xref: /openbmc/linux/fs/btrfs/relocation.c (revision 86e281fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  * 		Before		|		After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents	| BG A: deleted
53  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86 
87 #define RELOCATION_RESERVED_NODES	256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92 	struct {
93 		struct rb_node rb_node;
94 		u64 bytenr;
95 	}; /* Use rb_simle_node for search/insert */
96 	void *data;
97 };
98 
99 struct mapping_tree {
100 	struct rb_root rb_root;
101 	spinlock_t lock;
102 };
103 
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108 	struct {
109 		struct rb_node rb_node;
110 		u64 bytenr;
111 	}; /* Use rb_simple_node for search/insert */
112 	u64 owner;
113 	struct btrfs_key key;
114 	unsigned int level:8;
115 	unsigned int key_ready:1;
116 };
117 
118 #define MAX_EXTENTS 128
119 
120 struct file_extent_cluster {
121 	u64 start;
122 	u64 end;
123 	u64 boundary[MAX_EXTENTS];
124 	unsigned int nr;
125 };
126 
127 struct reloc_control {
128 	/* block group to relocate */
129 	struct btrfs_block_group *block_group;
130 	/* extent tree */
131 	struct btrfs_root *extent_root;
132 	/* inode for moving data */
133 	struct inode *data_inode;
134 
135 	struct btrfs_block_rsv *block_rsv;
136 
137 	struct btrfs_backref_cache backref_cache;
138 
139 	struct file_extent_cluster cluster;
140 	/* tree blocks have been processed */
141 	struct extent_io_tree processed_blocks;
142 	/* map start of tree root to corresponding reloc tree */
143 	struct mapping_tree reloc_root_tree;
144 	/* list of reloc trees */
145 	struct list_head reloc_roots;
146 	/* list of subvolume trees that get relocated */
147 	struct list_head dirty_subvol_roots;
148 	/* size of metadata reservation for merging reloc trees */
149 	u64 merging_rsv_size;
150 	/* size of relocated tree nodes */
151 	u64 nodes_relocated;
152 	/* reserved size for block group relocation*/
153 	u64 reserved_bytes;
154 
155 	u64 search_start;
156 	u64 extents_found;
157 
158 	unsigned int stage:8;
159 	unsigned int create_reloc_tree:1;
160 	unsigned int merge_reloc_tree:1;
161 	unsigned int found_file_extent:1;
162 };
163 
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS	0
166 #define UPDATE_DATA_PTRS	1
167 
168 static void mark_block_processed(struct reloc_control *rc,
169 				 struct btrfs_backref_node *node)
170 {
171 	u32 blocksize;
172 
173 	if (node->level == 0 ||
174 	    in_range(node->bytenr, rc->block_group->start,
175 		     rc->block_group->length)) {
176 		blocksize = rc->extent_root->fs_info->nodesize;
177 		set_extent_bit(&rc->processed_blocks, node->bytenr,
178 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179 	}
180 	node->processed = 1;
181 }
182 
183 
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186 	tree->rb_root = RB_ROOT;
187 	spin_lock_init(&tree->lock);
188 }
189 
190 /*
191  * walk up backref nodes until reach node presents tree root
192  */
193 static struct btrfs_backref_node *walk_up_backref(
194 		struct btrfs_backref_node *node,
195 		struct btrfs_backref_edge *edges[], int *index)
196 {
197 	struct btrfs_backref_edge *edge;
198 	int idx = *index;
199 
200 	while (!list_empty(&node->upper)) {
201 		edge = list_entry(node->upper.next,
202 				  struct btrfs_backref_edge, list[LOWER]);
203 		edges[idx++] = edge;
204 		node = edge->node[UPPER];
205 	}
206 	BUG_ON(node->detached);
207 	*index = idx;
208 	return node;
209 }
210 
211 /*
212  * walk down backref nodes to find start of next reference path
213  */
214 static struct btrfs_backref_node *walk_down_backref(
215 		struct btrfs_backref_edge *edges[], int *index)
216 {
217 	struct btrfs_backref_edge *edge;
218 	struct btrfs_backref_node *lower;
219 	int idx = *index;
220 
221 	while (idx > 0) {
222 		edge = edges[idx - 1];
223 		lower = edge->node[LOWER];
224 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225 			idx--;
226 			continue;
227 		}
228 		edge = list_entry(edge->list[LOWER].next,
229 				  struct btrfs_backref_edge, list[LOWER]);
230 		edges[idx - 1] = edge;
231 		*index = idx;
232 		return edge->node[UPPER];
233 	}
234 	*index = 0;
235 	return NULL;
236 }
237 
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239 				struct btrfs_backref_node *node, u64 bytenr)
240 {
241 	struct rb_node *rb_node;
242 	rb_erase(&node->rb_node, &cache->rb_root);
243 	node->bytenr = bytenr;
244 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245 	if (rb_node)
246 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248 
249 /*
250  * update backref cache after a transaction commit
251  */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253 				struct btrfs_backref_cache *cache)
254 {
255 	struct btrfs_backref_node *node;
256 	int level = 0;
257 
258 	if (cache->last_trans == 0) {
259 		cache->last_trans = trans->transid;
260 		return 0;
261 	}
262 
263 	if (cache->last_trans == trans->transid)
264 		return 0;
265 
266 	/*
267 	 * detached nodes are used to avoid unnecessary backref
268 	 * lookup. transaction commit changes the extent tree.
269 	 * so the detached nodes are no longer useful.
270 	 */
271 	while (!list_empty(&cache->detached)) {
272 		node = list_entry(cache->detached.next,
273 				  struct btrfs_backref_node, list);
274 		btrfs_backref_cleanup_node(cache, node);
275 	}
276 
277 	while (!list_empty(&cache->changed)) {
278 		node = list_entry(cache->changed.next,
279 				  struct btrfs_backref_node, list);
280 		list_del_init(&node->list);
281 		BUG_ON(node->pending);
282 		update_backref_node(cache, node, node->new_bytenr);
283 	}
284 
285 	/*
286 	 * some nodes can be left in the pending list if there were
287 	 * errors during processing the pending nodes.
288 	 */
289 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290 		list_for_each_entry(node, &cache->pending[level], list) {
291 			BUG_ON(!node->pending);
292 			if (node->bytenr == node->new_bytenr)
293 				continue;
294 			update_backref_node(cache, node, node->new_bytenr);
295 		}
296 	}
297 
298 	cache->last_trans = 0;
299 	return 1;
300 }
301 
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304 	/*
305 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
306 	 * btrfs_update_reloc_root. We need to see the updated bit before
307 	 * trying to access reloc_root
308 	 */
309 	smp_rmb();
310 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311 		return true;
312 	return false;
313 }
314 
315 /*
316  * Check if this subvolume tree has valid reloc tree.
317  *
318  * Reloc tree after swap is considered dead, thus not considered as valid.
319  * This is enough for most callers, as they don't distinguish dead reloc root
320  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321  * special case.
322  */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325 	if (reloc_root_is_dead(root))
326 		return false;
327 	if (!root->reloc_root)
328 		return false;
329 	return true;
330 }
331 
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334 	struct btrfs_root *reloc_root;
335 
336 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337 		return 0;
338 
339 	/* This root has been merged with its reloc tree, we can ignore it */
340 	if (reloc_root_is_dead(root))
341 		return 1;
342 
343 	reloc_root = root->reloc_root;
344 	if (!reloc_root)
345 		return 0;
346 
347 	if (btrfs_header_generation(reloc_root->commit_root) ==
348 	    root->fs_info->running_transaction->transid)
349 		return 0;
350 	/*
351 	 * if there is reloc tree and it was created in previous
352 	 * transaction backref lookup can find the reloc tree,
353 	 * so backref node for the fs tree root is useless for
354 	 * relocation.
355 	 */
356 	return 1;
357 }
358 
359 /*
360  * find reloc tree by address of tree root
361  */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364 	struct reloc_control *rc = fs_info->reloc_ctl;
365 	struct rb_node *rb_node;
366 	struct mapping_node *node;
367 	struct btrfs_root *root = NULL;
368 
369 	ASSERT(rc);
370 	spin_lock(&rc->reloc_root_tree.lock);
371 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372 	if (rb_node) {
373 		node = rb_entry(rb_node, struct mapping_node, rb_node);
374 		root = node->data;
375 	}
376 	spin_unlock(&rc->reloc_root_tree.lock);
377 	return btrfs_grab_root(root);
378 }
379 
380 /*
381  * For useless nodes, do two major clean ups:
382  *
383  * - Cleanup the children edges and nodes
384  *   If child node is also orphan (no parent) during cleanup, then the child
385  *   node will also be cleaned up.
386  *
387  * - Freeing up leaves (level 0), keeps nodes detached
388  *   For nodes, the node is still cached as "detached"
389  *
390  * Return false if @node is not in the @useless_nodes list.
391  * Return true if @node is in the @useless_nodes list.
392  */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394 				 struct btrfs_backref_node *node)
395 {
396 	struct btrfs_backref_cache *cache = &rc->backref_cache;
397 	struct list_head *useless_node = &cache->useless_node;
398 	bool ret = false;
399 
400 	while (!list_empty(useless_node)) {
401 		struct btrfs_backref_node *cur;
402 
403 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
404 				 list);
405 		list_del_init(&cur->list);
406 
407 		/* Only tree root nodes can be added to @useless_nodes */
408 		ASSERT(list_empty(&cur->upper));
409 
410 		if (cur == node)
411 			ret = true;
412 
413 		/* The node is the lowest node */
414 		if (cur->lowest) {
415 			list_del_init(&cur->lower);
416 			cur->lowest = 0;
417 		}
418 
419 		/* Cleanup the lower edges */
420 		while (!list_empty(&cur->lower)) {
421 			struct btrfs_backref_edge *edge;
422 			struct btrfs_backref_node *lower;
423 
424 			edge = list_entry(cur->lower.next,
425 					struct btrfs_backref_edge, list[UPPER]);
426 			list_del(&edge->list[UPPER]);
427 			list_del(&edge->list[LOWER]);
428 			lower = edge->node[LOWER];
429 			btrfs_backref_free_edge(cache, edge);
430 
431 			/* Child node is also orphan, queue for cleanup */
432 			if (list_empty(&lower->upper))
433 				list_add(&lower->list, useless_node);
434 		}
435 		/* Mark this block processed for relocation */
436 		mark_block_processed(rc, cur);
437 
438 		/*
439 		 * Backref nodes for tree leaves are deleted from the cache.
440 		 * Backref nodes for upper level tree blocks are left in the
441 		 * cache to avoid unnecessary backref lookup.
442 		 */
443 		if (cur->level > 0) {
444 			list_add(&cur->list, &cache->detached);
445 			cur->detached = 1;
446 		} else {
447 			rb_erase(&cur->rb_node, &cache->rb_root);
448 			btrfs_backref_free_node(cache, cur);
449 		}
450 	}
451 	return ret;
452 }
453 
454 /*
455  * Build backref tree for a given tree block. Root of the backref tree
456  * corresponds the tree block, leaves of the backref tree correspond roots of
457  * b-trees that reference the tree block.
458  *
459  * The basic idea of this function is check backrefs of a given block to find
460  * upper level blocks that reference the block, and then check backrefs of
461  * these upper level blocks recursively. The recursion stops when tree root is
462  * reached or backrefs for the block is cached.
463  *
464  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465  * all upper level blocks that directly/indirectly reference the block are also
466  * cached.
467  */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469 			struct btrfs_trans_handle *trans,
470 			struct reloc_control *rc, struct btrfs_key *node_key,
471 			int level, u64 bytenr)
472 {
473 	struct btrfs_backref_iter *iter;
474 	struct btrfs_backref_cache *cache = &rc->backref_cache;
475 	/* For searching parent of TREE_BLOCK_REF */
476 	struct btrfs_path *path;
477 	struct btrfs_backref_node *cur;
478 	struct btrfs_backref_node *node = NULL;
479 	struct btrfs_backref_edge *edge;
480 	int ret;
481 	int err = 0;
482 
483 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
484 	if (!iter)
485 		return ERR_PTR(-ENOMEM);
486 	path = btrfs_alloc_path();
487 	if (!path) {
488 		err = -ENOMEM;
489 		goto out;
490 	}
491 
492 	node = btrfs_backref_alloc_node(cache, bytenr, level);
493 	if (!node) {
494 		err = -ENOMEM;
495 		goto out;
496 	}
497 
498 	node->lowest = 1;
499 	cur = node;
500 
501 	/* Breadth-first search to build backref cache */
502 	do {
503 		ret = btrfs_backref_add_tree_node(trans, cache, path, iter,
504 						  node_key, cur);
505 		if (ret < 0) {
506 			err = ret;
507 			goto out;
508 		}
509 		edge = list_first_entry_or_null(&cache->pending_edge,
510 				struct btrfs_backref_edge, list[UPPER]);
511 		/*
512 		 * The pending list isn't empty, take the first block to
513 		 * process
514 		 */
515 		if (edge) {
516 			list_del_init(&edge->list[UPPER]);
517 			cur = edge->node[UPPER];
518 		}
519 	} while (edge);
520 
521 	/* Finish the upper linkage of newly added edges/nodes */
522 	ret = btrfs_backref_finish_upper_links(cache, node);
523 	if (ret < 0) {
524 		err = ret;
525 		goto out;
526 	}
527 
528 	if (handle_useless_nodes(rc, node))
529 		node = NULL;
530 out:
531 	btrfs_backref_iter_free(iter);
532 	btrfs_free_path(path);
533 	if (err) {
534 		btrfs_backref_error_cleanup(cache, node);
535 		return ERR_PTR(err);
536 	}
537 	ASSERT(!node || !node->detached);
538 	ASSERT(list_empty(&cache->useless_node) &&
539 	       list_empty(&cache->pending_edge));
540 	return node;
541 }
542 
543 /*
544  * helper to add backref node for the newly created snapshot.
545  * the backref node is created by cloning backref node that
546  * corresponds to root of source tree
547  */
548 static int clone_backref_node(struct btrfs_trans_handle *trans,
549 			      struct reloc_control *rc,
550 			      struct btrfs_root *src,
551 			      struct btrfs_root *dest)
552 {
553 	struct btrfs_root *reloc_root = src->reloc_root;
554 	struct btrfs_backref_cache *cache = &rc->backref_cache;
555 	struct btrfs_backref_node *node = NULL;
556 	struct btrfs_backref_node *new_node;
557 	struct btrfs_backref_edge *edge;
558 	struct btrfs_backref_edge *new_edge;
559 	struct rb_node *rb_node;
560 
561 	if (cache->last_trans > 0)
562 		update_backref_cache(trans, cache);
563 
564 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
565 	if (rb_node) {
566 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
567 		if (node->detached)
568 			node = NULL;
569 		else
570 			BUG_ON(node->new_bytenr != reloc_root->node->start);
571 	}
572 
573 	if (!node) {
574 		rb_node = rb_simple_search(&cache->rb_root,
575 					   reloc_root->commit_root->start);
576 		if (rb_node) {
577 			node = rb_entry(rb_node, struct btrfs_backref_node,
578 					rb_node);
579 			BUG_ON(node->detached);
580 		}
581 	}
582 
583 	if (!node)
584 		return 0;
585 
586 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
587 					    node->level);
588 	if (!new_node)
589 		return -ENOMEM;
590 
591 	new_node->lowest = node->lowest;
592 	new_node->checked = 1;
593 	new_node->root = btrfs_grab_root(dest);
594 	ASSERT(new_node->root);
595 
596 	if (!node->lowest) {
597 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
598 			new_edge = btrfs_backref_alloc_edge(cache);
599 			if (!new_edge)
600 				goto fail;
601 
602 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
603 						new_node, LINK_UPPER);
604 		}
605 	} else {
606 		list_add_tail(&new_node->lower, &cache->leaves);
607 	}
608 
609 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
610 				   &new_node->rb_node);
611 	if (rb_node)
612 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
613 
614 	if (!new_node->lowest) {
615 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
616 			list_add_tail(&new_edge->list[LOWER],
617 				      &new_edge->node[LOWER]->upper);
618 		}
619 	}
620 	return 0;
621 fail:
622 	while (!list_empty(&new_node->lower)) {
623 		new_edge = list_entry(new_node->lower.next,
624 				      struct btrfs_backref_edge, list[UPPER]);
625 		list_del(&new_edge->list[UPPER]);
626 		btrfs_backref_free_edge(cache, new_edge);
627 	}
628 	btrfs_backref_free_node(cache, new_node);
629 	return -ENOMEM;
630 }
631 
632 /*
633  * helper to add 'address of tree root -> reloc tree' mapping
634  */
635 static int __must_check __add_reloc_root(struct btrfs_root *root)
636 {
637 	struct btrfs_fs_info *fs_info = root->fs_info;
638 	struct rb_node *rb_node;
639 	struct mapping_node *node;
640 	struct reloc_control *rc = fs_info->reloc_ctl;
641 
642 	node = kmalloc(sizeof(*node), GFP_NOFS);
643 	if (!node)
644 		return -ENOMEM;
645 
646 	node->bytenr = root->commit_root->start;
647 	node->data = root;
648 
649 	spin_lock(&rc->reloc_root_tree.lock);
650 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
651 				   node->bytenr, &node->rb_node);
652 	spin_unlock(&rc->reloc_root_tree.lock);
653 	if (rb_node) {
654 		btrfs_err(fs_info,
655 			    "Duplicate root found for start=%llu while inserting into relocation tree",
656 			    node->bytenr);
657 		return -EEXIST;
658 	}
659 
660 	list_add_tail(&root->root_list, &rc->reloc_roots);
661 	return 0;
662 }
663 
664 /*
665  * helper to delete the 'address of tree root -> reloc tree'
666  * mapping
667  */
668 static void __del_reloc_root(struct btrfs_root *root)
669 {
670 	struct btrfs_fs_info *fs_info = root->fs_info;
671 	struct rb_node *rb_node;
672 	struct mapping_node *node = NULL;
673 	struct reloc_control *rc = fs_info->reloc_ctl;
674 	bool put_ref = false;
675 
676 	if (rc && root->node) {
677 		spin_lock(&rc->reloc_root_tree.lock);
678 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
679 					   root->commit_root->start);
680 		if (rb_node) {
681 			node = rb_entry(rb_node, struct mapping_node, rb_node);
682 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
683 			RB_CLEAR_NODE(&node->rb_node);
684 		}
685 		spin_unlock(&rc->reloc_root_tree.lock);
686 		ASSERT(!node || (struct btrfs_root *)node->data == root);
687 	}
688 
689 	/*
690 	 * We only put the reloc root here if it's on the list.  There's a lot
691 	 * of places where the pattern is to splice the rc->reloc_roots, process
692 	 * the reloc roots, and then add the reloc root back onto
693 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
694 	 * list we don't want the reference being dropped, because the guy
695 	 * messing with the list is in charge of the reference.
696 	 */
697 	spin_lock(&fs_info->trans_lock);
698 	if (!list_empty(&root->root_list)) {
699 		put_ref = true;
700 		list_del_init(&root->root_list);
701 	}
702 	spin_unlock(&fs_info->trans_lock);
703 	if (put_ref)
704 		btrfs_put_root(root);
705 	kfree(node);
706 }
707 
708 /*
709  * helper to update the 'address of tree root -> reloc tree'
710  * mapping
711  */
712 static int __update_reloc_root(struct btrfs_root *root)
713 {
714 	struct btrfs_fs_info *fs_info = root->fs_info;
715 	struct rb_node *rb_node;
716 	struct mapping_node *node = NULL;
717 	struct reloc_control *rc = fs_info->reloc_ctl;
718 
719 	spin_lock(&rc->reloc_root_tree.lock);
720 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
721 				   root->commit_root->start);
722 	if (rb_node) {
723 		node = rb_entry(rb_node, struct mapping_node, rb_node);
724 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
725 	}
726 	spin_unlock(&rc->reloc_root_tree.lock);
727 
728 	if (!node)
729 		return 0;
730 	BUG_ON((struct btrfs_root *)node->data != root);
731 
732 	spin_lock(&rc->reloc_root_tree.lock);
733 	node->bytenr = root->node->start;
734 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
735 				   node->bytenr, &node->rb_node);
736 	spin_unlock(&rc->reloc_root_tree.lock);
737 	if (rb_node)
738 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
739 	return 0;
740 }
741 
742 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
743 					struct btrfs_root *root, u64 objectid)
744 {
745 	struct btrfs_fs_info *fs_info = root->fs_info;
746 	struct btrfs_root *reloc_root;
747 	struct extent_buffer *eb;
748 	struct btrfs_root_item *root_item;
749 	struct btrfs_key root_key;
750 	int ret = 0;
751 	bool must_abort = false;
752 
753 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
754 	if (!root_item)
755 		return ERR_PTR(-ENOMEM);
756 
757 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
758 	root_key.type = BTRFS_ROOT_ITEM_KEY;
759 	root_key.offset = objectid;
760 
761 	if (root->root_key.objectid == objectid) {
762 		u64 commit_root_gen;
763 
764 		/* called by btrfs_init_reloc_root */
765 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
766 				      BTRFS_TREE_RELOC_OBJECTID);
767 		if (ret)
768 			goto fail;
769 
770 		/*
771 		 * Set the last_snapshot field to the generation of the commit
772 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
773 		 * correctly (returns true) when the relocation root is created
774 		 * either inside the critical section of a transaction commit
775 		 * (through transaction.c:qgroup_account_snapshot()) and when
776 		 * it's created before the transaction commit is started.
777 		 */
778 		commit_root_gen = btrfs_header_generation(root->commit_root);
779 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
780 	} else {
781 		/*
782 		 * called by btrfs_reloc_post_snapshot_hook.
783 		 * the source tree is a reloc tree, all tree blocks
784 		 * modified after it was created have RELOC flag
785 		 * set in their headers. so it's OK to not update
786 		 * the 'last_snapshot'.
787 		 */
788 		ret = btrfs_copy_root(trans, root, root->node, &eb,
789 				      BTRFS_TREE_RELOC_OBJECTID);
790 		if (ret)
791 			goto fail;
792 	}
793 
794 	/*
795 	 * We have changed references at this point, we must abort the
796 	 * transaction if anything fails.
797 	 */
798 	must_abort = true;
799 
800 	memcpy(root_item, &root->root_item, sizeof(*root_item));
801 	btrfs_set_root_bytenr(root_item, eb->start);
802 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
803 	btrfs_set_root_generation(root_item, trans->transid);
804 
805 	if (root->root_key.objectid == objectid) {
806 		btrfs_set_root_refs(root_item, 0);
807 		memset(&root_item->drop_progress, 0,
808 		       sizeof(struct btrfs_disk_key));
809 		btrfs_set_root_drop_level(root_item, 0);
810 	}
811 
812 	btrfs_tree_unlock(eb);
813 	free_extent_buffer(eb);
814 
815 	ret = btrfs_insert_root(trans, fs_info->tree_root,
816 				&root_key, root_item);
817 	if (ret)
818 		goto fail;
819 
820 	kfree(root_item);
821 
822 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
823 	if (IS_ERR(reloc_root)) {
824 		ret = PTR_ERR(reloc_root);
825 		goto abort;
826 	}
827 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
828 	reloc_root->last_trans = trans->transid;
829 	return reloc_root;
830 fail:
831 	kfree(root_item);
832 abort:
833 	if (must_abort)
834 		btrfs_abort_transaction(trans, ret);
835 	return ERR_PTR(ret);
836 }
837 
838 /*
839  * create reloc tree for a given fs tree. reloc tree is just a
840  * snapshot of the fs tree with special root objectid.
841  *
842  * The reloc_root comes out of here with two references, one for
843  * root->reloc_root, and another for being on the rc->reloc_roots list.
844  */
845 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
846 			  struct btrfs_root *root)
847 {
848 	struct btrfs_fs_info *fs_info = root->fs_info;
849 	struct btrfs_root *reloc_root;
850 	struct reloc_control *rc = fs_info->reloc_ctl;
851 	struct btrfs_block_rsv *rsv;
852 	int clear_rsv = 0;
853 	int ret;
854 
855 	if (!rc)
856 		return 0;
857 
858 	/*
859 	 * The subvolume has reloc tree but the swap is finished, no need to
860 	 * create/update the dead reloc tree
861 	 */
862 	if (reloc_root_is_dead(root))
863 		return 0;
864 
865 	/*
866 	 * This is subtle but important.  We do not do
867 	 * record_root_in_transaction for reloc roots, instead we record their
868 	 * corresponding fs root, and then here we update the last trans for the
869 	 * reloc root.  This means that we have to do this for the entire life
870 	 * of the reloc root, regardless of which stage of the relocation we are
871 	 * in.
872 	 */
873 	if (root->reloc_root) {
874 		reloc_root = root->reloc_root;
875 		reloc_root->last_trans = trans->transid;
876 		return 0;
877 	}
878 
879 	/*
880 	 * We are merging reloc roots, we do not need new reloc trees.  Also
881 	 * reloc trees never need their own reloc tree.
882 	 */
883 	if (!rc->create_reloc_tree ||
884 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
885 		return 0;
886 
887 	if (!trans->reloc_reserved) {
888 		rsv = trans->block_rsv;
889 		trans->block_rsv = rc->block_rsv;
890 		clear_rsv = 1;
891 	}
892 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
893 	if (clear_rsv)
894 		trans->block_rsv = rsv;
895 	if (IS_ERR(reloc_root))
896 		return PTR_ERR(reloc_root);
897 
898 	ret = __add_reloc_root(reloc_root);
899 	ASSERT(ret != -EEXIST);
900 	if (ret) {
901 		/* Pairs with create_reloc_root */
902 		btrfs_put_root(reloc_root);
903 		return ret;
904 	}
905 	root->reloc_root = btrfs_grab_root(reloc_root);
906 	return 0;
907 }
908 
909 /*
910  * update root item of reloc tree
911  */
912 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
913 			    struct btrfs_root *root)
914 {
915 	struct btrfs_fs_info *fs_info = root->fs_info;
916 	struct btrfs_root *reloc_root;
917 	struct btrfs_root_item *root_item;
918 	int ret;
919 
920 	if (!have_reloc_root(root))
921 		return 0;
922 
923 	reloc_root = root->reloc_root;
924 	root_item = &reloc_root->root_item;
925 
926 	/*
927 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
928 	 * the root.  We have the ref for root->reloc_root, but just in case
929 	 * hold it while we update the reloc root.
930 	 */
931 	btrfs_grab_root(reloc_root);
932 
933 	/* root->reloc_root will stay until current relocation finished */
934 	if (fs_info->reloc_ctl->merge_reloc_tree &&
935 	    btrfs_root_refs(root_item) == 0) {
936 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
937 		/*
938 		 * Mark the tree as dead before we change reloc_root so
939 		 * have_reloc_root will not touch it from now on.
940 		 */
941 		smp_wmb();
942 		__del_reloc_root(reloc_root);
943 	}
944 
945 	if (reloc_root->commit_root != reloc_root->node) {
946 		__update_reloc_root(reloc_root);
947 		btrfs_set_root_node(root_item, reloc_root->node);
948 		free_extent_buffer(reloc_root->commit_root);
949 		reloc_root->commit_root = btrfs_root_node(reloc_root);
950 	}
951 
952 	ret = btrfs_update_root(trans, fs_info->tree_root,
953 				&reloc_root->root_key, root_item);
954 	btrfs_put_root(reloc_root);
955 	return ret;
956 }
957 
958 /*
959  * helper to find first cached inode with inode number >= objectid
960  * in a subvolume
961  */
962 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
963 {
964 	struct rb_node *node;
965 	struct rb_node *prev;
966 	struct btrfs_inode *entry;
967 	struct inode *inode;
968 
969 	spin_lock(&root->inode_lock);
970 again:
971 	node = root->inode_tree.rb_node;
972 	prev = NULL;
973 	while (node) {
974 		prev = node;
975 		entry = rb_entry(node, struct btrfs_inode, rb_node);
976 
977 		if (objectid < btrfs_ino(entry))
978 			node = node->rb_left;
979 		else if (objectid > btrfs_ino(entry))
980 			node = node->rb_right;
981 		else
982 			break;
983 	}
984 	if (!node) {
985 		while (prev) {
986 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
987 			if (objectid <= btrfs_ino(entry)) {
988 				node = prev;
989 				break;
990 			}
991 			prev = rb_next(prev);
992 		}
993 	}
994 	while (node) {
995 		entry = rb_entry(node, struct btrfs_inode, rb_node);
996 		inode = igrab(&entry->vfs_inode);
997 		if (inode) {
998 			spin_unlock(&root->inode_lock);
999 			return inode;
1000 		}
1001 
1002 		objectid = btrfs_ino(entry) + 1;
1003 		if (cond_resched_lock(&root->inode_lock))
1004 			goto again;
1005 
1006 		node = rb_next(node);
1007 	}
1008 	spin_unlock(&root->inode_lock);
1009 	return NULL;
1010 }
1011 
1012 /*
1013  * get new location of data
1014  */
1015 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1016 			    u64 bytenr, u64 num_bytes)
1017 {
1018 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1019 	struct btrfs_path *path;
1020 	struct btrfs_file_extent_item *fi;
1021 	struct extent_buffer *leaf;
1022 	int ret;
1023 
1024 	path = btrfs_alloc_path();
1025 	if (!path)
1026 		return -ENOMEM;
1027 
1028 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1029 	ret = btrfs_lookup_file_extent(NULL, root, path,
1030 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1031 	if (ret < 0)
1032 		goto out;
1033 	if (ret > 0) {
1034 		ret = -ENOENT;
1035 		goto out;
1036 	}
1037 
1038 	leaf = path->nodes[0];
1039 	fi = btrfs_item_ptr(leaf, path->slots[0],
1040 			    struct btrfs_file_extent_item);
1041 
1042 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1043 	       btrfs_file_extent_compression(leaf, fi) ||
1044 	       btrfs_file_extent_encryption(leaf, fi) ||
1045 	       btrfs_file_extent_other_encoding(leaf, fi));
1046 
1047 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1048 		ret = -EINVAL;
1049 		goto out;
1050 	}
1051 
1052 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1053 	ret = 0;
1054 out:
1055 	btrfs_free_path(path);
1056 	return ret;
1057 }
1058 
1059 /*
1060  * update file extent items in the tree leaf to point to
1061  * the new locations.
1062  */
1063 static noinline_for_stack
1064 int replace_file_extents(struct btrfs_trans_handle *trans,
1065 			 struct reloc_control *rc,
1066 			 struct btrfs_root *root,
1067 			 struct extent_buffer *leaf)
1068 {
1069 	struct btrfs_fs_info *fs_info = root->fs_info;
1070 	struct btrfs_key key;
1071 	struct btrfs_file_extent_item *fi;
1072 	struct inode *inode = NULL;
1073 	u64 parent;
1074 	u64 bytenr;
1075 	u64 new_bytenr = 0;
1076 	u64 num_bytes;
1077 	u64 end;
1078 	u32 nritems;
1079 	u32 i;
1080 	int ret = 0;
1081 	int first = 1;
1082 	int dirty = 0;
1083 
1084 	if (rc->stage != UPDATE_DATA_PTRS)
1085 		return 0;
1086 
1087 	/* reloc trees always use full backref */
1088 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1089 		parent = leaf->start;
1090 	else
1091 		parent = 0;
1092 
1093 	nritems = btrfs_header_nritems(leaf);
1094 	for (i = 0; i < nritems; i++) {
1095 		struct btrfs_ref ref = { 0 };
1096 
1097 		cond_resched();
1098 		btrfs_item_key_to_cpu(leaf, &key, i);
1099 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1100 			continue;
1101 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1102 		if (btrfs_file_extent_type(leaf, fi) ==
1103 		    BTRFS_FILE_EXTENT_INLINE)
1104 			continue;
1105 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1106 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1107 		if (bytenr == 0)
1108 			continue;
1109 		if (!in_range(bytenr, rc->block_group->start,
1110 			      rc->block_group->length))
1111 			continue;
1112 
1113 		/*
1114 		 * if we are modifying block in fs tree, wait for read_folio
1115 		 * to complete and drop the extent cache
1116 		 */
1117 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1118 			if (first) {
1119 				inode = find_next_inode(root, key.objectid);
1120 				first = 0;
1121 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1122 				btrfs_add_delayed_iput(BTRFS_I(inode));
1123 				inode = find_next_inode(root, key.objectid);
1124 			}
1125 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1126 				struct extent_state *cached_state = NULL;
1127 
1128 				end = key.offset +
1129 				      btrfs_file_extent_num_bytes(leaf, fi);
1130 				WARN_ON(!IS_ALIGNED(key.offset,
1131 						    fs_info->sectorsize));
1132 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1133 				end--;
1134 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1135 						      key.offset, end,
1136 						      &cached_state);
1137 				if (!ret)
1138 					continue;
1139 
1140 				btrfs_drop_extent_map_range(BTRFS_I(inode),
1141 							    key.offset, end, true);
1142 				unlock_extent(&BTRFS_I(inode)->io_tree,
1143 					      key.offset, end, &cached_state);
1144 			}
1145 		}
1146 
1147 		ret = get_new_location(rc->data_inode, &new_bytenr,
1148 				       bytenr, num_bytes);
1149 		if (ret) {
1150 			/*
1151 			 * Don't have to abort since we've not changed anything
1152 			 * in the file extent yet.
1153 			 */
1154 			break;
1155 		}
1156 
1157 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1158 		dirty = 1;
1159 
1160 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1161 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1162 				       num_bytes, parent);
1163 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1164 				    key.objectid, key.offset,
1165 				    root->root_key.objectid, false);
1166 		ret = btrfs_inc_extent_ref(trans, &ref);
1167 		if (ret) {
1168 			btrfs_abort_transaction(trans, ret);
1169 			break;
1170 		}
1171 
1172 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1173 				       num_bytes, parent);
1174 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1175 				    key.objectid, key.offset,
1176 				    root->root_key.objectid, false);
1177 		ret = btrfs_free_extent(trans, &ref);
1178 		if (ret) {
1179 			btrfs_abort_transaction(trans, ret);
1180 			break;
1181 		}
1182 	}
1183 	if (dirty)
1184 		btrfs_mark_buffer_dirty(trans, leaf);
1185 	if (inode)
1186 		btrfs_add_delayed_iput(BTRFS_I(inode));
1187 	return ret;
1188 }
1189 
1190 static noinline_for_stack
1191 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1192 		     struct btrfs_path *path, int level)
1193 {
1194 	struct btrfs_disk_key key1;
1195 	struct btrfs_disk_key key2;
1196 	btrfs_node_key(eb, &key1, slot);
1197 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1198 	return memcmp(&key1, &key2, sizeof(key1));
1199 }
1200 
1201 /*
1202  * try to replace tree blocks in fs tree with the new blocks
1203  * in reloc tree. tree blocks haven't been modified since the
1204  * reloc tree was create can be replaced.
1205  *
1206  * if a block was replaced, level of the block + 1 is returned.
1207  * if no block got replaced, 0 is returned. if there are other
1208  * errors, a negative error number is returned.
1209  */
1210 static noinline_for_stack
1211 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1212 		 struct btrfs_root *dest, struct btrfs_root *src,
1213 		 struct btrfs_path *path, struct btrfs_key *next_key,
1214 		 int lowest_level, int max_level)
1215 {
1216 	struct btrfs_fs_info *fs_info = dest->fs_info;
1217 	struct extent_buffer *eb;
1218 	struct extent_buffer *parent;
1219 	struct btrfs_ref ref = { 0 };
1220 	struct btrfs_key key;
1221 	u64 old_bytenr;
1222 	u64 new_bytenr;
1223 	u64 old_ptr_gen;
1224 	u64 new_ptr_gen;
1225 	u64 last_snapshot;
1226 	u32 blocksize;
1227 	int cow = 0;
1228 	int level;
1229 	int ret;
1230 	int slot;
1231 
1232 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1233 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1234 
1235 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1236 again:
1237 	slot = path->slots[lowest_level];
1238 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1239 
1240 	eb = btrfs_lock_root_node(dest);
1241 	level = btrfs_header_level(eb);
1242 
1243 	if (level < lowest_level) {
1244 		btrfs_tree_unlock(eb);
1245 		free_extent_buffer(eb);
1246 		return 0;
1247 	}
1248 
1249 	if (cow) {
1250 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1251 				      BTRFS_NESTING_COW);
1252 		if (ret) {
1253 			btrfs_tree_unlock(eb);
1254 			free_extent_buffer(eb);
1255 			return ret;
1256 		}
1257 	}
1258 
1259 	if (next_key) {
1260 		next_key->objectid = (u64)-1;
1261 		next_key->type = (u8)-1;
1262 		next_key->offset = (u64)-1;
1263 	}
1264 
1265 	parent = eb;
1266 	while (1) {
1267 		level = btrfs_header_level(parent);
1268 		ASSERT(level >= lowest_level);
1269 
1270 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1271 		if (ret < 0)
1272 			break;
1273 		if (ret && slot > 0)
1274 			slot--;
1275 
1276 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1277 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1278 
1279 		old_bytenr = btrfs_node_blockptr(parent, slot);
1280 		blocksize = fs_info->nodesize;
1281 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1282 
1283 		if (level <= max_level) {
1284 			eb = path->nodes[level];
1285 			new_bytenr = btrfs_node_blockptr(eb,
1286 							path->slots[level]);
1287 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1288 							path->slots[level]);
1289 		} else {
1290 			new_bytenr = 0;
1291 			new_ptr_gen = 0;
1292 		}
1293 
1294 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1295 			ret = level;
1296 			break;
1297 		}
1298 
1299 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1300 		    memcmp_node_keys(parent, slot, path, level)) {
1301 			if (level <= lowest_level) {
1302 				ret = 0;
1303 				break;
1304 			}
1305 
1306 			eb = btrfs_read_node_slot(parent, slot);
1307 			if (IS_ERR(eb)) {
1308 				ret = PTR_ERR(eb);
1309 				break;
1310 			}
1311 			btrfs_tree_lock(eb);
1312 			if (cow) {
1313 				ret = btrfs_cow_block(trans, dest, eb, parent,
1314 						      slot, &eb,
1315 						      BTRFS_NESTING_COW);
1316 				if (ret) {
1317 					btrfs_tree_unlock(eb);
1318 					free_extent_buffer(eb);
1319 					break;
1320 				}
1321 			}
1322 
1323 			btrfs_tree_unlock(parent);
1324 			free_extent_buffer(parent);
1325 
1326 			parent = eb;
1327 			continue;
1328 		}
1329 
1330 		if (!cow) {
1331 			btrfs_tree_unlock(parent);
1332 			free_extent_buffer(parent);
1333 			cow = 1;
1334 			goto again;
1335 		}
1336 
1337 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1338 				      path->slots[level]);
1339 		btrfs_release_path(path);
1340 
1341 		path->lowest_level = level;
1342 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1343 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1344 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1345 		path->lowest_level = 0;
1346 		if (ret) {
1347 			if (ret > 0)
1348 				ret = -ENOENT;
1349 			break;
1350 		}
1351 
1352 		/*
1353 		 * Info qgroup to trace both subtrees.
1354 		 *
1355 		 * We must trace both trees.
1356 		 * 1) Tree reloc subtree
1357 		 *    If not traced, we will leak data numbers
1358 		 * 2) Fs subtree
1359 		 *    If not traced, we will double count old data
1360 		 *
1361 		 * We don't scan the subtree right now, but only record
1362 		 * the swapped tree blocks.
1363 		 * The real subtree rescan is delayed until we have new
1364 		 * CoW on the subtree root node before transaction commit.
1365 		 */
1366 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1367 				rc->block_group, parent, slot,
1368 				path->nodes[level], path->slots[level],
1369 				last_snapshot);
1370 		if (ret < 0)
1371 			break;
1372 		/*
1373 		 * swap blocks in fs tree and reloc tree.
1374 		 */
1375 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1376 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1377 		btrfs_mark_buffer_dirty(trans, parent);
1378 
1379 		btrfs_set_node_blockptr(path->nodes[level],
1380 					path->slots[level], old_bytenr);
1381 		btrfs_set_node_ptr_generation(path->nodes[level],
1382 					      path->slots[level], old_ptr_gen);
1383 		btrfs_mark_buffer_dirty(trans, path->nodes[level]);
1384 
1385 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1386 				       blocksize, path->nodes[level]->start);
1387 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1388 				    0, true);
1389 		ret = btrfs_inc_extent_ref(trans, &ref);
1390 		if (ret) {
1391 			btrfs_abort_transaction(trans, ret);
1392 			break;
1393 		}
1394 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1395 				       blocksize, 0);
1396 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1397 				    true);
1398 		ret = btrfs_inc_extent_ref(trans, &ref);
1399 		if (ret) {
1400 			btrfs_abort_transaction(trans, ret);
1401 			break;
1402 		}
1403 
1404 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1405 				       blocksize, path->nodes[level]->start);
1406 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1407 				    0, true);
1408 		ret = btrfs_free_extent(trans, &ref);
1409 		if (ret) {
1410 			btrfs_abort_transaction(trans, ret);
1411 			break;
1412 		}
1413 
1414 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1415 				       blocksize, 0);
1416 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1417 				    0, true);
1418 		ret = btrfs_free_extent(trans, &ref);
1419 		if (ret) {
1420 			btrfs_abort_transaction(trans, ret);
1421 			break;
1422 		}
1423 
1424 		btrfs_unlock_up_safe(path, 0);
1425 
1426 		ret = level;
1427 		break;
1428 	}
1429 	btrfs_tree_unlock(parent);
1430 	free_extent_buffer(parent);
1431 	return ret;
1432 }
1433 
1434 /*
1435  * helper to find next relocated block in reloc tree
1436  */
1437 static noinline_for_stack
1438 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1439 		       int *level)
1440 {
1441 	struct extent_buffer *eb;
1442 	int i;
1443 	u64 last_snapshot;
1444 	u32 nritems;
1445 
1446 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1447 
1448 	for (i = 0; i < *level; i++) {
1449 		free_extent_buffer(path->nodes[i]);
1450 		path->nodes[i] = NULL;
1451 	}
1452 
1453 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1454 		eb = path->nodes[i];
1455 		nritems = btrfs_header_nritems(eb);
1456 		while (path->slots[i] + 1 < nritems) {
1457 			path->slots[i]++;
1458 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1459 			    last_snapshot)
1460 				continue;
1461 
1462 			*level = i;
1463 			return 0;
1464 		}
1465 		free_extent_buffer(path->nodes[i]);
1466 		path->nodes[i] = NULL;
1467 	}
1468 	return 1;
1469 }
1470 
1471 /*
1472  * walk down reloc tree to find relocated block of lowest level
1473  */
1474 static noinline_for_stack
1475 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1476 			 int *level)
1477 {
1478 	struct extent_buffer *eb = NULL;
1479 	int i;
1480 	u64 ptr_gen = 0;
1481 	u64 last_snapshot;
1482 	u32 nritems;
1483 
1484 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1485 
1486 	for (i = *level; i > 0; i--) {
1487 		eb = path->nodes[i];
1488 		nritems = btrfs_header_nritems(eb);
1489 		while (path->slots[i] < nritems) {
1490 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1491 			if (ptr_gen > last_snapshot)
1492 				break;
1493 			path->slots[i]++;
1494 		}
1495 		if (path->slots[i] >= nritems) {
1496 			if (i == *level)
1497 				break;
1498 			*level = i + 1;
1499 			return 0;
1500 		}
1501 		if (i == 1) {
1502 			*level = i;
1503 			return 0;
1504 		}
1505 
1506 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1507 		if (IS_ERR(eb))
1508 			return PTR_ERR(eb);
1509 		BUG_ON(btrfs_header_level(eb) != i - 1);
1510 		path->nodes[i - 1] = eb;
1511 		path->slots[i - 1] = 0;
1512 	}
1513 	return 1;
1514 }
1515 
1516 /*
1517  * invalidate extent cache for file extents whose key in range of
1518  * [min_key, max_key)
1519  */
1520 static int invalidate_extent_cache(struct btrfs_root *root,
1521 				   struct btrfs_key *min_key,
1522 				   struct btrfs_key *max_key)
1523 {
1524 	struct btrfs_fs_info *fs_info = root->fs_info;
1525 	struct inode *inode = NULL;
1526 	u64 objectid;
1527 	u64 start, end;
1528 	u64 ino;
1529 
1530 	objectid = min_key->objectid;
1531 	while (1) {
1532 		struct extent_state *cached_state = NULL;
1533 
1534 		cond_resched();
1535 		iput(inode);
1536 
1537 		if (objectid > max_key->objectid)
1538 			break;
1539 
1540 		inode = find_next_inode(root, objectid);
1541 		if (!inode)
1542 			break;
1543 		ino = btrfs_ino(BTRFS_I(inode));
1544 
1545 		if (ino > max_key->objectid) {
1546 			iput(inode);
1547 			break;
1548 		}
1549 
1550 		objectid = ino + 1;
1551 		if (!S_ISREG(inode->i_mode))
1552 			continue;
1553 
1554 		if (unlikely(min_key->objectid == ino)) {
1555 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1556 				continue;
1557 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1558 				start = 0;
1559 			else {
1560 				start = min_key->offset;
1561 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1562 			}
1563 		} else {
1564 			start = 0;
1565 		}
1566 
1567 		if (unlikely(max_key->objectid == ino)) {
1568 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1569 				continue;
1570 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1571 				end = (u64)-1;
1572 			} else {
1573 				if (max_key->offset == 0)
1574 					continue;
1575 				end = max_key->offset;
1576 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1577 				end--;
1578 			}
1579 		} else {
1580 			end = (u64)-1;
1581 		}
1582 
1583 		/* the lock_extent waits for read_folio to complete */
1584 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1585 		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1586 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1587 	}
1588 	return 0;
1589 }
1590 
1591 static int find_next_key(struct btrfs_path *path, int level,
1592 			 struct btrfs_key *key)
1593 
1594 {
1595 	while (level < BTRFS_MAX_LEVEL) {
1596 		if (!path->nodes[level])
1597 			break;
1598 		if (path->slots[level] + 1 <
1599 		    btrfs_header_nritems(path->nodes[level])) {
1600 			btrfs_node_key_to_cpu(path->nodes[level], key,
1601 					      path->slots[level] + 1);
1602 			return 0;
1603 		}
1604 		level++;
1605 	}
1606 	return 1;
1607 }
1608 
1609 /*
1610  * Insert current subvolume into reloc_control::dirty_subvol_roots
1611  */
1612 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1613 			       struct reloc_control *rc,
1614 			       struct btrfs_root *root)
1615 {
1616 	struct btrfs_root *reloc_root = root->reloc_root;
1617 	struct btrfs_root_item *reloc_root_item;
1618 	int ret;
1619 
1620 	/* @root must be a subvolume tree root with a valid reloc tree */
1621 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1622 	ASSERT(reloc_root);
1623 
1624 	reloc_root_item = &reloc_root->root_item;
1625 	memset(&reloc_root_item->drop_progress, 0,
1626 		sizeof(reloc_root_item->drop_progress));
1627 	btrfs_set_root_drop_level(reloc_root_item, 0);
1628 	btrfs_set_root_refs(reloc_root_item, 0);
1629 	ret = btrfs_update_reloc_root(trans, root);
1630 	if (ret)
1631 		return ret;
1632 
1633 	if (list_empty(&root->reloc_dirty_list)) {
1634 		btrfs_grab_root(root);
1635 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1636 	}
1637 
1638 	return 0;
1639 }
1640 
1641 static int clean_dirty_subvols(struct reloc_control *rc)
1642 {
1643 	struct btrfs_root *root;
1644 	struct btrfs_root *next;
1645 	int ret = 0;
1646 	int ret2;
1647 
1648 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1649 				 reloc_dirty_list) {
1650 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1651 			/* Merged subvolume, cleanup its reloc root */
1652 			struct btrfs_root *reloc_root = root->reloc_root;
1653 
1654 			list_del_init(&root->reloc_dirty_list);
1655 			root->reloc_root = NULL;
1656 			/*
1657 			 * Need barrier to ensure clear_bit() only happens after
1658 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1659 			 */
1660 			smp_wmb();
1661 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1662 			if (reloc_root) {
1663 				/*
1664 				 * btrfs_drop_snapshot drops our ref we hold for
1665 				 * ->reloc_root.  If it fails however we must
1666 				 * drop the ref ourselves.
1667 				 */
1668 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1669 				if (ret2 < 0) {
1670 					btrfs_put_root(reloc_root);
1671 					if (!ret)
1672 						ret = ret2;
1673 				}
1674 			}
1675 			btrfs_put_root(root);
1676 		} else {
1677 			/* Orphan reloc tree, just clean it up */
1678 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1679 			if (ret2 < 0) {
1680 				btrfs_put_root(root);
1681 				if (!ret)
1682 					ret = ret2;
1683 			}
1684 		}
1685 	}
1686 	return ret;
1687 }
1688 
1689 /*
1690  * merge the relocated tree blocks in reloc tree with corresponding
1691  * fs tree.
1692  */
1693 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1694 					       struct btrfs_root *root)
1695 {
1696 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1697 	struct btrfs_key key;
1698 	struct btrfs_key next_key;
1699 	struct btrfs_trans_handle *trans = NULL;
1700 	struct btrfs_root *reloc_root;
1701 	struct btrfs_root_item *root_item;
1702 	struct btrfs_path *path;
1703 	struct extent_buffer *leaf;
1704 	int reserve_level;
1705 	int level;
1706 	int max_level;
1707 	int replaced = 0;
1708 	int ret = 0;
1709 	u32 min_reserved;
1710 
1711 	path = btrfs_alloc_path();
1712 	if (!path)
1713 		return -ENOMEM;
1714 	path->reada = READA_FORWARD;
1715 
1716 	reloc_root = root->reloc_root;
1717 	root_item = &reloc_root->root_item;
1718 
1719 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1720 		level = btrfs_root_level(root_item);
1721 		atomic_inc(&reloc_root->node->refs);
1722 		path->nodes[level] = reloc_root->node;
1723 		path->slots[level] = 0;
1724 	} else {
1725 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1726 
1727 		level = btrfs_root_drop_level(root_item);
1728 		BUG_ON(level == 0);
1729 		path->lowest_level = level;
1730 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1731 		path->lowest_level = 0;
1732 		if (ret < 0) {
1733 			btrfs_free_path(path);
1734 			return ret;
1735 		}
1736 
1737 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1738 				      path->slots[level]);
1739 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1740 
1741 		btrfs_unlock_up_safe(path, 0);
1742 	}
1743 
1744 	/*
1745 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1746 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1747 	 * block COW, we COW at most from level 1 to root level for each tree.
1748 	 *
1749 	 * Thus the needed metadata size is at most root_level * nodesize,
1750 	 * and * 2 since we have two trees to COW.
1751 	 */
1752 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1753 	min_reserved = fs_info->nodesize * reserve_level * 2;
1754 	memset(&next_key, 0, sizeof(next_key));
1755 
1756 	while (1) {
1757 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1758 					     min_reserved,
1759 					     BTRFS_RESERVE_FLUSH_LIMIT);
1760 		if (ret)
1761 			goto out;
1762 		trans = btrfs_start_transaction(root, 0);
1763 		if (IS_ERR(trans)) {
1764 			ret = PTR_ERR(trans);
1765 			trans = NULL;
1766 			goto out;
1767 		}
1768 
1769 		/*
1770 		 * At this point we no longer have a reloc_control, so we can't
1771 		 * depend on btrfs_init_reloc_root to update our last_trans.
1772 		 *
1773 		 * But that's ok, we started the trans handle on our
1774 		 * corresponding fs_root, which means it's been added to the
1775 		 * dirty list.  At commit time we'll still call
1776 		 * btrfs_update_reloc_root() and update our root item
1777 		 * appropriately.
1778 		 */
1779 		reloc_root->last_trans = trans->transid;
1780 		trans->block_rsv = rc->block_rsv;
1781 
1782 		replaced = 0;
1783 		max_level = level;
1784 
1785 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1786 		if (ret < 0)
1787 			goto out;
1788 		if (ret > 0)
1789 			break;
1790 
1791 		if (!find_next_key(path, level, &key) &&
1792 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1793 			ret = 0;
1794 		} else {
1795 			ret = replace_path(trans, rc, root, reloc_root, path,
1796 					   &next_key, level, max_level);
1797 		}
1798 		if (ret < 0)
1799 			goto out;
1800 		if (ret > 0) {
1801 			level = ret;
1802 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1803 					      path->slots[level]);
1804 			replaced = 1;
1805 		}
1806 
1807 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1808 		if (ret > 0)
1809 			break;
1810 
1811 		BUG_ON(level == 0);
1812 		/*
1813 		 * save the merging progress in the drop_progress.
1814 		 * this is OK since root refs == 1 in this case.
1815 		 */
1816 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1817 			       path->slots[level]);
1818 		btrfs_set_root_drop_level(root_item, level);
1819 
1820 		btrfs_end_transaction_throttle(trans);
1821 		trans = NULL;
1822 
1823 		btrfs_btree_balance_dirty(fs_info);
1824 
1825 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1826 			invalidate_extent_cache(root, &key, &next_key);
1827 	}
1828 
1829 	/*
1830 	 * handle the case only one block in the fs tree need to be
1831 	 * relocated and the block is tree root.
1832 	 */
1833 	leaf = btrfs_lock_root_node(root);
1834 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1835 			      BTRFS_NESTING_COW);
1836 	btrfs_tree_unlock(leaf);
1837 	free_extent_buffer(leaf);
1838 out:
1839 	btrfs_free_path(path);
1840 
1841 	if (ret == 0) {
1842 		ret = insert_dirty_subvol(trans, rc, root);
1843 		if (ret)
1844 			btrfs_abort_transaction(trans, ret);
1845 	}
1846 
1847 	if (trans)
1848 		btrfs_end_transaction_throttle(trans);
1849 
1850 	btrfs_btree_balance_dirty(fs_info);
1851 
1852 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1853 		invalidate_extent_cache(root, &key, &next_key);
1854 
1855 	return ret;
1856 }
1857 
1858 static noinline_for_stack
1859 int prepare_to_merge(struct reloc_control *rc, int err)
1860 {
1861 	struct btrfs_root *root = rc->extent_root;
1862 	struct btrfs_fs_info *fs_info = root->fs_info;
1863 	struct btrfs_root *reloc_root;
1864 	struct btrfs_trans_handle *trans;
1865 	LIST_HEAD(reloc_roots);
1866 	u64 num_bytes = 0;
1867 	int ret;
1868 
1869 	mutex_lock(&fs_info->reloc_mutex);
1870 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1871 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1872 	mutex_unlock(&fs_info->reloc_mutex);
1873 
1874 again:
1875 	if (!err) {
1876 		num_bytes = rc->merging_rsv_size;
1877 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1878 					  BTRFS_RESERVE_FLUSH_ALL);
1879 		if (ret)
1880 			err = ret;
1881 	}
1882 
1883 	trans = btrfs_join_transaction(rc->extent_root);
1884 	if (IS_ERR(trans)) {
1885 		if (!err)
1886 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1887 						num_bytes, NULL);
1888 		return PTR_ERR(trans);
1889 	}
1890 
1891 	if (!err) {
1892 		if (num_bytes != rc->merging_rsv_size) {
1893 			btrfs_end_transaction(trans);
1894 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1895 						num_bytes, NULL);
1896 			goto again;
1897 		}
1898 	}
1899 
1900 	rc->merge_reloc_tree = 1;
1901 
1902 	while (!list_empty(&rc->reloc_roots)) {
1903 		reloc_root = list_entry(rc->reloc_roots.next,
1904 					struct btrfs_root, root_list);
1905 		list_del_init(&reloc_root->root_list);
1906 
1907 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1908 				false);
1909 		if (IS_ERR(root)) {
1910 			/*
1911 			 * Even if we have an error we need this reloc root
1912 			 * back on our list so we can clean up properly.
1913 			 */
1914 			list_add(&reloc_root->root_list, &reloc_roots);
1915 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1916 			if (!err)
1917 				err = PTR_ERR(root);
1918 			break;
1919 		}
1920 
1921 		if (unlikely(root->reloc_root != reloc_root)) {
1922 			if (root->reloc_root) {
1923 				btrfs_err(fs_info,
1924 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1925 					  root->root_key.objectid,
1926 					  root->reloc_root->root_key.objectid,
1927 					  root->reloc_root->root_key.type,
1928 					  root->reloc_root->root_key.offset,
1929 					  btrfs_root_generation(
1930 						  &root->reloc_root->root_item),
1931 					  reloc_root->root_key.objectid,
1932 					  reloc_root->root_key.type,
1933 					  reloc_root->root_key.offset,
1934 					  btrfs_root_generation(
1935 						  &reloc_root->root_item));
1936 			} else {
1937 				btrfs_err(fs_info,
1938 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1939 					  root->root_key.objectid,
1940 					  reloc_root->root_key.objectid,
1941 					  reloc_root->root_key.type,
1942 					  reloc_root->root_key.offset,
1943 					  btrfs_root_generation(
1944 						  &reloc_root->root_item));
1945 			}
1946 			list_add(&reloc_root->root_list, &reloc_roots);
1947 			btrfs_put_root(root);
1948 			btrfs_abort_transaction(trans, -EUCLEAN);
1949 			if (!err)
1950 				err = -EUCLEAN;
1951 			break;
1952 		}
1953 
1954 		/*
1955 		 * set reference count to 1, so btrfs_recover_relocation
1956 		 * knows it should resumes merging
1957 		 */
1958 		if (!err)
1959 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1960 		ret = btrfs_update_reloc_root(trans, root);
1961 
1962 		/*
1963 		 * Even if we have an error we need this reloc root back on our
1964 		 * list so we can clean up properly.
1965 		 */
1966 		list_add(&reloc_root->root_list, &reloc_roots);
1967 		btrfs_put_root(root);
1968 
1969 		if (ret) {
1970 			btrfs_abort_transaction(trans, ret);
1971 			if (!err)
1972 				err = ret;
1973 			break;
1974 		}
1975 	}
1976 
1977 	list_splice(&reloc_roots, &rc->reloc_roots);
1978 
1979 	if (!err)
1980 		err = btrfs_commit_transaction(trans);
1981 	else
1982 		btrfs_end_transaction(trans);
1983 	return err;
1984 }
1985 
1986 static noinline_for_stack
1987 void free_reloc_roots(struct list_head *list)
1988 {
1989 	struct btrfs_root *reloc_root, *tmp;
1990 
1991 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1992 		__del_reloc_root(reloc_root);
1993 }
1994 
1995 static noinline_for_stack
1996 void merge_reloc_roots(struct reloc_control *rc)
1997 {
1998 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1999 	struct btrfs_root *root;
2000 	struct btrfs_root *reloc_root;
2001 	LIST_HEAD(reloc_roots);
2002 	int found = 0;
2003 	int ret = 0;
2004 again:
2005 	root = rc->extent_root;
2006 
2007 	/*
2008 	 * this serializes us with btrfs_record_root_in_transaction,
2009 	 * we have to make sure nobody is in the middle of
2010 	 * adding their roots to the list while we are
2011 	 * doing this splice
2012 	 */
2013 	mutex_lock(&fs_info->reloc_mutex);
2014 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2015 	mutex_unlock(&fs_info->reloc_mutex);
2016 
2017 	while (!list_empty(&reloc_roots)) {
2018 		found = 1;
2019 		reloc_root = list_entry(reloc_roots.next,
2020 					struct btrfs_root, root_list);
2021 
2022 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2023 					 false);
2024 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2025 			if (WARN_ON(IS_ERR(root))) {
2026 				/*
2027 				 * For recovery we read the fs roots on mount,
2028 				 * and if we didn't find the root then we marked
2029 				 * the reloc root as a garbage root.  For normal
2030 				 * relocation obviously the root should exist in
2031 				 * memory.  However there's no reason we can't
2032 				 * handle the error properly here just in case.
2033 				 */
2034 				ret = PTR_ERR(root);
2035 				goto out;
2036 			}
2037 			if (WARN_ON(root->reloc_root != reloc_root)) {
2038 				/*
2039 				 * This can happen if on-disk metadata has some
2040 				 * corruption, e.g. bad reloc tree key offset.
2041 				 */
2042 				ret = -EINVAL;
2043 				goto out;
2044 			}
2045 			ret = merge_reloc_root(rc, root);
2046 			btrfs_put_root(root);
2047 			if (ret) {
2048 				if (list_empty(&reloc_root->root_list))
2049 					list_add_tail(&reloc_root->root_list,
2050 						      &reloc_roots);
2051 				goto out;
2052 			}
2053 		} else {
2054 			if (!IS_ERR(root)) {
2055 				if (root->reloc_root == reloc_root) {
2056 					root->reloc_root = NULL;
2057 					btrfs_put_root(reloc_root);
2058 				}
2059 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2060 					  &root->state);
2061 				btrfs_put_root(root);
2062 			}
2063 
2064 			list_del_init(&reloc_root->root_list);
2065 			/* Don't forget to queue this reloc root for cleanup */
2066 			list_add_tail(&reloc_root->reloc_dirty_list,
2067 				      &rc->dirty_subvol_roots);
2068 		}
2069 	}
2070 
2071 	if (found) {
2072 		found = 0;
2073 		goto again;
2074 	}
2075 out:
2076 	if (ret) {
2077 		btrfs_handle_fs_error(fs_info, ret, NULL);
2078 		free_reloc_roots(&reloc_roots);
2079 
2080 		/* new reloc root may be added */
2081 		mutex_lock(&fs_info->reloc_mutex);
2082 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2083 		mutex_unlock(&fs_info->reloc_mutex);
2084 		free_reloc_roots(&reloc_roots);
2085 	}
2086 
2087 	/*
2088 	 * We used to have
2089 	 *
2090 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2091 	 *
2092 	 * here, but it's wrong.  If we fail to start the transaction in
2093 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2094 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2095 	 * fine because we're bailing here, and we hold a reference on the root
2096 	 * for the list that holds it, so these roots will be cleaned up when we
2097 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2098 	 * will be cleaned up on unmount.
2099 	 *
2100 	 * The remaining nodes will be cleaned up by free_reloc_control.
2101 	 */
2102 }
2103 
2104 static void free_block_list(struct rb_root *blocks)
2105 {
2106 	struct tree_block *block;
2107 	struct rb_node *rb_node;
2108 	while ((rb_node = rb_first(blocks))) {
2109 		block = rb_entry(rb_node, struct tree_block, rb_node);
2110 		rb_erase(rb_node, blocks);
2111 		kfree(block);
2112 	}
2113 }
2114 
2115 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2116 				      struct btrfs_root *reloc_root)
2117 {
2118 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2119 	struct btrfs_root *root;
2120 	int ret;
2121 
2122 	if (reloc_root->last_trans == trans->transid)
2123 		return 0;
2124 
2125 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2126 
2127 	/*
2128 	 * This should succeed, since we can't have a reloc root without having
2129 	 * already looked up the actual root and created the reloc root for this
2130 	 * root.
2131 	 *
2132 	 * However if there's some sort of corruption where we have a ref to a
2133 	 * reloc root without a corresponding root this could return ENOENT.
2134 	 */
2135 	if (IS_ERR(root)) {
2136 		ASSERT(0);
2137 		return PTR_ERR(root);
2138 	}
2139 	if (root->reloc_root != reloc_root) {
2140 		ASSERT(0);
2141 		btrfs_err(fs_info,
2142 			  "root %llu has two reloc roots associated with it",
2143 			  reloc_root->root_key.offset);
2144 		btrfs_put_root(root);
2145 		return -EUCLEAN;
2146 	}
2147 	ret = btrfs_record_root_in_trans(trans, root);
2148 	btrfs_put_root(root);
2149 
2150 	return ret;
2151 }
2152 
2153 static noinline_for_stack
2154 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2155 				     struct reloc_control *rc,
2156 				     struct btrfs_backref_node *node,
2157 				     struct btrfs_backref_edge *edges[])
2158 {
2159 	struct btrfs_backref_node *next;
2160 	struct btrfs_root *root;
2161 	int index = 0;
2162 	int ret;
2163 
2164 	next = node;
2165 	while (1) {
2166 		cond_resched();
2167 		next = walk_up_backref(next, edges, &index);
2168 		root = next->root;
2169 
2170 		/*
2171 		 * If there is no root, then our references for this block are
2172 		 * incomplete, as we should be able to walk all the way up to a
2173 		 * block that is owned by a root.
2174 		 *
2175 		 * This path is only for SHAREABLE roots, so if we come upon a
2176 		 * non-SHAREABLE root then we have backrefs that resolve
2177 		 * improperly.
2178 		 *
2179 		 * Both of these cases indicate file system corruption, or a bug
2180 		 * in the backref walking code.
2181 		 */
2182 		if (!root) {
2183 			ASSERT(0);
2184 			btrfs_err(trans->fs_info,
2185 		"bytenr %llu doesn't have a backref path ending in a root",
2186 				  node->bytenr);
2187 			return ERR_PTR(-EUCLEAN);
2188 		}
2189 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2190 			ASSERT(0);
2191 			btrfs_err(trans->fs_info,
2192 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2193 				  node->bytenr);
2194 			return ERR_PTR(-EUCLEAN);
2195 		}
2196 
2197 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2198 			ret = record_reloc_root_in_trans(trans, root);
2199 			if (ret)
2200 				return ERR_PTR(ret);
2201 			break;
2202 		}
2203 
2204 		ret = btrfs_record_root_in_trans(trans, root);
2205 		if (ret)
2206 			return ERR_PTR(ret);
2207 		root = root->reloc_root;
2208 
2209 		/*
2210 		 * We could have raced with another thread which failed, so
2211 		 * root->reloc_root may not be set, return ENOENT in this case.
2212 		 */
2213 		if (!root)
2214 			return ERR_PTR(-ENOENT);
2215 
2216 		if (next->new_bytenr != root->node->start) {
2217 			/*
2218 			 * We just created the reloc root, so we shouldn't have
2219 			 * ->new_bytenr set and this shouldn't be in the changed
2220 			 *  list.  If it is then we have multiple roots pointing
2221 			 *  at the same bytenr which indicates corruption, or
2222 			 *  we've made a mistake in the backref walking code.
2223 			 */
2224 			ASSERT(next->new_bytenr == 0);
2225 			ASSERT(list_empty(&next->list));
2226 			if (next->new_bytenr || !list_empty(&next->list)) {
2227 				btrfs_err(trans->fs_info,
2228 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2229 					  node->bytenr, next->bytenr);
2230 				return ERR_PTR(-EUCLEAN);
2231 			}
2232 
2233 			next->new_bytenr = root->node->start;
2234 			btrfs_put_root(next->root);
2235 			next->root = btrfs_grab_root(root);
2236 			ASSERT(next->root);
2237 			list_add_tail(&next->list,
2238 				      &rc->backref_cache.changed);
2239 			mark_block_processed(rc, next);
2240 			break;
2241 		}
2242 
2243 		WARN_ON(1);
2244 		root = NULL;
2245 		next = walk_down_backref(edges, &index);
2246 		if (!next || next->level <= node->level)
2247 			break;
2248 	}
2249 	if (!root) {
2250 		/*
2251 		 * This can happen if there's fs corruption or if there's a bug
2252 		 * in the backref lookup code.
2253 		 */
2254 		ASSERT(0);
2255 		return ERR_PTR(-ENOENT);
2256 	}
2257 
2258 	next = node;
2259 	/* setup backref node path for btrfs_reloc_cow_block */
2260 	while (1) {
2261 		rc->backref_cache.path[next->level] = next;
2262 		if (--index < 0)
2263 			break;
2264 		next = edges[index]->node[UPPER];
2265 	}
2266 	return root;
2267 }
2268 
2269 /*
2270  * Select a tree root for relocation.
2271  *
2272  * Return NULL if the block is not shareable. We should use do_relocation() in
2273  * this case.
2274  *
2275  * Return a tree root pointer if the block is shareable.
2276  * Return -ENOENT if the block is root of reloc tree.
2277  */
2278 static noinline_for_stack
2279 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2280 {
2281 	struct btrfs_backref_node *next;
2282 	struct btrfs_root *root;
2283 	struct btrfs_root *fs_root = NULL;
2284 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2285 	int index = 0;
2286 
2287 	next = node;
2288 	while (1) {
2289 		cond_resched();
2290 		next = walk_up_backref(next, edges, &index);
2291 		root = next->root;
2292 
2293 		/*
2294 		 * This can occur if we have incomplete extent refs leading all
2295 		 * the way up a particular path, in this case return -EUCLEAN.
2296 		 */
2297 		if (!root)
2298 			return ERR_PTR(-EUCLEAN);
2299 
2300 		/* No other choice for non-shareable tree */
2301 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2302 			return root;
2303 
2304 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2305 			fs_root = root;
2306 
2307 		if (next != node)
2308 			return NULL;
2309 
2310 		next = walk_down_backref(edges, &index);
2311 		if (!next || next->level <= node->level)
2312 			break;
2313 	}
2314 
2315 	if (!fs_root)
2316 		return ERR_PTR(-ENOENT);
2317 	return fs_root;
2318 }
2319 
2320 static noinline_for_stack
2321 u64 calcu_metadata_size(struct reloc_control *rc,
2322 			struct btrfs_backref_node *node, int reserve)
2323 {
2324 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2325 	struct btrfs_backref_node *next = node;
2326 	struct btrfs_backref_edge *edge;
2327 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2328 	u64 num_bytes = 0;
2329 	int index = 0;
2330 
2331 	BUG_ON(reserve && node->processed);
2332 
2333 	while (next) {
2334 		cond_resched();
2335 		while (1) {
2336 			if (next->processed && (reserve || next != node))
2337 				break;
2338 
2339 			num_bytes += fs_info->nodesize;
2340 
2341 			if (list_empty(&next->upper))
2342 				break;
2343 
2344 			edge = list_entry(next->upper.next,
2345 					struct btrfs_backref_edge, list[LOWER]);
2346 			edges[index++] = edge;
2347 			next = edge->node[UPPER];
2348 		}
2349 		next = walk_down_backref(edges, &index);
2350 	}
2351 	return num_bytes;
2352 }
2353 
2354 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2355 				  struct reloc_control *rc,
2356 				  struct btrfs_backref_node *node)
2357 {
2358 	struct btrfs_root *root = rc->extent_root;
2359 	struct btrfs_fs_info *fs_info = root->fs_info;
2360 	u64 num_bytes;
2361 	int ret;
2362 	u64 tmp;
2363 
2364 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2365 
2366 	trans->block_rsv = rc->block_rsv;
2367 	rc->reserved_bytes += num_bytes;
2368 
2369 	/*
2370 	 * We are under a transaction here so we can only do limited flushing.
2371 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2372 	 * transaction and try to refill when we can flush all the things.
2373 	 */
2374 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2375 				     BTRFS_RESERVE_FLUSH_LIMIT);
2376 	if (ret) {
2377 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2378 		while (tmp <= rc->reserved_bytes)
2379 			tmp <<= 1;
2380 		/*
2381 		 * only one thread can access block_rsv at this point,
2382 		 * so we don't need hold lock to protect block_rsv.
2383 		 * we expand more reservation size here to allow enough
2384 		 * space for relocation and we will return earlier in
2385 		 * enospc case.
2386 		 */
2387 		rc->block_rsv->size = tmp + fs_info->nodesize *
2388 				      RELOCATION_RESERVED_NODES;
2389 		return -EAGAIN;
2390 	}
2391 
2392 	return 0;
2393 }
2394 
2395 /*
2396  * relocate a block tree, and then update pointers in upper level
2397  * blocks that reference the block to point to the new location.
2398  *
2399  * if called by link_to_upper, the block has already been relocated.
2400  * in that case this function just updates pointers.
2401  */
2402 static int do_relocation(struct btrfs_trans_handle *trans,
2403 			 struct reloc_control *rc,
2404 			 struct btrfs_backref_node *node,
2405 			 struct btrfs_key *key,
2406 			 struct btrfs_path *path, int lowest)
2407 {
2408 	struct btrfs_backref_node *upper;
2409 	struct btrfs_backref_edge *edge;
2410 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2411 	struct btrfs_root *root;
2412 	struct extent_buffer *eb;
2413 	u32 blocksize;
2414 	u64 bytenr;
2415 	int slot;
2416 	int ret = 0;
2417 
2418 	/*
2419 	 * If we are lowest then this is the first time we're processing this
2420 	 * block, and thus shouldn't have an eb associated with it yet.
2421 	 */
2422 	ASSERT(!lowest || !node->eb);
2423 
2424 	path->lowest_level = node->level + 1;
2425 	rc->backref_cache.path[node->level] = node;
2426 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2427 		struct btrfs_ref ref = { 0 };
2428 
2429 		cond_resched();
2430 
2431 		upper = edge->node[UPPER];
2432 		root = select_reloc_root(trans, rc, upper, edges);
2433 		if (IS_ERR(root)) {
2434 			ret = PTR_ERR(root);
2435 			goto next;
2436 		}
2437 
2438 		if (upper->eb && !upper->locked) {
2439 			if (!lowest) {
2440 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2441 				if (ret < 0)
2442 					goto next;
2443 				BUG_ON(ret);
2444 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2445 				if (node->eb->start == bytenr)
2446 					goto next;
2447 			}
2448 			btrfs_backref_drop_node_buffer(upper);
2449 		}
2450 
2451 		if (!upper->eb) {
2452 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2453 			if (ret) {
2454 				if (ret > 0)
2455 					ret = -ENOENT;
2456 
2457 				btrfs_release_path(path);
2458 				break;
2459 			}
2460 
2461 			if (!upper->eb) {
2462 				upper->eb = path->nodes[upper->level];
2463 				path->nodes[upper->level] = NULL;
2464 			} else {
2465 				BUG_ON(upper->eb != path->nodes[upper->level]);
2466 			}
2467 
2468 			upper->locked = 1;
2469 			path->locks[upper->level] = 0;
2470 
2471 			slot = path->slots[upper->level];
2472 			btrfs_release_path(path);
2473 		} else {
2474 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2475 			if (ret < 0)
2476 				goto next;
2477 			BUG_ON(ret);
2478 		}
2479 
2480 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2481 		if (lowest) {
2482 			if (bytenr != node->bytenr) {
2483 				btrfs_err(root->fs_info,
2484 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2485 					  bytenr, node->bytenr, slot,
2486 					  upper->eb->start);
2487 				ret = -EIO;
2488 				goto next;
2489 			}
2490 		} else {
2491 			if (node->eb->start == bytenr)
2492 				goto next;
2493 		}
2494 
2495 		blocksize = root->fs_info->nodesize;
2496 		eb = btrfs_read_node_slot(upper->eb, slot);
2497 		if (IS_ERR(eb)) {
2498 			ret = PTR_ERR(eb);
2499 			goto next;
2500 		}
2501 		btrfs_tree_lock(eb);
2502 
2503 		if (!node->eb) {
2504 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2505 					      slot, &eb, BTRFS_NESTING_COW);
2506 			btrfs_tree_unlock(eb);
2507 			free_extent_buffer(eb);
2508 			if (ret < 0)
2509 				goto next;
2510 			/*
2511 			 * We've just COWed this block, it should have updated
2512 			 * the correct backref node entry.
2513 			 */
2514 			ASSERT(node->eb == eb);
2515 		} else {
2516 			btrfs_set_node_blockptr(upper->eb, slot,
2517 						node->eb->start);
2518 			btrfs_set_node_ptr_generation(upper->eb, slot,
2519 						      trans->transid);
2520 			btrfs_mark_buffer_dirty(trans, upper->eb);
2521 
2522 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2523 					       node->eb->start, blocksize,
2524 					       upper->eb->start);
2525 			btrfs_init_tree_ref(&ref, node->level,
2526 					    btrfs_header_owner(upper->eb),
2527 					    root->root_key.objectid, false);
2528 			ret = btrfs_inc_extent_ref(trans, &ref);
2529 			if (!ret)
2530 				ret = btrfs_drop_subtree(trans, root, eb,
2531 							 upper->eb);
2532 			if (ret)
2533 				btrfs_abort_transaction(trans, ret);
2534 		}
2535 next:
2536 		if (!upper->pending)
2537 			btrfs_backref_drop_node_buffer(upper);
2538 		else
2539 			btrfs_backref_unlock_node_buffer(upper);
2540 		if (ret)
2541 			break;
2542 	}
2543 
2544 	if (!ret && node->pending) {
2545 		btrfs_backref_drop_node_buffer(node);
2546 		list_move_tail(&node->list, &rc->backref_cache.changed);
2547 		node->pending = 0;
2548 	}
2549 
2550 	path->lowest_level = 0;
2551 
2552 	/*
2553 	 * We should have allocated all of our space in the block rsv and thus
2554 	 * shouldn't ENOSPC.
2555 	 */
2556 	ASSERT(ret != -ENOSPC);
2557 	return ret;
2558 }
2559 
2560 static int link_to_upper(struct btrfs_trans_handle *trans,
2561 			 struct reloc_control *rc,
2562 			 struct btrfs_backref_node *node,
2563 			 struct btrfs_path *path)
2564 {
2565 	struct btrfs_key key;
2566 
2567 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2568 	return do_relocation(trans, rc, node, &key, path, 0);
2569 }
2570 
2571 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2572 				struct reloc_control *rc,
2573 				struct btrfs_path *path, int err)
2574 {
2575 	LIST_HEAD(list);
2576 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2577 	struct btrfs_backref_node *node;
2578 	int level;
2579 	int ret;
2580 
2581 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2582 		while (!list_empty(&cache->pending[level])) {
2583 			node = list_entry(cache->pending[level].next,
2584 					  struct btrfs_backref_node, list);
2585 			list_move_tail(&node->list, &list);
2586 			BUG_ON(!node->pending);
2587 
2588 			if (!err) {
2589 				ret = link_to_upper(trans, rc, node, path);
2590 				if (ret < 0)
2591 					err = ret;
2592 			}
2593 		}
2594 		list_splice_init(&list, &cache->pending[level]);
2595 	}
2596 	return err;
2597 }
2598 
2599 /*
2600  * mark a block and all blocks directly/indirectly reference the block
2601  * as processed.
2602  */
2603 static void update_processed_blocks(struct reloc_control *rc,
2604 				    struct btrfs_backref_node *node)
2605 {
2606 	struct btrfs_backref_node *next = node;
2607 	struct btrfs_backref_edge *edge;
2608 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2609 	int index = 0;
2610 
2611 	while (next) {
2612 		cond_resched();
2613 		while (1) {
2614 			if (next->processed)
2615 				break;
2616 
2617 			mark_block_processed(rc, next);
2618 
2619 			if (list_empty(&next->upper))
2620 				break;
2621 
2622 			edge = list_entry(next->upper.next,
2623 					struct btrfs_backref_edge, list[LOWER]);
2624 			edges[index++] = edge;
2625 			next = edge->node[UPPER];
2626 		}
2627 		next = walk_down_backref(edges, &index);
2628 	}
2629 }
2630 
2631 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2632 {
2633 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2634 
2635 	if (test_range_bit(&rc->processed_blocks, bytenr,
2636 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2637 		return 1;
2638 	return 0;
2639 }
2640 
2641 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2642 			      struct tree_block *block)
2643 {
2644 	struct btrfs_tree_parent_check check = {
2645 		.level = block->level,
2646 		.owner_root = block->owner,
2647 		.transid = block->key.offset
2648 	};
2649 	struct extent_buffer *eb;
2650 
2651 	eb = read_tree_block(fs_info, block->bytenr, &check);
2652 	if (IS_ERR(eb))
2653 		return PTR_ERR(eb);
2654 	if (!extent_buffer_uptodate(eb)) {
2655 		free_extent_buffer(eb);
2656 		return -EIO;
2657 	}
2658 	if (block->level == 0)
2659 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2660 	else
2661 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2662 	free_extent_buffer(eb);
2663 	block->key_ready = 1;
2664 	return 0;
2665 }
2666 
2667 /*
2668  * helper function to relocate a tree block
2669  */
2670 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2671 				struct reloc_control *rc,
2672 				struct btrfs_backref_node *node,
2673 				struct btrfs_key *key,
2674 				struct btrfs_path *path)
2675 {
2676 	struct btrfs_root *root;
2677 	int ret = 0;
2678 
2679 	if (!node)
2680 		return 0;
2681 
2682 	/*
2683 	 * If we fail here we want to drop our backref_node because we are going
2684 	 * to start over and regenerate the tree for it.
2685 	 */
2686 	ret = reserve_metadata_space(trans, rc, node);
2687 	if (ret)
2688 		goto out;
2689 
2690 	BUG_ON(node->processed);
2691 	root = select_one_root(node);
2692 	if (IS_ERR(root)) {
2693 		ret = PTR_ERR(root);
2694 
2695 		/* See explanation in select_one_root for the -EUCLEAN case. */
2696 		ASSERT(ret == -ENOENT);
2697 		if (ret == -ENOENT) {
2698 			ret = 0;
2699 			update_processed_blocks(rc, node);
2700 		}
2701 		goto out;
2702 	}
2703 
2704 	if (root) {
2705 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2706 			/*
2707 			 * This block was the root block of a root, and this is
2708 			 * the first time we're processing the block and thus it
2709 			 * should not have had the ->new_bytenr modified and
2710 			 * should have not been included on the changed list.
2711 			 *
2712 			 * However in the case of corruption we could have
2713 			 * multiple refs pointing to the same block improperly,
2714 			 * and thus we would trip over these checks.  ASSERT()
2715 			 * for the developer case, because it could indicate a
2716 			 * bug in the backref code, however error out for a
2717 			 * normal user in the case of corruption.
2718 			 */
2719 			ASSERT(node->new_bytenr == 0);
2720 			ASSERT(list_empty(&node->list));
2721 			if (node->new_bytenr || !list_empty(&node->list)) {
2722 				btrfs_err(root->fs_info,
2723 				  "bytenr %llu has improper references to it",
2724 					  node->bytenr);
2725 				ret = -EUCLEAN;
2726 				goto out;
2727 			}
2728 			ret = btrfs_record_root_in_trans(trans, root);
2729 			if (ret)
2730 				goto out;
2731 			/*
2732 			 * Another thread could have failed, need to check if we
2733 			 * have reloc_root actually set.
2734 			 */
2735 			if (!root->reloc_root) {
2736 				ret = -ENOENT;
2737 				goto out;
2738 			}
2739 			root = root->reloc_root;
2740 			node->new_bytenr = root->node->start;
2741 			btrfs_put_root(node->root);
2742 			node->root = btrfs_grab_root(root);
2743 			ASSERT(node->root);
2744 			list_add_tail(&node->list, &rc->backref_cache.changed);
2745 		} else {
2746 			path->lowest_level = node->level;
2747 			if (root == root->fs_info->chunk_root)
2748 				btrfs_reserve_chunk_metadata(trans, false);
2749 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2750 			btrfs_release_path(path);
2751 			if (root == root->fs_info->chunk_root)
2752 				btrfs_trans_release_chunk_metadata(trans);
2753 			if (ret > 0)
2754 				ret = 0;
2755 		}
2756 		if (!ret)
2757 			update_processed_blocks(rc, node);
2758 	} else {
2759 		ret = do_relocation(trans, rc, node, key, path, 1);
2760 	}
2761 out:
2762 	if (ret || node->level == 0 || node->cowonly)
2763 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2764 	return ret;
2765 }
2766 
2767 /*
2768  * relocate a list of blocks
2769  */
2770 static noinline_for_stack
2771 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2772 			 struct reloc_control *rc, struct rb_root *blocks)
2773 {
2774 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2775 	struct btrfs_backref_node *node;
2776 	struct btrfs_path *path;
2777 	struct tree_block *block;
2778 	struct tree_block *next;
2779 	int ret;
2780 	int err = 0;
2781 
2782 	path = btrfs_alloc_path();
2783 	if (!path) {
2784 		err = -ENOMEM;
2785 		goto out_free_blocks;
2786 	}
2787 
2788 	/* Kick in readahead for tree blocks with missing keys */
2789 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2790 		if (!block->key_ready)
2791 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2792 						   block->owner, 0,
2793 						   block->level);
2794 	}
2795 
2796 	/* Get first keys */
2797 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2798 		if (!block->key_ready) {
2799 			err = get_tree_block_key(fs_info, block);
2800 			if (err)
2801 				goto out_free_path;
2802 		}
2803 	}
2804 
2805 	/* Do tree relocation */
2806 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2807 		node = build_backref_tree(trans, rc, &block->key,
2808 					  block->level, block->bytenr);
2809 		if (IS_ERR(node)) {
2810 			err = PTR_ERR(node);
2811 			goto out;
2812 		}
2813 
2814 		ret = relocate_tree_block(trans, rc, node, &block->key,
2815 					  path);
2816 		if (ret < 0) {
2817 			err = ret;
2818 			break;
2819 		}
2820 	}
2821 out:
2822 	err = finish_pending_nodes(trans, rc, path, err);
2823 
2824 out_free_path:
2825 	btrfs_free_path(path);
2826 out_free_blocks:
2827 	free_block_list(blocks);
2828 	return err;
2829 }
2830 
2831 static noinline_for_stack int prealloc_file_extent_cluster(
2832 				struct btrfs_inode *inode,
2833 				struct file_extent_cluster *cluster)
2834 {
2835 	u64 alloc_hint = 0;
2836 	u64 start;
2837 	u64 end;
2838 	u64 offset = inode->index_cnt;
2839 	u64 num_bytes;
2840 	int nr;
2841 	int ret = 0;
2842 	u64 i_size = i_size_read(&inode->vfs_inode);
2843 	u64 prealloc_start = cluster->start - offset;
2844 	u64 prealloc_end = cluster->end - offset;
2845 	u64 cur_offset = prealloc_start;
2846 
2847 	/*
2848 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2849 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2850 	 * btrfs_do_readpage() call of previously relocated file cluster.
2851 	 *
2852 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2853 	 * will skip the read, and relocate_one_page() will later writeback
2854 	 * the padding zeros as new data, causing data corruption.
2855 	 *
2856 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2857 	 */
2858 	if (!PAGE_ALIGNED(i_size)) {
2859 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2860 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2861 		const u32 sectorsize = fs_info->sectorsize;
2862 		struct page *page;
2863 
2864 		ASSERT(sectorsize < PAGE_SIZE);
2865 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2866 
2867 		/*
2868 		 * Subpage can't handle page with DIRTY but without UPTODATE
2869 		 * bit as it can lead to the following deadlock:
2870 		 *
2871 		 * btrfs_read_folio()
2872 		 * | Page already *locked*
2873 		 * |- btrfs_lock_and_flush_ordered_range()
2874 		 *    |- btrfs_start_ordered_extent()
2875 		 *       |- extent_write_cache_pages()
2876 		 *          |- lock_page()
2877 		 *             We try to lock the page we already hold.
2878 		 *
2879 		 * Here we just writeback the whole data reloc inode, so that
2880 		 * we will be ensured to have no dirty range in the page, and
2881 		 * are safe to clear the uptodate bits.
2882 		 *
2883 		 * This shouldn't cause too much overhead, as we need to write
2884 		 * the data back anyway.
2885 		 */
2886 		ret = filemap_write_and_wait(mapping);
2887 		if (ret < 0)
2888 			return ret;
2889 
2890 		clear_extent_bits(&inode->io_tree, i_size,
2891 				  round_up(i_size, PAGE_SIZE) - 1,
2892 				  EXTENT_UPTODATE);
2893 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2894 		/*
2895 		 * If page is freed we don't need to do anything then, as we
2896 		 * will re-read the whole page anyway.
2897 		 */
2898 		if (page) {
2899 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2900 					round_up(i_size, PAGE_SIZE) - i_size);
2901 			unlock_page(page);
2902 			put_page(page);
2903 		}
2904 	}
2905 
2906 	BUG_ON(cluster->start != cluster->boundary[0]);
2907 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2908 					      prealloc_end + 1 - prealloc_start);
2909 	if (ret)
2910 		return ret;
2911 
2912 	btrfs_inode_lock(inode, 0);
2913 	for (nr = 0; nr < cluster->nr; nr++) {
2914 		struct extent_state *cached_state = NULL;
2915 
2916 		start = cluster->boundary[nr] - offset;
2917 		if (nr + 1 < cluster->nr)
2918 			end = cluster->boundary[nr + 1] - 1 - offset;
2919 		else
2920 			end = cluster->end - offset;
2921 
2922 		lock_extent(&inode->io_tree, start, end, &cached_state);
2923 		num_bytes = end + 1 - start;
2924 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2925 						num_bytes, num_bytes,
2926 						end + 1, &alloc_hint);
2927 		cur_offset = end + 1;
2928 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2929 		if (ret)
2930 			break;
2931 	}
2932 	btrfs_inode_unlock(inode, 0);
2933 
2934 	if (cur_offset < prealloc_end)
2935 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2936 					       prealloc_end + 1 - cur_offset);
2937 	return ret;
2938 }
2939 
2940 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2941 				u64 start, u64 end, u64 block_start)
2942 {
2943 	struct extent_map *em;
2944 	struct extent_state *cached_state = NULL;
2945 	int ret = 0;
2946 
2947 	em = alloc_extent_map();
2948 	if (!em)
2949 		return -ENOMEM;
2950 
2951 	em->start = start;
2952 	em->len = end + 1 - start;
2953 	em->block_len = em->len;
2954 	em->block_start = block_start;
2955 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2956 
2957 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2958 	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2959 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2960 	free_extent_map(em);
2961 
2962 	return ret;
2963 }
2964 
2965 /*
2966  * Allow error injection to test balance/relocation cancellation
2967  */
2968 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2969 {
2970 	return atomic_read(&fs_info->balance_cancel_req) ||
2971 		atomic_read(&fs_info->reloc_cancel_req) ||
2972 		fatal_signal_pending(current);
2973 }
2974 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2975 
2976 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2977 				    int cluster_nr)
2978 {
2979 	/* Last extent, use cluster end directly */
2980 	if (cluster_nr >= cluster->nr - 1)
2981 		return cluster->end;
2982 
2983 	/* Use next boundary start*/
2984 	return cluster->boundary[cluster_nr + 1] - 1;
2985 }
2986 
2987 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2988 			     struct file_extent_cluster *cluster,
2989 			     int *cluster_nr, unsigned long page_index)
2990 {
2991 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992 	u64 offset = BTRFS_I(inode)->index_cnt;
2993 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2994 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2995 	struct page *page;
2996 	u64 page_start;
2997 	u64 page_end;
2998 	u64 cur;
2999 	int ret;
3000 
3001 	ASSERT(page_index <= last_index);
3002 	page = find_lock_page(inode->i_mapping, page_index);
3003 	if (!page) {
3004 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3005 				page_index, last_index + 1 - page_index);
3006 		page = find_or_create_page(inode->i_mapping, page_index, mask);
3007 		if (!page)
3008 			return -ENOMEM;
3009 	}
3010 
3011 	if (PageReadahead(page))
3012 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
3013 				page_folio(page), page_index,
3014 				last_index + 1 - page_index);
3015 
3016 	if (!PageUptodate(page)) {
3017 		btrfs_read_folio(NULL, page_folio(page));
3018 		lock_page(page);
3019 		if (!PageUptodate(page)) {
3020 			ret = -EIO;
3021 			goto release_page;
3022 		}
3023 	}
3024 
3025 	/*
3026 	 * We could have lost page private when we dropped the lock to read the
3027 	 * page above, make sure we set_page_extent_mapped here so we have any
3028 	 * of the subpage blocksize stuff we need in place.
3029 	 */
3030 	ret = set_page_extent_mapped(page);
3031 	if (ret < 0)
3032 		goto release_page;
3033 
3034 	page_start = page_offset(page);
3035 	page_end = page_start + PAGE_SIZE - 1;
3036 
3037 	/*
3038 	 * Start from the cluster, as for subpage case, the cluster can start
3039 	 * inside the page.
3040 	 */
3041 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3042 	while (cur <= page_end) {
3043 		struct extent_state *cached_state = NULL;
3044 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3045 		u64 extent_end = get_cluster_boundary_end(cluster,
3046 						*cluster_nr) - offset;
3047 		u64 clamped_start = max(page_start, extent_start);
3048 		u64 clamped_end = min(page_end, extent_end);
3049 		u32 clamped_len = clamped_end + 1 - clamped_start;
3050 
3051 		/* Reserve metadata for this range */
3052 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3053 						      clamped_len, clamped_len,
3054 						      false);
3055 		if (ret)
3056 			goto release_page;
3057 
3058 		/* Mark the range delalloc and dirty for later writeback */
3059 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3060 			    &cached_state);
3061 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3062 						clamped_end, 0, &cached_state);
3063 		if (ret) {
3064 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3065 					 clamped_start, clamped_end,
3066 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3067 					 &cached_state);
3068 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3069 							clamped_len, true);
3070 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3071 						       clamped_len);
3072 			goto release_page;
3073 		}
3074 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3075 
3076 		/*
3077 		 * Set the boundary if it's inside the page.
3078 		 * Data relocation requires the destination extents to have the
3079 		 * same size as the source.
3080 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3081 		 * with previous extent.
3082 		 */
3083 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3084 			     page_start, PAGE_SIZE)) {
3085 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3086 						offset;
3087 			u64 boundary_end = boundary_start +
3088 					   fs_info->sectorsize - 1;
3089 
3090 			set_extent_bit(&BTRFS_I(inode)->io_tree,
3091 				       boundary_start, boundary_end,
3092 				       EXTENT_BOUNDARY, NULL);
3093 		}
3094 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3095 			      &cached_state);
3096 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3097 		cur += clamped_len;
3098 
3099 		/* Crossed extent end, go to next extent */
3100 		if (cur >= extent_end) {
3101 			(*cluster_nr)++;
3102 			/* Just finished the last extent of the cluster, exit. */
3103 			if (*cluster_nr >= cluster->nr)
3104 				break;
3105 		}
3106 	}
3107 	unlock_page(page);
3108 	put_page(page);
3109 
3110 	balance_dirty_pages_ratelimited(inode->i_mapping);
3111 	btrfs_throttle(fs_info);
3112 	if (btrfs_should_cancel_balance(fs_info))
3113 		ret = -ECANCELED;
3114 	return ret;
3115 
3116 release_page:
3117 	unlock_page(page);
3118 	put_page(page);
3119 	return ret;
3120 }
3121 
3122 static int relocate_file_extent_cluster(struct inode *inode,
3123 					struct file_extent_cluster *cluster)
3124 {
3125 	u64 offset = BTRFS_I(inode)->index_cnt;
3126 	unsigned long index;
3127 	unsigned long last_index;
3128 	struct file_ra_state *ra;
3129 	int cluster_nr = 0;
3130 	int ret = 0;
3131 
3132 	if (!cluster->nr)
3133 		return 0;
3134 
3135 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3136 	if (!ra)
3137 		return -ENOMEM;
3138 
3139 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3140 	if (ret)
3141 		goto out;
3142 
3143 	file_ra_state_init(ra, inode->i_mapping);
3144 
3145 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3146 				   cluster->end - offset, cluster->start);
3147 	if (ret)
3148 		goto out;
3149 
3150 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3151 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3152 	     index <= last_index && !ret; index++)
3153 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3154 	if (ret == 0)
3155 		WARN_ON(cluster_nr != cluster->nr);
3156 out:
3157 	kfree(ra);
3158 	return ret;
3159 }
3160 
3161 static noinline_for_stack
3162 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3163 			 struct file_extent_cluster *cluster)
3164 {
3165 	int ret;
3166 
3167 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3168 		ret = relocate_file_extent_cluster(inode, cluster);
3169 		if (ret)
3170 			return ret;
3171 		cluster->nr = 0;
3172 	}
3173 
3174 	if (!cluster->nr)
3175 		cluster->start = extent_key->objectid;
3176 	else
3177 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3178 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3179 	cluster->boundary[cluster->nr] = extent_key->objectid;
3180 	cluster->nr++;
3181 
3182 	if (cluster->nr >= MAX_EXTENTS) {
3183 		ret = relocate_file_extent_cluster(inode, cluster);
3184 		if (ret)
3185 			return ret;
3186 		cluster->nr = 0;
3187 	}
3188 	return 0;
3189 }
3190 
3191 /*
3192  * helper to add a tree block to the list.
3193  * the major work is getting the generation and level of the block
3194  */
3195 static int add_tree_block(struct reloc_control *rc,
3196 			  struct btrfs_key *extent_key,
3197 			  struct btrfs_path *path,
3198 			  struct rb_root *blocks)
3199 {
3200 	struct extent_buffer *eb;
3201 	struct btrfs_extent_item *ei;
3202 	struct btrfs_tree_block_info *bi;
3203 	struct tree_block *block;
3204 	struct rb_node *rb_node;
3205 	u32 item_size;
3206 	int level = -1;
3207 	u64 generation;
3208 	u64 owner = 0;
3209 
3210 	eb =  path->nodes[0];
3211 	item_size = btrfs_item_size(eb, path->slots[0]);
3212 
3213 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3214 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3215 		unsigned long ptr = 0, end;
3216 
3217 		ei = btrfs_item_ptr(eb, path->slots[0],
3218 				struct btrfs_extent_item);
3219 		end = (unsigned long)ei + item_size;
3220 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3221 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3222 			level = btrfs_tree_block_level(eb, bi);
3223 			ptr = (unsigned long)(bi + 1);
3224 		} else {
3225 			level = (int)extent_key->offset;
3226 			ptr = (unsigned long)(ei + 1);
3227 		}
3228 		generation = btrfs_extent_generation(eb, ei);
3229 
3230 		/*
3231 		 * We're reading random blocks without knowing their owner ahead
3232 		 * of time.  This is ok most of the time, as all reloc roots and
3233 		 * fs roots have the same lock type.  However normal trees do
3234 		 * not, and the only way to know ahead of time is to read the
3235 		 * inline ref offset.  We know it's an fs root if
3236 		 *
3237 		 * 1. There's more than one ref.
3238 		 * 2. There's a SHARED_DATA_REF_KEY set.
3239 		 * 3. FULL_BACKREF is set on the flags.
3240 		 *
3241 		 * Otherwise it's safe to assume that the ref offset == the
3242 		 * owner of this block, so we can use that when calling
3243 		 * read_tree_block.
3244 		 */
3245 		if (btrfs_extent_refs(eb, ei) == 1 &&
3246 		    !(btrfs_extent_flags(eb, ei) &
3247 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3248 		    ptr < end) {
3249 			struct btrfs_extent_inline_ref *iref;
3250 			int type;
3251 
3252 			iref = (struct btrfs_extent_inline_ref *)ptr;
3253 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3254 							BTRFS_REF_TYPE_BLOCK);
3255 			if (type == BTRFS_REF_TYPE_INVALID)
3256 				return -EINVAL;
3257 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3258 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3259 		}
3260 	} else {
3261 		btrfs_print_leaf(eb);
3262 		btrfs_err(rc->block_group->fs_info,
3263 			  "unrecognized tree backref at tree block %llu slot %u",
3264 			  eb->start, path->slots[0]);
3265 		btrfs_release_path(path);
3266 		return -EUCLEAN;
3267 	}
3268 
3269 	btrfs_release_path(path);
3270 
3271 	BUG_ON(level == -1);
3272 
3273 	block = kmalloc(sizeof(*block), GFP_NOFS);
3274 	if (!block)
3275 		return -ENOMEM;
3276 
3277 	block->bytenr = extent_key->objectid;
3278 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3279 	block->key.offset = generation;
3280 	block->level = level;
3281 	block->key_ready = 0;
3282 	block->owner = owner;
3283 
3284 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3285 	if (rb_node)
3286 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3287 				    -EEXIST);
3288 
3289 	return 0;
3290 }
3291 
3292 /*
3293  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3294  */
3295 static int __add_tree_block(struct reloc_control *rc,
3296 			    u64 bytenr, u32 blocksize,
3297 			    struct rb_root *blocks)
3298 {
3299 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3300 	struct btrfs_path *path;
3301 	struct btrfs_key key;
3302 	int ret;
3303 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3304 
3305 	if (tree_block_processed(bytenr, rc))
3306 		return 0;
3307 
3308 	if (rb_simple_search(blocks, bytenr))
3309 		return 0;
3310 
3311 	path = btrfs_alloc_path();
3312 	if (!path)
3313 		return -ENOMEM;
3314 again:
3315 	key.objectid = bytenr;
3316 	if (skinny) {
3317 		key.type = BTRFS_METADATA_ITEM_KEY;
3318 		key.offset = (u64)-1;
3319 	} else {
3320 		key.type = BTRFS_EXTENT_ITEM_KEY;
3321 		key.offset = blocksize;
3322 	}
3323 
3324 	path->search_commit_root = 1;
3325 	path->skip_locking = 1;
3326 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3327 	if (ret < 0)
3328 		goto out;
3329 
3330 	if (ret > 0 && skinny) {
3331 		if (path->slots[0]) {
3332 			path->slots[0]--;
3333 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3334 					      path->slots[0]);
3335 			if (key.objectid == bytenr &&
3336 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3337 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3338 			      key.offset == blocksize)))
3339 				ret = 0;
3340 		}
3341 
3342 		if (ret) {
3343 			skinny = false;
3344 			btrfs_release_path(path);
3345 			goto again;
3346 		}
3347 	}
3348 	if (ret) {
3349 		ASSERT(ret == 1);
3350 		btrfs_print_leaf(path->nodes[0]);
3351 		btrfs_err(fs_info,
3352 	     "tree block extent item (%llu) is not found in extent tree",
3353 		     bytenr);
3354 		WARN_ON(1);
3355 		ret = -EINVAL;
3356 		goto out;
3357 	}
3358 
3359 	ret = add_tree_block(rc, &key, path, blocks);
3360 out:
3361 	btrfs_free_path(path);
3362 	return ret;
3363 }
3364 
3365 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3366 				    struct btrfs_block_group *block_group,
3367 				    struct inode *inode,
3368 				    u64 ino)
3369 {
3370 	struct btrfs_root *root = fs_info->tree_root;
3371 	struct btrfs_trans_handle *trans;
3372 	int ret = 0;
3373 
3374 	if (inode)
3375 		goto truncate;
3376 
3377 	inode = btrfs_iget(fs_info->sb, ino, root);
3378 	if (IS_ERR(inode))
3379 		return -ENOENT;
3380 
3381 truncate:
3382 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3383 						 &fs_info->global_block_rsv);
3384 	if (ret)
3385 		goto out;
3386 
3387 	trans = btrfs_join_transaction(root);
3388 	if (IS_ERR(trans)) {
3389 		ret = PTR_ERR(trans);
3390 		goto out;
3391 	}
3392 
3393 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3394 
3395 	btrfs_end_transaction(trans);
3396 	btrfs_btree_balance_dirty(fs_info);
3397 out:
3398 	iput(inode);
3399 	return ret;
3400 }
3401 
3402 /*
3403  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3404  * cache inode, to avoid free space cache data extent blocking data relocation.
3405  */
3406 static int delete_v1_space_cache(struct extent_buffer *leaf,
3407 				 struct btrfs_block_group *block_group,
3408 				 u64 data_bytenr)
3409 {
3410 	u64 space_cache_ino;
3411 	struct btrfs_file_extent_item *ei;
3412 	struct btrfs_key key;
3413 	bool found = false;
3414 	int i;
3415 	int ret;
3416 
3417 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3418 		return 0;
3419 
3420 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3421 		u8 type;
3422 
3423 		btrfs_item_key_to_cpu(leaf, &key, i);
3424 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3425 			continue;
3426 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3427 		type = btrfs_file_extent_type(leaf, ei);
3428 
3429 		if ((type == BTRFS_FILE_EXTENT_REG ||
3430 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3431 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3432 			found = true;
3433 			space_cache_ino = key.objectid;
3434 			break;
3435 		}
3436 	}
3437 	if (!found)
3438 		return -ENOENT;
3439 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3440 					space_cache_ino);
3441 	return ret;
3442 }
3443 
3444 /*
3445  * helper to find all tree blocks that reference a given data extent
3446  */
3447 static noinline_for_stack
3448 int add_data_references(struct reloc_control *rc,
3449 			struct btrfs_key *extent_key,
3450 			struct btrfs_path *path,
3451 			struct rb_root *blocks)
3452 {
3453 	struct btrfs_backref_walk_ctx ctx = { 0 };
3454 	struct ulist_iterator leaf_uiter;
3455 	struct ulist_node *ref_node = NULL;
3456 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3457 	int ret = 0;
3458 
3459 	btrfs_release_path(path);
3460 
3461 	ctx.bytenr = extent_key->objectid;
3462 	ctx.skip_inode_ref_list = true;
3463 	ctx.fs_info = rc->extent_root->fs_info;
3464 
3465 	ret = btrfs_find_all_leafs(&ctx);
3466 	if (ret < 0)
3467 		return ret;
3468 
3469 	ULIST_ITER_INIT(&leaf_uiter);
3470 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3471 		struct btrfs_tree_parent_check check = { 0 };
3472 		struct extent_buffer *eb;
3473 
3474 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3475 		if (IS_ERR(eb)) {
3476 			ret = PTR_ERR(eb);
3477 			break;
3478 		}
3479 		ret = delete_v1_space_cache(eb, rc->block_group,
3480 					    extent_key->objectid);
3481 		free_extent_buffer(eb);
3482 		if (ret < 0)
3483 			break;
3484 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3485 		if (ret < 0)
3486 			break;
3487 	}
3488 	if (ret < 0)
3489 		free_block_list(blocks);
3490 	ulist_free(ctx.refs);
3491 	return ret;
3492 }
3493 
3494 /*
3495  * helper to find next unprocessed extent
3496  */
3497 static noinline_for_stack
3498 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3499 		     struct btrfs_key *extent_key)
3500 {
3501 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3502 	struct btrfs_key key;
3503 	struct extent_buffer *leaf;
3504 	u64 start, end, last;
3505 	int ret;
3506 
3507 	last = rc->block_group->start + rc->block_group->length;
3508 	while (1) {
3509 		bool block_found;
3510 
3511 		cond_resched();
3512 		if (rc->search_start >= last) {
3513 			ret = 1;
3514 			break;
3515 		}
3516 
3517 		key.objectid = rc->search_start;
3518 		key.type = BTRFS_EXTENT_ITEM_KEY;
3519 		key.offset = 0;
3520 
3521 		path->search_commit_root = 1;
3522 		path->skip_locking = 1;
3523 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3524 					0, 0);
3525 		if (ret < 0)
3526 			break;
3527 next:
3528 		leaf = path->nodes[0];
3529 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3530 			ret = btrfs_next_leaf(rc->extent_root, path);
3531 			if (ret != 0)
3532 				break;
3533 			leaf = path->nodes[0];
3534 		}
3535 
3536 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3537 		if (key.objectid >= last) {
3538 			ret = 1;
3539 			break;
3540 		}
3541 
3542 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3543 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3544 			path->slots[0]++;
3545 			goto next;
3546 		}
3547 
3548 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3549 		    key.objectid + key.offset <= rc->search_start) {
3550 			path->slots[0]++;
3551 			goto next;
3552 		}
3553 
3554 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3555 		    key.objectid + fs_info->nodesize <=
3556 		    rc->search_start) {
3557 			path->slots[0]++;
3558 			goto next;
3559 		}
3560 
3561 		block_found = find_first_extent_bit(&rc->processed_blocks,
3562 						    key.objectid, &start, &end,
3563 						    EXTENT_DIRTY, NULL);
3564 
3565 		if (block_found && start <= key.objectid) {
3566 			btrfs_release_path(path);
3567 			rc->search_start = end + 1;
3568 		} else {
3569 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3570 				rc->search_start = key.objectid + key.offset;
3571 			else
3572 				rc->search_start = key.objectid +
3573 					fs_info->nodesize;
3574 			memcpy(extent_key, &key, sizeof(key));
3575 			return 0;
3576 		}
3577 	}
3578 	btrfs_release_path(path);
3579 	return ret;
3580 }
3581 
3582 static void set_reloc_control(struct reloc_control *rc)
3583 {
3584 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3585 
3586 	mutex_lock(&fs_info->reloc_mutex);
3587 	fs_info->reloc_ctl = rc;
3588 	mutex_unlock(&fs_info->reloc_mutex);
3589 }
3590 
3591 static void unset_reloc_control(struct reloc_control *rc)
3592 {
3593 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3594 
3595 	mutex_lock(&fs_info->reloc_mutex);
3596 	fs_info->reloc_ctl = NULL;
3597 	mutex_unlock(&fs_info->reloc_mutex);
3598 }
3599 
3600 static noinline_for_stack
3601 int prepare_to_relocate(struct reloc_control *rc)
3602 {
3603 	struct btrfs_trans_handle *trans;
3604 	int ret;
3605 
3606 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3607 					      BTRFS_BLOCK_RSV_TEMP);
3608 	if (!rc->block_rsv)
3609 		return -ENOMEM;
3610 
3611 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3612 	rc->search_start = rc->block_group->start;
3613 	rc->extents_found = 0;
3614 	rc->nodes_relocated = 0;
3615 	rc->merging_rsv_size = 0;
3616 	rc->reserved_bytes = 0;
3617 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3618 			      RELOCATION_RESERVED_NODES;
3619 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3620 				     rc->block_rsv, rc->block_rsv->size,
3621 				     BTRFS_RESERVE_FLUSH_ALL);
3622 	if (ret)
3623 		return ret;
3624 
3625 	rc->create_reloc_tree = 1;
3626 	set_reloc_control(rc);
3627 
3628 	trans = btrfs_join_transaction(rc->extent_root);
3629 	if (IS_ERR(trans)) {
3630 		unset_reloc_control(rc);
3631 		/*
3632 		 * extent tree is not a ref_cow tree and has no reloc_root to
3633 		 * cleanup.  And callers are responsible to free the above
3634 		 * block rsv.
3635 		 */
3636 		return PTR_ERR(trans);
3637 	}
3638 
3639 	ret = btrfs_commit_transaction(trans);
3640 	if (ret)
3641 		unset_reloc_control(rc);
3642 
3643 	return ret;
3644 }
3645 
3646 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3647 {
3648 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3649 	struct rb_root blocks = RB_ROOT;
3650 	struct btrfs_key key;
3651 	struct btrfs_trans_handle *trans = NULL;
3652 	struct btrfs_path *path;
3653 	struct btrfs_extent_item *ei;
3654 	u64 flags;
3655 	int ret;
3656 	int err = 0;
3657 	int progress = 0;
3658 
3659 	path = btrfs_alloc_path();
3660 	if (!path)
3661 		return -ENOMEM;
3662 	path->reada = READA_FORWARD;
3663 
3664 	ret = prepare_to_relocate(rc);
3665 	if (ret) {
3666 		err = ret;
3667 		goto out_free;
3668 	}
3669 
3670 	while (1) {
3671 		rc->reserved_bytes = 0;
3672 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3673 					     rc->block_rsv->size,
3674 					     BTRFS_RESERVE_FLUSH_ALL);
3675 		if (ret) {
3676 			err = ret;
3677 			break;
3678 		}
3679 		progress++;
3680 		trans = btrfs_start_transaction(rc->extent_root, 0);
3681 		if (IS_ERR(trans)) {
3682 			err = PTR_ERR(trans);
3683 			trans = NULL;
3684 			break;
3685 		}
3686 restart:
3687 		if (update_backref_cache(trans, &rc->backref_cache)) {
3688 			btrfs_end_transaction(trans);
3689 			trans = NULL;
3690 			continue;
3691 		}
3692 
3693 		ret = find_next_extent(rc, path, &key);
3694 		if (ret < 0)
3695 			err = ret;
3696 		if (ret != 0)
3697 			break;
3698 
3699 		rc->extents_found++;
3700 
3701 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3702 				    struct btrfs_extent_item);
3703 		flags = btrfs_extent_flags(path->nodes[0], ei);
3704 
3705 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3706 			ret = add_tree_block(rc, &key, path, &blocks);
3707 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3708 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3709 			ret = add_data_references(rc, &key, path, &blocks);
3710 		} else {
3711 			btrfs_release_path(path);
3712 			ret = 0;
3713 		}
3714 		if (ret < 0) {
3715 			err = ret;
3716 			break;
3717 		}
3718 
3719 		if (!RB_EMPTY_ROOT(&blocks)) {
3720 			ret = relocate_tree_blocks(trans, rc, &blocks);
3721 			if (ret < 0) {
3722 				if (ret != -EAGAIN) {
3723 					err = ret;
3724 					break;
3725 				}
3726 				rc->extents_found--;
3727 				rc->search_start = key.objectid;
3728 			}
3729 		}
3730 
3731 		btrfs_end_transaction_throttle(trans);
3732 		btrfs_btree_balance_dirty(fs_info);
3733 		trans = NULL;
3734 
3735 		if (rc->stage == MOVE_DATA_EXTENTS &&
3736 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3737 			rc->found_file_extent = 1;
3738 			ret = relocate_data_extent(rc->data_inode,
3739 						   &key, &rc->cluster);
3740 			if (ret < 0) {
3741 				err = ret;
3742 				break;
3743 			}
3744 		}
3745 		if (btrfs_should_cancel_balance(fs_info)) {
3746 			err = -ECANCELED;
3747 			break;
3748 		}
3749 	}
3750 	if (trans && progress && err == -ENOSPC) {
3751 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3752 		if (ret == 1) {
3753 			err = 0;
3754 			progress = 0;
3755 			goto restart;
3756 		}
3757 	}
3758 
3759 	btrfs_release_path(path);
3760 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3761 
3762 	if (trans) {
3763 		btrfs_end_transaction_throttle(trans);
3764 		btrfs_btree_balance_dirty(fs_info);
3765 	}
3766 
3767 	if (!err) {
3768 		ret = relocate_file_extent_cluster(rc->data_inode,
3769 						   &rc->cluster);
3770 		if (ret < 0)
3771 			err = ret;
3772 	}
3773 
3774 	rc->create_reloc_tree = 0;
3775 	set_reloc_control(rc);
3776 
3777 	btrfs_backref_release_cache(&rc->backref_cache);
3778 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3779 
3780 	/*
3781 	 * Even in the case when the relocation is cancelled, we should all go
3782 	 * through prepare_to_merge() and merge_reloc_roots().
3783 	 *
3784 	 * For error (including cancelled balance), prepare_to_merge() will
3785 	 * mark all reloc trees orphan, then queue them for cleanup in
3786 	 * merge_reloc_roots()
3787 	 */
3788 	err = prepare_to_merge(rc, err);
3789 
3790 	merge_reloc_roots(rc);
3791 
3792 	rc->merge_reloc_tree = 0;
3793 	unset_reloc_control(rc);
3794 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3795 
3796 	/* get rid of pinned extents */
3797 	trans = btrfs_join_transaction(rc->extent_root);
3798 	if (IS_ERR(trans)) {
3799 		err = PTR_ERR(trans);
3800 		goto out_free;
3801 	}
3802 	ret = btrfs_commit_transaction(trans);
3803 	if (ret && !err)
3804 		err = ret;
3805 out_free:
3806 	ret = clean_dirty_subvols(rc);
3807 	if (ret < 0 && !err)
3808 		err = ret;
3809 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3810 	btrfs_free_path(path);
3811 	return err;
3812 }
3813 
3814 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3815 				 struct btrfs_root *root, u64 objectid)
3816 {
3817 	struct btrfs_path *path;
3818 	struct btrfs_inode_item *item;
3819 	struct extent_buffer *leaf;
3820 	int ret;
3821 
3822 	path = btrfs_alloc_path();
3823 	if (!path)
3824 		return -ENOMEM;
3825 
3826 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3827 	if (ret)
3828 		goto out;
3829 
3830 	leaf = path->nodes[0];
3831 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3832 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3833 	btrfs_set_inode_generation(leaf, item, 1);
3834 	btrfs_set_inode_size(leaf, item, 0);
3835 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3836 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3837 					  BTRFS_INODE_PREALLOC);
3838 	btrfs_mark_buffer_dirty(trans, leaf);
3839 out:
3840 	btrfs_free_path(path);
3841 	return ret;
3842 }
3843 
3844 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3845 				struct btrfs_root *root, u64 objectid)
3846 {
3847 	struct btrfs_path *path;
3848 	struct btrfs_key key;
3849 	int ret = 0;
3850 
3851 	path = btrfs_alloc_path();
3852 	if (!path) {
3853 		ret = -ENOMEM;
3854 		goto out;
3855 	}
3856 
3857 	key.objectid = objectid;
3858 	key.type = BTRFS_INODE_ITEM_KEY;
3859 	key.offset = 0;
3860 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3861 	if (ret) {
3862 		if (ret > 0)
3863 			ret = -ENOENT;
3864 		goto out;
3865 	}
3866 	ret = btrfs_del_item(trans, root, path);
3867 out:
3868 	if (ret)
3869 		btrfs_abort_transaction(trans, ret);
3870 	btrfs_free_path(path);
3871 }
3872 
3873 /*
3874  * helper to create inode for data relocation.
3875  * the inode is in data relocation tree and its link count is 0
3876  */
3877 static noinline_for_stack
3878 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3879 				 struct btrfs_block_group *group)
3880 {
3881 	struct inode *inode = NULL;
3882 	struct btrfs_trans_handle *trans;
3883 	struct btrfs_root *root;
3884 	u64 objectid;
3885 	int err = 0;
3886 
3887 	root = btrfs_grab_root(fs_info->data_reloc_root);
3888 	trans = btrfs_start_transaction(root, 6);
3889 	if (IS_ERR(trans)) {
3890 		btrfs_put_root(root);
3891 		return ERR_CAST(trans);
3892 	}
3893 
3894 	err = btrfs_get_free_objectid(root, &objectid);
3895 	if (err)
3896 		goto out;
3897 
3898 	err = __insert_orphan_inode(trans, root, objectid);
3899 	if (err)
3900 		goto out;
3901 
3902 	inode = btrfs_iget(fs_info->sb, objectid, root);
3903 	if (IS_ERR(inode)) {
3904 		delete_orphan_inode(trans, root, objectid);
3905 		err = PTR_ERR(inode);
3906 		inode = NULL;
3907 		goto out;
3908 	}
3909 	BTRFS_I(inode)->index_cnt = group->start;
3910 
3911 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3912 out:
3913 	btrfs_put_root(root);
3914 	btrfs_end_transaction(trans);
3915 	btrfs_btree_balance_dirty(fs_info);
3916 	if (err) {
3917 		iput(inode);
3918 		inode = ERR_PTR(err);
3919 	}
3920 	return inode;
3921 }
3922 
3923 /*
3924  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3925  * has been requested meanwhile and don't start in that case.
3926  *
3927  * Return:
3928  *   0             success
3929  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3930  *   -ECANCELED    cancellation request was set before the operation started
3931  */
3932 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3933 {
3934 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3935 		/* This should not happen */
3936 		btrfs_err(fs_info, "reloc already running, cannot start");
3937 		return -EINPROGRESS;
3938 	}
3939 
3940 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3941 		btrfs_info(fs_info, "chunk relocation canceled on start");
3942 		/*
3943 		 * On cancel, clear all requests but let the caller mark
3944 		 * the end after cleanup operations.
3945 		 */
3946 		atomic_set(&fs_info->reloc_cancel_req, 0);
3947 		return -ECANCELED;
3948 	}
3949 	return 0;
3950 }
3951 
3952 /*
3953  * Mark end of chunk relocation that is cancellable and wake any waiters.
3954  */
3955 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3956 {
3957 	/* Requested after start, clear bit first so any waiters can continue */
3958 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3959 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3960 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3961 	atomic_set(&fs_info->reloc_cancel_req, 0);
3962 }
3963 
3964 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3965 {
3966 	struct reloc_control *rc;
3967 
3968 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3969 	if (!rc)
3970 		return NULL;
3971 
3972 	INIT_LIST_HEAD(&rc->reloc_roots);
3973 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3974 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3975 	mapping_tree_init(&rc->reloc_root_tree);
3976 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3977 	return rc;
3978 }
3979 
3980 static void free_reloc_control(struct reloc_control *rc)
3981 {
3982 	struct mapping_node *node, *tmp;
3983 
3984 	free_reloc_roots(&rc->reloc_roots);
3985 	rbtree_postorder_for_each_entry_safe(node, tmp,
3986 			&rc->reloc_root_tree.rb_root, rb_node)
3987 		kfree(node);
3988 
3989 	kfree(rc);
3990 }
3991 
3992 /*
3993  * Print the block group being relocated
3994  */
3995 static void describe_relocation(struct btrfs_fs_info *fs_info,
3996 				struct btrfs_block_group *block_group)
3997 {
3998 	char buf[128] = {'\0'};
3999 
4000 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4001 
4002 	btrfs_info(fs_info,
4003 		   "relocating block group %llu flags %s",
4004 		   block_group->start, buf);
4005 }
4006 
4007 static const char *stage_to_string(int stage)
4008 {
4009 	if (stage == MOVE_DATA_EXTENTS)
4010 		return "move data extents";
4011 	if (stage == UPDATE_DATA_PTRS)
4012 		return "update data pointers";
4013 	return "unknown";
4014 }
4015 
4016 /*
4017  * function to relocate all extents in a block group.
4018  */
4019 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4020 {
4021 	struct btrfs_block_group *bg;
4022 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4023 	struct reloc_control *rc;
4024 	struct inode *inode;
4025 	struct btrfs_path *path;
4026 	int ret;
4027 	int rw = 0;
4028 	int err = 0;
4029 
4030 	/*
4031 	 * This only gets set if we had a half-deleted snapshot on mount.  We
4032 	 * cannot allow relocation to start while we're still trying to clean up
4033 	 * these pending deletions.
4034 	 */
4035 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4036 	if (ret)
4037 		return ret;
4038 
4039 	/* We may have been woken up by close_ctree, so bail if we're closing. */
4040 	if (btrfs_fs_closing(fs_info))
4041 		return -EINTR;
4042 
4043 	bg = btrfs_lookup_block_group(fs_info, group_start);
4044 	if (!bg)
4045 		return -ENOENT;
4046 
4047 	/*
4048 	 * Relocation of a data block group creates ordered extents.  Without
4049 	 * sb_start_write(), we can freeze the filesystem while unfinished
4050 	 * ordered extents are left. Such ordered extents can cause a deadlock
4051 	 * e.g. when syncfs() is waiting for their completion but they can't
4052 	 * finish because they block when joining a transaction, due to the
4053 	 * fact that the freeze locks are being held in write mode.
4054 	 */
4055 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4056 		ASSERT(sb_write_started(fs_info->sb));
4057 
4058 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4059 		btrfs_put_block_group(bg);
4060 		return -ETXTBSY;
4061 	}
4062 
4063 	rc = alloc_reloc_control(fs_info);
4064 	if (!rc) {
4065 		btrfs_put_block_group(bg);
4066 		return -ENOMEM;
4067 	}
4068 
4069 	ret = reloc_chunk_start(fs_info);
4070 	if (ret < 0) {
4071 		err = ret;
4072 		goto out_put_bg;
4073 	}
4074 
4075 	rc->extent_root = extent_root;
4076 	rc->block_group = bg;
4077 
4078 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4079 	if (ret) {
4080 		err = ret;
4081 		goto out;
4082 	}
4083 	rw = 1;
4084 
4085 	path = btrfs_alloc_path();
4086 	if (!path) {
4087 		err = -ENOMEM;
4088 		goto out;
4089 	}
4090 
4091 	inode = lookup_free_space_inode(rc->block_group, path);
4092 	btrfs_free_path(path);
4093 
4094 	if (!IS_ERR(inode))
4095 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4096 	else
4097 		ret = PTR_ERR(inode);
4098 
4099 	if (ret && ret != -ENOENT) {
4100 		err = ret;
4101 		goto out;
4102 	}
4103 
4104 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4105 	if (IS_ERR(rc->data_inode)) {
4106 		err = PTR_ERR(rc->data_inode);
4107 		rc->data_inode = NULL;
4108 		goto out;
4109 	}
4110 
4111 	describe_relocation(fs_info, rc->block_group);
4112 
4113 	btrfs_wait_block_group_reservations(rc->block_group);
4114 	btrfs_wait_nocow_writers(rc->block_group);
4115 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4116 				 rc->block_group->start,
4117 				 rc->block_group->length);
4118 
4119 	ret = btrfs_zone_finish(rc->block_group);
4120 	WARN_ON(ret && ret != -EAGAIN);
4121 
4122 	while (1) {
4123 		int finishes_stage;
4124 
4125 		mutex_lock(&fs_info->cleaner_mutex);
4126 		ret = relocate_block_group(rc);
4127 		mutex_unlock(&fs_info->cleaner_mutex);
4128 		if (ret < 0)
4129 			err = ret;
4130 
4131 		finishes_stage = rc->stage;
4132 		/*
4133 		 * We may have gotten ENOSPC after we already dirtied some
4134 		 * extents.  If writeout happens while we're relocating a
4135 		 * different block group we could end up hitting the
4136 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4137 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4138 		 * properly so we don't trip over this problem, and then break
4139 		 * out of the loop if we hit an error.
4140 		 */
4141 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4142 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4143 						       (u64)-1);
4144 			if (ret)
4145 				err = ret;
4146 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4147 						 0, -1);
4148 			rc->stage = UPDATE_DATA_PTRS;
4149 		}
4150 
4151 		if (err < 0)
4152 			goto out;
4153 
4154 		if (rc->extents_found == 0)
4155 			break;
4156 
4157 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4158 			   rc->extents_found, stage_to_string(finishes_stage));
4159 	}
4160 
4161 	WARN_ON(rc->block_group->pinned > 0);
4162 	WARN_ON(rc->block_group->reserved > 0);
4163 	WARN_ON(rc->block_group->used > 0);
4164 out:
4165 	if (err && rw)
4166 		btrfs_dec_block_group_ro(rc->block_group);
4167 	iput(rc->data_inode);
4168 out_put_bg:
4169 	btrfs_put_block_group(bg);
4170 	reloc_chunk_end(fs_info);
4171 	free_reloc_control(rc);
4172 	return err;
4173 }
4174 
4175 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4176 {
4177 	struct btrfs_fs_info *fs_info = root->fs_info;
4178 	struct btrfs_trans_handle *trans;
4179 	int ret, err;
4180 
4181 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4182 	if (IS_ERR(trans))
4183 		return PTR_ERR(trans);
4184 
4185 	memset(&root->root_item.drop_progress, 0,
4186 		sizeof(root->root_item.drop_progress));
4187 	btrfs_set_root_drop_level(&root->root_item, 0);
4188 	btrfs_set_root_refs(&root->root_item, 0);
4189 	ret = btrfs_update_root(trans, fs_info->tree_root,
4190 				&root->root_key, &root->root_item);
4191 
4192 	err = btrfs_end_transaction(trans);
4193 	if (err)
4194 		return err;
4195 	return ret;
4196 }
4197 
4198 /*
4199  * recover relocation interrupted by system crash.
4200  *
4201  * this function resumes merging reloc trees with corresponding fs trees.
4202  * this is important for keeping the sharing of tree blocks
4203  */
4204 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4205 {
4206 	LIST_HEAD(reloc_roots);
4207 	struct btrfs_key key;
4208 	struct btrfs_root *fs_root;
4209 	struct btrfs_root *reloc_root;
4210 	struct btrfs_path *path;
4211 	struct extent_buffer *leaf;
4212 	struct reloc_control *rc = NULL;
4213 	struct btrfs_trans_handle *trans;
4214 	int ret;
4215 	int err = 0;
4216 
4217 	path = btrfs_alloc_path();
4218 	if (!path)
4219 		return -ENOMEM;
4220 	path->reada = READA_BACK;
4221 
4222 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4223 	key.type = BTRFS_ROOT_ITEM_KEY;
4224 	key.offset = (u64)-1;
4225 
4226 	while (1) {
4227 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4228 					path, 0, 0);
4229 		if (ret < 0) {
4230 			err = ret;
4231 			goto out;
4232 		}
4233 		if (ret > 0) {
4234 			if (path->slots[0] == 0)
4235 				break;
4236 			path->slots[0]--;
4237 		}
4238 		leaf = path->nodes[0];
4239 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4240 		btrfs_release_path(path);
4241 
4242 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4243 		    key.type != BTRFS_ROOT_ITEM_KEY)
4244 			break;
4245 
4246 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4247 		if (IS_ERR(reloc_root)) {
4248 			err = PTR_ERR(reloc_root);
4249 			goto out;
4250 		}
4251 
4252 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4253 		list_add(&reloc_root->root_list, &reloc_roots);
4254 
4255 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4256 			fs_root = btrfs_get_fs_root(fs_info,
4257 					reloc_root->root_key.offset, false);
4258 			if (IS_ERR(fs_root)) {
4259 				ret = PTR_ERR(fs_root);
4260 				if (ret != -ENOENT) {
4261 					err = ret;
4262 					goto out;
4263 				}
4264 				ret = mark_garbage_root(reloc_root);
4265 				if (ret < 0) {
4266 					err = ret;
4267 					goto out;
4268 				}
4269 			} else {
4270 				btrfs_put_root(fs_root);
4271 			}
4272 		}
4273 
4274 		if (key.offset == 0)
4275 			break;
4276 
4277 		key.offset--;
4278 	}
4279 	btrfs_release_path(path);
4280 
4281 	if (list_empty(&reloc_roots))
4282 		goto out;
4283 
4284 	rc = alloc_reloc_control(fs_info);
4285 	if (!rc) {
4286 		err = -ENOMEM;
4287 		goto out;
4288 	}
4289 
4290 	ret = reloc_chunk_start(fs_info);
4291 	if (ret < 0) {
4292 		err = ret;
4293 		goto out_end;
4294 	}
4295 
4296 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4297 
4298 	set_reloc_control(rc);
4299 
4300 	trans = btrfs_join_transaction(rc->extent_root);
4301 	if (IS_ERR(trans)) {
4302 		err = PTR_ERR(trans);
4303 		goto out_unset;
4304 	}
4305 
4306 	rc->merge_reloc_tree = 1;
4307 
4308 	while (!list_empty(&reloc_roots)) {
4309 		reloc_root = list_entry(reloc_roots.next,
4310 					struct btrfs_root, root_list);
4311 		list_del(&reloc_root->root_list);
4312 
4313 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4314 			list_add_tail(&reloc_root->root_list,
4315 				      &rc->reloc_roots);
4316 			continue;
4317 		}
4318 
4319 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4320 					    false);
4321 		if (IS_ERR(fs_root)) {
4322 			err = PTR_ERR(fs_root);
4323 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4324 			btrfs_end_transaction(trans);
4325 			goto out_unset;
4326 		}
4327 
4328 		err = __add_reloc_root(reloc_root);
4329 		ASSERT(err != -EEXIST);
4330 		if (err) {
4331 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4332 			btrfs_put_root(fs_root);
4333 			btrfs_end_transaction(trans);
4334 			goto out_unset;
4335 		}
4336 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4337 		btrfs_put_root(fs_root);
4338 	}
4339 
4340 	err = btrfs_commit_transaction(trans);
4341 	if (err)
4342 		goto out_unset;
4343 
4344 	merge_reloc_roots(rc);
4345 
4346 	unset_reloc_control(rc);
4347 
4348 	trans = btrfs_join_transaction(rc->extent_root);
4349 	if (IS_ERR(trans)) {
4350 		err = PTR_ERR(trans);
4351 		goto out_clean;
4352 	}
4353 	err = btrfs_commit_transaction(trans);
4354 out_clean:
4355 	ret = clean_dirty_subvols(rc);
4356 	if (ret < 0 && !err)
4357 		err = ret;
4358 out_unset:
4359 	unset_reloc_control(rc);
4360 out_end:
4361 	reloc_chunk_end(fs_info);
4362 	free_reloc_control(rc);
4363 out:
4364 	free_reloc_roots(&reloc_roots);
4365 
4366 	btrfs_free_path(path);
4367 
4368 	if (err == 0) {
4369 		/* cleanup orphan inode in data relocation tree */
4370 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4371 		ASSERT(fs_root);
4372 		err = btrfs_orphan_cleanup(fs_root);
4373 		btrfs_put_root(fs_root);
4374 	}
4375 	return err;
4376 }
4377 
4378 /*
4379  * helper to add ordered checksum for data relocation.
4380  *
4381  * cloning checksum properly handles the nodatasum extents.
4382  * it also saves CPU time to re-calculate the checksum.
4383  */
4384 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4385 {
4386 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4387 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4388 	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4389 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4390 	LIST_HEAD(list);
4391 	int ret;
4392 
4393 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4394 				      disk_bytenr + ordered->num_bytes - 1,
4395 				      &list, 0, false);
4396 	if (ret)
4397 		return ret;
4398 
4399 	while (!list_empty(&list)) {
4400 		struct btrfs_ordered_sum *sums =
4401 			list_entry(list.next, struct btrfs_ordered_sum, list);
4402 
4403 		list_del_init(&sums->list);
4404 
4405 		/*
4406 		 * We need to offset the new_bytenr based on where the csum is.
4407 		 * We need to do this because we will read in entire prealloc
4408 		 * extents but we may have written to say the middle of the
4409 		 * prealloc extent, so we need to make sure the csum goes with
4410 		 * the right disk offset.
4411 		 *
4412 		 * We can do this because the data reloc inode refers strictly
4413 		 * to the on disk bytes, so we don't have to worry about
4414 		 * disk_len vs real len like with real inodes since it's all
4415 		 * disk length.
4416 		 */
4417 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4418 		btrfs_add_ordered_sum(ordered, sums);
4419 	}
4420 
4421 	return 0;
4422 }
4423 
4424 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4425 			  struct btrfs_root *root, struct extent_buffer *buf,
4426 			  struct extent_buffer *cow)
4427 {
4428 	struct btrfs_fs_info *fs_info = root->fs_info;
4429 	struct reloc_control *rc;
4430 	struct btrfs_backref_node *node;
4431 	int first_cow = 0;
4432 	int level;
4433 	int ret = 0;
4434 
4435 	rc = fs_info->reloc_ctl;
4436 	if (!rc)
4437 		return 0;
4438 
4439 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4440 
4441 	level = btrfs_header_level(buf);
4442 	if (btrfs_header_generation(buf) <=
4443 	    btrfs_root_last_snapshot(&root->root_item))
4444 		first_cow = 1;
4445 
4446 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4447 	    rc->create_reloc_tree) {
4448 		WARN_ON(!first_cow && level == 0);
4449 
4450 		node = rc->backref_cache.path[level];
4451 		BUG_ON(node->bytenr != buf->start &&
4452 		       node->new_bytenr != buf->start);
4453 
4454 		btrfs_backref_drop_node_buffer(node);
4455 		atomic_inc(&cow->refs);
4456 		node->eb = cow;
4457 		node->new_bytenr = cow->start;
4458 
4459 		if (!node->pending) {
4460 			list_move_tail(&node->list,
4461 				       &rc->backref_cache.pending[level]);
4462 			node->pending = 1;
4463 		}
4464 
4465 		if (first_cow)
4466 			mark_block_processed(rc, node);
4467 
4468 		if (first_cow && level > 0)
4469 			rc->nodes_relocated += buf->len;
4470 	}
4471 
4472 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4473 		ret = replace_file_extents(trans, rc, root, cow);
4474 	return ret;
4475 }
4476 
4477 /*
4478  * called before creating snapshot. it calculates metadata reservation
4479  * required for relocating tree blocks in the snapshot
4480  */
4481 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4482 			      u64 *bytes_to_reserve)
4483 {
4484 	struct btrfs_root *root = pending->root;
4485 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4486 
4487 	if (!rc || !have_reloc_root(root))
4488 		return;
4489 
4490 	if (!rc->merge_reloc_tree)
4491 		return;
4492 
4493 	root = root->reloc_root;
4494 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4495 	/*
4496 	 * relocation is in the stage of merging trees. the space
4497 	 * used by merging a reloc tree is twice the size of
4498 	 * relocated tree nodes in the worst case. half for cowing
4499 	 * the reloc tree, half for cowing the fs tree. the space
4500 	 * used by cowing the reloc tree will be freed after the
4501 	 * tree is dropped. if we create snapshot, cowing the fs
4502 	 * tree may use more space than it frees. so we need
4503 	 * reserve extra space.
4504 	 */
4505 	*bytes_to_reserve += rc->nodes_relocated;
4506 }
4507 
4508 /*
4509  * called after snapshot is created. migrate block reservation
4510  * and create reloc root for the newly created snapshot
4511  *
4512  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4513  * references held on the reloc_root, one for root->reloc_root and one for
4514  * rc->reloc_roots.
4515  */
4516 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4517 			       struct btrfs_pending_snapshot *pending)
4518 {
4519 	struct btrfs_root *root = pending->root;
4520 	struct btrfs_root *reloc_root;
4521 	struct btrfs_root *new_root;
4522 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4523 	int ret;
4524 
4525 	if (!rc || !have_reloc_root(root))
4526 		return 0;
4527 
4528 	rc = root->fs_info->reloc_ctl;
4529 	rc->merging_rsv_size += rc->nodes_relocated;
4530 
4531 	if (rc->merge_reloc_tree) {
4532 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4533 					      rc->block_rsv,
4534 					      rc->nodes_relocated, true);
4535 		if (ret)
4536 			return ret;
4537 	}
4538 
4539 	new_root = pending->snap;
4540 	reloc_root = create_reloc_root(trans, root->reloc_root,
4541 				       new_root->root_key.objectid);
4542 	if (IS_ERR(reloc_root))
4543 		return PTR_ERR(reloc_root);
4544 
4545 	ret = __add_reloc_root(reloc_root);
4546 	ASSERT(ret != -EEXIST);
4547 	if (ret) {
4548 		/* Pairs with create_reloc_root */
4549 		btrfs_put_root(reloc_root);
4550 		return ret;
4551 	}
4552 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4553 
4554 	if (rc->create_reloc_tree)
4555 		ret = clone_backref_node(trans, rc, root, reloc_root);
4556 	return ret;
4557 }
4558 
4559 /*
4560  * Get the current bytenr for the block group which is being relocated.
4561  *
4562  * Return U64_MAX if no running relocation.
4563  */
4564 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4565 {
4566 	u64 logical = U64_MAX;
4567 
4568 	lockdep_assert_held(&fs_info->reloc_mutex);
4569 
4570 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4571 		logical = fs_info->reloc_ctl->block_group->start;
4572 	return logical;
4573 }
4574