1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 #include "qgroup.h" 35 36 /* 37 * backref_node, mapping_node and tree_block start with this 38 */ 39 struct tree_entry { 40 struct rb_node rb_node; 41 u64 bytenr; 42 }; 43 44 /* 45 * present a tree block in the backref cache 46 */ 47 struct backref_node { 48 struct rb_node rb_node; 49 u64 bytenr; 50 51 u64 new_bytenr; 52 /* objectid of tree block owner, can be not uptodate */ 53 u64 owner; 54 /* link to pending, changed or detached list */ 55 struct list_head list; 56 /* list of upper level blocks reference this block */ 57 struct list_head upper; 58 /* list of child blocks in the cache */ 59 struct list_head lower; 60 /* NULL if this node is not tree root */ 61 struct btrfs_root *root; 62 /* extent buffer got by COW the block */ 63 struct extent_buffer *eb; 64 /* level of tree block */ 65 unsigned int level:8; 66 /* is the block in non-reference counted tree */ 67 unsigned int cowonly:1; 68 /* 1 if no child node in the cache */ 69 unsigned int lowest:1; 70 /* is the extent buffer locked */ 71 unsigned int locked:1; 72 /* has the block been processed */ 73 unsigned int processed:1; 74 /* have backrefs of this block been checked */ 75 unsigned int checked:1; 76 /* 77 * 1 if corresponding block has been cowed but some upper 78 * level block pointers may not point to the new location 79 */ 80 unsigned int pending:1; 81 /* 82 * 1 if the backref node isn't connected to any other 83 * backref node. 84 */ 85 unsigned int detached:1; 86 }; 87 88 /* 89 * present a block pointer in the backref cache 90 */ 91 struct backref_edge { 92 struct list_head list[2]; 93 struct backref_node *node[2]; 94 }; 95 96 #define LOWER 0 97 #define UPPER 1 98 #define RELOCATION_RESERVED_NODES 256 99 100 struct backref_cache { 101 /* red black tree of all backref nodes in the cache */ 102 struct rb_root rb_root; 103 /* for passing backref nodes to btrfs_reloc_cow_block */ 104 struct backref_node *path[BTRFS_MAX_LEVEL]; 105 /* 106 * list of blocks that have been cowed but some block 107 * pointers in upper level blocks may not reflect the 108 * new location 109 */ 110 struct list_head pending[BTRFS_MAX_LEVEL]; 111 /* list of backref nodes with no child node */ 112 struct list_head leaves; 113 /* list of blocks that have been cowed in current transaction */ 114 struct list_head changed; 115 /* list of detached backref node. */ 116 struct list_head detached; 117 118 u64 last_trans; 119 120 int nr_nodes; 121 int nr_edges; 122 }; 123 124 /* 125 * map address of tree root to tree 126 */ 127 struct mapping_node { 128 struct rb_node rb_node; 129 u64 bytenr; 130 void *data; 131 }; 132 133 struct mapping_tree { 134 struct rb_root rb_root; 135 spinlock_t lock; 136 }; 137 138 /* 139 * present a tree block to process 140 */ 141 struct tree_block { 142 struct rb_node rb_node; 143 u64 bytenr; 144 struct btrfs_key key; 145 unsigned int level:8; 146 unsigned int key_ready:1; 147 }; 148 149 #define MAX_EXTENTS 128 150 151 struct file_extent_cluster { 152 u64 start; 153 u64 end; 154 u64 boundary[MAX_EXTENTS]; 155 unsigned int nr; 156 }; 157 158 struct reloc_control { 159 /* block group to relocate */ 160 struct btrfs_block_group_cache *block_group; 161 /* extent tree */ 162 struct btrfs_root *extent_root; 163 /* inode for moving data */ 164 struct inode *data_inode; 165 166 struct btrfs_block_rsv *block_rsv; 167 168 struct backref_cache backref_cache; 169 170 struct file_extent_cluster cluster; 171 /* tree blocks have been processed */ 172 struct extent_io_tree processed_blocks; 173 /* map start of tree root to corresponding reloc tree */ 174 struct mapping_tree reloc_root_tree; 175 /* list of reloc trees */ 176 struct list_head reloc_roots; 177 /* size of metadata reservation for merging reloc trees */ 178 u64 merging_rsv_size; 179 /* size of relocated tree nodes */ 180 u64 nodes_relocated; 181 /* reserved size for block group relocation*/ 182 u64 reserved_bytes; 183 184 u64 search_start; 185 u64 extents_found; 186 187 unsigned int stage:8; 188 unsigned int create_reloc_tree:1; 189 unsigned int merge_reloc_tree:1; 190 unsigned int found_file_extent:1; 191 }; 192 193 /* stages of data relocation */ 194 #define MOVE_DATA_EXTENTS 0 195 #define UPDATE_DATA_PTRS 1 196 197 static void remove_backref_node(struct backref_cache *cache, 198 struct backref_node *node); 199 static void __mark_block_processed(struct reloc_control *rc, 200 struct backref_node *node); 201 202 static void mapping_tree_init(struct mapping_tree *tree) 203 { 204 tree->rb_root = RB_ROOT; 205 spin_lock_init(&tree->lock); 206 } 207 208 static void backref_cache_init(struct backref_cache *cache) 209 { 210 int i; 211 cache->rb_root = RB_ROOT; 212 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 213 INIT_LIST_HEAD(&cache->pending[i]); 214 INIT_LIST_HEAD(&cache->changed); 215 INIT_LIST_HEAD(&cache->detached); 216 INIT_LIST_HEAD(&cache->leaves); 217 } 218 219 static void backref_cache_cleanup(struct backref_cache *cache) 220 { 221 struct backref_node *node; 222 int i; 223 224 while (!list_empty(&cache->detached)) { 225 node = list_entry(cache->detached.next, 226 struct backref_node, list); 227 remove_backref_node(cache, node); 228 } 229 230 while (!list_empty(&cache->leaves)) { 231 node = list_entry(cache->leaves.next, 232 struct backref_node, lower); 233 remove_backref_node(cache, node); 234 } 235 236 cache->last_trans = 0; 237 238 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 239 ASSERT(list_empty(&cache->pending[i])); 240 ASSERT(list_empty(&cache->changed)); 241 ASSERT(list_empty(&cache->detached)); 242 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 243 ASSERT(!cache->nr_nodes); 244 ASSERT(!cache->nr_edges); 245 } 246 247 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 248 { 249 struct backref_node *node; 250 251 node = kzalloc(sizeof(*node), GFP_NOFS); 252 if (node) { 253 INIT_LIST_HEAD(&node->list); 254 INIT_LIST_HEAD(&node->upper); 255 INIT_LIST_HEAD(&node->lower); 256 RB_CLEAR_NODE(&node->rb_node); 257 cache->nr_nodes++; 258 } 259 return node; 260 } 261 262 static void free_backref_node(struct backref_cache *cache, 263 struct backref_node *node) 264 { 265 if (node) { 266 cache->nr_nodes--; 267 kfree(node); 268 } 269 } 270 271 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 272 { 273 struct backref_edge *edge; 274 275 edge = kzalloc(sizeof(*edge), GFP_NOFS); 276 if (edge) 277 cache->nr_edges++; 278 return edge; 279 } 280 281 static void free_backref_edge(struct backref_cache *cache, 282 struct backref_edge *edge) 283 { 284 if (edge) { 285 cache->nr_edges--; 286 kfree(edge); 287 } 288 } 289 290 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 291 struct rb_node *node) 292 { 293 struct rb_node **p = &root->rb_node; 294 struct rb_node *parent = NULL; 295 struct tree_entry *entry; 296 297 while (*p) { 298 parent = *p; 299 entry = rb_entry(parent, struct tree_entry, rb_node); 300 301 if (bytenr < entry->bytenr) 302 p = &(*p)->rb_left; 303 else if (bytenr > entry->bytenr) 304 p = &(*p)->rb_right; 305 else 306 return parent; 307 } 308 309 rb_link_node(node, parent, p); 310 rb_insert_color(node, root); 311 return NULL; 312 } 313 314 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 315 { 316 struct rb_node *n = root->rb_node; 317 struct tree_entry *entry; 318 319 while (n) { 320 entry = rb_entry(n, struct tree_entry, rb_node); 321 322 if (bytenr < entry->bytenr) 323 n = n->rb_left; 324 else if (bytenr > entry->bytenr) 325 n = n->rb_right; 326 else 327 return n; 328 } 329 return NULL; 330 } 331 332 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 333 { 334 335 struct btrfs_fs_info *fs_info = NULL; 336 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 337 rb_node); 338 if (bnode->root) 339 fs_info = bnode->root->fs_info; 340 btrfs_panic(fs_info, errno, 341 "Inconsistency in backref cache found at offset %llu", 342 bytenr); 343 } 344 345 /* 346 * walk up backref nodes until reach node presents tree root 347 */ 348 static struct backref_node *walk_up_backref(struct backref_node *node, 349 struct backref_edge *edges[], 350 int *index) 351 { 352 struct backref_edge *edge; 353 int idx = *index; 354 355 while (!list_empty(&node->upper)) { 356 edge = list_entry(node->upper.next, 357 struct backref_edge, list[LOWER]); 358 edges[idx++] = edge; 359 node = edge->node[UPPER]; 360 } 361 BUG_ON(node->detached); 362 *index = idx; 363 return node; 364 } 365 366 /* 367 * walk down backref nodes to find start of next reference path 368 */ 369 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 370 int *index) 371 { 372 struct backref_edge *edge; 373 struct backref_node *lower; 374 int idx = *index; 375 376 while (idx > 0) { 377 edge = edges[idx - 1]; 378 lower = edge->node[LOWER]; 379 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 380 idx--; 381 continue; 382 } 383 edge = list_entry(edge->list[LOWER].next, 384 struct backref_edge, list[LOWER]); 385 edges[idx - 1] = edge; 386 *index = idx; 387 return edge->node[UPPER]; 388 } 389 *index = 0; 390 return NULL; 391 } 392 393 static void unlock_node_buffer(struct backref_node *node) 394 { 395 if (node->locked) { 396 btrfs_tree_unlock(node->eb); 397 node->locked = 0; 398 } 399 } 400 401 static void drop_node_buffer(struct backref_node *node) 402 { 403 if (node->eb) { 404 unlock_node_buffer(node); 405 free_extent_buffer(node->eb); 406 node->eb = NULL; 407 } 408 } 409 410 static void drop_backref_node(struct backref_cache *tree, 411 struct backref_node *node) 412 { 413 BUG_ON(!list_empty(&node->upper)); 414 415 drop_node_buffer(node); 416 list_del(&node->list); 417 list_del(&node->lower); 418 if (!RB_EMPTY_NODE(&node->rb_node)) 419 rb_erase(&node->rb_node, &tree->rb_root); 420 free_backref_node(tree, node); 421 } 422 423 /* 424 * remove a backref node from the backref cache 425 */ 426 static void remove_backref_node(struct backref_cache *cache, 427 struct backref_node *node) 428 { 429 struct backref_node *upper; 430 struct backref_edge *edge; 431 432 if (!node) 433 return; 434 435 BUG_ON(!node->lowest && !node->detached); 436 while (!list_empty(&node->upper)) { 437 edge = list_entry(node->upper.next, struct backref_edge, 438 list[LOWER]); 439 upper = edge->node[UPPER]; 440 list_del(&edge->list[LOWER]); 441 list_del(&edge->list[UPPER]); 442 free_backref_edge(cache, edge); 443 444 if (RB_EMPTY_NODE(&upper->rb_node)) { 445 BUG_ON(!list_empty(&node->upper)); 446 drop_backref_node(cache, node); 447 node = upper; 448 node->lowest = 1; 449 continue; 450 } 451 /* 452 * add the node to leaf node list if no other 453 * child block cached. 454 */ 455 if (list_empty(&upper->lower)) { 456 list_add_tail(&upper->lower, &cache->leaves); 457 upper->lowest = 1; 458 } 459 } 460 461 drop_backref_node(cache, node); 462 } 463 464 static void update_backref_node(struct backref_cache *cache, 465 struct backref_node *node, u64 bytenr) 466 { 467 struct rb_node *rb_node; 468 rb_erase(&node->rb_node, &cache->rb_root); 469 node->bytenr = bytenr; 470 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 471 if (rb_node) 472 backref_tree_panic(rb_node, -EEXIST, bytenr); 473 } 474 475 /* 476 * update backref cache after a transaction commit 477 */ 478 static int update_backref_cache(struct btrfs_trans_handle *trans, 479 struct backref_cache *cache) 480 { 481 struct backref_node *node; 482 int level = 0; 483 484 if (cache->last_trans == 0) { 485 cache->last_trans = trans->transid; 486 return 0; 487 } 488 489 if (cache->last_trans == trans->transid) 490 return 0; 491 492 /* 493 * detached nodes are used to avoid unnecessary backref 494 * lookup. transaction commit changes the extent tree. 495 * so the detached nodes are no longer useful. 496 */ 497 while (!list_empty(&cache->detached)) { 498 node = list_entry(cache->detached.next, 499 struct backref_node, list); 500 remove_backref_node(cache, node); 501 } 502 503 while (!list_empty(&cache->changed)) { 504 node = list_entry(cache->changed.next, 505 struct backref_node, list); 506 list_del_init(&node->list); 507 BUG_ON(node->pending); 508 update_backref_node(cache, node, node->new_bytenr); 509 } 510 511 /* 512 * some nodes can be left in the pending list if there were 513 * errors during processing the pending nodes. 514 */ 515 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 516 list_for_each_entry(node, &cache->pending[level], list) { 517 BUG_ON(!node->pending); 518 if (node->bytenr == node->new_bytenr) 519 continue; 520 update_backref_node(cache, node, node->new_bytenr); 521 } 522 } 523 524 cache->last_trans = 0; 525 return 1; 526 } 527 528 529 static int should_ignore_root(struct btrfs_root *root) 530 { 531 struct btrfs_root *reloc_root; 532 533 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 534 return 0; 535 536 reloc_root = root->reloc_root; 537 if (!reloc_root) 538 return 0; 539 540 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 541 root->fs_info->running_transaction->transid - 1) 542 return 0; 543 /* 544 * if there is reloc tree and it was created in previous 545 * transaction backref lookup can find the reloc tree, 546 * so backref node for the fs tree root is useless for 547 * relocation. 548 */ 549 return 1; 550 } 551 /* 552 * find reloc tree by address of tree root 553 */ 554 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 555 u64 bytenr) 556 { 557 struct rb_node *rb_node; 558 struct mapping_node *node; 559 struct btrfs_root *root = NULL; 560 561 spin_lock(&rc->reloc_root_tree.lock); 562 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct mapping_node, rb_node); 565 root = (struct btrfs_root *)node->data; 566 } 567 spin_unlock(&rc->reloc_root_tree.lock); 568 return root; 569 } 570 571 static int is_cowonly_root(u64 root_objectid) 572 { 573 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 574 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 575 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 576 root_objectid == BTRFS_DEV_TREE_OBJECTID || 577 root_objectid == BTRFS_TREE_LOG_OBJECTID || 578 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 579 root_objectid == BTRFS_UUID_TREE_OBJECTID || 580 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 581 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 582 return 1; 583 return 0; 584 } 585 586 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 587 u64 root_objectid) 588 { 589 struct btrfs_key key; 590 591 key.objectid = root_objectid; 592 key.type = BTRFS_ROOT_ITEM_KEY; 593 if (is_cowonly_root(root_objectid)) 594 key.offset = 0; 595 else 596 key.offset = (u64)-1; 597 598 return btrfs_get_fs_root(fs_info, &key, false); 599 } 600 601 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 602 static noinline_for_stack 603 struct btrfs_root *find_tree_root(struct reloc_control *rc, 604 struct extent_buffer *leaf, 605 struct btrfs_extent_ref_v0 *ref0) 606 { 607 struct btrfs_root *root; 608 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 609 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 610 611 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 612 613 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 614 BUG_ON(IS_ERR(root)); 615 616 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 617 generation != btrfs_root_generation(&root->root_item)) 618 return NULL; 619 620 return root; 621 } 622 #endif 623 624 static noinline_for_stack 625 int find_inline_backref(struct extent_buffer *leaf, int slot, 626 unsigned long *ptr, unsigned long *end) 627 { 628 struct btrfs_key key; 629 struct btrfs_extent_item *ei; 630 struct btrfs_tree_block_info *bi; 631 u32 item_size; 632 633 btrfs_item_key_to_cpu(leaf, &key, slot); 634 635 item_size = btrfs_item_size_nr(leaf, slot); 636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 637 if (item_size < sizeof(*ei)) { 638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 639 return 1; 640 } 641 #endif 642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 643 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 644 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 645 646 if (key.type == BTRFS_EXTENT_ITEM_KEY && 647 item_size <= sizeof(*ei) + sizeof(*bi)) { 648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 649 return 1; 650 } 651 if (key.type == BTRFS_METADATA_ITEM_KEY && 652 item_size <= sizeof(*ei)) { 653 WARN_ON(item_size < sizeof(*ei)); 654 return 1; 655 } 656 657 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 658 bi = (struct btrfs_tree_block_info *)(ei + 1); 659 *ptr = (unsigned long)(bi + 1); 660 } else { 661 *ptr = (unsigned long)(ei + 1); 662 } 663 *end = (unsigned long)ei + item_size; 664 return 0; 665 } 666 667 /* 668 * build backref tree for a given tree block. root of the backref tree 669 * corresponds the tree block, leaves of the backref tree correspond 670 * roots of b-trees that reference the tree block. 671 * 672 * the basic idea of this function is check backrefs of a given block 673 * to find upper level blocks that reference the block, and then check 674 * backrefs of these upper level blocks recursively. the recursion stop 675 * when tree root is reached or backrefs for the block is cached. 676 * 677 * NOTE: if we find backrefs for a block are cached, we know backrefs 678 * for all upper level blocks that directly/indirectly reference the 679 * block are also cached. 680 */ 681 static noinline_for_stack 682 struct backref_node *build_backref_tree(struct reloc_control *rc, 683 struct btrfs_key *node_key, 684 int level, u64 bytenr) 685 { 686 struct backref_cache *cache = &rc->backref_cache; 687 struct btrfs_path *path1; 688 struct btrfs_path *path2; 689 struct extent_buffer *eb; 690 struct btrfs_root *root; 691 struct backref_node *cur; 692 struct backref_node *upper; 693 struct backref_node *lower; 694 struct backref_node *node = NULL; 695 struct backref_node *exist = NULL; 696 struct backref_edge *edge; 697 struct rb_node *rb_node; 698 struct btrfs_key key; 699 unsigned long end; 700 unsigned long ptr; 701 LIST_HEAD(list); 702 LIST_HEAD(useless); 703 int cowonly; 704 int ret; 705 int err = 0; 706 bool need_check = true; 707 708 path1 = btrfs_alloc_path(); 709 path2 = btrfs_alloc_path(); 710 if (!path1 || !path2) { 711 err = -ENOMEM; 712 goto out; 713 } 714 path1->reada = READA_FORWARD; 715 path2->reada = READA_FORWARD; 716 717 node = alloc_backref_node(cache); 718 if (!node) { 719 err = -ENOMEM; 720 goto out; 721 } 722 723 node->bytenr = bytenr; 724 node->level = level; 725 node->lowest = 1; 726 cur = node; 727 again: 728 end = 0; 729 ptr = 0; 730 key.objectid = cur->bytenr; 731 key.type = BTRFS_METADATA_ITEM_KEY; 732 key.offset = (u64)-1; 733 734 path1->search_commit_root = 1; 735 path1->skip_locking = 1; 736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 737 0, 0); 738 if (ret < 0) { 739 err = ret; 740 goto out; 741 } 742 ASSERT(ret); 743 ASSERT(path1->slots[0]); 744 745 path1->slots[0]--; 746 747 WARN_ON(cur->checked); 748 if (!list_empty(&cur->upper)) { 749 /* 750 * the backref was added previously when processing 751 * backref of type BTRFS_TREE_BLOCK_REF_KEY 752 */ 753 ASSERT(list_is_singular(&cur->upper)); 754 edge = list_entry(cur->upper.next, struct backref_edge, 755 list[LOWER]); 756 ASSERT(list_empty(&edge->list[UPPER])); 757 exist = edge->node[UPPER]; 758 /* 759 * add the upper level block to pending list if we need 760 * check its backrefs 761 */ 762 if (!exist->checked) 763 list_add_tail(&edge->list[UPPER], &list); 764 } else { 765 exist = NULL; 766 } 767 768 while (1) { 769 cond_resched(); 770 eb = path1->nodes[0]; 771 772 if (ptr >= end) { 773 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 774 ret = btrfs_next_leaf(rc->extent_root, path1); 775 if (ret < 0) { 776 err = ret; 777 goto out; 778 } 779 if (ret > 0) 780 break; 781 eb = path1->nodes[0]; 782 } 783 784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 785 if (key.objectid != cur->bytenr) { 786 WARN_ON(exist); 787 break; 788 } 789 790 if (key.type == BTRFS_EXTENT_ITEM_KEY || 791 key.type == BTRFS_METADATA_ITEM_KEY) { 792 ret = find_inline_backref(eb, path1->slots[0], 793 &ptr, &end); 794 if (ret) 795 goto next; 796 } 797 } 798 799 if (ptr < end) { 800 /* update key for inline back ref */ 801 struct btrfs_extent_inline_ref *iref; 802 iref = (struct btrfs_extent_inline_ref *)ptr; 803 key.type = btrfs_extent_inline_ref_type(eb, iref); 804 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 805 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 806 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 807 } 808 809 if (exist && 810 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 811 exist->owner == key.offset) || 812 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 813 exist->bytenr == key.offset))) { 814 exist = NULL; 815 goto next; 816 } 817 818 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 819 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 820 key.type == BTRFS_EXTENT_REF_V0_KEY) { 821 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 822 struct btrfs_extent_ref_v0 *ref0; 823 ref0 = btrfs_item_ptr(eb, path1->slots[0], 824 struct btrfs_extent_ref_v0); 825 if (key.objectid == key.offset) { 826 root = find_tree_root(rc, eb, ref0); 827 if (root && !should_ignore_root(root)) 828 cur->root = root; 829 else 830 list_add(&cur->list, &useless); 831 break; 832 } 833 if (is_cowonly_root(btrfs_ref_root_v0(eb, 834 ref0))) 835 cur->cowonly = 1; 836 } 837 #else 838 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 839 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 840 #endif 841 if (key.objectid == key.offset) { 842 /* 843 * only root blocks of reloc trees use 844 * backref of this type. 845 */ 846 root = find_reloc_root(rc, cur->bytenr); 847 ASSERT(root); 848 cur->root = root; 849 break; 850 } 851 852 edge = alloc_backref_edge(cache); 853 if (!edge) { 854 err = -ENOMEM; 855 goto out; 856 } 857 rb_node = tree_search(&cache->rb_root, key.offset); 858 if (!rb_node) { 859 upper = alloc_backref_node(cache); 860 if (!upper) { 861 free_backref_edge(cache, edge); 862 err = -ENOMEM; 863 goto out; 864 } 865 upper->bytenr = key.offset; 866 upper->level = cur->level + 1; 867 /* 868 * backrefs for the upper level block isn't 869 * cached, add the block to pending list 870 */ 871 list_add_tail(&edge->list[UPPER], &list); 872 } else { 873 upper = rb_entry(rb_node, struct backref_node, 874 rb_node); 875 ASSERT(upper->checked); 876 INIT_LIST_HEAD(&edge->list[UPPER]); 877 } 878 list_add_tail(&edge->list[LOWER], &cur->upper); 879 edge->node[LOWER] = cur; 880 edge->node[UPPER] = upper; 881 882 goto next; 883 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 884 goto next; 885 } 886 887 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 888 root = read_fs_root(rc->extent_root->fs_info, key.offset); 889 if (IS_ERR(root)) { 890 err = PTR_ERR(root); 891 goto out; 892 } 893 894 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 895 cur->cowonly = 1; 896 897 if (btrfs_root_level(&root->root_item) == cur->level) { 898 /* tree root */ 899 ASSERT(btrfs_root_bytenr(&root->root_item) == 900 cur->bytenr); 901 if (should_ignore_root(root)) 902 list_add(&cur->list, &useless); 903 else 904 cur->root = root; 905 break; 906 } 907 908 level = cur->level + 1; 909 910 /* 911 * searching the tree to find upper level blocks 912 * reference the block. 913 */ 914 path2->search_commit_root = 1; 915 path2->skip_locking = 1; 916 path2->lowest_level = level; 917 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 918 path2->lowest_level = 0; 919 if (ret < 0) { 920 err = ret; 921 goto out; 922 } 923 if (ret > 0 && path2->slots[level] > 0) 924 path2->slots[level]--; 925 926 eb = path2->nodes[level]; 927 if (btrfs_node_blockptr(eb, path2->slots[level]) != 928 cur->bytenr) { 929 btrfs_err(root->fs_info, 930 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 931 cur->bytenr, level - 1, root->objectid, 932 node_key->objectid, node_key->type, 933 node_key->offset); 934 err = -ENOENT; 935 goto out; 936 } 937 lower = cur; 938 need_check = true; 939 for (; level < BTRFS_MAX_LEVEL; level++) { 940 if (!path2->nodes[level]) { 941 ASSERT(btrfs_root_bytenr(&root->root_item) == 942 lower->bytenr); 943 if (should_ignore_root(root)) 944 list_add(&lower->list, &useless); 945 else 946 lower->root = root; 947 break; 948 } 949 950 edge = alloc_backref_edge(cache); 951 if (!edge) { 952 err = -ENOMEM; 953 goto out; 954 } 955 956 eb = path2->nodes[level]; 957 rb_node = tree_search(&cache->rb_root, eb->start); 958 if (!rb_node) { 959 upper = alloc_backref_node(cache); 960 if (!upper) { 961 free_backref_edge(cache, edge); 962 err = -ENOMEM; 963 goto out; 964 } 965 upper->bytenr = eb->start; 966 upper->owner = btrfs_header_owner(eb); 967 upper->level = lower->level + 1; 968 if (!test_bit(BTRFS_ROOT_REF_COWS, 969 &root->state)) 970 upper->cowonly = 1; 971 972 /* 973 * if we know the block isn't shared 974 * we can void checking its backrefs. 975 */ 976 if (btrfs_block_can_be_shared(root, eb)) 977 upper->checked = 0; 978 else 979 upper->checked = 1; 980 981 /* 982 * add the block to pending list if we 983 * need check its backrefs, we only do this once 984 * while walking up a tree as we will catch 985 * anything else later on. 986 */ 987 if (!upper->checked && need_check) { 988 need_check = false; 989 list_add_tail(&edge->list[UPPER], 990 &list); 991 } else { 992 if (upper->checked) 993 need_check = true; 994 INIT_LIST_HEAD(&edge->list[UPPER]); 995 } 996 } else { 997 upper = rb_entry(rb_node, struct backref_node, 998 rb_node); 999 ASSERT(upper->checked); 1000 INIT_LIST_HEAD(&edge->list[UPPER]); 1001 if (!upper->owner) 1002 upper->owner = btrfs_header_owner(eb); 1003 } 1004 list_add_tail(&edge->list[LOWER], &lower->upper); 1005 edge->node[LOWER] = lower; 1006 edge->node[UPPER] = upper; 1007 1008 if (rb_node) 1009 break; 1010 lower = upper; 1011 upper = NULL; 1012 } 1013 btrfs_release_path(path2); 1014 next: 1015 if (ptr < end) { 1016 ptr += btrfs_extent_inline_ref_size(key.type); 1017 if (ptr >= end) { 1018 WARN_ON(ptr > end); 1019 ptr = 0; 1020 end = 0; 1021 } 1022 } 1023 if (ptr >= end) 1024 path1->slots[0]++; 1025 } 1026 btrfs_release_path(path1); 1027 1028 cur->checked = 1; 1029 WARN_ON(exist); 1030 1031 /* the pending list isn't empty, take the first block to process */ 1032 if (!list_empty(&list)) { 1033 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1034 list_del_init(&edge->list[UPPER]); 1035 cur = edge->node[UPPER]; 1036 goto again; 1037 } 1038 1039 /* 1040 * everything goes well, connect backref nodes and insert backref nodes 1041 * into the cache. 1042 */ 1043 ASSERT(node->checked); 1044 cowonly = node->cowonly; 1045 if (!cowonly) { 1046 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1047 &node->rb_node); 1048 if (rb_node) 1049 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1050 list_add_tail(&node->lower, &cache->leaves); 1051 } 1052 1053 list_for_each_entry(edge, &node->upper, list[LOWER]) 1054 list_add_tail(&edge->list[UPPER], &list); 1055 1056 while (!list_empty(&list)) { 1057 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1058 list_del_init(&edge->list[UPPER]); 1059 upper = edge->node[UPPER]; 1060 if (upper->detached) { 1061 list_del(&edge->list[LOWER]); 1062 lower = edge->node[LOWER]; 1063 free_backref_edge(cache, edge); 1064 if (list_empty(&lower->upper)) 1065 list_add(&lower->list, &useless); 1066 continue; 1067 } 1068 1069 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1070 if (upper->lowest) { 1071 list_del_init(&upper->lower); 1072 upper->lowest = 0; 1073 } 1074 1075 list_add_tail(&edge->list[UPPER], &upper->lower); 1076 continue; 1077 } 1078 1079 if (!upper->checked) { 1080 /* 1081 * Still want to blow up for developers since this is a 1082 * logic bug. 1083 */ 1084 ASSERT(0); 1085 err = -EINVAL; 1086 goto out; 1087 } 1088 if (cowonly != upper->cowonly) { 1089 ASSERT(0); 1090 err = -EINVAL; 1091 goto out; 1092 } 1093 1094 if (!cowonly) { 1095 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1096 &upper->rb_node); 1097 if (rb_node) 1098 backref_tree_panic(rb_node, -EEXIST, 1099 upper->bytenr); 1100 } 1101 1102 list_add_tail(&edge->list[UPPER], &upper->lower); 1103 1104 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1105 list_add_tail(&edge->list[UPPER], &list); 1106 } 1107 /* 1108 * process useless backref nodes. backref nodes for tree leaves 1109 * are deleted from the cache. backref nodes for upper level 1110 * tree blocks are left in the cache to avoid unnecessary backref 1111 * lookup. 1112 */ 1113 while (!list_empty(&useless)) { 1114 upper = list_entry(useless.next, struct backref_node, list); 1115 list_del_init(&upper->list); 1116 ASSERT(list_empty(&upper->upper)); 1117 if (upper == node) 1118 node = NULL; 1119 if (upper->lowest) { 1120 list_del_init(&upper->lower); 1121 upper->lowest = 0; 1122 } 1123 while (!list_empty(&upper->lower)) { 1124 edge = list_entry(upper->lower.next, 1125 struct backref_edge, list[UPPER]); 1126 list_del(&edge->list[UPPER]); 1127 list_del(&edge->list[LOWER]); 1128 lower = edge->node[LOWER]; 1129 free_backref_edge(cache, edge); 1130 1131 if (list_empty(&lower->upper)) 1132 list_add(&lower->list, &useless); 1133 } 1134 __mark_block_processed(rc, upper); 1135 if (upper->level > 0) { 1136 list_add(&upper->list, &cache->detached); 1137 upper->detached = 1; 1138 } else { 1139 rb_erase(&upper->rb_node, &cache->rb_root); 1140 free_backref_node(cache, upper); 1141 } 1142 } 1143 out: 1144 btrfs_free_path(path1); 1145 btrfs_free_path(path2); 1146 if (err) { 1147 while (!list_empty(&useless)) { 1148 lower = list_entry(useless.next, 1149 struct backref_node, list); 1150 list_del_init(&lower->list); 1151 } 1152 while (!list_empty(&list)) { 1153 edge = list_first_entry(&list, struct backref_edge, 1154 list[UPPER]); 1155 list_del(&edge->list[UPPER]); 1156 list_del(&edge->list[LOWER]); 1157 lower = edge->node[LOWER]; 1158 upper = edge->node[UPPER]; 1159 free_backref_edge(cache, edge); 1160 1161 /* 1162 * Lower is no longer linked to any upper backref nodes 1163 * and isn't in the cache, we can free it ourselves. 1164 */ 1165 if (list_empty(&lower->upper) && 1166 RB_EMPTY_NODE(&lower->rb_node)) 1167 list_add(&lower->list, &useless); 1168 1169 if (!RB_EMPTY_NODE(&upper->rb_node)) 1170 continue; 1171 1172 /* Add this guy's upper edges to the list to process */ 1173 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1174 list_add_tail(&edge->list[UPPER], &list); 1175 if (list_empty(&upper->upper)) 1176 list_add(&upper->list, &useless); 1177 } 1178 1179 while (!list_empty(&useless)) { 1180 lower = list_entry(useless.next, 1181 struct backref_node, list); 1182 list_del_init(&lower->list); 1183 if (lower == node) 1184 node = NULL; 1185 free_backref_node(cache, lower); 1186 } 1187 1188 free_backref_node(cache, node); 1189 return ERR_PTR(err); 1190 } 1191 ASSERT(!node || !node->detached); 1192 return node; 1193 } 1194 1195 /* 1196 * helper to add backref node for the newly created snapshot. 1197 * the backref node is created by cloning backref node that 1198 * corresponds to root of source tree 1199 */ 1200 static int clone_backref_node(struct btrfs_trans_handle *trans, 1201 struct reloc_control *rc, 1202 struct btrfs_root *src, 1203 struct btrfs_root *dest) 1204 { 1205 struct btrfs_root *reloc_root = src->reloc_root; 1206 struct backref_cache *cache = &rc->backref_cache; 1207 struct backref_node *node = NULL; 1208 struct backref_node *new_node; 1209 struct backref_edge *edge; 1210 struct backref_edge *new_edge; 1211 struct rb_node *rb_node; 1212 1213 if (cache->last_trans > 0) 1214 update_backref_cache(trans, cache); 1215 1216 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1217 if (rb_node) { 1218 node = rb_entry(rb_node, struct backref_node, rb_node); 1219 if (node->detached) 1220 node = NULL; 1221 else 1222 BUG_ON(node->new_bytenr != reloc_root->node->start); 1223 } 1224 1225 if (!node) { 1226 rb_node = tree_search(&cache->rb_root, 1227 reloc_root->commit_root->start); 1228 if (rb_node) { 1229 node = rb_entry(rb_node, struct backref_node, 1230 rb_node); 1231 BUG_ON(node->detached); 1232 } 1233 } 1234 1235 if (!node) 1236 return 0; 1237 1238 new_node = alloc_backref_node(cache); 1239 if (!new_node) 1240 return -ENOMEM; 1241 1242 new_node->bytenr = dest->node->start; 1243 new_node->level = node->level; 1244 new_node->lowest = node->lowest; 1245 new_node->checked = 1; 1246 new_node->root = dest; 1247 1248 if (!node->lowest) { 1249 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1250 new_edge = alloc_backref_edge(cache); 1251 if (!new_edge) 1252 goto fail; 1253 1254 new_edge->node[UPPER] = new_node; 1255 new_edge->node[LOWER] = edge->node[LOWER]; 1256 list_add_tail(&new_edge->list[UPPER], 1257 &new_node->lower); 1258 } 1259 } else { 1260 list_add_tail(&new_node->lower, &cache->leaves); 1261 } 1262 1263 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1264 &new_node->rb_node); 1265 if (rb_node) 1266 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1267 1268 if (!new_node->lowest) { 1269 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1270 list_add_tail(&new_edge->list[LOWER], 1271 &new_edge->node[LOWER]->upper); 1272 } 1273 } 1274 return 0; 1275 fail: 1276 while (!list_empty(&new_node->lower)) { 1277 new_edge = list_entry(new_node->lower.next, 1278 struct backref_edge, list[UPPER]); 1279 list_del(&new_edge->list[UPPER]); 1280 free_backref_edge(cache, new_edge); 1281 } 1282 free_backref_node(cache, new_node); 1283 return -ENOMEM; 1284 } 1285 1286 /* 1287 * helper to add 'address of tree root -> reloc tree' mapping 1288 */ 1289 static int __must_check __add_reloc_root(struct btrfs_root *root) 1290 { 1291 struct rb_node *rb_node; 1292 struct mapping_node *node; 1293 struct reloc_control *rc = root->fs_info->reloc_ctl; 1294 1295 node = kmalloc(sizeof(*node), GFP_NOFS); 1296 if (!node) 1297 return -ENOMEM; 1298 1299 node->bytenr = root->node->start; 1300 node->data = root; 1301 1302 spin_lock(&rc->reloc_root_tree.lock); 1303 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1304 node->bytenr, &node->rb_node); 1305 spin_unlock(&rc->reloc_root_tree.lock); 1306 if (rb_node) { 1307 btrfs_panic(root->fs_info, -EEXIST, 1308 "Duplicate root found for start=%llu while inserting into relocation tree", 1309 node->bytenr); 1310 kfree(node); 1311 return -EEXIST; 1312 } 1313 1314 list_add_tail(&root->root_list, &rc->reloc_roots); 1315 return 0; 1316 } 1317 1318 /* 1319 * helper to delete the 'address of tree root -> reloc tree' 1320 * mapping 1321 */ 1322 static void __del_reloc_root(struct btrfs_root *root) 1323 { 1324 struct rb_node *rb_node; 1325 struct mapping_node *node = NULL; 1326 struct reloc_control *rc = root->fs_info->reloc_ctl; 1327 1328 spin_lock(&rc->reloc_root_tree.lock); 1329 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1330 root->node->start); 1331 if (rb_node) { 1332 node = rb_entry(rb_node, struct mapping_node, rb_node); 1333 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1334 } 1335 spin_unlock(&rc->reloc_root_tree.lock); 1336 1337 if (!node) 1338 return; 1339 BUG_ON((struct btrfs_root *)node->data != root); 1340 1341 spin_lock(&root->fs_info->trans_lock); 1342 list_del_init(&root->root_list); 1343 spin_unlock(&root->fs_info->trans_lock); 1344 kfree(node); 1345 } 1346 1347 /* 1348 * helper to update the 'address of tree root -> reloc tree' 1349 * mapping 1350 */ 1351 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1352 { 1353 struct rb_node *rb_node; 1354 struct mapping_node *node = NULL; 1355 struct reloc_control *rc = root->fs_info->reloc_ctl; 1356 1357 spin_lock(&rc->reloc_root_tree.lock); 1358 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1359 root->node->start); 1360 if (rb_node) { 1361 node = rb_entry(rb_node, struct mapping_node, rb_node); 1362 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1363 } 1364 spin_unlock(&rc->reloc_root_tree.lock); 1365 1366 if (!node) 1367 return 0; 1368 BUG_ON((struct btrfs_root *)node->data != root); 1369 1370 spin_lock(&rc->reloc_root_tree.lock); 1371 node->bytenr = new_bytenr; 1372 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1373 node->bytenr, &node->rb_node); 1374 spin_unlock(&rc->reloc_root_tree.lock); 1375 if (rb_node) 1376 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1377 return 0; 1378 } 1379 1380 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1381 struct btrfs_root *root, u64 objectid) 1382 { 1383 struct btrfs_root *reloc_root; 1384 struct extent_buffer *eb; 1385 struct btrfs_root_item *root_item; 1386 struct btrfs_key root_key; 1387 u64 last_snap = 0; 1388 int ret; 1389 1390 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1391 BUG_ON(!root_item); 1392 1393 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1394 root_key.type = BTRFS_ROOT_ITEM_KEY; 1395 root_key.offset = objectid; 1396 1397 if (root->root_key.objectid == objectid) { 1398 /* called by btrfs_init_reloc_root */ 1399 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1400 BTRFS_TREE_RELOC_OBJECTID); 1401 BUG_ON(ret); 1402 1403 last_snap = btrfs_root_last_snapshot(&root->root_item); 1404 btrfs_set_root_last_snapshot(&root->root_item, 1405 trans->transid - 1); 1406 } else { 1407 /* 1408 * called by btrfs_reloc_post_snapshot_hook. 1409 * the source tree is a reloc tree, all tree blocks 1410 * modified after it was created have RELOC flag 1411 * set in their headers. so it's OK to not update 1412 * the 'last_snapshot'. 1413 */ 1414 ret = btrfs_copy_root(trans, root, root->node, &eb, 1415 BTRFS_TREE_RELOC_OBJECTID); 1416 BUG_ON(ret); 1417 } 1418 1419 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1420 btrfs_set_root_bytenr(root_item, eb->start); 1421 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1422 btrfs_set_root_generation(root_item, trans->transid); 1423 1424 if (root->root_key.objectid == objectid) { 1425 btrfs_set_root_refs(root_item, 0); 1426 memset(&root_item->drop_progress, 0, 1427 sizeof(struct btrfs_disk_key)); 1428 root_item->drop_level = 0; 1429 /* 1430 * abuse rtransid, it is safe because it is impossible to 1431 * receive data into a relocation tree. 1432 */ 1433 btrfs_set_root_rtransid(root_item, last_snap); 1434 btrfs_set_root_otransid(root_item, trans->transid); 1435 } 1436 1437 btrfs_tree_unlock(eb); 1438 free_extent_buffer(eb); 1439 1440 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1441 &root_key, root_item); 1442 BUG_ON(ret); 1443 kfree(root_item); 1444 1445 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1446 BUG_ON(IS_ERR(reloc_root)); 1447 reloc_root->last_trans = trans->transid; 1448 return reloc_root; 1449 } 1450 1451 /* 1452 * create reloc tree for a given fs tree. reloc tree is just a 1453 * snapshot of the fs tree with special root objectid. 1454 */ 1455 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root) 1457 { 1458 struct btrfs_root *reloc_root; 1459 struct reloc_control *rc = root->fs_info->reloc_ctl; 1460 struct btrfs_block_rsv *rsv; 1461 int clear_rsv = 0; 1462 int ret; 1463 1464 if (root->reloc_root) { 1465 reloc_root = root->reloc_root; 1466 reloc_root->last_trans = trans->transid; 1467 return 0; 1468 } 1469 1470 if (!rc || !rc->create_reloc_tree || 1471 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1472 return 0; 1473 1474 if (!trans->reloc_reserved) { 1475 rsv = trans->block_rsv; 1476 trans->block_rsv = rc->block_rsv; 1477 clear_rsv = 1; 1478 } 1479 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1480 if (clear_rsv) 1481 trans->block_rsv = rsv; 1482 1483 ret = __add_reloc_root(reloc_root); 1484 BUG_ON(ret < 0); 1485 root->reloc_root = reloc_root; 1486 return 0; 1487 } 1488 1489 /* 1490 * update root item of reloc tree 1491 */ 1492 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1493 struct btrfs_root *root) 1494 { 1495 struct btrfs_root *reloc_root; 1496 struct btrfs_root_item *root_item; 1497 int ret; 1498 1499 if (!root->reloc_root) 1500 goto out; 1501 1502 reloc_root = root->reloc_root; 1503 root_item = &reloc_root->root_item; 1504 1505 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1506 btrfs_root_refs(root_item) == 0) { 1507 root->reloc_root = NULL; 1508 __del_reloc_root(reloc_root); 1509 } 1510 1511 if (reloc_root->commit_root != reloc_root->node) { 1512 btrfs_set_root_node(root_item, reloc_root->node); 1513 free_extent_buffer(reloc_root->commit_root); 1514 reloc_root->commit_root = btrfs_root_node(reloc_root); 1515 } 1516 1517 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1518 &reloc_root->root_key, root_item); 1519 BUG_ON(ret); 1520 1521 out: 1522 return 0; 1523 } 1524 1525 /* 1526 * helper to find first cached inode with inode number >= objectid 1527 * in a subvolume 1528 */ 1529 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1530 { 1531 struct rb_node *node; 1532 struct rb_node *prev; 1533 struct btrfs_inode *entry; 1534 struct inode *inode; 1535 1536 spin_lock(&root->inode_lock); 1537 again: 1538 node = root->inode_tree.rb_node; 1539 prev = NULL; 1540 while (node) { 1541 prev = node; 1542 entry = rb_entry(node, struct btrfs_inode, rb_node); 1543 1544 if (objectid < btrfs_ino(&entry->vfs_inode)) 1545 node = node->rb_left; 1546 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1547 node = node->rb_right; 1548 else 1549 break; 1550 } 1551 if (!node) { 1552 while (prev) { 1553 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1554 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1555 node = prev; 1556 break; 1557 } 1558 prev = rb_next(prev); 1559 } 1560 } 1561 while (node) { 1562 entry = rb_entry(node, struct btrfs_inode, rb_node); 1563 inode = igrab(&entry->vfs_inode); 1564 if (inode) { 1565 spin_unlock(&root->inode_lock); 1566 return inode; 1567 } 1568 1569 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1570 if (cond_resched_lock(&root->inode_lock)) 1571 goto again; 1572 1573 node = rb_next(node); 1574 } 1575 spin_unlock(&root->inode_lock); 1576 return NULL; 1577 } 1578 1579 static int in_block_group(u64 bytenr, 1580 struct btrfs_block_group_cache *block_group) 1581 { 1582 if (bytenr >= block_group->key.objectid && 1583 bytenr < block_group->key.objectid + block_group->key.offset) 1584 return 1; 1585 return 0; 1586 } 1587 1588 /* 1589 * get new location of data 1590 */ 1591 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1592 u64 bytenr, u64 num_bytes) 1593 { 1594 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1595 struct btrfs_path *path; 1596 struct btrfs_file_extent_item *fi; 1597 struct extent_buffer *leaf; 1598 int ret; 1599 1600 path = btrfs_alloc_path(); 1601 if (!path) 1602 return -ENOMEM; 1603 1604 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1605 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1606 bytenr, 0); 1607 if (ret < 0) 1608 goto out; 1609 if (ret > 0) { 1610 ret = -ENOENT; 1611 goto out; 1612 } 1613 1614 leaf = path->nodes[0]; 1615 fi = btrfs_item_ptr(leaf, path->slots[0], 1616 struct btrfs_file_extent_item); 1617 1618 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1619 btrfs_file_extent_compression(leaf, fi) || 1620 btrfs_file_extent_encryption(leaf, fi) || 1621 btrfs_file_extent_other_encoding(leaf, fi)); 1622 1623 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1624 ret = -EINVAL; 1625 goto out; 1626 } 1627 1628 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1629 ret = 0; 1630 out: 1631 btrfs_free_path(path); 1632 return ret; 1633 } 1634 1635 /* 1636 * update file extent items in the tree leaf to point to 1637 * the new locations. 1638 */ 1639 static noinline_for_stack 1640 int replace_file_extents(struct btrfs_trans_handle *trans, 1641 struct reloc_control *rc, 1642 struct btrfs_root *root, 1643 struct extent_buffer *leaf) 1644 { 1645 struct btrfs_key key; 1646 struct btrfs_file_extent_item *fi; 1647 struct inode *inode = NULL; 1648 u64 parent; 1649 u64 bytenr; 1650 u64 new_bytenr = 0; 1651 u64 num_bytes; 1652 u64 end; 1653 u32 nritems; 1654 u32 i; 1655 int ret = 0; 1656 int first = 1; 1657 int dirty = 0; 1658 1659 if (rc->stage != UPDATE_DATA_PTRS) 1660 return 0; 1661 1662 /* reloc trees always use full backref */ 1663 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1664 parent = leaf->start; 1665 else 1666 parent = 0; 1667 1668 nritems = btrfs_header_nritems(leaf); 1669 for (i = 0; i < nritems; i++) { 1670 cond_resched(); 1671 btrfs_item_key_to_cpu(leaf, &key, i); 1672 if (key.type != BTRFS_EXTENT_DATA_KEY) 1673 continue; 1674 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1675 if (btrfs_file_extent_type(leaf, fi) == 1676 BTRFS_FILE_EXTENT_INLINE) 1677 continue; 1678 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1679 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1680 if (bytenr == 0) 1681 continue; 1682 if (!in_block_group(bytenr, rc->block_group)) 1683 continue; 1684 1685 /* 1686 * if we are modifying block in fs tree, wait for readpage 1687 * to complete and drop the extent cache 1688 */ 1689 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1690 if (first) { 1691 inode = find_next_inode(root, key.objectid); 1692 first = 0; 1693 } else if (inode && btrfs_ino(inode) < key.objectid) { 1694 btrfs_add_delayed_iput(inode); 1695 inode = find_next_inode(root, key.objectid); 1696 } 1697 if (inode && btrfs_ino(inode) == key.objectid) { 1698 end = key.offset + 1699 btrfs_file_extent_num_bytes(leaf, fi); 1700 WARN_ON(!IS_ALIGNED(key.offset, 1701 root->sectorsize)); 1702 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1703 end--; 1704 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1705 key.offset, end); 1706 if (!ret) 1707 continue; 1708 1709 btrfs_drop_extent_cache(inode, key.offset, end, 1710 1); 1711 unlock_extent(&BTRFS_I(inode)->io_tree, 1712 key.offset, end); 1713 } 1714 } 1715 1716 ret = get_new_location(rc->data_inode, &new_bytenr, 1717 bytenr, num_bytes); 1718 if (ret) { 1719 /* 1720 * Don't have to abort since we've not changed anything 1721 * in the file extent yet. 1722 */ 1723 break; 1724 } 1725 1726 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1727 dirty = 1; 1728 1729 key.offset -= btrfs_file_extent_offset(leaf, fi); 1730 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1731 num_bytes, parent, 1732 btrfs_header_owner(leaf), 1733 key.objectid, key.offset); 1734 if (ret) { 1735 btrfs_abort_transaction(trans, ret); 1736 break; 1737 } 1738 1739 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1740 parent, btrfs_header_owner(leaf), 1741 key.objectid, key.offset); 1742 if (ret) { 1743 btrfs_abort_transaction(trans, ret); 1744 break; 1745 } 1746 } 1747 if (dirty) 1748 btrfs_mark_buffer_dirty(leaf); 1749 if (inode) 1750 btrfs_add_delayed_iput(inode); 1751 return ret; 1752 } 1753 1754 static noinline_for_stack 1755 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1756 struct btrfs_path *path, int level) 1757 { 1758 struct btrfs_disk_key key1; 1759 struct btrfs_disk_key key2; 1760 btrfs_node_key(eb, &key1, slot); 1761 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1762 return memcmp(&key1, &key2, sizeof(key1)); 1763 } 1764 1765 /* 1766 * try to replace tree blocks in fs tree with the new blocks 1767 * in reloc tree. tree blocks haven't been modified since the 1768 * reloc tree was create can be replaced. 1769 * 1770 * if a block was replaced, level of the block + 1 is returned. 1771 * if no block got replaced, 0 is returned. if there are other 1772 * errors, a negative error number is returned. 1773 */ 1774 static noinline_for_stack 1775 int replace_path(struct btrfs_trans_handle *trans, 1776 struct btrfs_root *dest, struct btrfs_root *src, 1777 struct btrfs_path *path, struct btrfs_key *next_key, 1778 int lowest_level, int max_level) 1779 { 1780 struct extent_buffer *eb; 1781 struct extent_buffer *parent; 1782 struct btrfs_key key; 1783 u64 old_bytenr; 1784 u64 new_bytenr; 1785 u64 old_ptr_gen; 1786 u64 new_ptr_gen; 1787 u64 last_snapshot; 1788 u32 blocksize; 1789 int cow = 0; 1790 int level; 1791 int ret; 1792 int slot; 1793 1794 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1795 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1796 1797 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1798 again: 1799 slot = path->slots[lowest_level]; 1800 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1801 1802 eb = btrfs_lock_root_node(dest); 1803 btrfs_set_lock_blocking(eb); 1804 level = btrfs_header_level(eb); 1805 1806 if (level < lowest_level) { 1807 btrfs_tree_unlock(eb); 1808 free_extent_buffer(eb); 1809 return 0; 1810 } 1811 1812 if (cow) { 1813 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1814 BUG_ON(ret); 1815 } 1816 btrfs_set_lock_blocking(eb); 1817 1818 if (next_key) { 1819 next_key->objectid = (u64)-1; 1820 next_key->type = (u8)-1; 1821 next_key->offset = (u64)-1; 1822 } 1823 1824 parent = eb; 1825 while (1) { 1826 level = btrfs_header_level(parent); 1827 BUG_ON(level < lowest_level); 1828 1829 ret = btrfs_bin_search(parent, &key, level, &slot); 1830 if (ret && slot > 0) 1831 slot--; 1832 1833 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1834 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1835 1836 old_bytenr = btrfs_node_blockptr(parent, slot); 1837 blocksize = dest->nodesize; 1838 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1839 1840 if (level <= max_level) { 1841 eb = path->nodes[level]; 1842 new_bytenr = btrfs_node_blockptr(eb, 1843 path->slots[level]); 1844 new_ptr_gen = btrfs_node_ptr_generation(eb, 1845 path->slots[level]); 1846 } else { 1847 new_bytenr = 0; 1848 new_ptr_gen = 0; 1849 } 1850 1851 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1852 ret = level; 1853 break; 1854 } 1855 1856 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1857 memcmp_node_keys(parent, slot, path, level)) { 1858 if (level <= lowest_level) { 1859 ret = 0; 1860 break; 1861 } 1862 1863 eb = read_tree_block(dest, old_bytenr, old_ptr_gen); 1864 if (IS_ERR(eb)) { 1865 ret = PTR_ERR(eb); 1866 break; 1867 } else if (!extent_buffer_uptodate(eb)) { 1868 ret = -EIO; 1869 free_extent_buffer(eb); 1870 break; 1871 } 1872 btrfs_tree_lock(eb); 1873 if (cow) { 1874 ret = btrfs_cow_block(trans, dest, eb, parent, 1875 slot, &eb); 1876 BUG_ON(ret); 1877 } 1878 btrfs_set_lock_blocking(eb); 1879 1880 btrfs_tree_unlock(parent); 1881 free_extent_buffer(parent); 1882 1883 parent = eb; 1884 continue; 1885 } 1886 1887 if (!cow) { 1888 btrfs_tree_unlock(parent); 1889 free_extent_buffer(parent); 1890 cow = 1; 1891 goto again; 1892 } 1893 1894 btrfs_node_key_to_cpu(path->nodes[level], &key, 1895 path->slots[level]); 1896 btrfs_release_path(path); 1897 1898 path->lowest_level = level; 1899 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1900 path->lowest_level = 0; 1901 BUG_ON(ret); 1902 1903 /* 1904 * swap blocks in fs tree and reloc tree. 1905 */ 1906 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1907 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1908 btrfs_mark_buffer_dirty(parent); 1909 1910 btrfs_set_node_blockptr(path->nodes[level], 1911 path->slots[level], old_bytenr); 1912 btrfs_set_node_ptr_generation(path->nodes[level], 1913 path->slots[level], old_ptr_gen); 1914 btrfs_mark_buffer_dirty(path->nodes[level]); 1915 1916 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1917 path->nodes[level]->start, 1918 src->root_key.objectid, level - 1, 0); 1919 BUG_ON(ret); 1920 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1921 0, dest->root_key.objectid, level - 1, 1922 0); 1923 BUG_ON(ret); 1924 1925 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1926 path->nodes[level]->start, 1927 src->root_key.objectid, level - 1, 0); 1928 BUG_ON(ret); 1929 1930 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1931 0, dest->root_key.objectid, level - 1, 1932 0); 1933 BUG_ON(ret); 1934 1935 btrfs_unlock_up_safe(path, 0); 1936 1937 ret = level; 1938 break; 1939 } 1940 btrfs_tree_unlock(parent); 1941 free_extent_buffer(parent); 1942 return ret; 1943 } 1944 1945 /* 1946 * helper to find next relocated block in reloc tree 1947 */ 1948 static noinline_for_stack 1949 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1950 int *level) 1951 { 1952 struct extent_buffer *eb; 1953 int i; 1954 u64 last_snapshot; 1955 u32 nritems; 1956 1957 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1958 1959 for (i = 0; i < *level; i++) { 1960 free_extent_buffer(path->nodes[i]); 1961 path->nodes[i] = NULL; 1962 } 1963 1964 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1965 eb = path->nodes[i]; 1966 nritems = btrfs_header_nritems(eb); 1967 while (path->slots[i] + 1 < nritems) { 1968 path->slots[i]++; 1969 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1970 last_snapshot) 1971 continue; 1972 1973 *level = i; 1974 return 0; 1975 } 1976 free_extent_buffer(path->nodes[i]); 1977 path->nodes[i] = NULL; 1978 } 1979 return 1; 1980 } 1981 1982 /* 1983 * walk down reloc tree to find relocated block of lowest level 1984 */ 1985 static noinline_for_stack 1986 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1987 int *level) 1988 { 1989 struct extent_buffer *eb = NULL; 1990 int i; 1991 u64 bytenr; 1992 u64 ptr_gen = 0; 1993 u64 last_snapshot; 1994 u32 nritems; 1995 1996 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1997 1998 for (i = *level; i > 0; i--) { 1999 eb = path->nodes[i]; 2000 nritems = btrfs_header_nritems(eb); 2001 while (path->slots[i] < nritems) { 2002 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2003 if (ptr_gen > last_snapshot) 2004 break; 2005 path->slots[i]++; 2006 } 2007 if (path->slots[i] >= nritems) { 2008 if (i == *level) 2009 break; 2010 *level = i + 1; 2011 return 0; 2012 } 2013 if (i == 1) { 2014 *level = i; 2015 return 0; 2016 } 2017 2018 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2019 eb = read_tree_block(root, bytenr, ptr_gen); 2020 if (IS_ERR(eb)) { 2021 return PTR_ERR(eb); 2022 } else if (!extent_buffer_uptodate(eb)) { 2023 free_extent_buffer(eb); 2024 return -EIO; 2025 } 2026 BUG_ON(btrfs_header_level(eb) != i - 1); 2027 path->nodes[i - 1] = eb; 2028 path->slots[i - 1] = 0; 2029 } 2030 return 1; 2031 } 2032 2033 /* 2034 * invalidate extent cache for file extents whose key in range of 2035 * [min_key, max_key) 2036 */ 2037 static int invalidate_extent_cache(struct btrfs_root *root, 2038 struct btrfs_key *min_key, 2039 struct btrfs_key *max_key) 2040 { 2041 struct inode *inode = NULL; 2042 u64 objectid; 2043 u64 start, end; 2044 u64 ino; 2045 2046 objectid = min_key->objectid; 2047 while (1) { 2048 cond_resched(); 2049 iput(inode); 2050 2051 if (objectid > max_key->objectid) 2052 break; 2053 2054 inode = find_next_inode(root, objectid); 2055 if (!inode) 2056 break; 2057 ino = btrfs_ino(inode); 2058 2059 if (ino > max_key->objectid) { 2060 iput(inode); 2061 break; 2062 } 2063 2064 objectid = ino + 1; 2065 if (!S_ISREG(inode->i_mode)) 2066 continue; 2067 2068 if (unlikely(min_key->objectid == ino)) { 2069 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2070 continue; 2071 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2072 start = 0; 2073 else { 2074 start = min_key->offset; 2075 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2076 } 2077 } else { 2078 start = 0; 2079 } 2080 2081 if (unlikely(max_key->objectid == ino)) { 2082 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2083 continue; 2084 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2085 end = (u64)-1; 2086 } else { 2087 if (max_key->offset == 0) 2088 continue; 2089 end = max_key->offset; 2090 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2091 end--; 2092 } 2093 } else { 2094 end = (u64)-1; 2095 } 2096 2097 /* the lock_extent waits for readpage to complete */ 2098 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2099 btrfs_drop_extent_cache(inode, start, end, 1); 2100 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2101 } 2102 return 0; 2103 } 2104 2105 static int find_next_key(struct btrfs_path *path, int level, 2106 struct btrfs_key *key) 2107 2108 { 2109 while (level < BTRFS_MAX_LEVEL) { 2110 if (!path->nodes[level]) 2111 break; 2112 if (path->slots[level] + 1 < 2113 btrfs_header_nritems(path->nodes[level])) { 2114 btrfs_node_key_to_cpu(path->nodes[level], key, 2115 path->slots[level] + 1); 2116 return 0; 2117 } 2118 level++; 2119 } 2120 return 1; 2121 } 2122 2123 /* 2124 * merge the relocated tree blocks in reloc tree with corresponding 2125 * fs tree. 2126 */ 2127 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2128 struct btrfs_root *root) 2129 { 2130 LIST_HEAD(inode_list); 2131 struct btrfs_key key; 2132 struct btrfs_key next_key; 2133 struct btrfs_trans_handle *trans = NULL; 2134 struct btrfs_root *reloc_root; 2135 struct btrfs_root_item *root_item; 2136 struct btrfs_path *path; 2137 struct extent_buffer *leaf; 2138 int level; 2139 int max_level; 2140 int replaced = 0; 2141 int ret; 2142 int err = 0; 2143 u32 min_reserved; 2144 2145 path = btrfs_alloc_path(); 2146 if (!path) 2147 return -ENOMEM; 2148 path->reada = READA_FORWARD; 2149 2150 reloc_root = root->reloc_root; 2151 root_item = &reloc_root->root_item; 2152 2153 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2154 level = btrfs_root_level(root_item); 2155 extent_buffer_get(reloc_root->node); 2156 path->nodes[level] = reloc_root->node; 2157 path->slots[level] = 0; 2158 } else { 2159 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2160 2161 level = root_item->drop_level; 2162 BUG_ON(level == 0); 2163 path->lowest_level = level; 2164 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2165 path->lowest_level = 0; 2166 if (ret < 0) { 2167 btrfs_free_path(path); 2168 return ret; 2169 } 2170 2171 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2172 path->slots[level]); 2173 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2174 2175 btrfs_unlock_up_safe(path, 0); 2176 } 2177 2178 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2179 memset(&next_key, 0, sizeof(next_key)); 2180 2181 while (1) { 2182 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2183 BTRFS_RESERVE_FLUSH_ALL); 2184 if (ret) { 2185 err = ret; 2186 goto out; 2187 } 2188 trans = btrfs_start_transaction(root, 0); 2189 if (IS_ERR(trans)) { 2190 err = PTR_ERR(trans); 2191 trans = NULL; 2192 goto out; 2193 } 2194 trans->block_rsv = rc->block_rsv; 2195 2196 replaced = 0; 2197 max_level = level; 2198 2199 ret = walk_down_reloc_tree(reloc_root, path, &level); 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 if (ret > 0) 2205 break; 2206 2207 if (!find_next_key(path, level, &key) && 2208 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2209 ret = 0; 2210 } else { 2211 ret = replace_path(trans, root, reloc_root, path, 2212 &next_key, level, max_level); 2213 } 2214 if (ret < 0) { 2215 err = ret; 2216 goto out; 2217 } 2218 2219 if (ret > 0) { 2220 level = ret; 2221 btrfs_node_key_to_cpu(path->nodes[level], &key, 2222 path->slots[level]); 2223 replaced = 1; 2224 } 2225 2226 ret = walk_up_reloc_tree(reloc_root, path, &level); 2227 if (ret > 0) 2228 break; 2229 2230 BUG_ON(level == 0); 2231 /* 2232 * save the merging progress in the drop_progress. 2233 * this is OK since root refs == 1 in this case. 2234 */ 2235 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2236 path->slots[level]); 2237 root_item->drop_level = level; 2238 2239 btrfs_end_transaction_throttle(trans, root); 2240 trans = NULL; 2241 2242 btrfs_btree_balance_dirty(root); 2243 2244 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2245 invalidate_extent_cache(root, &key, &next_key); 2246 } 2247 2248 /* 2249 * handle the case only one block in the fs tree need to be 2250 * relocated and the block is tree root. 2251 */ 2252 leaf = btrfs_lock_root_node(root); 2253 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2254 btrfs_tree_unlock(leaf); 2255 free_extent_buffer(leaf); 2256 if (ret < 0) 2257 err = ret; 2258 out: 2259 btrfs_free_path(path); 2260 2261 if (err == 0) { 2262 memset(&root_item->drop_progress, 0, 2263 sizeof(root_item->drop_progress)); 2264 root_item->drop_level = 0; 2265 btrfs_set_root_refs(root_item, 0); 2266 btrfs_update_reloc_root(trans, root); 2267 } 2268 2269 if (trans) 2270 btrfs_end_transaction_throttle(trans, root); 2271 2272 btrfs_btree_balance_dirty(root); 2273 2274 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2275 invalidate_extent_cache(root, &key, &next_key); 2276 2277 return err; 2278 } 2279 2280 static noinline_for_stack 2281 int prepare_to_merge(struct reloc_control *rc, int err) 2282 { 2283 struct btrfs_root *root = rc->extent_root; 2284 struct btrfs_root *reloc_root; 2285 struct btrfs_trans_handle *trans; 2286 LIST_HEAD(reloc_roots); 2287 u64 num_bytes = 0; 2288 int ret; 2289 2290 mutex_lock(&root->fs_info->reloc_mutex); 2291 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2292 rc->merging_rsv_size += rc->nodes_relocated * 2; 2293 mutex_unlock(&root->fs_info->reloc_mutex); 2294 2295 again: 2296 if (!err) { 2297 num_bytes = rc->merging_rsv_size; 2298 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2299 BTRFS_RESERVE_FLUSH_ALL); 2300 if (ret) 2301 err = ret; 2302 } 2303 2304 trans = btrfs_join_transaction(rc->extent_root); 2305 if (IS_ERR(trans)) { 2306 if (!err) 2307 btrfs_block_rsv_release(rc->extent_root, 2308 rc->block_rsv, num_bytes); 2309 return PTR_ERR(trans); 2310 } 2311 2312 if (!err) { 2313 if (num_bytes != rc->merging_rsv_size) { 2314 btrfs_end_transaction(trans, rc->extent_root); 2315 btrfs_block_rsv_release(rc->extent_root, 2316 rc->block_rsv, num_bytes); 2317 goto again; 2318 } 2319 } 2320 2321 rc->merge_reloc_tree = 1; 2322 2323 while (!list_empty(&rc->reloc_roots)) { 2324 reloc_root = list_entry(rc->reloc_roots.next, 2325 struct btrfs_root, root_list); 2326 list_del_init(&reloc_root->root_list); 2327 2328 root = read_fs_root(reloc_root->fs_info, 2329 reloc_root->root_key.offset); 2330 BUG_ON(IS_ERR(root)); 2331 BUG_ON(root->reloc_root != reloc_root); 2332 2333 /* 2334 * set reference count to 1, so btrfs_recover_relocation 2335 * knows it should resumes merging 2336 */ 2337 if (!err) 2338 btrfs_set_root_refs(&reloc_root->root_item, 1); 2339 btrfs_update_reloc_root(trans, root); 2340 2341 list_add(&reloc_root->root_list, &reloc_roots); 2342 } 2343 2344 list_splice(&reloc_roots, &rc->reloc_roots); 2345 2346 if (!err) 2347 btrfs_commit_transaction(trans, rc->extent_root); 2348 else 2349 btrfs_end_transaction(trans, rc->extent_root); 2350 return err; 2351 } 2352 2353 static noinline_for_stack 2354 void free_reloc_roots(struct list_head *list) 2355 { 2356 struct btrfs_root *reloc_root; 2357 2358 while (!list_empty(list)) { 2359 reloc_root = list_entry(list->next, struct btrfs_root, 2360 root_list); 2361 free_extent_buffer(reloc_root->node); 2362 free_extent_buffer(reloc_root->commit_root); 2363 reloc_root->node = NULL; 2364 reloc_root->commit_root = NULL; 2365 __del_reloc_root(reloc_root); 2366 } 2367 } 2368 2369 static noinline_for_stack 2370 void merge_reloc_roots(struct reloc_control *rc) 2371 { 2372 struct btrfs_root *root; 2373 struct btrfs_root *reloc_root; 2374 u64 last_snap; 2375 u64 otransid; 2376 u64 objectid; 2377 LIST_HEAD(reloc_roots); 2378 int found = 0; 2379 int ret = 0; 2380 again: 2381 root = rc->extent_root; 2382 2383 /* 2384 * this serializes us with btrfs_record_root_in_transaction, 2385 * we have to make sure nobody is in the middle of 2386 * adding their roots to the list while we are 2387 * doing this splice 2388 */ 2389 mutex_lock(&root->fs_info->reloc_mutex); 2390 list_splice_init(&rc->reloc_roots, &reloc_roots); 2391 mutex_unlock(&root->fs_info->reloc_mutex); 2392 2393 while (!list_empty(&reloc_roots)) { 2394 found = 1; 2395 reloc_root = list_entry(reloc_roots.next, 2396 struct btrfs_root, root_list); 2397 2398 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2399 root = read_fs_root(reloc_root->fs_info, 2400 reloc_root->root_key.offset); 2401 BUG_ON(IS_ERR(root)); 2402 BUG_ON(root->reloc_root != reloc_root); 2403 2404 ret = merge_reloc_root(rc, root); 2405 if (ret) { 2406 if (list_empty(&reloc_root->root_list)) 2407 list_add_tail(&reloc_root->root_list, 2408 &reloc_roots); 2409 goto out; 2410 } 2411 } else { 2412 list_del_init(&reloc_root->root_list); 2413 } 2414 2415 /* 2416 * we keep the old last snapshot transid in rtranid when we 2417 * created the relocation tree. 2418 */ 2419 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2420 otransid = btrfs_root_otransid(&reloc_root->root_item); 2421 objectid = reloc_root->root_key.offset; 2422 2423 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2424 if (ret < 0) { 2425 if (list_empty(&reloc_root->root_list)) 2426 list_add_tail(&reloc_root->root_list, 2427 &reloc_roots); 2428 goto out; 2429 } 2430 } 2431 2432 if (found) { 2433 found = 0; 2434 goto again; 2435 } 2436 out: 2437 if (ret) { 2438 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2439 if (!list_empty(&reloc_roots)) 2440 free_reloc_roots(&reloc_roots); 2441 2442 /* new reloc root may be added */ 2443 mutex_lock(&root->fs_info->reloc_mutex); 2444 list_splice_init(&rc->reloc_roots, &reloc_roots); 2445 mutex_unlock(&root->fs_info->reloc_mutex); 2446 if (!list_empty(&reloc_roots)) 2447 free_reloc_roots(&reloc_roots); 2448 } 2449 2450 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2451 } 2452 2453 static void free_block_list(struct rb_root *blocks) 2454 { 2455 struct tree_block *block; 2456 struct rb_node *rb_node; 2457 while ((rb_node = rb_first(blocks))) { 2458 block = rb_entry(rb_node, struct tree_block, rb_node); 2459 rb_erase(rb_node, blocks); 2460 kfree(block); 2461 } 2462 } 2463 2464 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2465 struct btrfs_root *reloc_root) 2466 { 2467 struct btrfs_root *root; 2468 2469 if (reloc_root->last_trans == trans->transid) 2470 return 0; 2471 2472 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2473 BUG_ON(IS_ERR(root)); 2474 BUG_ON(root->reloc_root != reloc_root); 2475 2476 return btrfs_record_root_in_trans(trans, root); 2477 } 2478 2479 static noinline_for_stack 2480 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2481 struct reloc_control *rc, 2482 struct backref_node *node, 2483 struct backref_edge *edges[]) 2484 { 2485 struct backref_node *next; 2486 struct btrfs_root *root; 2487 int index = 0; 2488 2489 next = node; 2490 while (1) { 2491 cond_resched(); 2492 next = walk_up_backref(next, edges, &index); 2493 root = next->root; 2494 BUG_ON(!root); 2495 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2496 2497 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2498 record_reloc_root_in_trans(trans, root); 2499 break; 2500 } 2501 2502 btrfs_record_root_in_trans(trans, root); 2503 root = root->reloc_root; 2504 2505 if (next->new_bytenr != root->node->start) { 2506 BUG_ON(next->new_bytenr); 2507 BUG_ON(!list_empty(&next->list)); 2508 next->new_bytenr = root->node->start; 2509 next->root = root; 2510 list_add_tail(&next->list, 2511 &rc->backref_cache.changed); 2512 __mark_block_processed(rc, next); 2513 break; 2514 } 2515 2516 WARN_ON(1); 2517 root = NULL; 2518 next = walk_down_backref(edges, &index); 2519 if (!next || next->level <= node->level) 2520 break; 2521 } 2522 if (!root) 2523 return NULL; 2524 2525 next = node; 2526 /* setup backref node path for btrfs_reloc_cow_block */ 2527 while (1) { 2528 rc->backref_cache.path[next->level] = next; 2529 if (--index < 0) 2530 break; 2531 next = edges[index]->node[UPPER]; 2532 } 2533 return root; 2534 } 2535 2536 /* 2537 * select a tree root for relocation. return NULL if the block 2538 * is reference counted. we should use do_relocation() in this 2539 * case. return a tree root pointer if the block isn't reference 2540 * counted. return -ENOENT if the block is root of reloc tree. 2541 */ 2542 static noinline_for_stack 2543 struct btrfs_root *select_one_root(struct backref_node *node) 2544 { 2545 struct backref_node *next; 2546 struct btrfs_root *root; 2547 struct btrfs_root *fs_root = NULL; 2548 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2549 int index = 0; 2550 2551 next = node; 2552 while (1) { 2553 cond_resched(); 2554 next = walk_up_backref(next, edges, &index); 2555 root = next->root; 2556 BUG_ON(!root); 2557 2558 /* no other choice for non-references counted tree */ 2559 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2560 return root; 2561 2562 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2563 fs_root = root; 2564 2565 if (next != node) 2566 return NULL; 2567 2568 next = walk_down_backref(edges, &index); 2569 if (!next || next->level <= node->level) 2570 break; 2571 } 2572 2573 if (!fs_root) 2574 return ERR_PTR(-ENOENT); 2575 return fs_root; 2576 } 2577 2578 static noinline_for_stack 2579 u64 calcu_metadata_size(struct reloc_control *rc, 2580 struct backref_node *node, int reserve) 2581 { 2582 struct backref_node *next = node; 2583 struct backref_edge *edge; 2584 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2585 u64 num_bytes = 0; 2586 int index = 0; 2587 2588 BUG_ON(reserve && node->processed); 2589 2590 while (next) { 2591 cond_resched(); 2592 while (1) { 2593 if (next->processed && (reserve || next != node)) 2594 break; 2595 2596 num_bytes += rc->extent_root->nodesize; 2597 2598 if (list_empty(&next->upper)) 2599 break; 2600 2601 edge = list_entry(next->upper.next, 2602 struct backref_edge, list[LOWER]); 2603 edges[index++] = edge; 2604 next = edge->node[UPPER]; 2605 } 2606 next = walk_down_backref(edges, &index); 2607 } 2608 return num_bytes; 2609 } 2610 2611 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2612 struct reloc_control *rc, 2613 struct backref_node *node) 2614 { 2615 struct btrfs_root *root = rc->extent_root; 2616 u64 num_bytes; 2617 int ret; 2618 u64 tmp; 2619 2620 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2621 2622 trans->block_rsv = rc->block_rsv; 2623 rc->reserved_bytes += num_bytes; 2624 2625 /* 2626 * We are under a transaction here so we can only do limited flushing. 2627 * If we get an enospc just kick back -EAGAIN so we know to drop the 2628 * transaction and try to refill when we can flush all the things. 2629 */ 2630 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2631 BTRFS_RESERVE_FLUSH_LIMIT); 2632 if (ret) { 2633 tmp = rc->extent_root->nodesize * RELOCATION_RESERVED_NODES; 2634 while (tmp <= rc->reserved_bytes) 2635 tmp <<= 1; 2636 /* 2637 * only one thread can access block_rsv at this point, 2638 * so we don't need hold lock to protect block_rsv. 2639 * we expand more reservation size here to allow enough 2640 * space for relocation and we will return eailer in 2641 * enospc case. 2642 */ 2643 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2644 RELOCATION_RESERVED_NODES; 2645 return -EAGAIN; 2646 } 2647 2648 return 0; 2649 } 2650 2651 /* 2652 * relocate a block tree, and then update pointers in upper level 2653 * blocks that reference the block to point to the new location. 2654 * 2655 * if called by link_to_upper, the block has already been relocated. 2656 * in that case this function just updates pointers. 2657 */ 2658 static int do_relocation(struct btrfs_trans_handle *trans, 2659 struct reloc_control *rc, 2660 struct backref_node *node, 2661 struct btrfs_key *key, 2662 struct btrfs_path *path, int lowest) 2663 { 2664 struct backref_node *upper; 2665 struct backref_edge *edge; 2666 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2667 struct btrfs_root *root; 2668 struct extent_buffer *eb; 2669 u32 blocksize; 2670 u64 bytenr; 2671 u64 generation; 2672 int slot; 2673 int ret; 2674 int err = 0; 2675 2676 BUG_ON(lowest && node->eb); 2677 2678 path->lowest_level = node->level + 1; 2679 rc->backref_cache.path[node->level] = node; 2680 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2681 cond_resched(); 2682 2683 upper = edge->node[UPPER]; 2684 root = select_reloc_root(trans, rc, upper, edges); 2685 BUG_ON(!root); 2686 2687 if (upper->eb && !upper->locked) { 2688 if (!lowest) { 2689 ret = btrfs_bin_search(upper->eb, key, 2690 upper->level, &slot); 2691 BUG_ON(ret); 2692 bytenr = btrfs_node_blockptr(upper->eb, slot); 2693 if (node->eb->start == bytenr) 2694 goto next; 2695 } 2696 drop_node_buffer(upper); 2697 } 2698 2699 if (!upper->eb) { 2700 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2701 if (ret) { 2702 if (ret < 0) 2703 err = ret; 2704 else 2705 err = -ENOENT; 2706 2707 btrfs_release_path(path); 2708 break; 2709 } 2710 2711 if (!upper->eb) { 2712 upper->eb = path->nodes[upper->level]; 2713 path->nodes[upper->level] = NULL; 2714 } else { 2715 BUG_ON(upper->eb != path->nodes[upper->level]); 2716 } 2717 2718 upper->locked = 1; 2719 path->locks[upper->level] = 0; 2720 2721 slot = path->slots[upper->level]; 2722 btrfs_release_path(path); 2723 } else { 2724 ret = btrfs_bin_search(upper->eb, key, upper->level, 2725 &slot); 2726 BUG_ON(ret); 2727 } 2728 2729 bytenr = btrfs_node_blockptr(upper->eb, slot); 2730 if (lowest) { 2731 if (bytenr != node->bytenr) { 2732 btrfs_err(root->fs_info, 2733 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2734 bytenr, node->bytenr, slot, 2735 upper->eb->start); 2736 err = -EIO; 2737 goto next; 2738 } 2739 } else { 2740 if (node->eb->start == bytenr) 2741 goto next; 2742 } 2743 2744 blocksize = root->nodesize; 2745 generation = btrfs_node_ptr_generation(upper->eb, slot); 2746 eb = read_tree_block(root, bytenr, generation); 2747 if (IS_ERR(eb)) { 2748 err = PTR_ERR(eb); 2749 goto next; 2750 } else if (!extent_buffer_uptodate(eb)) { 2751 free_extent_buffer(eb); 2752 err = -EIO; 2753 goto next; 2754 } 2755 btrfs_tree_lock(eb); 2756 btrfs_set_lock_blocking(eb); 2757 2758 if (!node->eb) { 2759 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2760 slot, &eb); 2761 btrfs_tree_unlock(eb); 2762 free_extent_buffer(eb); 2763 if (ret < 0) { 2764 err = ret; 2765 goto next; 2766 } 2767 BUG_ON(node->eb != eb); 2768 } else { 2769 btrfs_set_node_blockptr(upper->eb, slot, 2770 node->eb->start); 2771 btrfs_set_node_ptr_generation(upper->eb, slot, 2772 trans->transid); 2773 btrfs_mark_buffer_dirty(upper->eb); 2774 2775 ret = btrfs_inc_extent_ref(trans, root, 2776 node->eb->start, blocksize, 2777 upper->eb->start, 2778 btrfs_header_owner(upper->eb), 2779 node->level, 0); 2780 BUG_ON(ret); 2781 2782 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2783 BUG_ON(ret); 2784 } 2785 next: 2786 if (!upper->pending) 2787 drop_node_buffer(upper); 2788 else 2789 unlock_node_buffer(upper); 2790 if (err) 2791 break; 2792 } 2793 2794 if (!err && node->pending) { 2795 drop_node_buffer(node); 2796 list_move_tail(&node->list, &rc->backref_cache.changed); 2797 node->pending = 0; 2798 } 2799 2800 path->lowest_level = 0; 2801 BUG_ON(err == -ENOSPC); 2802 return err; 2803 } 2804 2805 static int link_to_upper(struct btrfs_trans_handle *trans, 2806 struct reloc_control *rc, 2807 struct backref_node *node, 2808 struct btrfs_path *path) 2809 { 2810 struct btrfs_key key; 2811 2812 btrfs_node_key_to_cpu(node->eb, &key, 0); 2813 return do_relocation(trans, rc, node, &key, path, 0); 2814 } 2815 2816 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2817 struct reloc_control *rc, 2818 struct btrfs_path *path, int err) 2819 { 2820 LIST_HEAD(list); 2821 struct backref_cache *cache = &rc->backref_cache; 2822 struct backref_node *node; 2823 int level; 2824 int ret; 2825 2826 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2827 while (!list_empty(&cache->pending[level])) { 2828 node = list_entry(cache->pending[level].next, 2829 struct backref_node, list); 2830 list_move_tail(&node->list, &list); 2831 BUG_ON(!node->pending); 2832 2833 if (!err) { 2834 ret = link_to_upper(trans, rc, node, path); 2835 if (ret < 0) 2836 err = ret; 2837 } 2838 } 2839 list_splice_init(&list, &cache->pending[level]); 2840 } 2841 return err; 2842 } 2843 2844 static void mark_block_processed(struct reloc_control *rc, 2845 u64 bytenr, u32 blocksize) 2846 { 2847 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2848 EXTENT_DIRTY); 2849 } 2850 2851 static void __mark_block_processed(struct reloc_control *rc, 2852 struct backref_node *node) 2853 { 2854 u32 blocksize; 2855 if (node->level == 0 || 2856 in_block_group(node->bytenr, rc->block_group)) { 2857 blocksize = rc->extent_root->nodesize; 2858 mark_block_processed(rc, node->bytenr, blocksize); 2859 } 2860 node->processed = 1; 2861 } 2862 2863 /* 2864 * mark a block and all blocks directly/indirectly reference the block 2865 * as processed. 2866 */ 2867 static void update_processed_blocks(struct reloc_control *rc, 2868 struct backref_node *node) 2869 { 2870 struct backref_node *next = node; 2871 struct backref_edge *edge; 2872 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2873 int index = 0; 2874 2875 while (next) { 2876 cond_resched(); 2877 while (1) { 2878 if (next->processed) 2879 break; 2880 2881 __mark_block_processed(rc, next); 2882 2883 if (list_empty(&next->upper)) 2884 break; 2885 2886 edge = list_entry(next->upper.next, 2887 struct backref_edge, list[LOWER]); 2888 edges[index++] = edge; 2889 next = edge->node[UPPER]; 2890 } 2891 next = walk_down_backref(edges, &index); 2892 } 2893 } 2894 2895 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2896 { 2897 u32 blocksize = rc->extent_root->nodesize; 2898 2899 if (test_range_bit(&rc->processed_blocks, bytenr, 2900 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2901 return 1; 2902 return 0; 2903 } 2904 2905 static int get_tree_block_key(struct reloc_control *rc, 2906 struct tree_block *block) 2907 { 2908 struct extent_buffer *eb; 2909 2910 BUG_ON(block->key_ready); 2911 eb = read_tree_block(rc->extent_root, block->bytenr, 2912 block->key.offset); 2913 if (IS_ERR(eb)) { 2914 return PTR_ERR(eb); 2915 } else if (!extent_buffer_uptodate(eb)) { 2916 free_extent_buffer(eb); 2917 return -EIO; 2918 } 2919 WARN_ON(btrfs_header_level(eb) != block->level); 2920 if (block->level == 0) 2921 btrfs_item_key_to_cpu(eb, &block->key, 0); 2922 else 2923 btrfs_node_key_to_cpu(eb, &block->key, 0); 2924 free_extent_buffer(eb); 2925 block->key_ready = 1; 2926 return 0; 2927 } 2928 2929 /* 2930 * helper function to relocate a tree block 2931 */ 2932 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2933 struct reloc_control *rc, 2934 struct backref_node *node, 2935 struct btrfs_key *key, 2936 struct btrfs_path *path) 2937 { 2938 struct btrfs_root *root; 2939 int ret = 0; 2940 2941 if (!node) 2942 return 0; 2943 2944 BUG_ON(node->processed); 2945 root = select_one_root(node); 2946 if (root == ERR_PTR(-ENOENT)) { 2947 update_processed_blocks(rc, node); 2948 goto out; 2949 } 2950 2951 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2952 ret = reserve_metadata_space(trans, rc, node); 2953 if (ret) 2954 goto out; 2955 } 2956 2957 if (root) { 2958 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2959 BUG_ON(node->new_bytenr); 2960 BUG_ON(!list_empty(&node->list)); 2961 btrfs_record_root_in_trans(trans, root); 2962 root = root->reloc_root; 2963 node->new_bytenr = root->node->start; 2964 node->root = root; 2965 list_add_tail(&node->list, &rc->backref_cache.changed); 2966 } else { 2967 path->lowest_level = node->level; 2968 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2969 btrfs_release_path(path); 2970 if (ret > 0) 2971 ret = 0; 2972 } 2973 if (!ret) 2974 update_processed_blocks(rc, node); 2975 } else { 2976 ret = do_relocation(trans, rc, node, key, path, 1); 2977 } 2978 out: 2979 if (ret || node->level == 0 || node->cowonly) 2980 remove_backref_node(&rc->backref_cache, node); 2981 return ret; 2982 } 2983 2984 /* 2985 * relocate a list of blocks 2986 */ 2987 static noinline_for_stack 2988 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2989 struct reloc_control *rc, struct rb_root *blocks) 2990 { 2991 struct backref_node *node; 2992 struct btrfs_path *path; 2993 struct tree_block *block; 2994 struct rb_node *rb_node; 2995 int ret; 2996 int err = 0; 2997 2998 path = btrfs_alloc_path(); 2999 if (!path) { 3000 err = -ENOMEM; 3001 goto out_free_blocks; 3002 } 3003 3004 rb_node = rb_first(blocks); 3005 while (rb_node) { 3006 block = rb_entry(rb_node, struct tree_block, rb_node); 3007 if (!block->key_ready) 3008 readahead_tree_block(rc->extent_root, block->bytenr); 3009 rb_node = rb_next(rb_node); 3010 } 3011 3012 rb_node = rb_first(blocks); 3013 while (rb_node) { 3014 block = rb_entry(rb_node, struct tree_block, rb_node); 3015 if (!block->key_ready) { 3016 err = get_tree_block_key(rc, block); 3017 if (err) 3018 goto out_free_path; 3019 } 3020 rb_node = rb_next(rb_node); 3021 } 3022 3023 rb_node = rb_first(blocks); 3024 while (rb_node) { 3025 block = rb_entry(rb_node, struct tree_block, rb_node); 3026 3027 node = build_backref_tree(rc, &block->key, 3028 block->level, block->bytenr); 3029 if (IS_ERR(node)) { 3030 err = PTR_ERR(node); 3031 goto out; 3032 } 3033 3034 ret = relocate_tree_block(trans, rc, node, &block->key, 3035 path); 3036 if (ret < 0) { 3037 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3038 err = ret; 3039 goto out; 3040 } 3041 rb_node = rb_next(rb_node); 3042 } 3043 out: 3044 err = finish_pending_nodes(trans, rc, path, err); 3045 3046 out_free_path: 3047 btrfs_free_path(path); 3048 out_free_blocks: 3049 free_block_list(blocks); 3050 return err; 3051 } 3052 3053 static noinline_for_stack 3054 int prealloc_file_extent_cluster(struct inode *inode, 3055 struct file_extent_cluster *cluster) 3056 { 3057 u64 alloc_hint = 0; 3058 u64 start; 3059 u64 end; 3060 u64 offset = BTRFS_I(inode)->index_cnt; 3061 u64 num_bytes; 3062 int nr = 0; 3063 int ret = 0; 3064 u64 prealloc_start = cluster->start - offset; 3065 u64 prealloc_end = cluster->end - offset; 3066 u64 cur_offset; 3067 3068 BUG_ON(cluster->start != cluster->boundary[0]); 3069 inode_lock(inode); 3070 3071 ret = btrfs_check_data_free_space(inode, prealloc_start, 3072 prealloc_end + 1 - prealloc_start); 3073 if (ret) 3074 goto out; 3075 3076 cur_offset = prealloc_start; 3077 while (nr < cluster->nr) { 3078 start = cluster->boundary[nr] - offset; 3079 if (nr + 1 < cluster->nr) 3080 end = cluster->boundary[nr + 1] - 1 - offset; 3081 else 3082 end = cluster->end - offset; 3083 3084 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3085 num_bytes = end + 1 - start; 3086 if (cur_offset < start) 3087 btrfs_free_reserved_data_space(inode, cur_offset, 3088 start - cur_offset); 3089 ret = btrfs_prealloc_file_range(inode, 0, start, 3090 num_bytes, num_bytes, 3091 end + 1, &alloc_hint); 3092 cur_offset = end + 1; 3093 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3094 if (ret) 3095 break; 3096 nr++; 3097 } 3098 if (cur_offset < prealloc_end) 3099 btrfs_free_reserved_data_space(inode, cur_offset, 3100 prealloc_end + 1 - cur_offset); 3101 out: 3102 inode_unlock(inode); 3103 return ret; 3104 } 3105 3106 static noinline_for_stack 3107 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3108 u64 block_start) 3109 { 3110 struct btrfs_root *root = BTRFS_I(inode)->root; 3111 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3112 struct extent_map *em; 3113 int ret = 0; 3114 3115 em = alloc_extent_map(); 3116 if (!em) 3117 return -ENOMEM; 3118 3119 em->start = start; 3120 em->len = end + 1 - start; 3121 em->block_len = em->len; 3122 em->block_start = block_start; 3123 em->bdev = root->fs_info->fs_devices->latest_bdev; 3124 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3125 3126 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3127 while (1) { 3128 write_lock(&em_tree->lock); 3129 ret = add_extent_mapping(em_tree, em, 0); 3130 write_unlock(&em_tree->lock); 3131 if (ret != -EEXIST) { 3132 free_extent_map(em); 3133 break; 3134 } 3135 btrfs_drop_extent_cache(inode, start, end, 0); 3136 } 3137 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3138 return ret; 3139 } 3140 3141 static int relocate_file_extent_cluster(struct inode *inode, 3142 struct file_extent_cluster *cluster) 3143 { 3144 u64 page_start; 3145 u64 page_end; 3146 u64 offset = BTRFS_I(inode)->index_cnt; 3147 unsigned long index; 3148 unsigned long last_index; 3149 struct page *page; 3150 struct file_ra_state *ra; 3151 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3152 int nr = 0; 3153 int ret = 0; 3154 3155 if (!cluster->nr) 3156 return 0; 3157 3158 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3159 if (!ra) 3160 return -ENOMEM; 3161 3162 ret = prealloc_file_extent_cluster(inode, cluster); 3163 if (ret) 3164 goto out; 3165 3166 file_ra_state_init(ra, inode->i_mapping); 3167 3168 ret = setup_extent_mapping(inode, cluster->start - offset, 3169 cluster->end - offset, cluster->start); 3170 if (ret) 3171 goto out; 3172 3173 index = (cluster->start - offset) >> PAGE_SHIFT; 3174 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3175 while (index <= last_index) { 3176 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE); 3177 if (ret) 3178 goto out; 3179 3180 page = find_lock_page(inode->i_mapping, index); 3181 if (!page) { 3182 page_cache_sync_readahead(inode->i_mapping, 3183 ra, NULL, index, 3184 last_index + 1 - index); 3185 page = find_or_create_page(inode->i_mapping, index, 3186 mask); 3187 if (!page) { 3188 btrfs_delalloc_release_metadata(inode, 3189 PAGE_SIZE); 3190 ret = -ENOMEM; 3191 goto out; 3192 } 3193 } 3194 3195 if (PageReadahead(page)) { 3196 page_cache_async_readahead(inode->i_mapping, 3197 ra, NULL, page, index, 3198 last_index + 1 - index); 3199 } 3200 3201 if (!PageUptodate(page)) { 3202 btrfs_readpage(NULL, page); 3203 lock_page(page); 3204 if (!PageUptodate(page)) { 3205 unlock_page(page); 3206 put_page(page); 3207 btrfs_delalloc_release_metadata(inode, 3208 PAGE_SIZE); 3209 ret = -EIO; 3210 goto out; 3211 } 3212 } 3213 3214 page_start = page_offset(page); 3215 page_end = page_start + PAGE_SIZE - 1; 3216 3217 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3218 3219 set_page_extent_mapped(page); 3220 3221 if (nr < cluster->nr && 3222 page_start + offset == cluster->boundary[nr]) { 3223 set_extent_bits(&BTRFS_I(inode)->io_tree, 3224 page_start, page_end, 3225 EXTENT_BOUNDARY); 3226 nr++; 3227 } 3228 3229 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL, 0); 3230 set_page_dirty(page); 3231 3232 unlock_extent(&BTRFS_I(inode)->io_tree, 3233 page_start, page_end); 3234 unlock_page(page); 3235 put_page(page); 3236 3237 index++; 3238 balance_dirty_pages_ratelimited(inode->i_mapping); 3239 btrfs_throttle(BTRFS_I(inode)->root); 3240 } 3241 WARN_ON(nr != cluster->nr); 3242 out: 3243 kfree(ra); 3244 return ret; 3245 } 3246 3247 static noinline_for_stack 3248 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3249 struct file_extent_cluster *cluster) 3250 { 3251 int ret; 3252 3253 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3254 ret = relocate_file_extent_cluster(inode, cluster); 3255 if (ret) 3256 return ret; 3257 cluster->nr = 0; 3258 } 3259 3260 if (!cluster->nr) 3261 cluster->start = extent_key->objectid; 3262 else 3263 BUG_ON(cluster->nr >= MAX_EXTENTS); 3264 cluster->end = extent_key->objectid + extent_key->offset - 1; 3265 cluster->boundary[cluster->nr] = extent_key->objectid; 3266 cluster->nr++; 3267 3268 if (cluster->nr >= MAX_EXTENTS) { 3269 ret = relocate_file_extent_cluster(inode, cluster); 3270 if (ret) 3271 return ret; 3272 cluster->nr = 0; 3273 } 3274 return 0; 3275 } 3276 3277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3278 static int get_ref_objectid_v0(struct reloc_control *rc, 3279 struct btrfs_path *path, 3280 struct btrfs_key *extent_key, 3281 u64 *ref_objectid, int *path_change) 3282 { 3283 struct btrfs_key key; 3284 struct extent_buffer *leaf; 3285 struct btrfs_extent_ref_v0 *ref0; 3286 int ret; 3287 int slot; 3288 3289 leaf = path->nodes[0]; 3290 slot = path->slots[0]; 3291 while (1) { 3292 if (slot >= btrfs_header_nritems(leaf)) { 3293 ret = btrfs_next_leaf(rc->extent_root, path); 3294 if (ret < 0) 3295 return ret; 3296 BUG_ON(ret > 0); 3297 leaf = path->nodes[0]; 3298 slot = path->slots[0]; 3299 if (path_change) 3300 *path_change = 1; 3301 } 3302 btrfs_item_key_to_cpu(leaf, &key, slot); 3303 if (key.objectid != extent_key->objectid) 3304 return -ENOENT; 3305 3306 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3307 slot++; 3308 continue; 3309 } 3310 ref0 = btrfs_item_ptr(leaf, slot, 3311 struct btrfs_extent_ref_v0); 3312 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3313 break; 3314 } 3315 return 0; 3316 } 3317 #endif 3318 3319 /* 3320 * helper to add a tree block to the list. 3321 * the major work is getting the generation and level of the block 3322 */ 3323 static int add_tree_block(struct reloc_control *rc, 3324 struct btrfs_key *extent_key, 3325 struct btrfs_path *path, 3326 struct rb_root *blocks) 3327 { 3328 struct extent_buffer *eb; 3329 struct btrfs_extent_item *ei; 3330 struct btrfs_tree_block_info *bi; 3331 struct tree_block *block; 3332 struct rb_node *rb_node; 3333 u32 item_size; 3334 int level = -1; 3335 u64 generation; 3336 3337 eb = path->nodes[0]; 3338 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3339 3340 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3341 item_size >= sizeof(*ei) + sizeof(*bi)) { 3342 ei = btrfs_item_ptr(eb, path->slots[0], 3343 struct btrfs_extent_item); 3344 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3345 bi = (struct btrfs_tree_block_info *)(ei + 1); 3346 level = btrfs_tree_block_level(eb, bi); 3347 } else { 3348 level = (int)extent_key->offset; 3349 } 3350 generation = btrfs_extent_generation(eb, ei); 3351 } else { 3352 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3353 u64 ref_owner; 3354 int ret; 3355 3356 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3357 ret = get_ref_objectid_v0(rc, path, extent_key, 3358 &ref_owner, NULL); 3359 if (ret < 0) 3360 return ret; 3361 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3362 level = (int)ref_owner; 3363 /* FIXME: get real generation */ 3364 generation = 0; 3365 #else 3366 BUG(); 3367 #endif 3368 } 3369 3370 btrfs_release_path(path); 3371 3372 BUG_ON(level == -1); 3373 3374 block = kmalloc(sizeof(*block), GFP_NOFS); 3375 if (!block) 3376 return -ENOMEM; 3377 3378 block->bytenr = extent_key->objectid; 3379 block->key.objectid = rc->extent_root->nodesize; 3380 block->key.offset = generation; 3381 block->level = level; 3382 block->key_ready = 0; 3383 3384 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3385 if (rb_node) 3386 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3387 3388 return 0; 3389 } 3390 3391 /* 3392 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3393 */ 3394 static int __add_tree_block(struct reloc_control *rc, 3395 u64 bytenr, u32 blocksize, 3396 struct rb_root *blocks) 3397 { 3398 struct btrfs_path *path; 3399 struct btrfs_key key; 3400 int ret; 3401 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3402 SKINNY_METADATA); 3403 3404 if (tree_block_processed(bytenr, rc)) 3405 return 0; 3406 3407 if (tree_search(blocks, bytenr)) 3408 return 0; 3409 3410 path = btrfs_alloc_path(); 3411 if (!path) 3412 return -ENOMEM; 3413 again: 3414 key.objectid = bytenr; 3415 if (skinny) { 3416 key.type = BTRFS_METADATA_ITEM_KEY; 3417 key.offset = (u64)-1; 3418 } else { 3419 key.type = BTRFS_EXTENT_ITEM_KEY; 3420 key.offset = blocksize; 3421 } 3422 3423 path->search_commit_root = 1; 3424 path->skip_locking = 1; 3425 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3426 if (ret < 0) 3427 goto out; 3428 3429 if (ret > 0 && skinny) { 3430 if (path->slots[0]) { 3431 path->slots[0]--; 3432 btrfs_item_key_to_cpu(path->nodes[0], &key, 3433 path->slots[0]); 3434 if (key.objectid == bytenr && 3435 (key.type == BTRFS_METADATA_ITEM_KEY || 3436 (key.type == BTRFS_EXTENT_ITEM_KEY && 3437 key.offset == blocksize))) 3438 ret = 0; 3439 } 3440 3441 if (ret) { 3442 skinny = false; 3443 btrfs_release_path(path); 3444 goto again; 3445 } 3446 } 3447 BUG_ON(ret); 3448 3449 ret = add_tree_block(rc, &key, path, blocks); 3450 out: 3451 btrfs_free_path(path); 3452 return ret; 3453 } 3454 3455 /* 3456 * helper to check if the block use full backrefs for pointers in it 3457 */ 3458 static int block_use_full_backref(struct reloc_control *rc, 3459 struct extent_buffer *eb) 3460 { 3461 u64 flags; 3462 int ret; 3463 3464 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3465 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3466 return 1; 3467 3468 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3469 eb->start, btrfs_header_level(eb), 1, 3470 NULL, &flags); 3471 BUG_ON(ret); 3472 3473 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3474 ret = 1; 3475 else 3476 ret = 0; 3477 return ret; 3478 } 3479 3480 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3481 struct btrfs_block_group_cache *block_group, 3482 struct inode *inode, 3483 u64 ino) 3484 { 3485 struct btrfs_key key; 3486 struct btrfs_root *root = fs_info->tree_root; 3487 struct btrfs_trans_handle *trans; 3488 int ret = 0; 3489 3490 if (inode) 3491 goto truncate; 3492 3493 key.objectid = ino; 3494 key.type = BTRFS_INODE_ITEM_KEY; 3495 key.offset = 0; 3496 3497 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3498 if (IS_ERR(inode) || is_bad_inode(inode)) { 3499 if (!IS_ERR(inode)) 3500 iput(inode); 3501 return -ENOENT; 3502 } 3503 3504 truncate: 3505 ret = btrfs_check_trunc_cache_free_space(root, 3506 &fs_info->global_block_rsv); 3507 if (ret) 3508 goto out; 3509 3510 trans = btrfs_join_transaction(root); 3511 if (IS_ERR(trans)) { 3512 ret = PTR_ERR(trans); 3513 goto out; 3514 } 3515 3516 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode); 3517 3518 btrfs_end_transaction(trans, root); 3519 btrfs_btree_balance_dirty(root); 3520 out: 3521 iput(inode); 3522 return ret; 3523 } 3524 3525 /* 3526 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3527 * this function scans fs tree to find blocks reference the data extent 3528 */ 3529 static int find_data_references(struct reloc_control *rc, 3530 struct btrfs_key *extent_key, 3531 struct extent_buffer *leaf, 3532 struct btrfs_extent_data_ref *ref, 3533 struct rb_root *blocks) 3534 { 3535 struct btrfs_path *path; 3536 struct tree_block *block; 3537 struct btrfs_root *root; 3538 struct btrfs_file_extent_item *fi; 3539 struct rb_node *rb_node; 3540 struct btrfs_key key; 3541 u64 ref_root; 3542 u64 ref_objectid; 3543 u64 ref_offset; 3544 u32 ref_count; 3545 u32 nritems; 3546 int err = 0; 3547 int added = 0; 3548 int counted; 3549 int ret; 3550 3551 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3552 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3553 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3554 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3555 3556 /* 3557 * This is an extent belonging to the free space cache, lets just delete 3558 * it and redo the search. 3559 */ 3560 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3561 ret = delete_block_group_cache(rc->extent_root->fs_info, 3562 rc->block_group, 3563 NULL, ref_objectid); 3564 if (ret != -ENOENT) 3565 return ret; 3566 ret = 0; 3567 } 3568 3569 path = btrfs_alloc_path(); 3570 if (!path) 3571 return -ENOMEM; 3572 path->reada = READA_FORWARD; 3573 3574 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3575 if (IS_ERR(root)) { 3576 err = PTR_ERR(root); 3577 goto out; 3578 } 3579 3580 key.objectid = ref_objectid; 3581 key.type = BTRFS_EXTENT_DATA_KEY; 3582 if (ref_offset > ((u64)-1 << 32)) 3583 key.offset = 0; 3584 else 3585 key.offset = ref_offset; 3586 3587 path->search_commit_root = 1; 3588 path->skip_locking = 1; 3589 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3590 if (ret < 0) { 3591 err = ret; 3592 goto out; 3593 } 3594 3595 leaf = path->nodes[0]; 3596 nritems = btrfs_header_nritems(leaf); 3597 /* 3598 * the references in tree blocks that use full backrefs 3599 * are not counted in 3600 */ 3601 if (block_use_full_backref(rc, leaf)) 3602 counted = 0; 3603 else 3604 counted = 1; 3605 rb_node = tree_search(blocks, leaf->start); 3606 if (rb_node) { 3607 if (counted) 3608 added = 1; 3609 else 3610 path->slots[0] = nritems; 3611 } 3612 3613 while (ref_count > 0) { 3614 while (path->slots[0] >= nritems) { 3615 ret = btrfs_next_leaf(root, path); 3616 if (ret < 0) { 3617 err = ret; 3618 goto out; 3619 } 3620 if (WARN_ON(ret > 0)) 3621 goto out; 3622 3623 leaf = path->nodes[0]; 3624 nritems = btrfs_header_nritems(leaf); 3625 added = 0; 3626 3627 if (block_use_full_backref(rc, leaf)) 3628 counted = 0; 3629 else 3630 counted = 1; 3631 rb_node = tree_search(blocks, leaf->start); 3632 if (rb_node) { 3633 if (counted) 3634 added = 1; 3635 else 3636 path->slots[0] = nritems; 3637 } 3638 } 3639 3640 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3641 if (WARN_ON(key.objectid != ref_objectid || 3642 key.type != BTRFS_EXTENT_DATA_KEY)) 3643 break; 3644 3645 fi = btrfs_item_ptr(leaf, path->slots[0], 3646 struct btrfs_file_extent_item); 3647 3648 if (btrfs_file_extent_type(leaf, fi) == 3649 BTRFS_FILE_EXTENT_INLINE) 3650 goto next; 3651 3652 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3653 extent_key->objectid) 3654 goto next; 3655 3656 key.offset -= btrfs_file_extent_offset(leaf, fi); 3657 if (key.offset != ref_offset) 3658 goto next; 3659 3660 if (counted) 3661 ref_count--; 3662 if (added) 3663 goto next; 3664 3665 if (!tree_block_processed(leaf->start, rc)) { 3666 block = kmalloc(sizeof(*block), GFP_NOFS); 3667 if (!block) { 3668 err = -ENOMEM; 3669 break; 3670 } 3671 block->bytenr = leaf->start; 3672 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3673 block->level = 0; 3674 block->key_ready = 1; 3675 rb_node = tree_insert(blocks, block->bytenr, 3676 &block->rb_node); 3677 if (rb_node) 3678 backref_tree_panic(rb_node, -EEXIST, 3679 block->bytenr); 3680 } 3681 if (counted) 3682 added = 1; 3683 else 3684 path->slots[0] = nritems; 3685 next: 3686 path->slots[0]++; 3687 3688 } 3689 out: 3690 btrfs_free_path(path); 3691 return err; 3692 } 3693 3694 /* 3695 * helper to find all tree blocks that reference a given data extent 3696 */ 3697 static noinline_for_stack 3698 int add_data_references(struct reloc_control *rc, 3699 struct btrfs_key *extent_key, 3700 struct btrfs_path *path, 3701 struct rb_root *blocks) 3702 { 3703 struct btrfs_key key; 3704 struct extent_buffer *eb; 3705 struct btrfs_extent_data_ref *dref; 3706 struct btrfs_extent_inline_ref *iref; 3707 unsigned long ptr; 3708 unsigned long end; 3709 u32 blocksize = rc->extent_root->nodesize; 3710 int ret = 0; 3711 int err = 0; 3712 3713 eb = path->nodes[0]; 3714 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3715 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3716 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3717 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3718 ptr = end; 3719 else 3720 #endif 3721 ptr += sizeof(struct btrfs_extent_item); 3722 3723 while (ptr < end) { 3724 iref = (struct btrfs_extent_inline_ref *)ptr; 3725 key.type = btrfs_extent_inline_ref_type(eb, iref); 3726 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3727 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3728 ret = __add_tree_block(rc, key.offset, blocksize, 3729 blocks); 3730 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3731 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3732 ret = find_data_references(rc, extent_key, 3733 eb, dref, blocks); 3734 } else { 3735 BUG(); 3736 } 3737 if (ret) { 3738 err = ret; 3739 goto out; 3740 } 3741 ptr += btrfs_extent_inline_ref_size(key.type); 3742 } 3743 WARN_ON(ptr > end); 3744 3745 while (1) { 3746 cond_resched(); 3747 eb = path->nodes[0]; 3748 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3749 ret = btrfs_next_leaf(rc->extent_root, path); 3750 if (ret < 0) { 3751 err = ret; 3752 break; 3753 } 3754 if (ret > 0) 3755 break; 3756 eb = path->nodes[0]; 3757 } 3758 3759 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3760 if (key.objectid != extent_key->objectid) 3761 break; 3762 3763 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3764 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3765 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3766 #else 3767 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3768 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3769 #endif 3770 ret = __add_tree_block(rc, key.offset, blocksize, 3771 blocks); 3772 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3773 dref = btrfs_item_ptr(eb, path->slots[0], 3774 struct btrfs_extent_data_ref); 3775 ret = find_data_references(rc, extent_key, 3776 eb, dref, blocks); 3777 } else { 3778 ret = 0; 3779 } 3780 if (ret) { 3781 err = ret; 3782 break; 3783 } 3784 path->slots[0]++; 3785 } 3786 out: 3787 btrfs_release_path(path); 3788 if (err) 3789 free_block_list(blocks); 3790 return err; 3791 } 3792 3793 /* 3794 * helper to find next unprocessed extent 3795 */ 3796 static noinline_for_stack 3797 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3798 struct btrfs_key *extent_key) 3799 { 3800 struct btrfs_key key; 3801 struct extent_buffer *leaf; 3802 u64 start, end, last; 3803 int ret; 3804 3805 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3806 while (1) { 3807 cond_resched(); 3808 if (rc->search_start >= last) { 3809 ret = 1; 3810 break; 3811 } 3812 3813 key.objectid = rc->search_start; 3814 key.type = BTRFS_EXTENT_ITEM_KEY; 3815 key.offset = 0; 3816 3817 path->search_commit_root = 1; 3818 path->skip_locking = 1; 3819 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3820 0, 0); 3821 if (ret < 0) 3822 break; 3823 next: 3824 leaf = path->nodes[0]; 3825 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3826 ret = btrfs_next_leaf(rc->extent_root, path); 3827 if (ret != 0) 3828 break; 3829 leaf = path->nodes[0]; 3830 } 3831 3832 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3833 if (key.objectid >= last) { 3834 ret = 1; 3835 break; 3836 } 3837 3838 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3839 key.type != BTRFS_METADATA_ITEM_KEY) { 3840 path->slots[0]++; 3841 goto next; 3842 } 3843 3844 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3845 key.objectid + key.offset <= rc->search_start) { 3846 path->slots[0]++; 3847 goto next; 3848 } 3849 3850 if (key.type == BTRFS_METADATA_ITEM_KEY && 3851 key.objectid + rc->extent_root->nodesize <= 3852 rc->search_start) { 3853 path->slots[0]++; 3854 goto next; 3855 } 3856 3857 ret = find_first_extent_bit(&rc->processed_blocks, 3858 key.objectid, &start, &end, 3859 EXTENT_DIRTY, NULL); 3860 3861 if (ret == 0 && start <= key.objectid) { 3862 btrfs_release_path(path); 3863 rc->search_start = end + 1; 3864 } else { 3865 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3866 rc->search_start = key.objectid + key.offset; 3867 else 3868 rc->search_start = key.objectid + 3869 rc->extent_root->nodesize; 3870 memcpy(extent_key, &key, sizeof(key)); 3871 return 0; 3872 } 3873 } 3874 btrfs_release_path(path); 3875 return ret; 3876 } 3877 3878 static void set_reloc_control(struct reloc_control *rc) 3879 { 3880 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3881 3882 mutex_lock(&fs_info->reloc_mutex); 3883 fs_info->reloc_ctl = rc; 3884 mutex_unlock(&fs_info->reloc_mutex); 3885 } 3886 3887 static void unset_reloc_control(struct reloc_control *rc) 3888 { 3889 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3890 3891 mutex_lock(&fs_info->reloc_mutex); 3892 fs_info->reloc_ctl = NULL; 3893 mutex_unlock(&fs_info->reloc_mutex); 3894 } 3895 3896 static int check_extent_flags(u64 flags) 3897 { 3898 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3899 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3900 return 1; 3901 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3902 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3903 return 1; 3904 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3905 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3906 return 1; 3907 return 0; 3908 } 3909 3910 static noinline_for_stack 3911 int prepare_to_relocate(struct reloc_control *rc) 3912 { 3913 struct btrfs_trans_handle *trans; 3914 int ret; 3915 3916 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3917 BTRFS_BLOCK_RSV_TEMP); 3918 if (!rc->block_rsv) 3919 return -ENOMEM; 3920 3921 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3922 rc->search_start = rc->block_group->key.objectid; 3923 rc->extents_found = 0; 3924 rc->nodes_relocated = 0; 3925 rc->merging_rsv_size = 0; 3926 rc->reserved_bytes = 0; 3927 rc->block_rsv->size = rc->extent_root->nodesize * 3928 RELOCATION_RESERVED_NODES; 3929 ret = btrfs_block_rsv_refill(rc->extent_root, 3930 rc->block_rsv, rc->block_rsv->size, 3931 BTRFS_RESERVE_FLUSH_ALL); 3932 if (ret) 3933 return ret; 3934 3935 rc->create_reloc_tree = 1; 3936 set_reloc_control(rc); 3937 3938 trans = btrfs_join_transaction(rc->extent_root); 3939 if (IS_ERR(trans)) { 3940 unset_reloc_control(rc); 3941 /* 3942 * extent tree is not a ref_cow tree and has no reloc_root to 3943 * cleanup. And callers are responsible to free the above 3944 * block rsv. 3945 */ 3946 return PTR_ERR(trans); 3947 } 3948 btrfs_commit_transaction(trans, rc->extent_root); 3949 return 0; 3950 } 3951 3952 /* 3953 * Qgroup fixer for data chunk relocation. 3954 * The data relocation is done in the following steps 3955 * 1) Copy data extents into data reloc tree 3956 * 2) Create tree reloc tree(special snapshot) for related subvolumes 3957 * 3) Modify file extents in tree reloc tree 3958 * 4) Merge tree reloc tree with original fs tree, by swapping tree blocks 3959 * 3960 * The problem is, data and tree reloc tree are not accounted to qgroup, 3961 * and 4) will only info qgroup to track tree blocks change, not file extents 3962 * in the tree blocks. 3963 * 3964 * The good news is, related data extents are all in data reloc tree, so we 3965 * only need to info qgroup to track all file extents in data reloc tree 3966 * before commit trans. 3967 */ 3968 static int qgroup_fix_relocated_data_extents(struct btrfs_trans_handle *trans, 3969 struct reloc_control *rc) 3970 { 3971 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3972 struct inode *inode = rc->data_inode; 3973 struct btrfs_root *data_reloc_root = BTRFS_I(inode)->root; 3974 struct btrfs_path *path; 3975 struct btrfs_key key; 3976 int ret = 0; 3977 3978 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 3979 return 0; 3980 3981 /* 3982 * Only for stage where we update data pointers the qgroup fix is 3983 * valid. 3984 * For MOVING_DATA stage, we will miss the timing of swapping tree 3985 * blocks, and won't fix it. 3986 */ 3987 if (!(rc->stage == UPDATE_DATA_PTRS && rc->extents_found)) 3988 return 0; 3989 3990 path = btrfs_alloc_path(); 3991 if (!path) 3992 return -ENOMEM; 3993 key.objectid = btrfs_ino(inode); 3994 key.type = BTRFS_EXTENT_DATA_KEY; 3995 key.offset = 0; 3996 3997 ret = btrfs_search_slot(NULL, data_reloc_root, &key, path, 0, 0); 3998 if (ret < 0) 3999 goto out; 4000 4001 lock_extent(&BTRFS_I(inode)->io_tree, 0, (u64)-1); 4002 while (1) { 4003 struct btrfs_file_extent_item *fi; 4004 4005 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 4006 if (key.objectid > btrfs_ino(inode)) 4007 break; 4008 if (key.type != BTRFS_EXTENT_DATA_KEY) 4009 goto next; 4010 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 4011 struct btrfs_file_extent_item); 4012 if (btrfs_file_extent_type(path->nodes[0], fi) != 4013 BTRFS_FILE_EXTENT_REG) 4014 goto next; 4015 ret = btrfs_qgroup_insert_dirty_extent(trans, fs_info, 4016 btrfs_file_extent_disk_bytenr(path->nodes[0], fi), 4017 btrfs_file_extent_disk_num_bytes(path->nodes[0], fi), 4018 GFP_NOFS); 4019 if (ret < 0) 4020 break; 4021 next: 4022 ret = btrfs_next_item(data_reloc_root, path); 4023 if (ret < 0) 4024 break; 4025 if (ret > 0) { 4026 ret = 0; 4027 break; 4028 } 4029 } 4030 unlock_extent(&BTRFS_I(inode)->io_tree, 0 , (u64)-1); 4031 out: 4032 btrfs_free_path(path); 4033 return ret; 4034 } 4035 4036 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4037 { 4038 struct rb_root blocks = RB_ROOT; 4039 struct btrfs_key key; 4040 struct btrfs_trans_handle *trans = NULL; 4041 struct btrfs_path *path; 4042 struct btrfs_extent_item *ei; 4043 u64 flags; 4044 u32 item_size; 4045 int ret; 4046 int err = 0; 4047 int progress = 0; 4048 4049 path = btrfs_alloc_path(); 4050 if (!path) 4051 return -ENOMEM; 4052 path->reada = READA_FORWARD; 4053 4054 ret = prepare_to_relocate(rc); 4055 if (ret) { 4056 err = ret; 4057 goto out_free; 4058 } 4059 4060 while (1) { 4061 rc->reserved_bytes = 0; 4062 ret = btrfs_block_rsv_refill(rc->extent_root, 4063 rc->block_rsv, rc->block_rsv->size, 4064 BTRFS_RESERVE_FLUSH_ALL); 4065 if (ret) { 4066 err = ret; 4067 break; 4068 } 4069 progress++; 4070 trans = btrfs_start_transaction(rc->extent_root, 0); 4071 if (IS_ERR(trans)) { 4072 err = PTR_ERR(trans); 4073 trans = NULL; 4074 break; 4075 } 4076 restart: 4077 if (update_backref_cache(trans, &rc->backref_cache)) { 4078 btrfs_end_transaction(trans, rc->extent_root); 4079 continue; 4080 } 4081 4082 ret = find_next_extent(rc, path, &key); 4083 if (ret < 0) 4084 err = ret; 4085 if (ret != 0) 4086 break; 4087 4088 rc->extents_found++; 4089 4090 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4091 struct btrfs_extent_item); 4092 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4093 if (item_size >= sizeof(*ei)) { 4094 flags = btrfs_extent_flags(path->nodes[0], ei); 4095 ret = check_extent_flags(flags); 4096 BUG_ON(ret); 4097 4098 } else { 4099 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 4100 u64 ref_owner; 4101 int path_change = 0; 4102 4103 BUG_ON(item_size != 4104 sizeof(struct btrfs_extent_item_v0)); 4105 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 4106 &path_change); 4107 if (ret < 0) { 4108 err = ret; 4109 break; 4110 } 4111 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 4112 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 4113 else 4114 flags = BTRFS_EXTENT_FLAG_DATA; 4115 4116 if (path_change) { 4117 btrfs_release_path(path); 4118 4119 path->search_commit_root = 1; 4120 path->skip_locking = 1; 4121 ret = btrfs_search_slot(NULL, rc->extent_root, 4122 &key, path, 0, 0); 4123 if (ret < 0) { 4124 err = ret; 4125 break; 4126 } 4127 BUG_ON(ret > 0); 4128 } 4129 #else 4130 BUG(); 4131 #endif 4132 } 4133 4134 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4135 ret = add_tree_block(rc, &key, path, &blocks); 4136 } else if (rc->stage == UPDATE_DATA_PTRS && 4137 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4138 ret = add_data_references(rc, &key, path, &blocks); 4139 } else { 4140 btrfs_release_path(path); 4141 ret = 0; 4142 } 4143 if (ret < 0) { 4144 err = ret; 4145 break; 4146 } 4147 4148 if (!RB_EMPTY_ROOT(&blocks)) { 4149 ret = relocate_tree_blocks(trans, rc, &blocks); 4150 if (ret < 0) { 4151 /* 4152 * if we fail to relocate tree blocks, force to update 4153 * backref cache when committing transaction. 4154 */ 4155 rc->backref_cache.last_trans = trans->transid - 1; 4156 4157 if (ret != -EAGAIN) { 4158 err = ret; 4159 break; 4160 } 4161 rc->extents_found--; 4162 rc->search_start = key.objectid; 4163 } 4164 } 4165 4166 btrfs_end_transaction_throttle(trans, rc->extent_root); 4167 btrfs_btree_balance_dirty(rc->extent_root); 4168 trans = NULL; 4169 4170 if (rc->stage == MOVE_DATA_EXTENTS && 4171 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4172 rc->found_file_extent = 1; 4173 ret = relocate_data_extent(rc->data_inode, 4174 &key, &rc->cluster); 4175 if (ret < 0) { 4176 err = ret; 4177 break; 4178 } 4179 } 4180 } 4181 if (trans && progress && err == -ENOSPC) { 4182 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4183 rc->block_group->flags); 4184 if (ret == 1) { 4185 err = 0; 4186 progress = 0; 4187 goto restart; 4188 } 4189 } 4190 4191 btrfs_release_path(path); 4192 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4193 4194 if (trans) { 4195 btrfs_end_transaction_throttle(trans, rc->extent_root); 4196 btrfs_btree_balance_dirty(rc->extent_root); 4197 } 4198 4199 if (!err) { 4200 ret = relocate_file_extent_cluster(rc->data_inode, 4201 &rc->cluster); 4202 if (ret < 0) 4203 err = ret; 4204 } 4205 4206 rc->create_reloc_tree = 0; 4207 set_reloc_control(rc); 4208 4209 backref_cache_cleanup(&rc->backref_cache); 4210 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4211 4212 err = prepare_to_merge(rc, err); 4213 4214 merge_reloc_roots(rc); 4215 4216 rc->merge_reloc_tree = 0; 4217 unset_reloc_control(rc); 4218 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4219 4220 /* get rid of pinned extents */ 4221 trans = btrfs_join_transaction(rc->extent_root); 4222 if (IS_ERR(trans)) { 4223 err = PTR_ERR(trans); 4224 goto out_free; 4225 } 4226 ret = qgroup_fix_relocated_data_extents(trans, rc); 4227 if (ret < 0) { 4228 btrfs_abort_transaction(trans, ret); 4229 if (!err) 4230 err = ret; 4231 goto out_free; 4232 } 4233 btrfs_commit_transaction(trans, rc->extent_root); 4234 out_free: 4235 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4236 btrfs_free_path(path); 4237 return err; 4238 } 4239 4240 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4241 struct btrfs_root *root, u64 objectid) 4242 { 4243 struct btrfs_path *path; 4244 struct btrfs_inode_item *item; 4245 struct extent_buffer *leaf; 4246 int ret; 4247 4248 path = btrfs_alloc_path(); 4249 if (!path) 4250 return -ENOMEM; 4251 4252 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4253 if (ret) 4254 goto out; 4255 4256 leaf = path->nodes[0]; 4257 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4258 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4259 btrfs_set_inode_generation(leaf, item, 1); 4260 btrfs_set_inode_size(leaf, item, 0); 4261 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4262 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4263 BTRFS_INODE_PREALLOC); 4264 btrfs_mark_buffer_dirty(leaf); 4265 out: 4266 btrfs_free_path(path); 4267 return ret; 4268 } 4269 4270 /* 4271 * helper to create inode for data relocation. 4272 * the inode is in data relocation tree and its link count is 0 4273 */ 4274 static noinline_for_stack 4275 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4276 struct btrfs_block_group_cache *group) 4277 { 4278 struct inode *inode = NULL; 4279 struct btrfs_trans_handle *trans; 4280 struct btrfs_root *root; 4281 struct btrfs_key key; 4282 u64 objectid; 4283 int err = 0; 4284 4285 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4286 if (IS_ERR(root)) 4287 return ERR_CAST(root); 4288 4289 trans = btrfs_start_transaction(root, 6); 4290 if (IS_ERR(trans)) 4291 return ERR_CAST(trans); 4292 4293 err = btrfs_find_free_objectid(root, &objectid); 4294 if (err) 4295 goto out; 4296 4297 err = __insert_orphan_inode(trans, root, objectid); 4298 BUG_ON(err); 4299 4300 key.objectid = objectid; 4301 key.type = BTRFS_INODE_ITEM_KEY; 4302 key.offset = 0; 4303 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4304 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4305 BTRFS_I(inode)->index_cnt = group->key.objectid; 4306 4307 err = btrfs_orphan_add(trans, inode); 4308 out: 4309 btrfs_end_transaction(trans, root); 4310 btrfs_btree_balance_dirty(root); 4311 if (err) { 4312 if (inode) 4313 iput(inode); 4314 inode = ERR_PTR(err); 4315 } 4316 return inode; 4317 } 4318 4319 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4320 { 4321 struct reloc_control *rc; 4322 4323 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4324 if (!rc) 4325 return NULL; 4326 4327 INIT_LIST_HEAD(&rc->reloc_roots); 4328 backref_cache_init(&rc->backref_cache); 4329 mapping_tree_init(&rc->reloc_root_tree); 4330 extent_io_tree_init(&rc->processed_blocks, 4331 fs_info->btree_inode->i_mapping); 4332 return rc; 4333 } 4334 4335 /* 4336 * function to relocate all extents in a block group. 4337 */ 4338 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4339 { 4340 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4341 struct reloc_control *rc; 4342 struct inode *inode; 4343 struct btrfs_path *path; 4344 int ret; 4345 int rw = 0; 4346 int err = 0; 4347 4348 rc = alloc_reloc_control(fs_info); 4349 if (!rc) 4350 return -ENOMEM; 4351 4352 rc->extent_root = extent_root; 4353 4354 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4355 BUG_ON(!rc->block_group); 4356 4357 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group); 4358 if (ret) { 4359 err = ret; 4360 goto out; 4361 } 4362 rw = 1; 4363 4364 path = btrfs_alloc_path(); 4365 if (!path) { 4366 err = -ENOMEM; 4367 goto out; 4368 } 4369 4370 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4371 path); 4372 btrfs_free_path(path); 4373 4374 if (!IS_ERR(inode)) 4375 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4376 else 4377 ret = PTR_ERR(inode); 4378 4379 if (ret && ret != -ENOENT) { 4380 err = ret; 4381 goto out; 4382 } 4383 4384 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4385 if (IS_ERR(rc->data_inode)) { 4386 err = PTR_ERR(rc->data_inode); 4387 rc->data_inode = NULL; 4388 goto out; 4389 } 4390 4391 btrfs_info(extent_root->fs_info, 4392 "relocating block group %llu flags %llu", 4393 rc->block_group->key.objectid, rc->block_group->flags); 4394 4395 btrfs_wait_block_group_reservations(rc->block_group); 4396 btrfs_wait_nocow_writers(rc->block_group); 4397 btrfs_wait_ordered_roots(fs_info, -1, 4398 rc->block_group->key.objectid, 4399 rc->block_group->key.offset); 4400 4401 while (1) { 4402 mutex_lock(&fs_info->cleaner_mutex); 4403 ret = relocate_block_group(rc); 4404 mutex_unlock(&fs_info->cleaner_mutex); 4405 if (ret < 0) { 4406 err = ret; 4407 goto out; 4408 } 4409 4410 if (rc->extents_found == 0) 4411 break; 4412 4413 btrfs_info(extent_root->fs_info, "found %llu extents", 4414 rc->extents_found); 4415 4416 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4417 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4418 (u64)-1); 4419 if (ret) { 4420 err = ret; 4421 goto out; 4422 } 4423 invalidate_mapping_pages(rc->data_inode->i_mapping, 4424 0, -1); 4425 rc->stage = UPDATE_DATA_PTRS; 4426 } 4427 } 4428 4429 WARN_ON(rc->block_group->pinned > 0); 4430 WARN_ON(rc->block_group->reserved > 0); 4431 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4432 out: 4433 if (err && rw) 4434 btrfs_dec_block_group_ro(extent_root, rc->block_group); 4435 iput(rc->data_inode); 4436 btrfs_put_block_group(rc->block_group); 4437 kfree(rc); 4438 return err; 4439 } 4440 4441 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4442 { 4443 struct btrfs_trans_handle *trans; 4444 int ret, err; 4445 4446 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4447 if (IS_ERR(trans)) 4448 return PTR_ERR(trans); 4449 4450 memset(&root->root_item.drop_progress, 0, 4451 sizeof(root->root_item.drop_progress)); 4452 root->root_item.drop_level = 0; 4453 btrfs_set_root_refs(&root->root_item, 0); 4454 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4455 &root->root_key, &root->root_item); 4456 4457 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4458 if (err) 4459 return err; 4460 return ret; 4461 } 4462 4463 /* 4464 * recover relocation interrupted by system crash. 4465 * 4466 * this function resumes merging reloc trees with corresponding fs trees. 4467 * this is important for keeping the sharing of tree blocks 4468 */ 4469 int btrfs_recover_relocation(struct btrfs_root *root) 4470 { 4471 LIST_HEAD(reloc_roots); 4472 struct btrfs_key key; 4473 struct btrfs_root *fs_root; 4474 struct btrfs_root *reloc_root; 4475 struct btrfs_path *path; 4476 struct extent_buffer *leaf; 4477 struct reloc_control *rc = NULL; 4478 struct btrfs_trans_handle *trans; 4479 int ret; 4480 int err = 0; 4481 4482 path = btrfs_alloc_path(); 4483 if (!path) 4484 return -ENOMEM; 4485 path->reada = READA_BACK; 4486 4487 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4488 key.type = BTRFS_ROOT_ITEM_KEY; 4489 key.offset = (u64)-1; 4490 4491 while (1) { 4492 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4493 path, 0, 0); 4494 if (ret < 0) { 4495 err = ret; 4496 goto out; 4497 } 4498 if (ret > 0) { 4499 if (path->slots[0] == 0) 4500 break; 4501 path->slots[0]--; 4502 } 4503 leaf = path->nodes[0]; 4504 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4505 btrfs_release_path(path); 4506 4507 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4508 key.type != BTRFS_ROOT_ITEM_KEY) 4509 break; 4510 4511 reloc_root = btrfs_read_fs_root(root, &key); 4512 if (IS_ERR(reloc_root)) { 4513 err = PTR_ERR(reloc_root); 4514 goto out; 4515 } 4516 4517 list_add(&reloc_root->root_list, &reloc_roots); 4518 4519 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4520 fs_root = read_fs_root(root->fs_info, 4521 reloc_root->root_key.offset); 4522 if (IS_ERR(fs_root)) { 4523 ret = PTR_ERR(fs_root); 4524 if (ret != -ENOENT) { 4525 err = ret; 4526 goto out; 4527 } 4528 ret = mark_garbage_root(reloc_root); 4529 if (ret < 0) { 4530 err = ret; 4531 goto out; 4532 } 4533 } 4534 } 4535 4536 if (key.offset == 0) 4537 break; 4538 4539 key.offset--; 4540 } 4541 btrfs_release_path(path); 4542 4543 if (list_empty(&reloc_roots)) 4544 goto out; 4545 4546 rc = alloc_reloc_control(root->fs_info); 4547 if (!rc) { 4548 err = -ENOMEM; 4549 goto out; 4550 } 4551 4552 rc->extent_root = root->fs_info->extent_root; 4553 4554 set_reloc_control(rc); 4555 4556 trans = btrfs_join_transaction(rc->extent_root); 4557 if (IS_ERR(trans)) { 4558 unset_reloc_control(rc); 4559 err = PTR_ERR(trans); 4560 goto out_free; 4561 } 4562 4563 rc->merge_reloc_tree = 1; 4564 4565 while (!list_empty(&reloc_roots)) { 4566 reloc_root = list_entry(reloc_roots.next, 4567 struct btrfs_root, root_list); 4568 list_del(&reloc_root->root_list); 4569 4570 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4571 list_add_tail(&reloc_root->root_list, 4572 &rc->reloc_roots); 4573 continue; 4574 } 4575 4576 fs_root = read_fs_root(root->fs_info, 4577 reloc_root->root_key.offset); 4578 if (IS_ERR(fs_root)) { 4579 err = PTR_ERR(fs_root); 4580 goto out_free; 4581 } 4582 4583 err = __add_reloc_root(reloc_root); 4584 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4585 fs_root->reloc_root = reloc_root; 4586 } 4587 4588 err = btrfs_commit_transaction(trans, rc->extent_root); 4589 if (err) 4590 goto out_free; 4591 4592 merge_reloc_roots(rc); 4593 4594 unset_reloc_control(rc); 4595 4596 trans = btrfs_join_transaction(rc->extent_root); 4597 if (IS_ERR(trans)) { 4598 err = PTR_ERR(trans); 4599 goto out_free; 4600 } 4601 err = qgroup_fix_relocated_data_extents(trans, rc); 4602 if (err < 0) { 4603 btrfs_abort_transaction(trans, err); 4604 goto out_free; 4605 } 4606 err = btrfs_commit_transaction(trans, rc->extent_root); 4607 out_free: 4608 kfree(rc); 4609 out: 4610 if (!list_empty(&reloc_roots)) 4611 free_reloc_roots(&reloc_roots); 4612 4613 btrfs_free_path(path); 4614 4615 if (err == 0) { 4616 /* cleanup orphan inode in data relocation tree */ 4617 fs_root = read_fs_root(root->fs_info, 4618 BTRFS_DATA_RELOC_TREE_OBJECTID); 4619 if (IS_ERR(fs_root)) 4620 err = PTR_ERR(fs_root); 4621 else 4622 err = btrfs_orphan_cleanup(fs_root); 4623 } 4624 return err; 4625 } 4626 4627 /* 4628 * helper to add ordered checksum for data relocation. 4629 * 4630 * cloning checksum properly handles the nodatasum extents. 4631 * it also saves CPU time to re-calculate the checksum. 4632 */ 4633 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4634 { 4635 struct btrfs_ordered_sum *sums; 4636 struct btrfs_ordered_extent *ordered; 4637 struct btrfs_root *root = BTRFS_I(inode)->root; 4638 int ret; 4639 u64 disk_bytenr; 4640 u64 new_bytenr; 4641 LIST_HEAD(list); 4642 4643 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4644 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4645 4646 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4647 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4648 disk_bytenr + len - 1, &list, 0); 4649 if (ret) 4650 goto out; 4651 4652 while (!list_empty(&list)) { 4653 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4654 list_del_init(&sums->list); 4655 4656 /* 4657 * We need to offset the new_bytenr based on where the csum is. 4658 * We need to do this because we will read in entire prealloc 4659 * extents but we may have written to say the middle of the 4660 * prealloc extent, so we need to make sure the csum goes with 4661 * the right disk offset. 4662 * 4663 * We can do this because the data reloc inode refers strictly 4664 * to the on disk bytes, so we don't have to worry about 4665 * disk_len vs real len like with real inodes since it's all 4666 * disk length. 4667 */ 4668 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4669 sums->bytenr = new_bytenr; 4670 4671 btrfs_add_ordered_sum(inode, ordered, sums); 4672 } 4673 out: 4674 btrfs_put_ordered_extent(ordered); 4675 return ret; 4676 } 4677 4678 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4679 struct btrfs_root *root, struct extent_buffer *buf, 4680 struct extent_buffer *cow) 4681 { 4682 struct reloc_control *rc; 4683 struct backref_node *node; 4684 int first_cow = 0; 4685 int level; 4686 int ret = 0; 4687 4688 rc = root->fs_info->reloc_ctl; 4689 if (!rc) 4690 return 0; 4691 4692 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4693 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4694 4695 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4696 if (buf == root->node) 4697 __update_reloc_root(root, cow->start); 4698 } 4699 4700 level = btrfs_header_level(buf); 4701 if (btrfs_header_generation(buf) <= 4702 btrfs_root_last_snapshot(&root->root_item)) 4703 first_cow = 1; 4704 4705 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4706 rc->create_reloc_tree) { 4707 WARN_ON(!first_cow && level == 0); 4708 4709 node = rc->backref_cache.path[level]; 4710 BUG_ON(node->bytenr != buf->start && 4711 node->new_bytenr != buf->start); 4712 4713 drop_node_buffer(node); 4714 extent_buffer_get(cow); 4715 node->eb = cow; 4716 node->new_bytenr = cow->start; 4717 4718 if (!node->pending) { 4719 list_move_tail(&node->list, 4720 &rc->backref_cache.pending[level]); 4721 node->pending = 1; 4722 } 4723 4724 if (first_cow) 4725 __mark_block_processed(rc, node); 4726 4727 if (first_cow && level > 0) 4728 rc->nodes_relocated += buf->len; 4729 } 4730 4731 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4732 ret = replace_file_extents(trans, rc, root, cow); 4733 return ret; 4734 } 4735 4736 /* 4737 * called before creating snapshot. it calculates metadata reservation 4738 * required for relocating tree blocks in the snapshot 4739 */ 4740 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4741 u64 *bytes_to_reserve) 4742 { 4743 struct btrfs_root *root; 4744 struct reloc_control *rc; 4745 4746 root = pending->root; 4747 if (!root->reloc_root) 4748 return; 4749 4750 rc = root->fs_info->reloc_ctl; 4751 if (!rc->merge_reloc_tree) 4752 return; 4753 4754 root = root->reloc_root; 4755 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4756 /* 4757 * relocation is in the stage of merging trees. the space 4758 * used by merging a reloc tree is twice the size of 4759 * relocated tree nodes in the worst case. half for cowing 4760 * the reloc tree, half for cowing the fs tree. the space 4761 * used by cowing the reloc tree will be freed after the 4762 * tree is dropped. if we create snapshot, cowing the fs 4763 * tree may use more space than it frees. so we need 4764 * reserve extra space. 4765 */ 4766 *bytes_to_reserve += rc->nodes_relocated; 4767 } 4768 4769 /* 4770 * called after snapshot is created. migrate block reservation 4771 * and create reloc root for the newly created snapshot 4772 */ 4773 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4774 struct btrfs_pending_snapshot *pending) 4775 { 4776 struct btrfs_root *root = pending->root; 4777 struct btrfs_root *reloc_root; 4778 struct btrfs_root *new_root; 4779 struct reloc_control *rc; 4780 int ret; 4781 4782 if (!root->reloc_root) 4783 return 0; 4784 4785 rc = root->fs_info->reloc_ctl; 4786 rc->merging_rsv_size += rc->nodes_relocated; 4787 4788 if (rc->merge_reloc_tree) { 4789 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4790 rc->block_rsv, 4791 rc->nodes_relocated, 1); 4792 if (ret) 4793 return ret; 4794 } 4795 4796 new_root = pending->snap; 4797 reloc_root = create_reloc_root(trans, root->reloc_root, 4798 new_root->root_key.objectid); 4799 if (IS_ERR(reloc_root)) 4800 return PTR_ERR(reloc_root); 4801 4802 ret = __add_reloc_root(reloc_root); 4803 BUG_ON(ret < 0); 4804 new_root->reloc_root = reloc_root; 4805 4806 if (rc->create_reloc_tree) 4807 ret = clone_backref_node(trans, rc, root, reloc_root); 4808 return ret; 4809 } 4810