (rb_node)
600 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
601 
602 	if (!new_node->lowest) {
603 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
604 			list_add_tail(&new_edge->list[LOWER],
605 				      &new_edge->node[LOWER]->upper);
606 		}
607 	}
608 	return 0;
609 fail:
610 	while (!list_empty(&new_node->lower)) {
611 		new_edge = list_entry(new_node->lower.next,
612 				      struct btrfs_backref_edge, list[UPPER]);
613 		list_del(&new_edge->list[UPPER]);
614 		btrfs_backref_free_edge(cache, new_edge);
615 	}
616 	btrfs_backref_free_node(cache, new_node);
617 	return -ENOMEM;
618 }
619 
620 /*
621  * helper to add 'address of tree root -> reloc tree' mapping
622  */
623 static int __must_check __add_reloc_root(struct btrfs_root *root)
624 {
625 	struct btrfs_fs_info *fs_info = root->fs_info;
626 	struct rb_node *rb_node;
627 	struct mapping_node *node;
628 	struct reloc_control *rc = fs_info->reloc_ctl;
629 
630 	node = kmalloc(sizeof(*node), GFP_NOFS);
631 	if (!node)
632 		return -ENOMEM;
633 
634 	node->bytenr = root->commit_root->start;
635 	node->data = root;
636 
637 	spin_lock(&rc->reloc_root_tree.lock);
638 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
639 				   node->bytenr, &node->rb_node);
640 	spin_unlock(&rc->reloc_root_tree.lock);
641 	if (rb_node) {
642 		btrfs_err(fs_info,
643 			    "Duplicate root found for start=%llu while inserting into relocation tree",
644 			    node->bytenr);
645 		return -EEXIST;
646 	}
647 
648 	list_add_tail(&root->root_list, &rc->reloc_roots);
649 	return 0;
650 }
651 
652 /*
653  * helper to delete the 'address of tree root -> reloc tree'
654  * mapping
655  */
656 static void __del_reloc_root(struct btrfs_root *root)
657 {
658 	struct btrfs_fs_info *fs_info = root->fs_info;
659 	struct rb_node *rb_node;
660 	struct mapping_node *node = NULL;
661 	struct reloc_control *rc = fs_info->reloc_ctl;
662 	bool put_ref = false;
663 
664 	if (rc && root->node) {
665 		spin_lock(&rc->reloc_root_tree.lock);
666 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
667 					   root->commit_root->start);
668 		if (rb_node) {
669 			node = rb_entry(rb_node, struct mapping_node, rb_node);
670 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
671 			RB_CLEAR_NODE(&node->rb_node);
672 		}
673 		spin_unlock(&rc->reloc_root_tree.lock);
674 		ASSERT(!node || (struct btrfs_root *)node->data == root);
675 	}
676 
677 	/*
678 	 * We only put the reloc root here if it's on the list.  There's a lot
679 	 * of places where the pattern is to splice the rc->reloc_roots, process
680 	 * the reloc roots, and then add the reloc root back onto
681 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
682 	 * list we don't want the reference being dropped, because the guy
683 	 * messing with the list is in charge of the reference.
684 	 */
685 	spin_lock(&fs_info->trans_lock);
686 	if (!list_empty(&root->root_list)) {
687 		put_ref = true;
688 		list_del_init(&root->root_list);
689 	}
690 	spin_unlock(&fs_info->trans_lock);
691 	if (put_ref)
692 		btrfs_put_root(root);
693 	kfree(node);
694 }
695 
696 /*
697  * helper to update the 'address of tree root -> reloc tree'
698  * mapping
699  */
700 static int __update_reloc_root(struct btrfs_root *root)
701 {
702 	struct btrfs_fs_info *fs_info = root->fs_info;
703 	struct rb_node *rb_node;
704 	struct mapping_node *node = NULL;
705 	struct reloc_control *rc = fs_info->reloc_ctl;
706 
707 	spin_lock(&rc->reloc_root_tree.lock);
708 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
709 				   root->commit_root->start);
710 	if (rb_node) {
711 		node = rb_entry(rb_node, struct mapping_node, rb_node);
712 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
713 	}
714 	spin_unlock(&rc->reloc_root_tree.lock);
715 
716 	if (!node)
717 		return 0;
718 	BUG_ON((struct btrfs_root *)node->data != root);
719 
720 	spin_lock(&rc->reloc_root_tree.lock);
721 	node->bytenr = root->node->start;
722 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
723 				   node->bytenr, &node->rb_node);
724 	spin_unlock(&rc->reloc_root_tree.lock);
725 	if (rb_node)
726 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
727 	return 0;
728 }
729 
730 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
731 					struct btrfs_root *root, u64 objectid)
732 {
733 	struct btrfs_fs_info *fs_info = root->fs_info;
734 	struct btrfs_root *reloc_root;
735 	struct extent_buffer *eb;
736 	struct btrfs_root_item *root_item;
737 	struct btrfs_key root_key;
738 	int ret = 0;
739 	bool must_abort = false;
740 
741 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
742 	if (!root_item)
743 		return ERR_PTR(-ENOMEM);
744 
745 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
746 	root_key.type = BTRFS_ROOT_ITEM_KEY;
747 	root_key.offset = objectid;
748 
749 	if (root->root_key.objectid == objectid) {
750 		u64 commit_root_gen;
751 
752 		/* called by btrfs_init_reloc_root */
753 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
754 				      BTRFS_TREE_RELOC_OBJECTID);
755 		if (ret)
756 			goto fail;
757 
758 		/*
759 		 * Set the last_snapshot field to the generation of the commit
760 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
761 		 * correctly (returns true) when the relocation root is created
762 		 * either inside the critical section of a transaction commit
763 		 * (through transaction.c:qgroup_account_snapshot()) and when
764 		 * it's created before the transaction commit is started.
765 		 */
766 		commit_root_gen = btrfs_header_generation(root->commit_root);
767 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
768 	} else {
769 		/*
770 		 * called by btrfs_reloc_post_snapshot_hook.
771 		 * the source tree is a reloc tree, all tree blocks
772 		 * modified after it was created have RELOC flag
773 		 * set in their headers. so it's OK to not update
774 		 * the 'last_snapshot'.
775 		 */
776 		ret = btrfs_copy_root(trans, root, root->node, &eb,
777 				      BTRFS_TREE_RELOC_OBJECTID);
778 		if (ret)
779 			goto fail;
780 	}
781 
782 	/*
783 	 * We have changed references at this point, we must abort the
784 	 * transaction if anything fails.
785 	 */
786 	must_abort = true;
787 
788 	memcpy(root_item, &root->root_item, sizeof(*root_item));
789 	btrfs_set_root_bytenr(root_item, eb->start);
790 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
791 	btrfs_set_root_generation(root_item, trans->transid);
792 
793 	if (root->root_key.objectid == objectid) {
794 		btrfs_set_root_refs(root_item, 0);
795 		memset(&root_item->drop_progress, 0,
796 		       sizeof(struct btrfs_disk_key));
797 		btrfs_set_root_drop_level(root_item, 0);
798 	}
799 
800 	btrfs_tree_unlock(eb);
801 	free_extent_buffer(eb);
802 
803 	ret = btrfs_insert_root(trans, fs_info->tree_root,
804 				&root_key, root_item);
805 	if (ret)
806 		goto fail;
807 
808 	kfree(root_item);
809 
810 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
811 	if (IS_ERR(reloc_root)) {
812 		ret = PTR_ERR(reloc_root);
813 		goto abort;
814 	}
815 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
816 	reloc_root->last_trans = trans->transid;
817 	return reloc_root;
818 fail:
819 	kfree(root_item);
820 abort:
821 	if (must_abort)
822 		btrfs_abort_transaction(trans, ret);
823 	return ERR_PTR(ret);
824 }
825 
826 /*
827  * create reloc tree for a given fs tree. reloc tree is just a
828  * snapshot of the fs tree with special root objectid.
829  *
830  * The reloc_root comes out of here with two references, one for
831  * root->reloc_root, and another for being on the rc->reloc_roots list.
832  */
833 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
834 			  struct btrfs_root *root)
835 {
836 	struct btrfs_fs_info *fs_info = root->fs_info;
837 	struct btrfs_root *reloc_root;
838 	struct reloc_control *rc = fs_info->reloc_ctl;
839 	struct btrfs_block_rsv *rsv;
840 	int clear_rsv = 0;
841 	int ret;
842 
843 	if (!rc)
844 		return 0;
845 
846 	/*
847 	 * The subvolume has reloc tree but the swap is finished, no need to
848 	 * create/update the dead reloc tree
849 	 */
850 	if (reloc_root_is_dead(root))
851 		return 0;
852 
853 	/*
854 	 * This is subtle but important.  We do not do
855 	 * record_root_in_transaction for reloc roots, instead we record their
856 	 * corresponding fs root, and then here we update the last trans for the
857 	 * reloc root.  This means that we have to do this for the entire life
858 	 * of the reloc root, regardless of which stage of the relocation we are
859 	 * in.
860 	 */
861 	if (root->reloc_root) {
862 		reloc_root = root->reloc_root;
863 		reloc_root->last_trans = trans->transid;
864 		return 0;
865 	}
866 
867 	/*
868 	 * We are merging reloc roots, we do not need new reloc trees.  Also
869 	 * reloc trees never need their own reloc tree.
870 	 */
871 	if (!rc->create_reloc_tree ||
872 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
873 		return 0;
874 
875 	if (!trans->reloc_reserved) {
876 		rsv = trans->block_rsv;
877 		trans->block_rsv = rc->block_rsv;
878 		clear_rsv = 1;
879 	}
880 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
881 	if (clear_rsv)
882 		trans->block_rsv = rsv;
883 	if (IS_ERR(reloc_root))
884 		return PTR_ERR(reloc_root);
885 
886 	ret = __add_reloc_root(reloc_root);
887 	ASSERT(ret != -EEXIST);
888 	if (ret) {
889 		/* Pairs with create_reloc_root */
890 		btrfs_put_root(reloc_root);
891 		return ret;
892 	}
893 	root->reloc_root = btrfs_grab_root(reloc_root);
894 	return 0;
895 }
896 
897 /*
898  * update root item of reloc tree
899  */
900 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
901 			    struct btrfs_root *root)
902 {
903 	struct btrfs_fs_info *fs_info = root->fs_info;
904 	struct btrfs_root *reloc_root;
905 	struct btrfs_root_item *root_item;
906 	int ret;
907 
908 	if (!have_reloc_root(root))
909 		return 0;
910 
911 	reloc_root = root->reloc_root;
912 	root_item = &reloc_root->root_item;
913 
914 	/*
915 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
916 	 * the root.  We have the ref for root->reloc_root, but just in case
917 	 * hold it while we update the reloc root.
918 	 */
919 	btrfs_grab_root(reloc_root);
920 
921 	/* root->reloc_root will stay until current relocation finished */
922 	if (fs_info->reloc_ctl->merge_reloc_tree &&
923 	    btrfs_root_refs(root_item) == 0) {
924 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
925 		/*
926 		 * Mark the tree as dead before we change reloc_root so
927 		 * have_reloc_root will not touch it from now on.
928 		 */
929 		smp_wmb();
930 		__del_reloc_root(reloc_root);
931 	}
932 
933 	if (reloc_root->commit_root != reloc_root->node) {
934 		__update_reloc_root(reloc_root);
935 		btrfs_set_root_node(root_item, reloc_root->node);
936 		free_extent_buffer(reloc_root->commit_root);
937 		reloc_root->commit_root = btrfs_root_node(reloc_root);
938 	}
939 
940 	ret = btrfs_update_root(trans, fs_info->tree_root,
941 				&reloc_root->root_key, root_item);
942 	btrfs_put_root(reloc_root);
943 	return ret;
944 }
945 
946 /*
947  * helper to find first cached inode with inode number >= objectid
948  * in a subvolume
949  */
950 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
951 {
952 	struct rb_node *node;
953 	struct rb_node *prev;
954 	struct btrfs_inode *entry;
955 	struct inode *inode;
956 
957 	spin_lock(&root->inode_lock);
958 again:
959 	node = root->inode_tree.rb_node;
960 	prev = NULL;
961 	while (node) {
962 		prev = node;
963 		entry = rb_entry(node, struct btrfs_inode, rb_node);
964 
965 		if (objectid < btrfs_ino(entry))
966 			node = node->rb_left;
967 		else if (objectid > btrfs_ino(entry))
968 			node = node->rb_right;
969 		else
970 			break;
971 	}
972 	if (!node) {
973 		while (prev) {
974 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
975 			if (objectid <= btrfs_ino(entry)) {
976 				node = prev;
977 				break;
978 			}
979 			prev = rb_next(prev);
980 		}
981 	}
982 	while (node) {
983 		entry = rb_entry(node, struct btrfs_inode, rb_node);
984 		inode = igrab(&entry->vfs_inode);
985 		if (inode) {
986 			spin_unlock(&root->inode_lock);
987 			return inode;
988 		}
989 
990 		objectid = btrfs_ino(entry) + 1;
991 		if (cond_resched_lock(&root->inode_lock))
992 			goto again;
993 
994 		node = rb_next(node);
995 	}
996 	spin_unlock(&root->inode_lock);
997 	return NULL;
998 }
999 
1000 /*
1001  * get new location of data
1002  */
1003 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1004 			    u64 bytenr, u64 num_bytes)
1005 {
1006 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1007 	struct btrfs_path *path;
1008 	struct btrfs_file_extent_item *fi;
1009 	struct extent_buffer *leaf;
1010 	int ret;
1011 
1012 	path = btrfs_alloc_path();
1013 	if (!path)
1014 		return -ENOMEM;
1015 
1016 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1017 	ret = btrfs_lookup_file_extent(NULL, root, path,
1018 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1019 	if (ret < 0)
1020 		goto out;
1021 	if (ret > 0) {
1022 		ret = -ENOENT;
1023 		goto out;
1024 	}
1025 
1026 	leaf = path->nodes[0];
1027 	fi = btrfs_item_ptr(leaf, path->slots[0],
1028 			    struct btrfs_file_extent_item);
1029 
1030 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1031 	       btrfs_file_extent_compression(leaf, fi) ||
1032 	       btrfs_file_extent_encryption(leaf, fi) ||
1033 	       btrfs_file_extent_other_encoding(leaf, fi));
1034 
1035 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1036 		ret = -EINVAL;
1037 		goto out;
1038 	}
1039 
1040 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1041 	ret = 0;
1042 out:
1043 	btrfs_free_path(path);
1044 	return ret;
1045 }
1046 
1047 /*
1048  * update file extent items in the tree leaf to point to
1049  * the new locations.
1050  */
1051 static noinline_for_stack
1052 int replace_file_extents(struct btrfs_trans_handle *trans,
1053 			 struct reloc_control *rc,
1054 			 struct btrfs_root *root,
1055 			 struct extent_buffer *leaf)
1056 {
1057 	struct btrfs_fs_info *fs_info = root->fs_info;
1058 	struct btrfs_key key;
1059 	struct btrfs_file_extent_item *fi;
1060 	struct inode *inode = NULL;
1061 	u64 parent;
1062 	u64 bytenr;
1063 	u64 new_bytenr = 0;
1064 	u64 num_bytes;
1065 	u64 end;
1066 	u32 nritems;
1067 	u32 i;
1068 	int ret = 0;
1069 	int first = 1;
1070 	int dirty = 0;
1071 
1072 	if (rc->stage != UPDATE_DATA_PTRS)
1073 		return 0;
1074 
1075 	/* reloc trees always use full backref */
1076 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1077 		parent = leaf->start;
1078 	else
1079 		parent = 0;
1080 
1081 	nritems = btrfs_header_nritems(leaf);
1082 	for (i = 0; i < nritems; i++) {
1083 		struct btrfs_ref ref = { 0 };
1084 
1085 		cond_resched();
1086 		btrfs_item_key_to_cpu(leaf, &key, i);
1087 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1088 			continue;
1089 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1090 		if (btrfs_file_extent_type(leaf, fi) ==
1091 		    BTRFS_FILE_EXTENT_INLINE)
1092 			continue;
1093 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1094 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1095 		if (bytenr == 0)
1096 			continue;
1097 		if (!in_range(bytenr, rc->block_group->start,
1098 			      rc->block_group->length))
1099 			continue;
1100 
1101 		/*
1102 		 * if we are modifying block in fs tree, wait for readpage
1103 		 * to complete and drop the extent cache
1104 		 */
1105 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1106 			if (first) {
1107 				inode = find_next_inode(root, key.objectid);
1108 				first = 0;
1109 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1110 				btrfs_add_delayed_iput(inode);
1111 				inode = find_next_inode(root, key.objectid);
1112 			}
1113 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1114 				end = key.offset +
1115 				      btrfs_file_extent_num_bytes(leaf, fi);
1116 				WARN_ON(!IS_ALIGNED(key.offset,
1117 						    fs_info->sectorsize));
1118 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1119 				end--;
1120 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1121 						      key.offset, end);
1122 				if (!ret)
1123 					continue;
1124 
1125 				btrfs_drop_extent_cache(BTRFS_I(inode),
1126 						key.offset,	end, 1);
1127 				unlock_extent(&BTRFS_I(inode)->io_tree,
1128 					      key.offset, end);
1129 			}
1130 		}
1131 
1132 		ret = get_new_location(rc->data_inode, &new_bytenr,
1133 				       bytenr, num_bytes);
1134 		if (ret) {
1135 			/*
1136 			 * Don't have to abort since we've not changed anything
1137 			 * in the file extent yet.
1138 			 */
1139 			break;
1140 		}
1141 
1142 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1143 		dirty = 1;
1144 
1145 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1146 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1147 				       num_bytes, parent);
1148 		ref.real_root = root->root_key.objectid;
1149 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1150 				    key.objectid, key.offset);
1151 		ret = btrfs_inc_extent_ref(trans, &ref);
1152 		if (ret) {
1153 			btrfs_abort_transaction(trans, ret);
1154 			break;
1155 		}
1156 
1157 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1158 				       num_bytes, parent);
1159 		ref.real_root = root->root_key.objectid;
1160 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1161 				    key.objectid, key.offset);
1162 		ret = btrfs_free_extent(trans, &ref);
1163 		if (ret) {
1164 			btrfs_abort_transaction(trans, ret);
1165 			break;
1166 		}
1167 	}
1168 	if (dirty)
1169 		btrfs_mark_buffer_dirty(leaf);
1170 	if (inode)
1171 		btrfs_add_delayed_iput(inode);
1172 	return ret;
1173 }
1174 
1175 static noinline_for_stack
1176 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1177 		     struct btrfs_path *path, int level)
1178 {
1179 	struct btrfs_disk_key key1;
1180 	struct btrfs_disk_key key2;
1181 	btrfs_node_key(eb, &key1, slot);
1182 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1183 	return memcmp(&key1, &key2, sizeof(key1));
1184 }
1185 
1186 /*
1187  * try to replace tree blocks in fs tree with the new blocks
1188  * in reloc tree. tree blocks haven't been modified since the
1189  * reloc tree was create can be replaced.
1190  *
1191  * if a block was replaced, level of the block + 1 is returned.
1192  * if no block got replaced, 0 is returned. if there are other
1193  * errors, a negative error number is returned.
1194  */
1195 static noinline_for_stack
1196 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1197 		 struct btrfs_root *dest, struct btrfs_root *src,
1198 		 struct btrfs_path *path, struct btrfs_key *next_key,
1199 		 int lowest_level, int max_level)
1200 {
1201 	struct btrfs_fs_info *fs_info = dest->fs_info;
1202 	struct extent_buffer *eb;
1203 	struct extent_buffer *parent;
1204 	struct btrfs_ref ref = { 0 };
1205 	struct btrfs_key key;
1206 	u64 old_bytenr;
1207 	u64 new_bytenr;
1208 	u64 old_ptr_gen;
1209 	u64 new_ptr_gen;
1210 	u64 last_snapshot;
1211 	u32 blocksize;
1212 	int cow = 0;
1213 	int level;
1214 	int ret;
1215 	int slot;
1216 
1217 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1218 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1219 
1220 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1221 again:
1222 	slot = path->slots[lowest_level];
1223 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1224 
1225 	eb = btrfs_lock_root_node(dest);
1226 	level = btrfs_header_level(eb);
1227 
1228 	if (level < lowest_level) {
1229 		btrfs_tree_unlock(eb);
1230 		free_extent_buffer(eb);
1231 		return 0;
1232 	}
1233 
1234 	if (cow) {
1235 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1236 				      BTRFS_NESTING_COW);
1237 		if (ret) {
1238 			btrfs_tree_unlock(eb);
1239 			free_extent_buffer(eb);
1240 			return ret;
1241 		}
1242 	}
1243 
1244 	if (next_key) {
1245 		next_key->objectid = (u64)-1;
1246 		next_key->type = (u8)-1;
1247 		next_key->offset = (u64)-1;
1248 	}
1249 
1250 	parent = eb;
1251 	while (1) {
1252 		level = btrfs_header_level(parent);
1253 		ASSERT(level >= lowest_level);
1254 
1255 		ret = btrfs_bin_search(parent, &key, &slot);
1256 		if (ret < 0)
1257 			break;
1258 		if (ret && slot > 0)
1259 			slot--;
1260 
1261 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1262 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1263 
1264 		old_bytenr = btrfs_node_blockptr(parent, slot);
1265 		blocksize = fs_info->nodesize;
1266 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1267 
1268 		if (level <= max_level) {
1269 			eb = path->nodes[level];
1270 			new_bytenr = btrfs_node_blockptr(eb,
1271 							path->slots[level]);
1272 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1273 							path->slots[level]);
1274 		} else {
1275 			new_bytenr = 0;
1276 			new_ptr_gen = 0;
1277 		}
1278 
1279 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1280 			ret = level;
1281 			break;
1282 		}
1283 
1284 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1285 		    memcmp_node_keys(parent, slot, path, level)) {
1286 			if (level <= lowest_level) {
1287 				ret = 0;
1288 				break;
1289 			}
1290 
1291 			eb = btrfs_read_node_slot(parent, slot);
1292 			if (IS_ERR(eb)) {
1293 				ret = PTR_ERR(eb);
1294 				break;
1295 			}
1296 			btrfs_tree_lock(eb);
1297 			if (cow) {
1298 				ret = btrfs_cow_block(trans, dest, eb, parent,
1299 						      slot, &eb,
1300 						      BTRFS_NESTING_COW);
1301 				if (ret) {
1302 					btrfs_tree_unlock(eb);
1303 					free_extent_buffer(eb);
1304 					break;
1305 				}
1306 			}
1307 
1308 			btrfs_tree_unlock(parent);
1309 			free_extent_buffer(parent);
1310 
1311 			parent = eb;
1312 			continue;
1313 		}
1314 
1315 		if (!cow) {
1316 			btrfs_tree_unlock(parent);
1317 			free_extent_buffer(parent);
1318 			cow = 1;
1319 			goto again;
1320 		}
1321 
1322 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1323 				      path->slots[level]);
1324 		btrfs_release_path(path);
1325 
1326 		path->lowest_level = level;
1327 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1328 		path->lowest_level = 0;
1329 		if (ret) {
1330 			if (ret > 0)
1331 				ret = -ENOENT;
1332 			break;
1333 		}
1334 
1335 		/*
1336 		 * Info qgroup to trace both subtrees.
1337 		 *
1338 		 * We must trace both trees.
1339 		 * 1) Tree reloc subtree
1340 		 *    If not traced, we will leak data numbers
1341 		 * 2) Fs subtree
1342 		 *    If not traced, we will double count old data
1343 		 *
1344 		 * We don't scan the subtree right now, but only record
1345 		 * the swapped tree blocks.
1346 		 * The real subtree rescan is delayed until we have new
1347 		 * CoW on the subtree root node before transaction commit.
1348 		 */
1349 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1350 				rc->block_group, parent, slot,
1351 				path->nodes[level], path->slots[level],
1352 				last_snapshot);
1353 		if (ret < 0)
1354 			break;
1355 		/*
1356 		 * swap blocks in fs tree and reloc tree.
1357 		 */
1358 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1359 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1360 		btrfs_mark_buffer_dirty(parent);
1361 
1362 		btrfs_set_node_blockptr(path->nodes[level],
1363 					path->slots[level], old_bytenr);
1364 		btrfs_set_node_ptr_generation(path->nodes[level],
1365 					      path->slots[level], old_ptr_gen);
1366 		btrfs_mark_buffer_dirty(path->nodes[level]);
1367 
1368 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1369 				       blocksize, path->nodes[level]->start);
1370 		ref.skip_qgroup = true;
1371 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1372 		ret = btrfs_inc_extent_ref(trans, &ref);
1373 		if (ret) {
1374 			btrfs_abort_transaction(trans, ret);
1375 			break;
1376 		}
1377 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1378 				       blocksize, 0);
1379 		ref.skip_qgroup = true;
1380 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1381 		ret = btrfs_inc_extent_ref(trans, &ref);
1382 		if (ret) {
1383 			btrfs_abort_transaction(trans, ret);
1384 			break;
1385 		}
1386 
1387 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1388 				       blocksize, path->nodes[level]->start);
1389 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1390 		ref.skip_qgroup = true;
1391 		ret = btrfs_free_extent(trans, &ref);
1392 		if (ret) {
1393 			btrfs_abort_transaction(trans, ret);
1394 			break;
1395 		}
1396 
1397 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1398 				       blocksize, 0);
1399 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1400 		ref.skip_qgroup = true;
1401 		ret = btrfs_free_extent(trans, &ref);
1402 		if (ret) {
1403 			btrfs_abort_transaction(trans, ret);
1404 			break;
1405 		}
1406 
1407 		btrfs_unlock_up_safe(path, 0);
1408 
1409 		ret = level;
1410 		break;
1411 	}
1412 	btrfs_tree_unlock(parent);
1413 	free_extent_buffer(parent);
1414 	return ret;
1415 }
1416 
1417 /*
1418  * helper to find next relocated block in reloc tree
1419  */
1420 static noinline_for_stack
1421 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1422 		       int *level)
1423 {
1424 	struct extent_buffer *eb;
1425 	int i;
1426 	u64 last_snapshot;
1427 	u32 nritems;
1428 
1429 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1430 
1431 	for (i = 0; i < *level; i++) {
1432 		free_extent_buffer(path->nodes[i]);
1433 		path->nodes[i] = NULL;
1434 	}
1435 
1436 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1437 		eb = path->nodes[i];
1438 		nritems = btrfs_header_nritems(eb);
1439 		while (path->slots[i] + 1 < nritems) {
1440 			path->slots[i]++;
1441 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1442 			    last_snapshot)
1443 				continue;
1444 
1445 			*level = i;
1446 			return 0;
1447 		}
1448 		free_extent_buffer(path->nodes[i]);
1449 		path->nodes[i] = NULL;
1450 	}
1451 	return 1;
1452 }
1453 
1454 /*
1455  * walk down reloc tree to find relocated block of lowest level
1456  */
1457 static noinline_for_stack
1458 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1459 			 int *level)
1460 {
1461 	struct extent_buffer *eb = NULL;
1462 	int i;
1463 	u64 ptr_gen = 0;
1464 	u64 last_snapshot;
1465 	u32 nritems;
1466 
1467 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1468 
1469 	for (i = *level; i > 0; i--) {
1470 		eb = path->nodes[i];
1471 		nritems = btrfs_header_nritems(eb);
1472 		while (path->slots[i] < nritems) {
1473 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1474 			if (ptr_gen > last_snapshot)
1475 				break;
1476 			path->slots[i]++;
1477 		}
1478 		if (path->slots[i] >= nritems) {
1479 			if (i == *level)
1480 				break;
1481 			*level = i + 1;
1482 			return 0;
1483 		}
1484 		if (i == 1) {
1485 			*level = i;
1486 			return 0;
1487 		}
1488 
1489 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1490 		if (IS_ERR(eb))
1491 			return PTR_ERR(eb);
1492 		BUG_ON(btrfs_header_level(eb) != i - 1);
1493 		path->nodes[i - 1] = eb;
1494 		path->slots[i - 1] = 0;
1495 	}
1496 	return 1;
1497 }
1498 
1499 /*
1500  * invalidate extent cache for file extents whose key in range of
1501  * [min_key, max_key)
1502  */
1503 static int invalidate_extent_cache(struct btrfs_root *root,
1504 				   struct btrfs_key *min_key,
1505 				   struct btrfs_key *max_key)
1506 {
1507 	struct btrfs_fs_info *fs_info = root->fs_info;
1508 	struct inode *inode = NULL;
1509 	u64 objectid;
1510 	u64 start, end;
1511 	u64 ino;
1512 
1513 	objectid = min_key->objectid;
1514 	while (1) {
1515 		cond_resched();
1516 		iput(inode);
1517 
1518 		if (objectid > max_key->objectid)
1519 			break;
1520 
1521 		inode = find_next_inode(root, objectid);
1522 		if (!inode)
1523 			break;
1524 		ino = btrfs_ino(BTRFS_I(inode));
1525 
1526 		if (ino > max_key->objectid) {
1527 			iput(inode);
1528 			break;
1529 		}
1530 
1531 		objectid = ino + 1;
1532 		if (!S_ISREG(inode->i_mode))
1533 			continue;
1534 
1535 		if (unlikely(min_key->objectid == ino)) {
1536 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1537 				continue;
1538 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1539 				start = 0;
1540 			else {
1541 				start = min_key->offset;
1542 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1543 			}
1544 		} else {
1545 			start = 0;
1546 		}
1547 
1548 		if (unlikely(max_key->objectid == ino)) {
1549 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1550 				continue;
1551 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1552 				end = (u64)-1;
1553 			} else {
1554 				if (max_key->offset == 0)
1555 					continue;
1556 				end = max_key->offset;
1557 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1558 				end--;
1559 			}
1560 		} else {
1561 			end = (u64)-1;
1562 		}
1563 
1564 		/* the lock_extent waits for readpage to complete */
1565 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1566 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1567 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1568 	}
1569 	return 0;
1570 }
1571 
1572 static int find_next_key(struct btrfs_path *path, int level,
1573 			 struct btrfs_key *key)
1574 
1575 {
1576 	while (level < BTRFS_MAX_LEVEL) {
1577 		if (!path->nodes[level])
1578 			break;
1579 		if (path->slots[level] + 1 <
1580 		    btrfs_header_nritems(path->nodes[level])) {
1581 			btrfs_node_key_to_cpu(path->nodes[level], key,
1582 					      path->slots[level] + 1);
1583 			return 0;
1584 		}
1585 		level++;
1586 	}
1587 	return 1;
1588 }
1589 
1590 /*
1591  * Insert current subvolume into reloc_control::dirty_subvol_roots
1592  */
1593 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1594 			       struct reloc_control *rc,
1595 			       struct btrfs_root *root)
1596 {
1597 	struct btrfs_root *reloc_root = root->reloc_root;
1598 	struct btrfs_root_item *reloc_root_item;
1599 	int ret;
1600 
1601 	/* @root must be a subvolume tree root with a valid reloc tree */
1602 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1603 	ASSERT(reloc_root);
1604 
1605 	reloc_root_item = &reloc_root->root_item;
1606 	memset(&reloc_root_item->drop_progress, 0,
1607 		sizeof(reloc_root_item->drop_progress));
1608 	btrfs_set_root_drop_level(reloc_root_item, 0);
1609 	btrfs_set_root_refs(reloc_root_item, 0);
1610 	ret = btrfs_update_reloc_root(trans, root);
1611 	if (ret)
1612 		return ret;
1613 
1614 	if (list_empty(&root->reloc_dirty_list)) {
1615 		btrfs_grab_root(root);
1616 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1617 	}
1618 
1619 	return 0;
1620 }
1621 
1622 static int clean_dirty_subvols(struct reloc_control *rc)
1623 {
1624 	struct btrfs_root *root;
1625 	struct btrfs_root *next;
1626 	int ret = 0;
1627 	int ret2;
1628 
1629 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1630 				 reloc_dirty_list) {
1631 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1632 			/* Merged subvolume, cleanup its reloc root */
1633 			struct btrfs_root *reloc_root = root->reloc_root;
1634 
1635 			list_del_init(&root->reloc_dirty_list);
1636 			root->reloc_root = NULL;
1637 			/*
1638 			 * Need barrier to ensure clear_bit() only happens after
1639 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1640 			 */
1641 			smp_wmb();
1642 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1643 			if (reloc_root) {
1644 				/*
1645 				 * btrfs_drop_snapshot drops our ref we hold for
1646 				 * ->reloc_root.  If it fails however we must
1647 				 * drop the ref ourselves.
1648 				 */
1649 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1650 				if (ret2 < 0) {
1651 					btrfs_put_root(reloc_root);
1652 					if (!ret)
1653 						ret = ret2;
1654 				}
1655 			}
1656 			btrfs_put_root(root);
1657 		} else {
1658 			/* Orphan reloc tree, just clean it up */
1659 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1660 			if (ret2 < 0) {
1661 				btrfs_put_root(root);
1662 				if (!ret)
1663 					ret = ret2;
1664 			}
1665 		}
1666 	}
1667 	return ret;
1668 }
1669 
1670 /*
1671  * merge the relocated tree blocks in reloc tree with corresponding
1672  * fs tree.
1673  */
1674 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1675 					       struct btrfs_root *root)
1676 {
1677 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1678 	struct btrfs_key key;
1679 	struct btrfs_key next_key;
1680 	struct btrfs_trans_handle *trans = NULL;
1681 	struct btrfs_root *reloc_root;
1682 	struct btrfs_root_item *root_item;
1683 	struct btrfs_path *path;
1684 	struct extent_buffer *leaf;
1685 	int reserve_level;
1686 	int level;
1687 	int max_level;
1688 	int replaced = 0;
1689 	int ret = 0;
1690 	u32 min_reserved;
1691 
1692 	path = btrfs_alloc_path();
1693 	if (!path)
1694 		return -ENOMEM;
1695 	path->reada = READA_FORWARD;
1696 
1697 	reloc_root = root->reloc_root;
1698 	root_item = &reloc_root->root_item;
1699 
1700 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1701 		level = btrfs_root_level(root_item);
1702 		atomic_inc(&reloc_root->node->refs);
1703 		path->nodes[level] = reloc_root->node;
1704 		path->slots[level] = 0;
1705 	} else {
1706 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1707 
1708 		level = btrfs_root_drop_level(root_item);
1709 		BUG_ON(level == 0);
1710 		path->lowest_level = level;
1711 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1712 		path->lowest_level = 0;
1713 		if (ret < 0) {
1714 			btrfs_free_path(path);
1715 			return ret;
1716 		}
1717 
1718 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1719 				      path->slots[level]);
1720 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1721 
1722 		btrfs_unlock_up_safe(path, 0);
1723 	}
1724 
1725 	/*
1726 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1727 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1728 	 * block COW, we COW at most from level 1 to root level for each tree.
1729 	 *
1730 	 * Thus the needed metadata size is at most root_level * nodesize,
1731 	 * and * 2 since we have two trees to COW.
1732 	 */
1733 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1734 	min_reserved = fs_info->nodesize * reserve_level * 2;
1735 	memset(&next_key, 0, sizeof(next_key));
1736 
1737 	while (1) {
1738 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1739 					     BTRFS_RESERVE_FLUSH_LIMIT);
1740 		if (ret)
1741 			goto out;
1742 		trans = btrfs_start_transaction(root, 0);
1743 		if (IS_ERR(trans)) {
1744 			ret = PTR_ERR(trans);
1745 			trans = NULL;
1746 			goto out;
1747 		}
1748 
1749 		/*
1750 		 * At this point we no longer have a reloc_control, so we can't
1751 		 * depend on btrfs_init_reloc_root to update our last_trans.
1752 		 *
1753 		 * But that's ok, we started the trans handle on our
1754 		 * corresponding fs_root, which means it's been added to the
1755 		 * dirty list.  At commit time we'll still call
1756 		 * btrfs_update_reloc_root() and update our root item
1757 		 * appropriately.
1758 		 */
1759 		reloc_root->last_trans = trans->transid;
1760 		trans->block_rsv = rc->block_rsv;
1761 
1762 		replaced = 0;
1763 		max_level = level;
1764 
1765 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1766 		if (ret < 0)
1767 			goto out;
1768 		if (ret > 0)
1769 			break;
1770 
1771 		if (!find_next_key(path, level, &key) &&
1772 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1773 			ret = 0;
1774 		} else {
1775 			ret = replace_path(trans, rc, root, reloc_root, path,
1776 					   &next_key, level, max_level);
1777 		}
1778 		if (ret < 0)
1779 			goto out;
1780 		if (ret > 0) {
1781 			level = ret;
1782 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1783 					      path->slots[level]);
1784 			replaced = 1;
1785 		}
1786 
1787 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1788 		if (ret > 0)
1789 			break;
1790 
1791 		BUG_ON(level == 0);
1792 		/*
1793 		 * save the merging progress in the drop_progress.
1794 		 * this is OK since root refs == 1 in this case.
1795 		 */
1796 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1797 			       path->slots[level]);
1798 		btrfs_set_root_drop_level(root_item, level);
1799 
1800 		btrfs_end_transaction_throttle(trans);
1801 		trans = NULL;
1802 
1803 		btrfs_btree_balance_dirty(fs_info);
1804 
1805 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1806 			invalidate_extent_cache(root, &key, &next_key);
1807 	}
1808 
1809 	/*
1810 	 * handle the case only one block in the fs tree need to be
1811 	 * relocated and the block is tree root.
1812 	 */
1813 	leaf = btrfs_lock_root_node(root);
1814 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1815 			      BTRFS_NESTING_COW);
1816 	btrfs_tree_unlock(leaf);
1817 	free_extent_buffer(leaf);
1818 out:
1819 	btrfs_free_path(path);
1820 
1821 	if (ret == 0) {
1822 		ret = insert_dirty_subvol(trans, rc, root);
1823 		if (ret)
1824 			btrfs_abort_transaction(trans, ret);
1825 	}
1826 
1827 	if (trans)
1828 		btrfs_end_transaction_throttle(trans);
1829 
1830 	btrfs_btree_balance_dirty(fs_info);
1831 
1832 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1833 		invalidate_extent_cache(root, &key, &next_key);
1834 
1835 	return ret;
1836 }
1837 
1838 static noinline_for_stack
1839 int prepare_to_merge(struct reloc_control *rc, int err)
1840 {
1841 	struct btrfs_root *root = rc->extent_root;
1842 	struct btrfs_fs_info *fs_info = root->fs_info;
1843 	struct btrfs_root *reloc_root;
1844 	struct btrfs_trans_handle *trans;
1845 	LIST_HEAD(reloc_roots);
1846 	u64 num_bytes = 0;
1847 	int ret;
1848 
1849 	mutex_lock(&fs_info->reloc_mutex);
1850 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1851 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1852 	mutex_unlock(&fs_info->reloc_mutex);
1853 
1854 again:
1855 	if (!err) {
1856 		num_bytes = rc->merging_rsv_size;
1857 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1858 					  BTRFS_RESERVE_FLUSH_ALL);
1859 		if (ret)
1860 			err = ret;
1861 	}
1862 
1863 	trans = btrfs_join_transaction(rc->extent_root);
1864 	if (IS_ERR(trans)) {
1865 		if (!err)
1866 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1867 						num_bytes, NULL);
1868 		return PTR_ERR(trans);
1869 	}
1870 
1871 	if (!err) {
1872 		if (num_bytes != rc->merging_rsv_size) {
1873 			btrfs_end_transaction(trans);
1874 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1875 						num_bytes, NULL);
1876 			goto again;
1877 		}
1878 	}
1879 
1880 	rc->merge_reloc_tree = 1;
1881 
1882 	while (!list_empty(&rc->reloc_roots)) {
1883 		reloc_root = list_entry(rc->reloc_roots.next,
1884 					struct btrfs_root, root_list);
1885 		list_del_init(&reloc_root->root_list);
1886 
1887 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1888 				false);
1889 		if (IS_ERR(root)) {
1890 			/*
1891 			 * Even if we have an error we need this reloc root
1892 			 * back on our list so we can clean up properly.
1893 			 */
1894 			list_add(&reloc_root->root_list, &reloc_roots);
1895 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1896 			if (!err)
1897 				err = PTR_ERR(root);
1898 			break;
1899 		}
1900 		ASSERT(root->reloc_root == reloc_root);
1901 
1902 		/*
1903 		 * set reference count to 1, so btrfs_recover_relocation
1904 		 * knows it should resumes merging
1905 		 */
1906 		if (!err)
1907 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1908 		ret = btrfs_update_reloc_root(trans, root);
1909 
1910 		/*
1911 		 * Even if we have an error we need this reloc root back on our
1912 		 * list so we can clean up properly.
1913 		 */
1914 		list_add(&reloc_root->root_list, &reloc_roots);
1915 		btrfs_put_root(root);
1916 
1917 		if (ret) {
1918 			btrfs_abort_transaction(trans, ret);
1919 			if (!err)
1920 				err = ret;
1921 			break;
1922 		}
1923 	}
1924 
1925 	list_splice(&reloc_roots, &rc->reloc_roots);
1926 
1927 	if (!err)
1928 		err = btrfs_commit_transaction(trans);
1929 	else
1930 		btrfs_end_transaction(trans);
1931 	return err;
1932 }
1933 
1934 static noinline_for_stack
1935 void free_reloc_roots(struct list_head *list)
1936 {
1937 	struct btrfs_root *reloc_root, *tmp;
1938 
1939 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1940 		__del_reloc_root(reloc_root);
1941 }
1942 
1943 static noinline_for_stack
1944 void merge_reloc_roots(struct reloc_control *rc)
1945 {
1946 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1947 	struct btrfs_root *root;
1948 	struct btrfs_root *reloc_root;
1949 	LIST_HEAD(reloc_roots);
1950 	int found = 0;
1951 	int ret = 0;
1952 again:
1953 	root = rc->extent_root;
1954 
1955 	/*
1956 	 * this serializes us with btrfs_record_root_in_transaction,
1957 	 * we have to make sure nobody is in the middle of
1958 	 * adding their roots to the list while we are
1959 	 * doing this splice
1960 	 */
1961 	mutex_lock(&fs_info->reloc_mutex);
1962 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1963 	mutex_unlock(&fs_info->reloc_mutex);
1964 
1965 	while (!list_empty(&reloc_roots)) {
1966 		found = 1;
1967 		reloc_root = list_entry(reloc_roots.next,
1968 					struct btrfs_root, root_list);
1969 
1970 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1971 					 false);
1972 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1973 			if (IS_ERR(root)) {
1974 				/*
1975 				 * For recovery we read the fs roots on mount,
1976 				 * and if we didn't find the root then we marked
1977 				 * the reloc root as a garbage root.  For normal
1978 				 * relocation obviously the root should exist in
1979 				 * memory.  However there's no reason we can't
1980 				 * handle the error properly here just in case.
1981 				 */
1982 				ASSERT(0);
1983 				ret = PTR_ERR(root);
1984 				goto out;
1985 			}
1986 			if (root->reloc_root != reloc_root) {
1987 				/*
1988 				 * This is actually impossible without something
1989 				 * going really wrong (like weird race condition
1990 				 * or cosmic rays).
1991 				 */
1992 				ASSERT(0);
1993 				ret = -EINVAL;
1994 				goto out;
1995 			}
1996 			ret = merge_reloc_root(rc, root);
1997 			btrfs_put_root(root);
1998 			if (ret) {
1999 				if (list_empty(&reloc_root->root_list))
2000 					list_add_tail(&reloc_root->root_list,
2001 						      &reloc_roots);
2002 				goto out;
2003 			}
2004 		} else {
2005 			if (!IS_ERR(root)) {
2006 				if (root->reloc_root == reloc_root) {
2007 					root->reloc_root = NULL;
2008 					btrfs_put_root(reloc_root);
2009 				}
2010 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2011 					  &root->state);
2012 				btrfs_put_root(root);
2013 			}
2014 
2015 			list_del_init(&reloc_root->root_list);
2016 			/* Don't forget to queue this reloc root for cleanup */
2017 			list_add_tail(&reloc_root->reloc_dirty_list,
2018 				      &rc->dirty_subvol_roots);
2019 		}
2020 	}
2021 
2022 	if (found) {
2023 		found = 0;
2024 		goto again;
2025 	}
2026 out:
2027 	if (ret) {
2028 		btrfs_handle_fs_error(fs_info, ret, NULL);
2029 		free_reloc_roots(&reloc_roots);
2030 
2031 		/* new reloc root may be added */
2032 		mutex_lock(&fs_info->reloc_mutex);
2033 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2034 		mutex_unlock(&fs_info->reloc_mutex);
2035 		free_reloc_roots(&reloc_roots);
2036 	}
2037 
2038 	/*
2039 	 * We used to have
2040 	 *
2041 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2042 	 *
2043 	 * here, but it's wrong.  If we fail to start the transaction in
2044 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2045 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2046 	 * fine because we're bailing here, and we hold a reference on the root
2047 	 * for the list that holds it, so these roots will be cleaned up when we
2048 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2049 	 * will be cleaned up on unmount.
2050 	 *
2051 	 * The remaining nodes will be cleaned up by free_reloc_control.
2052 	 */
2053 }
2054 
2055 static void free_block_list(struct rb_root *blocks)
2056 {
2057 	struct tree_block *block;
2058 	struct rb_node *rb_node;
2059 	while ((rb_node = rb_first(blocks))) {
2060 		block = rb_entry(rb_node, struct tree_block, rb_node);
2061 		rb_erase(rb_node, blocks);
2062 		kfree(block);
2063 	}
2064 }
2065 
2066 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2067 				      struct btrfs_root *reloc_root)
2068 {
2069 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2070 	struct btrfs_root *root;
2071 	int ret;
2072 
2073 	if (reloc_root->last_trans == trans->transid)
2074 		return 0;
2075 
2076 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2077 
2078 	/*
2079 	 * This should succeed, since we can't have a reloc root without having
2080 	 * already looked up the actual root and created the reloc root for this
2081 	 * root.
2082 	 *
2083 	 * However if there's some sort of corruption where we have a ref to a
2084 	 * reloc root without a corresponding root this could return ENOENT.
2085 	 */
2086 	if (IS_ERR(root)) {
2087 		ASSERT(0);
2088 		return PTR_ERR(root);
2089 	}
2090 	if (root->reloc_root != reloc_root) {
2091 		ASSERT(0);
2092 		btrfs_err(fs_info,
2093 			  "root %llu has two reloc roots associated with it",
2094 			  reloc_root->root_key.offset);
2095 		btrfs_put_root(root);
2096 		return -EUCLEAN;
2097 	}
2098 	ret = btrfs_record_root_in_trans(trans, root);
2099 	btrfs_put_root(root);
2100 
2101 	return ret;
2102 }
2103 
2104 static noinline_for_stack
2105 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2106 				     struct reloc_control *rc,
2107 				     struct btrfs_backref_node *node,
2108 				     struct btrfs_backref_edge *edges[])
2109 {
2110 	struct btrfs_backref_node *next;
2111 	struct btrfs_root *root;
2112 	int index = 0;
2113 	int ret;
2114 
2115 	next = node;
2116 	while (1) {
2117 		cond_resched();
2118 		next = walk_up_backref(next, edges, &index);
2119 		root = next->root;
2120 
2121 		/*
2122 		 * If there is no root, then our references for this block are
2123 		 * incomplete, as we should be able to walk all the way up to a
2124 		 * block that is owned by a root.
2125 		 *
2126 		 * This path is only for SHAREABLE roots, so if we come upon a
2127 		 * non-SHAREABLE root then we have backrefs that resolve
2128 		 * improperly.
2129 		 *
2130 		 * Both of these cases indicate file system corruption, or a bug
2131 		 * in the backref walking code.
2132 		 */
2133 		if (!root) {
2134 			ASSERT(0);
2135 			btrfs_err(trans->fs_info,
2136 		"bytenr %llu doesn't have a backref path ending in a root",
2137 				  node->bytenr);
2138 			return ERR_PTR(-EUCLEAN);
2139 		}
2140 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2141 			ASSERT(0);
2142 			btrfs_err(trans->fs_info,
2143 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2144 				  node->bytenr);
2145 			return ERR_PTR(-EUCLEAN);
2146 		}
2147 
2148 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2149 			ret = record_reloc_root_in_trans(trans, root);
2150 			if (ret)
2151 				return ERR_PTR(ret);
2152 			break;
2153 		}
2154 
2155 		ret = btrfs_record_root_in_trans(trans, root);
2156 		if (ret)
2157 			return ERR_PTR(ret);
2158 		root = root->reloc_root;
2159 
2160 		/*
2161 		 * We could have raced with another thread which failed, so
2162 		 * root->reloc_root may not be set, return ENOENT in this case.
2163 		 */
2164 		if (!root)
2165 			return ERR_PTR(-ENOENT);
2166 
2167 		if (next->new_bytenr != root->node->start) {
2168 			/*
2169 			 * We just created the reloc root, so we shouldn't have
2170 			 * ->new_bytenr set and this shouldn't be in the changed
2171 			 *  list.  If it is then we have multiple roots pointing
2172 			 *  at the same bytenr which indicates corruption, or
2173 			 *  we've made a mistake in the backref walking code.
2174 			 */
2175 			ASSERT(next->new_bytenr == 0);
2176 			ASSERT(list_empty(&next->list));
2177 			if (next->new_bytenr || !list_empty(&next->list)) {
2178 				btrfs_err(trans->fs_info,
2179 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2180 					  node->bytenr, next->bytenr);
2181 				return ERR_PTR(-EUCLEAN);
2182 			}
2183 
2184 			next->new_bytenr = root->node->start;
2185 			btrfs_put_root(next->root);
2186 			next->root = btrfs_grab_root(root);
2187 			ASSERT(next->root);
2188 			list_add_tail(&next->list,
2189 				      &rc->backref_cache.changed);
2190 			mark_block_processed(rc, next);
2191 			break;
2192 		}
2193 
2194 		WARN_ON(1);
2195 		root = NULL;
2196 		next = walk_down_backref(edges, &index);
2197 		if (!next || next->level <= node->level)
2198 			break;
2199 	}
2200 	if (!root) {
2201 		/*
2202 		 * This can happen if there's fs corruption or if there's a bug
2203 		 * in the backref lookup code.
2204 		 */
2205 		ASSERT(0);
2206 		return ERR_PTR(-ENOENT);
2207 	}
2208 
2209 	next = node;
2210 	/* setup backref node path for btrfs_reloc_cow_block */
2211 	while (1) {
2212 		rc->backref_cache.path[next->level] = next;
2213 		if (--index < 0)
2214 			break;
2215 		next = edges[index]->node[UPPER];
2216 	}
2217 	return root;
2218 }
2219 
2220 /*
2221  * Select a tree root for relocation.
2222  *
2223  * Return NULL if the block is not shareable. We should use do_relocation() in
2224  * this case.
2225  *
2226  * Return a tree root pointer if the block is shareable.
2227  * Return -ENOENT if the block is root of reloc tree.
2228  */
2229 static noinline_for_stack
2230 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2231 {
2232 	struct btrfs_backref_node *next;
2233 	struct btrfs_root *root;
2234 	struct btrfs_root *fs_root = NULL;
2235 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2236 	int index = 0;
2237 
2238 	next = node;
2239 	while (1) {
2240 		cond_resched();
2241 		next = walk_up_backref(next, edges, &index);
2242 		root = next->root;
2243 
2244 		/*
2245 		 * This can occur if we have incomplete extent refs leading all
2246 		 * the way up a particular path, in this case return -EUCLEAN.
2247 		 */
2248 		if (!root)
2249 			return ERR_PTR(-EUCLEAN);
2250 
2251 		/* No other choice for non-shareable tree */
2252 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2253 			return root;
2254 
2255 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2256 			fs_root = root;
2257 
2258 		if (next != node)
2259 			return NULL;
2260 
2261 		next = walk_down_backref(edges, &index);
2262 		if (!next || next->level <= node->level)
2263 			break;
2264 	}
2265 
2266 	if (!fs_root)
2267 		return ERR_PTR(-ENOENT);
2268 	return fs_root;
2269 }
2270 
2271 static noinline_for_stack
2272 u64 calcu_metadata_size(struct reloc_control *rc,
2273 			struct btrfs_backref_node *node, int reserve)
2274 {
2275 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2276 	struct btrfs_backref_node *next = node;
2277 	struct btrfs_backref_edge *edge;
2278 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2279 	u64 num_bytes = 0;
2280 	int index = 0;
2281 
2282 	BUG_ON(reserve && node->processed);
2283 
2284 	while (next) {
2285 		cond_resched();
2286 		while (1) {
2287 			if (next->processed && (reserve || next != node))
2288 				break;
2289 
2290 			num_bytes += fs_info->nodesize;
2291 
2292 			if (list_empty(&next->upper))
2293 				break;
2294 
2295 			edge = list_entry(next->upper.next,
2296 					struct btrfs_backref_edge, list[LOWER]);
2297 			edges[index++] = edge;
2298 			next = edge->node[UPPER];
2299 		}
2300 		next = walk_down_backref(edges, &index);
2301 	}
2302 	return num_bytes;
2303 }
2304 
2305 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2306 				  struct reloc_control *rc,
2307 				  struct btrfs_backref_node *node)
2308 {
2309 	struct btrfs_root *root = rc->extent_root;
2310 	struct btrfs_fs_info *fs_info = root->fs_info;
2311 	u64 num_bytes;
2312 	int ret;
2313 	u64 tmp;
2314 
2315 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2316 
2317 	trans->block_rsv = rc->block_rsv;
2318 	rc->reserved_bytes += num_bytes;
2319 
2320 	/*
2321 	 * We are under a transaction here so we can only do limited flushing.
2322 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2323 	 * transaction and try to refill when we can flush all the things.
2324 	 */
2325 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2326 				BTRFS_RESERVE_FLUSH_LIMIT);
2327 	if (ret) {
2328 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2329 		while (tmp <= rc->reserved_bytes)
2330 			tmp <<= 1;
2331 		/*
2332 		 * only one thread can access block_rsv at this point,
2333 		 * so we don't need hold lock to protect block_rsv.
2334 		 * we expand more reservation size here to allow enough
2335 		 * space for relocation and we will return earlier in
2336 		 * enospc case.
2337 		 */
2338 		rc->block_rsv->size = tmp + fs_info->nodesize *
2339 				      RELOCATION_RESERVED_NODES;
2340 		return -EAGAIN;
2341 	}
2342 
2343 	return 0;
2344 }
2345 
2346 /*
2347  * relocate a block tree, and then update pointers in upper level
2348  * blocks that reference the block to point to the new location.
2349  *
2350  * if called by link_to_upper, the block has already been relocated.
2351  * in that case this function just updates pointers.
2352  */
2353 static int do_relocation(struct btrfs_trans_handle *trans,
2354 			 struct reloc_control *rc,
2355 			 struct btrfs_backref_node *node,
2356 			 struct btrfs_key *key,
2357 			 struct btrfs_path *path, int lowest)
2358 {
2359 	struct btrfs_backref_node *upper;
2360 	struct btrfs_backref_edge *edge;
2361 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2362 	struct btrfs_root *root;
2363 	struct extent_buffer *eb;
2364 	u32 blocksize;
2365 	u64 bytenr;
2366 	int slot;
2367 	int ret = 0;
2368 
2369 	/*
2370 	 * If we are lowest then this is the first time we're processing this
2371 	 * block, and thus shouldn't have an eb associated with it yet.
2372 	 */
2373 	ASSERT(!lowest || !node->eb);
2374 
2375 	path->lowest_level = node->level + 1;
2376 	rc->backref_cache.path[node->level] = node;
2377 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2378 		struct btrfs_ref ref = { 0 };
2379 
2380 		cond_resched();
2381 
2382 		upper = edge->node[UPPER];
2383 		root = select_reloc_root(trans, rc, upper, edges);
2384 		if (IS_ERR(root)) {
2385 			ret = PTR_ERR(root);
2386 			goto next;
2387 		}
2388 
2389 		if (upper->eb && !upper->locked) {
2390 			if (!lowest) {
2391 				ret = btrfs_bin_search(upper->eb, key, &slot);
2392 				if (ret < 0)
2393 					goto next;
2394 				BUG_ON(ret);
2395 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2396 				if (node->eb->start == bytenr)
2397 					goto next;
2398 			}
2399 			btrfs_backref_drop_node_buffer(upper);
2400 		}
2401 
2402 		if (!upper->eb) {
2403 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2404 			if (ret) {
2405 				if (ret > 0)
2406 					ret = -ENOENT;
2407 
2408 				btrfs_release_path(path);
2409 				break;
2410 			}
2411 
2412 			if (!upper->eb) {
2413 				upper->eb = path->nodes[upper->level];
2414 				path->nodes[upper->level] = NULL;
2415 			} else {
2416 				BUG_ON(upper->eb != path->nodes[upper->level]);
2417 			}
2418 
2419 			upper->locked = 1;
2420 			path->locks[upper->level] = 0;
2421 
2422 			slot = path->slots[upper->level];
2423 			btrfs_release_path(path);
2424 		} else {
2425 			ret = btrfs_bin_search(upper->eb, key, &slot);
2426 			if (ret < 0)
2427 				goto next;
2428 			BUG_ON(ret);
2429 		}
2430 
2431 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2432 		if (lowest) {
2433 			if (bytenr != node->bytenr) {
2434 				btrfs_err(root->fs_info,
2435 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2436 					  bytenr, node->bytenr, slot,
2437 					  upper->eb->start);
2438 				ret = -EIO;
2439 				goto next;
2440 			}
2441 		} else {
2442 			if (node->eb->start == bytenr)
2443 				goto next;
2444 		}
2445 
2446 		blocksize = root->fs_info->nodesize;
2447 		eb = btrfs_read_node_slot(upper->eb, slot);
2448 		if (IS_ERR(eb)) {
2449 			ret = PTR_ERR(eb);
2450 			goto next;
2451 		}
2452 		btrfs_tree_lock(eb);
2453 
2454 		if (!node->eb) {
2455 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2456 					      slot, &eb, BTRFS_NESTING_COW);
2457 			btrfs_tree_unlock(eb);
2458 			free_extent_buffer(eb);
2459 			if (ret < 0)
2460 				goto next;
2461 			/*
2462 			 * We've just COWed this block, it should have updated
2463 			 * the correct backref node entry.
2464 			 */
2465 			ASSERT(node->eb == eb);
2466 		} else {
2467 			btrfs_set_node_blockptr(upper->eb, slot,
2468 						node->eb->start);
2469 			btrfs_set_node_ptr_generation(upper->eb, slot,
2470 						      trans->transid);
2471 			btrfs_mark_buffer_dirty(upper->eb);
2472 
2473 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2474 					       node->eb->start, blocksize,
2475 					       upper->eb->start);
2476 			ref.real_root = root->root_key.objectid;
2477 			btrfs_init_tree_ref(&ref, node->level,
2478 					    btrfs_header_owner(upper->eb));
2479 			ret = btrfs_inc_extent_ref(trans, &ref);
2480 			if (!ret)
2481 				ret = btrfs_drop_subtree(trans, root, eb,
2482 							 upper->eb);
2483 			if (ret)
2484 				btrfs_abort_transaction(trans, ret);
2485 		}
2486 next:
2487 		if (!upper->pending)
2488 			btrfs_backref_drop_node_buffer(upper);
2489 		else
2490 			btrfs_backref_unlock_node_buffer(upper);
2491 		if (ret)
2492 			break;
2493 	}
2494 
2495 	if (!ret && node->pending) {
2496 		btrfs_backref_drop_node_buffer(node);
2497 		list_move_tail(&node->list, &rc->backref_cache.changed);
2498 		node->pending = 0;
2499 	}
2500 
2501 	path->lowest_level = 0;
2502 
2503 	/*
2504 	 * We should have allocated all of our space in the block rsv and thus
2505 	 * shouldn't ENOSPC.
2506 	 */
2507 	ASSERT(ret != -ENOSPC);
2508 	return ret;
2509 }
2510 
2511 static int link_to_upper(struct btrfs_trans_handle *trans,
2512 			 struct reloc_control *rc,
2513 			 struct btrfs_backref_node *node,
2514 			 struct btrfs_path *path)
2515 {
2516 	struct btrfs_key key;
2517 
2518 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2519 	return do_relocation(trans, rc, node, &key, path, 0);
2520 }
2521 
2522 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2523 				struct reloc_control *rc,
2524 				struct btrfs_path *path, int err)
2525 {
2526 	LIST_HEAD(list);
2527 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2528 	struct btrfs_backref_node *node;
2529 	int level;
2530 	int ret;
2531 
2532 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2533 		while (!list_empty(&cache->pending[level])) {
2534 			node = list_entry(cache->pending[level].next,
2535 					  struct btrfs_backref_node, list);
2536 			list_move_tail(&node->list, &list);
2537 			BUG_ON(!node->pending);
2538 
2539 			if (!err) {
2540 				ret = link_to_upper(trans, rc, node, path);
2541 				if (ret < 0)
2542 					err = ret;
2543 			}
2544 		}
2545 		list_splice_init(&list, &cache->pending[level]);
2546 	}
2547 	return err;
2548 }
2549 
2550 /*
2551  * mark a block and all blocks directly/indirectly reference the block
2552  * as processed.
2553  */
2554 static void update_processed_blocks(struct reloc_control *rc,
2555 				    struct btrfs_backref_node *node)
2556 {
2557 	struct btrfs_backref_node *next = node;
2558 	struct btrfs_backref_edge *edge;
2559 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2560 	int index = 0;
2561 
2562 	while (next) {
2563 		cond_resched();
2564 		while (1) {
2565 			if (next->processed)
2566 				break;
2567 
2568 			mark_block_processed(rc, next);
2569 
2570 			if (list_empty(&next->upper))
2571 				break;
2572 
2573 			edge = list_entry(next->upper.next,
2574 					struct btrfs_backref_edge, list[LOWER]);
2575 			edges[index++] = edge;
2576 			next = edge->node[UPPER];
2577 		}
2578 		next = walk_down_backref(edges, &index);
2579 	}
2580 }
2581 
2582 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2583 {
2584 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2585 
2586 	if (test_range_bit(&rc->processed_blocks, bytenr,
2587 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2588 		return 1;
2589 	return 0;
2590 }
2591 
2592 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2593 			      struct tree_block *block)
2594 {
2595 	struct extent_buffer *eb;
2596 
2597 	eb = read_tree_block(fs_info, block->bytenr, block->owner,
2598 			     block->key.offset, block->level, NULL);
2599 	if (IS_ERR(eb)) {
2600 		return PTR_ERR(eb);
2601 	} else if (!extent_buffer_uptodate(eb)) {
2602 		free_extent_buffer(eb);
2603 		return -EIO;
2604 	}
2605 	if (block->level == 0)
2606 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2607 	else
2608 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2609 	free_extent_buffer(eb);
2610 	block->key_ready = 1;
2611 	return 0;
2612 }
2613 
2614 /*
2615  * helper function to relocate a tree block
2616  */
2617 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2618 				struct reloc_control *rc,
2619 				struct btrfs_backref_node *node,
2620 				struct btrfs_key *key,
2621 				struct btrfs_path *path)
2622 {
2623 	struct btrfs_root *root;
2624 	int ret = 0;
2625 
2626 	if (!node)
2627 		return 0;
2628 
2629 	/*
2630 	 * If we fail here we want to drop our backref_node because we are going
2631 	 * to start over and regenerate the tree for it.
2632 	 */
2633 	ret = reserve_metadata_space(trans, rc, node);
2634 	if (ret)
2635 		goto out;
2636 
2637 	BUG_ON(node->processed);
2638 	root = select_one_root(node);
2639 	if (IS_ERR(root)) {
2640 		ret = PTR_ERR(root);
2641 
2642 		/* See explanation in select_one_root for the -EUCLEAN case. */
2643 		ASSERT(ret == -ENOENT);
2644 		if (ret == -ENOENT) {
2645 			ret = 0;
2646 			update_processed_blocks(rc, node);
2647 		}
2648 		goto out;
2649 	}
2650 
2651 	if (root) {
2652 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2653 			/*
2654 			 * This block was the root block of a root, and this is
2655 			 * the first time we're processing the block and thus it
2656 			 * should not have had the ->new_bytenr modified and
2657 			 * should have not been included on the changed list.
2658 			 *
2659 			 * However in the case of corruption we could have
2660 			 * multiple refs pointing to the same block improperly,
2661 			 * and thus we would trip over these checks.  ASSERT()
2662 			 * for the developer case, because it could indicate a
2663 			 * bug in the backref code, however error out for a
2664 			 * normal user in the case of corruption.
2665 			 */
2666 			ASSERT(node->new_bytenr == 0);
2667 			ASSERT(list_empty(&node->list));
2668 			if (node->new_bytenr || !list_empty(&node->list)) {
2669 				btrfs_err(root->fs_info,
2670 				  "bytenr %llu has improper references to it",
2671 					  node->bytenr);
2672 				ret = -EUCLEAN;
2673 				goto out;
2674 			}
2675 			ret = btrfs_record_root_in_trans(trans, root);
2676 			if (ret)
2677 				goto out;
2678 			/*
2679 			 * Another thread could have failed, need to check if we
2680 			 * have reloc_root actually set.
2681 			 */
2682 			if (!root->reloc_root) {
2683 				ret = -ENOENT;
2684 				goto out;
2685 			}
2686 			root = root->reloc_root;
2687 			node->new_bytenr = root->node->start;
2688 			btrfs_put_root(node->root);
2689 			node->root = btrfs_grab_root(root);
2690 			ASSERT(node->root);
2691 			list_add_tail(&node->list, &rc->backref_cache.changed);
2692 		} else {
2693 			path->lowest_level = node->level;
2694 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2695 			btrfs_release_path(path);
2696 			if (ret > 0)
2697 				ret = 0;
2698 		}
2699 		if (!ret)
2700 			update_processed_blocks(rc, node);
2701 	} else {
2702 		ret = do_relocation(trans, rc, node, key, path, 1);
2703 	}
2704 out:
2705 	if (ret || node->level == 0 || node->cowonly)
2706 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2707 	return ret;
2708 }
2709 
2710 /*
2711  * relocate a list of blocks
2712  */
2713 static noinline_for_stack
2714 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2715 			 struct reloc_control *rc, struct rb_root *blocks)
2716 {
2717 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2718 	struct btrfs_backref_node *node;
2719 	struct btrfs_path *path;
2720 	struct tree_block *block;
2721 	struct tree_block *next;
2722 	int ret;
2723 	int err = 0;
2724 
2725 	path = btrfs_alloc_path();
2726 	if (!path) {
2727 		err = -ENOMEM;
2728 		goto out_free_blocks;
2729 	}
2730 
2731 	/* Kick in readahead for tree blocks with missing keys */
2732 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2733 		if (!block->key_ready)
2734 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2735 						   block->owner, 0,
2736 						   block->level);
2737 	}
2738 
2739 	/* Get first keys */
2740 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2741 		if (!block->key_ready) {
2742 			err = get_tree_block_key(fs_info, block);
2743 			if (err)
2744 				goto out_free_path;
2745 		}
2746 	}
2747 
2748 	/* Do tree relocation */
2749 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2750 		node = build_backref_tree(rc, &block->key,
2751 					  block->level, block->bytenr);
2752 		if (IS_ERR(node)) {
2753 			err = PTR_ERR(node);
2754 			goto out;
2755 		}
2756 
2757 		ret = relocate_tree_block(trans, rc, node, &block->key,
2758 					  path);
2759 		if (ret < 0) {
2760 			err = ret;
2761 			break;
2762 		}
2763 	}
2764 out:
2765 	err = finish_pending_nodes(trans, rc, path, err);
2766 
2767 out_free_path:
2768 	btrfs_free_path(path);
2769 out_free_blocks:
2770 	free_block_list(blocks);
2771 	return err;
2772 }
2773 
2774 static noinline_for_stack int prealloc_file_extent_cluster(
2775 				struct btrfs_inode *inode,
2776 				struct file_extent_cluster *cluster)
2777 {
2778 	u64 alloc_hint = 0;
2779 	u64 start;
2780 	u64 end;
2781 	u64 offset = inode->index_cnt;
2782 	u64 num_bytes;
2783 	int nr;
2784 	int ret = 0;
2785 	u64 i_size = i_size_read(&inode->vfs_inode);
2786 	u64 prealloc_start = cluster->start - offset;
2787 	u64 prealloc_end = cluster->end - offset;
2788 	u64 cur_offset = prealloc_start;
2789 
2790 	/*
2791 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2792 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2793 	 * btrfs_do_readpage() call of previously relocated file cluster.
2794 	 *
2795 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2796 	 * will skip the read, and relocate_one_page() will later writeback
2797 	 * the padding zeros as new data, causing data corruption.
2798 	 *
2799 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2800 	 */
2801 	if (!IS_ALIGNED(i_size, PAGE_SIZE)) {
2802 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2803 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2804 		const u32 sectorsize = fs_info->sectorsize;
2805 		struct page *page;
2806 
2807 		ASSERT(sectorsize < PAGE_SIZE);
2808 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2809 
2810 		/*
2811 		 * Subpage can't handle page with DIRTY but without UPTODATE
2812 		 * bit as it can lead to the following deadlock:
2813 		 *
2814 		 * btrfs_readpage()
2815 		 * | Page already *locked*
2816 		 * |- btrfs_lock_and_flush_ordered_range()
2817 		 *    |- btrfs_start_ordered_extent()
2818 		 *       |- extent_write_cache_pages()
2819 		 *          |- lock_page()
2820 		 *             We try to lock the page we already hold.
2821 		 *
2822 		 * Here we just writeback the whole data reloc inode, so that
2823 		 * we will be ensured to have no dirty range in the page, and
2824 		 * are safe to clear the uptodate bits.
2825 		 *
2826 		 * This shouldn't cause too much overhead, as we need to write
2827 		 * the data back anyway.
2828 		 */
2829 		ret = filemap_write_and_wait(mapping);
2830 		if (ret < 0)
2831 			return ret;
2832 
2833 		clear_extent_bits(&inode->io_tree, i_size,
2834 				  round_up(i_size, PAGE_SIZE) - 1,
2835 				  EXTENT_UPTODATE);
2836 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2837 		/*
2838 		 * If page is freed we don't need to do anything then, as we
2839 		 * will re-read the whole page anyway.
2840 		 */
2841 		if (page) {
2842 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2843 					round_up(i_size, PAGE_SIZE) - i_size);
2844 			unlock_page(page);
2845 			put_page(page);
2846 		}
2847 	}
2848 
2849 	BUG_ON(cluster->start != cluster->boundary[0]);
2850 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2851 					      prealloc_end + 1 - prealloc_start);
2852 	if (ret)
2853 		return ret;
2854 
2855 	/*
2856 	 * On a zoned filesystem, we cannot preallocate the file region.
2857 	 * Instead, we dirty and fiemap_write the region.
2858 	 */
2859 	if (btrfs_is_zoned(inode->root->fs_info)) {
2860 		struct btrfs_root *root = inode->root;
2861 		struct btrfs_trans_handle *trans;
2862 
2863 		end = cluster->end - offset + 1;
2864 		trans = btrfs_start_transaction(root, 1);
2865 		if (IS_ERR(trans))
2866 			return PTR_ERR(trans);
2867 
2868 		inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
2869 		i_size_write(&inode->vfs_inode, end);
2870 		ret = btrfs_update_inode(trans, root, inode);
2871 		if (ret) {
2872 			btrfs_abort_transaction(trans, ret);
2873 			btrfs_end_transaction(trans);
2874 			return ret;
2875 		}
2876 
2877 		return btrfs_end_transaction(trans);
2878 	}
2879 
2880 	btrfs_inode_lock(&inode->vfs_inode, 0);
2881 	for (nr = 0; nr < cluster->nr; nr++) {
2882 		start = cluster->boundary[nr] - offset;
2883 		if (nr + 1 < cluster->nr)
2884 			end = cluster->boundary[nr + 1] - 1 - offset;
2885 		else
2886 			end = cluster->end - offset;
2887 
2888 		lock_extent(&inode->io_tree, start, end);
2889 		num_bytes = end + 1 - start;
2890 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2891 						num_bytes, num_bytes,
2892 						end + 1, &alloc_hint);
2893 		cur_offset = end + 1;
2894 		unlock_extent(&inode->io_tree, start, end);
2895 		if (ret)
2896 			break;
2897 	}
2898 	btrfs_inode_unlock(&inode->vfs_inode, 0);
2899 
2900 	if (cur_offset < prealloc_end)
2901 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2902 					       prealloc_end + 1 - cur_offset);
2903 	return ret;
2904 }
2905 
2906 static noinline_for_stack
2907 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2908 			 u64 block_start)
2909 {
2910 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2911 	struct extent_map *em;
2912 	int ret = 0;
2913 
2914 	em = alloc_extent_map();
2915 	if (!em)
2916 		return -ENOMEM;
2917 
2918 	em->start = start;
2919 	em->len = end + 1 - start;
2920 	em->block_len = em->len;
2921 	em->block_start = block_start;
2922 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2923 
2924 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2925 	while (1) {
2926 		write_lock(&em_tree->lock);
2927 		ret = add_extent_mapping(em_tree, em, 0);
2928 		write_unlock(&em_tree->lock);
2929 		if (ret != -EEXIST) {
2930 			free_extent_map(em);
2931 			break;
2932 		}
2933 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2934 	}
2935 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2936 	return ret;
2937 }
2938 
2939 /*
2940  * Allow error injection to test balance/relocation cancellation
2941  */
2942 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2943 {
2944 	return atomic_read(&fs_info->balance_cancel_req) ||
2945 		atomic_read(&fs_info->reloc_cancel_req) ||
2946 		fatal_signal_pending(current);
2947 }
2948 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2949 
2950 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2951 				    int cluster_nr)
2952 {
2953 	/* Last extent, use cluster end directly */
2954 	if (cluster_nr >= cluster->nr - 1)
2955 		return cluster->end;
2956 
2957 	/* Use next boundary start*/
2958 	return cluster->boundary[cluster_nr + 1] - 1;
2959 }
2960 
2961 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2962 			     struct file_extent_cluster *cluster,
2963 			     int *cluster_nr, unsigned long page_index)
2964 {
2965 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2966 	u64 offset = BTRFS_I(inode)->index_cnt;
2967 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2968 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2969 	struct page *page;
2970 	u64 page_start;
2971 	u64 page_end;
2972 	u64 cur;
2973 	int ret;
2974 
2975 	ASSERT(page_index <= last_index);
2976 	page = find_lock_page(inode->i_mapping, page_index);
2977 	if (!page) {
2978 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2979 				page_index, last_index + 1 - page_index);
2980 		page = find_or_create_page(inode->i_mapping, page_index, mask);
2981 		if (!page)
2982 			return -ENOMEM;
2983 	}
2984 	ret = set_page_extent_mapped(page);
2985 	if (ret < 0)
2986 		goto release_page;
2987 
2988 	if (PageReadahead(page))
2989 		page_cache_async_readahead(inode->i_mapping, ra, NULL, page,
2990 				   page_index, last_index + 1 - page_index);
2991 
2992 	if (!PageUptodate(page)) {
2993 		btrfs_readpage(NULL, page);
2994 		lock_page(page);
2995 		if (!PageUptodate(page)) {
2996 			ret = -EIO;
2997 			goto release_page;
2998 		}
2999 	}
3000 
3001 	page_start = page_offset(page);
3002 	page_end = page_start + PAGE_SIZE - 1;
3003 
3004 	/*
3005 	 * Start from the cluster, as for subpage case, the cluster can start
3006 	 * inside the page.
3007 	 */
3008 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3009 	while (cur <= page_end) {
3010 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3011 		u64 extent_end = get_cluster_boundary_end(cluster,
3012 						*cluster_nr) - offset;
3013 		u64 clamped_start = max(page_start, extent_start);
3014 		u64 clamped_end = min(page_end, extent_end);
3015 		u32 clamped_len = clamped_end + 1 - clamped_start;
3016 
3017 		/* Reserve metadata for this range */
3018 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3019 						      clamped_len);
3020 		if (ret)
3021 			goto release_page;
3022 
3023 		/* Mark the range delalloc and dirty for later writeback */
3024 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3025 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026 						clamped_end, 0, NULL);
3027 		if (ret) {
3028 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3029 					clamped_start, clamped_end,
3030 					EXTENT_LOCKED | EXTENT_BOUNDARY);
3031 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3032 							clamped_len, true);
3033 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3034 						       clamped_len);
3035 			goto release_page;
3036 		}
3037 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3038 
3039 		/*
3040 		 * Set the boundary if it's inside the page.
3041 		 * Data relocation requires the destination extents to have the
3042 		 * same size as the source.
3043 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3044 		 * with previous extent.
3045 		 */
3046 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3047 			     page_start, PAGE_SIZE)) {
3048 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3049 						offset;
3050 			u64 boundary_end = boundary_start +
3051 					   fs_info->sectorsize - 1;
3052 
3053 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3054 					boundary_start, boundary_end,
3055 					EXTENT_BOUNDARY);
3056 		}
3057 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end);
3058 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3059 		cur += clamped_len;
3060 
3061 		/* Crossed extent end, go to next extent */
3062 		if (cur >= extent_end) {
3063 			(*cluster_nr)++;
3064 			/* Just finished the last extent of the cluster, exit. */
3065 			if (*cluster_nr >= cluster->nr)
3066 				break;
3067 		}
3068 	}
3069 	unlock_page(page);
3070 	put_page(page);
3071 
3072 	balance_dirty_pages_ratelimited(inode->i_mapping);
3073 	btrfs_throttle(fs_info);
3074 	if (btrfs_should_cancel_balance(fs_info))
3075 		ret = -ECANCELED;
3076 	return ret;
3077 
3078 release_page:
3079 	unlock_page(page);
3080 	put_page(page);
3081 	return ret;
3082 }
3083 
3084 static int relocate_file_extent_cluster(struct inode *inode,
3085 					struct file_extent_cluster *cluster)
3086 {
3087 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3088 	u64 offset = BTRFS_I(inode)->index_cnt;
3089 	unsigned long index;
3090 	unsigned long last_index;
3091 	struct file_ra_state *ra;
3092 	int cluster_nr = 0;
3093 	int ret = 0;
3094 
3095 	if (!cluster->nr)
3096 		return 0;
3097 
3098 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3099 	if (!ra)
3100 		return -ENOMEM;
3101 
3102 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3103 	if (ret)
3104 		goto out;
3105 
3106 	file_ra_state_init(ra, inode->i_mapping);
3107 
3108 	ret = setup_extent_mapping(inode, cluster->start - offset,
3109 				   cluster->end - offset, cluster->start);
3110 	if (ret)
3111 		goto out;
3112 
3113 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3114 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3115 	     index <= last_index && !ret; index++)
3116 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3117 	if (btrfs_is_zoned(fs_info) && !ret)
3118 		ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
3119 	if (ret == 0)
3120 		WARN_ON(cluster_nr != cluster->nr);
3121 out:
3122 	kfree(ra);
3123 	return ret;
3124 }
3125 
3126 static noinline_for_stack
3127 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3128 			 struct file_extent_cluster *cluster)
3129 {
3130 	int ret;
3131 
3132 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3133 		ret = relocate_file_extent_cluster(inode, cluster);
3134 		if (ret)
3135 			return ret;
3136 		cluster->nr = 0;
3137 	}
3138 
3139 	if (!cluster->nr)
3140 		cluster->start = extent_key->objectid;
3141 	else
3142 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3143 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3144 	cluster->boundary[cluster->nr] = extent_key->objectid;
3145 	cluster->nr++;
3146 
3147 	if (cluster->nr >= MAX_EXTENTS) {
3148 		ret = relocate_file_extent_cluster(inode, cluster);
3149 		if (ret)
3150 			return ret;
3151 		cluster->nr = 0;
3152 	}
3153 	return 0;
3154 }
3155 
3156 /*
3157  * helper to add a tree block to the list.
3158  * the major work is getting the generation and level of the block
3159  */
3160 static int add_tree_block(struct reloc_control *rc,
3161 			  struct btrfs_key *extent_key,
3162 			  struct btrfs_path *path,
3163 			  struct rb_root *blocks)
3164 {
3165 	struct extent_buffer *eb;
3166 	struct btrfs_extent_item *ei;
3167 	struct btrfs_tree_block_info *bi;
3168 	struct tree_block *block;
3169 	struct rb_node *rb_node;
3170 	u32 item_size;
3171 	int level = -1;
3172 	u64 generation;
3173 	u64 owner = 0;
3174 
3175 	eb =  path->nodes[0];
3176 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3177 
3178 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3179 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3180 		unsigned long ptr = 0, end;
3181 
3182 		ei = btrfs_item_ptr(eb, path->slots[0],
3183 				struct btrfs_extent_item);
3184 		end = (unsigned long)ei + item_size;
3185 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3186 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3187 			level = btrfs_tree_block_level(eb, bi);
3188 			ptr = (unsigned long)(bi + 1);
3189 		} else {
3190 			level = (int)extent_key->offset;
3191 			ptr = (unsigned long)(ei + 1);
3192 		}
3193 		generation = btrfs_extent_generation(eb, ei);
3194 
3195 		/*
3196 		 * We're reading random blocks without knowing their owner ahead
3197 		 * of time.  This is ok most of the time, as all reloc roots and
3198 		 * fs roots have the same lock type.  However normal trees do
3199 		 * not, and the only way to know ahead of time is to read the
3200 		 * inline ref offset.  We know it's an fs root if
3201 		 *
3202 		 * 1. There's more than one ref.
3203 		 * 2. There's a SHARED_DATA_REF_KEY set.
3204 		 * 3. FULL_BACKREF is set on the flags.
3205 		 *
3206 		 * Otherwise it's safe to assume that the ref offset == the
3207 		 * owner of this block, so we can use that when calling
3208 		 * read_tree_block.
3209 		 */
3210 		if (btrfs_extent_refs(eb, ei) == 1 &&
3211 		    !(btrfs_extent_flags(eb, ei) &
3212 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3213 		    ptr < end) {
3214 			struct btrfs_extent_inline_ref *iref;
3215 			int type;
3216 
3217 			iref = (struct btrfs_extent_inline_ref *)ptr;
3218 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3219 							BTRFS_REF_TYPE_BLOCK);
3220 			if (type == BTRFS_REF_TYPE_INVALID)
3221 				return -EINVAL;
3222 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3223 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3224 		}
3225 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3226 		btrfs_print_v0_err(eb->fs_info);
3227 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3228 		return -EINVAL;
3229 	} else {
3230 		BUG();
3231 	}
3232 
3233 	btrfs_release_path(path);
3234 
3235 	BUG_ON(level == -1);
3236 
3237 	block = kmalloc(sizeof(*block), GFP_NOFS);
3238 	if (!block)
3239 		return -ENOMEM;
3240 
3241 	block->bytenr = extent_key->objectid;
3242 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3243 	block->key.offset = generation;
3244 	block->level = level;
3245 	block->key_ready = 0;
3246 	block->owner = owner;
3247 
3248 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3249 	if (rb_node)
3250 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3251 				    -EEXIST);
3252 
3253 	return 0;
3254 }
3255 
3256 /*
3257  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3258  */
3259 static int __add_tree_block(struct reloc_control *rc,
3260 			    u64 bytenr, u32 blocksize,
3261 			    struct rb_root *blocks)
3262 {
3263 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3264 	struct btrfs_path *path;
3265 	struct btrfs_key key;
3266 	int ret;
3267 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3268 
3269 	if (tree_block_processed(bytenr, rc))
3270 		return 0;
3271 
3272 	if (rb_simple_search(blocks, bytenr))
3273 		return 0;
3274 
3275 	path = btrfs_alloc_path();
3276 	if (!path)
3277 		return -ENOMEM;
3278 again:
3279 	key.objectid = bytenr;
3280 	if (skinny) {
3281 		key.type = BTRFS_METADATA_ITEM_KEY;
3282 		key.offset = (u64)-1;
3283 	} else {
3284 		key.type = BTRFS_EXTENT_ITEM_KEY;
3285 		key.offset = blocksize;
3286 	}
3287 
3288 	path->search_commit_root = 1;
3289 	path->skip_locking = 1;
3290 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3291 	if (ret < 0)
3292 		goto out;
3293 
3294 	if (ret > 0 && skinny) {
3295 		if (path->slots[0]) {
3296 			path->slots[0]--;
3297 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3298 					      path->slots[0]);
3299 			if (key.objectid == bytenr &&
3300 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3301 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3302 			      key.offset == blocksize)))
3303 				ret = 0;
3304 		}
3305 
3306 		if (ret) {
3307 			skinny = false;
3308 			btrfs_release_path(path);
3309 			goto again;
3310 		}
3311 	}
3312 	if (ret) {
3313 		ASSERT(ret == 1);
3314 		btrfs_print_leaf(path->nodes[0]);
3315 		btrfs_err(fs_info,
3316 	     "tree block extent item (%llu) is not found in extent tree",
3317 		     bytenr);
3318 		WARN_ON(1);
3319 		ret = -EINVAL;
3320 		goto out;
3321 	}
3322 
3323 	ret = add_tree_block(rc, &key, path, blocks);
3324 out:
3325 	btrfs_free_path(path);
3326 	return ret;
3327 }
3328 
3329 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3330 				    struct btrfs_block_group *block_group,
3331 				    struct inode *inode,
3332 				    u64 ino)
3333 {
3334 	struct btrfs_root *root = fs_info->tree_root;
3335 	struct btrfs_trans_handle *trans;
3336 	int ret = 0;
3337 
3338 	if (inode)
3339 		goto truncate;
3340 
3341 	inode = btrfs_iget(fs_info->sb, ino, root);
3342 	if (IS_ERR(inode))
3343 		return -ENOENT;
3344 
3345 truncate:
3346 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3347 						 &fs_info->global_block_rsv);
3348 	if (ret)
3349 		goto out;
3350 
3351 	trans = btrfs_join_transaction(root);
3352 	if (IS_ERR(trans)) {
3353 		ret = PTR_ERR(trans);
3354 		goto out;
3355 	}
3356 
3357 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3358 
3359 	btrfs_end_transaction(trans);
3360 	btrfs_btree_balance_dirty(fs_info);
3361 out:
3362 	iput(inode);
3363 	return ret;
3364 }
3365 
3366 /*
3367  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3368  * cache inode, to avoid free space cache data extent blocking data relocation.
3369  */
3370 static int delete_v1_space_cache(struct extent_buffer *leaf,
3371 				 struct btrfs_block_group *block_group,
3372 				 u64 data_bytenr)
3373 {
3374 	u64 space_cache_ino;
3375 	struct btrfs_file_extent_item *ei;
3376 	struct btrfs_key key;
3377 	bool found = false;
3378 	int i;
3379 	int ret;
3380 
3381 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3382 		return 0;
3383 
3384 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3385 		u8 type;
3386 
3387 		btrfs_item_key_to_cpu(leaf, &key, i);
3388 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3389 			continue;
3390 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3391 		type = btrfs_file_extent_type(leaf, ei);
3392 
3393 		if ((type == BTRFS_FILE_EXTENT_REG ||
3394 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3395 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3396 			found = true;
3397 			space_cache_ino = key.objectid;
3398 			break;
3399 		}
3400 	}
3401 	if (!found)
3402 		return -ENOENT;
3403 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3404 					space_cache_ino);
3405 	return ret;
3406 }
3407 
3408 /*
3409  * helper to find all tree blocks that reference a given data extent
3410  */
3411 static noinline_for_stack
3412 int add_data_references(struct reloc_control *rc,
3413 			struct btrfs_key *extent_key,
3414 			struct btrfs_path *path,
3415 			struct rb_root *blocks)
3416 {
3417 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3418 	struct ulist *leaves = NULL;
3419 	struct ulist_iterator leaf_uiter;
3420 	struct ulist_node *ref_node = NULL;
3421 	const u32 blocksize = fs_info->nodesize;
3422 	int ret = 0;
3423 
3424 	btrfs_release_path(path);
3425 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3426 				   0, &leaves, NULL, true);
3427 	if (ret < 0)
3428 		return ret;
3429 
3430 	ULIST_ITER_INIT(&leaf_uiter);
3431 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3432 		struct extent_buffer *eb;
3433 
3434 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3435 		if (IS_ERR(eb)) {
3436 			ret = PTR_ERR(eb);
3437 			break;
3438 		}
3439 		ret = delete_v1_space_cache(eb, rc->block_group,
3440 					    extent_key->objectid);
3441 		free_extent_buffer(eb);
3442 		if (ret < 0)
3443 			break;
3444 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3445 		if (ret < 0)
3446 			break;
3447 	}
3448 	if (ret < 0)
3449 		free_block_list(blocks);
3450 	ulist_free(leaves);
3451 	return ret;
3452 }
3453 
3454 /*
3455  * helper to find next unprocessed extent
3456  */
3457 static noinline_for_stack
3458 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3459 		     struct btrfs_key *extent_key)
3460 {
3461 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3462 	struct btrfs_key key;
3463 	struct extent_buffer *leaf;
3464 	u64 start, end, last;
3465 	int ret;
3466 
3467 	last = rc->block_group->start + rc->block_group->length;
3468 	while (1) {
3469 		cond_resched();
3470 		if (rc->search_start >= last) {
3471 			ret = 1;
3472 			break;
3473 		}
3474 
3475 		key.objectid = rc->search_start;
3476 		key.type = BTRFS_EXTENT_ITEM_KEY;
3477 		key.offset = 0;
3478 
3479 		path->search_commit_root = 1;
3480 		path->skip_locking = 1;
3481 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3482 					0, 0);
3483 		if (ret < 0)
3484 			break;
3485 next:
3486 		leaf = path->nodes[0];
3487 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3488 			ret = btrfs_next_leaf(rc->extent_root, path);
3489 			if (ret != 0)
3490 				break;
3491 			leaf = path->nodes[0];
3492 		}
3493 
3494 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3495 		if (key.objectid >= last) {
3496 			ret = 1;
3497 			break;
3498 		}
3499 
3500 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3501 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3502 			path->slots[0]++;
3503 			goto next;
3504 		}
3505 
3506 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3507 		    key.objectid + key.offset <= rc->search_start) {
3508 			path->slots[0]++;
3509 			goto next;
3510 		}
3511 
3512 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3513 		    key.objectid + fs_info->nodesize <=
3514 		    rc->search_start) {
3515 			path->slots[0]++;
3516 			goto next;
3517 		}
3518 
3519 		ret = find_first_extent_bit(&rc->processed_blocks,
3520 					    key.objectid, &start, &end,
3521 					    EXTENT_DIRTY, NULL);
3522 
3523 		if (ret == 0 && start <= key.objectid) {
3524 			btrfs_release_path(path);
3525 			rc->search_start = end + 1;
3526 		} else {
3527 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3528 				rc->search_start = key.objectid + key.offset;
3529 			else
3530 				rc->search_start = key.objectid +
3531 					fs_info->nodesize;
3532 			memcpy(extent_key, &key, sizeof(key));
3533 			return 0;
3534 		}
3535 	}
3536 	btrfs_release_path(path);
3537 	return ret;
3538 }
3539 
3540 static void set_reloc_control(struct reloc_control *rc)
3541 {
3542 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3543 
3544 	mutex_lock(&fs_info->reloc_mutex);
3545 	fs_info->reloc_ctl = rc;
3546 	mutex_unlock(&fs_info->reloc_mutex);
3547 }
3548 
3549 static void unset_reloc_control(struct reloc_control *rc)
3550 {
3551 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3552 
3553 	mutex_lock(&fs_info->reloc_mutex);
3554 	fs_info->reloc_ctl = NULL;
3555 	mutex_unlock(&fs_info->reloc_mutex);
3556 }
3557 
3558 static noinline_for_stack
3559 int prepare_to_relocate(struct reloc_control *rc)
3560 {
3561 	struct btrfs_trans_handle *trans;
3562 	int ret;
3563 
3564 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3565 					      BTRFS_BLOCK_RSV_TEMP);
3566 	if (!rc->block_rsv)
3567 		return -ENOMEM;
3568 
3569 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3570 	rc->search_start = rc->block_group->start;
3571 	rc->extents_found = 0;
3572 	rc->nodes_relocated = 0;
3573 	rc->merging_rsv_size = 0;
3574 	rc->reserved_bytes = 0;
3575 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3576 			      RELOCATION_RESERVED_NODES;
3577 	ret = btrfs_block_rsv_refill(rc->extent_root,
3578 				     rc->block_rsv, rc->block_rsv->size,
3579 				     BTRFS_RESERVE_FLUSH_ALL);
3580 	if (ret)
3581 		return ret;
3582 
3583 	rc->create_reloc_tree = 1;
3584 	set_reloc_control(rc);
3585 
3586 	trans = btrfs_join_transaction(rc->extent_root);
3587 	if (IS_ERR(trans)) {
3588 		unset_reloc_control(rc);
3589 		/*
3590 		 * extent tree is not a ref_cow tree and has no reloc_root to
3591 		 * cleanup.  And callers are responsible to free the above
3592 		 * block rsv.
3593 		 */
3594 		return PTR_ERR(trans);
3595 	}
3596 	return btrfs_commit_transaction(trans);
3597 }
3598 
3599 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3600 {
3601 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3602 	struct rb_root blocks = RB_ROOT;
3603 	struct btrfs_key key;
3604 	struct btrfs_trans_handle *trans = NULL;
3605 	struct btrfs_path *path;
3606 	struct btrfs_extent_item *ei;
3607 	u64 flags;
3608 	int ret;
3609 	int err = 0;
3610 	int progress = 0;
3611 
3612 	path = btrfs_alloc_path();
3613 	if (!path)
3614 		return -ENOMEM;
3615 	path->reada = READA_FORWARD;
3616 
3617 	ret = prepare_to_relocate(rc);
3618 	if (ret) {
3619 		err = ret;
3620 		goto out_free;
3621 	}
3622 
3623 	while (1) {
3624 		rc->reserved_bytes = 0;
3625 		ret = btrfs_block_rsv_refill(rc->extent_root,
3626 					rc->block_rsv, rc->block_rsv->size,
3627 					BTRFS_RESERVE_FLUSH_ALL);
3628 		if (ret) {
3629 			err = ret;
3630 			break;
3631 		}
3632 		progress++;
3633 		trans = btrfs_start_transaction(rc->extent_root, 0);
3634 		if (IS_ERR(trans)) {
3635 			err = PTR_ERR(trans);
3636 			trans = NULL;
3637 			break;
3638 		}
3639 restart:
3640 		if (update_backref_cache(trans, &rc->backref_cache)) {
3641 			btrfs_end_transaction(trans);
3642 			trans = NULL;
3643 			continue;
3644 		}
3645 
3646 		ret = find_next_extent(rc, path, &key);
3647 		if (ret < 0)
3648 			err = ret;
3649 		if (ret != 0)
3650 			break;
3651 
3652 		rc->extents_found++;
3653 
3654 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3655 				    struct btrfs_extent_item);
3656 		flags = btrfs_extent_flags(path->nodes[0], ei);
3657 
3658 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3659 			ret = add_tree_block(rc, &key, path, &blocks);
3660 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3661 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3662 			ret = add_data_references(rc, &key, path, &blocks);
3663 		} else {
3664 			btrfs_release_path(path);
3665 			ret = 0;
3666 		}
3667 		if (ret < 0) {
3668 			err = ret;
3669 			break;
3670 		}
3671 
3672 		if (!RB_EMPTY_ROOT(&blocks)) {
3673 			ret = relocate_tree_blocks(trans, rc, &blocks);
3674 			if (ret < 0) {
3675 				if (ret != -EAGAIN) {
3676 					err = ret;
3677 					break;
3678 				}
3679 				rc->extents_found--;
3680 				rc->search_start = key.objectid;
3681 			}
3682 		}
3683 
3684 		btrfs_end_transaction_throttle(trans);
3685 		btrfs_btree_balance_dirty(fs_info);
3686 		trans = NULL;
3687 
3688 		if (rc->stage == MOVE_DATA_EXTENTS &&
3689 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3690 			rc->found_file_extent = 1;
3691 			ret = relocate_data_extent(rc->data_inode,
3692 						   &key, &rc->cluster);
3693 			if (ret < 0) {
3694 				err = ret;
3695 				break;
3696 			}
3697 		}
3698 		if (btrfs_should_cancel_balance(fs_info)) {
3699 			err = -ECANCELED;
3700 			break;
3701 		}
3702 	}
3703 	if (trans && progress && err == -ENOSPC) {
3704 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3705 		if (ret == 1) {
3706 			err = 0;
3707 			progress = 0;
3708 			goto restart;
3709 		}
3710 	}
3711 
3712 	btrfs_release_path(path);
3713 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3714 
3715 	if (trans) {
3716 		btrfs_end_transaction_throttle(trans);
3717 		btrfs_btree_balance_dirty(fs_info);
3718 	}
3719 
3720 	if (!err) {
3721 		ret = relocate_file_extent_cluster(rc->data_inode,
3722 						   &rc->cluster);
3723 		if (ret < 0)
3724 			err = ret;
3725 	}
3726 
3727 	rc->create_reloc_tree = 0;
3728 	set_reloc_control(rc);
3729 
3730 	btrfs_backref_release_cache(&rc->backref_cache);
3731 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3732 
3733 	/*
3734 	 * Even in the case when the relocation is cancelled, we should all go
3735 	 * through prepare_to_merge() and merge_reloc_roots().
3736 	 *
3737 	 * For error (including cancelled balance), prepare_to_merge() will
3738 	 * mark all reloc trees orphan, then queue them for cleanup in
3739 	 * merge_reloc_roots()
3740 	 */
3741 	err = prepare_to_merge(rc, err);
3742 
3743 	merge_reloc_roots(rc);
3744 
3745 	rc->merge_reloc_tree = 0;
3746 	unset_reloc_control(rc);
3747 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3748 
3749 	/* get rid of pinned extents */
3750 	trans = btrfs_join_transaction(rc->extent_root);
3751 	if (IS_ERR(trans)) {
3752 		err = PTR_ERR(trans);
3753 		goto out_free;
3754 	}
3755 	ret = btrfs_commit_transaction(trans);
3756 	if (ret && !err)
3757 		err = ret;
3758 out_free:
3759 	ret = clean_dirty_subvols(rc);
3760 	if (ret < 0 && !err)
3761 		err = ret;
3762 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3763 	btrfs_free_path(path);
3764 	return err;
3765 }
3766 
3767 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3768 				 struct btrfs_root *root, u64 objectid)
3769 {
3770 	struct btrfs_path *path;
3771 	struct btrfs_inode_item *item;
3772 	struct extent_buffer *leaf;
3773 	u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
3774 	int ret;
3775 
3776 	if (btrfs_is_zoned(trans->fs_info))
3777 		flags &= ~BTRFS_INODE_PREALLOC;
3778 
3779 	path = btrfs_alloc_path();
3780 	if (!path)
3781 		return -ENOMEM;
3782 
3783 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3784 	if (ret)
3785 		goto out;
3786 
3787 	leaf = path->nodes[0];
3788 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3789 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3790 	btrfs_set_inode_generation(leaf, item, 1);
3791 	btrfs_set_inode_size(leaf, item, 0);
3792 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3793 	btrfs_set_inode_flags(leaf, item, flags);
3794 	btrfs_mark_buffer_dirty(leaf);
3795 out:
3796 	btrfs_free_path(path);
3797 	return ret;
3798 }
3799 
3800 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3801 				struct btrfs_root *root, u64 objectid)
3802 {
3803 	struct btrfs_path *path;
3804 	struct btrfs_key key;
3805 	int ret = 0;
3806 
3807 	path = btrfs_alloc_path();
3808 	if (!path) {
3809 		ret = -ENOMEM;
3810 		goto out;
3811 	}
3812 
3813 	key.objectid = objectid;
3814 	key.type = BTRFS_INODE_ITEM_KEY;
3815 	key.offset = 0;
3816 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3817 	if (ret) {
3818 		if (ret > 0)
3819 			ret = -ENOENT;
3820 		goto out;
3821 	}
3822 	ret = btrfs_del_item(trans, root, path);
3823 out:
3824 	if (ret)
3825 		btrfs_abort_transaction(trans, ret);
3826 	btrfs_free_path(path);
3827 }
3828 
3829 /*
3830  * helper to create inode for data relocation.
3831  * the inode is in data relocation tree and its link count is 0
3832  */
3833 static noinline_for_stack
3834 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3835 				 struct btrfs_block_group *group)
3836 {
3837 	struct inode *inode = NULL;
3838 	struct btrfs_trans_handle *trans;
3839 	struct btrfs_root *root;
3840 	u64 objectid;
3841 	int err = 0;
3842 
3843 	root = btrfs_grab_root(fs_info->data_reloc_root);
3844 	trans = btrfs_start_transaction(root, 6);
3845 	if (IS_ERR(trans)) {
3846 		btrfs_put_root(root);
3847 		return ERR_CAST(trans);
3848 	}
3849 
3850 	err = btrfs_get_free_objectid(root, &objectid);
3851 	if (err)
3852 		goto out;
3853 
3854 	err = __insert_orphan_inode(trans, root, objectid);
3855 	if (err)
3856 		goto out;
3857 
3858 	inode = btrfs_iget(fs_info->sb, objectid, root);
3859 	if (IS_ERR(inode)) {
3860 		delete_orphan_inode(trans, root, objectid);
3861 		err = PTR_ERR(inode);
3862 		inode = NULL;
3863 		goto out;
3864 	}
3865 	BTRFS_I(inode)->index_cnt = group->start;
3866 
3867 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3868 out:
3869 	btrfs_put_root(root);
3870 	btrfs_end_transaction(trans);
3871 	btrfs_btree_balance_dirty(fs_info);
3872 	if (err) {
3873 		if (inode)
3874 			iput(inode);
3875 		inode = ERR_PTR(err);
3876 	}
3877 	return inode;
3878 }
3879 
3880 /*
3881  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3882  * has been requested meanwhile and don't start in that case.
3883  *
3884  * Return:
3885  *   0             success
3886  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3887  *   -ECANCELED    cancellation request was set before the operation started
3888  *   -EAGAIN       can not start because there are ongoing send operations
3889  */
3890 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3891 {
3892 	spin_lock(&fs_info->send_reloc_lock);
3893 	if (fs_info->send_in_progress) {
3894 		btrfs_warn_rl(fs_info,
3895 "cannot run relocation while send operations are in progress (%d in progress)",
3896 			      fs_info->send_in_progress);
3897 		spin_unlock(&fs_info->send_reloc_lock);
3898 		return -EAGAIN;
3899 	}
3900 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3901 		/* This should not happen */
3902 		spin_unlock(&fs_info->send_reloc_lock);
3903 		btrfs_err(fs_info, "reloc already running, cannot start");
3904 		return -EINPROGRESS;
3905 	}
3906 	spin_unlock(&fs_info->send_reloc_lock);
3907 
3908 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3909 		btrfs_info(fs_info, "chunk relocation canceled on start");
3910 		/*
3911 		 * On cancel, clear all requests but let the caller mark
3912 		 * the end after cleanup operations.
3913 		 */
3914 		atomic_set(&fs_info->reloc_cancel_req, 0);
3915 		return -ECANCELED;
3916 	}
3917 	return 0;
3918 }
3919 
3920 /*
3921  * Mark end of chunk relocation that is cancellable and wake any waiters.
3922  */
3923 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3924 {
3925 	/* Requested after start, clear bit first so any waiters can continue */
3926 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3927 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3928 	spin_lock(&fs_info->send_reloc_lock);
3929 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3930 	spin_unlock(&fs_info->send_reloc_lock);
3931 	atomic_set(&fs_info->reloc_cancel_req, 0);
3932 }
3933 
3934 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3935 {
3936 	struct reloc_control *rc;
3937 
3938 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3939 	if (!rc)
3940 		return NULL;
3941 
3942 	INIT_LIST_HEAD(&rc->reloc_roots);
3943 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3944 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3945 	mapping_tree_init(&rc->reloc_root_tree);
3946 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3947 			    IO_TREE_RELOC_BLOCKS, NULL);
3948 	return rc;
3949 }
3950 
3951 static void free_reloc_control(struct reloc_control *rc)
3952 {
3953 	struct mapping_node *node, *tmp;
3954 
3955 	free_reloc_roots(&rc->reloc_roots);
3956 	rbtree_postorder_for_each_entry_safe(node, tmp,
3957 			&rc->reloc_root_tree.rb_root, rb_node)
3958 		kfree(node);
3959 
3960 	kfree(rc);
3961 }
3962 
3963 /*
3964  * Print the block group being relocated
3965  */
3966 static void describe_relocation(struct btrfs_fs_info *fs_info,
3967 				struct btrfs_block_group *block_group)
3968 {
3969 	char buf[128] = {'\0'};
3970 
3971 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3972 
3973 	btrfs_info(fs_info,
3974 		   "relocating block group %llu flags %s",
3975 		   block_group->start, buf);
3976 }
3977 
3978 static const char *stage_to_string(int stage)
3979 {
3980 	if (stage == MOVE_DATA_EXTENTS)
3981 		return "move data extents";
3982 	if (stage == UPDATE_DATA_PTRS)
3983 		return "update data pointers";
3984 	return "unknown";
3985 }
3986 
3987 /*
3988  * function to relocate all extents in a block group.
3989  */
3990 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3991 {
3992 	struct btrfs_block_group *bg;
3993 	struct btrfs_root *extent_root = fs_info->extent_root;
3994 	struct reloc_control *rc;
3995 	struct inode *inode;
3996 	struct btrfs_path *path;
3997 	int ret;
3998 	int rw = 0;
3999 	int err = 0;
4000 
4001 	bg = btrfs_lookup_block_group(fs_info, group_start);
4002 	if (!bg)
4003 		return -ENOENT;
4004 
4005 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4006 		btrfs_put_block_group(bg);
4007 		return -ETXTBSY;
4008 	}
4009 
4010 	rc = alloc_reloc_control(fs_info);
4011 	if (!rc) {
4012 		btrfs_put_block_group(bg);
4013 		return -ENOMEM;
4014 	}
4015 
4016 	ret = reloc_chunk_start(fs_info);
4017 	if (ret < 0) {
4018 		err = ret;
4019 		goto out_put_bg;
4020 	}
4021 
4022 	rc->extent_root = extent_root;
4023 	rc->block_group = bg;
4024 
4025 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4026 	if (ret) {
4027 		err = ret;
4028 		goto out;
4029 	}
4030 	rw = 1;
4031 
4032 	path = btrfs_alloc_path();
4033 	if (!path) {
4034 		err = -ENOMEM;
4035 		goto out;
4036 	}
4037 
4038 	inode = lookup_free_space_inode(rc->block_group, path);
4039 	btrfs_free_path(path);
4040 
4041 	if (!IS_ERR(inode))
4042 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4043 	else
4044 		ret = PTR_ERR(inode);
4045 
4046 	if (ret && ret != -ENOENT) {
4047 		err = ret;
4048 		goto out;
4049 	}
4050 
4051 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4052 	if (IS_ERR(rc->data_inode)) {
4053 		err = PTR_ERR(rc->data_inode);
4054 		rc->data_inode = NULL;
4055 		goto out;
4056 	}
4057 
4058 	describe_relocation(fs_info, rc->block_group);
4059 
4060 	btrfs_wait_block_group_reservations(rc->block_group);
4061 	btrfs_wait_nocow_writers(rc->block_group);
4062 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4063 				 rc->block_group->start,
4064 				 rc->block_group->length);
4065 
4066 	while (1) {
4067 		int finishes_stage;
4068 
4069 		mutex_lock(&fs_info->cleaner_mutex);
4070 		ret = relocate_block_group(rc);
4071 		mutex_unlock(&fs_info->cleaner_mutex);
4072 		if (ret < 0)
4073 			err = ret;
4074 
4075 		finishes_stage = rc->stage;
4076 		/*
4077 		 * We may have gotten ENOSPC after we already dirtied some
4078 		 * extents.  If writeout happens while we're relocating a
4079 		 * different block group we could end up hitting the
4080 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4081 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4082 		 * properly so we don't trip over this problem, and then break
4083 		 * out of the loop if we hit an error.
4084 		 */
4085 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4086 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4087 						       (u64)-1);
4088 			if (ret)
4089 				err = ret;
4090 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4091 						 0, -1);
4092 			rc->stage = UPDATE_DATA_PTRS;
4093 		}
4094 
4095 		if (err < 0)
4096 			goto out;
4097 
4098 		if (rc->extents_found == 0)
4099 			break;
4100 
4101 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4102 			   rc->extents_found, stage_to_string(finishes_stage));
4103 	}
4104 
4105 	WARN_ON(rc->block_group->pinned > 0);
4106 	WARN_ON(rc->block_group->reserved > 0);
4107 	WARN_ON(rc->block_group->used > 0);
4108 out:
4109 	if (err && rw)
4110 		btrfs_dec_block_group_ro(rc->block_group);
4111 	iput(rc->data_inode);
4112 out_put_bg:
4113 	btrfs_put_block_group(bg);
4114 	reloc_chunk_end(fs_info);
4115 	free_reloc_control(rc);
4116 	return err;
4117 }
4118 
4119 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4120 {
4121 	struct btrfs_fs_info *fs_info = root->fs_info;
4122 	struct btrfs_trans_handle *trans;
4123 	int ret, err;
4124 
4125 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4126 	if (IS_ERR(trans))
4127 		return PTR_ERR(trans);
4128 
4129 	memset(&root->root_item.drop_progress, 0,
4130 		sizeof(root->root_item.drop_progress));
4131 	btrfs_set_root_drop_level(&root->root_item, 0);
4132 	btrfs_set_root_refs(&root->root_item, 0);
4133 	ret = btrfs_update_root(trans, fs_info->tree_root,
4134 				&root->root_key, &root->root_item);
4135 
4136 	err = btrfs_end_transaction(trans);
4137 	if (err)
4138 		return err;
4139 	return ret;
4140 }
4141 
4142 /*
4143  * recover relocation interrupted by system crash.
4144  *
4145  * this function resumes merging reloc trees with corresponding fs trees.
4146  * this is important for keeping the sharing of tree blocks
4147  */
4148 int btrfs_recover_relocation(struct btrfs_root *root)
4149 {
4150 	struct btrfs_fs_info *fs_info = root->fs_info;
4151 	LIST_HEAD(reloc_roots);
4152 	struct btrfs_key key;
4153 	struct btrfs_root *fs_root;
4154 	struct btrfs_root *reloc_root;
4155 	struct btrfs_path *path;
4156 	struct extent_buffer *leaf;
4157 	struct reloc_control *rc = NULL;
4158 	struct btrfs_trans_handle *trans;
4159 	int ret;
4160 	int err = 0;
4161 
4162 	path = btrfs_alloc_path();
4163 	if (!path)
4164 		return -ENOMEM;
4165 	path->reada = READA_BACK;
4166 
4167 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4168 	key.type = BTRFS_ROOT_ITEM_KEY;
4169 	key.offset = (u64)-1;
4170 
4171 	while (1) {
4172 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4173 					path, 0, 0);
4174 		if (ret < 0) {
4175 			err = ret;
4176 			goto out;
4177 		}
4178 		if (ret > 0) {
4179 			if (path->slots[0] == 0)
4180 				break;
4181 			path->slots[0]--;
4182 		}
4183 		leaf = path->nodes[0];
4184 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4185 		btrfs_release_path(path);
4186 
4187 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4188 		    key.type != BTRFS_ROOT_ITEM_KEY)
4189 			break;
4190 
4191 		reloc_root = btrfs_read_tree_root(root, &key);
4192 		if (IS_ERR(reloc_root)) {
4193 			err = PTR_ERR(reloc_root);
4194 			goto out;
4195 		}
4196 
4197 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4198 		list_add(&reloc_root->root_list, &reloc_roots);
4199 
4200 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4201 			fs_root = btrfs_get_fs_root(fs_info,
4202 					reloc_root->root_key.offset, false);
4203 			if (IS_ERR(fs_root)) {
4204 				ret = PTR_ERR(fs_root);
4205 				if (ret != -ENOENT) {
4206 					err = ret;
4207 					goto out;
4208 				}
4209 				ret = mark_garbage_root(reloc_root);
4210 				if (ret < 0) {
4211 					err = ret;
4212 					goto out;
4213 				}
4214 			} else {
4215 				btrfs_put_root(fs_root);
4216 			}
4217 		}
4218 
4219 		if (key.offset == 0)
4220 			break;
4221 
4222 		key.offset--;
4223 	}
4224 	btrfs_release_path(path);
4225 
4226 	if (list_empty(&reloc_roots))
4227 		goto out;
4228 
4229 	rc = alloc_reloc_control(fs_info);
4230 	if (!rc) {
4231 		err = -ENOMEM;
4232 		goto out;
4233 	}
4234 
4235 	ret = reloc_chunk_start(fs_info);
4236 	if (ret < 0) {
4237 		err = ret;
4238 		goto out_end;
4239 	}
4240 
4241 	rc->extent_root = fs_info->extent_root;
4242 
4243 	set_reloc_control(rc);
4244 
4245 	trans = btrfs_join_transaction(rc->extent_root);
4246 	if (IS_ERR(trans)) {
4247 		err = PTR_ERR(trans);
4248 		goto out_unset;
4249 	}
4250 
4251 	rc->merge_reloc_tree = 1;
4252 
4253 	while (!list_empty(&reloc_roots)) {
4254 		reloc_root = list_entry(reloc_roots.next,
4255 					struct btrfs_root, root_list);
4256 		list_del(&reloc_root->root_list);
4257 
4258 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4259 			list_add_tail(&reloc_root->root_list,
4260 				      &rc->reloc_roots);
4261 			continue;
4262 		}
4263 
4264 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4265 					    false);
4266 		if (IS_ERR(fs_root)) {
4267 			err = PTR_ERR(fs_root);
4268 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4269 			btrfs_end_transaction(trans);
4270 			goto out_unset;
4271 		}
4272 
4273 		err = __add_reloc_root(reloc_root);
4274 		ASSERT(err != -EEXIST);
4275 		if (err) {
4276 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4277 			btrfs_put_root(fs_root);
4278 			btrfs_end_transaction(trans);
4279 			goto out_unset;
4280 		}
4281 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4282 		btrfs_put_root(fs_root);
4283 	}
4284 
4285 	err = btrfs_commit_transaction(trans);
4286 	if (err)
4287 		goto out_unset;
4288 
4289 	merge_reloc_roots(rc);
4290 
4291 	unset_reloc_control(rc);
4292 
4293 	trans = btrfs_join_transaction(rc->extent_root);
4294 	if (IS_ERR(trans)) {
4295 		err = PTR_ERR(trans);
4296 		goto out_clean;
4297 	}
4298 	err = btrfs_commit_transaction(trans);
4299 out_clean:
4300 	ret = clean_dirty_subvols(rc);
4301 	if (ret < 0 && !err)
4302 		err = ret;
4303 out_unset:
4304 	unset_reloc_control(rc);
4305 out_end:
4306 	reloc_chunk_end(fs_info);
4307 	free_reloc_control(rc);
4308 out:
4309 	free_reloc_roots(&reloc_roots);
4310 
4311 	btrfs_free_path(path);
4312 
4313 	if (err == 0) {
4314 		/* cleanup orphan inode in data relocation tree */
4315 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4316 		ASSERT(fs_root);
4317 		err = btrfs_orphan_cleanup(fs_root);
4318 		btrfs_put_root(fs_root);
4319 	}
4320 	return err;
4321 }
4322 
4323 /*
4324  * helper to add ordered checksum for data relocation.
4325  *
4326  * cloning checksum properly handles the nodatasum extents.
4327  * it also saves CPU time to re-calculate the checksum.
4328  */
4329 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
4330 {
4331 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4332 	struct btrfs_ordered_sum *sums;
4333 	struct btrfs_ordered_extent *ordered;
4334 	int ret;
4335 	u64 disk_bytenr;
4336 	u64 new_bytenr;
4337 	LIST_HEAD(list);
4338 
4339 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4340 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
4341 
4342 	disk_bytenr = file_pos + inode->index_cnt;
4343 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4344 				       disk_bytenr + len - 1, &list, 0);
4345 	if (ret)
4346 		goto out;
4347 
4348 	while (!list_empty(&list)) {
4349 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4350 		list_del_init(&sums->list);
4351 
4352 		/*
4353 		 * We need to offset the new_bytenr based on where the csum is.
4354 		 * We need to do this because we will read in entire prealloc
4355 		 * extents but we may have written to say the middle of the
4356 		 * prealloc extent, so we need to make sure the csum goes with
4357 		 * the right disk offset.
4358 		 *
4359 		 * We can do this because the data reloc inode refers strictly
4360 		 * to the on disk bytes, so we don't have to worry about
4361 		 * disk_len vs real len like with real inodes since it's all
4362 		 * disk length.
4363 		 */
4364 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
4365 		sums->bytenr = new_bytenr;
4366 
4367 		btrfs_add_ordered_sum(ordered, sums);
4368 	}
4369 out:
4370 	btrfs_put_ordered_extent(ordered);
4371 	return ret;
4372 }
4373 
4374 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4375 			  struct btrfs_root *root, struct extent_buffer *buf,
4376 			  struct extent_buffer *cow)
4377 {
4378 	struct btrfs_fs_info *fs_info = root->fs_info;
4379 	struct reloc_control *rc;
4380 	struct btrfs_backref_node *node;
4381 	int first_cow = 0;
4382 	int level;
4383 	int ret = 0;
4384 
4385 	rc = fs_info->reloc_ctl;
4386 	if (!rc)
4387 		return 0;
4388 
4389 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4390 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4391 
4392 	level = btrfs_header_level(buf);
4393 	if (btrfs_header_generation(buf) <=
4394 	    btrfs_root_last_snapshot(&root->root_item))
4395 		first_cow = 1;
4396 
4397 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4398 	    rc->create_reloc_tree) {
4399 		WARN_ON(!first_cow && level == 0);
4400 
4401 		node = rc->backref_cache.path[level];
4402 		BUG_ON(node->bytenr != buf->start &&
4403 		       node->new_bytenr != buf->start);
4404 
4405 		btrfs_backref_drop_node_buffer(node);
4406 		atomic_inc(&cow->refs);
4407 		node->eb = cow;
4408 		node->new_bytenr = cow->start;
4409 
4410 		if (!node->pending) {
4411 			list_move_tail(&node->list,
4412 				       &rc->backref_cache.pending[level]);
4413 			node->pending = 1;
4414 		}
4415 
4416 		if (first_cow)
4417 			mark_block_processed(rc, node);
4418 
4419 		if (first_cow && level > 0)
4420 			rc->nodes_relocated += buf->len;
4421 	}
4422 
4423 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4424 		ret = replace_file_extents(trans, rc, root, cow);
4425 	return ret;
4426 }
4427 
4428 /*
4429  * called before creating snapshot. it calculates metadata reservation
4430  * required for relocating tree blocks in the snapshot
4431  */
4432 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4433 			      u64 *bytes_to_reserve)
4434 {
4435 	struct btrfs_root *root = pending->root;
4436 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4437 
4438 	if (!rc || !have_reloc_root(root))
4439 		return;
4440 
4441 	if (!rc->merge_reloc_tree)
4442 		return;
4443 
4444 	root = root->reloc_root;
4445 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4446 	/*
4447 	 * relocation is in the stage of merging trees. the space
4448 	 * used by merging a reloc tree is twice the size of
4449 	 * relocated tree nodes in the worst case. half for cowing
4450 	 * the reloc tree, half for cowing the fs tree. the space
4451 	 * used by cowing the reloc tree will be freed after the
4452 	 * tree is dropped. if we create snapshot, cowing the fs
4453 	 * tree may use more space than it frees. so we need
4454 	 * reserve extra space.
4455 	 */
4456 	*bytes_to_reserve += rc->nodes_relocated;
4457 }
4458 
4459 /*
4460  * called after snapshot is created. migrate block reservation
4461  * and create reloc root for the newly created snapshot
4462  *
4463  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4464  * references held on the reloc_root, one for root->reloc_root and one for
4465  * rc->reloc_roots.
4466  */
4467 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4468 			       struct btrfs_pending_snapshot *pending)
4469 {
4470 	struct btrfs_root *root = pending->root;
4471 	struct btrfs_root *reloc_root;
4472 	struct btrfs_root *new_root;
4473 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4474 	int ret;
4475 
4476 	if (!rc || !have_reloc_root(root))
4477 		return 0;
4478 
4479 	rc = root->fs_info->reloc_ctl;
4480 	rc->merging_rsv_size += rc->nodes_relocated;
4481 
4482 	if (rc->merge_reloc_tree) {
4483 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4484 					      rc->block_rsv,
4485 					      rc->nodes_relocated, true);
4486 		if (ret)
4487 			return ret;
4488 	}
4489 
4490 	new_root = pending->snap;
4491 	reloc_root = create_reloc_root(trans, root->reloc_root,
4492 				       new_root->root_key.objectid);
4493 	if (IS_ERR(reloc_root))
4494 		return PTR_ERR(reloc_root);
4495 
4496 	ret = __add_reloc_root(reloc_root);
4497 	ASSERT(ret != -EEXIST);
4498 	if (ret) {
4499 		/* Pairs with create_reloc_root */
4500 		btrfs_put_root(reloc_root);
4501 		return ret;
4502 	}
4503 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4504 
4505 	if (rc->create_reloc_tree)
4506 		ret = clone_backref_node(trans, rc, root, reloc_root);
4507 	return ret;
4508 }
4509