xref: /openbmc/linux/fs/btrfs/relocation.c (revision 95777591)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 
24 /*
25  * backref_node, mapping_node and tree_block start with this
26  */
27 struct tree_entry {
28 	struct rb_node rb_node;
29 	u64 bytenr;
30 };
31 
32 /*
33  * present a tree block in the backref cache
34  */
35 struct backref_node {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 
39 	u64 new_bytenr;
40 	/* objectid of tree block owner, can be not uptodate */
41 	u64 owner;
42 	/* link to pending, changed or detached list */
43 	struct list_head list;
44 	/* list of upper level blocks reference this block */
45 	struct list_head upper;
46 	/* list of child blocks in the cache */
47 	struct list_head lower;
48 	/* NULL if this node is not tree root */
49 	struct btrfs_root *root;
50 	/* extent buffer got by COW the block */
51 	struct extent_buffer *eb;
52 	/* level of tree block */
53 	unsigned int level:8;
54 	/* is the block in non-reference counted tree */
55 	unsigned int cowonly:1;
56 	/* 1 if no child node in the cache */
57 	unsigned int lowest:1;
58 	/* is the extent buffer locked */
59 	unsigned int locked:1;
60 	/* has the block been processed */
61 	unsigned int processed:1;
62 	/* have backrefs of this block been checked */
63 	unsigned int checked:1;
64 	/*
65 	 * 1 if corresponding block has been cowed but some upper
66 	 * level block pointers may not point to the new location
67 	 */
68 	unsigned int pending:1;
69 	/*
70 	 * 1 if the backref node isn't connected to any other
71 	 * backref node.
72 	 */
73 	unsigned int detached:1;
74 };
75 
76 /*
77  * present a block pointer in the backref cache
78  */
79 struct backref_edge {
80 	struct list_head list[2];
81 	struct backref_node *node[2];
82 };
83 
84 #define LOWER	0
85 #define UPPER	1
86 #define RELOCATION_RESERVED_NODES	256
87 
88 struct backref_cache {
89 	/* red black tree of all backref nodes in the cache */
90 	struct rb_root rb_root;
91 	/* for passing backref nodes to btrfs_reloc_cow_block */
92 	struct backref_node *path[BTRFS_MAX_LEVEL];
93 	/*
94 	 * list of blocks that have been cowed but some block
95 	 * pointers in upper level blocks may not reflect the
96 	 * new location
97 	 */
98 	struct list_head pending[BTRFS_MAX_LEVEL];
99 	/* list of backref nodes with no child node */
100 	struct list_head leaves;
101 	/* list of blocks that have been cowed in current transaction */
102 	struct list_head changed;
103 	/* list of detached backref node. */
104 	struct list_head detached;
105 
106 	u64 last_trans;
107 
108 	int nr_nodes;
109 	int nr_edges;
110 };
111 
112 /*
113  * map address of tree root to tree
114  */
115 struct mapping_node {
116 	struct rb_node rb_node;
117 	u64 bytenr;
118 	void *data;
119 };
120 
121 struct mapping_tree {
122 	struct rb_root rb_root;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * present a tree block to process
128  */
129 struct tree_block {
130 	struct rb_node rb_node;
131 	u64 bytenr;
132 	struct btrfs_key key;
133 	unsigned int level:8;
134 	unsigned int key_ready:1;
135 };
136 
137 #define MAX_EXTENTS 128
138 
139 struct file_extent_cluster {
140 	u64 start;
141 	u64 end;
142 	u64 boundary[MAX_EXTENTS];
143 	unsigned int nr;
144 };
145 
146 struct reloc_control {
147 	/* block group to relocate */
148 	struct btrfs_block_group_cache *block_group;
149 	/* extent tree */
150 	struct btrfs_root *extent_root;
151 	/* inode for moving data */
152 	struct inode *data_inode;
153 
154 	struct btrfs_block_rsv *block_rsv;
155 
156 	struct backref_cache backref_cache;
157 
158 	struct file_extent_cluster cluster;
159 	/* tree blocks have been processed */
160 	struct extent_io_tree processed_blocks;
161 	/* map start of tree root to corresponding reloc tree */
162 	struct mapping_tree reloc_root_tree;
163 	/* list of reloc trees */
164 	struct list_head reloc_roots;
165 	/* size of metadata reservation for merging reloc trees */
166 	u64 merging_rsv_size;
167 	/* size of relocated tree nodes */
168 	u64 nodes_relocated;
169 	/* reserved size for block group relocation*/
170 	u64 reserved_bytes;
171 
172 	u64 search_start;
173 	u64 extents_found;
174 
175 	unsigned int stage:8;
176 	unsigned int create_reloc_tree:1;
177 	unsigned int merge_reloc_tree:1;
178 	unsigned int found_file_extent:1;
179 };
180 
181 /* stages of data relocation */
182 #define MOVE_DATA_EXTENTS	0
183 #define UPDATE_DATA_PTRS	1
184 
185 static void remove_backref_node(struct backref_cache *cache,
186 				struct backref_node *node);
187 static void __mark_block_processed(struct reloc_control *rc,
188 				   struct backref_node *node);
189 
190 static void mapping_tree_init(struct mapping_tree *tree)
191 {
192 	tree->rb_root = RB_ROOT;
193 	spin_lock_init(&tree->lock);
194 }
195 
196 static void backref_cache_init(struct backref_cache *cache)
197 {
198 	int i;
199 	cache->rb_root = RB_ROOT;
200 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
201 		INIT_LIST_HEAD(&cache->pending[i]);
202 	INIT_LIST_HEAD(&cache->changed);
203 	INIT_LIST_HEAD(&cache->detached);
204 	INIT_LIST_HEAD(&cache->leaves);
205 }
206 
207 static void backref_cache_cleanup(struct backref_cache *cache)
208 {
209 	struct backref_node *node;
210 	int i;
211 
212 	while (!list_empty(&cache->detached)) {
213 		node = list_entry(cache->detached.next,
214 				  struct backref_node, list);
215 		remove_backref_node(cache, node);
216 	}
217 
218 	while (!list_empty(&cache->leaves)) {
219 		node = list_entry(cache->leaves.next,
220 				  struct backref_node, lower);
221 		remove_backref_node(cache, node);
222 	}
223 
224 	cache->last_trans = 0;
225 
226 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
227 		ASSERT(list_empty(&cache->pending[i]));
228 	ASSERT(list_empty(&cache->changed));
229 	ASSERT(list_empty(&cache->detached));
230 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
231 	ASSERT(!cache->nr_nodes);
232 	ASSERT(!cache->nr_edges);
233 }
234 
235 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
236 {
237 	struct backref_node *node;
238 
239 	node = kzalloc(sizeof(*node), GFP_NOFS);
240 	if (node) {
241 		INIT_LIST_HEAD(&node->list);
242 		INIT_LIST_HEAD(&node->upper);
243 		INIT_LIST_HEAD(&node->lower);
244 		RB_CLEAR_NODE(&node->rb_node);
245 		cache->nr_nodes++;
246 	}
247 	return node;
248 }
249 
250 static void free_backref_node(struct backref_cache *cache,
251 			      struct backref_node *node)
252 {
253 	if (node) {
254 		cache->nr_nodes--;
255 		kfree(node);
256 	}
257 }
258 
259 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
260 {
261 	struct backref_edge *edge;
262 
263 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
264 	if (edge)
265 		cache->nr_edges++;
266 	return edge;
267 }
268 
269 static void free_backref_edge(struct backref_cache *cache,
270 			      struct backref_edge *edge)
271 {
272 	if (edge) {
273 		cache->nr_edges--;
274 		kfree(edge);
275 	}
276 }
277 
278 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
279 				   struct rb_node *node)
280 {
281 	struct rb_node **p = &root->rb_node;
282 	struct rb_node *parent = NULL;
283 	struct tree_entry *entry;
284 
285 	while (*p) {
286 		parent = *p;
287 		entry = rb_entry(parent, struct tree_entry, rb_node);
288 
289 		if (bytenr < entry->bytenr)
290 			p = &(*p)->rb_left;
291 		else if (bytenr > entry->bytenr)
292 			p = &(*p)->rb_right;
293 		else
294 			return parent;
295 	}
296 
297 	rb_link_node(node, parent, p);
298 	rb_insert_color(node, root);
299 	return NULL;
300 }
301 
302 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
303 {
304 	struct rb_node *n = root->rb_node;
305 	struct tree_entry *entry;
306 
307 	while (n) {
308 		entry = rb_entry(n, struct tree_entry, rb_node);
309 
310 		if (bytenr < entry->bytenr)
311 			n = n->rb_left;
312 		else if (bytenr > entry->bytenr)
313 			n = n->rb_right;
314 		else
315 			return n;
316 	}
317 	return NULL;
318 }
319 
320 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
321 {
322 
323 	struct btrfs_fs_info *fs_info = NULL;
324 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
325 					      rb_node);
326 	if (bnode->root)
327 		fs_info = bnode->root->fs_info;
328 	btrfs_panic(fs_info, errno,
329 		    "Inconsistency in backref cache found at offset %llu",
330 		    bytenr);
331 }
332 
333 /*
334  * walk up backref nodes until reach node presents tree root
335  */
336 static struct backref_node *walk_up_backref(struct backref_node *node,
337 					    struct backref_edge *edges[],
338 					    int *index)
339 {
340 	struct backref_edge *edge;
341 	int idx = *index;
342 
343 	while (!list_empty(&node->upper)) {
344 		edge = list_entry(node->upper.next,
345 				  struct backref_edge, list[LOWER]);
346 		edges[idx++] = edge;
347 		node = edge->node[UPPER];
348 	}
349 	BUG_ON(node->detached);
350 	*index = idx;
351 	return node;
352 }
353 
354 /*
355  * walk down backref nodes to find start of next reference path
356  */
357 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
358 					      int *index)
359 {
360 	struct backref_edge *edge;
361 	struct backref_node *lower;
362 	int idx = *index;
363 
364 	while (idx > 0) {
365 		edge = edges[idx - 1];
366 		lower = edge->node[LOWER];
367 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
368 			idx--;
369 			continue;
370 		}
371 		edge = list_entry(edge->list[LOWER].next,
372 				  struct backref_edge, list[LOWER]);
373 		edges[idx - 1] = edge;
374 		*index = idx;
375 		return edge->node[UPPER];
376 	}
377 	*index = 0;
378 	return NULL;
379 }
380 
381 static void unlock_node_buffer(struct backref_node *node)
382 {
383 	if (node->locked) {
384 		btrfs_tree_unlock(node->eb);
385 		node->locked = 0;
386 	}
387 }
388 
389 static void drop_node_buffer(struct backref_node *node)
390 {
391 	if (node->eb) {
392 		unlock_node_buffer(node);
393 		free_extent_buffer(node->eb);
394 		node->eb = NULL;
395 	}
396 }
397 
398 static void drop_backref_node(struct backref_cache *tree,
399 			      struct backref_node *node)
400 {
401 	BUG_ON(!list_empty(&node->upper));
402 
403 	drop_node_buffer(node);
404 	list_del(&node->list);
405 	list_del(&node->lower);
406 	if (!RB_EMPTY_NODE(&node->rb_node))
407 		rb_erase(&node->rb_node, &tree->rb_root);
408 	free_backref_node(tree, node);
409 }
410 
411 /*
412  * remove a backref node from the backref cache
413  */
414 static void remove_backref_node(struct backref_cache *cache,
415 				struct backref_node *node)
416 {
417 	struct backref_node *upper;
418 	struct backref_edge *edge;
419 
420 	if (!node)
421 		return;
422 
423 	BUG_ON(!node->lowest && !node->detached);
424 	while (!list_empty(&node->upper)) {
425 		edge = list_entry(node->upper.next, struct backref_edge,
426 				  list[LOWER]);
427 		upper = edge->node[UPPER];
428 		list_del(&edge->list[LOWER]);
429 		list_del(&edge->list[UPPER]);
430 		free_backref_edge(cache, edge);
431 
432 		if (RB_EMPTY_NODE(&upper->rb_node)) {
433 			BUG_ON(!list_empty(&node->upper));
434 			drop_backref_node(cache, node);
435 			node = upper;
436 			node->lowest = 1;
437 			continue;
438 		}
439 		/*
440 		 * add the node to leaf node list if no other
441 		 * child block cached.
442 		 */
443 		if (list_empty(&upper->lower)) {
444 			list_add_tail(&upper->lower, &cache->leaves);
445 			upper->lowest = 1;
446 		}
447 	}
448 
449 	drop_backref_node(cache, node);
450 }
451 
452 static void update_backref_node(struct backref_cache *cache,
453 				struct backref_node *node, u64 bytenr)
454 {
455 	struct rb_node *rb_node;
456 	rb_erase(&node->rb_node, &cache->rb_root);
457 	node->bytenr = bytenr;
458 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
459 	if (rb_node)
460 		backref_tree_panic(rb_node, -EEXIST, bytenr);
461 }
462 
463 /*
464  * update backref cache after a transaction commit
465  */
466 static int update_backref_cache(struct btrfs_trans_handle *trans,
467 				struct backref_cache *cache)
468 {
469 	struct backref_node *node;
470 	int level = 0;
471 
472 	if (cache->last_trans == 0) {
473 		cache->last_trans = trans->transid;
474 		return 0;
475 	}
476 
477 	if (cache->last_trans == trans->transid)
478 		return 0;
479 
480 	/*
481 	 * detached nodes are used to avoid unnecessary backref
482 	 * lookup. transaction commit changes the extent tree.
483 	 * so the detached nodes are no longer useful.
484 	 */
485 	while (!list_empty(&cache->detached)) {
486 		node = list_entry(cache->detached.next,
487 				  struct backref_node, list);
488 		remove_backref_node(cache, node);
489 	}
490 
491 	while (!list_empty(&cache->changed)) {
492 		node = list_entry(cache->changed.next,
493 				  struct backref_node, list);
494 		list_del_init(&node->list);
495 		BUG_ON(node->pending);
496 		update_backref_node(cache, node, node->new_bytenr);
497 	}
498 
499 	/*
500 	 * some nodes can be left in the pending list if there were
501 	 * errors during processing the pending nodes.
502 	 */
503 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
504 		list_for_each_entry(node, &cache->pending[level], list) {
505 			BUG_ON(!node->pending);
506 			if (node->bytenr == node->new_bytenr)
507 				continue;
508 			update_backref_node(cache, node, node->new_bytenr);
509 		}
510 	}
511 
512 	cache->last_trans = 0;
513 	return 1;
514 }
515 
516 
517 static int should_ignore_root(struct btrfs_root *root)
518 {
519 	struct btrfs_root *reloc_root;
520 
521 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
522 		return 0;
523 
524 	reloc_root = root->reloc_root;
525 	if (!reloc_root)
526 		return 0;
527 
528 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
529 	    root->fs_info->running_transaction->transid - 1)
530 		return 0;
531 	/*
532 	 * if there is reloc tree and it was created in previous
533 	 * transaction backref lookup can find the reloc tree,
534 	 * so backref node for the fs tree root is useless for
535 	 * relocation.
536 	 */
537 	return 1;
538 }
539 /*
540  * find reloc tree by address of tree root
541  */
542 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
543 					  u64 bytenr)
544 {
545 	struct rb_node *rb_node;
546 	struct mapping_node *node;
547 	struct btrfs_root *root = NULL;
548 
549 	spin_lock(&rc->reloc_root_tree.lock);
550 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
551 	if (rb_node) {
552 		node = rb_entry(rb_node, struct mapping_node, rb_node);
553 		root = (struct btrfs_root *)node->data;
554 	}
555 	spin_unlock(&rc->reloc_root_tree.lock);
556 	return root;
557 }
558 
559 static int is_cowonly_root(u64 root_objectid)
560 {
561 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
562 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
563 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
564 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
565 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
566 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
568 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
570 		return 1;
571 	return 0;
572 }
573 
574 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
575 					u64 root_objectid)
576 {
577 	struct btrfs_key key;
578 
579 	key.objectid = root_objectid;
580 	key.type = BTRFS_ROOT_ITEM_KEY;
581 	if (is_cowonly_root(root_objectid))
582 		key.offset = 0;
583 	else
584 		key.offset = (u64)-1;
585 
586 	return btrfs_get_fs_root(fs_info, &key, false);
587 }
588 
589 static noinline_for_stack
590 int find_inline_backref(struct extent_buffer *leaf, int slot,
591 			unsigned long *ptr, unsigned long *end)
592 {
593 	struct btrfs_key key;
594 	struct btrfs_extent_item *ei;
595 	struct btrfs_tree_block_info *bi;
596 	u32 item_size;
597 
598 	btrfs_item_key_to_cpu(leaf, &key, slot);
599 
600 	item_size = btrfs_item_size_nr(leaf, slot);
601 	if (item_size < sizeof(*ei)) {
602 		btrfs_print_v0_err(leaf->fs_info);
603 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
604 		return 1;
605 	}
606 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
607 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
608 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
609 
610 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
611 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
612 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
613 		return 1;
614 	}
615 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
616 	    item_size <= sizeof(*ei)) {
617 		WARN_ON(item_size < sizeof(*ei));
618 		return 1;
619 	}
620 
621 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
622 		bi = (struct btrfs_tree_block_info *)(ei + 1);
623 		*ptr = (unsigned long)(bi + 1);
624 	} else {
625 		*ptr = (unsigned long)(ei + 1);
626 	}
627 	*end = (unsigned long)ei + item_size;
628 	return 0;
629 }
630 
631 /*
632  * build backref tree for a given tree block. root of the backref tree
633  * corresponds the tree block, leaves of the backref tree correspond
634  * roots of b-trees that reference the tree block.
635  *
636  * the basic idea of this function is check backrefs of a given block
637  * to find upper level blocks that reference the block, and then check
638  * backrefs of these upper level blocks recursively. the recursion stop
639  * when tree root is reached or backrefs for the block is cached.
640  *
641  * NOTE: if we find backrefs for a block are cached, we know backrefs
642  * for all upper level blocks that directly/indirectly reference the
643  * block are also cached.
644  */
645 static noinline_for_stack
646 struct backref_node *build_backref_tree(struct reloc_control *rc,
647 					struct btrfs_key *node_key,
648 					int level, u64 bytenr)
649 {
650 	struct backref_cache *cache = &rc->backref_cache;
651 	struct btrfs_path *path1; /* For searching extent root */
652 	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
653 	struct extent_buffer *eb;
654 	struct btrfs_root *root;
655 	struct backref_node *cur;
656 	struct backref_node *upper;
657 	struct backref_node *lower;
658 	struct backref_node *node = NULL;
659 	struct backref_node *exist = NULL;
660 	struct backref_edge *edge;
661 	struct rb_node *rb_node;
662 	struct btrfs_key key;
663 	unsigned long end;
664 	unsigned long ptr;
665 	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
666 	LIST_HEAD(useless);
667 	int cowonly;
668 	int ret;
669 	int err = 0;
670 	bool need_check = true;
671 
672 	path1 = btrfs_alloc_path();
673 	path2 = btrfs_alloc_path();
674 	if (!path1 || !path2) {
675 		err = -ENOMEM;
676 		goto out;
677 	}
678 	path1->reada = READA_FORWARD;
679 	path2->reada = READA_FORWARD;
680 
681 	node = alloc_backref_node(cache);
682 	if (!node) {
683 		err = -ENOMEM;
684 		goto out;
685 	}
686 
687 	node->bytenr = bytenr;
688 	node->level = level;
689 	node->lowest = 1;
690 	cur = node;
691 again:
692 	end = 0;
693 	ptr = 0;
694 	key.objectid = cur->bytenr;
695 	key.type = BTRFS_METADATA_ITEM_KEY;
696 	key.offset = (u64)-1;
697 
698 	path1->search_commit_root = 1;
699 	path1->skip_locking = 1;
700 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
701 				0, 0);
702 	if (ret < 0) {
703 		err = ret;
704 		goto out;
705 	}
706 	ASSERT(ret);
707 	ASSERT(path1->slots[0]);
708 
709 	path1->slots[0]--;
710 
711 	WARN_ON(cur->checked);
712 	if (!list_empty(&cur->upper)) {
713 		/*
714 		 * the backref was added previously when processing
715 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
716 		 */
717 		ASSERT(list_is_singular(&cur->upper));
718 		edge = list_entry(cur->upper.next, struct backref_edge,
719 				  list[LOWER]);
720 		ASSERT(list_empty(&edge->list[UPPER]));
721 		exist = edge->node[UPPER];
722 		/*
723 		 * add the upper level block to pending list if we need
724 		 * check its backrefs
725 		 */
726 		if (!exist->checked)
727 			list_add_tail(&edge->list[UPPER], &list);
728 	} else {
729 		exist = NULL;
730 	}
731 
732 	while (1) {
733 		cond_resched();
734 		eb = path1->nodes[0];
735 
736 		if (ptr >= end) {
737 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
738 				ret = btrfs_next_leaf(rc->extent_root, path1);
739 				if (ret < 0) {
740 					err = ret;
741 					goto out;
742 				}
743 				if (ret > 0)
744 					break;
745 				eb = path1->nodes[0];
746 			}
747 
748 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
749 			if (key.objectid != cur->bytenr) {
750 				WARN_ON(exist);
751 				break;
752 			}
753 
754 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
755 			    key.type == BTRFS_METADATA_ITEM_KEY) {
756 				ret = find_inline_backref(eb, path1->slots[0],
757 							  &ptr, &end);
758 				if (ret)
759 					goto next;
760 			}
761 		}
762 
763 		if (ptr < end) {
764 			/* update key for inline back ref */
765 			struct btrfs_extent_inline_ref *iref;
766 			int type;
767 			iref = (struct btrfs_extent_inline_ref *)ptr;
768 			type = btrfs_get_extent_inline_ref_type(eb, iref,
769 							BTRFS_REF_TYPE_BLOCK);
770 			if (type == BTRFS_REF_TYPE_INVALID) {
771 				err = -EUCLEAN;
772 				goto out;
773 			}
774 			key.type = type;
775 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
776 
777 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
778 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
779 		}
780 
781 		/*
782 		 * Parent node found and matches current inline ref, no need to
783 		 * rebuild this node for this inline ref.
784 		 */
785 		if (exist &&
786 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
787 		      exist->owner == key.offset) ||
788 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
789 		      exist->bytenr == key.offset))) {
790 			exist = NULL;
791 			goto next;
792 		}
793 
794 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
795 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
796 			if (key.objectid == key.offset) {
797 				/*
798 				 * Only root blocks of reloc trees use backref
799 				 * pointing to itself.
800 				 */
801 				root = find_reloc_root(rc, cur->bytenr);
802 				ASSERT(root);
803 				cur->root = root;
804 				break;
805 			}
806 
807 			edge = alloc_backref_edge(cache);
808 			if (!edge) {
809 				err = -ENOMEM;
810 				goto out;
811 			}
812 			rb_node = tree_search(&cache->rb_root, key.offset);
813 			if (!rb_node) {
814 				upper = alloc_backref_node(cache);
815 				if (!upper) {
816 					free_backref_edge(cache, edge);
817 					err = -ENOMEM;
818 					goto out;
819 				}
820 				upper->bytenr = key.offset;
821 				upper->level = cur->level + 1;
822 				/*
823 				 *  backrefs for the upper level block isn't
824 				 *  cached, add the block to pending list
825 				 */
826 				list_add_tail(&edge->list[UPPER], &list);
827 			} else {
828 				upper = rb_entry(rb_node, struct backref_node,
829 						 rb_node);
830 				ASSERT(upper->checked);
831 				INIT_LIST_HEAD(&edge->list[UPPER]);
832 			}
833 			list_add_tail(&edge->list[LOWER], &cur->upper);
834 			edge->node[LOWER] = cur;
835 			edge->node[UPPER] = upper;
836 
837 			goto next;
838 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
839 			err = -EINVAL;
840 			btrfs_print_v0_err(rc->extent_root->fs_info);
841 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
842 					      NULL);
843 			goto out;
844 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
845 			goto next;
846 		}
847 
848 		/*
849 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
850 		 * means the root objectid. We need to search the tree to get
851 		 * its parent bytenr.
852 		 */
853 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
854 		if (IS_ERR(root)) {
855 			err = PTR_ERR(root);
856 			goto out;
857 		}
858 
859 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
860 			cur->cowonly = 1;
861 
862 		if (btrfs_root_level(&root->root_item) == cur->level) {
863 			/* tree root */
864 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
865 			       cur->bytenr);
866 			if (should_ignore_root(root))
867 				list_add(&cur->list, &useless);
868 			else
869 				cur->root = root;
870 			break;
871 		}
872 
873 		level = cur->level + 1;
874 
875 		/* Search the tree to find parent blocks referring the block. */
876 		path2->search_commit_root = 1;
877 		path2->skip_locking = 1;
878 		path2->lowest_level = level;
879 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
880 		path2->lowest_level = 0;
881 		if (ret < 0) {
882 			err = ret;
883 			goto out;
884 		}
885 		if (ret > 0 && path2->slots[level] > 0)
886 			path2->slots[level]--;
887 
888 		eb = path2->nodes[level];
889 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
890 		    cur->bytenr) {
891 			btrfs_err(root->fs_info,
892 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
893 				  cur->bytenr, level - 1,
894 				  root->root_key.objectid,
895 				  node_key->objectid, node_key->type,
896 				  node_key->offset);
897 			err = -ENOENT;
898 			goto out;
899 		}
900 		lower = cur;
901 		need_check = true;
902 
903 		/* Add all nodes and edges in the path */
904 		for (; level < BTRFS_MAX_LEVEL; level++) {
905 			if (!path2->nodes[level]) {
906 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
907 				       lower->bytenr);
908 				if (should_ignore_root(root))
909 					list_add(&lower->list, &useless);
910 				else
911 					lower->root = root;
912 				break;
913 			}
914 
915 			edge = alloc_backref_edge(cache);
916 			if (!edge) {
917 				err = -ENOMEM;
918 				goto out;
919 			}
920 
921 			eb = path2->nodes[level];
922 			rb_node = tree_search(&cache->rb_root, eb->start);
923 			if (!rb_node) {
924 				upper = alloc_backref_node(cache);
925 				if (!upper) {
926 					free_backref_edge(cache, edge);
927 					err = -ENOMEM;
928 					goto out;
929 				}
930 				upper->bytenr = eb->start;
931 				upper->owner = btrfs_header_owner(eb);
932 				upper->level = lower->level + 1;
933 				if (!test_bit(BTRFS_ROOT_REF_COWS,
934 					      &root->state))
935 					upper->cowonly = 1;
936 
937 				/*
938 				 * if we know the block isn't shared
939 				 * we can void checking its backrefs.
940 				 */
941 				if (btrfs_block_can_be_shared(root, eb))
942 					upper->checked = 0;
943 				else
944 					upper->checked = 1;
945 
946 				/*
947 				 * add the block to pending list if we
948 				 * need check its backrefs, we only do this once
949 				 * while walking up a tree as we will catch
950 				 * anything else later on.
951 				 */
952 				if (!upper->checked && need_check) {
953 					need_check = false;
954 					list_add_tail(&edge->list[UPPER],
955 						      &list);
956 				} else {
957 					if (upper->checked)
958 						need_check = true;
959 					INIT_LIST_HEAD(&edge->list[UPPER]);
960 				}
961 			} else {
962 				upper = rb_entry(rb_node, struct backref_node,
963 						 rb_node);
964 				ASSERT(upper->checked);
965 				INIT_LIST_HEAD(&edge->list[UPPER]);
966 				if (!upper->owner)
967 					upper->owner = btrfs_header_owner(eb);
968 			}
969 			list_add_tail(&edge->list[LOWER], &lower->upper);
970 			edge->node[LOWER] = lower;
971 			edge->node[UPPER] = upper;
972 
973 			if (rb_node)
974 				break;
975 			lower = upper;
976 			upper = NULL;
977 		}
978 		btrfs_release_path(path2);
979 next:
980 		if (ptr < end) {
981 			ptr += btrfs_extent_inline_ref_size(key.type);
982 			if (ptr >= end) {
983 				WARN_ON(ptr > end);
984 				ptr = 0;
985 				end = 0;
986 			}
987 		}
988 		if (ptr >= end)
989 			path1->slots[0]++;
990 	}
991 	btrfs_release_path(path1);
992 
993 	cur->checked = 1;
994 	WARN_ON(exist);
995 
996 	/* the pending list isn't empty, take the first block to process */
997 	if (!list_empty(&list)) {
998 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
999 		list_del_init(&edge->list[UPPER]);
1000 		cur = edge->node[UPPER];
1001 		goto again;
1002 	}
1003 
1004 	/*
1005 	 * everything goes well, connect backref nodes and insert backref nodes
1006 	 * into the cache.
1007 	 */
1008 	ASSERT(node->checked);
1009 	cowonly = node->cowonly;
1010 	if (!cowonly) {
1011 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1012 				      &node->rb_node);
1013 		if (rb_node)
1014 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1015 		list_add_tail(&node->lower, &cache->leaves);
1016 	}
1017 
1018 	list_for_each_entry(edge, &node->upper, list[LOWER])
1019 		list_add_tail(&edge->list[UPPER], &list);
1020 
1021 	while (!list_empty(&list)) {
1022 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1023 		list_del_init(&edge->list[UPPER]);
1024 		upper = edge->node[UPPER];
1025 		if (upper->detached) {
1026 			list_del(&edge->list[LOWER]);
1027 			lower = edge->node[LOWER];
1028 			free_backref_edge(cache, edge);
1029 			if (list_empty(&lower->upper))
1030 				list_add(&lower->list, &useless);
1031 			continue;
1032 		}
1033 
1034 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1035 			if (upper->lowest) {
1036 				list_del_init(&upper->lower);
1037 				upper->lowest = 0;
1038 			}
1039 
1040 			list_add_tail(&edge->list[UPPER], &upper->lower);
1041 			continue;
1042 		}
1043 
1044 		if (!upper->checked) {
1045 			/*
1046 			 * Still want to blow up for developers since this is a
1047 			 * logic bug.
1048 			 */
1049 			ASSERT(0);
1050 			err = -EINVAL;
1051 			goto out;
1052 		}
1053 		if (cowonly != upper->cowonly) {
1054 			ASSERT(0);
1055 			err = -EINVAL;
1056 			goto out;
1057 		}
1058 
1059 		if (!cowonly) {
1060 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1061 					      &upper->rb_node);
1062 			if (rb_node)
1063 				backref_tree_panic(rb_node, -EEXIST,
1064 						   upper->bytenr);
1065 		}
1066 
1067 		list_add_tail(&edge->list[UPPER], &upper->lower);
1068 
1069 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1070 			list_add_tail(&edge->list[UPPER], &list);
1071 	}
1072 	/*
1073 	 * process useless backref nodes. backref nodes for tree leaves
1074 	 * are deleted from the cache. backref nodes for upper level
1075 	 * tree blocks are left in the cache to avoid unnecessary backref
1076 	 * lookup.
1077 	 */
1078 	while (!list_empty(&useless)) {
1079 		upper = list_entry(useless.next, struct backref_node, list);
1080 		list_del_init(&upper->list);
1081 		ASSERT(list_empty(&upper->upper));
1082 		if (upper == node)
1083 			node = NULL;
1084 		if (upper->lowest) {
1085 			list_del_init(&upper->lower);
1086 			upper->lowest = 0;
1087 		}
1088 		while (!list_empty(&upper->lower)) {
1089 			edge = list_entry(upper->lower.next,
1090 					  struct backref_edge, list[UPPER]);
1091 			list_del(&edge->list[UPPER]);
1092 			list_del(&edge->list[LOWER]);
1093 			lower = edge->node[LOWER];
1094 			free_backref_edge(cache, edge);
1095 
1096 			if (list_empty(&lower->upper))
1097 				list_add(&lower->list, &useless);
1098 		}
1099 		__mark_block_processed(rc, upper);
1100 		if (upper->level > 0) {
1101 			list_add(&upper->list, &cache->detached);
1102 			upper->detached = 1;
1103 		} else {
1104 			rb_erase(&upper->rb_node, &cache->rb_root);
1105 			free_backref_node(cache, upper);
1106 		}
1107 	}
1108 out:
1109 	btrfs_free_path(path1);
1110 	btrfs_free_path(path2);
1111 	if (err) {
1112 		while (!list_empty(&useless)) {
1113 			lower = list_entry(useless.next,
1114 					   struct backref_node, list);
1115 			list_del_init(&lower->list);
1116 		}
1117 		while (!list_empty(&list)) {
1118 			edge = list_first_entry(&list, struct backref_edge,
1119 						list[UPPER]);
1120 			list_del(&edge->list[UPPER]);
1121 			list_del(&edge->list[LOWER]);
1122 			lower = edge->node[LOWER];
1123 			upper = edge->node[UPPER];
1124 			free_backref_edge(cache, edge);
1125 
1126 			/*
1127 			 * Lower is no longer linked to any upper backref nodes
1128 			 * and isn't in the cache, we can free it ourselves.
1129 			 */
1130 			if (list_empty(&lower->upper) &&
1131 			    RB_EMPTY_NODE(&lower->rb_node))
1132 				list_add(&lower->list, &useless);
1133 
1134 			if (!RB_EMPTY_NODE(&upper->rb_node))
1135 				continue;
1136 
1137 			/* Add this guy's upper edges to the list to process */
1138 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1139 				list_add_tail(&edge->list[UPPER], &list);
1140 			if (list_empty(&upper->upper))
1141 				list_add(&upper->list, &useless);
1142 		}
1143 
1144 		while (!list_empty(&useless)) {
1145 			lower = list_entry(useless.next,
1146 					   struct backref_node, list);
1147 			list_del_init(&lower->list);
1148 			if (lower == node)
1149 				node = NULL;
1150 			free_backref_node(cache, lower);
1151 		}
1152 
1153 		free_backref_node(cache, node);
1154 		return ERR_PTR(err);
1155 	}
1156 	ASSERT(!node || !node->detached);
1157 	return node;
1158 }
1159 
1160 /*
1161  * helper to add backref node for the newly created snapshot.
1162  * the backref node is created by cloning backref node that
1163  * corresponds to root of source tree
1164  */
1165 static int clone_backref_node(struct btrfs_trans_handle *trans,
1166 			      struct reloc_control *rc,
1167 			      struct btrfs_root *src,
1168 			      struct btrfs_root *dest)
1169 {
1170 	struct btrfs_root *reloc_root = src->reloc_root;
1171 	struct backref_cache *cache = &rc->backref_cache;
1172 	struct backref_node *node = NULL;
1173 	struct backref_node *new_node;
1174 	struct backref_edge *edge;
1175 	struct backref_edge *new_edge;
1176 	struct rb_node *rb_node;
1177 
1178 	if (cache->last_trans > 0)
1179 		update_backref_cache(trans, cache);
1180 
1181 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1182 	if (rb_node) {
1183 		node = rb_entry(rb_node, struct backref_node, rb_node);
1184 		if (node->detached)
1185 			node = NULL;
1186 		else
1187 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1188 	}
1189 
1190 	if (!node) {
1191 		rb_node = tree_search(&cache->rb_root,
1192 				      reloc_root->commit_root->start);
1193 		if (rb_node) {
1194 			node = rb_entry(rb_node, struct backref_node,
1195 					rb_node);
1196 			BUG_ON(node->detached);
1197 		}
1198 	}
1199 
1200 	if (!node)
1201 		return 0;
1202 
1203 	new_node = alloc_backref_node(cache);
1204 	if (!new_node)
1205 		return -ENOMEM;
1206 
1207 	new_node->bytenr = dest->node->start;
1208 	new_node->level = node->level;
1209 	new_node->lowest = node->lowest;
1210 	new_node->checked = 1;
1211 	new_node->root = dest;
1212 
1213 	if (!node->lowest) {
1214 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1215 			new_edge = alloc_backref_edge(cache);
1216 			if (!new_edge)
1217 				goto fail;
1218 
1219 			new_edge->node[UPPER] = new_node;
1220 			new_edge->node[LOWER] = edge->node[LOWER];
1221 			list_add_tail(&new_edge->list[UPPER],
1222 				      &new_node->lower);
1223 		}
1224 	} else {
1225 		list_add_tail(&new_node->lower, &cache->leaves);
1226 	}
1227 
1228 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1229 			      &new_node->rb_node);
1230 	if (rb_node)
1231 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1232 
1233 	if (!new_node->lowest) {
1234 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1235 			list_add_tail(&new_edge->list[LOWER],
1236 				      &new_edge->node[LOWER]->upper);
1237 		}
1238 	}
1239 	return 0;
1240 fail:
1241 	while (!list_empty(&new_node->lower)) {
1242 		new_edge = list_entry(new_node->lower.next,
1243 				      struct backref_edge, list[UPPER]);
1244 		list_del(&new_edge->list[UPPER]);
1245 		free_backref_edge(cache, new_edge);
1246 	}
1247 	free_backref_node(cache, new_node);
1248 	return -ENOMEM;
1249 }
1250 
1251 /*
1252  * helper to add 'address of tree root -> reloc tree' mapping
1253  */
1254 static int __must_check __add_reloc_root(struct btrfs_root *root)
1255 {
1256 	struct btrfs_fs_info *fs_info = root->fs_info;
1257 	struct rb_node *rb_node;
1258 	struct mapping_node *node;
1259 	struct reloc_control *rc = fs_info->reloc_ctl;
1260 
1261 	node = kmalloc(sizeof(*node), GFP_NOFS);
1262 	if (!node)
1263 		return -ENOMEM;
1264 
1265 	node->bytenr = root->node->start;
1266 	node->data = root;
1267 
1268 	spin_lock(&rc->reloc_root_tree.lock);
1269 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1270 			      node->bytenr, &node->rb_node);
1271 	spin_unlock(&rc->reloc_root_tree.lock);
1272 	if (rb_node) {
1273 		btrfs_panic(fs_info, -EEXIST,
1274 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1275 			    node->bytenr);
1276 	}
1277 
1278 	list_add_tail(&root->root_list, &rc->reloc_roots);
1279 	return 0;
1280 }
1281 
1282 /*
1283  * helper to delete the 'address of tree root -> reloc tree'
1284  * mapping
1285  */
1286 static void __del_reloc_root(struct btrfs_root *root)
1287 {
1288 	struct btrfs_fs_info *fs_info = root->fs_info;
1289 	struct rb_node *rb_node;
1290 	struct mapping_node *node = NULL;
1291 	struct reloc_control *rc = fs_info->reloc_ctl;
1292 
1293 	if (rc && root->node) {
1294 		spin_lock(&rc->reloc_root_tree.lock);
1295 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1296 				      root->node->start);
1297 		if (rb_node) {
1298 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1299 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1300 		}
1301 		spin_unlock(&rc->reloc_root_tree.lock);
1302 		if (!node)
1303 			return;
1304 		BUG_ON((struct btrfs_root *)node->data != root);
1305 	}
1306 
1307 	spin_lock(&fs_info->trans_lock);
1308 	list_del_init(&root->root_list);
1309 	spin_unlock(&fs_info->trans_lock);
1310 	kfree(node);
1311 }
1312 
1313 /*
1314  * helper to update the 'address of tree root -> reloc tree'
1315  * mapping
1316  */
1317 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1318 {
1319 	struct btrfs_fs_info *fs_info = root->fs_info;
1320 	struct rb_node *rb_node;
1321 	struct mapping_node *node = NULL;
1322 	struct reloc_control *rc = fs_info->reloc_ctl;
1323 
1324 	spin_lock(&rc->reloc_root_tree.lock);
1325 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1326 			      root->node->start);
1327 	if (rb_node) {
1328 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1329 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1330 	}
1331 	spin_unlock(&rc->reloc_root_tree.lock);
1332 
1333 	if (!node)
1334 		return 0;
1335 	BUG_ON((struct btrfs_root *)node->data != root);
1336 
1337 	spin_lock(&rc->reloc_root_tree.lock);
1338 	node->bytenr = new_bytenr;
1339 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1340 			      node->bytenr, &node->rb_node);
1341 	spin_unlock(&rc->reloc_root_tree.lock);
1342 	if (rb_node)
1343 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1344 	return 0;
1345 }
1346 
1347 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1348 					struct btrfs_root *root, u64 objectid)
1349 {
1350 	struct btrfs_fs_info *fs_info = root->fs_info;
1351 	struct btrfs_root *reloc_root;
1352 	struct extent_buffer *eb;
1353 	struct btrfs_root_item *root_item;
1354 	struct btrfs_key root_key;
1355 	int ret;
1356 
1357 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1358 	BUG_ON(!root_item);
1359 
1360 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1361 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1362 	root_key.offset = objectid;
1363 
1364 	if (root->root_key.objectid == objectid) {
1365 		u64 commit_root_gen;
1366 
1367 		/* called by btrfs_init_reloc_root */
1368 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1369 				      BTRFS_TREE_RELOC_OBJECTID);
1370 		BUG_ON(ret);
1371 		/*
1372 		 * Set the last_snapshot field to the generation of the commit
1373 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1374 		 * correctly (returns true) when the relocation root is created
1375 		 * either inside the critical section of a transaction commit
1376 		 * (through transaction.c:qgroup_account_snapshot()) and when
1377 		 * it's created before the transaction commit is started.
1378 		 */
1379 		commit_root_gen = btrfs_header_generation(root->commit_root);
1380 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1381 	} else {
1382 		/*
1383 		 * called by btrfs_reloc_post_snapshot_hook.
1384 		 * the source tree is a reloc tree, all tree blocks
1385 		 * modified after it was created have RELOC flag
1386 		 * set in their headers. so it's OK to not update
1387 		 * the 'last_snapshot'.
1388 		 */
1389 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1390 				      BTRFS_TREE_RELOC_OBJECTID);
1391 		BUG_ON(ret);
1392 	}
1393 
1394 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1395 	btrfs_set_root_bytenr(root_item, eb->start);
1396 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1397 	btrfs_set_root_generation(root_item, trans->transid);
1398 
1399 	if (root->root_key.objectid == objectid) {
1400 		btrfs_set_root_refs(root_item, 0);
1401 		memset(&root_item->drop_progress, 0,
1402 		       sizeof(struct btrfs_disk_key));
1403 		root_item->drop_level = 0;
1404 	}
1405 
1406 	btrfs_tree_unlock(eb);
1407 	free_extent_buffer(eb);
1408 
1409 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1410 				&root_key, root_item);
1411 	BUG_ON(ret);
1412 	kfree(root_item);
1413 
1414 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1415 	BUG_ON(IS_ERR(reloc_root));
1416 	reloc_root->last_trans = trans->transid;
1417 	return reloc_root;
1418 }
1419 
1420 /*
1421  * create reloc tree for a given fs tree. reloc tree is just a
1422  * snapshot of the fs tree with special root objectid.
1423  */
1424 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1425 			  struct btrfs_root *root)
1426 {
1427 	struct btrfs_fs_info *fs_info = root->fs_info;
1428 	struct btrfs_root *reloc_root;
1429 	struct reloc_control *rc = fs_info->reloc_ctl;
1430 	struct btrfs_block_rsv *rsv;
1431 	int clear_rsv = 0;
1432 	int ret;
1433 
1434 	if (root->reloc_root) {
1435 		reloc_root = root->reloc_root;
1436 		reloc_root->last_trans = trans->transid;
1437 		return 0;
1438 	}
1439 
1440 	if (!rc || !rc->create_reloc_tree ||
1441 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1442 		return 0;
1443 
1444 	if (!trans->reloc_reserved) {
1445 		rsv = trans->block_rsv;
1446 		trans->block_rsv = rc->block_rsv;
1447 		clear_rsv = 1;
1448 	}
1449 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1450 	if (clear_rsv)
1451 		trans->block_rsv = rsv;
1452 
1453 	ret = __add_reloc_root(reloc_root);
1454 	BUG_ON(ret < 0);
1455 	root->reloc_root = reloc_root;
1456 	return 0;
1457 }
1458 
1459 /*
1460  * update root item of reloc tree
1461  */
1462 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1463 			    struct btrfs_root *root)
1464 {
1465 	struct btrfs_fs_info *fs_info = root->fs_info;
1466 	struct btrfs_root *reloc_root;
1467 	struct btrfs_root_item *root_item;
1468 	int ret;
1469 
1470 	if (!root->reloc_root)
1471 		goto out;
1472 
1473 	reloc_root = root->reloc_root;
1474 	root_item = &reloc_root->root_item;
1475 
1476 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1477 	    btrfs_root_refs(root_item) == 0) {
1478 		root->reloc_root = NULL;
1479 		__del_reloc_root(reloc_root);
1480 	}
1481 
1482 	if (reloc_root->commit_root != reloc_root->node) {
1483 		btrfs_set_root_node(root_item, reloc_root->node);
1484 		free_extent_buffer(reloc_root->commit_root);
1485 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1486 	}
1487 
1488 	ret = btrfs_update_root(trans, fs_info->tree_root,
1489 				&reloc_root->root_key, root_item);
1490 	BUG_ON(ret);
1491 
1492 out:
1493 	return 0;
1494 }
1495 
1496 /*
1497  * helper to find first cached inode with inode number >= objectid
1498  * in a subvolume
1499  */
1500 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1501 {
1502 	struct rb_node *node;
1503 	struct rb_node *prev;
1504 	struct btrfs_inode *entry;
1505 	struct inode *inode;
1506 
1507 	spin_lock(&root->inode_lock);
1508 again:
1509 	node = root->inode_tree.rb_node;
1510 	prev = NULL;
1511 	while (node) {
1512 		prev = node;
1513 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1514 
1515 		if (objectid < btrfs_ino(entry))
1516 			node = node->rb_left;
1517 		else if (objectid > btrfs_ino(entry))
1518 			node = node->rb_right;
1519 		else
1520 			break;
1521 	}
1522 	if (!node) {
1523 		while (prev) {
1524 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1525 			if (objectid <= btrfs_ino(entry)) {
1526 				node = prev;
1527 				break;
1528 			}
1529 			prev = rb_next(prev);
1530 		}
1531 	}
1532 	while (node) {
1533 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1534 		inode = igrab(&entry->vfs_inode);
1535 		if (inode) {
1536 			spin_unlock(&root->inode_lock);
1537 			return inode;
1538 		}
1539 
1540 		objectid = btrfs_ino(entry) + 1;
1541 		if (cond_resched_lock(&root->inode_lock))
1542 			goto again;
1543 
1544 		node = rb_next(node);
1545 	}
1546 	spin_unlock(&root->inode_lock);
1547 	return NULL;
1548 }
1549 
1550 static int in_block_group(u64 bytenr,
1551 			  struct btrfs_block_group_cache *block_group)
1552 {
1553 	if (bytenr >= block_group->key.objectid &&
1554 	    bytenr < block_group->key.objectid + block_group->key.offset)
1555 		return 1;
1556 	return 0;
1557 }
1558 
1559 /*
1560  * get new location of data
1561  */
1562 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1563 			    u64 bytenr, u64 num_bytes)
1564 {
1565 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1566 	struct btrfs_path *path;
1567 	struct btrfs_file_extent_item *fi;
1568 	struct extent_buffer *leaf;
1569 	int ret;
1570 
1571 	path = btrfs_alloc_path();
1572 	if (!path)
1573 		return -ENOMEM;
1574 
1575 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1576 	ret = btrfs_lookup_file_extent(NULL, root, path,
1577 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1578 	if (ret < 0)
1579 		goto out;
1580 	if (ret > 0) {
1581 		ret = -ENOENT;
1582 		goto out;
1583 	}
1584 
1585 	leaf = path->nodes[0];
1586 	fi = btrfs_item_ptr(leaf, path->slots[0],
1587 			    struct btrfs_file_extent_item);
1588 
1589 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1590 	       btrfs_file_extent_compression(leaf, fi) ||
1591 	       btrfs_file_extent_encryption(leaf, fi) ||
1592 	       btrfs_file_extent_other_encoding(leaf, fi));
1593 
1594 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1595 		ret = -EINVAL;
1596 		goto out;
1597 	}
1598 
1599 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1600 	ret = 0;
1601 out:
1602 	btrfs_free_path(path);
1603 	return ret;
1604 }
1605 
1606 /*
1607  * update file extent items in the tree leaf to point to
1608  * the new locations.
1609  */
1610 static noinline_for_stack
1611 int replace_file_extents(struct btrfs_trans_handle *trans,
1612 			 struct reloc_control *rc,
1613 			 struct btrfs_root *root,
1614 			 struct extent_buffer *leaf)
1615 {
1616 	struct btrfs_fs_info *fs_info = root->fs_info;
1617 	struct btrfs_key key;
1618 	struct btrfs_file_extent_item *fi;
1619 	struct inode *inode = NULL;
1620 	u64 parent;
1621 	u64 bytenr;
1622 	u64 new_bytenr = 0;
1623 	u64 num_bytes;
1624 	u64 end;
1625 	u32 nritems;
1626 	u32 i;
1627 	int ret = 0;
1628 	int first = 1;
1629 	int dirty = 0;
1630 
1631 	if (rc->stage != UPDATE_DATA_PTRS)
1632 		return 0;
1633 
1634 	/* reloc trees always use full backref */
1635 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1636 		parent = leaf->start;
1637 	else
1638 		parent = 0;
1639 
1640 	nritems = btrfs_header_nritems(leaf);
1641 	for (i = 0; i < nritems; i++) {
1642 		cond_resched();
1643 		btrfs_item_key_to_cpu(leaf, &key, i);
1644 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1645 			continue;
1646 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1647 		if (btrfs_file_extent_type(leaf, fi) ==
1648 		    BTRFS_FILE_EXTENT_INLINE)
1649 			continue;
1650 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1651 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1652 		if (bytenr == 0)
1653 			continue;
1654 		if (!in_block_group(bytenr, rc->block_group))
1655 			continue;
1656 
1657 		/*
1658 		 * if we are modifying block in fs tree, wait for readpage
1659 		 * to complete and drop the extent cache
1660 		 */
1661 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1662 			if (first) {
1663 				inode = find_next_inode(root, key.objectid);
1664 				first = 0;
1665 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1666 				btrfs_add_delayed_iput(inode);
1667 				inode = find_next_inode(root, key.objectid);
1668 			}
1669 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1670 				end = key.offset +
1671 				      btrfs_file_extent_num_bytes(leaf, fi);
1672 				WARN_ON(!IS_ALIGNED(key.offset,
1673 						    fs_info->sectorsize));
1674 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1675 				end--;
1676 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1677 						      key.offset, end);
1678 				if (!ret)
1679 					continue;
1680 
1681 				btrfs_drop_extent_cache(BTRFS_I(inode),
1682 						key.offset,	end, 1);
1683 				unlock_extent(&BTRFS_I(inode)->io_tree,
1684 					      key.offset, end);
1685 			}
1686 		}
1687 
1688 		ret = get_new_location(rc->data_inode, &new_bytenr,
1689 				       bytenr, num_bytes);
1690 		if (ret) {
1691 			/*
1692 			 * Don't have to abort since we've not changed anything
1693 			 * in the file extent yet.
1694 			 */
1695 			break;
1696 		}
1697 
1698 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1699 		dirty = 1;
1700 
1701 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1702 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1703 					   num_bytes, parent,
1704 					   btrfs_header_owner(leaf),
1705 					   key.objectid, key.offset);
1706 		if (ret) {
1707 			btrfs_abort_transaction(trans, ret);
1708 			break;
1709 		}
1710 
1711 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1712 					parent, btrfs_header_owner(leaf),
1713 					key.objectid, key.offset);
1714 		if (ret) {
1715 			btrfs_abort_transaction(trans, ret);
1716 			break;
1717 		}
1718 	}
1719 	if (dirty)
1720 		btrfs_mark_buffer_dirty(leaf);
1721 	if (inode)
1722 		btrfs_add_delayed_iput(inode);
1723 	return ret;
1724 }
1725 
1726 static noinline_for_stack
1727 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1728 		     struct btrfs_path *path, int level)
1729 {
1730 	struct btrfs_disk_key key1;
1731 	struct btrfs_disk_key key2;
1732 	btrfs_node_key(eb, &key1, slot);
1733 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1734 	return memcmp(&key1, &key2, sizeof(key1));
1735 }
1736 
1737 /*
1738  * try to replace tree blocks in fs tree with the new blocks
1739  * in reloc tree. tree blocks haven't been modified since the
1740  * reloc tree was create can be replaced.
1741  *
1742  * if a block was replaced, level of the block + 1 is returned.
1743  * if no block got replaced, 0 is returned. if there are other
1744  * errors, a negative error number is returned.
1745  */
1746 static noinline_for_stack
1747 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1748 		 struct btrfs_root *dest, struct btrfs_root *src,
1749 		 struct btrfs_path *path, struct btrfs_key *next_key,
1750 		 int lowest_level, int max_level)
1751 {
1752 	struct btrfs_fs_info *fs_info = dest->fs_info;
1753 	struct extent_buffer *eb;
1754 	struct extent_buffer *parent;
1755 	struct btrfs_key key;
1756 	u64 old_bytenr;
1757 	u64 new_bytenr;
1758 	u64 old_ptr_gen;
1759 	u64 new_ptr_gen;
1760 	u64 last_snapshot;
1761 	u32 blocksize;
1762 	int cow = 0;
1763 	int level;
1764 	int ret;
1765 	int slot;
1766 
1767 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1768 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1769 
1770 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1771 again:
1772 	slot = path->slots[lowest_level];
1773 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1774 
1775 	eb = btrfs_lock_root_node(dest);
1776 	btrfs_set_lock_blocking(eb);
1777 	level = btrfs_header_level(eb);
1778 
1779 	if (level < lowest_level) {
1780 		btrfs_tree_unlock(eb);
1781 		free_extent_buffer(eb);
1782 		return 0;
1783 	}
1784 
1785 	if (cow) {
1786 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1787 		BUG_ON(ret);
1788 	}
1789 	btrfs_set_lock_blocking(eb);
1790 
1791 	if (next_key) {
1792 		next_key->objectid = (u64)-1;
1793 		next_key->type = (u8)-1;
1794 		next_key->offset = (u64)-1;
1795 	}
1796 
1797 	parent = eb;
1798 	while (1) {
1799 		struct btrfs_key first_key;
1800 
1801 		level = btrfs_header_level(parent);
1802 		BUG_ON(level < lowest_level);
1803 
1804 		ret = btrfs_bin_search(parent, &key, level, &slot);
1805 		if (ret && slot > 0)
1806 			slot--;
1807 
1808 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1809 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1810 
1811 		old_bytenr = btrfs_node_blockptr(parent, slot);
1812 		blocksize = fs_info->nodesize;
1813 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1814 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1815 
1816 		if (level <= max_level) {
1817 			eb = path->nodes[level];
1818 			new_bytenr = btrfs_node_blockptr(eb,
1819 							path->slots[level]);
1820 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1821 							path->slots[level]);
1822 		} else {
1823 			new_bytenr = 0;
1824 			new_ptr_gen = 0;
1825 		}
1826 
1827 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1828 			ret = level;
1829 			break;
1830 		}
1831 
1832 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1833 		    memcmp_node_keys(parent, slot, path, level)) {
1834 			if (level <= lowest_level) {
1835 				ret = 0;
1836 				break;
1837 			}
1838 
1839 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1840 					     level - 1, &first_key);
1841 			if (IS_ERR(eb)) {
1842 				ret = PTR_ERR(eb);
1843 				break;
1844 			} else if (!extent_buffer_uptodate(eb)) {
1845 				ret = -EIO;
1846 				free_extent_buffer(eb);
1847 				break;
1848 			}
1849 			btrfs_tree_lock(eb);
1850 			if (cow) {
1851 				ret = btrfs_cow_block(trans, dest, eb, parent,
1852 						      slot, &eb);
1853 				BUG_ON(ret);
1854 			}
1855 			btrfs_set_lock_blocking(eb);
1856 
1857 			btrfs_tree_unlock(parent);
1858 			free_extent_buffer(parent);
1859 
1860 			parent = eb;
1861 			continue;
1862 		}
1863 
1864 		if (!cow) {
1865 			btrfs_tree_unlock(parent);
1866 			free_extent_buffer(parent);
1867 			cow = 1;
1868 			goto again;
1869 		}
1870 
1871 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1872 				      path->slots[level]);
1873 		btrfs_release_path(path);
1874 
1875 		path->lowest_level = level;
1876 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1877 		path->lowest_level = 0;
1878 		BUG_ON(ret);
1879 
1880 		/*
1881 		 * Info qgroup to trace both subtrees.
1882 		 *
1883 		 * We must trace both trees.
1884 		 * 1) Tree reloc subtree
1885 		 *    If not traced, we will leak data numbers
1886 		 * 2) Fs subtree
1887 		 *    If not traced, we will double count old data
1888 		 *    and tree block numbers, if current trans doesn't free
1889 		 *    data reloc tree inode.
1890 		 */
1891 		ret = btrfs_qgroup_trace_subtree_swap(trans, rc->block_group,
1892 				parent, slot, path->nodes[level],
1893 				path->slots[level], last_snapshot);
1894 		if (ret < 0)
1895 			break;
1896 
1897 		/*
1898 		 * swap blocks in fs tree and reloc tree.
1899 		 */
1900 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1901 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1902 		btrfs_mark_buffer_dirty(parent);
1903 
1904 		btrfs_set_node_blockptr(path->nodes[level],
1905 					path->slots[level], old_bytenr);
1906 		btrfs_set_node_ptr_generation(path->nodes[level],
1907 					      path->slots[level], old_ptr_gen);
1908 		btrfs_mark_buffer_dirty(path->nodes[level]);
1909 
1910 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1911 					blocksize, path->nodes[level]->start,
1912 					src->root_key.objectid, level - 1, 0);
1913 		BUG_ON(ret);
1914 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1915 					blocksize, 0, dest->root_key.objectid,
1916 					level - 1, 0);
1917 		BUG_ON(ret);
1918 
1919 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1920 					path->nodes[level]->start,
1921 					src->root_key.objectid, level - 1, 0);
1922 		BUG_ON(ret);
1923 
1924 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1925 					0, dest->root_key.objectid, level - 1,
1926 					0);
1927 		BUG_ON(ret);
1928 
1929 		btrfs_unlock_up_safe(path, 0);
1930 
1931 		ret = level;
1932 		break;
1933 	}
1934 	btrfs_tree_unlock(parent);
1935 	free_extent_buffer(parent);
1936 	return ret;
1937 }
1938 
1939 /*
1940  * helper to find next relocated block in reloc tree
1941  */
1942 static noinline_for_stack
1943 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1944 		       int *level)
1945 {
1946 	struct extent_buffer *eb;
1947 	int i;
1948 	u64 last_snapshot;
1949 	u32 nritems;
1950 
1951 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1952 
1953 	for (i = 0; i < *level; i++) {
1954 		free_extent_buffer(path->nodes[i]);
1955 		path->nodes[i] = NULL;
1956 	}
1957 
1958 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1959 		eb = path->nodes[i];
1960 		nritems = btrfs_header_nritems(eb);
1961 		while (path->slots[i] + 1 < nritems) {
1962 			path->slots[i]++;
1963 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1964 			    last_snapshot)
1965 				continue;
1966 
1967 			*level = i;
1968 			return 0;
1969 		}
1970 		free_extent_buffer(path->nodes[i]);
1971 		path->nodes[i] = NULL;
1972 	}
1973 	return 1;
1974 }
1975 
1976 /*
1977  * walk down reloc tree to find relocated block of lowest level
1978  */
1979 static noinline_for_stack
1980 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1981 			 int *level)
1982 {
1983 	struct btrfs_fs_info *fs_info = root->fs_info;
1984 	struct extent_buffer *eb = NULL;
1985 	int i;
1986 	u64 bytenr;
1987 	u64 ptr_gen = 0;
1988 	u64 last_snapshot;
1989 	u32 nritems;
1990 
1991 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1992 
1993 	for (i = *level; i > 0; i--) {
1994 		struct btrfs_key first_key;
1995 
1996 		eb = path->nodes[i];
1997 		nritems = btrfs_header_nritems(eb);
1998 		while (path->slots[i] < nritems) {
1999 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2000 			if (ptr_gen > last_snapshot)
2001 				break;
2002 			path->slots[i]++;
2003 		}
2004 		if (path->slots[i] >= nritems) {
2005 			if (i == *level)
2006 				break;
2007 			*level = i + 1;
2008 			return 0;
2009 		}
2010 		if (i == 1) {
2011 			*level = i;
2012 			return 0;
2013 		}
2014 
2015 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2016 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2017 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2018 				     &first_key);
2019 		if (IS_ERR(eb)) {
2020 			return PTR_ERR(eb);
2021 		} else if (!extent_buffer_uptodate(eb)) {
2022 			free_extent_buffer(eb);
2023 			return -EIO;
2024 		}
2025 		BUG_ON(btrfs_header_level(eb) != i - 1);
2026 		path->nodes[i - 1] = eb;
2027 		path->slots[i - 1] = 0;
2028 	}
2029 	return 1;
2030 }
2031 
2032 /*
2033  * invalidate extent cache for file extents whose key in range of
2034  * [min_key, max_key)
2035  */
2036 static int invalidate_extent_cache(struct btrfs_root *root,
2037 				   struct btrfs_key *min_key,
2038 				   struct btrfs_key *max_key)
2039 {
2040 	struct btrfs_fs_info *fs_info = root->fs_info;
2041 	struct inode *inode = NULL;
2042 	u64 objectid;
2043 	u64 start, end;
2044 	u64 ino;
2045 
2046 	objectid = min_key->objectid;
2047 	while (1) {
2048 		cond_resched();
2049 		iput(inode);
2050 
2051 		if (objectid > max_key->objectid)
2052 			break;
2053 
2054 		inode = find_next_inode(root, objectid);
2055 		if (!inode)
2056 			break;
2057 		ino = btrfs_ino(BTRFS_I(inode));
2058 
2059 		if (ino > max_key->objectid) {
2060 			iput(inode);
2061 			break;
2062 		}
2063 
2064 		objectid = ino + 1;
2065 		if (!S_ISREG(inode->i_mode))
2066 			continue;
2067 
2068 		if (unlikely(min_key->objectid == ino)) {
2069 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2070 				continue;
2071 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2072 				start = 0;
2073 			else {
2074 				start = min_key->offset;
2075 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2076 			}
2077 		} else {
2078 			start = 0;
2079 		}
2080 
2081 		if (unlikely(max_key->objectid == ino)) {
2082 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2083 				continue;
2084 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2085 				end = (u64)-1;
2086 			} else {
2087 				if (max_key->offset == 0)
2088 					continue;
2089 				end = max_key->offset;
2090 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2091 				end--;
2092 			}
2093 		} else {
2094 			end = (u64)-1;
2095 		}
2096 
2097 		/* the lock_extent waits for readpage to complete */
2098 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2099 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2100 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2101 	}
2102 	return 0;
2103 }
2104 
2105 static int find_next_key(struct btrfs_path *path, int level,
2106 			 struct btrfs_key *key)
2107 
2108 {
2109 	while (level < BTRFS_MAX_LEVEL) {
2110 		if (!path->nodes[level])
2111 			break;
2112 		if (path->slots[level] + 1 <
2113 		    btrfs_header_nritems(path->nodes[level])) {
2114 			btrfs_node_key_to_cpu(path->nodes[level], key,
2115 					      path->slots[level] + 1);
2116 			return 0;
2117 		}
2118 		level++;
2119 	}
2120 	return 1;
2121 }
2122 
2123 /*
2124  * merge the relocated tree blocks in reloc tree with corresponding
2125  * fs tree.
2126  */
2127 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2128 					       struct btrfs_root *root)
2129 {
2130 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2131 	LIST_HEAD(inode_list);
2132 	struct btrfs_key key;
2133 	struct btrfs_key next_key;
2134 	struct btrfs_trans_handle *trans = NULL;
2135 	struct btrfs_root *reloc_root;
2136 	struct btrfs_root_item *root_item;
2137 	struct btrfs_path *path;
2138 	struct extent_buffer *leaf;
2139 	int level;
2140 	int max_level;
2141 	int replaced = 0;
2142 	int ret;
2143 	int err = 0;
2144 	u32 min_reserved;
2145 
2146 	path = btrfs_alloc_path();
2147 	if (!path)
2148 		return -ENOMEM;
2149 	path->reada = READA_FORWARD;
2150 
2151 	reloc_root = root->reloc_root;
2152 	root_item = &reloc_root->root_item;
2153 
2154 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2155 		level = btrfs_root_level(root_item);
2156 		extent_buffer_get(reloc_root->node);
2157 		path->nodes[level] = reloc_root->node;
2158 		path->slots[level] = 0;
2159 	} else {
2160 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2161 
2162 		level = root_item->drop_level;
2163 		BUG_ON(level == 0);
2164 		path->lowest_level = level;
2165 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2166 		path->lowest_level = 0;
2167 		if (ret < 0) {
2168 			btrfs_free_path(path);
2169 			return ret;
2170 		}
2171 
2172 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2173 				      path->slots[level]);
2174 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2175 
2176 		btrfs_unlock_up_safe(path, 0);
2177 	}
2178 
2179 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2180 	memset(&next_key, 0, sizeof(next_key));
2181 
2182 	while (1) {
2183 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2184 					     BTRFS_RESERVE_FLUSH_ALL);
2185 		if (ret) {
2186 			err = ret;
2187 			goto out;
2188 		}
2189 		trans = btrfs_start_transaction(root, 0);
2190 		if (IS_ERR(trans)) {
2191 			err = PTR_ERR(trans);
2192 			trans = NULL;
2193 			goto out;
2194 		}
2195 		trans->block_rsv = rc->block_rsv;
2196 
2197 		replaced = 0;
2198 		max_level = level;
2199 
2200 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2201 		if (ret < 0) {
2202 			err = ret;
2203 			goto out;
2204 		}
2205 		if (ret > 0)
2206 			break;
2207 
2208 		if (!find_next_key(path, level, &key) &&
2209 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2210 			ret = 0;
2211 		} else {
2212 			ret = replace_path(trans, rc, root, reloc_root, path,
2213 					   &next_key, level, max_level);
2214 		}
2215 		if (ret < 0) {
2216 			err = ret;
2217 			goto out;
2218 		}
2219 
2220 		if (ret > 0) {
2221 			level = ret;
2222 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2223 					      path->slots[level]);
2224 			replaced = 1;
2225 		}
2226 
2227 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2228 		if (ret > 0)
2229 			break;
2230 
2231 		BUG_ON(level == 0);
2232 		/*
2233 		 * save the merging progress in the drop_progress.
2234 		 * this is OK since root refs == 1 in this case.
2235 		 */
2236 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2237 			       path->slots[level]);
2238 		root_item->drop_level = level;
2239 
2240 		btrfs_end_transaction_throttle(trans);
2241 		trans = NULL;
2242 
2243 		btrfs_btree_balance_dirty(fs_info);
2244 
2245 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2246 			invalidate_extent_cache(root, &key, &next_key);
2247 	}
2248 
2249 	/*
2250 	 * handle the case only one block in the fs tree need to be
2251 	 * relocated and the block is tree root.
2252 	 */
2253 	leaf = btrfs_lock_root_node(root);
2254 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2255 	btrfs_tree_unlock(leaf);
2256 	free_extent_buffer(leaf);
2257 	if (ret < 0)
2258 		err = ret;
2259 out:
2260 	btrfs_free_path(path);
2261 
2262 	if (err == 0) {
2263 		memset(&root_item->drop_progress, 0,
2264 		       sizeof(root_item->drop_progress));
2265 		root_item->drop_level = 0;
2266 		btrfs_set_root_refs(root_item, 0);
2267 		btrfs_update_reloc_root(trans, root);
2268 	}
2269 
2270 	if (trans)
2271 		btrfs_end_transaction_throttle(trans);
2272 
2273 	btrfs_btree_balance_dirty(fs_info);
2274 
2275 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2276 		invalidate_extent_cache(root, &key, &next_key);
2277 
2278 	return err;
2279 }
2280 
2281 static noinline_for_stack
2282 int prepare_to_merge(struct reloc_control *rc, int err)
2283 {
2284 	struct btrfs_root *root = rc->extent_root;
2285 	struct btrfs_fs_info *fs_info = root->fs_info;
2286 	struct btrfs_root *reloc_root;
2287 	struct btrfs_trans_handle *trans;
2288 	LIST_HEAD(reloc_roots);
2289 	u64 num_bytes = 0;
2290 	int ret;
2291 
2292 	mutex_lock(&fs_info->reloc_mutex);
2293 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2294 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2295 	mutex_unlock(&fs_info->reloc_mutex);
2296 
2297 again:
2298 	if (!err) {
2299 		num_bytes = rc->merging_rsv_size;
2300 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2301 					  BTRFS_RESERVE_FLUSH_ALL);
2302 		if (ret)
2303 			err = ret;
2304 	}
2305 
2306 	trans = btrfs_join_transaction(rc->extent_root);
2307 	if (IS_ERR(trans)) {
2308 		if (!err)
2309 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2310 						num_bytes);
2311 		return PTR_ERR(trans);
2312 	}
2313 
2314 	if (!err) {
2315 		if (num_bytes != rc->merging_rsv_size) {
2316 			btrfs_end_transaction(trans);
2317 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2318 						num_bytes);
2319 			goto again;
2320 		}
2321 	}
2322 
2323 	rc->merge_reloc_tree = 1;
2324 
2325 	while (!list_empty(&rc->reloc_roots)) {
2326 		reloc_root = list_entry(rc->reloc_roots.next,
2327 					struct btrfs_root, root_list);
2328 		list_del_init(&reloc_root->root_list);
2329 
2330 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2331 		BUG_ON(IS_ERR(root));
2332 		BUG_ON(root->reloc_root != reloc_root);
2333 
2334 		/*
2335 		 * set reference count to 1, so btrfs_recover_relocation
2336 		 * knows it should resumes merging
2337 		 */
2338 		if (!err)
2339 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2340 		btrfs_update_reloc_root(trans, root);
2341 
2342 		list_add(&reloc_root->root_list, &reloc_roots);
2343 	}
2344 
2345 	list_splice(&reloc_roots, &rc->reloc_roots);
2346 
2347 	if (!err)
2348 		btrfs_commit_transaction(trans);
2349 	else
2350 		btrfs_end_transaction(trans);
2351 	return err;
2352 }
2353 
2354 static noinline_for_stack
2355 void free_reloc_roots(struct list_head *list)
2356 {
2357 	struct btrfs_root *reloc_root;
2358 
2359 	while (!list_empty(list)) {
2360 		reloc_root = list_entry(list->next, struct btrfs_root,
2361 					root_list);
2362 		__del_reloc_root(reloc_root);
2363 		free_extent_buffer(reloc_root->node);
2364 		free_extent_buffer(reloc_root->commit_root);
2365 		reloc_root->node = NULL;
2366 		reloc_root->commit_root = NULL;
2367 	}
2368 }
2369 
2370 static noinline_for_stack
2371 void merge_reloc_roots(struct reloc_control *rc)
2372 {
2373 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2374 	struct btrfs_root *root;
2375 	struct btrfs_root *reloc_root;
2376 	LIST_HEAD(reloc_roots);
2377 	int found = 0;
2378 	int ret = 0;
2379 again:
2380 	root = rc->extent_root;
2381 
2382 	/*
2383 	 * this serializes us with btrfs_record_root_in_transaction,
2384 	 * we have to make sure nobody is in the middle of
2385 	 * adding their roots to the list while we are
2386 	 * doing this splice
2387 	 */
2388 	mutex_lock(&fs_info->reloc_mutex);
2389 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2390 	mutex_unlock(&fs_info->reloc_mutex);
2391 
2392 	while (!list_empty(&reloc_roots)) {
2393 		found = 1;
2394 		reloc_root = list_entry(reloc_roots.next,
2395 					struct btrfs_root, root_list);
2396 
2397 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2398 			root = read_fs_root(fs_info,
2399 					    reloc_root->root_key.offset);
2400 			BUG_ON(IS_ERR(root));
2401 			BUG_ON(root->reloc_root != reloc_root);
2402 
2403 			ret = merge_reloc_root(rc, root);
2404 			if (ret) {
2405 				if (list_empty(&reloc_root->root_list))
2406 					list_add_tail(&reloc_root->root_list,
2407 						      &reloc_roots);
2408 				goto out;
2409 			}
2410 		} else {
2411 			list_del_init(&reloc_root->root_list);
2412 		}
2413 
2414 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2415 		if (ret < 0) {
2416 			if (list_empty(&reloc_root->root_list))
2417 				list_add_tail(&reloc_root->root_list,
2418 					      &reloc_roots);
2419 			goto out;
2420 		}
2421 	}
2422 
2423 	if (found) {
2424 		found = 0;
2425 		goto again;
2426 	}
2427 out:
2428 	if (ret) {
2429 		btrfs_handle_fs_error(fs_info, ret, NULL);
2430 		if (!list_empty(&reloc_roots))
2431 			free_reloc_roots(&reloc_roots);
2432 
2433 		/* new reloc root may be added */
2434 		mutex_lock(&fs_info->reloc_mutex);
2435 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2436 		mutex_unlock(&fs_info->reloc_mutex);
2437 		if (!list_empty(&reloc_roots))
2438 			free_reloc_roots(&reloc_roots);
2439 	}
2440 
2441 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2442 }
2443 
2444 static void free_block_list(struct rb_root *blocks)
2445 {
2446 	struct tree_block *block;
2447 	struct rb_node *rb_node;
2448 	while ((rb_node = rb_first(blocks))) {
2449 		block = rb_entry(rb_node, struct tree_block, rb_node);
2450 		rb_erase(rb_node, blocks);
2451 		kfree(block);
2452 	}
2453 }
2454 
2455 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2456 				      struct btrfs_root *reloc_root)
2457 {
2458 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2459 	struct btrfs_root *root;
2460 
2461 	if (reloc_root->last_trans == trans->transid)
2462 		return 0;
2463 
2464 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2465 	BUG_ON(IS_ERR(root));
2466 	BUG_ON(root->reloc_root != reloc_root);
2467 
2468 	return btrfs_record_root_in_trans(trans, root);
2469 }
2470 
2471 static noinline_for_stack
2472 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2473 				     struct reloc_control *rc,
2474 				     struct backref_node *node,
2475 				     struct backref_edge *edges[])
2476 {
2477 	struct backref_node *next;
2478 	struct btrfs_root *root;
2479 	int index = 0;
2480 
2481 	next = node;
2482 	while (1) {
2483 		cond_resched();
2484 		next = walk_up_backref(next, edges, &index);
2485 		root = next->root;
2486 		BUG_ON(!root);
2487 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2488 
2489 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2490 			record_reloc_root_in_trans(trans, root);
2491 			break;
2492 		}
2493 
2494 		btrfs_record_root_in_trans(trans, root);
2495 		root = root->reloc_root;
2496 
2497 		if (next->new_bytenr != root->node->start) {
2498 			BUG_ON(next->new_bytenr);
2499 			BUG_ON(!list_empty(&next->list));
2500 			next->new_bytenr = root->node->start;
2501 			next->root = root;
2502 			list_add_tail(&next->list,
2503 				      &rc->backref_cache.changed);
2504 			__mark_block_processed(rc, next);
2505 			break;
2506 		}
2507 
2508 		WARN_ON(1);
2509 		root = NULL;
2510 		next = walk_down_backref(edges, &index);
2511 		if (!next || next->level <= node->level)
2512 			break;
2513 	}
2514 	if (!root)
2515 		return NULL;
2516 
2517 	next = node;
2518 	/* setup backref node path for btrfs_reloc_cow_block */
2519 	while (1) {
2520 		rc->backref_cache.path[next->level] = next;
2521 		if (--index < 0)
2522 			break;
2523 		next = edges[index]->node[UPPER];
2524 	}
2525 	return root;
2526 }
2527 
2528 /*
2529  * select a tree root for relocation. return NULL if the block
2530  * is reference counted. we should use do_relocation() in this
2531  * case. return a tree root pointer if the block isn't reference
2532  * counted. return -ENOENT if the block is root of reloc tree.
2533  */
2534 static noinline_for_stack
2535 struct btrfs_root *select_one_root(struct backref_node *node)
2536 {
2537 	struct backref_node *next;
2538 	struct btrfs_root *root;
2539 	struct btrfs_root *fs_root = NULL;
2540 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2541 	int index = 0;
2542 
2543 	next = node;
2544 	while (1) {
2545 		cond_resched();
2546 		next = walk_up_backref(next, edges, &index);
2547 		root = next->root;
2548 		BUG_ON(!root);
2549 
2550 		/* no other choice for non-references counted tree */
2551 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2552 			return root;
2553 
2554 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2555 			fs_root = root;
2556 
2557 		if (next != node)
2558 			return NULL;
2559 
2560 		next = walk_down_backref(edges, &index);
2561 		if (!next || next->level <= node->level)
2562 			break;
2563 	}
2564 
2565 	if (!fs_root)
2566 		return ERR_PTR(-ENOENT);
2567 	return fs_root;
2568 }
2569 
2570 static noinline_for_stack
2571 u64 calcu_metadata_size(struct reloc_control *rc,
2572 			struct backref_node *node, int reserve)
2573 {
2574 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2575 	struct backref_node *next = node;
2576 	struct backref_edge *edge;
2577 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2578 	u64 num_bytes = 0;
2579 	int index = 0;
2580 
2581 	BUG_ON(reserve && node->processed);
2582 
2583 	while (next) {
2584 		cond_resched();
2585 		while (1) {
2586 			if (next->processed && (reserve || next != node))
2587 				break;
2588 
2589 			num_bytes += fs_info->nodesize;
2590 
2591 			if (list_empty(&next->upper))
2592 				break;
2593 
2594 			edge = list_entry(next->upper.next,
2595 					  struct backref_edge, list[LOWER]);
2596 			edges[index++] = edge;
2597 			next = edge->node[UPPER];
2598 		}
2599 		next = walk_down_backref(edges, &index);
2600 	}
2601 	return num_bytes;
2602 }
2603 
2604 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2605 				  struct reloc_control *rc,
2606 				  struct backref_node *node)
2607 {
2608 	struct btrfs_root *root = rc->extent_root;
2609 	struct btrfs_fs_info *fs_info = root->fs_info;
2610 	u64 num_bytes;
2611 	int ret;
2612 	u64 tmp;
2613 
2614 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2615 
2616 	trans->block_rsv = rc->block_rsv;
2617 	rc->reserved_bytes += num_bytes;
2618 
2619 	/*
2620 	 * We are under a transaction here so we can only do limited flushing.
2621 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2622 	 * transaction and try to refill when we can flush all the things.
2623 	 */
2624 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2625 				BTRFS_RESERVE_FLUSH_LIMIT);
2626 	if (ret) {
2627 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2628 		while (tmp <= rc->reserved_bytes)
2629 			tmp <<= 1;
2630 		/*
2631 		 * only one thread can access block_rsv at this point,
2632 		 * so we don't need hold lock to protect block_rsv.
2633 		 * we expand more reservation size here to allow enough
2634 		 * space for relocation and we will return earlier in
2635 		 * enospc case.
2636 		 */
2637 		rc->block_rsv->size = tmp + fs_info->nodesize *
2638 				      RELOCATION_RESERVED_NODES;
2639 		return -EAGAIN;
2640 	}
2641 
2642 	return 0;
2643 }
2644 
2645 /*
2646  * relocate a block tree, and then update pointers in upper level
2647  * blocks that reference the block to point to the new location.
2648  *
2649  * if called by link_to_upper, the block has already been relocated.
2650  * in that case this function just updates pointers.
2651  */
2652 static int do_relocation(struct btrfs_trans_handle *trans,
2653 			 struct reloc_control *rc,
2654 			 struct backref_node *node,
2655 			 struct btrfs_key *key,
2656 			 struct btrfs_path *path, int lowest)
2657 {
2658 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2659 	struct backref_node *upper;
2660 	struct backref_edge *edge;
2661 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2662 	struct btrfs_root *root;
2663 	struct extent_buffer *eb;
2664 	u32 blocksize;
2665 	u64 bytenr;
2666 	u64 generation;
2667 	int slot;
2668 	int ret;
2669 	int err = 0;
2670 
2671 	BUG_ON(lowest && node->eb);
2672 
2673 	path->lowest_level = node->level + 1;
2674 	rc->backref_cache.path[node->level] = node;
2675 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2676 		struct btrfs_key first_key;
2677 
2678 		cond_resched();
2679 
2680 		upper = edge->node[UPPER];
2681 		root = select_reloc_root(trans, rc, upper, edges);
2682 		BUG_ON(!root);
2683 
2684 		if (upper->eb && !upper->locked) {
2685 			if (!lowest) {
2686 				ret = btrfs_bin_search(upper->eb, key,
2687 						       upper->level, &slot);
2688 				BUG_ON(ret);
2689 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2690 				if (node->eb->start == bytenr)
2691 					goto next;
2692 			}
2693 			drop_node_buffer(upper);
2694 		}
2695 
2696 		if (!upper->eb) {
2697 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2698 			if (ret) {
2699 				if (ret < 0)
2700 					err = ret;
2701 				else
2702 					err = -ENOENT;
2703 
2704 				btrfs_release_path(path);
2705 				break;
2706 			}
2707 
2708 			if (!upper->eb) {
2709 				upper->eb = path->nodes[upper->level];
2710 				path->nodes[upper->level] = NULL;
2711 			} else {
2712 				BUG_ON(upper->eb != path->nodes[upper->level]);
2713 			}
2714 
2715 			upper->locked = 1;
2716 			path->locks[upper->level] = 0;
2717 
2718 			slot = path->slots[upper->level];
2719 			btrfs_release_path(path);
2720 		} else {
2721 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2722 					       &slot);
2723 			BUG_ON(ret);
2724 		}
2725 
2726 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2727 		if (lowest) {
2728 			if (bytenr != node->bytenr) {
2729 				btrfs_err(root->fs_info,
2730 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2731 					  bytenr, node->bytenr, slot,
2732 					  upper->eb->start);
2733 				err = -EIO;
2734 				goto next;
2735 			}
2736 		} else {
2737 			if (node->eb->start == bytenr)
2738 				goto next;
2739 		}
2740 
2741 		blocksize = root->fs_info->nodesize;
2742 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2743 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2744 		eb = read_tree_block(fs_info, bytenr, generation,
2745 				     upper->level - 1, &first_key);
2746 		if (IS_ERR(eb)) {
2747 			err = PTR_ERR(eb);
2748 			goto next;
2749 		} else if (!extent_buffer_uptodate(eb)) {
2750 			free_extent_buffer(eb);
2751 			err = -EIO;
2752 			goto next;
2753 		}
2754 		btrfs_tree_lock(eb);
2755 		btrfs_set_lock_blocking(eb);
2756 
2757 		if (!node->eb) {
2758 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2759 					      slot, &eb);
2760 			btrfs_tree_unlock(eb);
2761 			free_extent_buffer(eb);
2762 			if (ret < 0) {
2763 				err = ret;
2764 				goto next;
2765 			}
2766 			BUG_ON(node->eb != eb);
2767 		} else {
2768 			btrfs_set_node_blockptr(upper->eb, slot,
2769 						node->eb->start);
2770 			btrfs_set_node_ptr_generation(upper->eb, slot,
2771 						      trans->transid);
2772 			btrfs_mark_buffer_dirty(upper->eb);
2773 
2774 			ret = btrfs_inc_extent_ref(trans, root,
2775 						node->eb->start, blocksize,
2776 						upper->eb->start,
2777 						btrfs_header_owner(upper->eb),
2778 						node->level, 0);
2779 			BUG_ON(ret);
2780 
2781 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2782 			BUG_ON(ret);
2783 		}
2784 next:
2785 		if (!upper->pending)
2786 			drop_node_buffer(upper);
2787 		else
2788 			unlock_node_buffer(upper);
2789 		if (err)
2790 			break;
2791 	}
2792 
2793 	if (!err && node->pending) {
2794 		drop_node_buffer(node);
2795 		list_move_tail(&node->list, &rc->backref_cache.changed);
2796 		node->pending = 0;
2797 	}
2798 
2799 	path->lowest_level = 0;
2800 	BUG_ON(err == -ENOSPC);
2801 	return err;
2802 }
2803 
2804 static int link_to_upper(struct btrfs_trans_handle *trans,
2805 			 struct reloc_control *rc,
2806 			 struct backref_node *node,
2807 			 struct btrfs_path *path)
2808 {
2809 	struct btrfs_key key;
2810 
2811 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2812 	return do_relocation(trans, rc, node, &key, path, 0);
2813 }
2814 
2815 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2816 				struct reloc_control *rc,
2817 				struct btrfs_path *path, int err)
2818 {
2819 	LIST_HEAD(list);
2820 	struct backref_cache *cache = &rc->backref_cache;
2821 	struct backref_node *node;
2822 	int level;
2823 	int ret;
2824 
2825 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2826 		while (!list_empty(&cache->pending[level])) {
2827 			node = list_entry(cache->pending[level].next,
2828 					  struct backref_node, list);
2829 			list_move_tail(&node->list, &list);
2830 			BUG_ON(!node->pending);
2831 
2832 			if (!err) {
2833 				ret = link_to_upper(trans, rc, node, path);
2834 				if (ret < 0)
2835 					err = ret;
2836 			}
2837 		}
2838 		list_splice_init(&list, &cache->pending[level]);
2839 	}
2840 	return err;
2841 }
2842 
2843 static void mark_block_processed(struct reloc_control *rc,
2844 				 u64 bytenr, u32 blocksize)
2845 {
2846 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2847 			EXTENT_DIRTY);
2848 }
2849 
2850 static void __mark_block_processed(struct reloc_control *rc,
2851 				   struct backref_node *node)
2852 {
2853 	u32 blocksize;
2854 	if (node->level == 0 ||
2855 	    in_block_group(node->bytenr, rc->block_group)) {
2856 		blocksize = rc->extent_root->fs_info->nodesize;
2857 		mark_block_processed(rc, node->bytenr, blocksize);
2858 	}
2859 	node->processed = 1;
2860 }
2861 
2862 /*
2863  * mark a block and all blocks directly/indirectly reference the block
2864  * as processed.
2865  */
2866 static void update_processed_blocks(struct reloc_control *rc,
2867 				    struct backref_node *node)
2868 {
2869 	struct backref_node *next = node;
2870 	struct backref_edge *edge;
2871 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2872 	int index = 0;
2873 
2874 	while (next) {
2875 		cond_resched();
2876 		while (1) {
2877 			if (next->processed)
2878 				break;
2879 
2880 			__mark_block_processed(rc, next);
2881 
2882 			if (list_empty(&next->upper))
2883 				break;
2884 
2885 			edge = list_entry(next->upper.next,
2886 					  struct backref_edge, list[LOWER]);
2887 			edges[index++] = edge;
2888 			next = edge->node[UPPER];
2889 		}
2890 		next = walk_down_backref(edges, &index);
2891 	}
2892 }
2893 
2894 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2895 {
2896 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2897 
2898 	if (test_range_bit(&rc->processed_blocks, bytenr,
2899 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2900 		return 1;
2901 	return 0;
2902 }
2903 
2904 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2905 			      struct tree_block *block)
2906 {
2907 	struct extent_buffer *eb;
2908 
2909 	BUG_ON(block->key_ready);
2910 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2911 			     block->level, NULL);
2912 	if (IS_ERR(eb)) {
2913 		return PTR_ERR(eb);
2914 	} else if (!extent_buffer_uptodate(eb)) {
2915 		free_extent_buffer(eb);
2916 		return -EIO;
2917 	}
2918 	if (block->level == 0)
2919 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2920 	else
2921 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2922 	free_extent_buffer(eb);
2923 	block->key_ready = 1;
2924 	return 0;
2925 }
2926 
2927 /*
2928  * helper function to relocate a tree block
2929  */
2930 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2931 				struct reloc_control *rc,
2932 				struct backref_node *node,
2933 				struct btrfs_key *key,
2934 				struct btrfs_path *path)
2935 {
2936 	struct btrfs_root *root;
2937 	int ret = 0;
2938 
2939 	if (!node)
2940 		return 0;
2941 
2942 	BUG_ON(node->processed);
2943 	root = select_one_root(node);
2944 	if (root == ERR_PTR(-ENOENT)) {
2945 		update_processed_blocks(rc, node);
2946 		goto out;
2947 	}
2948 
2949 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2950 		ret = reserve_metadata_space(trans, rc, node);
2951 		if (ret)
2952 			goto out;
2953 	}
2954 
2955 	if (root) {
2956 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2957 			BUG_ON(node->new_bytenr);
2958 			BUG_ON(!list_empty(&node->list));
2959 			btrfs_record_root_in_trans(trans, root);
2960 			root = root->reloc_root;
2961 			node->new_bytenr = root->node->start;
2962 			node->root = root;
2963 			list_add_tail(&node->list, &rc->backref_cache.changed);
2964 		} else {
2965 			path->lowest_level = node->level;
2966 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2967 			btrfs_release_path(path);
2968 			if (ret > 0)
2969 				ret = 0;
2970 		}
2971 		if (!ret)
2972 			update_processed_blocks(rc, node);
2973 	} else {
2974 		ret = do_relocation(trans, rc, node, key, path, 1);
2975 	}
2976 out:
2977 	if (ret || node->level == 0 || node->cowonly)
2978 		remove_backref_node(&rc->backref_cache, node);
2979 	return ret;
2980 }
2981 
2982 /*
2983  * relocate a list of blocks
2984  */
2985 static noinline_for_stack
2986 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2987 			 struct reloc_control *rc, struct rb_root *blocks)
2988 {
2989 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2990 	struct backref_node *node;
2991 	struct btrfs_path *path;
2992 	struct tree_block *block;
2993 	struct tree_block *next;
2994 	int ret;
2995 	int err = 0;
2996 
2997 	path = btrfs_alloc_path();
2998 	if (!path) {
2999 		err = -ENOMEM;
3000 		goto out_free_blocks;
3001 	}
3002 
3003 	/* Kick in readahead for tree blocks with missing keys */
3004 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3005 		if (!block->key_ready)
3006 			readahead_tree_block(fs_info, block->bytenr);
3007 	}
3008 
3009 	/* Get first keys */
3010 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3011 		if (!block->key_ready) {
3012 			err = get_tree_block_key(fs_info, block);
3013 			if (err)
3014 				goto out_free_path;
3015 		}
3016 	}
3017 
3018 	/* Do tree relocation */
3019 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3020 		node = build_backref_tree(rc, &block->key,
3021 					  block->level, block->bytenr);
3022 		if (IS_ERR(node)) {
3023 			err = PTR_ERR(node);
3024 			goto out;
3025 		}
3026 
3027 		ret = relocate_tree_block(trans, rc, node, &block->key,
3028 					  path);
3029 		if (ret < 0) {
3030 			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3031 				err = ret;
3032 			goto out;
3033 		}
3034 	}
3035 out:
3036 	err = finish_pending_nodes(trans, rc, path, err);
3037 
3038 out_free_path:
3039 	btrfs_free_path(path);
3040 out_free_blocks:
3041 	free_block_list(blocks);
3042 	return err;
3043 }
3044 
3045 static noinline_for_stack
3046 int prealloc_file_extent_cluster(struct inode *inode,
3047 				 struct file_extent_cluster *cluster)
3048 {
3049 	u64 alloc_hint = 0;
3050 	u64 start;
3051 	u64 end;
3052 	u64 offset = BTRFS_I(inode)->index_cnt;
3053 	u64 num_bytes;
3054 	int nr = 0;
3055 	int ret = 0;
3056 	u64 prealloc_start = cluster->start - offset;
3057 	u64 prealloc_end = cluster->end - offset;
3058 	u64 cur_offset;
3059 	struct extent_changeset *data_reserved = NULL;
3060 
3061 	BUG_ON(cluster->start != cluster->boundary[0]);
3062 	inode_lock(inode);
3063 
3064 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3065 					  prealloc_end + 1 - prealloc_start);
3066 	if (ret)
3067 		goto out;
3068 
3069 	cur_offset = prealloc_start;
3070 	while (nr < cluster->nr) {
3071 		start = cluster->boundary[nr] - offset;
3072 		if (nr + 1 < cluster->nr)
3073 			end = cluster->boundary[nr + 1] - 1 - offset;
3074 		else
3075 			end = cluster->end - offset;
3076 
3077 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3078 		num_bytes = end + 1 - start;
3079 		if (cur_offset < start)
3080 			btrfs_free_reserved_data_space(inode, data_reserved,
3081 					cur_offset, start - cur_offset);
3082 		ret = btrfs_prealloc_file_range(inode, 0, start,
3083 						num_bytes, num_bytes,
3084 						end + 1, &alloc_hint);
3085 		cur_offset = end + 1;
3086 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3087 		if (ret)
3088 			break;
3089 		nr++;
3090 	}
3091 	if (cur_offset < prealloc_end)
3092 		btrfs_free_reserved_data_space(inode, data_reserved,
3093 				cur_offset, prealloc_end + 1 - cur_offset);
3094 out:
3095 	inode_unlock(inode);
3096 	extent_changeset_free(data_reserved);
3097 	return ret;
3098 }
3099 
3100 static noinline_for_stack
3101 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3102 			 u64 block_start)
3103 {
3104 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3105 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3106 	struct extent_map *em;
3107 	int ret = 0;
3108 
3109 	em = alloc_extent_map();
3110 	if (!em)
3111 		return -ENOMEM;
3112 
3113 	em->start = start;
3114 	em->len = end + 1 - start;
3115 	em->block_len = em->len;
3116 	em->block_start = block_start;
3117 	em->bdev = fs_info->fs_devices->latest_bdev;
3118 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3119 
3120 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3121 	while (1) {
3122 		write_lock(&em_tree->lock);
3123 		ret = add_extent_mapping(em_tree, em, 0);
3124 		write_unlock(&em_tree->lock);
3125 		if (ret != -EEXIST) {
3126 			free_extent_map(em);
3127 			break;
3128 		}
3129 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3130 	}
3131 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3132 	return ret;
3133 }
3134 
3135 static int relocate_file_extent_cluster(struct inode *inode,
3136 					struct file_extent_cluster *cluster)
3137 {
3138 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3139 	u64 page_start;
3140 	u64 page_end;
3141 	u64 offset = BTRFS_I(inode)->index_cnt;
3142 	unsigned long index;
3143 	unsigned long last_index;
3144 	struct page *page;
3145 	struct file_ra_state *ra;
3146 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3147 	int nr = 0;
3148 	int ret = 0;
3149 
3150 	if (!cluster->nr)
3151 		return 0;
3152 
3153 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3154 	if (!ra)
3155 		return -ENOMEM;
3156 
3157 	ret = prealloc_file_extent_cluster(inode, cluster);
3158 	if (ret)
3159 		goto out;
3160 
3161 	file_ra_state_init(ra, inode->i_mapping);
3162 
3163 	ret = setup_extent_mapping(inode, cluster->start - offset,
3164 				   cluster->end - offset, cluster->start);
3165 	if (ret)
3166 		goto out;
3167 
3168 	index = (cluster->start - offset) >> PAGE_SHIFT;
3169 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3170 	while (index <= last_index) {
3171 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3172 				PAGE_SIZE);
3173 		if (ret)
3174 			goto out;
3175 
3176 		page = find_lock_page(inode->i_mapping, index);
3177 		if (!page) {
3178 			page_cache_sync_readahead(inode->i_mapping,
3179 						  ra, NULL, index,
3180 						  last_index + 1 - index);
3181 			page = find_or_create_page(inode->i_mapping, index,
3182 						   mask);
3183 			if (!page) {
3184 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3185 							PAGE_SIZE, true);
3186 				ret = -ENOMEM;
3187 				goto out;
3188 			}
3189 		}
3190 
3191 		if (PageReadahead(page)) {
3192 			page_cache_async_readahead(inode->i_mapping,
3193 						   ra, NULL, page, index,
3194 						   last_index + 1 - index);
3195 		}
3196 
3197 		if (!PageUptodate(page)) {
3198 			btrfs_readpage(NULL, page);
3199 			lock_page(page);
3200 			if (!PageUptodate(page)) {
3201 				unlock_page(page);
3202 				put_page(page);
3203 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3204 							PAGE_SIZE, true);
3205 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3206 							       PAGE_SIZE, true);
3207 				ret = -EIO;
3208 				goto out;
3209 			}
3210 		}
3211 
3212 		page_start = page_offset(page);
3213 		page_end = page_start + PAGE_SIZE - 1;
3214 
3215 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3216 
3217 		set_page_extent_mapped(page);
3218 
3219 		if (nr < cluster->nr &&
3220 		    page_start + offset == cluster->boundary[nr]) {
3221 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3222 					page_start, page_end,
3223 					EXTENT_BOUNDARY);
3224 			nr++;
3225 		}
3226 
3227 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3228 						NULL, 0);
3229 		if (ret) {
3230 			unlock_page(page);
3231 			put_page(page);
3232 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3233 							 PAGE_SIZE, true);
3234 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3235 			                               PAGE_SIZE, true);
3236 
3237 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3238 					  page_start, page_end,
3239 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3240 			goto out;
3241 
3242 		}
3243 		set_page_dirty(page);
3244 
3245 		unlock_extent(&BTRFS_I(inode)->io_tree,
3246 			      page_start, page_end);
3247 		unlock_page(page);
3248 		put_page(page);
3249 
3250 		index++;
3251 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3252 					       false);
3253 		balance_dirty_pages_ratelimited(inode->i_mapping);
3254 		btrfs_throttle(fs_info);
3255 	}
3256 	WARN_ON(nr != cluster->nr);
3257 out:
3258 	kfree(ra);
3259 	return ret;
3260 }
3261 
3262 static noinline_for_stack
3263 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3264 			 struct file_extent_cluster *cluster)
3265 {
3266 	int ret;
3267 
3268 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3269 		ret = relocate_file_extent_cluster(inode, cluster);
3270 		if (ret)
3271 			return ret;
3272 		cluster->nr = 0;
3273 	}
3274 
3275 	if (!cluster->nr)
3276 		cluster->start = extent_key->objectid;
3277 	else
3278 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3279 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3280 	cluster->boundary[cluster->nr] = extent_key->objectid;
3281 	cluster->nr++;
3282 
3283 	if (cluster->nr >= MAX_EXTENTS) {
3284 		ret = relocate_file_extent_cluster(inode, cluster);
3285 		if (ret)
3286 			return ret;
3287 		cluster->nr = 0;
3288 	}
3289 	return 0;
3290 }
3291 
3292 /*
3293  * helper to add a tree block to the list.
3294  * the major work is getting the generation and level of the block
3295  */
3296 static int add_tree_block(struct reloc_control *rc,
3297 			  struct btrfs_key *extent_key,
3298 			  struct btrfs_path *path,
3299 			  struct rb_root *blocks)
3300 {
3301 	struct extent_buffer *eb;
3302 	struct btrfs_extent_item *ei;
3303 	struct btrfs_tree_block_info *bi;
3304 	struct tree_block *block;
3305 	struct rb_node *rb_node;
3306 	u32 item_size;
3307 	int level = -1;
3308 	u64 generation;
3309 
3310 	eb =  path->nodes[0];
3311 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3312 
3313 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3314 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3315 		ei = btrfs_item_ptr(eb, path->slots[0],
3316 				struct btrfs_extent_item);
3317 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3318 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3319 			level = btrfs_tree_block_level(eb, bi);
3320 		} else {
3321 			level = (int)extent_key->offset;
3322 		}
3323 		generation = btrfs_extent_generation(eb, ei);
3324 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3325 		btrfs_print_v0_err(eb->fs_info);
3326 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3327 		return -EINVAL;
3328 	} else {
3329 		BUG();
3330 	}
3331 
3332 	btrfs_release_path(path);
3333 
3334 	BUG_ON(level == -1);
3335 
3336 	block = kmalloc(sizeof(*block), GFP_NOFS);
3337 	if (!block)
3338 		return -ENOMEM;
3339 
3340 	block->bytenr = extent_key->objectid;
3341 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3342 	block->key.offset = generation;
3343 	block->level = level;
3344 	block->key_ready = 0;
3345 
3346 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3347 	if (rb_node)
3348 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3349 
3350 	return 0;
3351 }
3352 
3353 /*
3354  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3355  */
3356 static int __add_tree_block(struct reloc_control *rc,
3357 			    u64 bytenr, u32 blocksize,
3358 			    struct rb_root *blocks)
3359 {
3360 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3361 	struct btrfs_path *path;
3362 	struct btrfs_key key;
3363 	int ret;
3364 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3365 
3366 	if (tree_block_processed(bytenr, rc))
3367 		return 0;
3368 
3369 	if (tree_search(blocks, bytenr))
3370 		return 0;
3371 
3372 	path = btrfs_alloc_path();
3373 	if (!path)
3374 		return -ENOMEM;
3375 again:
3376 	key.objectid = bytenr;
3377 	if (skinny) {
3378 		key.type = BTRFS_METADATA_ITEM_KEY;
3379 		key.offset = (u64)-1;
3380 	} else {
3381 		key.type = BTRFS_EXTENT_ITEM_KEY;
3382 		key.offset = blocksize;
3383 	}
3384 
3385 	path->search_commit_root = 1;
3386 	path->skip_locking = 1;
3387 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3388 	if (ret < 0)
3389 		goto out;
3390 
3391 	if (ret > 0 && skinny) {
3392 		if (path->slots[0]) {
3393 			path->slots[0]--;
3394 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3395 					      path->slots[0]);
3396 			if (key.objectid == bytenr &&
3397 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3398 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3399 			      key.offset == blocksize)))
3400 				ret = 0;
3401 		}
3402 
3403 		if (ret) {
3404 			skinny = false;
3405 			btrfs_release_path(path);
3406 			goto again;
3407 		}
3408 	}
3409 	if (ret) {
3410 		ASSERT(ret == 1);
3411 		btrfs_print_leaf(path->nodes[0]);
3412 		btrfs_err(fs_info,
3413 	     "tree block extent item (%llu) is not found in extent tree",
3414 		     bytenr);
3415 		WARN_ON(1);
3416 		ret = -EINVAL;
3417 		goto out;
3418 	}
3419 
3420 	ret = add_tree_block(rc, &key, path, blocks);
3421 out:
3422 	btrfs_free_path(path);
3423 	return ret;
3424 }
3425 
3426 /*
3427  * helper to check if the block use full backrefs for pointers in it
3428  */
3429 static int block_use_full_backref(struct reloc_control *rc,
3430 				  struct extent_buffer *eb)
3431 {
3432 	u64 flags;
3433 	int ret;
3434 
3435 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3436 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3437 		return 1;
3438 
3439 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3440 				       eb->start, btrfs_header_level(eb), 1,
3441 				       NULL, &flags);
3442 	BUG_ON(ret);
3443 
3444 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3445 		ret = 1;
3446 	else
3447 		ret = 0;
3448 	return ret;
3449 }
3450 
3451 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3452 				    struct btrfs_block_group_cache *block_group,
3453 				    struct inode *inode,
3454 				    u64 ino)
3455 {
3456 	struct btrfs_key key;
3457 	struct btrfs_root *root = fs_info->tree_root;
3458 	struct btrfs_trans_handle *trans;
3459 	int ret = 0;
3460 
3461 	if (inode)
3462 		goto truncate;
3463 
3464 	key.objectid = ino;
3465 	key.type = BTRFS_INODE_ITEM_KEY;
3466 	key.offset = 0;
3467 
3468 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3469 	if (IS_ERR(inode))
3470 		return -ENOENT;
3471 
3472 truncate:
3473 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3474 						 &fs_info->global_block_rsv);
3475 	if (ret)
3476 		goto out;
3477 
3478 	trans = btrfs_join_transaction(root);
3479 	if (IS_ERR(trans)) {
3480 		ret = PTR_ERR(trans);
3481 		goto out;
3482 	}
3483 
3484 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3485 
3486 	btrfs_end_transaction(trans);
3487 	btrfs_btree_balance_dirty(fs_info);
3488 out:
3489 	iput(inode);
3490 	return ret;
3491 }
3492 
3493 /*
3494  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3495  * this function scans fs tree to find blocks reference the data extent
3496  */
3497 static int find_data_references(struct reloc_control *rc,
3498 				struct btrfs_key *extent_key,
3499 				struct extent_buffer *leaf,
3500 				struct btrfs_extent_data_ref *ref,
3501 				struct rb_root *blocks)
3502 {
3503 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3504 	struct btrfs_path *path;
3505 	struct tree_block *block;
3506 	struct btrfs_root *root;
3507 	struct btrfs_file_extent_item *fi;
3508 	struct rb_node *rb_node;
3509 	struct btrfs_key key;
3510 	u64 ref_root;
3511 	u64 ref_objectid;
3512 	u64 ref_offset;
3513 	u32 ref_count;
3514 	u32 nritems;
3515 	int err = 0;
3516 	int added = 0;
3517 	int counted;
3518 	int ret;
3519 
3520 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3521 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3522 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3523 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3524 
3525 	/*
3526 	 * This is an extent belonging to the free space cache, lets just delete
3527 	 * it and redo the search.
3528 	 */
3529 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3530 		ret = delete_block_group_cache(fs_info, rc->block_group,
3531 					       NULL, ref_objectid);
3532 		if (ret != -ENOENT)
3533 			return ret;
3534 		ret = 0;
3535 	}
3536 
3537 	path = btrfs_alloc_path();
3538 	if (!path)
3539 		return -ENOMEM;
3540 	path->reada = READA_FORWARD;
3541 
3542 	root = read_fs_root(fs_info, ref_root);
3543 	if (IS_ERR(root)) {
3544 		err = PTR_ERR(root);
3545 		goto out;
3546 	}
3547 
3548 	key.objectid = ref_objectid;
3549 	key.type = BTRFS_EXTENT_DATA_KEY;
3550 	if (ref_offset > ((u64)-1 << 32))
3551 		key.offset = 0;
3552 	else
3553 		key.offset = ref_offset;
3554 
3555 	path->search_commit_root = 1;
3556 	path->skip_locking = 1;
3557 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3558 	if (ret < 0) {
3559 		err = ret;
3560 		goto out;
3561 	}
3562 
3563 	leaf = path->nodes[0];
3564 	nritems = btrfs_header_nritems(leaf);
3565 	/*
3566 	 * the references in tree blocks that use full backrefs
3567 	 * are not counted in
3568 	 */
3569 	if (block_use_full_backref(rc, leaf))
3570 		counted = 0;
3571 	else
3572 		counted = 1;
3573 	rb_node = tree_search(blocks, leaf->start);
3574 	if (rb_node) {
3575 		if (counted)
3576 			added = 1;
3577 		else
3578 			path->slots[0] = nritems;
3579 	}
3580 
3581 	while (ref_count > 0) {
3582 		while (path->slots[0] >= nritems) {
3583 			ret = btrfs_next_leaf(root, path);
3584 			if (ret < 0) {
3585 				err = ret;
3586 				goto out;
3587 			}
3588 			if (WARN_ON(ret > 0))
3589 				goto out;
3590 
3591 			leaf = path->nodes[0];
3592 			nritems = btrfs_header_nritems(leaf);
3593 			added = 0;
3594 
3595 			if (block_use_full_backref(rc, leaf))
3596 				counted = 0;
3597 			else
3598 				counted = 1;
3599 			rb_node = tree_search(blocks, leaf->start);
3600 			if (rb_node) {
3601 				if (counted)
3602 					added = 1;
3603 				else
3604 					path->slots[0] = nritems;
3605 			}
3606 		}
3607 
3608 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3609 		if (WARN_ON(key.objectid != ref_objectid ||
3610 		    key.type != BTRFS_EXTENT_DATA_KEY))
3611 			break;
3612 
3613 		fi = btrfs_item_ptr(leaf, path->slots[0],
3614 				    struct btrfs_file_extent_item);
3615 
3616 		if (btrfs_file_extent_type(leaf, fi) ==
3617 		    BTRFS_FILE_EXTENT_INLINE)
3618 			goto next;
3619 
3620 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3621 		    extent_key->objectid)
3622 			goto next;
3623 
3624 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3625 		if (key.offset != ref_offset)
3626 			goto next;
3627 
3628 		if (counted)
3629 			ref_count--;
3630 		if (added)
3631 			goto next;
3632 
3633 		if (!tree_block_processed(leaf->start, rc)) {
3634 			block = kmalloc(sizeof(*block), GFP_NOFS);
3635 			if (!block) {
3636 				err = -ENOMEM;
3637 				break;
3638 			}
3639 			block->bytenr = leaf->start;
3640 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3641 			block->level = 0;
3642 			block->key_ready = 1;
3643 			rb_node = tree_insert(blocks, block->bytenr,
3644 					      &block->rb_node);
3645 			if (rb_node)
3646 				backref_tree_panic(rb_node, -EEXIST,
3647 						   block->bytenr);
3648 		}
3649 		if (counted)
3650 			added = 1;
3651 		else
3652 			path->slots[0] = nritems;
3653 next:
3654 		path->slots[0]++;
3655 
3656 	}
3657 out:
3658 	btrfs_free_path(path);
3659 	return err;
3660 }
3661 
3662 /*
3663  * helper to find all tree blocks that reference a given data extent
3664  */
3665 static noinline_for_stack
3666 int add_data_references(struct reloc_control *rc,
3667 			struct btrfs_key *extent_key,
3668 			struct btrfs_path *path,
3669 			struct rb_root *blocks)
3670 {
3671 	struct btrfs_key key;
3672 	struct extent_buffer *eb;
3673 	struct btrfs_extent_data_ref *dref;
3674 	struct btrfs_extent_inline_ref *iref;
3675 	unsigned long ptr;
3676 	unsigned long end;
3677 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3678 	int ret = 0;
3679 	int err = 0;
3680 
3681 	eb = path->nodes[0];
3682 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3683 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3684 	ptr += sizeof(struct btrfs_extent_item);
3685 
3686 	while (ptr < end) {
3687 		iref = (struct btrfs_extent_inline_ref *)ptr;
3688 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3689 							BTRFS_REF_TYPE_DATA);
3690 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3691 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3692 			ret = __add_tree_block(rc, key.offset, blocksize,
3693 					       blocks);
3694 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3695 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3696 			ret = find_data_references(rc, extent_key,
3697 						   eb, dref, blocks);
3698 		} else {
3699 			ret = -EUCLEAN;
3700 			btrfs_err(rc->extent_root->fs_info,
3701 		     "extent %llu slot %d has an invalid inline ref type",
3702 			     eb->start, path->slots[0]);
3703 		}
3704 		if (ret) {
3705 			err = ret;
3706 			goto out;
3707 		}
3708 		ptr += btrfs_extent_inline_ref_size(key.type);
3709 	}
3710 	WARN_ON(ptr > end);
3711 
3712 	while (1) {
3713 		cond_resched();
3714 		eb = path->nodes[0];
3715 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3716 			ret = btrfs_next_leaf(rc->extent_root, path);
3717 			if (ret < 0) {
3718 				err = ret;
3719 				break;
3720 			}
3721 			if (ret > 0)
3722 				break;
3723 			eb = path->nodes[0];
3724 		}
3725 
3726 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3727 		if (key.objectid != extent_key->objectid)
3728 			break;
3729 
3730 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3731 			ret = __add_tree_block(rc, key.offset, blocksize,
3732 					       blocks);
3733 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3734 			dref = btrfs_item_ptr(eb, path->slots[0],
3735 					      struct btrfs_extent_data_ref);
3736 			ret = find_data_references(rc, extent_key,
3737 						   eb, dref, blocks);
3738 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3739 			btrfs_print_v0_err(eb->fs_info);
3740 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3741 			ret = -EINVAL;
3742 		} else {
3743 			ret = 0;
3744 		}
3745 		if (ret) {
3746 			err = ret;
3747 			break;
3748 		}
3749 		path->slots[0]++;
3750 	}
3751 out:
3752 	btrfs_release_path(path);
3753 	if (err)
3754 		free_block_list(blocks);
3755 	return err;
3756 }
3757 
3758 /*
3759  * helper to find next unprocessed extent
3760  */
3761 static noinline_for_stack
3762 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3763 		     struct btrfs_key *extent_key)
3764 {
3765 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3766 	struct btrfs_key key;
3767 	struct extent_buffer *leaf;
3768 	u64 start, end, last;
3769 	int ret;
3770 
3771 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3772 	while (1) {
3773 		cond_resched();
3774 		if (rc->search_start >= last) {
3775 			ret = 1;
3776 			break;
3777 		}
3778 
3779 		key.objectid = rc->search_start;
3780 		key.type = BTRFS_EXTENT_ITEM_KEY;
3781 		key.offset = 0;
3782 
3783 		path->search_commit_root = 1;
3784 		path->skip_locking = 1;
3785 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3786 					0, 0);
3787 		if (ret < 0)
3788 			break;
3789 next:
3790 		leaf = path->nodes[0];
3791 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3792 			ret = btrfs_next_leaf(rc->extent_root, path);
3793 			if (ret != 0)
3794 				break;
3795 			leaf = path->nodes[0];
3796 		}
3797 
3798 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3799 		if (key.objectid >= last) {
3800 			ret = 1;
3801 			break;
3802 		}
3803 
3804 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3805 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3806 			path->slots[0]++;
3807 			goto next;
3808 		}
3809 
3810 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3811 		    key.objectid + key.offset <= rc->search_start) {
3812 			path->slots[0]++;
3813 			goto next;
3814 		}
3815 
3816 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3817 		    key.objectid + fs_info->nodesize <=
3818 		    rc->search_start) {
3819 			path->slots[0]++;
3820 			goto next;
3821 		}
3822 
3823 		ret = find_first_extent_bit(&rc->processed_blocks,
3824 					    key.objectid, &start, &end,
3825 					    EXTENT_DIRTY, NULL);
3826 
3827 		if (ret == 0 && start <= key.objectid) {
3828 			btrfs_release_path(path);
3829 			rc->search_start = end + 1;
3830 		} else {
3831 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3832 				rc->search_start = key.objectid + key.offset;
3833 			else
3834 				rc->search_start = key.objectid +
3835 					fs_info->nodesize;
3836 			memcpy(extent_key, &key, sizeof(key));
3837 			return 0;
3838 		}
3839 	}
3840 	btrfs_release_path(path);
3841 	return ret;
3842 }
3843 
3844 static void set_reloc_control(struct reloc_control *rc)
3845 {
3846 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3847 
3848 	mutex_lock(&fs_info->reloc_mutex);
3849 	fs_info->reloc_ctl = rc;
3850 	mutex_unlock(&fs_info->reloc_mutex);
3851 }
3852 
3853 static void unset_reloc_control(struct reloc_control *rc)
3854 {
3855 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3856 
3857 	mutex_lock(&fs_info->reloc_mutex);
3858 	fs_info->reloc_ctl = NULL;
3859 	mutex_unlock(&fs_info->reloc_mutex);
3860 }
3861 
3862 static int check_extent_flags(u64 flags)
3863 {
3864 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3865 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3866 		return 1;
3867 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3868 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3869 		return 1;
3870 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3871 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3872 		return 1;
3873 	return 0;
3874 }
3875 
3876 static noinline_for_stack
3877 int prepare_to_relocate(struct reloc_control *rc)
3878 {
3879 	struct btrfs_trans_handle *trans;
3880 	int ret;
3881 
3882 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3883 					      BTRFS_BLOCK_RSV_TEMP);
3884 	if (!rc->block_rsv)
3885 		return -ENOMEM;
3886 
3887 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3888 	rc->search_start = rc->block_group->key.objectid;
3889 	rc->extents_found = 0;
3890 	rc->nodes_relocated = 0;
3891 	rc->merging_rsv_size = 0;
3892 	rc->reserved_bytes = 0;
3893 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3894 			      RELOCATION_RESERVED_NODES;
3895 	ret = btrfs_block_rsv_refill(rc->extent_root,
3896 				     rc->block_rsv, rc->block_rsv->size,
3897 				     BTRFS_RESERVE_FLUSH_ALL);
3898 	if (ret)
3899 		return ret;
3900 
3901 	rc->create_reloc_tree = 1;
3902 	set_reloc_control(rc);
3903 
3904 	trans = btrfs_join_transaction(rc->extent_root);
3905 	if (IS_ERR(trans)) {
3906 		unset_reloc_control(rc);
3907 		/*
3908 		 * extent tree is not a ref_cow tree and has no reloc_root to
3909 		 * cleanup.  And callers are responsible to free the above
3910 		 * block rsv.
3911 		 */
3912 		return PTR_ERR(trans);
3913 	}
3914 	btrfs_commit_transaction(trans);
3915 	return 0;
3916 }
3917 
3918 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3919 {
3920 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3921 	struct rb_root blocks = RB_ROOT;
3922 	struct btrfs_key key;
3923 	struct btrfs_trans_handle *trans = NULL;
3924 	struct btrfs_path *path;
3925 	struct btrfs_extent_item *ei;
3926 	u64 flags;
3927 	u32 item_size;
3928 	int ret;
3929 	int err = 0;
3930 	int progress = 0;
3931 
3932 	path = btrfs_alloc_path();
3933 	if (!path)
3934 		return -ENOMEM;
3935 	path->reada = READA_FORWARD;
3936 
3937 	ret = prepare_to_relocate(rc);
3938 	if (ret) {
3939 		err = ret;
3940 		goto out_free;
3941 	}
3942 
3943 	while (1) {
3944 		rc->reserved_bytes = 0;
3945 		ret = btrfs_block_rsv_refill(rc->extent_root,
3946 					rc->block_rsv, rc->block_rsv->size,
3947 					BTRFS_RESERVE_FLUSH_ALL);
3948 		if (ret) {
3949 			err = ret;
3950 			break;
3951 		}
3952 		progress++;
3953 		trans = btrfs_start_transaction(rc->extent_root, 0);
3954 		if (IS_ERR(trans)) {
3955 			err = PTR_ERR(trans);
3956 			trans = NULL;
3957 			break;
3958 		}
3959 restart:
3960 		if (update_backref_cache(trans, &rc->backref_cache)) {
3961 			btrfs_end_transaction(trans);
3962 			trans = NULL;
3963 			continue;
3964 		}
3965 
3966 		ret = find_next_extent(rc, path, &key);
3967 		if (ret < 0)
3968 			err = ret;
3969 		if (ret != 0)
3970 			break;
3971 
3972 		rc->extents_found++;
3973 
3974 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3975 				    struct btrfs_extent_item);
3976 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3977 		if (item_size >= sizeof(*ei)) {
3978 			flags = btrfs_extent_flags(path->nodes[0], ei);
3979 			ret = check_extent_flags(flags);
3980 			BUG_ON(ret);
3981 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3982 			err = -EINVAL;
3983 			btrfs_print_v0_err(trans->fs_info);
3984 			btrfs_abort_transaction(trans, err);
3985 			break;
3986 		} else {
3987 			BUG();
3988 		}
3989 
3990 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3991 			ret = add_tree_block(rc, &key, path, &blocks);
3992 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3993 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3994 			ret = add_data_references(rc, &key, path, &blocks);
3995 		} else {
3996 			btrfs_release_path(path);
3997 			ret = 0;
3998 		}
3999 		if (ret < 0) {
4000 			err = ret;
4001 			break;
4002 		}
4003 
4004 		if (!RB_EMPTY_ROOT(&blocks)) {
4005 			ret = relocate_tree_blocks(trans, rc, &blocks);
4006 			if (ret < 0) {
4007 				/*
4008 				 * if we fail to relocate tree blocks, force to update
4009 				 * backref cache when committing transaction.
4010 				 */
4011 				rc->backref_cache.last_trans = trans->transid - 1;
4012 
4013 				if (ret != -EAGAIN) {
4014 					err = ret;
4015 					break;
4016 				}
4017 				rc->extents_found--;
4018 				rc->search_start = key.objectid;
4019 			}
4020 		}
4021 
4022 		btrfs_end_transaction_throttle(trans);
4023 		btrfs_btree_balance_dirty(fs_info);
4024 		trans = NULL;
4025 
4026 		if (rc->stage == MOVE_DATA_EXTENTS &&
4027 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4028 			rc->found_file_extent = 1;
4029 			ret = relocate_data_extent(rc->data_inode,
4030 						   &key, &rc->cluster);
4031 			if (ret < 0) {
4032 				err = ret;
4033 				break;
4034 			}
4035 		}
4036 	}
4037 	if (trans && progress && err == -ENOSPC) {
4038 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4039 		if (ret == 1) {
4040 			err = 0;
4041 			progress = 0;
4042 			goto restart;
4043 		}
4044 	}
4045 
4046 	btrfs_release_path(path);
4047 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4048 
4049 	if (trans) {
4050 		btrfs_end_transaction_throttle(trans);
4051 		btrfs_btree_balance_dirty(fs_info);
4052 	}
4053 
4054 	if (!err) {
4055 		ret = relocate_file_extent_cluster(rc->data_inode,
4056 						   &rc->cluster);
4057 		if (ret < 0)
4058 			err = ret;
4059 	}
4060 
4061 	rc->create_reloc_tree = 0;
4062 	set_reloc_control(rc);
4063 
4064 	backref_cache_cleanup(&rc->backref_cache);
4065 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4066 
4067 	err = prepare_to_merge(rc, err);
4068 
4069 	merge_reloc_roots(rc);
4070 
4071 	rc->merge_reloc_tree = 0;
4072 	unset_reloc_control(rc);
4073 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4074 
4075 	/* get rid of pinned extents */
4076 	trans = btrfs_join_transaction(rc->extent_root);
4077 	if (IS_ERR(trans)) {
4078 		err = PTR_ERR(trans);
4079 		goto out_free;
4080 	}
4081 	btrfs_commit_transaction(trans);
4082 out_free:
4083 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4084 	btrfs_free_path(path);
4085 	return err;
4086 }
4087 
4088 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4089 				 struct btrfs_root *root, u64 objectid)
4090 {
4091 	struct btrfs_path *path;
4092 	struct btrfs_inode_item *item;
4093 	struct extent_buffer *leaf;
4094 	int ret;
4095 
4096 	path = btrfs_alloc_path();
4097 	if (!path)
4098 		return -ENOMEM;
4099 
4100 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4101 	if (ret)
4102 		goto out;
4103 
4104 	leaf = path->nodes[0];
4105 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4106 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4107 	btrfs_set_inode_generation(leaf, item, 1);
4108 	btrfs_set_inode_size(leaf, item, 0);
4109 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4110 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4111 					  BTRFS_INODE_PREALLOC);
4112 	btrfs_mark_buffer_dirty(leaf);
4113 out:
4114 	btrfs_free_path(path);
4115 	return ret;
4116 }
4117 
4118 /*
4119  * helper to create inode for data relocation.
4120  * the inode is in data relocation tree and its link count is 0
4121  */
4122 static noinline_for_stack
4123 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4124 				 struct btrfs_block_group_cache *group)
4125 {
4126 	struct inode *inode = NULL;
4127 	struct btrfs_trans_handle *trans;
4128 	struct btrfs_root *root;
4129 	struct btrfs_key key;
4130 	u64 objectid;
4131 	int err = 0;
4132 
4133 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4134 	if (IS_ERR(root))
4135 		return ERR_CAST(root);
4136 
4137 	trans = btrfs_start_transaction(root, 6);
4138 	if (IS_ERR(trans))
4139 		return ERR_CAST(trans);
4140 
4141 	err = btrfs_find_free_objectid(root, &objectid);
4142 	if (err)
4143 		goto out;
4144 
4145 	err = __insert_orphan_inode(trans, root, objectid);
4146 	BUG_ON(err);
4147 
4148 	key.objectid = objectid;
4149 	key.type = BTRFS_INODE_ITEM_KEY;
4150 	key.offset = 0;
4151 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4152 	BUG_ON(IS_ERR(inode));
4153 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4154 
4155 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4156 out:
4157 	btrfs_end_transaction(trans);
4158 	btrfs_btree_balance_dirty(fs_info);
4159 	if (err) {
4160 		if (inode)
4161 			iput(inode);
4162 		inode = ERR_PTR(err);
4163 	}
4164 	return inode;
4165 }
4166 
4167 static struct reloc_control *alloc_reloc_control(void)
4168 {
4169 	struct reloc_control *rc;
4170 
4171 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4172 	if (!rc)
4173 		return NULL;
4174 
4175 	INIT_LIST_HEAD(&rc->reloc_roots);
4176 	backref_cache_init(&rc->backref_cache);
4177 	mapping_tree_init(&rc->reloc_root_tree);
4178 	extent_io_tree_init(&rc->processed_blocks, NULL);
4179 	return rc;
4180 }
4181 
4182 /*
4183  * Print the block group being relocated
4184  */
4185 static void describe_relocation(struct btrfs_fs_info *fs_info,
4186 				struct btrfs_block_group_cache *block_group)
4187 {
4188 	char buf[128] = {'\0'};
4189 
4190 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4191 
4192 	btrfs_info(fs_info,
4193 		   "relocating block group %llu flags %s",
4194 		   block_group->key.objectid, buf);
4195 }
4196 
4197 /*
4198  * function to relocate all extents in a block group.
4199  */
4200 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4201 {
4202 	struct btrfs_block_group_cache *bg;
4203 	struct btrfs_root *extent_root = fs_info->extent_root;
4204 	struct reloc_control *rc;
4205 	struct inode *inode;
4206 	struct btrfs_path *path;
4207 	int ret;
4208 	int rw = 0;
4209 	int err = 0;
4210 
4211 	bg = btrfs_lookup_block_group(fs_info, group_start);
4212 	if (!bg)
4213 		return -ENOENT;
4214 
4215 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4216 		btrfs_put_block_group(bg);
4217 		return -ETXTBSY;
4218 	}
4219 
4220 	rc = alloc_reloc_control();
4221 	if (!rc) {
4222 		btrfs_put_block_group(bg);
4223 		return -ENOMEM;
4224 	}
4225 
4226 	rc->extent_root = extent_root;
4227 	rc->block_group = bg;
4228 
4229 	ret = btrfs_inc_block_group_ro(rc->block_group);
4230 	if (ret) {
4231 		err = ret;
4232 		goto out;
4233 	}
4234 	rw = 1;
4235 
4236 	path = btrfs_alloc_path();
4237 	if (!path) {
4238 		err = -ENOMEM;
4239 		goto out;
4240 	}
4241 
4242 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4243 	btrfs_free_path(path);
4244 
4245 	if (!IS_ERR(inode))
4246 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4247 	else
4248 		ret = PTR_ERR(inode);
4249 
4250 	if (ret && ret != -ENOENT) {
4251 		err = ret;
4252 		goto out;
4253 	}
4254 
4255 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4256 	if (IS_ERR(rc->data_inode)) {
4257 		err = PTR_ERR(rc->data_inode);
4258 		rc->data_inode = NULL;
4259 		goto out;
4260 	}
4261 
4262 	describe_relocation(fs_info, rc->block_group);
4263 
4264 	btrfs_wait_block_group_reservations(rc->block_group);
4265 	btrfs_wait_nocow_writers(rc->block_group);
4266 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4267 				 rc->block_group->key.objectid,
4268 				 rc->block_group->key.offset);
4269 
4270 	while (1) {
4271 		mutex_lock(&fs_info->cleaner_mutex);
4272 		ret = relocate_block_group(rc);
4273 		mutex_unlock(&fs_info->cleaner_mutex);
4274 		if (ret < 0) {
4275 			err = ret;
4276 			goto out;
4277 		}
4278 
4279 		if (rc->extents_found == 0)
4280 			break;
4281 
4282 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4283 
4284 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4285 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4286 						       (u64)-1);
4287 			if (ret) {
4288 				err = ret;
4289 				goto out;
4290 			}
4291 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4292 						 0, -1);
4293 			rc->stage = UPDATE_DATA_PTRS;
4294 		}
4295 	}
4296 
4297 	WARN_ON(rc->block_group->pinned > 0);
4298 	WARN_ON(rc->block_group->reserved > 0);
4299 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4300 out:
4301 	if (err && rw)
4302 		btrfs_dec_block_group_ro(rc->block_group);
4303 	iput(rc->data_inode);
4304 	btrfs_put_block_group(rc->block_group);
4305 	kfree(rc);
4306 	return err;
4307 }
4308 
4309 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4310 {
4311 	struct btrfs_fs_info *fs_info = root->fs_info;
4312 	struct btrfs_trans_handle *trans;
4313 	int ret, err;
4314 
4315 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4316 	if (IS_ERR(trans))
4317 		return PTR_ERR(trans);
4318 
4319 	memset(&root->root_item.drop_progress, 0,
4320 		sizeof(root->root_item.drop_progress));
4321 	root->root_item.drop_level = 0;
4322 	btrfs_set_root_refs(&root->root_item, 0);
4323 	ret = btrfs_update_root(trans, fs_info->tree_root,
4324 				&root->root_key, &root->root_item);
4325 
4326 	err = btrfs_end_transaction(trans);
4327 	if (err)
4328 		return err;
4329 	return ret;
4330 }
4331 
4332 /*
4333  * recover relocation interrupted by system crash.
4334  *
4335  * this function resumes merging reloc trees with corresponding fs trees.
4336  * this is important for keeping the sharing of tree blocks
4337  */
4338 int btrfs_recover_relocation(struct btrfs_root *root)
4339 {
4340 	struct btrfs_fs_info *fs_info = root->fs_info;
4341 	LIST_HEAD(reloc_roots);
4342 	struct btrfs_key key;
4343 	struct btrfs_root *fs_root;
4344 	struct btrfs_root *reloc_root;
4345 	struct btrfs_path *path;
4346 	struct extent_buffer *leaf;
4347 	struct reloc_control *rc = NULL;
4348 	struct btrfs_trans_handle *trans;
4349 	int ret;
4350 	int err = 0;
4351 
4352 	path = btrfs_alloc_path();
4353 	if (!path)
4354 		return -ENOMEM;
4355 	path->reada = READA_BACK;
4356 
4357 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4358 	key.type = BTRFS_ROOT_ITEM_KEY;
4359 	key.offset = (u64)-1;
4360 
4361 	while (1) {
4362 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4363 					path, 0, 0);
4364 		if (ret < 0) {
4365 			err = ret;
4366 			goto out;
4367 		}
4368 		if (ret > 0) {
4369 			if (path->slots[0] == 0)
4370 				break;
4371 			path->slots[0]--;
4372 		}
4373 		leaf = path->nodes[0];
4374 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4375 		btrfs_release_path(path);
4376 
4377 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4378 		    key.type != BTRFS_ROOT_ITEM_KEY)
4379 			break;
4380 
4381 		reloc_root = btrfs_read_fs_root(root, &key);
4382 		if (IS_ERR(reloc_root)) {
4383 			err = PTR_ERR(reloc_root);
4384 			goto out;
4385 		}
4386 
4387 		list_add(&reloc_root->root_list, &reloc_roots);
4388 
4389 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4390 			fs_root = read_fs_root(fs_info,
4391 					       reloc_root->root_key.offset);
4392 			if (IS_ERR(fs_root)) {
4393 				ret = PTR_ERR(fs_root);
4394 				if (ret != -ENOENT) {
4395 					err = ret;
4396 					goto out;
4397 				}
4398 				ret = mark_garbage_root(reloc_root);
4399 				if (ret < 0) {
4400 					err = ret;
4401 					goto out;
4402 				}
4403 			}
4404 		}
4405 
4406 		if (key.offset == 0)
4407 			break;
4408 
4409 		key.offset--;
4410 	}
4411 	btrfs_release_path(path);
4412 
4413 	if (list_empty(&reloc_roots))
4414 		goto out;
4415 
4416 	rc = alloc_reloc_control();
4417 	if (!rc) {
4418 		err = -ENOMEM;
4419 		goto out;
4420 	}
4421 
4422 	rc->extent_root = fs_info->extent_root;
4423 
4424 	set_reloc_control(rc);
4425 
4426 	trans = btrfs_join_transaction(rc->extent_root);
4427 	if (IS_ERR(trans)) {
4428 		unset_reloc_control(rc);
4429 		err = PTR_ERR(trans);
4430 		goto out_free;
4431 	}
4432 
4433 	rc->merge_reloc_tree = 1;
4434 
4435 	while (!list_empty(&reloc_roots)) {
4436 		reloc_root = list_entry(reloc_roots.next,
4437 					struct btrfs_root, root_list);
4438 		list_del(&reloc_root->root_list);
4439 
4440 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4441 			list_add_tail(&reloc_root->root_list,
4442 				      &rc->reloc_roots);
4443 			continue;
4444 		}
4445 
4446 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4447 		if (IS_ERR(fs_root)) {
4448 			err = PTR_ERR(fs_root);
4449 			goto out_free;
4450 		}
4451 
4452 		err = __add_reloc_root(reloc_root);
4453 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4454 		fs_root->reloc_root = reloc_root;
4455 	}
4456 
4457 	err = btrfs_commit_transaction(trans);
4458 	if (err)
4459 		goto out_free;
4460 
4461 	merge_reloc_roots(rc);
4462 
4463 	unset_reloc_control(rc);
4464 
4465 	trans = btrfs_join_transaction(rc->extent_root);
4466 	if (IS_ERR(trans)) {
4467 		err = PTR_ERR(trans);
4468 		goto out_free;
4469 	}
4470 	err = btrfs_commit_transaction(trans);
4471 out_free:
4472 	kfree(rc);
4473 out:
4474 	if (!list_empty(&reloc_roots))
4475 		free_reloc_roots(&reloc_roots);
4476 
4477 	btrfs_free_path(path);
4478 
4479 	if (err == 0) {
4480 		/* cleanup orphan inode in data relocation tree */
4481 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4482 		if (IS_ERR(fs_root))
4483 			err = PTR_ERR(fs_root);
4484 		else
4485 			err = btrfs_orphan_cleanup(fs_root);
4486 	}
4487 	return err;
4488 }
4489 
4490 /*
4491  * helper to add ordered checksum for data relocation.
4492  *
4493  * cloning checksum properly handles the nodatasum extents.
4494  * it also saves CPU time to re-calculate the checksum.
4495  */
4496 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4497 {
4498 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4499 	struct btrfs_ordered_sum *sums;
4500 	struct btrfs_ordered_extent *ordered;
4501 	int ret;
4502 	u64 disk_bytenr;
4503 	u64 new_bytenr;
4504 	LIST_HEAD(list);
4505 
4506 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4507 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4508 
4509 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4510 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4511 				       disk_bytenr + len - 1, &list, 0);
4512 	if (ret)
4513 		goto out;
4514 
4515 	while (!list_empty(&list)) {
4516 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4517 		list_del_init(&sums->list);
4518 
4519 		/*
4520 		 * We need to offset the new_bytenr based on where the csum is.
4521 		 * We need to do this because we will read in entire prealloc
4522 		 * extents but we may have written to say the middle of the
4523 		 * prealloc extent, so we need to make sure the csum goes with
4524 		 * the right disk offset.
4525 		 *
4526 		 * We can do this because the data reloc inode refers strictly
4527 		 * to the on disk bytes, so we don't have to worry about
4528 		 * disk_len vs real len like with real inodes since it's all
4529 		 * disk length.
4530 		 */
4531 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4532 		sums->bytenr = new_bytenr;
4533 
4534 		btrfs_add_ordered_sum(inode, ordered, sums);
4535 	}
4536 out:
4537 	btrfs_put_ordered_extent(ordered);
4538 	return ret;
4539 }
4540 
4541 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4542 			  struct btrfs_root *root, struct extent_buffer *buf,
4543 			  struct extent_buffer *cow)
4544 {
4545 	struct btrfs_fs_info *fs_info = root->fs_info;
4546 	struct reloc_control *rc;
4547 	struct backref_node *node;
4548 	int first_cow = 0;
4549 	int level;
4550 	int ret = 0;
4551 
4552 	rc = fs_info->reloc_ctl;
4553 	if (!rc)
4554 		return 0;
4555 
4556 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4557 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4558 
4559 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4560 		if (buf == root->node)
4561 			__update_reloc_root(root, cow->start);
4562 	}
4563 
4564 	level = btrfs_header_level(buf);
4565 	if (btrfs_header_generation(buf) <=
4566 	    btrfs_root_last_snapshot(&root->root_item))
4567 		first_cow = 1;
4568 
4569 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4570 	    rc->create_reloc_tree) {
4571 		WARN_ON(!first_cow && level == 0);
4572 
4573 		node = rc->backref_cache.path[level];
4574 		BUG_ON(node->bytenr != buf->start &&
4575 		       node->new_bytenr != buf->start);
4576 
4577 		drop_node_buffer(node);
4578 		extent_buffer_get(cow);
4579 		node->eb = cow;
4580 		node->new_bytenr = cow->start;
4581 
4582 		if (!node->pending) {
4583 			list_move_tail(&node->list,
4584 				       &rc->backref_cache.pending[level]);
4585 			node->pending = 1;
4586 		}
4587 
4588 		if (first_cow)
4589 			__mark_block_processed(rc, node);
4590 
4591 		if (first_cow && level > 0)
4592 			rc->nodes_relocated += buf->len;
4593 	}
4594 
4595 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4596 		ret = replace_file_extents(trans, rc, root, cow);
4597 	return ret;
4598 }
4599 
4600 /*
4601  * called before creating snapshot. it calculates metadata reservation
4602  * required for relocating tree blocks in the snapshot
4603  */
4604 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4605 			      u64 *bytes_to_reserve)
4606 {
4607 	struct btrfs_root *root;
4608 	struct reloc_control *rc;
4609 
4610 	root = pending->root;
4611 	if (!root->reloc_root)
4612 		return;
4613 
4614 	rc = root->fs_info->reloc_ctl;
4615 	if (!rc->merge_reloc_tree)
4616 		return;
4617 
4618 	root = root->reloc_root;
4619 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4620 	/*
4621 	 * relocation is in the stage of merging trees. the space
4622 	 * used by merging a reloc tree is twice the size of
4623 	 * relocated tree nodes in the worst case. half for cowing
4624 	 * the reloc tree, half for cowing the fs tree. the space
4625 	 * used by cowing the reloc tree will be freed after the
4626 	 * tree is dropped. if we create snapshot, cowing the fs
4627 	 * tree may use more space than it frees. so we need
4628 	 * reserve extra space.
4629 	 */
4630 	*bytes_to_reserve += rc->nodes_relocated;
4631 }
4632 
4633 /*
4634  * called after snapshot is created. migrate block reservation
4635  * and create reloc root for the newly created snapshot
4636  */
4637 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4638 			       struct btrfs_pending_snapshot *pending)
4639 {
4640 	struct btrfs_root *root = pending->root;
4641 	struct btrfs_root *reloc_root;
4642 	struct btrfs_root *new_root;
4643 	struct reloc_control *rc;
4644 	int ret;
4645 
4646 	if (!root->reloc_root)
4647 		return 0;
4648 
4649 	rc = root->fs_info->reloc_ctl;
4650 	rc->merging_rsv_size += rc->nodes_relocated;
4651 
4652 	if (rc->merge_reloc_tree) {
4653 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4654 					      rc->block_rsv,
4655 					      rc->nodes_relocated, true);
4656 		if (ret)
4657 			return ret;
4658 	}
4659 
4660 	new_root = pending->snap;
4661 	reloc_root = create_reloc_root(trans, root->reloc_root,
4662 				       new_root->root_key.objectid);
4663 	if (IS_ERR(reloc_root))
4664 		return PTR_ERR(reloc_root);
4665 
4666 	ret = __add_reloc_root(reloc_root);
4667 	BUG_ON(ret < 0);
4668 	new_root->reloc_root = reloc_root;
4669 
4670 	if (rc->create_reloc_tree)
4671 		ret = clone_backref_node(trans, rc, root, reloc_root);
4672 	return ret;
4673 }
4674