1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 28 /* 29 * Relocation overview 30 * 31 * [What does relocation do] 32 * 33 * The objective of relocation is to relocate all extents of the target block 34 * group to other block groups. 35 * This is utilized by resize (shrink only), profile converting, compacting 36 * space, or balance routine to spread chunks over devices. 37 * 38 * Before | After 39 * ------------------------------------------------------------------ 40 * BG A: 10 data extents | BG A: deleted 41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 43 * 44 * [How does relocation work] 45 * 46 * 1. Mark the target block group read-only 47 * New extents won't be allocated from the target block group. 48 * 49 * 2.1 Record each extent in the target block group 50 * To build a proper map of extents to be relocated. 51 * 52 * 2.2 Build data reloc tree and reloc trees 53 * Data reloc tree will contain an inode, recording all newly relocated 54 * data extents. 55 * There will be only one data reloc tree for one data block group. 56 * 57 * Reloc tree will be a special snapshot of its source tree, containing 58 * relocated tree blocks. 59 * Each tree referring to a tree block in target block group will get its 60 * reloc tree built. 61 * 62 * 2.3 Swap source tree with its corresponding reloc tree 63 * Each involved tree only refers to new extents after swap. 64 * 65 * 3. Cleanup reloc trees and data reloc tree. 66 * As old extents in the target block group are still referenced by reloc 67 * trees, we need to clean them up before really freeing the target block 68 * group. 69 * 70 * The main complexity is in steps 2.2 and 2.3. 71 * 72 * The entry point of relocation is relocate_block_group() function. 73 */ 74 75 #define RELOCATION_RESERVED_NODES 256 76 /* 77 * map address of tree root to tree 78 */ 79 struct mapping_node { 80 struct { 81 struct rb_node rb_node; 82 u64 bytenr; 83 }; /* Use rb_simle_node for search/insert */ 84 void *data; 85 }; 86 87 struct mapping_tree { 88 struct rb_root rb_root; 89 spinlock_t lock; 90 }; 91 92 /* 93 * present a tree block to process 94 */ 95 struct tree_block { 96 struct { 97 struct rb_node rb_node; 98 u64 bytenr; 99 }; /* Use rb_simple_node for search/insert */ 100 u64 owner; 101 struct btrfs_key key; 102 unsigned int level:8; 103 unsigned int key_ready:1; 104 }; 105 106 #define MAX_EXTENTS 128 107 108 struct file_extent_cluster { 109 u64 start; 110 u64 end; 111 u64 boundary[MAX_EXTENTS]; 112 unsigned int nr; 113 }; 114 115 struct reloc_control { 116 /* block group to relocate */ 117 struct btrfs_block_group *block_group; 118 /* extent tree */ 119 struct btrfs_root *extent_root; 120 /* inode for moving data */ 121 struct inode *data_inode; 122 123 struct btrfs_block_rsv *block_rsv; 124 125 struct btrfs_backref_cache backref_cache; 126 127 struct file_extent_cluster cluster; 128 /* tree blocks have been processed */ 129 struct extent_io_tree processed_blocks; 130 /* map start of tree root to corresponding reloc tree */ 131 struct mapping_tree reloc_root_tree; 132 /* list of reloc trees */ 133 struct list_head reloc_roots; 134 /* list of subvolume trees that get relocated */ 135 struct list_head dirty_subvol_roots; 136 /* size of metadata reservation for merging reloc trees */ 137 u64 merging_rsv_size; 138 /* size of relocated tree nodes */ 139 u64 nodes_relocated; 140 /* reserved size for block group relocation*/ 141 u64 reserved_bytes; 142 143 u64 search_start; 144 u64 extents_found; 145 146 unsigned int stage:8; 147 unsigned int create_reloc_tree:1; 148 unsigned int merge_reloc_tree:1; 149 unsigned int found_file_extent:1; 150 }; 151 152 /* stages of data relocation */ 153 #define MOVE_DATA_EXTENTS 0 154 #define UPDATE_DATA_PTRS 1 155 156 static void mark_block_processed(struct reloc_control *rc, 157 struct btrfs_backref_node *node) 158 { 159 u32 blocksize; 160 161 if (node->level == 0 || 162 in_range(node->bytenr, rc->block_group->start, 163 rc->block_group->length)) { 164 blocksize = rc->extent_root->fs_info->nodesize; 165 set_extent_bits(&rc->processed_blocks, node->bytenr, 166 node->bytenr + blocksize - 1, EXTENT_DIRTY); 167 } 168 node->processed = 1; 169 } 170 171 172 static void mapping_tree_init(struct mapping_tree *tree) 173 { 174 tree->rb_root = RB_ROOT; 175 spin_lock_init(&tree->lock); 176 } 177 178 /* 179 * walk up backref nodes until reach node presents tree root 180 */ 181 static struct btrfs_backref_node *walk_up_backref( 182 struct btrfs_backref_node *node, 183 struct btrfs_backref_edge *edges[], int *index) 184 { 185 struct btrfs_backref_edge *edge; 186 int idx = *index; 187 188 while (!list_empty(&node->upper)) { 189 edge = list_entry(node->upper.next, 190 struct btrfs_backref_edge, list[LOWER]); 191 edges[idx++] = edge; 192 node = edge->node[UPPER]; 193 } 194 BUG_ON(node->detached); 195 *index = idx; 196 return node; 197 } 198 199 /* 200 * walk down backref nodes to find start of next reference path 201 */ 202 static struct btrfs_backref_node *walk_down_backref( 203 struct btrfs_backref_edge *edges[], int *index) 204 { 205 struct btrfs_backref_edge *edge; 206 struct btrfs_backref_node *lower; 207 int idx = *index; 208 209 while (idx > 0) { 210 edge = edges[idx - 1]; 211 lower = edge->node[LOWER]; 212 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 213 idx--; 214 continue; 215 } 216 edge = list_entry(edge->list[LOWER].next, 217 struct btrfs_backref_edge, list[LOWER]); 218 edges[idx - 1] = edge; 219 *index = idx; 220 return edge->node[UPPER]; 221 } 222 *index = 0; 223 return NULL; 224 } 225 226 static void update_backref_node(struct btrfs_backref_cache *cache, 227 struct btrfs_backref_node *node, u64 bytenr) 228 { 229 struct rb_node *rb_node; 230 rb_erase(&node->rb_node, &cache->rb_root); 231 node->bytenr = bytenr; 232 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 233 if (rb_node) 234 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 235 } 236 237 /* 238 * update backref cache after a transaction commit 239 */ 240 static int update_backref_cache(struct btrfs_trans_handle *trans, 241 struct btrfs_backref_cache *cache) 242 { 243 struct btrfs_backref_node *node; 244 int level = 0; 245 246 if (cache->last_trans == 0) { 247 cache->last_trans = trans->transid; 248 return 0; 249 } 250 251 if (cache->last_trans == trans->transid) 252 return 0; 253 254 /* 255 * detached nodes are used to avoid unnecessary backref 256 * lookup. transaction commit changes the extent tree. 257 * so the detached nodes are no longer useful. 258 */ 259 while (!list_empty(&cache->detached)) { 260 node = list_entry(cache->detached.next, 261 struct btrfs_backref_node, list); 262 btrfs_backref_cleanup_node(cache, node); 263 } 264 265 while (!list_empty(&cache->changed)) { 266 node = list_entry(cache->changed.next, 267 struct btrfs_backref_node, list); 268 list_del_init(&node->list); 269 BUG_ON(node->pending); 270 update_backref_node(cache, node, node->new_bytenr); 271 } 272 273 /* 274 * some nodes can be left in the pending list if there were 275 * errors during processing the pending nodes. 276 */ 277 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 278 list_for_each_entry(node, &cache->pending[level], list) { 279 BUG_ON(!node->pending); 280 if (node->bytenr == node->new_bytenr) 281 continue; 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 } 285 286 cache->last_trans = 0; 287 return 1; 288 } 289 290 static bool reloc_root_is_dead(struct btrfs_root *root) 291 { 292 /* 293 * Pair with set_bit/clear_bit in clean_dirty_subvols and 294 * btrfs_update_reloc_root. We need to see the updated bit before 295 * trying to access reloc_root 296 */ 297 smp_rmb(); 298 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 299 return true; 300 return false; 301 } 302 303 /* 304 * Check if this subvolume tree has valid reloc tree. 305 * 306 * Reloc tree after swap is considered dead, thus not considered as valid. 307 * This is enough for most callers, as they don't distinguish dead reloc root 308 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 309 * special case. 310 */ 311 static bool have_reloc_root(struct btrfs_root *root) 312 { 313 if (reloc_root_is_dead(root)) 314 return false; 315 if (!root->reloc_root) 316 return false; 317 return true; 318 } 319 320 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 321 { 322 struct btrfs_root *reloc_root; 323 324 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 325 return 0; 326 327 /* This root has been merged with its reloc tree, we can ignore it */ 328 if (reloc_root_is_dead(root)) 329 return 1; 330 331 reloc_root = root->reloc_root; 332 if (!reloc_root) 333 return 0; 334 335 if (btrfs_header_generation(reloc_root->commit_root) == 336 root->fs_info->running_transaction->transid) 337 return 0; 338 /* 339 * if there is reloc tree and it was created in previous 340 * transaction backref lookup can find the reloc tree, 341 * so backref node for the fs tree root is useless for 342 * relocation. 343 */ 344 return 1; 345 } 346 347 /* 348 * find reloc tree by address of tree root 349 */ 350 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 351 { 352 struct reloc_control *rc = fs_info->reloc_ctl; 353 struct rb_node *rb_node; 354 struct mapping_node *node; 355 struct btrfs_root *root = NULL; 356 357 ASSERT(rc); 358 spin_lock(&rc->reloc_root_tree.lock); 359 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 360 if (rb_node) { 361 node = rb_entry(rb_node, struct mapping_node, rb_node); 362 root = (struct btrfs_root *)node->data; 363 } 364 spin_unlock(&rc->reloc_root_tree.lock); 365 return btrfs_grab_root(root); 366 } 367 368 /* 369 * For useless nodes, do two major clean ups: 370 * 371 * - Cleanup the children edges and nodes 372 * If child node is also orphan (no parent) during cleanup, then the child 373 * node will also be cleaned up. 374 * 375 * - Freeing up leaves (level 0), keeps nodes detached 376 * For nodes, the node is still cached as "detached" 377 * 378 * Return false if @node is not in the @useless_nodes list. 379 * Return true if @node is in the @useless_nodes list. 380 */ 381 static bool handle_useless_nodes(struct reloc_control *rc, 382 struct btrfs_backref_node *node) 383 { 384 struct btrfs_backref_cache *cache = &rc->backref_cache; 385 struct list_head *useless_node = &cache->useless_node; 386 bool ret = false; 387 388 while (!list_empty(useless_node)) { 389 struct btrfs_backref_node *cur; 390 391 cur = list_first_entry(useless_node, struct btrfs_backref_node, 392 list); 393 list_del_init(&cur->list); 394 395 /* Only tree root nodes can be added to @useless_nodes */ 396 ASSERT(list_empty(&cur->upper)); 397 398 if (cur == node) 399 ret = true; 400 401 /* The node is the lowest node */ 402 if (cur->lowest) { 403 list_del_init(&cur->lower); 404 cur->lowest = 0; 405 } 406 407 /* Cleanup the lower edges */ 408 while (!list_empty(&cur->lower)) { 409 struct btrfs_backref_edge *edge; 410 struct btrfs_backref_node *lower; 411 412 edge = list_entry(cur->lower.next, 413 struct btrfs_backref_edge, list[UPPER]); 414 list_del(&edge->list[UPPER]); 415 list_del(&edge->list[LOWER]); 416 lower = edge->node[LOWER]; 417 btrfs_backref_free_edge(cache, edge); 418 419 /* Child node is also orphan, queue for cleanup */ 420 if (list_empty(&lower->upper)) 421 list_add(&lower->list, useless_node); 422 } 423 /* Mark this block processed for relocation */ 424 mark_block_processed(rc, cur); 425 426 /* 427 * Backref nodes for tree leaves are deleted from the cache. 428 * Backref nodes for upper level tree blocks are left in the 429 * cache to avoid unnecessary backref lookup. 430 */ 431 if (cur->level > 0) { 432 list_add(&cur->list, &cache->detached); 433 cur->detached = 1; 434 } else { 435 rb_erase(&cur->rb_node, &cache->rb_root); 436 btrfs_backref_free_node(cache, cur); 437 } 438 } 439 return ret; 440 } 441 442 /* 443 * Build backref tree for a given tree block. Root of the backref tree 444 * corresponds the tree block, leaves of the backref tree correspond roots of 445 * b-trees that reference the tree block. 446 * 447 * The basic idea of this function is check backrefs of a given block to find 448 * upper level blocks that reference the block, and then check backrefs of 449 * these upper level blocks recursively. The recursion stops when tree root is 450 * reached or backrefs for the block is cached. 451 * 452 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 453 * all upper level blocks that directly/indirectly reference the block are also 454 * cached. 455 */ 456 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 457 struct reloc_control *rc, struct btrfs_key *node_key, 458 int level, u64 bytenr) 459 { 460 struct btrfs_backref_iter *iter; 461 struct btrfs_backref_cache *cache = &rc->backref_cache; 462 /* For searching parent of TREE_BLOCK_REF */ 463 struct btrfs_path *path; 464 struct btrfs_backref_node *cur; 465 struct btrfs_backref_node *node = NULL; 466 struct btrfs_backref_edge *edge; 467 int ret; 468 int err = 0; 469 470 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 471 if (!iter) 472 return ERR_PTR(-ENOMEM); 473 path = btrfs_alloc_path(); 474 if (!path) { 475 err = -ENOMEM; 476 goto out; 477 } 478 479 node = btrfs_backref_alloc_node(cache, bytenr, level); 480 if (!node) { 481 err = -ENOMEM; 482 goto out; 483 } 484 485 node->lowest = 1; 486 cur = node; 487 488 /* Breadth-first search to build backref cache */ 489 do { 490 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 491 cur); 492 if (ret < 0) { 493 err = ret; 494 goto out; 495 } 496 edge = list_first_entry_or_null(&cache->pending_edge, 497 struct btrfs_backref_edge, list[UPPER]); 498 /* 499 * The pending list isn't empty, take the first block to 500 * process 501 */ 502 if (edge) { 503 list_del_init(&edge->list[UPPER]); 504 cur = edge->node[UPPER]; 505 } 506 } while (edge); 507 508 /* Finish the upper linkage of newly added edges/nodes */ 509 ret = btrfs_backref_finish_upper_links(cache, node); 510 if (ret < 0) { 511 err = ret; 512 goto out; 513 } 514 515 if (handle_useless_nodes(rc, node)) 516 node = NULL; 517 out: 518 btrfs_backref_iter_free(iter); 519 btrfs_free_path(path); 520 if (err) { 521 btrfs_backref_error_cleanup(cache, node); 522 return ERR_PTR(err); 523 } 524 ASSERT(!node || !node->detached); 525 ASSERT(list_empty(&cache->useless_node) && 526 list_empty(&cache->pending_edge)); 527 return node; 528 } 529 530 /* 531 * helper to add backref node for the newly created snapshot. 532 * the backref node is created by cloning backref node that 533 * corresponds to root of source tree 534 */ 535 static int clone_backref_node(struct btrfs_trans_handle *trans, 536 struct reloc_control *rc, 537 struct btrfs_root *src, 538 struct btrfs_root *dest) 539 { 540 struct btrfs_root *reloc_root = src->reloc_root; 541 struct btrfs_backref_cache *cache = &rc->backref_cache; 542 struct btrfs_backref_node *node = NULL; 543 struct btrfs_backref_node *new_node; 544 struct btrfs_backref_edge *edge; 545 struct btrfs_backref_edge *new_edge; 546 struct rb_node *rb_node; 547 548 if (cache->last_trans > 0) 549 update_backref_cache(trans, cache); 550 551 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 552 if (rb_node) { 553 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 554 if (node->detached) 555 node = NULL; 556 else 557 BUG_ON(node->new_bytenr != reloc_root->node->start); 558 } 559 560 if (!node) { 561 rb_node = rb_simple_search(&cache->rb_root, 562 reloc_root->commit_root->start); 563 if (rb_node) { 564 node = rb_entry(rb_node, struct btrfs_backref_node, 565 rb_node); 566 BUG_ON(node->detached); 567 } 568 } 569 570 if (!node) 571 return 0; 572 573 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 574 node->level); 575 if (!new_node) 576 return -ENOMEM; 577 578 new_node->lowest = node->lowest; 579 new_node->checked = 1; 580 new_node->root = btrfs_grab_root(dest); 581 ASSERT(new_node->root); 582 583 if (!node->lowest) { 584 list_for_each_entry(edge, &node->lower, list[UPPER]) { 585 new_edge = btrfs_backref_alloc_edge(cache); 586 if (!new_edge) 587 goto fail; 588 589 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 590 new_node, LINK_UPPER); 591 } 592 } else { 593 list_add_tail(&new_node->lower, &cache->leaves); 594 } 595 596 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 597 &new_node->rb_node); 598 if (rb_node) 599 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 600 601 if (!new_node->lowest) { 602 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 603 list_add_tail(&new_edge->list[LOWER], 604 &new_edge->node[LOWER]->upper); 605 } 606 } 607 return 0; 608 fail: 609 while (!list_empty(&new_node->lower)) { 610 new_edge = list_entry(new_node->lower.next, 611 struct btrfs_backref_edge, list[UPPER]); 612 list_del(&new_edge->list[UPPER]); 613 btrfs_backref_free_edge(cache, new_edge); 614 } 615 btrfs_backref_free_node(cache, new_node); 616 return -ENOMEM; 617 } 618 619 /* 620 * helper to add 'address of tree root -> reloc tree' mapping 621 */ 622 static int __must_check __add_reloc_root(struct btrfs_root *root) 623 { 624 struct btrfs_fs_info *fs_info = root->fs_info; 625 struct rb_node *rb_node; 626 struct mapping_node *node; 627 struct reloc_control *rc = fs_info->reloc_ctl; 628 629 node = kmalloc(sizeof(*node), GFP_NOFS); 630 if (!node) 631 return -ENOMEM; 632 633 node->bytenr = root->commit_root->start; 634 node->data = root; 635 636 spin_lock(&rc->reloc_root_tree.lock); 637 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 638 node->bytenr, &node->rb_node); 639 spin_unlock(&rc->reloc_root_tree.lock); 640 if (rb_node) { 641 btrfs_err(fs_info, 642 "Duplicate root found for start=%llu while inserting into relocation tree", 643 node->bytenr); 644 return -EEXIST; 645 } 646 647 list_add_tail(&root->root_list, &rc->reloc_roots); 648 return 0; 649 } 650 651 /* 652 * helper to delete the 'address of tree root -> reloc tree' 653 * mapping 654 */ 655 static void __del_reloc_root(struct btrfs_root *root) 656 { 657 struct btrfs_fs_info *fs_info = root->fs_info; 658 struct rb_node *rb_node; 659 struct mapping_node *node = NULL; 660 struct reloc_control *rc = fs_info->reloc_ctl; 661 bool put_ref = false; 662 663 if (rc && root->node) { 664 spin_lock(&rc->reloc_root_tree.lock); 665 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 666 root->commit_root->start); 667 if (rb_node) { 668 node = rb_entry(rb_node, struct mapping_node, rb_node); 669 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 670 RB_CLEAR_NODE(&node->rb_node); 671 } 672 spin_unlock(&rc->reloc_root_tree.lock); 673 ASSERT(!node || (struct btrfs_root *)node->data == root); 674 } 675 676 /* 677 * We only put the reloc root here if it's on the list. There's a lot 678 * of places where the pattern is to splice the rc->reloc_roots, process 679 * the reloc roots, and then add the reloc root back onto 680 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 681 * list we don't want the reference being dropped, because the guy 682 * messing with the list is in charge of the reference. 683 */ 684 spin_lock(&fs_info->trans_lock); 685 if (!list_empty(&root->root_list)) { 686 put_ref = true; 687 list_del_init(&root->root_list); 688 } 689 spin_unlock(&fs_info->trans_lock); 690 if (put_ref) 691 btrfs_put_root(root); 692 kfree(node); 693 } 694 695 /* 696 * helper to update the 'address of tree root -> reloc tree' 697 * mapping 698 */ 699 static int __update_reloc_root(struct btrfs_root *root) 700 { 701 struct btrfs_fs_info *fs_info = root->fs_info; 702 struct rb_node *rb_node; 703 struct mapping_node *node = NULL; 704 struct reloc_control *rc = fs_info->reloc_ctl; 705 706 spin_lock(&rc->reloc_root_tree.lock); 707 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 708 root->commit_root->start); 709 if (rb_node) { 710 node = rb_entry(rb_node, struct mapping_node, rb_node); 711 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 712 } 713 spin_unlock(&rc->reloc_root_tree.lock); 714 715 if (!node) 716 return 0; 717 BUG_ON((struct btrfs_root *)node->data != root); 718 719 spin_lock(&rc->reloc_root_tree.lock); 720 node->bytenr = root->node->start; 721 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 722 node->bytenr, &node->rb_node); 723 spin_unlock(&rc->reloc_root_tree.lock); 724 if (rb_node) 725 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 726 return 0; 727 } 728 729 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 730 struct btrfs_root *root, u64 objectid) 731 { 732 struct btrfs_fs_info *fs_info = root->fs_info; 733 struct btrfs_root *reloc_root; 734 struct extent_buffer *eb; 735 struct btrfs_root_item *root_item; 736 struct btrfs_key root_key; 737 int ret = 0; 738 bool must_abort = false; 739 740 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 741 if (!root_item) 742 return ERR_PTR(-ENOMEM); 743 744 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 745 root_key.type = BTRFS_ROOT_ITEM_KEY; 746 root_key.offset = objectid; 747 748 if (root->root_key.objectid == objectid) { 749 u64 commit_root_gen; 750 751 /* called by btrfs_init_reloc_root */ 752 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 753 BTRFS_TREE_RELOC_OBJECTID); 754 if (ret) 755 goto fail; 756 757 /* 758 * Set the last_snapshot field to the generation of the commit 759 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 760 * correctly (returns true) when the relocation root is created 761 * either inside the critical section of a transaction commit 762 * (through transaction.c:qgroup_account_snapshot()) and when 763 * it's created before the transaction commit is started. 764 */ 765 commit_root_gen = btrfs_header_generation(root->commit_root); 766 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 767 } else { 768 /* 769 * called by btrfs_reloc_post_snapshot_hook. 770 * the source tree is a reloc tree, all tree blocks 771 * modified after it was created have RELOC flag 772 * set in their headers. so it's OK to not update 773 * the 'last_snapshot'. 774 */ 775 ret = btrfs_copy_root(trans, root, root->node, &eb, 776 BTRFS_TREE_RELOC_OBJECTID); 777 if (ret) 778 goto fail; 779 } 780 781 /* 782 * We have changed references at this point, we must abort the 783 * transaction if anything fails. 784 */ 785 must_abort = true; 786 787 memcpy(root_item, &root->root_item, sizeof(*root_item)); 788 btrfs_set_root_bytenr(root_item, eb->start); 789 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 790 btrfs_set_root_generation(root_item, trans->transid); 791 792 if (root->root_key.objectid == objectid) { 793 btrfs_set_root_refs(root_item, 0); 794 memset(&root_item->drop_progress, 0, 795 sizeof(struct btrfs_disk_key)); 796 btrfs_set_root_drop_level(root_item, 0); 797 } 798 799 btrfs_tree_unlock(eb); 800 free_extent_buffer(eb); 801 802 ret = btrfs_insert_root(trans, fs_info->tree_root, 803 &root_key, root_item); 804 if (ret) 805 goto fail; 806 807 kfree(root_item); 808 809 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 810 if (IS_ERR(reloc_root)) { 811 ret = PTR_ERR(reloc_root); 812 goto abort; 813 } 814 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 815 reloc_root->last_trans = trans->transid; 816 return reloc_root; 817 fail: 818 kfree(root_item); 819 abort: 820 if (must_abort) 821 btrfs_abort_transaction(trans, ret); 822 return ERR_PTR(ret); 823 } 824 825 /* 826 * create reloc tree for a given fs tree. reloc tree is just a 827 * snapshot of the fs tree with special root objectid. 828 * 829 * The reloc_root comes out of here with two references, one for 830 * root->reloc_root, and another for being on the rc->reloc_roots list. 831 */ 832 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 833 struct btrfs_root *root) 834 { 835 struct btrfs_fs_info *fs_info = root->fs_info; 836 struct btrfs_root *reloc_root; 837 struct reloc_control *rc = fs_info->reloc_ctl; 838 struct btrfs_block_rsv *rsv; 839 int clear_rsv = 0; 840 int ret; 841 842 if (!rc) 843 return 0; 844 845 /* 846 * The subvolume has reloc tree but the swap is finished, no need to 847 * create/update the dead reloc tree 848 */ 849 if (reloc_root_is_dead(root)) 850 return 0; 851 852 /* 853 * This is subtle but important. We do not do 854 * record_root_in_transaction for reloc roots, instead we record their 855 * corresponding fs root, and then here we update the last trans for the 856 * reloc root. This means that we have to do this for the entire life 857 * of the reloc root, regardless of which stage of the relocation we are 858 * in. 859 */ 860 if (root->reloc_root) { 861 reloc_root = root->reloc_root; 862 reloc_root->last_trans = trans->transid; 863 return 0; 864 } 865 866 /* 867 * We are merging reloc roots, we do not need new reloc trees. Also 868 * reloc trees never need their own reloc tree. 869 */ 870 if (!rc->create_reloc_tree || 871 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 872 return 0; 873 874 if (!trans->reloc_reserved) { 875 rsv = trans->block_rsv; 876 trans->block_rsv = rc->block_rsv; 877 clear_rsv = 1; 878 } 879 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 880 if (clear_rsv) 881 trans->block_rsv = rsv; 882 if (IS_ERR(reloc_root)) 883 return PTR_ERR(reloc_root); 884 885 ret = __add_reloc_root(reloc_root); 886 ASSERT(ret != -EEXIST); 887 if (ret) { 888 /* Pairs with create_reloc_root */ 889 btrfs_put_root(reloc_root); 890 return ret; 891 } 892 root->reloc_root = btrfs_grab_root(reloc_root); 893 return 0; 894 } 895 896 /* 897 * update root item of reloc tree 898 */ 899 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 900 struct btrfs_root *root) 901 { 902 struct btrfs_fs_info *fs_info = root->fs_info; 903 struct btrfs_root *reloc_root; 904 struct btrfs_root_item *root_item; 905 int ret; 906 907 if (!have_reloc_root(root)) 908 return 0; 909 910 reloc_root = root->reloc_root; 911 root_item = &reloc_root->root_item; 912 913 /* 914 * We are probably ok here, but __del_reloc_root() will drop its ref of 915 * the root. We have the ref for root->reloc_root, but just in case 916 * hold it while we update the reloc root. 917 */ 918 btrfs_grab_root(reloc_root); 919 920 /* root->reloc_root will stay until current relocation finished */ 921 if (fs_info->reloc_ctl->merge_reloc_tree && 922 btrfs_root_refs(root_item) == 0) { 923 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 924 /* 925 * Mark the tree as dead before we change reloc_root so 926 * have_reloc_root will not touch it from now on. 927 */ 928 smp_wmb(); 929 __del_reloc_root(reloc_root); 930 } 931 932 if (reloc_root->commit_root != reloc_root->node) { 933 __update_reloc_root(reloc_root); 934 btrfs_set_root_node(root_item, reloc_root->node); 935 free_extent_buffer(reloc_root->commit_root); 936 reloc_root->commit_root = btrfs_root_node(reloc_root); 937 } 938 939 ret = btrfs_update_root(trans, fs_info->tree_root, 940 &reloc_root->root_key, root_item); 941 btrfs_put_root(reloc_root); 942 return ret; 943 } 944 945 /* 946 * helper to find first cached inode with inode number >= objectid 947 * in a subvolume 948 */ 949 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 950 { 951 struct rb_node *node; 952 struct rb_node *prev; 953 struct btrfs_inode *entry; 954 struct inode *inode; 955 956 spin_lock(&root->inode_lock); 957 again: 958 node = root->inode_tree.rb_node; 959 prev = NULL; 960 while (node) { 961 prev = node; 962 entry = rb_entry(node, struct btrfs_inode, rb_node); 963 964 if (objectid < btrfs_ino(entry)) 965 node = node->rb_left; 966 else if (objectid > btrfs_ino(entry)) 967 node = node->rb_right; 968 else 969 break; 970 } 971 if (!node) { 972 while (prev) { 973 entry = rb_entry(prev, struct btrfs_inode, rb_node); 974 if (objectid <= btrfs_ino(entry)) { 975 node = prev; 976 break; 977 } 978 prev = rb_next(prev); 979 } 980 } 981 while (node) { 982 entry = rb_entry(node, struct btrfs_inode, rb_node); 983 inode = igrab(&entry->vfs_inode); 984 if (inode) { 985 spin_unlock(&root->inode_lock); 986 return inode; 987 } 988 989 objectid = btrfs_ino(entry) + 1; 990 if (cond_resched_lock(&root->inode_lock)) 991 goto again; 992 993 node = rb_next(node); 994 } 995 spin_unlock(&root->inode_lock); 996 return NULL; 997 } 998 999 /* 1000 * get new location of data 1001 */ 1002 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1003 u64 bytenr, u64 num_bytes) 1004 { 1005 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1006 struct btrfs_path *path; 1007 struct btrfs_file_extent_item *fi; 1008 struct extent_buffer *leaf; 1009 int ret; 1010 1011 path = btrfs_alloc_path(); 1012 if (!path) 1013 return -ENOMEM; 1014 1015 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1016 ret = btrfs_lookup_file_extent(NULL, root, path, 1017 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1018 if (ret < 0) 1019 goto out; 1020 if (ret > 0) { 1021 ret = -ENOENT; 1022 goto out; 1023 } 1024 1025 leaf = path->nodes[0]; 1026 fi = btrfs_item_ptr(leaf, path->slots[0], 1027 struct btrfs_file_extent_item); 1028 1029 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1030 btrfs_file_extent_compression(leaf, fi) || 1031 btrfs_file_extent_encryption(leaf, fi) || 1032 btrfs_file_extent_other_encoding(leaf, fi)); 1033 1034 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1035 ret = -EINVAL; 1036 goto out; 1037 } 1038 1039 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1040 ret = 0; 1041 out: 1042 btrfs_free_path(path); 1043 return ret; 1044 } 1045 1046 /* 1047 * update file extent items in the tree leaf to point to 1048 * the new locations. 1049 */ 1050 static noinline_for_stack 1051 int replace_file_extents(struct btrfs_trans_handle *trans, 1052 struct reloc_control *rc, 1053 struct btrfs_root *root, 1054 struct extent_buffer *leaf) 1055 { 1056 struct btrfs_fs_info *fs_info = root->fs_info; 1057 struct btrfs_key key; 1058 struct btrfs_file_extent_item *fi; 1059 struct inode *inode = NULL; 1060 u64 parent; 1061 u64 bytenr; 1062 u64 new_bytenr = 0; 1063 u64 num_bytes; 1064 u64 end; 1065 u32 nritems; 1066 u32 i; 1067 int ret = 0; 1068 int first = 1; 1069 int dirty = 0; 1070 1071 if (rc->stage != UPDATE_DATA_PTRS) 1072 return 0; 1073 1074 /* reloc trees always use full backref */ 1075 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1076 parent = leaf->start; 1077 else 1078 parent = 0; 1079 1080 nritems = btrfs_header_nritems(leaf); 1081 for (i = 0; i < nritems; i++) { 1082 struct btrfs_ref ref = { 0 }; 1083 1084 cond_resched(); 1085 btrfs_item_key_to_cpu(leaf, &key, i); 1086 if (key.type != BTRFS_EXTENT_DATA_KEY) 1087 continue; 1088 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1089 if (btrfs_file_extent_type(leaf, fi) == 1090 BTRFS_FILE_EXTENT_INLINE) 1091 continue; 1092 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1093 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1094 if (bytenr == 0) 1095 continue; 1096 if (!in_range(bytenr, rc->block_group->start, 1097 rc->block_group->length)) 1098 continue; 1099 1100 /* 1101 * if we are modifying block in fs tree, wait for readpage 1102 * to complete and drop the extent cache 1103 */ 1104 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1105 if (first) { 1106 inode = find_next_inode(root, key.objectid); 1107 first = 0; 1108 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1109 btrfs_add_delayed_iput(inode); 1110 inode = find_next_inode(root, key.objectid); 1111 } 1112 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1113 end = key.offset + 1114 btrfs_file_extent_num_bytes(leaf, fi); 1115 WARN_ON(!IS_ALIGNED(key.offset, 1116 fs_info->sectorsize)); 1117 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1118 end--; 1119 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1120 key.offset, end); 1121 if (!ret) 1122 continue; 1123 1124 btrfs_drop_extent_cache(BTRFS_I(inode), 1125 key.offset, end, 1); 1126 unlock_extent(&BTRFS_I(inode)->io_tree, 1127 key.offset, end); 1128 } 1129 } 1130 1131 ret = get_new_location(rc->data_inode, &new_bytenr, 1132 bytenr, num_bytes); 1133 if (ret) { 1134 /* 1135 * Don't have to abort since we've not changed anything 1136 * in the file extent yet. 1137 */ 1138 break; 1139 } 1140 1141 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1142 dirty = 1; 1143 1144 key.offset -= btrfs_file_extent_offset(leaf, fi); 1145 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1146 num_bytes, parent); 1147 ref.real_root = root->root_key.objectid; 1148 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1149 key.objectid, key.offset); 1150 ret = btrfs_inc_extent_ref(trans, &ref); 1151 if (ret) { 1152 btrfs_abort_transaction(trans, ret); 1153 break; 1154 } 1155 1156 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1157 num_bytes, parent); 1158 ref.real_root = root->root_key.objectid; 1159 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1160 key.objectid, key.offset); 1161 ret = btrfs_free_extent(trans, &ref); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, ret); 1164 break; 1165 } 1166 } 1167 if (dirty) 1168 btrfs_mark_buffer_dirty(leaf); 1169 if (inode) 1170 btrfs_add_delayed_iput(inode); 1171 return ret; 1172 } 1173 1174 static noinline_for_stack 1175 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1176 struct btrfs_path *path, int level) 1177 { 1178 struct btrfs_disk_key key1; 1179 struct btrfs_disk_key key2; 1180 btrfs_node_key(eb, &key1, slot); 1181 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1182 return memcmp(&key1, &key2, sizeof(key1)); 1183 } 1184 1185 /* 1186 * try to replace tree blocks in fs tree with the new blocks 1187 * in reloc tree. tree blocks haven't been modified since the 1188 * reloc tree was create can be replaced. 1189 * 1190 * if a block was replaced, level of the block + 1 is returned. 1191 * if no block got replaced, 0 is returned. if there are other 1192 * errors, a negative error number is returned. 1193 */ 1194 static noinline_for_stack 1195 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1196 struct btrfs_root *dest, struct btrfs_root *src, 1197 struct btrfs_path *path, struct btrfs_key *next_key, 1198 int lowest_level, int max_level) 1199 { 1200 struct btrfs_fs_info *fs_info = dest->fs_info; 1201 struct extent_buffer *eb; 1202 struct extent_buffer *parent; 1203 struct btrfs_ref ref = { 0 }; 1204 struct btrfs_key key; 1205 u64 old_bytenr; 1206 u64 new_bytenr; 1207 u64 old_ptr_gen; 1208 u64 new_ptr_gen; 1209 u64 last_snapshot; 1210 u32 blocksize; 1211 int cow = 0; 1212 int level; 1213 int ret; 1214 int slot; 1215 1216 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1217 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1218 1219 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1220 again: 1221 slot = path->slots[lowest_level]; 1222 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1223 1224 eb = btrfs_lock_root_node(dest); 1225 level = btrfs_header_level(eb); 1226 1227 if (level < lowest_level) { 1228 btrfs_tree_unlock(eb); 1229 free_extent_buffer(eb); 1230 return 0; 1231 } 1232 1233 if (cow) { 1234 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1235 BTRFS_NESTING_COW); 1236 if (ret) { 1237 btrfs_tree_unlock(eb); 1238 free_extent_buffer(eb); 1239 return ret; 1240 } 1241 } 1242 1243 if (next_key) { 1244 next_key->objectid = (u64)-1; 1245 next_key->type = (u8)-1; 1246 next_key->offset = (u64)-1; 1247 } 1248 1249 parent = eb; 1250 while (1) { 1251 level = btrfs_header_level(parent); 1252 ASSERT(level >= lowest_level); 1253 1254 ret = btrfs_bin_search(parent, &key, &slot); 1255 if (ret < 0) 1256 break; 1257 if (ret && slot > 0) 1258 slot--; 1259 1260 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1261 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1262 1263 old_bytenr = btrfs_node_blockptr(parent, slot); 1264 blocksize = fs_info->nodesize; 1265 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1266 1267 if (level <= max_level) { 1268 eb = path->nodes[level]; 1269 new_bytenr = btrfs_node_blockptr(eb, 1270 path->slots[level]); 1271 new_ptr_gen = btrfs_node_ptr_generation(eb, 1272 path->slots[level]); 1273 } else { 1274 new_bytenr = 0; 1275 new_ptr_gen = 0; 1276 } 1277 1278 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1279 ret = level; 1280 break; 1281 } 1282 1283 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1284 memcmp_node_keys(parent, slot, path, level)) { 1285 if (level <= lowest_level) { 1286 ret = 0; 1287 break; 1288 } 1289 1290 eb = btrfs_read_node_slot(parent, slot); 1291 if (IS_ERR(eb)) { 1292 ret = PTR_ERR(eb); 1293 break; 1294 } 1295 btrfs_tree_lock(eb); 1296 if (cow) { 1297 ret = btrfs_cow_block(trans, dest, eb, parent, 1298 slot, &eb, 1299 BTRFS_NESTING_COW); 1300 if (ret) { 1301 btrfs_tree_unlock(eb); 1302 free_extent_buffer(eb); 1303 break; 1304 } 1305 } 1306 1307 btrfs_tree_unlock(parent); 1308 free_extent_buffer(parent); 1309 1310 parent = eb; 1311 continue; 1312 } 1313 1314 if (!cow) { 1315 btrfs_tree_unlock(parent); 1316 free_extent_buffer(parent); 1317 cow = 1; 1318 goto again; 1319 } 1320 1321 btrfs_node_key_to_cpu(path->nodes[level], &key, 1322 path->slots[level]); 1323 btrfs_release_path(path); 1324 1325 path->lowest_level = level; 1326 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1327 path->lowest_level = 0; 1328 if (ret) { 1329 if (ret > 0) 1330 ret = -ENOENT; 1331 break; 1332 } 1333 1334 /* 1335 * Info qgroup to trace both subtrees. 1336 * 1337 * We must trace both trees. 1338 * 1) Tree reloc subtree 1339 * If not traced, we will leak data numbers 1340 * 2) Fs subtree 1341 * If not traced, we will double count old data 1342 * 1343 * We don't scan the subtree right now, but only record 1344 * the swapped tree blocks. 1345 * The real subtree rescan is delayed until we have new 1346 * CoW on the subtree root node before transaction commit. 1347 */ 1348 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1349 rc->block_group, parent, slot, 1350 path->nodes[level], path->slots[level], 1351 last_snapshot); 1352 if (ret < 0) 1353 break; 1354 /* 1355 * swap blocks in fs tree and reloc tree. 1356 */ 1357 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1358 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1359 btrfs_mark_buffer_dirty(parent); 1360 1361 btrfs_set_node_blockptr(path->nodes[level], 1362 path->slots[level], old_bytenr); 1363 btrfs_set_node_ptr_generation(path->nodes[level], 1364 path->slots[level], old_ptr_gen); 1365 btrfs_mark_buffer_dirty(path->nodes[level]); 1366 1367 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1368 blocksize, path->nodes[level]->start); 1369 ref.skip_qgroup = true; 1370 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1371 ret = btrfs_inc_extent_ref(trans, &ref); 1372 if (ret) { 1373 btrfs_abort_transaction(trans, ret); 1374 break; 1375 } 1376 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1377 blocksize, 0); 1378 ref.skip_qgroup = true; 1379 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1380 ret = btrfs_inc_extent_ref(trans, &ref); 1381 if (ret) { 1382 btrfs_abort_transaction(trans, ret); 1383 break; 1384 } 1385 1386 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1387 blocksize, path->nodes[level]->start); 1388 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1389 ref.skip_qgroup = true; 1390 ret = btrfs_free_extent(trans, &ref); 1391 if (ret) { 1392 btrfs_abort_transaction(trans, ret); 1393 break; 1394 } 1395 1396 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1397 blocksize, 0); 1398 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1399 ref.skip_qgroup = true; 1400 ret = btrfs_free_extent(trans, &ref); 1401 if (ret) { 1402 btrfs_abort_transaction(trans, ret); 1403 break; 1404 } 1405 1406 btrfs_unlock_up_safe(path, 0); 1407 1408 ret = level; 1409 break; 1410 } 1411 btrfs_tree_unlock(parent); 1412 free_extent_buffer(parent); 1413 return ret; 1414 } 1415 1416 /* 1417 * helper to find next relocated block in reloc tree 1418 */ 1419 static noinline_for_stack 1420 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1421 int *level) 1422 { 1423 struct extent_buffer *eb; 1424 int i; 1425 u64 last_snapshot; 1426 u32 nritems; 1427 1428 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1429 1430 for (i = 0; i < *level; i++) { 1431 free_extent_buffer(path->nodes[i]); 1432 path->nodes[i] = NULL; 1433 } 1434 1435 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1436 eb = path->nodes[i]; 1437 nritems = btrfs_header_nritems(eb); 1438 while (path->slots[i] + 1 < nritems) { 1439 path->slots[i]++; 1440 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1441 last_snapshot) 1442 continue; 1443 1444 *level = i; 1445 return 0; 1446 } 1447 free_extent_buffer(path->nodes[i]); 1448 path->nodes[i] = NULL; 1449 } 1450 return 1; 1451 } 1452 1453 /* 1454 * walk down reloc tree to find relocated block of lowest level 1455 */ 1456 static noinline_for_stack 1457 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1458 int *level) 1459 { 1460 struct extent_buffer *eb = NULL; 1461 int i; 1462 u64 ptr_gen = 0; 1463 u64 last_snapshot; 1464 u32 nritems; 1465 1466 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1467 1468 for (i = *level; i > 0; i--) { 1469 eb = path->nodes[i]; 1470 nritems = btrfs_header_nritems(eb); 1471 while (path->slots[i] < nritems) { 1472 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1473 if (ptr_gen > last_snapshot) 1474 break; 1475 path->slots[i]++; 1476 } 1477 if (path->slots[i] >= nritems) { 1478 if (i == *level) 1479 break; 1480 *level = i + 1; 1481 return 0; 1482 } 1483 if (i == 1) { 1484 *level = i; 1485 return 0; 1486 } 1487 1488 eb = btrfs_read_node_slot(eb, path->slots[i]); 1489 if (IS_ERR(eb)) 1490 return PTR_ERR(eb); 1491 BUG_ON(btrfs_header_level(eb) != i - 1); 1492 path->nodes[i - 1] = eb; 1493 path->slots[i - 1] = 0; 1494 } 1495 return 1; 1496 } 1497 1498 /* 1499 * invalidate extent cache for file extents whose key in range of 1500 * [min_key, max_key) 1501 */ 1502 static int invalidate_extent_cache(struct btrfs_root *root, 1503 struct btrfs_key *min_key, 1504 struct btrfs_key *max_key) 1505 { 1506 struct btrfs_fs_info *fs_info = root->fs_info; 1507 struct inode *inode = NULL; 1508 u64 objectid; 1509 u64 start, end; 1510 u64 ino; 1511 1512 objectid = min_key->objectid; 1513 while (1) { 1514 cond_resched(); 1515 iput(inode); 1516 1517 if (objectid > max_key->objectid) 1518 break; 1519 1520 inode = find_next_inode(root, objectid); 1521 if (!inode) 1522 break; 1523 ino = btrfs_ino(BTRFS_I(inode)); 1524 1525 if (ino > max_key->objectid) { 1526 iput(inode); 1527 break; 1528 } 1529 1530 objectid = ino + 1; 1531 if (!S_ISREG(inode->i_mode)) 1532 continue; 1533 1534 if (unlikely(min_key->objectid == ino)) { 1535 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1536 continue; 1537 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1538 start = 0; 1539 else { 1540 start = min_key->offset; 1541 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1542 } 1543 } else { 1544 start = 0; 1545 } 1546 1547 if (unlikely(max_key->objectid == ino)) { 1548 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1549 continue; 1550 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1551 end = (u64)-1; 1552 } else { 1553 if (max_key->offset == 0) 1554 continue; 1555 end = max_key->offset; 1556 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1557 end--; 1558 } 1559 } else { 1560 end = (u64)-1; 1561 } 1562 1563 /* the lock_extent waits for readpage to complete */ 1564 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1565 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1566 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1567 } 1568 return 0; 1569 } 1570 1571 static int find_next_key(struct btrfs_path *path, int level, 1572 struct btrfs_key *key) 1573 1574 { 1575 while (level < BTRFS_MAX_LEVEL) { 1576 if (!path->nodes[level]) 1577 break; 1578 if (path->slots[level] + 1 < 1579 btrfs_header_nritems(path->nodes[level])) { 1580 btrfs_node_key_to_cpu(path->nodes[level], key, 1581 path->slots[level] + 1); 1582 return 0; 1583 } 1584 level++; 1585 } 1586 return 1; 1587 } 1588 1589 /* 1590 * Insert current subvolume into reloc_control::dirty_subvol_roots 1591 */ 1592 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1593 struct reloc_control *rc, 1594 struct btrfs_root *root) 1595 { 1596 struct btrfs_root *reloc_root = root->reloc_root; 1597 struct btrfs_root_item *reloc_root_item; 1598 int ret; 1599 1600 /* @root must be a subvolume tree root with a valid reloc tree */ 1601 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1602 ASSERT(reloc_root); 1603 1604 reloc_root_item = &reloc_root->root_item; 1605 memset(&reloc_root_item->drop_progress, 0, 1606 sizeof(reloc_root_item->drop_progress)); 1607 btrfs_set_root_drop_level(reloc_root_item, 0); 1608 btrfs_set_root_refs(reloc_root_item, 0); 1609 ret = btrfs_update_reloc_root(trans, root); 1610 if (ret) 1611 return ret; 1612 1613 if (list_empty(&root->reloc_dirty_list)) { 1614 btrfs_grab_root(root); 1615 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1616 } 1617 1618 return 0; 1619 } 1620 1621 static int clean_dirty_subvols(struct reloc_control *rc) 1622 { 1623 struct btrfs_root *root; 1624 struct btrfs_root *next; 1625 int ret = 0; 1626 int ret2; 1627 1628 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1629 reloc_dirty_list) { 1630 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1631 /* Merged subvolume, cleanup its reloc root */ 1632 struct btrfs_root *reloc_root = root->reloc_root; 1633 1634 list_del_init(&root->reloc_dirty_list); 1635 root->reloc_root = NULL; 1636 /* 1637 * Need barrier to ensure clear_bit() only happens after 1638 * root->reloc_root = NULL. Pairs with have_reloc_root. 1639 */ 1640 smp_wmb(); 1641 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1642 if (reloc_root) { 1643 /* 1644 * btrfs_drop_snapshot drops our ref we hold for 1645 * ->reloc_root. If it fails however we must 1646 * drop the ref ourselves. 1647 */ 1648 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1649 if (ret2 < 0) { 1650 btrfs_put_root(reloc_root); 1651 if (!ret) 1652 ret = ret2; 1653 } 1654 } 1655 btrfs_put_root(root); 1656 } else { 1657 /* Orphan reloc tree, just clean it up */ 1658 ret2 = btrfs_drop_snapshot(root, 0, 1); 1659 if (ret2 < 0) { 1660 btrfs_put_root(root); 1661 if (!ret) 1662 ret = ret2; 1663 } 1664 } 1665 } 1666 return ret; 1667 } 1668 1669 /* 1670 * merge the relocated tree blocks in reloc tree with corresponding 1671 * fs tree. 1672 */ 1673 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1674 struct btrfs_root *root) 1675 { 1676 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1677 struct btrfs_key key; 1678 struct btrfs_key next_key; 1679 struct btrfs_trans_handle *trans = NULL; 1680 struct btrfs_root *reloc_root; 1681 struct btrfs_root_item *root_item; 1682 struct btrfs_path *path; 1683 struct extent_buffer *leaf; 1684 int reserve_level; 1685 int level; 1686 int max_level; 1687 int replaced = 0; 1688 int ret = 0; 1689 u32 min_reserved; 1690 1691 path = btrfs_alloc_path(); 1692 if (!path) 1693 return -ENOMEM; 1694 path->reada = READA_FORWARD; 1695 1696 reloc_root = root->reloc_root; 1697 root_item = &reloc_root->root_item; 1698 1699 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1700 level = btrfs_root_level(root_item); 1701 atomic_inc(&reloc_root->node->refs); 1702 path->nodes[level] = reloc_root->node; 1703 path->slots[level] = 0; 1704 } else { 1705 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1706 1707 level = btrfs_root_drop_level(root_item); 1708 BUG_ON(level == 0); 1709 path->lowest_level = level; 1710 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1711 path->lowest_level = 0; 1712 if (ret < 0) { 1713 btrfs_free_path(path); 1714 return ret; 1715 } 1716 1717 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1718 path->slots[level]); 1719 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1720 1721 btrfs_unlock_up_safe(path, 0); 1722 } 1723 1724 /* 1725 * In merge_reloc_root(), we modify the upper level pointer to swap the 1726 * tree blocks between reloc tree and subvolume tree. Thus for tree 1727 * block COW, we COW at most from level 1 to root level for each tree. 1728 * 1729 * Thus the needed metadata size is at most root_level * nodesize, 1730 * and * 2 since we have two trees to COW. 1731 */ 1732 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1733 min_reserved = fs_info->nodesize * reserve_level * 2; 1734 memset(&next_key, 0, sizeof(next_key)); 1735 1736 while (1) { 1737 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1738 BTRFS_RESERVE_FLUSH_LIMIT); 1739 if (ret) 1740 goto out; 1741 trans = btrfs_start_transaction(root, 0); 1742 if (IS_ERR(trans)) { 1743 ret = PTR_ERR(trans); 1744 trans = NULL; 1745 goto out; 1746 } 1747 1748 /* 1749 * At this point we no longer have a reloc_control, so we can't 1750 * depend on btrfs_init_reloc_root to update our last_trans. 1751 * 1752 * But that's ok, we started the trans handle on our 1753 * corresponding fs_root, which means it's been added to the 1754 * dirty list. At commit time we'll still call 1755 * btrfs_update_reloc_root() and update our root item 1756 * appropriately. 1757 */ 1758 reloc_root->last_trans = trans->transid; 1759 trans->block_rsv = rc->block_rsv; 1760 1761 replaced = 0; 1762 max_level = level; 1763 1764 ret = walk_down_reloc_tree(reloc_root, path, &level); 1765 if (ret < 0) 1766 goto out; 1767 if (ret > 0) 1768 break; 1769 1770 if (!find_next_key(path, level, &key) && 1771 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1772 ret = 0; 1773 } else { 1774 ret = replace_path(trans, rc, root, reloc_root, path, 1775 &next_key, level, max_level); 1776 } 1777 if (ret < 0) 1778 goto out; 1779 if (ret > 0) { 1780 level = ret; 1781 btrfs_node_key_to_cpu(path->nodes[level], &key, 1782 path->slots[level]); 1783 replaced = 1; 1784 } 1785 1786 ret = walk_up_reloc_tree(reloc_root, path, &level); 1787 if (ret > 0) 1788 break; 1789 1790 BUG_ON(level == 0); 1791 /* 1792 * save the merging progress in the drop_progress. 1793 * this is OK since root refs == 1 in this case. 1794 */ 1795 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1796 path->slots[level]); 1797 btrfs_set_root_drop_level(root_item, level); 1798 1799 btrfs_end_transaction_throttle(trans); 1800 trans = NULL; 1801 1802 btrfs_btree_balance_dirty(fs_info); 1803 1804 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1805 invalidate_extent_cache(root, &key, &next_key); 1806 } 1807 1808 /* 1809 * handle the case only one block in the fs tree need to be 1810 * relocated and the block is tree root. 1811 */ 1812 leaf = btrfs_lock_root_node(root); 1813 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1814 BTRFS_NESTING_COW); 1815 btrfs_tree_unlock(leaf); 1816 free_extent_buffer(leaf); 1817 out: 1818 btrfs_free_path(path); 1819 1820 if (ret == 0) { 1821 ret = insert_dirty_subvol(trans, rc, root); 1822 if (ret) 1823 btrfs_abort_transaction(trans, ret); 1824 } 1825 1826 if (trans) 1827 btrfs_end_transaction_throttle(trans); 1828 1829 btrfs_btree_balance_dirty(fs_info); 1830 1831 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1832 invalidate_extent_cache(root, &key, &next_key); 1833 1834 return ret; 1835 } 1836 1837 static noinline_for_stack 1838 int prepare_to_merge(struct reloc_control *rc, int err) 1839 { 1840 struct btrfs_root *root = rc->extent_root; 1841 struct btrfs_fs_info *fs_info = root->fs_info; 1842 struct btrfs_root *reloc_root; 1843 struct btrfs_trans_handle *trans; 1844 LIST_HEAD(reloc_roots); 1845 u64 num_bytes = 0; 1846 int ret; 1847 1848 mutex_lock(&fs_info->reloc_mutex); 1849 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1850 rc->merging_rsv_size += rc->nodes_relocated * 2; 1851 mutex_unlock(&fs_info->reloc_mutex); 1852 1853 again: 1854 if (!err) { 1855 num_bytes = rc->merging_rsv_size; 1856 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1857 BTRFS_RESERVE_FLUSH_ALL); 1858 if (ret) 1859 err = ret; 1860 } 1861 1862 trans = btrfs_join_transaction(rc->extent_root); 1863 if (IS_ERR(trans)) { 1864 if (!err) 1865 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1866 num_bytes, NULL); 1867 return PTR_ERR(trans); 1868 } 1869 1870 if (!err) { 1871 if (num_bytes != rc->merging_rsv_size) { 1872 btrfs_end_transaction(trans); 1873 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1874 num_bytes, NULL); 1875 goto again; 1876 } 1877 } 1878 1879 rc->merge_reloc_tree = 1; 1880 1881 while (!list_empty(&rc->reloc_roots)) { 1882 reloc_root = list_entry(rc->reloc_roots.next, 1883 struct btrfs_root, root_list); 1884 list_del_init(&reloc_root->root_list); 1885 1886 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1887 false); 1888 if (IS_ERR(root)) { 1889 /* 1890 * Even if we have an error we need this reloc root 1891 * back on our list so we can clean up properly. 1892 */ 1893 list_add(&reloc_root->root_list, &reloc_roots); 1894 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1895 if (!err) 1896 err = PTR_ERR(root); 1897 break; 1898 } 1899 ASSERT(root->reloc_root == reloc_root); 1900 1901 /* 1902 * set reference count to 1, so btrfs_recover_relocation 1903 * knows it should resumes merging 1904 */ 1905 if (!err) 1906 btrfs_set_root_refs(&reloc_root->root_item, 1); 1907 ret = btrfs_update_reloc_root(trans, root); 1908 1909 /* 1910 * Even if we have an error we need this reloc root back on our 1911 * list so we can clean up properly. 1912 */ 1913 list_add(&reloc_root->root_list, &reloc_roots); 1914 btrfs_put_root(root); 1915 1916 if (ret) { 1917 btrfs_abort_transaction(trans, ret); 1918 if (!err) 1919 err = ret; 1920 break; 1921 } 1922 } 1923 1924 list_splice(&reloc_roots, &rc->reloc_roots); 1925 1926 if (!err) 1927 err = btrfs_commit_transaction(trans); 1928 else 1929 btrfs_end_transaction(trans); 1930 return err; 1931 } 1932 1933 static noinline_for_stack 1934 void free_reloc_roots(struct list_head *list) 1935 { 1936 struct btrfs_root *reloc_root, *tmp; 1937 1938 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1939 __del_reloc_root(reloc_root); 1940 } 1941 1942 static noinline_for_stack 1943 void merge_reloc_roots(struct reloc_control *rc) 1944 { 1945 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1946 struct btrfs_root *root; 1947 struct btrfs_root *reloc_root; 1948 LIST_HEAD(reloc_roots); 1949 int found = 0; 1950 int ret = 0; 1951 again: 1952 root = rc->extent_root; 1953 1954 /* 1955 * this serializes us with btrfs_record_root_in_transaction, 1956 * we have to make sure nobody is in the middle of 1957 * adding their roots to the list while we are 1958 * doing this splice 1959 */ 1960 mutex_lock(&fs_info->reloc_mutex); 1961 list_splice_init(&rc->reloc_roots, &reloc_roots); 1962 mutex_unlock(&fs_info->reloc_mutex); 1963 1964 while (!list_empty(&reloc_roots)) { 1965 found = 1; 1966 reloc_root = list_entry(reloc_roots.next, 1967 struct btrfs_root, root_list); 1968 1969 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1970 false); 1971 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1972 if (IS_ERR(root)) { 1973 /* 1974 * For recovery we read the fs roots on mount, 1975 * and if we didn't find the root then we marked 1976 * the reloc root as a garbage root. For normal 1977 * relocation obviously the root should exist in 1978 * memory. However there's no reason we can't 1979 * handle the error properly here just in case. 1980 */ 1981 ASSERT(0); 1982 ret = PTR_ERR(root); 1983 goto out; 1984 } 1985 if (root->reloc_root != reloc_root) { 1986 /* 1987 * This is actually impossible without something 1988 * going really wrong (like weird race condition 1989 * or cosmic rays). 1990 */ 1991 ASSERT(0); 1992 ret = -EINVAL; 1993 goto out; 1994 } 1995 ret = merge_reloc_root(rc, root); 1996 btrfs_put_root(root); 1997 if (ret) { 1998 if (list_empty(&reloc_root->root_list)) 1999 list_add_tail(&reloc_root->root_list, 2000 &reloc_roots); 2001 goto out; 2002 } 2003 } else { 2004 if (!IS_ERR(root)) { 2005 if (root->reloc_root == reloc_root) { 2006 root->reloc_root = NULL; 2007 btrfs_put_root(reloc_root); 2008 } 2009 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2010 &root->state); 2011 btrfs_put_root(root); 2012 } 2013 2014 list_del_init(&reloc_root->root_list); 2015 /* Don't forget to queue this reloc root for cleanup */ 2016 list_add_tail(&reloc_root->reloc_dirty_list, 2017 &rc->dirty_subvol_roots); 2018 } 2019 } 2020 2021 if (found) { 2022 found = 0; 2023 goto again; 2024 } 2025 out: 2026 if (ret) { 2027 btrfs_handle_fs_error(fs_info, ret, NULL); 2028 free_reloc_roots(&reloc_roots); 2029 2030 /* new reloc root may be added */ 2031 mutex_lock(&fs_info->reloc_mutex); 2032 list_splice_init(&rc->reloc_roots, &reloc_roots); 2033 mutex_unlock(&fs_info->reloc_mutex); 2034 free_reloc_roots(&reloc_roots); 2035 } 2036 2037 /* 2038 * We used to have 2039 * 2040 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2041 * 2042 * here, but it's wrong. If we fail to start the transaction in 2043 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2044 * have actually been removed from the reloc_root_tree rb tree. This is 2045 * fine because we're bailing here, and we hold a reference on the root 2046 * for the list that holds it, so these roots will be cleaned up when we 2047 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2048 * will be cleaned up on unmount. 2049 * 2050 * The remaining nodes will be cleaned up by free_reloc_control. 2051 */ 2052 } 2053 2054 static void free_block_list(struct rb_root *blocks) 2055 { 2056 struct tree_block *block; 2057 struct rb_node *rb_node; 2058 while ((rb_node = rb_first(blocks))) { 2059 block = rb_entry(rb_node, struct tree_block, rb_node); 2060 rb_erase(rb_node, blocks); 2061 kfree(block); 2062 } 2063 } 2064 2065 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2066 struct btrfs_root *reloc_root) 2067 { 2068 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2069 struct btrfs_root *root; 2070 int ret; 2071 2072 if (reloc_root->last_trans == trans->transid) 2073 return 0; 2074 2075 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2076 2077 /* 2078 * This should succeed, since we can't have a reloc root without having 2079 * already looked up the actual root and created the reloc root for this 2080 * root. 2081 * 2082 * However if there's some sort of corruption where we have a ref to a 2083 * reloc root without a corresponding root this could return ENOENT. 2084 */ 2085 if (IS_ERR(root)) { 2086 ASSERT(0); 2087 return PTR_ERR(root); 2088 } 2089 if (root->reloc_root != reloc_root) { 2090 ASSERT(0); 2091 btrfs_err(fs_info, 2092 "root %llu has two reloc roots associated with it", 2093 reloc_root->root_key.offset); 2094 btrfs_put_root(root); 2095 return -EUCLEAN; 2096 } 2097 ret = btrfs_record_root_in_trans(trans, root); 2098 btrfs_put_root(root); 2099 2100 return ret; 2101 } 2102 2103 static noinline_for_stack 2104 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2105 struct reloc_control *rc, 2106 struct btrfs_backref_node *node, 2107 struct btrfs_backref_edge *edges[]) 2108 { 2109 struct btrfs_backref_node *next; 2110 struct btrfs_root *root; 2111 int index = 0; 2112 int ret; 2113 2114 next = node; 2115 while (1) { 2116 cond_resched(); 2117 next = walk_up_backref(next, edges, &index); 2118 root = next->root; 2119 2120 /* 2121 * If there is no root, then our references for this block are 2122 * incomplete, as we should be able to walk all the way up to a 2123 * block that is owned by a root. 2124 * 2125 * This path is only for SHAREABLE roots, so if we come upon a 2126 * non-SHAREABLE root then we have backrefs that resolve 2127 * improperly. 2128 * 2129 * Both of these cases indicate file system corruption, or a bug 2130 * in the backref walking code. 2131 */ 2132 if (!root) { 2133 ASSERT(0); 2134 btrfs_err(trans->fs_info, 2135 "bytenr %llu doesn't have a backref path ending in a root", 2136 node->bytenr); 2137 return ERR_PTR(-EUCLEAN); 2138 } 2139 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2140 ASSERT(0); 2141 btrfs_err(trans->fs_info, 2142 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2143 node->bytenr); 2144 return ERR_PTR(-EUCLEAN); 2145 } 2146 2147 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2148 ret = record_reloc_root_in_trans(trans, root); 2149 if (ret) 2150 return ERR_PTR(ret); 2151 break; 2152 } 2153 2154 ret = btrfs_record_root_in_trans(trans, root); 2155 if (ret) 2156 return ERR_PTR(ret); 2157 root = root->reloc_root; 2158 2159 /* 2160 * We could have raced with another thread which failed, so 2161 * root->reloc_root may not be set, return ENOENT in this case. 2162 */ 2163 if (!root) 2164 return ERR_PTR(-ENOENT); 2165 2166 if (next->new_bytenr != root->node->start) { 2167 /* 2168 * We just created the reloc root, so we shouldn't have 2169 * ->new_bytenr set and this shouldn't be in the changed 2170 * list. If it is then we have multiple roots pointing 2171 * at the same bytenr which indicates corruption, or 2172 * we've made a mistake in the backref walking code. 2173 */ 2174 ASSERT(next->new_bytenr == 0); 2175 ASSERT(list_empty(&next->list)); 2176 if (next->new_bytenr || !list_empty(&next->list)) { 2177 btrfs_err(trans->fs_info, 2178 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2179 node->bytenr, next->bytenr); 2180 return ERR_PTR(-EUCLEAN); 2181 } 2182 2183 next->new_bytenr = root->node->start; 2184 btrfs_put_root(next->root); 2185 next->root = btrfs_grab_root(root); 2186 ASSERT(next->root); 2187 list_add_tail(&next->list, 2188 &rc->backref_cache.changed); 2189 mark_block_processed(rc, next); 2190 break; 2191 } 2192 2193 WARN_ON(1); 2194 root = NULL; 2195 next = walk_down_backref(edges, &index); 2196 if (!next || next->level <= node->level) 2197 break; 2198 } 2199 if (!root) { 2200 /* 2201 * This can happen if there's fs corruption or if there's a bug 2202 * in the backref lookup code. 2203 */ 2204 ASSERT(0); 2205 return ERR_PTR(-ENOENT); 2206 } 2207 2208 next = node; 2209 /* setup backref node path for btrfs_reloc_cow_block */ 2210 while (1) { 2211 rc->backref_cache.path[next->level] = next; 2212 if (--index < 0) 2213 break; 2214 next = edges[index]->node[UPPER]; 2215 } 2216 return root; 2217 } 2218 2219 /* 2220 * Select a tree root for relocation. 2221 * 2222 * Return NULL if the block is not shareable. We should use do_relocation() in 2223 * this case. 2224 * 2225 * Return a tree root pointer if the block is shareable. 2226 * Return -ENOENT if the block is root of reloc tree. 2227 */ 2228 static noinline_for_stack 2229 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2230 { 2231 struct btrfs_backref_node *next; 2232 struct btrfs_root *root; 2233 struct btrfs_root *fs_root = NULL; 2234 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2235 int index = 0; 2236 2237 next = node; 2238 while (1) { 2239 cond_resched(); 2240 next = walk_up_backref(next, edges, &index); 2241 root = next->root; 2242 2243 /* 2244 * This can occur if we have incomplete extent refs leading all 2245 * the way up a particular path, in this case return -EUCLEAN. 2246 */ 2247 if (!root) 2248 return ERR_PTR(-EUCLEAN); 2249 2250 /* No other choice for non-shareable tree */ 2251 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2252 return root; 2253 2254 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2255 fs_root = root; 2256 2257 if (next != node) 2258 return NULL; 2259 2260 next = walk_down_backref(edges, &index); 2261 if (!next || next->level <= node->level) 2262 break; 2263 } 2264 2265 if (!fs_root) 2266 return ERR_PTR(-ENOENT); 2267 return fs_root; 2268 } 2269 2270 static noinline_for_stack 2271 u64 calcu_metadata_size(struct reloc_control *rc, 2272 struct btrfs_backref_node *node, int reserve) 2273 { 2274 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2275 struct btrfs_backref_node *next = node; 2276 struct btrfs_backref_edge *edge; 2277 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2278 u64 num_bytes = 0; 2279 int index = 0; 2280 2281 BUG_ON(reserve && node->processed); 2282 2283 while (next) { 2284 cond_resched(); 2285 while (1) { 2286 if (next->processed && (reserve || next != node)) 2287 break; 2288 2289 num_bytes += fs_info->nodesize; 2290 2291 if (list_empty(&next->upper)) 2292 break; 2293 2294 edge = list_entry(next->upper.next, 2295 struct btrfs_backref_edge, list[LOWER]); 2296 edges[index++] = edge; 2297 next = edge->node[UPPER]; 2298 } 2299 next = walk_down_backref(edges, &index); 2300 } 2301 return num_bytes; 2302 } 2303 2304 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2305 struct reloc_control *rc, 2306 struct btrfs_backref_node *node) 2307 { 2308 struct btrfs_root *root = rc->extent_root; 2309 struct btrfs_fs_info *fs_info = root->fs_info; 2310 u64 num_bytes; 2311 int ret; 2312 u64 tmp; 2313 2314 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2315 2316 trans->block_rsv = rc->block_rsv; 2317 rc->reserved_bytes += num_bytes; 2318 2319 /* 2320 * We are under a transaction here so we can only do limited flushing. 2321 * If we get an enospc just kick back -EAGAIN so we know to drop the 2322 * transaction and try to refill when we can flush all the things. 2323 */ 2324 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2325 BTRFS_RESERVE_FLUSH_LIMIT); 2326 if (ret) { 2327 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2328 while (tmp <= rc->reserved_bytes) 2329 tmp <<= 1; 2330 /* 2331 * only one thread can access block_rsv at this point, 2332 * so we don't need hold lock to protect block_rsv. 2333 * we expand more reservation size here to allow enough 2334 * space for relocation and we will return earlier in 2335 * enospc case. 2336 */ 2337 rc->block_rsv->size = tmp + fs_info->nodesize * 2338 RELOCATION_RESERVED_NODES; 2339 return -EAGAIN; 2340 } 2341 2342 return 0; 2343 } 2344 2345 /* 2346 * relocate a block tree, and then update pointers in upper level 2347 * blocks that reference the block to point to the new location. 2348 * 2349 * if called by link_to_upper, the block has already been relocated. 2350 * in that case this function just updates pointers. 2351 */ 2352 static int do_relocation(struct btrfs_trans_handle *trans, 2353 struct reloc_control *rc, 2354 struct btrfs_backref_node *node, 2355 struct btrfs_key *key, 2356 struct btrfs_path *path, int lowest) 2357 { 2358 struct btrfs_backref_node *upper; 2359 struct btrfs_backref_edge *edge; 2360 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2361 struct btrfs_root *root; 2362 struct extent_buffer *eb; 2363 u32 blocksize; 2364 u64 bytenr; 2365 int slot; 2366 int ret = 0; 2367 2368 /* 2369 * If we are lowest then this is the first time we're processing this 2370 * block, and thus shouldn't have an eb associated with it yet. 2371 */ 2372 ASSERT(!lowest || !node->eb); 2373 2374 path->lowest_level = node->level + 1; 2375 rc->backref_cache.path[node->level] = node; 2376 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2377 struct btrfs_ref ref = { 0 }; 2378 2379 cond_resched(); 2380 2381 upper = edge->node[UPPER]; 2382 root = select_reloc_root(trans, rc, upper, edges); 2383 if (IS_ERR(root)) { 2384 ret = PTR_ERR(root); 2385 goto next; 2386 } 2387 2388 if (upper->eb && !upper->locked) { 2389 if (!lowest) { 2390 ret = btrfs_bin_search(upper->eb, key, &slot); 2391 if (ret < 0) 2392 goto next; 2393 BUG_ON(ret); 2394 bytenr = btrfs_node_blockptr(upper->eb, slot); 2395 if (node->eb->start == bytenr) 2396 goto next; 2397 } 2398 btrfs_backref_drop_node_buffer(upper); 2399 } 2400 2401 if (!upper->eb) { 2402 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2403 if (ret) { 2404 if (ret > 0) 2405 ret = -ENOENT; 2406 2407 btrfs_release_path(path); 2408 break; 2409 } 2410 2411 if (!upper->eb) { 2412 upper->eb = path->nodes[upper->level]; 2413 path->nodes[upper->level] = NULL; 2414 } else { 2415 BUG_ON(upper->eb != path->nodes[upper->level]); 2416 } 2417 2418 upper->locked = 1; 2419 path->locks[upper->level] = 0; 2420 2421 slot = path->slots[upper->level]; 2422 btrfs_release_path(path); 2423 } else { 2424 ret = btrfs_bin_search(upper->eb, key, &slot); 2425 if (ret < 0) 2426 goto next; 2427 BUG_ON(ret); 2428 } 2429 2430 bytenr = btrfs_node_blockptr(upper->eb, slot); 2431 if (lowest) { 2432 if (bytenr != node->bytenr) { 2433 btrfs_err(root->fs_info, 2434 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2435 bytenr, node->bytenr, slot, 2436 upper->eb->start); 2437 ret = -EIO; 2438 goto next; 2439 } 2440 } else { 2441 if (node->eb->start == bytenr) 2442 goto next; 2443 } 2444 2445 blocksize = root->fs_info->nodesize; 2446 eb = btrfs_read_node_slot(upper->eb, slot); 2447 if (IS_ERR(eb)) { 2448 ret = PTR_ERR(eb); 2449 goto next; 2450 } 2451 btrfs_tree_lock(eb); 2452 2453 if (!node->eb) { 2454 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2455 slot, &eb, BTRFS_NESTING_COW); 2456 btrfs_tree_unlock(eb); 2457 free_extent_buffer(eb); 2458 if (ret < 0) 2459 goto next; 2460 /* 2461 * We've just COWed this block, it should have updated 2462 * the correct backref node entry. 2463 */ 2464 ASSERT(node->eb == eb); 2465 } else { 2466 btrfs_set_node_blockptr(upper->eb, slot, 2467 node->eb->start); 2468 btrfs_set_node_ptr_generation(upper->eb, slot, 2469 trans->transid); 2470 btrfs_mark_buffer_dirty(upper->eb); 2471 2472 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2473 node->eb->start, blocksize, 2474 upper->eb->start); 2475 ref.real_root = root->root_key.objectid; 2476 btrfs_init_tree_ref(&ref, node->level, 2477 btrfs_header_owner(upper->eb)); 2478 ret = btrfs_inc_extent_ref(trans, &ref); 2479 if (!ret) 2480 ret = btrfs_drop_subtree(trans, root, eb, 2481 upper->eb); 2482 if (ret) 2483 btrfs_abort_transaction(trans, ret); 2484 } 2485 next: 2486 if (!upper->pending) 2487 btrfs_backref_drop_node_buffer(upper); 2488 else 2489 btrfs_backref_unlock_node_buffer(upper); 2490 if (ret) 2491 break; 2492 } 2493 2494 if (!ret && node->pending) { 2495 btrfs_backref_drop_node_buffer(node); 2496 list_move_tail(&node->list, &rc->backref_cache.changed); 2497 node->pending = 0; 2498 } 2499 2500 path->lowest_level = 0; 2501 2502 /* 2503 * We should have allocated all of our space in the block rsv and thus 2504 * shouldn't ENOSPC. 2505 */ 2506 ASSERT(ret != -ENOSPC); 2507 return ret; 2508 } 2509 2510 static int link_to_upper(struct btrfs_trans_handle *trans, 2511 struct reloc_control *rc, 2512 struct btrfs_backref_node *node, 2513 struct btrfs_path *path) 2514 { 2515 struct btrfs_key key; 2516 2517 btrfs_node_key_to_cpu(node->eb, &key, 0); 2518 return do_relocation(trans, rc, node, &key, path, 0); 2519 } 2520 2521 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2522 struct reloc_control *rc, 2523 struct btrfs_path *path, int err) 2524 { 2525 LIST_HEAD(list); 2526 struct btrfs_backref_cache *cache = &rc->backref_cache; 2527 struct btrfs_backref_node *node; 2528 int level; 2529 int ret; 2530 2531 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2532 while (!list_empty(&cache->pending[level])) { 2533 node = list_entry(cache->pending[level].next, 2534 struct btrfs_backref_node, list); 2535 list_move_tail(&node->list, &list); 2536 BUG_ON(!node->pending); 2537 2538 if (!err) { 2539 ret = link_to_upper(trans, rc, node, path); 2540 if (ret < 0) 2541 err = ret; 2542 } 2543 } 2544 list_splice_init(&list, &cache->pending[level]); 2545 } 2546 return err; 2547 } 2548 2549 /* 2550 * mark a block and all blocks directly/indirectly reference the block 2551 * as processed. 2552 */ 2553 static void update_processed_blocks(struct reloc_control *rc, 2554 struct btrfs_backref_node *node) 2555 { 2556 struct btrfs_backref_node *next = node; 2557 struct btrfs_backref_edge *edge; 2558 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2559 int index = 0; 2560 2561 while (next) { 2562 cond_resched(); 2563 while (1) { 2564 if (next->processed) 2565 break; 2566 2567 mark_block_processed(rc, next); 2568 2569 if (list_empty(&next->upper)) 2570 break; 2571 2572 edge = list_entry(next->upper.next, 2573 struct btrfs_backref_edge, list[LOWER]); 2574 edges[index++] = edge; 2575 next = edge->node[UPPER]; 2576 } 2577 next = walk_down_backref(edges, &index); 2578 } 2579 } 2580 2581 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2582 { 2583 u32 blocksize = rc->extent_root->fs_info->nodesize; 2584 2585 if (test_range_bit(&rc->processed_blocks, bytenr, 2586 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2587 return 1; 2588 return 0; 2589 } 2590 2591 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2592 struct tree_block *block) 2593 { 2594 struct extent_buffer *eb; 2595 2596 eb = read_tree_block(fs_info, block->bytenr, block->owner, 2597 block->key.offset, block->level, NULL); 2598 if (IS_ERR(eb)) { 2599 return PTR_ERR(eb); 2600 } else if (!extent_buffer_uptodate(eb)) { 2601 free_extent_buffer(eb); 2602 return -EIO; 2603 } 2604 if (block->level == 0) 2605 btrfs_item_key_to_cpu(eb, &block->key, 0); 2606 else 2607 btrfs_node_key_to_cpu(eb, &block->key, 0); 2608 free_extent_buffer(eb); 2609 block->key_ready = 1; 2610 return 0; 2611 } 2612 2613 /* 2614 * helper function to relocate a tree block 2615 */ 2616 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2617 struct reloc_control *rc, 2618 struct btrfs_backref_node *node, 2619 struct btrfs_key *key, 2620 struct btrfs_path *path) 2621 { 2622 struct btrfs_root *root; 2623 int ret = 0; 2624 2625 if (!node) 2626 return 0; 2627 2628 /* 2629 * If we fail here we want to drop our backref_node because we are going 2630 * to start over and regenerate the tree for it. 2631 */ 2632 ret = reserve_metadata_space(trans, rc, node); 2633 if (ret) 2634 goto out; 2635 2636 BUG_ON(node->processed); 2637 root = select_one_root(node); 2638 if (IS_ERR(root)) { 2639 ret = PTR_ERR(root); 2640 2641 /* See explanation in select_one_root for the -EUCLEAN case. */ 2642 ASSERT(ret == -ENOENT); 2643 if (ret == -ENOENT) { 2644 ret = 0; 2645 update_processed_blocks(rc, node); 2646 } 2647 goto out; 2648 } 2649 2650 if (root) { 2651 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2652 /* 2653 * This block was the root block of a root, and this is 2654 * the first time we're processing the block and thus it 2655 * should not have had the ->new_bytenr modified and 2656 * should have not been included on the changed list. 2657 * 2658 * However in the case of corruption we could have 2659 * multiple refs pointing to the same block improperly, 2660 * and thus we would trip over these checks. ASSERT() 2661 * for the developer case, because it could indicate a 2662 * bug in the backref code, however error out for a 2663 * normal user in the case of corruption. 2664 */ 2665 ASSERT(node->new_bytenr == 0); 2666 ASSERT(list_empty(&node->list)); 2667 if (node->new_bytenr || !list_empty(&node->list)) { 2668 btrfs_err(root->fs_info, 2669 "bytenr %llu has improper references to it", 2670 node->bytenr); 2671 ret = -EUCLEAN; 2672 goto out; 2673 } 2674 ret = btrfs_record_root_in_trans(trans, root); 2675 if (ret) 2676 goto out; 2677 /* 2678 * Another thread could have failed, need to check if we 2679 * have reloc_root actually set. 2680 */ 2681 if (!root->reloc_root) { 2682 ret = -ENOENT; 2683 goto out; 2684 } 2685 root = root->reloc_root; 2686 node->new_bytenr = root->node->start; 2687 btrfs_put_root(node->root); 2688 node->root = btrfs_grab_root(root); 2689 ASSERT(node->root); 2690 list_add_tail(&node->list, &rc->backref_cache.changed); 2691 } else { 2692 path->lowest_level = node->level; 2693 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2694 btrfs_release_path(path); 2695 if (ret > 0) 2696 ret = 0; 2697 } 2698 if (!ret) 2699 update_processed_blocks(rc, node); 2700 } else { 2701 ret = do_relocation(trans, rc, node, key, path, 1); 2702 } 2703 out: 2704 if (ret || node->level == 0 || node->cowonly) 2705 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2706 return ret; 2707 } 2708 2709 /* 2710 * relocate a list of blocks 2711 */ 2712 static noinline_for_stack 2713 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2714 struct reloc_control *rc, struct rb_root *blocks) 2715 { 2716 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2717 struct btrfs_backref_node *node; 2718 struct btrfs_path *path; 2719 struct tree_block *block; 2720 struct tree_block *next; 2721 int ret; 2722 int err = 0; 2723 2724 path = btrfs_alloc_path(); 2725 if (!path) { 2726 err = -ENOMEM; 2727 goto out_free_blocks; 2728 } 2729 2730 /* Kick in readahead for tree blocks with missing keys */ 2731 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2732 if (!block->key_ready) 2733 btrfs_readahead_tree_block(fs_info, block->bytenr, 2734 block->owner, 0, 2735 block->level); 2736 } 2737 2738 /* Get first keys */ 2739 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2740 if (!block->key_ready) { 2741 err = get_tree_block_key(fs_info, block); 2742 if (err) 2743 goto out_free_path; 2744 } 2745 } 2746 2747 /* Do tree relocation */ 2748 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2749 node = build_backref_tree(rc, &block->key, 2750 block->level, block->bytenr); 2751 if (IS_ERR(node)) { 2752 err = PTR_ERR(node); 2753 goto out; 2754 } 2755 2756 ret = relocate_tree_block(trans, rc, node, &block->key, 2757 path); 2758 if (ret < 0) { 2759 err = ret; 2760 break; 2761 } 2762 } 2763 out: 2764 err = finish_pending_nodes(trans, rc, path, err); 2765 2766 out_free_path: 2767 btrfs_free_path(path); 2768 out_free_blocks: 2769 free_block_list(blocks); 2770 return err; 2771 } 2772 2773 static noinline_for_stack int prealloc_file_extent_cluster( 2774 struct btrfs_inode *inode, 2775 struct file_extent_cluster *cluster) 2776 { 2777 u64 alloc_hint = 0; 2778 u64 start; 2779 u64 end; 2780 u64 offset = inode->index_cnt; 2781 u64 num_bytes; 2782 int nr; 2783 int ret = 0; 2784 u64 prealloc_start = cluster->start - offset; 2785 u64 prealloc_end = cluster->end - offset; 2786 u64 cur_offset = prealloc_start; 2787 2788 BUG_ON(cluster->start != cluster->boundary[0]); 2789 ret = btrfs_alloc_data_chunk_ondemand(inode, 2790 prealloc_end + 1 - prealloc_start); 2791 if (ret) 2792 return ret; 2793 2794 /* 2795 * On a zoned filesystem, we cannot preallocate the file region. 2796 * Instead, we dirty and fiemap_write the region. 2797 */ 2798 if (btrfs_is_zoned(inode->root->fs_info)) { 2799 struct btrfs_root *root = inode->root; 2800 struct btrfs_trans_handle *trans; 2801 2802 end = cluster->end - offset + 1; 2803 trans = btrfs_start_transaction(root, 1); 2804 if (IS_ERR(trans)) 2805 return PTR_ERR(trans); 2806 2807 inode->vfs_inode.i_ctime = current_time(&inode->vfs_inode); 2808 i_size_write(&inode->vfs_inode, end); 2809 ret = btrfs_update_inode(trans, root, inode); 2810 if (ret) { 2811 btrfs_abort_transaction(trans, ret); 2812 btrfs_end_transaction(trans); 2813 return ret; 2814 } 2815 2816 return btrfs_end_transaction(trans); 2817 } 2818 2819 btrfs_inode_lock(&inode->vfs_inode, 0); 2820 for (nr = 0; nr < cluster->nr; nr++) { 2821 start = cluster->boundary[nr] - offset; 2822 if (nr + 1 < cluster->nr) 2823 end = cluster->boundary[nr + 1] - 1 - offset; 2824 else 2825 end = cluster->end - offset; 2826 2827 lock_extent(&inode->io_tree, start, end); 2828 num_bytes = end + 1 - start; 2829 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2830 num_bytes, num_bytes, 2831 end + 1, &alloc_hint); 2832 cur_offset = end + 1; 2833 unlock_extent(&inode->io_tree, start, end); 2834 if (ret) 2835 break; 2836 } 2837 btrfs_inode_unlock(&inode->vfs_inode, 0); 2838 2839 if (cur_offset < prealloc_end) 2840 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2841 prealloc_end + 1 - cur_offset); 2842 return ret; 2843 } 2844 2845 static noinline_for_stack 2846 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2847 u64 block_start) 2848 { 2849 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2850 struct extent_map *em; 2851 int ret = 0; 2852 2853 em = alloc_extent_map(); 2854 if (!em) 2855 return -ENOMEM; 2856 2857 em->start = start; 2858 em->len = end + 1 - start; 2859 em->block_len = em->len; 2860 em->block_start = block_start; 2861 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2862 2863 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2864 while (1) { 2865 write_lock(&em_tree->lock); 2866 ret = add_extent_mapping(em_tree, em, 0); 2867 write_unlock(&em_tree->lock); 2868 if (ret != -EEXIST) { 2869 free_extent_map(em); 2870 break; 2871 } 2872 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2873 } 2874 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2875 return ret; 2876 } 2877 2878 /* 2879 * Allow error injection to test balance/relocation cancellation 2880 */ 2881 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2882 { 2883 return atomic_read(&fs_info->balance_cancel_req) || 2884 atomic_read(&fs_info->reloc_cancel_req) || 2885 fatal_signal_pending(current); 2886 } 2887 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2888 2889 static int relocate_file_extent_cluster(struct inode *inode, 2890 struct file_extent_cluster *cluster) 2891 { 2892 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2893 u64 page_start; 2894 u64 page_end; 2895 u64 offset = BTRFS_I(inode)->index_cnt; 2896 unsigned long index; 2897 unsigned long last_index; 2898 struct page *page; 2899 struct file_ra_state *ra; 2900 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2901 int nr = 0; 2902 int ret = 0; 2903 2904 if (!cluster->nr) 2905 return 0; 2906 2907 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2908 if (!ra) 2909 return -ENOMEM; 2910 2911 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2912 if (ret) 2913 goto out; 2914 2915 file_ra_state_init(ra, inode->i_mapping); 2916 2917 ret = setup_extent_mapping(inode, cluster->start - offset, 2918 cluster->end - offset, cluster->start); 2919 if (ret) 2920 goto out; 2921 2922 index = (cluster->start - offset) >> PAGE_SHIFT; 2923 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2924 while (index <= last_index) { 2925 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2926 PAGE_SIZE); 2927 if (ret) 2928 goto out; 2929 2930 page = find_lock_page(inode->i_mapping, index); 2931 if (!page) { 2932 page_cache_sync_readahead(inode->i_mapping, 2933 ra, NULL, index, 2934 last_index + 1 - index); 2935 page = find_or_create_page(inode->i_mapping, index, 2936 mask); 2937 if (!page) { 2938 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2939 PAGE_SIZE, true); 2940 btrfs_delalloc_release_extents(BTRFS_I(inode), 2941 PAGE_SIZE); 2942 ret = -ENOMEM; 2943 goto out; 2944 } 2945 } 2946 ret = set_page_extent_mapped(page); 2947 if (ret < 0) { 2948 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2949 PAGE_SIZE, true); 2950 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2951 unlock_page(page); 2952 put_page(page); 2953 goto out; 2954 } 2955 2956 if (PageReadahead(page)) { 2957 page_cache_async_readahead(inode->i_mapping, 2958 ra, NULL, page, index, 2959 last_index + 1 - index); 2960 } 2961 2962 if (!PageUptodate(page)) { 2963 btrfs_readpage(NULL, page); 2964 lock_page(page); 2965 if (!PageUptodate(page)) { 2966 unlock_page(page); 2967 put_page(page); 2968 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2969 PAGE_SIZE, true); 2970 btrfs_delalloc_release_extents(BTRFS_I(inode), 2971 PAGE_SIZE); 2972 ret = -EIO; 2973 goto out; 2974 } 2975 } 2976 2977 page_start = page_offset(page); 2978 page_end = page_start + PAGE_SIZE - 1; 2979 2980 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2981 2982 if (nr < cluster->nr && 2983 page_start + offset == cluster->boundary[nr]) { 2984 set_extent_bits(&BTRFS_I(inode)->io_tree, 2985 page_start, page_end, 2986 EXTENT_BOUNDARY); 2987 nr++; 2988 } 2989 2990 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2991 page_end, 0, NULL); 2992 if (ret) { 2993 unlock_page(page); 2994 put_page(page); 2995 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2996 PAGE_SIZE, true); 2997 btrfs_delalloc_release_extents(BTRFS_I(inode), 2998 PAGE_SIZE); 2999 3000 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3001 page_start, page_end, 3002 EXTENT_LOCKED | EXTENT_BOUNDARY); 3003 goto out; 3004 3005 } 3006 set_page_dirty(page); 3007 3008 unlock_extent(&BTRFS_I(inode)->io_tree, 3009 page_start, page_end); 3010 unlock_page(page); 3011 put_page(page); 3012 3013 index++; 3014 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 3015 balance_dirty_pages_ratelimited(inode->i_mapping); 3016 btrfs_throttle(fs_info); 3017 if (btrfs_should_cancel_balance(fs_info)) { 3018 ret = -ECANCELED; 3019 goto out; 3020 } 3021 } 3022 WARN_ON(nr != cluster->nr); 3023 if (btrfs_is_zoned(fs_info) && !ret) 3024 ret = btrfs_wait_ordered_range(inode, 0, (u64)-1); 3025 out: 3026 kfree(ra); 3027 return ret; 3028 } 3029 3030 static noinline_for_stack 3031 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3032 struct file_extent_cluster *cluster) 3033 { 3034 int ret; 3035 3036 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3037 ret = relocate_file_extent_cluster(inode, cluster); 3038 if (ret) 3039 return ret; 3040 cluster->nr = 0; 3041 } 3042 3043 if (!cluster->nr) 3044 cluster->start = extent_key->objectid; 3045 else 3046 BUG_ON(cluster->nr >= MAX_EXTENTS); 3047 cluster->end = extent_key->objectid + extent_key->offset - 1; 3048 cluster->boundary[cluster->nr] = extent_key->objectid; 3049 cluster->nr++; 3050 3051 if (cluster->nr >= MAX_EXTENTS) { 3052 ret = relocate_file_extent_cluster(inode, cluster); 3053 if (ret) 3054 return ret; 3055 cluster->nr = 0; 3056 } 3057 return 0; 3058 } 3059 3060 /* 3061 * helper to add a tree block to the list. 3062 * the major work is getting the generation and level of the block 3063 */ 3064 static int add_tree_block(struct reloc_control *rc, 3065 struct btrfs_key *extent_key, 3066 struct btrfs_path *path, 3067 struct rb_root *blocks) 3068 { 3069 struct extent_buffer *eb; 3070 struct btrfs_extent_item *ei; 3071 struct btrfs_tree_block_info *bi; 3072 struct tree_block *block; 3073 struct rb_node *rb_node; 3074 u32 item_size; 3075 int level = -1; 3076 u64 generation; 3077 u64 owner = 0; 3078 3079 eb = path->nodes[0]; 3080 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3081 3082 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3083 item_size >= sizeof(*ei) + sizeof(*bi)) { 3084 unsigned long ptr = 0, end; 3085 3086 ei = btrfs_item_ptr(eb, path->slots[0], 3087 struct btrfs_extent_item); 3088 end = (unsigned long)ei + item_size; 3089 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3090 bi = (struct btrfs_tree_block_info *)(ei + 1); 3091 level = btrfs_tree_block_level(eb, bi); 3092 ptr = (unsigned long)(bi + 1); 3093 } else { 3094 level = (int)extent_key->offset; 3095 ptr = (unsigned long)(ei + 1); 3096 } 3097 generation = btrfs_extent_generation(eb, ei); 3098 3099 /* 3100 * We're reading random blocks without knowing their owner ahead 3101 * of time. This is ok most of the time, as all reloc roots and 3102 * fs roots have the same lock type. However normal trees do 3103 * not, and the only way to know ahead of time is to read the 3104 * inline ref offset. We know it's an fs root if 3105 * 3106 * 1. There's more than one ref. 3107 * 2. There's a SHARED_DATA_REF_KEY set. 3108 * 3. FULL_BACKREF is set on the flags. 3109 * 3110 * Otherwise it's safe to assume that the ref offset == the 3111 * owner of this block, so we can use that when calling 3112 * read_tree_block. 3113 */ 3114 if (btrfs_extent_refs(eb, ei) == 1 && 3115 !(btrfs_extent_flags(eb, ei) & 3116 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3117 ptr < end) { 3118 struct btrfs_extent_inline_ref *iref; 3119 int type; 3120 3121 iref = (struct btrfs_extent_inline_ref *)ptr; 3122 type = btrfs_get_extent_inline_ref_type(eb, iref, 3123 BTRFS_REF_TYPE_BLOCK); 3124 if (type == BTRFS_REF_TYPE_INVALID) 3125 return -EINVAL; 3126 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3127 owner = btrfs_extent_inline_ref_offset(eb, iref); 3128 } 3129 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3130 btrfs_print_v0_err(eb->fs_info); 3131 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3132 return -EINVAL; 3133 } else { 3134 BUG(); 3135 } 3136 3137 btrfs_release_path(path); 3138 3139 BUG_ON(level == -1); 3140 3141 block = kmalloc(sizeof(*block), GFP_NOFS); 3142 if (!block) 3143 return -ENOMEM; 3144 3145 block->bytenr = extent_key->objectid; 3146 block->key.objectid = rc->extent_root->fs_info->nodesize; 3147 block->key.offset = generation; 3148 block->level = level; 3149 block->key_ready = 0; 3150 block->owner = owner; 3151 3152 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3153 if (rb_node) 3154 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3155 -EEXIST); 3156 3157 return 0; 3158 } 3159 3160 /* 3161 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3162 */ 3163 static int __add_tree_block(struct reloc_control *rc, 3164 u64 bytenr, u32 blocksize, 3165 struct rb_root *blocks) 3166 { 3167 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3168 struct btrfs_path *path; 3169 struct btrfs_key key; 3170 int ret; 3171 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3172 3173 if (tree_block_processed(bytenr, rc)) 3174 return 0; 3175 3176 if (rb_simple_search(blocks, bytenr)) 3177 return 0; 3178 3179 path = btrfs_alloc_path(); 3180 if (!path) 3181 return -ENOMEM; 3182 again: 3183 key.objectid = bytenr; 3184 if (skinny) { 3185 key.type = BTRFS_METADATA_ITEM_KEY; 3186 key.offset = (u64)-1; 3187 } else { 3188 key.type = BTRFS_EXTENT_ITEM_KEY; 3189 key.offset = blocksize; 3190 } 3191 3192 path->search_commit_root = 1; 3193 path->skip_locking = 1; 3194 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3195 if (ret < 0) 3196 goto out; 3197 3198 if (ret > 0 && skinny) { 3199 if (path->slots[0]) { 3200 path->slots[0]--; 3201 btrfs_item_key_to_cpu(path->nodes[0], &key, 3202 path->slots[0]); 3203 if (key.objectid == bytenr && 3204 (key.type == BTRFS_METADATA_ITEM_KEY || 3205 (key.type == BTRFS_EXTENT_ITEM_KEY && 3206 key.offset == blocksize))) 3207 ret = 0; 3208 } 3209 3210 if (ret) { 3211 skinny = false; 3212 btrfs_release_path(path); 3213 goto again; 3214 } 3215 } 3216 if (ret) { 3217 ASSERT(ret == 1); 3218 btrfs_print_leaf(path->nodes[0]); 3219 btrfs_err(fs_info, 3220 "tree block extent item (%llu) is not found in extent tree", 3221 bytenr); 3222 WARN_ON(1); 3223 ret = -EINVAL; 3224 goto out; 3225 } 3226 3227 ret = add_tree_block(rc, &key, path, blocks); 3228 out: 3229 btrfs_free_path(path); 3230 return ret; 3231 } 3232 3233 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3234 struct btrfs_block_group *block_group, 3235 struct inode *inode, 3236 u64 ino) 3237 { 3238 struct btrfs_root *root = fs_info->tree_root; 3239 struct btrfs_trans_handle *trans; 3240 int ret = 0; 3241 3242 if (inode) 3243 goto truncate; 3244 3245 inode = btrfs_iget(fs_info->sb, ino, root); 3246 if (IS_ERR(inode)) 3247 return -ENOENT; 3248 3249 truncate: 3250 ret = btrfs_check_trunc_cache_free_space(fs_info, 3251 &fs_info->global_block_rsv); 3252 if (ret) 3253 goto out; 3254 3255 trans = btrfs_join_transaction(root); 3256 if (IS_ERR(trans)) { 3257 ret = PTR_ERR(trans); 3258 goto out; 3259 } 3260 3261 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3262 3263 btrfs_end_transaction(trans); 3264 btrfs_btree_balance_dirty(fs_info); 3265 out: 3266 iput(inode); 3267 return ret; 3268 } 3269 3270 /* 3271 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3272 * cache inode, to avoid free space cache data extent blocking data relocation. 3273 */ 3274 static int delete_v1_space_cache(struct extent_buffer *leaf, 3275 struct btrfs_block_group *block_group, 3276 u64 data_bytenr) 3277 { 3278 u64 space_cache_ino; 3279 struct btrfs_file_extent_item *ei; 3280 struct btrfs_key key; 3281 bool found = false; 3282 int i; 3283 int ret; 3284 3285 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3286 return 0; 3287 3288 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3289 u8 type; 3290 3291 btrfs_item_key_to_cpu(leaf, &key, i); 3292 if (key.type != BTRFS_EXTENT_DATA_KEY) 3293 continue; 3294 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3295 type = btrfs_file_extent_type(leaf, ei); 3296 3297 if ((type == BTRFS_FILE_EXTENT_REG || 3298 type == BTRFS_FILE_EXTENT_PREALLOC) && 3299 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3300 found = true; 3301 space_cache_ino = key.objectid; 3302 break; 3303 } 3304 } 3305 if (!found) 3306 return -ENOENT; 3307 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3308 space_cache_ino); 3309 return ret; 3310 } 3311 3312 /* 3313 * helper to find all tree blocks that reference a given data extent 3314 */ 3315 static noinline_for_stack 3316 int add_data_references(struct reloc_control *rc, 3317 struct btrfs_key *extent_key, 3318 struct btrfs_path *path, 3319 struct rb_root *blocks) 3320 { 3321 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3322 struct ulist *leaves = NULL; 3323 struct ulist_iterator leaf_uiter; 3324 struct ulist_node *ref_node = NULL; 3325 const u32 blocksize = fs_info->nodesize; 3326 int ret = 0; 3327 3328 btrfs_release_path(path); 3329 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3330 0, &leaves, NULL, true); 3331 if (ret < 0) 3332 return ret; 3333 3334 ULIST_ITER_INIT(&leaf_uiter); 3335 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3336 struct extent_buffer *eb; 3337 3338 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3339 if (IS_ERR(eb)) { 3340 ret = PTR_ERR(eb); 3341 break; 3342 } 3343 ret = delete_v1_space_cache(eb, rc->block_group, 3344 extent_key->objectid); 3345 free_extent_buffer(eb); 3346 if (ret < 0) 3347 break; 3348 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3349 if (ret < 0) 3350 break; 3351 } 3352 if (ret < 0) 3353 free_block_list(blocks); 3354 ulist_free(leaves); 3355 return ret; 3356 } 3357 3358 /* 3359 * helper to find next unprocessed extent 3360 */ 3361 static noinline_for_stack 3362 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3363 struct btrfs_key *extent_key) 3364 { 3365 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3366 struct btrfs_key key; 3367 struct extent_buffer *leaf; 3368 u64 start, end, last; 3369 int ret; 3370 3371 last = rc->block_group->start + rc->block_group->length; 3372 while (1) { 3373 cond_resched(); 3374 if (rc->search_start >= last) { 3375 ret = 1; 3376 break; 3377 } 3378 3379 key.objectid = rc->search_start; 3380 key.type = BTRFS_EXTENT_ITEM_KEY; 3381 key.offset = 0; 3382 3383 path->search_commit_root = 1; 3384 path->skip_locking = 1; 3385 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3386 0, 0); 3387 if (ret < 0) 3388 break; 3389 next: 3390 leaf = path->nodes[0]; 3391 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3392 ret = btrfs_next_leaf(rc->extent_root, path); 3393 if (ret != 0) 3394 break; 3395 leaf = path->nodes[0]; 3396 } 3397 3398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3399 if (key.objectid >= last) { 3400 ret = 1; 3401 break; 3402 } 3403 3404 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3405 key.type != BTRFS_METADATA_ITEM_KEY) { 3406 path->slots[0]++; 3407 goto next; 3408 } 3409 3410 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3411 key.objectid + key.offset <= rc->search_start) { 3412 path->slots[0]++; 3413 goto next; 3414 } 3415 3416 if (key.type == BTRFS_METADATA_ITEM_KEY && 3417 key.objectid + fs_info->nodesize <= 3418 rc->search_start) { 3419 path->slots[0]++; 3420 goto next; 3421 } 3422 3423 ret = find_first_extent_bit(&rc->processed_blocks, 3424 key.objectid, &start, &end, 3425 EXTENT_DIRTY, NULL); 3426 3427 if (ret == 0 && start <= key.objectid) { 3428 btrfs_release_path(path); 3429 rc->search_start = end + 1; 3430 } else { 3431 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3432 rc->search_start = key.objectid + key.offset; 3433 else 3434 rc->search_start = key.objectid + 3435 fs_info->nodesize; 3436 memcpy(extent_key, &key, sizeof(key)); 3437 return 0; 3438 } 3439 } 3440 btrfs_release_path(path); 3441 return ret; 3442 } 3443 3444 static void set_reloc_control(struct reloc_control *rc) 3445 { 3446 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3447 3448 mutex_lock(&fs_info->reloc_mutex); 3449 fs_info->reloc_ctl = rc; 3450 mutex_unlock(&fs_info->reloc_mutex); 3451 } 3452 3453 static void unset_reloc_control(struct reloc_control *rc) 3454 { 3455 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3456 3457 mutex_lock(&fs_info->reloc_mutex); 3458 fs_info->reloc_ctl = NULL; 3459 mutex_unlock(&fs_info->reloc_mutex); 3460 } 3461 3462 static noinline_for_stack 3463 int prepare_to_relocate(struct reloc_control *rc) 3464 { 3465 struct btrfs_trans_handle *trans; 3466 int ret; 3467 3468 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3469 BTRFS_BLOCK_RSV_TEMP); 3470 if (!rc->block_rsv) 3471 return -ENOMEM; 3472 3473 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3474 rc->search_start = rc->block_group->start; 3475 rc->extents_found = 0; 3476 rc->nodes_relocated = 0; 3477 rc->merging_rsv_size = 0; 3478 rc->reserved_bytes = 0; 3479 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3480 RELOCATION_RESERVED_NODES; 3481 ret = btrfs_block_rsv_refill(rc->extent_root, 3482 rc->block_rsv, rc->block_rsv->size, 3483 BTRFS_RESERVE_FLUSH_ALL); 3484 if (ret) 3485 return ret; 3486 3487 rc->create_reloc_tree = 1; 3488 set_reloc_control(rc); 3489 3490 trans = btrfs_join_transaction(rc->extent_root); 3491 if (IS_ERR(trans)) { 3492 unset_reloc_control(rc); 3493 /* 3494 * extent tree is not a ref_cow tree and has no reloc_root to 3495 * cleanup. And callers are responsible to free the above 3496 * block rsv. 3497 */ 3498 return PTR_ERR(trans); 3499 } 3500 return btrfs_commit_transaction(trans); 3501 } 3502 3503 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3504 { 3505 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3506 struct rb_root blocks = RB_ROOT; 3507 struct btrfs_key key; 3508 struct btrfs_trans_handle *trans = NULL; 3509 struct btrfs_path *path; 3510 struct btrfs_extent_item *ei; 3511 u64 flags; 3512 int ret; 3513 int err = 0; 3514 int progress = 0; 3515 3516 path = btrfs_alloc_path(); 3517 if (!path) 3518 return -ENOMEM; 3519 path->reada = READA_FORWARD; 3520 3521 ret = prepare_to_relocate(rc); 3522 if (ret) { 3523 err = ret; 3524 goto out_free; 3525 } 3526 3527 while (1) { 3528 rc->reserved_bytes = 0; 3529 ret = btrfs_block_rsv_refill(rc->extent_root, 3530 rc->block_rsv, rc->block_rsv->size, 3531 BTRFS_RESERVE_FLUSH_ALL); 3532 if (ret) { 3533 err = ret; 3534 break; 3535 } 3536 progress++; 3537 trans = btrfs_start_transaction(rc->extent_root, 0); 3538 if (IS_ERR(trans)) { 3539 err = PTR_ERR(trans); 3540 trans = NULL; 3541 break; 3542 } 3543 restart: 3544 if (update_backref_cache(trans, &rc->backref_cache)) { 3545 btrfs_end_transaction(trans); 3546 trans = NULL; 3547 continue; 3548 } 3549 3550 ret = find_next_extent(rc, path, &key); 3551 if (ret < 0) 3552 err = ret; 3553 if (ret != 0) 3554 break; 3555 3556 rc->extents_found++; 3557 3558 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3559 struct btrfs_extent_item); 3560 flags = btrfs_extent_flags(path->nodes[0], ei); 3561 3562 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3563 ret = add_tree_block(rc, &key, path, &blocks); 3564 } else if (rc->stage == UPDATE_DATA_PTRS && 3565 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3566 ret = add_data_references(rc, &key, path, &blocks); 3567 } else { 3568 btrfs_release_path(path); 3569 ret = 0; 3570 } 3571 if (ret < 0) { 3572 err = ret; 3573 break; 3574 } 3575 3576 if (!RB_EMPTY_ROOT(&blocks)) { 3577 ret = relocate_tree_blocks(trans, rc, &blocks); 3578 if (ret < 0) { 3579 if (ret != -EAGAIN) { 3580 err = ret; 3581 break; 3582 } 3583 rc->extents_found--; 3584 rc->search_start = key.objectid; 3585 } 3586 } 3587 3588 btrfs_end_transaction_throttle(trans); 3589 btrfs_btree_balance_dirty(fs_info); 3590 trans = NULL; 3591 3592 if (rc->stage == MOVE_DATA_EXTENTS && 3593 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3594 rc->found_file_extent = 1; 3595 ret = relocate_data_extent(rc->data_inode, 3596 &key, &rc->cluster); 3597 if (ret < 0) { 3598 err = ret; 3599 break; 3600 } 3601 } 3602 if (btrfs_should_cancel_balance(fs_info)) { 3603 err = -ECANCELED; 3604 break; 3605 } 3606 } 3607 if (trans && progress && err == -ENOSPC) { 3608 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3609 if (ret == 1) { 3610 err = 0; 3611 progress = 0; 3612 goto restart; 3613 } 3614 } 3615 3616 btrfs_release_path(path); 3617 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3618 3619 if (trans) { 3620 btrfs_end_transaction_throttle(trans); 3621 btrfs_btree_balance_dirty(fs_info); 3622 } 3623 3624 if (!err) { 3625 ret = relocate_file_extent_cluster(rc->data_inode, 3626 &rc->cluster); 3627 if (ret < 0) 3628 err = ret; 3629 } 3630 3631 rc->create_reloc_tree = 0; 3632 set_reloc_control(rc); 3633 3634 btrfs_backref_release_cache(&rc->backref_cache); 3635 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3636 3637 /* 3638 * Even in the case when the relocation is cancelled, we should all go 3639 * through prepare_to_merge() and merge_reloc_roots(). 3640 * 3641 * For error (including cancelled balance), prepare_to_merge() will 3642 * mark all reloc trees orphan, then queue them for cleanup in 3643 * merge_reloc_roots() 3644 */ 3645 err = prepare_to_merge(rc, err); 3646 3647 merge_reloc_roots(rc); 3648 3649 rc->merge_reloc_tree = 0; 3650 unset_reloc_control(rc); 3651 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3652 3653 /* get rid of pinned extents */ 3654 trans = btrfs_join_transaction(rc->extent_root); 3655 if (IS_ERR(trans)) { 3656 err = PTR_ERR(trans); 3657 goto out_free; 3658 } 3659 ret = btrfs_commit_transaction(trans); 3660 if (ret && !err) 3661 err = ret; 3662 out_free: 3663 ret = clean_dirty_subvols(rc); 3664 if (ret < 0 && !err) 3665 err = ret; 3666 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3667 btrfs_free_path(path); 3668 return err; 3669 } 3670 3671 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3672 struct btrfs_root *root, u64 objectid) 3673 { 3674 struct btrfs_path *path; 3675 struct btrfs_inode_item *item; 3676 struct extent_buffer *leaf; 3677 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC; 3678 int ret; 3679 3680 if (btrfs_is_zoned(trans->fs_info)) 3681 flags &= ~BTRFS_INODE_PREALLOC; 3682 3683 path = btrfs_alloc_path(); 3684 if (!path) 3685 return -ENOMEM; 3686 3687 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3688 if (ret) 3689 goto out; 3690 3691 leaf = path->nodes[0]; 3692 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3693 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3694 btrfs_set_inode_generation(leaf, item, 1); 3695 btrfs_set_inode_size(leaf, item, 0); 3696 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3697 btrfs_set_inode_flags(leaf, item, flags); 3698 btrfs_mark_buffer_dirty(leaf); 3699 out: 3700 btrfs_free_path(path); 3701 return ret; 3702 } 3703 3704 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3705 struct btrfs_root *root, u64 objectid) 3706 { 3707 struct btrfs_path *path; 3708 struct btrfs_key key; 3709 int ret = 0; 3710 3711 path = btrfs_alloc_path(); 3712 if (!path) { 3713 ret = -ENOMEM; 3714 goto out; 3715 } 3716 3717 key.objectid = objectid; 3718 key.type = BTRFS_INODE_ITEM_KEY; 3719 key.offset = 0; 3720 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3721 if (ret) { 3722 if (ret > 0) 3723 ret = -ENOENT; 3724 goto out; 3725 } 3726 ret = btrfs_del_item(trans, root, path); 3727 out: 3728 if (ret) 3729 btrfs_abort_transaction(trans, ret); 3730 btrfs_free_path(path); 3731 } 3732 3733 /* 3734 * helper to create inode for data relocation. 3735 * the inode is in data relocation tree and its link count is 0 3736 */ 3737 static noinline_for_stack 3738 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3739 struct btrfs_block_group *group) 3740 { 3741 struct inode *inode = NULL; 3742 struct btrfs_trans_handle *trans; 3743 struct btrfs_root *root; 3744 u64 objectid; 3745 int err = 0; 3746 3747 root = btrfs_grab_root(fs_info->data_reloc_root); 3748 trans = btrfs_start_transaction(root, 6); 3749 if (IS_ERR(trans)) { 3750 btrfs_put_root(root); 3751 return ERR_CAST(trans); 3752 } 3753 3754 err = btrfs_get_free_objectid(root, &objectid); 3755 if (err) 3756 goto out; 3757 3758 err = __insert_orphan_inode(trans, root, objectid); 3759 if (err) 3760 goto out; 3761 3762 inode = btrfs_iget(fs_info->sb, objectid, root); 3763 if (IS_ERR(inode)) { 3764 delete_orphan_inode(trans, root, objectid); 3765 err = PTR_ERR(inode); 3766 inode = NULL; 3767 goto out; 3768 } 3769 BTRFS_I(inode)->index_cnt = group->start; 3770 3771 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3772 out: 3773 btrfs_put_root(root); 3774 btrfs_end_transaction(trans); 3775 btrfs_btree_balance_dirty(fs_info); 3776 if (err) { 3777 if (inode) 3778 iput(inode); 3779 inode = ERR_PTR(err); 3780 } 3781 return inode; 3782 } 3783 3784 /* 3785 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3786 * has been requested meanwhile and don't start in that case. 3787 * 3788 * Return: 3789 * 0 success 3790 * -EINPROGRESS operation is already in progress, that's probably a bug 3791 * -ECANCELED cancellation request was set before the operation started 3792 * -EAGAIN can not start because there are ongoing send operations 3793 */ 3794 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3795 { 3796 spin_lock(&fs_info->send_reloc_lock); 3797 if (fs_info->send_in_progress) { 3798 btrfs_warn_rl(fs_info, 3799 "cannot run relocation while send operations are in progress (%d in progress)", 3800 fs_info->send_in_progress); 3801 spin_unlock(&fs_info->send_reloc_lock); 3802 return -EAGAIN; 3803 } 3804 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3805 /* This should not happen */ 3806 spin_unlock(&fs_info->send_reloc_lock); 3807 btrfs_err(fs_info, "reloc already running, cannot start"); 3808 return -EINPROGRESS; 3809 } 3810 spin_unlock(&fs_info->send_reloc_lock); 3811 3812 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3813 btrfs_info(fs_info, "chunk relocation canceled on start"); 3814 /* 3815 * On cancel, clear all requests but let the caller mark 3816 * the end after cleanup operations. 3817 */ 3818 atomic_set(&fs_info->reloc_cancel_req, 0); 3819 return -ECANCELED; 3820 } 3821 return 0; 3822 } 3823 3824 /* 3825 * Mark end of chunk relocation that is cancellable and wake any waiters. 3826 */ 3827 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3828 { 3829 /* Requested after start, clear bit first so any waiters can continue */ 3830 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3831 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3832 spin_lock(&fs_info->send_reloc_lock); 3833 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3834 spin_unlock(&fs_info->send_reloc_lock); 3835 atomic_set(&fs_info->reloc_cancel_req, 0); 3836 } 3837 3838 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3839 { 3840 struct reloc_control *rc; 3841 3842 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3843 if (!rc) 3844 return NULL; 3845 3846 INIT_LIST_HEAD(&rc->reloc_roots); 3847 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3848 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3849 mapping_tree_init(&rc->reloc_root_tree); 3850 extent_io_tree_init(fs_info, &rc->processed_blocks, 3851 IO_TREE_RELOC_BLOCKS, NULL); 3852 return rc; 3853 } 3854 3855 static void free_reloc_control(struct reloc_control *rc) 3856 { 3857 struct mapping_node *node, *tmp; 3858 3859 free_reloc_roots(&rc->reloc_roots); 3860 rbtree_postorder_for_each_entry_safe(node, tmp, 3861 &rc->reloc_root_tree.rb_root, rb_node) 3862 kfree(node); 3863 3864 kfree(rc); 3865 } 3866 3867 /* 3868 * Print the block group being relocated 3869 */ 3870 static void describe_relocation(struct btrfs_fs_info *fs_info, 3871 struct btrfs_block_group *block_group) 3872 { 3873 char buf[128] = {'\0'}; 3874 3875 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3876 3877 btrfs_info(fs_info, 3878 "relocating block group %llu flags %s", 3879 block_group->start, buf); 3880 } 3881 3882 static const char *stage_to_string(int stage) 3883 { 3884 if (stage == MOVE_DATA_EXTENTS) 3885 return "move data extents"; 3886 if (stage == UPDATE_DATA_PTRS) 3887 return "update data pointers"; 3888 return "unknown"; 3889 } 3890 3891 /* 3892 * function to relocate all extents in a block group. 3893 */ 3894 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3895 { 3896 struct btrfs_block_group *bg; 3897 struct btrfs_root *extent_root = fs_info->extent_root; 3898 struct reloc_control *rc; 3899 struct inode *inode; 3900 struct btrfs_path *path; 3901 int ret; 3902 int rw = 0; 3903 int err = 0; 3904 3905 bg = btrfs_lookup_block_group(fs_info, group_start); 3906 if (!bg) 3907 return -ENOENT; 3908 3909 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3910 btrfs_put_block_group(bg); 3911 return -ETXTBSY; 3912 } 3913 3914 rc = alloc_reloc_control(fs_info); 3915 if (!rc) { 3916 btrfs_put_block_group(bg); 3917 return -ENOMEM; 3918 } 3919 3920 ret = reloc_chunk_start(fs_info); 3921 if (ret < 0) { 3922 err = ret; 3923 goto out_put_bg; 3924 } 3925 3926 rc->extent_root = extent_root; 3927 rc->block_group = bg; 3928 3929 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3930 if (ret) { 3931 err = ret; 3932 goto out; 3933 } 3934 rw = 1; 3935 3936 path = btrfs_alloc_path(); 3937 if (!path) { 3938 err = -ENOMEM; 3939 goto out; 3940 } 3941 3942 inode = lookup_free_space_inode(rc->block_group, path); 3943 btrfs_free_path(path); 3944 3945 if (!IS_ERR(inode)) 3946 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3947 else 3948 ret = PTR_ERR(inode); 3949 3950 if (ret && ret != -ENOENT) { 3951 err = ret; 3952 goto out; 3953 } 3954 3955 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3956 if (IS_ERR(rc->data_inode)) { 3957 err = PTR_ERR(rc->data_inode); 3958 rc->data_inode = NULL; 3959 goto out; 3960 } 3961 3962 describe_relocation(fs_info, rc->block_group); 3963 3964 btrfs_wait_block_group_reservations(rc->block_group); 3965 btrfs_wait_nocow_writers(rc->block_group); 3966 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3967 rc->block_group->start, 3968 rc->block_group->length); 3969 3970 while (1) { 3971 int finishes_stage; 3972 3973 mutex_lock(&fs_info->cleaner_mutex); 3974 ret = relocate_block_group(rc); 3975 mutex_unlock(&fs_info->cleaner_mutex); 3976 if (ret < 0) 3977 err = ret; 3978 3979 finishes_stage = rc->stage; 3980 /* 3981 * We may have gotten ENOSPC after we already dirtied some 3982 * extents. If writeout happens while we're relocating a 3983 * different block group we could end up hitting the 3984 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3985 * btrfs_reloc_cow_block. Make sure we write everything out 3986 * properly so we don't trip over this problem, and then break 3987 * out of the loop if we hit an error. 3988 */ 3989 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3990 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3991 (u64)-1); 3992 if (ret) 3993 err = ret; 3994 invalidate_mapping_pages(rc->data_inode->i_mapping, 3995 0, -1); 3996 rc->stage = UPDATE_DATA_PTRS; 3997 } 3998 3999 if (err < 0) 4000 goto out; 4001 4002 if (rc->extents_found == 0) 4003 break; 4004 4005 btrfs_info(fs_info, "found %llu extents, stage: %s", 4006 rc->extents_found, stage_to_string(finishes_stage)); 4007 } 4008 4009 WARN_ON(rc->block_group->pinned > 0); 4010 WARN_ON(rc->block_group->reserved > 0); 4011 WARN_ON(rc->block_group->used > 0); 4012 out: 4013 if (err && rw) 4014 btrfs_dec_block_group_ro(rc->block_group); 4015 iput(rc->data_inode); 4016 out_put_bg: 4017 btrfs_put_block_group(bg); 4018 reloc_chunk_end(fs_info); 4019 free_reloc_control(rc); 4020 return err; 4021 } 4022 4023 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4024 { 4025 struct btrfs_fs_info *fs_info = root->fs_info; 4026 struct btrfs_trans_handle *trans; 4027 int ret, err; 4028 4029 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4030 if (IS_ERR(trans)) 4031 return PTR_ERR(trans); 4032 4033 memset(&root->root_item.drop_progress, 0, 4034 sizeof(root->root_item.drop_progress)); 4035 btrfs_set_root_drop_level(&root->root_item, 0); 4036 btrfs_set_root_refs(&root->root_item, 0); 4037 ret = btrfs_update_root(trans, fs_info->tree_root, 4038 &root->root_key, &root->root_item); 4039 4040 err = btrfs_end_transaction(trans); 4041 if (err) 4042 return err; 4043 return ret; 4044 } 4045 4046 /* 4047 * recover relocation interrupted by system crash. 4048 * 4049 * this function resumes merging reloc trees with corresponding fs trees. 4050 * this is important for keeping the sharing of tree blocks 4051 */ 4052 int btrfs_recover_relocation(struct btrfs_root *root) 4053 { 4054 struct btrfs_fs_info *fs_info = root->fs_info; 4055 LIST_HEAD(reloc_roots); 4056 struct btrfs_key key; 4057 struct btrfs_root *fs_root; 4058 struct btrfs_root *reloc_root; 4059 struct btrfs_path *path; 4060 struct extent_buffer *leaf; 4061 struct reloc_control *rc = NULL; 4062 struct btrfs_trans_handle *trans; 4063 int ret; 4064 int err = 0; 4065 4066 path = btrfs_alloc_path(); 4067 if (!path) 4068 return -ENOMEM; 4069 path->reada = READA_BACK; 4070 4071 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4072 key.type = BTRFS_ROOT_ITEM_KEY; 4073 key.offset = (u64)-1; 4074 4075 while (1) { 4076 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4077 path, 0, 0); 4078 if (ret < 0) { 4079 err = ret; 4080 goto out; 4081 } 4082 if (ret > 0) { 4083 if (path->slots[0] == 0) 4084 break; 4085 path->slots[0]--; 4086 } 4087 leaf = path->nodes[0]; 4088 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4089 btrfs_release_path(path); 4090 4091 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4092 key.type != BTRFS_ROOT_ITEM_KEY) 4093 break; 4094 4095 reloc_root = btrfs_read_tree_root(root, &key); 4096 if (IS_ERR(reloc_root)) { 4097 err = PTR_ERR(reloc_root); 4098 goto out; 4099 } 4100 4101 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4102 list_add(&reloc_root->root_list, &reloc_roots); 4103 4104 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4105 fs_root = btrfs_get_fs_root(fs_info, 4106 reloc_root->root_key.offset, false); 4107 if (IS_ERR(fs_root)) { 4108 ret = PTR_ERR(fs_root); 4109 if (ret != -ENOENT) { 4110 err = ret; 4111 goto out; 4112 } 4113 ret = mark_garbage_root(reloc_root); 4114 if (ret < 0) { 4115 err = ret; 4116 goto out; 4117 } 4118 } else { 4119 btrfs_put_root(fs_root); 4120 } 4121 } 4122 4123 if (key.offset == 0) 4124 break; 4125 4126 key.offset--; 4127 } 4128 btrfs_release_path(path); 4129 4130 if (list_empty(&reloc_roots)) 4131 goto out; 4132 4133 rc = alloc_reloc_control(fs_info); 4134 if (!rc) { 4135 err = -ENOMEM; 4136 goto out; 4137 } 4138 4139 ret = reloc_chunk_start(fs_info); 4140 if (ret < 0) { 4141 err = ret; 4142 goto out_end; 4143 } 4144 4145 rc->extent_root = fs_info->extent_root; 4146 4147 set_reloc_control(rc); 4148 4149 trans = btrfs_join_transaction(rc->extent_root); 4150 if (IS_ERR(trans)) { 4151 err = PTR_ERR(trans); 4152 goto out_unset; 4153 } 4154 4155 rc->merge_reloc_tree = 1; 4156 4157 while (!list_empty(&reloc_roots)) { 4158 reloc_root = list_entry(reloc_roots.next, 4159 struct btrfs_root, root_list); 4160 list_del(&reloc_root->root_list); 4161 4162 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4163 list_add_tail(&reloc_root->root_list, 4164 &rc->reloc_roots); 4165 continue; 4166 } 4167 4168 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4169 false); 4170 if (IS_ERR(fs_root)) { 4171 err = PTR_ERR(fs_root); 4172 list_add_tail(&reloc_root->root_list, &reloc_roots); 4173 btrfs_end_transaction(trans); 4174 goto out_unset; 4175 } 4176 4177 err = __add_reloc_root(reloc_root); 4178 ASSERT(err != -EEXIST); 4179 if (err) { 4180 list_add_tail(&reloc_root->root_list, &reloc_roots); 4181 btrfs_put_root(fs_root); 4182 btrfs_end_transaction(trans); 4183 goto out_unset; 4184 } 4185 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4186 btrfs_put_root(fs_root); 4187 } 4188 4189 err = btrfs_commit_transaction(trans); 4190 if (err) 4191 goto out_unset; 4192 4193 merge_reloc_roots(rc); 4194 4195 unset_reloc_control(rc); 4196 4197 trans = btrfs_join_transaction(rc->extent_root); 4198 if (IS_ERR(trans)) { 4199 err = PTR_ERR(trans); 4200 goto out_clean; 4201 } 4202 err = btrfs_commit_transaction(trans); 4203 out_clean: 4204 ret = clean_dirty_subvols(rc); 4205 if (ret < 0 && !err) 4206 err = ret; 4207 out_unset: 4208 unset_reloc_control(rc); 4209 out_end: 4210 reloc_chunk_end(fs_info); 4211 free_reloc_control(rc); 4212 out: 4213 free_reloc_roots(&reloc_roots); 4214 4215 btrfs_free_path(path); 4216 4217 if (err == 0) { 4218 /* cleanup orphan inode in data relocation tree */ 4219 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4220 ASSERT(fs_root); 4221 err = btrfs_orphan_cleanup(fs_root); 4222 btrfs_put_root(fs_root); 4223 } 4224 return err; 4225 } 4226 4227 /* 4228 * helper to add ordered checksum for data relocation. 4229 * 4230 * cloning checksum properly handles the nodatasum extents. 4231 * it also saves CPU time to re-calculate the checksum. 4232 */ 4233 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 4234 { 4235 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4236 struct btrfs_ordered_sum *sums; 4237 struct btrfs_ordered_extent *ordered; 4238 int ret; 4239 u64 disk_bytenr; 4240 u64 new_bytenr; 4241 LIST_HEAD(list); 4242 4243 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4244 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4245 4246 disk_bytenr = file_pos + inode->index_cnt; 4247 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4248 disk_bytenr + len - 1, &list, 0); 4249 if (ret) 4250 goto out; 4251 4252 while (!list_empty(&list)) { 4253 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4254 list_del_init(&sums->list); 4255 4256 /* 4257 * We need to offset the new_bytenr based on where the csum is. 4258 * We need to do this because we will read in entire prealloc 4259 * extents but we may have written to say the middle of the 4260 * prealloc extent, so we need to make sure the csum goes with 4261 * the right disk offset. 4262 * 4263 * We can do this because the data reloc inode refers strictly 4264 * to the on disk bytes, so we don't have to worry about 4265 * disk_len vs real len like with real inodes since it's all 4266 * disk length. 4267 */ 4268 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4269 sums->bytenr = new_bytenr; 4270 4271 btrfs_add_ordered_sum(ordered, sums); 4272 } 4273 out: 4274 btrfs_put_ordered_extent(ordered); 4275 return ret; 4276 } 4277 4278 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4279 struct btrfs_root *root, struct extent_buffer *buf, 4280 struct extent_buffer *cow) 4281 { 4282 struct btrfs_fs_info *fs_info = root->fs_info; 4283 struct reloc_control *rc; 4284 struct btrfs_backref_node *node; 4285 int first_cow = 0; 4286 int level; 4287 int ret = 0; 4288 4289 rc = fs_info->reloc_ctl; 4290 if (!rc) 4291 return 0; 4292 4293 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4294 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4295 4296 level = btrfs_header_level(buf); 4297 if (btrfs_header_generation(buf) <= 4298 btrfs_root_last_snapshot(&root->root_item)) 4299 first_cow = 1; 4300 4301 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4302 rc->create_reloc_tree) { 4303 WARN_ON(!first_cow && level == 0); 4304 4305 node = rc->backref_cache.path[level]; 4306 BUG_ON(node->bytenr != buf->start && 4307 node->new_bytenr != buf->start); 4308 4309 btrfs_backref_drop_node_buffer(node); 4310 atomic_inc(&cow->refs); 4311 node->eb = cow; 4312 node->new_bytenr = cow->start; 4313 4314 if (!node->pending) { 4315 list_move_tail(&node->list, 4316 &rc->backref_cache.pending[level]); 4317 node->pending = 1; 4318 } 4319 4320 if (first_cow) 4321 mark_block_processed(rc, node); 4322 4323 if (first_cow && level > 0) 4324 rc->nodes_relocated += buf->len; 4325 } 4326 4327 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4328 ret = replace_file_extents(trans, rc, root, cow); 4329 return ret; 4330 } 4331 4332 /* 4333 * called before creating snapshot. it calculates metadata reservation 4334 * required for relocating tree blocks in the snapshot 4335 */ 4336 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4337 u64 *bytes_to_reserve) 4338 { 4339 struct btrfs_root *root = pending->root; 4340 struct reloc_control *rc = root->fs_info->reloc_ctl; 4341 4342 if (!rc || !have_reloc_root(root)) 4343 return; 4344 4345 if (!rc->merge_reloc_tree) 4346 return; 4347 4348 root = root->reloc_root; 4349 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4350 /* 4351 * relocation is in the stage of merging trees. the space 4352 * used by merging a reloc tree is twice the size of 4353 * relocated tree nodes in the worst case. half for cowing 4354 * the reloc tree, half for cowing the fs tree. the space 4355 * used by cowing the reloc tree will be freed after the 4356 * tree is dropped. if we create snapshot, cowing the fs 4357 * tree may use more space than it frees. so we need 4358 * reserve extra space. 4359 */ 4360 *bytes_to_reserve += rc->nodes_relocated; 4361 } 4362 4363 /* 4364 * called after snapshot is created. migrate block reservation 4365 * and create reloc root for the newly created snapshot 4366 * 4367 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4368 * references held on the reloc_root, one for root->reloc_root and one for 4369 * rc->reloc_roots. 4370 */ 4371 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4372 struct btrfs_pending_snapshot *pending) 4373 { 4374 struct btrfs_root *root = pending->root; 4375 struct btrfs_root *reloc_root; 4376 struct btrfs_root *new_root; 4377 struct reloc_control *rc = root->fs_info->reloc_ctl; 4378 int ret; 4379 4380 if (!rc || !have_reloc_root(root)) 4381 return 0; 4382 4383 rc = root->fs_info->reloc_ctl; 4384 rc->merging_rsv_size += rc->nodes_relocated; 4385 4386 if (rc->merge_reloc_tree) { 4387 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4388 rc->block_rsv, 4389 rc->nodes_relocated, true); 4390 if (ret) 4391 return ret; 4392 } 4393 4394 new_root = pending->snap; 4395 reloc_root = create_reloc_root(trans, root->reloc_root, 4396 new_root->root_key.objectid); 4397 if (IS_ERR(reloc_root)) 4398 return PTR_ERR(reloc_root); 4399 4400 ret = __add_reloc_root(reloc_root); 4401 ASSERT(ret != -EEXIST); 4402 if (ret) { 4403 /* Pairs with create_reloc_root */ 4404 btrfs_put_root(reloc_root); 4405 return ret; 4406 } 4407 new_root->reloc_root = btrfs_grab_root(reloc_root); 4408 4409 if (rc->create_reloc_tree) 4410 ret = clone_backref_node(trans, rc, root, reloc_root); 4411 return ret; 4412 } 4413