xref: /openbmc/linux/fs/btrfs/relocation.c (revision 79f08d9e)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
330 {
331 
332 	struct btrfs_fs_info *fs_info = NULL;
333 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
334 					      rb_node);
335 	if (bnode->root)
336 		fs_info = bnode->root->fs_info;
337 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
338 		    "found at offset %llu\n", bytenr);
339 }
340 
341 /*
342  * walk up backref nodes until reach node presents tree root
343  */
344 static struct backref_node *walk_up_backref(struct backref_node *node,
345 					    struct backref_edge *edges[],
346 					    int *index)
347 {
348 	struct backref_edge *edge;
349 	int idx = *index;
350 
351 	while (!list_empty(&node->upper)) {
352 		edge = list_entry(node->upper.next,
353 				  struct backref_edge, list[LOWER]);
354 		edges[idx++] = edge;
355 		node = edge->node[UPPER];
356 	}
357 	BUG_ON(node->detached);
358 	*index = idx;
359 	return node;
360 }
361 
362 /*
363  * walk down backref nodes to find start of next reference path
364  */
365 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
366 					      int *index)
367 {
368 	struct backref_edge *edge;
369 	struct backref_node *lower;
370 	int idx = *index;
371 
372 	while (idx > 0) {
373 		edge = edges[idx - 1];
374 		lower = edge->node[LOWER];
375 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
376 			idx--;
377 			continue;
378 		}
379 		edge = list_entry(edge->list[LOWER].next,
380 				  struct backref_edge, list[LOWER]);
381 		edges[idx - 1] = edge;
382 		*index = idx;
383 		return edge->node[UPPER];
384 	}
385 	*index = 0;
386 	return NULL;
387 }
388 
389 static void unlock_node_buffer(struct backref_node *node)
390 {
391 	if (node->locked) {
392 		btrfs_tree_unlock(node->eb);
393 		node->locked = 0;
394 	}
395 }
396 
397 static void drop_node_buffer(struct backref_node *node)
398 {
399 	if (node->eb) {
400 		unlock_node_buffer(node);
401 		free_extent_buffer(node->eb);
402 		node->eb = NULL;
403 	}
404 }
405 
406 static void drop_backref_node(struct backref_cache *tree,
407 			      struct backref_node *node)
408 {
409 	BUG_ON(!list_empty(&node->upper));
410 
411 	drop_node_buffer(node);
412 	list_del(&node->list);
413 	list_del(&node->lower);
414 	if (!RB_EMPTY_NODE(&node->rb_node))
415 		rb_erase(&node->rb_node, &tree->rb_root);
416 	free_backref_node(tree, node);
417 }
418 
419 /*
420  * remove a backref node from the backref cache
421  */
422 static void remove_backref_node(struct backref_cache *cache,
423 				struct backref_node *node)
424 {
425 	struct backref_node *upper;
426 	struct backref_edge *edge;
427 
428 	if (!node)
429 		return;
430 
431 	BUG_ON(!node->lowest && !node->detached);
432 	while (!list_empty(&node->upper)) {
433 		edge = list_entry(node->upper.next, struct backref_edge,
434 				  list[LOWER]);
435 		upper = edge->node[UPPER];
436 		list_del(&edge->list[LOWER]);
437 		list_del(&edge->list[UPPER]);
438 		free_backref_edge(cache, edge);
439 
440 		if (RB_EMPTY_NODE(&upper->rb_node)) {
441 			BUG_ON(!list_empty(&node->upper));
442 			drop_backref_node(cache, node);
443 			node = upper;
444 			node->lowest = 1;
445 			continue;
446 		}
447 		/*
448 		 * add the node to leaf node list if no other
449 		 * child block cached.
450 		 */
451 		if (list_empty(&upper->lower)) {
452 			list_add_tail(&upper->lower, &cache->leaves);
453 			upper->lowest = 1;
454 		}
455 	}
456 
457 	drop_backref_node(cache, node);
458 }
459 
460 static void update_backref_node(struct backref_cache *cache,
461 				struct backref_node *node, u64 bytenr)
462 {
463 	struct rb_node *rb_node;
464 	rb_erase(&node->rb_node, &cache->rb_root);
465 	node->bytenr = bytenr;
466 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
467 	if (rb_node)
468 		backref_tree_panic(rb_node, -EEXIST, bytenr);
469 }
470 
471 /*
472  * update backref cache after a transaction commit
473  */
474 static int update_backref_cache(struct btrfs_trans_handle *trans,
475 				struct backref_cache *cache)
476 {
477 	struct backref_node *node;
478 	int level = 0;
479 
480 	if (cache->last_trans == 0) {
481 		cache->last_trans = trans->transid;
482 		return 0;
483 	}
484 
485 	if (cache->last_trans == trans->transid)
486 		return 0;
487 
488 	/*
489 	 * detached nodes are used to avoid unnecessary backref
490 	 * lookup. transaction commit changes the extent tree.
491 	 * so the detached nodes are no longer useful.
492 	 */
493 	while (!list_empty(&cache->detached)) {
494 		node = list_entry(cache->detached.next,
495 				  struct backref_node, list);
496 		remove_backref_node(cache, node);
497 	}
498 
499 	while (!list_empty(&cache->changed)) {
500 		node = list_entry(cache->changed.next,
501 				  struct backref_node, list);
502 		list_del_init(&node->list);
503 		BUG_ON(node->pending);
504 		update_backref_node(cache, node, node->new_bytenr);
505 	}
506 
507 	/*
508 	 * some nodes can be left in the pending list if there were
509 	 * errors during processing the pending nodes.
510 	 */
511 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
512 		list_for_each_entry(node, &cache->pending[level], list) {
513 			BUG_ON(!node->pending);
514 			if (node->bytenr == node->new_bytenr)
515 				continue;
516 			update_backref_node(cache, node, node->new_bytenr);
517 		}
518 	}
519 
520 	cache->last_trans = 0;
521 	return 1;
522 }
523 
524 
525 static int should_ignore_root(struct btrfs_root *root)
526 {
527 	struct btrfs_root *reloc_root;
528 
529 	if (!root->ref_cows)
530 		return 0;
531 
532 	reloc_root = root->reloc_root;
533 	if (!reloc_root)
534 		return 0;
535 
536 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
537 	    root->fs_info->running_transaction->transid - 1)
538 		return 0;
539 	/*
540 	 * if there is reloc tree and it was created in previous
541 	 * transaction backref lookup can find the reloc tree,
542 	 * so backref node for the fs tree root is useless for
543 	 * relocation.
544 	 */
545 	return 1;
546 }
547 /*
548  * find reloc tree by address of tree root
549  */
550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
551 					  u64 bytenr)
552 {
553 	struct rb_node *rb_node;
554 	struct mapping_node *node;
555 	struct btrfs_root *root = NULL;
556 
557 	spin_lock(&rc->reloc_root_tree.lock);
558 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
559 	if (rb_node) {
560 		node = rb_entry(rb_node, struct mapping_node, rb_node);
561 		root = (struct btrfs_root *)node->data;
562 	}
563 	spin_unlock(&rc->reloc_root_tree.lock);
564 	return root;
565 }
566 
567 static int is_cowonly_root(u64 root_objectid)
568 {
569 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
570 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
574 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
575 		return 1;
576 	return 0;
577 }
578 
579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
580 					u64 root_objectid)
581 {
582 	struct btrfs_key key;
583 
584 	key.objectid = root_objectid;
585 	key.type = BTRFS_ROOT_ITEM_KEY;
586 	if (is_cowonly_root(root_objectid))
587 		key.offset = 0;
588 	else
589 		key.offset = (u64)-1;
590 
591 	return btrfs_get_fs_root(fs_info, &key, false);
592 }
593 
594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
595 static noinline_for_stack
596 struct btrfs_root *find_tree_root(struct reloc_control *rc,
597 				  struct extent_buffer *leaf,
598 				  struct btrfs_extent_ref_v0 *ref0)
599 {
600 	struct btrfs_root *root;
601 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
602 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
603 
604 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
605 
606 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
607 	BUG_ON(IS_ERR(root));
608 
609 	if (root->ref_cows &&
610 	    generation != btrfs_root_generation(&root->root_item))
611 		return NULL;
612 
613 	return root;
614 }
615 #endif
616 
617 static noinline_for_stack
618 int find_inline_backref(struct extent_buffer *leaf, int slot,
619 			unsigned long *ptr, unsigned long *end)
620 {
621 	struct btrfs_key key;
622 	struct btrfs_extent_item *ei;
623 	struct btrfs_tree_block_info *bi;
624 	u32 item_size;
625 
626 	btrfs_item_key_to_cpu(leaf, &key, slot);
627 
628 	item_size = btrfs_item_size_nr(leaf, slot);
629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
630 	if (item_size < sizeof(*ei)) {
631 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
632 		return 1;
633 	}
634 #endif
635 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
636 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
637 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
638 
639 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
640 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
641 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
642 		return 1;
643 	}
644 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
645 	    item_size <= sizeof(*ei)) {
646 		WARN_ON(item_size < sizeof(*ei));
647 		return 1;
648 	}
649 
650 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
651 		bi = (struct btrfs_tree_block_info *)(ei + 1);
652 		*ptr = (unsigned long)(bi + 1);
653 	} else {
654 		*ptr = (unsigned long)(ei + 1);
655 	}
656 	*end = (unsigned long)ei + item_size;
657 	return 0;
658 }
659 
660 /*
661  * build backref tree for a given tree block. root of the backref tree
662  * corresponds the tree block, leaves of the backref tree correspond
663  * roots of b-trees that reference the tree block.
664  *
665  * the basic idea of this function is check backrefs of a given block
666  * to find upper level blocks that refernece the block, and then check
667  * bakcrefs of these upper level blocks recursively. the recursion stop
668  * when tree root is reached or backrefs for the block is cached.
669  *
670  * NOTE: if we find backrefs for a block are cached, we know backrefs
671  * for all upper level blocks that directly/indirectly reference the
672  * block are also cached.
673  */
674 static noinline_for_stack
675 struct backref_node *build_backref_tree(struct reloc_control *rc,
676 					struct btrfs_key *node_key,
677 					int level, u64 bytenr)
678 {
679 	struct backref_cache *cache = &rc->backref_cache;
680 	struct btrfs_path *path1;
681 	struct btrfs_path *path2;
682 	struct extent_buffer *eb;
683 	struct btrfs_root *root;
684 	struct backref_node *cur;
685 	struct backref_node *upper;
686 	struct backref_node *lower;
687 	struct backref_node *node = NULL;
688 	struct backref_node *exist = NULL;
689 	struct backref_edge *edge;
690 	struct rb_node *rb_node;
691 	struct btrfs_key key;
692 	unsigned long end;
693 	unsigned long ptr;
694 	LIST_HEAD(list);
695 	LIST_HEAD(useless);
696 	int cowonly;
697 	int ret;
698 	int err = 0;
699 	bool need_check = true;
700 
701 	path1 = btrfs_alloc_path();
702 	path2 = btrfs_alloc_path();
703 	if (!path1 || !path2) {
704 		err = -ENOMEM;
705 		goto out;
706 	}
707 	path1->reada = 1;
708 	path2->reada = 2;
709 
710 	node = alloc_backref_node(cache);
711 	if (!node) {
712 		err = -ENOMEM;
713 		goto out;
714 	}
715 
716 	node->bytenr = bytenr;
717 	node->level = level;
718 	node->lowest = 1;
719 	cur = node;
720 again:
721 	end = 0;
722 	ptr = 0;
723 	key.objectid = cur->bytenr;
724 	key.type = BTRFS_METADATA_ITEM_KEY;
725 	key.offset = (u64)-1;
726 
727 	path1->search_commit_root = 1;
728 	path1->skip_locking = 1;
729 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
730 				0, 0);
731 	if (ret < 0) {
732 		err = ret;
733 		goto out;
734 	}
735 	BUG_ON(!ret || !path1->slots[0]);
736 
737 	path1->slots[0]--;
738 
739 	WARN_ON(cur->checked);
740 	if (!list_empty(&cur->upper)) {
741 		/*
742 		 * the backref was added previously when processing
743 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
744 		 */
745 		BUG_ON(!list_is_singular(&cur->upper));
746 		edge = list_entry(cur->upper.next, struct backref_edge,
747 				  list[LOWER]);
748 		BUG_ON(!list_empty(&edge->list[UPPER]));
749 		exist = edge->node[UPPER];
750 		/*
751 		 * add the upper level block to pending list if we need
752 		 * check its backrefs
753 		 */
754 		if (!exist->checked)
755 			list_add_tail(&edge->list[UPPER], &list);
756 	} else {
757 		exist = NULL;
758 	}
759 
760 	while (1) {
761 		cond_resched();
762 		eb = path1->nodes[0];
763 
764 		if (ptr >= end) {
765 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
766 				ret = btrfs_next_leaf(rc->extent_root, path1);
767 				if (ret < 0) {
768 					err = ret;
769 					goto out;
770 				}
771 				if (ret > 0)
772 					break;
773 				eb = path1->nodes[0];
774 			}
775 
776 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
777 			if (key.objectid != cur->bytenr) {
778 				WARN_ON(exist);
779 				break;
780 			}
781 
782 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
783 			    key.type == BTRFS_METADATA_ITEM_KEY) {
784 				ret = find_inline_backref(eb, path1->slots[0],
785 							  &ptr, &end);
786 				if (ret)
787 					goto next;
788 			}
789 		}
790 
791 		if (ptr < end) {
792 			/* update key for inline back ref */
793 			struct btrfs_extent_inline_ref *iref;
794 			iref = (struct btrfs_extent_inline_ref *)ptr;
795 			key.type = btrfs_extent_inline_ref_type(eb, iref);
796 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
797 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
798 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
799 		}
800 
801 		if (exist &&
802 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
803 		      exist->owner == key.offset) ||
804 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
805 		      exist->bytenr == key.offset))) {
806 			exist = NULL;
807 			goto next;
808 		}
809 
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
812 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
813 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
814 				struct btrfs_extent_ref_v0 *ref0;
815 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
816 						struct btrfs_extent_ref_v0);
817 				if (key.objectid == key.offset) {
818 					root = find_tree_root(rc, eb, ref0);
819 					if (root && !should_ignore_root(root))
820 						cur->root = root;
821 					else
822 						list_add(&cur->list, &useless);
823 					break;
824 				}
825 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
826 								      ref0)))
827 					cur->cowonly = 1;
828 			}
829 #else
830 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
831 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
832 #endif
833 			if (key.objectid == key.offset) {
834 				/*
835 				 * only root blocks of reloc trees use
836 				 * backref of this type.
837 				 */
838 				root = find_reloc_root(rc, cur->bytenr);
839 				BUG_ON(!root);
840 				cur->root = root;
841 				break;
842 			}
843 
844 			edge = alloc_backref_edge(cache);
845 			if (!edge) {
846 				err = -ENOMEM;
847 				goto out;
848 			}
849 			rb_node = tree_search(&cache->rb_root, key.offset);
850 			if (!rb_node) {
851 				upper = alloc_backref_node(cache);
852 				if (!upper) {
853 					free_backref_edge(cache, edge);
854 					err = -ENOMEM;
855 					goto out;
856 				}
857 				upper->bytenr = key.offset;
858 				upper->level = cur->level + 1;
859 				/*
860 				 *  backrefs for the upper level block isn't
861 				 *  cached, add the block to pending list
862 				 */
863 				list_add_tail(&edge->list[UPPER], &list);
864 			} else {
865 				upper = rb_entry(rb_node, struct backref_node,
866 						 rb_node);
867 				BUG_ON(!upper->checked);
868 				INIT_LIST_HEAD(&edge->list[UPPER]);
869 			}
870 			list_add_tail(&edge->list[LOWER], &cur->upper);
871 			edge->node[LOWER] = cur;
872 			edge->node[UPPER] = upper;
873 
874 			goto next;
875 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
876 			goto next;
877 		}
878 
879 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
880 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
881 		if (IS_ERR(root)) {
882 			err = PTR_ERR(root);
883 			goto out;
884 		}
885 
886 		if (!root->ref_cows)
887 			cur->cowonly = 1;
888 
889 		if (btrfs_root_level(&root->root_item) == cur->level) {
890 			/* tree root */
891 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
892 			       cur->bytenr);
893 			if (should_ignore_root(root))
894 				list_add(&cur->list, &useless);
895 			else
896 				cur->root = root;
897 			break;
898 		}
899 
900 		level = cur->level + 1;
901 
902 		/*
903 		 * searching the tree to find upper level blocks
904 		 * reference the block.
905 		 */
906 		path2->search_commit_root = 1;
907 		path2->skip_locking = 1;
908 		path2->lowest_level = level;
909 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
910 		path2->lowest_level = 0;
911 		if (ret < 0) {
912 			err = ret;
913 			goto out;
914 		}
915 		if (ret > 0 && path2->slots[level] > 0)
916 			path2->slots[level]--;
917 
918 		eb = path2->nodes[level];
919 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
920 			cur->bytenr);
921 
922 		lower = cur;
923 		need_check = true;
924 		for (; level < BTRFS_MAX_LEVEL; level++) {
925 			if (!path2->nodes[level]) {
926 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
927 				       lower->bytenr);
928 				if (should_ignore_root(root))
929 					list_add(&lower->list, &useless);
930 				else
931 					lower->root = root;
932 				break;
933 			}
934 
935 			edge = alloc_backref_edge(cache);
936 			if (!edge) {
937 				err = -ENOMEM;
938 				goto out;
939 			}
940 
941 			eb = path2->nodes[level];
942 			rb_node = tree_search(&cache->rb_root, eb->start);
943 			if (!rb_node) {
944 				upper = alloc_backref_node(cache);
945 				if (!upper) {
946 					free_backref_edge(cache, edge);
947 					err = -ENOMEM;
948 					goto out;
949 				}
950 				upper->bytenr = eb->start;
951 				upper->owner = btrfs_header_owner(eb);
952 				upper->level = lower->level + 1;
953 				if (!root->ref_cows)
954 					upper->cowonly = 1;
955 
956 				/*
957 				 * if we know the block isn't shared
958 				 * we can void checking its backrefs.
959 				 */
960 				if (btrfs_block_can_be_shared(root, eb))
961 					upper->checked = 0;
962 				else
963 					upper->checked = 1;
964 
965 				/*
966 				 * add the block to pending list if we
967 				 * need check its backrefs, we only do this once
968 				 * while walking up a tree as we will catch
969 				 * anything else later on.
970 				 */
971 				if (!upper->checked && need_check) {
972 					need_check = false;
973 					list_add_tail(&edge->list[UPPER],
974 						      &list);
975 				} else
976 					INIT_LIST_HEAD(&edge->list[UPPER]);
977 			} else {
978 				upper = rb_entry(rb_node, struct backref_node,
979 						 rb_node);
980 				BUG_ON(!upper->checked);
981 				INIT_LIST_HEAD(&edge->list[UPPER]);
982 				if (!upper->owner)
983 					upper->owner = btrfs_header_owner(eb);
984 			}
985 			list_add_tail(&edge->list[LOWER], &lower->upper);
986 			edge->node[LOWER] = lower;
987 			edge->node[UPPER] = upper;
988 
989 			if (rb_node)
990 				break;
991 			lower = upper;
992 			upper = NULL;
993 		}
994 		btrfs_release_path(path2);
995 next:
996 		if (ptr < end) {
997 			ptr += btrfs_extent_inline_ref_size(key.type);
998 			if (ptr >= end) {
999 				WARN_ON(ptr > end);
1000 				ptr = 0;
1001 				end = 0;
1002 			}
1003 		}
1004 		if (ptr >= end)
1005 			path1->slots[0]++;
1006 	}
1007 	btrfs_release_path(path1);
1008 
1009 	cur->checked = 1;
1010 	WARN_ON(exist);
1011 
1012 	/* the pending list isn't empty, take the first block to process */
1013 	if (!list_empty(&list)) {
1014 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1015 		list_del_init(&edge->list[UPPER]);
1016 		cur = edge->node[UPPER];
1017 		goto again;
1018 	}
1019 
1020 	/*
1021 	 * everything goes well, connect backref nodes and insert backref nodes
1022 	 * into the cache.
1023 	 */
1024 	BUG_ON(!node->checked);
1025 	cowonly = node->cowonly;
1026 	if (!cowonly) {
1027 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1028 				      &node->rb_node);
1029 		if (rb_node)
1030 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1031 		list_add_tail(&node->lower, &cache->leaves);
1032 	}
1033 
1034 	list_for_each_entry(edge, &node->upper, list[LOWER])
1035 		list_add_tail(&edge->list[UPPER], &list);
1036 
1037 	while (!list_empty(&list)) {
1038 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1039 		list_del_init(&edge->list[UPPER]);
1040 		upper = edge->node[UPPER];
1041 		if (upper->detached) {
1042 			list_del(&edge->list[LOWER]);
1043 			lower = edge->node[LOWER];
1044 			free_backref_edge(cache, edge);
1045 			if (list_empty(&lower->upper))
1046 				list_add(&lower->list, &useless);
1047 			continue;
1048 		}
1049 
1050 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1051 			if (upper->lowest) {
1052 				list_del_init(&upper->lower);
1053 				upper->lowest = 0;
1054 			}
1055 
1056 			list_add_tail(&edge->list[UPPER], &upper->lower);
1057 			continue;
1058 		}
1059 
1060 		BUG_ON(!upper->checked);
1061 		BUG_ON(cowonly != upper->cowonly);
1062 		if (!cowonly) {
1063 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1064 					      &upper->rb_node);
1065 			if (rb_node)
1066 				backref_tree_panic(rb_node, -EEXIST,
1067 						   upper->bytenr);
1068 		}
1069 
1070 		list_add_tail(&edge->list[UPPER], &upper->lower);
1071 
1072 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1073 			list_add_tail(&edge->list[UPPER], &list);
1074 	}
1075 	/*
1076 	 * process useless backref nodes. backref nodes for tree leaves
1077 	 * are deleted from the cache. backref nodes for upper level
1078 	 * tree blocks are left in the cache to avoid unnecessary backref
1079 	 * lookup.
1080 	 */
1081 	while (!list_empty(&useless)) {
1082 		upper = list_entry(useless.next, struct backref_node, list);
1083 		list_del_init(&upper->list);
1084 		BUG_ON(!list_empty(&upper->upper));
1085 		if (upper == node)
1086 			node = NULL;
1087 		if (upper->lowest) {
1088 			list_del_init(&upper->lower);
1089 			upper->lowest = 0;
1090 		}
1091 		while (!list_empty(&upper->lower)) {
1092 			edge = list_entry(upper->lower.next,
1093 					  struct backref_edge, list[UPPER]);
1094 			list_del(&edge->list[UPPER]);
1095 			list_del(&edge->list[LOWER]);
1096 			lower = edge->node[LOWER];
1097 			free_backref_edge(cache, edge);
1098 
1099 			if (list_empty(&lower->upper))
1100 				list_add(&lower->list, &useless);
1101 		}
1102 		__mark_block_processed(rc, upper);
1103 		if (upper->level > 0) {
1104 			list_add(&upper->list, &cache->detached);
1105 			upper->detached = 1;
1106 		} else {
1107 			rb_erase(&upper->rb_node, &cache->rb_root);
1108 			free_backref_node(cache, upper);
1109 		}
1110 	}
1111 out:
1112 	btrfs_free_path(path1);
1113 	btrfs_free_path(path2);
1114 	if (err) {
1115 		while (!list_empty(&useless)) {
1116 			lower = list_entry(useless.next,
1117 					   struct backref_node, upper);
1118 			list_del_init(&lower->upper);
1119 		}
1120 		upper = node;
1121 		INIT_LIST_HEAD(&list);
1122 		while (upper) {
1123 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1124 				list_splice_tail(&upper->upper, &list);
1125 				free_backref_node(cache, upper);
1126 			}
1127 
1128 			if (list_empty(&list))
1129 				break;
1130 
1131 			edge = list_entry(list.next, struct backref_edge,
1132 					  list[LOWER]);
1133 			list_del(&edge->list[LOWER]);
1134 			upper = edge->node[UPPER];
1135 			free_backref_edge(cache, edge);
1136 		}
1137 		return ERR_PTR(err);
1138 	}
1139 	BUG_ON(node && node->detached);
1140 	return node;
1141 }
1142 
1143 /*
1144  * helper to add backref node for the newly created snapshot.
1145  * the backref node is created by cloning backref node that
1146  * corresponds to root of source tree
1147  */
1148 static int clone_backref_node(struct btrfs_trans_handle *trans,
1149 			      struct reloc_control *rc,
1150 			      struct btrfs_root *src,
1151 			      struct btrfs_root *dest)
1152 {
1153 	struct btrfs_root *reloc_root = src->reloc_root;
1154 	struct backref_cache *cache = &rc->backref_cache;
1155 	struct backref_node *node = NULL;
1156 	struct backref_node *new_node;
1157 	struct backref_edge *edge;
1158 	struct backref_edge *new_edge;
1159 	struct rb_node *rb_node;
1160 
1161 	if (cache->last_trans > 0)
1162 		update_backref_cache(trans, cache);
1163 
1164 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1165 	if (rb_node) {
1166 		node = rb_entry(rb_node, struct backref_node, rb_node);
1167 		if (node->detached)
1168 			node = NULL;
1169 		else
1170 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1171 	}
1172 
1173 	if (!node) {
1174 		rb_node = tree_search(&cache->rb_root,
1175 				      reloc_root->commit_root->start);
1176 		if (rb_node) {
1177 			node = rb_entry(rb_node, struct backref_node,
1178 					rb_node);
1179 			BUG_ON(node->detached);
1180 		}
1181 	}
1182 
1183 	if (!node)
1184 		return 0;
1185 
1186 	new_node = alloc_backref_node(cache);
1187 	if (!new_node)
1188 		return -ENOMEM;
1189 
1190 	new_node->bytenr = dest->node->start;
1191 	new_node->level = node->level;
1192 	new_node->lowest = node->lowest;
1193 	new_node->checked = 1;
1194 	new_node->root = dest;
1195 
1196 	if (!node->lowest) {
1197 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1198 			new_edge = alloc_backref_edge(cache);
1199 			if (!new_edge)
1200 				goto fail;
1201 
1202 			new_edge->node[UPPER] = new_node;
1203 			new_edge->node[LOWER] = edge->node[LOWER];
1204 			list_add_tail(&new_edge->list[UPPER],
1205 				      &new_node->lower);
1206 		}
1207 	} else {
1208 		list_add_tail(&new_node->lower, &cache->leaves);
1209 	}
1210 
1211 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1212 			      &new_node->rb_node);
1213 	if (rb_node)
1214 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1215 
1216 	if (!new_node->lowest) {
1217 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1218 			list_add_tail(&new_edge->list[LOWER],
1219 				      &new_edge->node[LOWER]->upper);
1220 		}
1221 	}
1222 	return 0;
1223 fail:
1224 	while (!list_empty(&new_node->lower)) {
1225 		new_edge = list_entry(new_node->lower.next,
1226 				      struct backref_edge, list[UPPER]);
1227 		list_del(&new_edge->list[UPPER]);
1228 		free_backref_edge(cache, new_edge);
1229 	}
1230 	free_backref_node(cache, new_node);
1231 	return -ENOMEM;
1232 }
1233 
1234 /*
1235  * helper to add 'address of tree root -> reloc tree' mapping
1236  */
1237 static int __must_check __add_reloc_root(struct btrfs_root *root)
1238 {
1239 	struct rb_node *rb_node;
1240 	struct mapping_node *node;
1241 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1242 
1243 	node = kmalloc(sizeof(*node), GFP_NOFS);
1244 	if (!node)
1245 		return -ENOMEM;
1246 
1247 	node->bytenr = root->node->start;
1248 	node->data = root;
1249 
1250 	spin_lock(&rc->reloc_root_tree.lock);
1251 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1252 			      node->bytenr, &node->rb_node);
1253 	spin_unlock(&rc->reloc_root_tree.lock);
1254 	if (rb_node) {
1255 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1256 			    "for start=%llu while inserting into relocation "
1257 			    "tree\n", node->bytenr);
1258 		kfree(node);
1259 		return -EEXIST;
1260 	}
1261 
1262 	list_add_tail(&root->root_list, &rc->reloc_roots);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * helper to update/delete the 'address of tree root -> reloc tree'
1268  * mapping
1269  */
1270 static int __update_reloc_root(struct btrfs_root *root, int del)
1271 {
1272 	struct rb_node *rb_node;
1273 	struct mapping_node *node = NULL;
1274 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1275 
1276 	spin_lock(&rc->reloc_root_tree.lock);
1277 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1278 			      root->commit_root->start);
1279 	if (rb_node) {
1280 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1281 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1282 	}
1283 	spin_unlock(&rc->reloc_root_tree.lock);
1284 
1285 	if (!node)
1286 		return 0;
1287 	BUG_ON((struct btrfs_root *)node->data != root);
1288 
1289 	if (!del) {
1290 		spin_lock(&rc->reloc_root_tree.lock);
1291 		node->bytenr = root->node->start;
1292 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1293 				      node->bytenr, &node->rb_node);
1294 		spin_unlock(&rc->reloc_root_tree.lock);
1295 		if (rb_node)
1296 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1297 	} else {
1298 		spin_lock(&root->fs_info->trans_lock);
1299 		list_del_init(&root->root_list);
1300 		spin_unlock(&root->fs_info->trans_lock);
1301 		kfree(node);
1302 	}
1303 	return 0;
1304 }
1305 
1306 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1307 					struct btrfs_root *root, u64 objectid)
1308 {
1309 	struct btrfs_root *reloc_root;
1310 	struct extent_buffer *eb;
1311 	struct btrfs_root_item *root_item;
1312 	struct btrfs_key root_key;
1313 	u64 last_snap = 0;
1314 	int ret;
1315 
1316 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1317 	BUG_ON(!root_item);
1318 
1319 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1320 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 	root_key.offset = objectid;
1322 
1323 	if (root->root_key.objectid == objectid) {
1324 		/* called by btrfs_init_reloc_root */
1325 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1326 				      BTRFS_TREE_RELOC_OBJECTID);
1327 		BUG_ON(ret);
1328 
1329 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1330 		btrfs_set_root_last_snapshot(&root->root_item,
1331 					     trans->transid - 1);
1332 	} else {
1333 		/*
1334 		 * called by btrfs_reloc_post_snapshot_hook.
1335 		 * the source tree is a reloc tree, all tree blocks
1336 		 * modified after it was created have RELOC flag
1337 		 * set in their headers. so it's OK to not update
1338 		 * the 'last_snapshot'.
1339 		 */
1340 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1341 				      BTRFS_TREE_RELOC_OBJECTID);
1342 		BUG_ON(ret);
1343 	}
1344 
1345 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1346 	btrfs_set_root_bytenr(root_item, eb->start);
1347 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1348 	btrfs_set_root_generation(root_item, trans->transid);
1349 
1350 	if (root->root_key.objectid == objectid) {
1351 		btrfs_set_root_refs(root_item, 0);
1352 		memset(&root_item->drop_progress, 0,
1353 		       sizeof(struct btrfs_disk_key));
1354 		root_item->drop_level = 0;
1355 		/*
1356 		 * abuse rtransid, it is safe because it is impossible to
1357 		 * receive data into a relocation tree.
1358 		 */
1359 		btrfs_set_root_rtransid(root_item, last_snap);
1360 		btrfs_set_root_otransid(root_item, trans->transid);
1361 	}
1362 
1363 	btrfs_tree_unlock(eb);
1364 	free_extent_buffer(eb);
1365 
1366 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1367 				&root_key, root_item);
1368 	BUG_ON(ret);
1369 	kfree(root_item);
1370 
1371 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1372 	BUG_ON(IS_ERR(reloc_root));
1373 	reloc_root->last_trans = trans->transid;
1374 	return reloc_root;
1375 }
1376 
1377 /*
1378  * create reloc tree for a given fs tree. reloc tree is just a
1379  * snapshot of the fs tree with special root objectid.
1380  */
1381 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1382 			  struct btrfs_root *root)
1383 {
1384 	struct btrfs_root *reloc_root;
1385 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1386 	struct btrfs_block_rsv *rsv;
1387 	int clear_rsv = 0;
1388 	int ret;
1389 
1390 	if (root->reloc_root) {
1391 		reloc_root = root->reloc_root;
1392 		reloc_root->last_trans = trans->transid;
1393 		return 0;
1394 	}
1395 
1396 	if (!rc || !rc->create_reloc_tree ||
1397 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1398 		return 0;
1399 
1400 	if (!trans->reloc_reserved) {
1401 		rsv = trans->block_rsv;
1402 		trans->block_rsv = rc->block_rsv;
1403 		clear_rsv = 1;
1404 	}
1405 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1406 	if (clear_rsv)
1407 		trans->block_rsv = rsv;
1408 
1409 	ret = __add_reloc_root(reloc_root);
1410 	BUG_ON(ret < 0);
1411 	root->reloc_root = reloc_root;
1412 	return 0;
1413 }
1414 
1415 /*
1416  * update root item of reloc tree
1417  */
1418 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1419 			    struct btrfs_root *root)
1420 {
1421 	struct btrfs_root *reloc_root;
1422 	struct btrfs_root_item *root_item;
1423 	int del = 0;
1424 	int ret;
1425 
1426 	if (!root->reloc_root)
1427 		goto out;
1428 
1429 	reloc_root = root->reloc_root;
1430 	root_item = &reloc_root->root_item;
1431 
1432 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1433 	    btrfs_root_refs(root_item) == 0) {
1434 		root->reloc_root = NULL;
1435 		del = 1;
1436 	}
1437 
1438 	__update_reloc_root(reloc_root, del);
1439 
1440 	if (reloc_root->commit_root != reloc_root->node) {
1441 		btrfs_set_root_node(root_item, reloc_root->node);
1442 		free_extent_buffer(reloc_root->commit_root);
1443 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1444 	}
1445 
1446 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1447 				&reloc_root->root_key, root_item);
1448 	BUG_ON(ret);
1449 
1450 out:
1451 	return 0;
1452 }
1453 
1454 /*
1455  * helper to find first cached inode with inode number >= objectid
1456  * in a subvolume
1457  */
1458 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1459 {
1460 	struct rb_node *node;
1461 	struct rb_node *prev;
1462 	struct btrfs_inode *entry;
1463 	struct inode *inode;
1464 
1465 	spin_lock(&root->inode_lock);
1466 again:
1467 	node = root->inode_tree.rb_node;
1468 	prev = NULL;
1469 	while (node) {
1470 		prev = node;
1471 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1472 
1473 		if (objectid < btrfs_ino(&entry->vfs_inode))
1474 			node = node->rb_left;
1475 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1476 			node = node->rb_right;
1477 		else
1478 			break;
1479 	}
1480 	if (!node) {
1481 		while (prev) {
1482 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1483 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1484 				node = prev;
1485 				break;
1486 			}
1487 			prev = rb_next(prev);
1488 		}
1489 	}
1490 	while (node) {
1491 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1492 		inode = igrab(&entry->vfs_inode);
1493 		if (inode) {
1494 			spin_unlock(&root->inode_lock);
1495 			return inode;
1496 		}
1497 
1498 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1499 		if (cond_resched_lock(&root->inode_lock))
1500 			goto again;
1501 
1502 		node = rb_next(node);
1503 	}
1504 	spin_unlock(&root->inode_lock);
1505 	return NULL;
1506 }
1507 
1508 static int in_block_group(u64 bytenr,
1509 			  struct btrfs_block_group_cache *block_group)
1510 {
1511 	if (bytenr >= block_group->key.objectid &&
1512 	    bytenr < block_group->key.objectid + block_group->key.offset)
1513 		return 1;
1514 	return 0;
1515 }
1516 
1517 /*
1518  * get new location of data
1519  */
1520 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1521 			    u64 bytenr, u64 num_bytes)
1522 {
1523 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1524 	struct btrfs_path *path;
1525 	struct btrfs_file_extent_item *fi;
1526 	struct extent_buffer *leaf;
1527 	int ret;
1528 
1529 	path = btrfs_alloc_path();
1530 	if (!path)
1531 		return -ENOMEM;
1532 
1533 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1534 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1535 				       bytenr, 0);
1536 	if (ret < 0)
1537 		goto out;
1538 	if (ret > 0) {
1539 		ret = -ENOENT;
1540 		goto out;
1541 	}
1542 
1543 	leaf = path->nodes[0];
1544 	fi = btrfs_item_ptr(leaf, path->slots[0],
1545 			    struct btrfs_file_extent_item);
1546 
1547 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1548 	       btrfs_file_extent_compression(leaf, fi) ||
1549 	       btrfs_file_extent_encryption(leaf, fi) ||
1550 	       btrfs_file_extent_other_encoding(leaf, fi));
1551 
1552 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1553 		ret = -EINVAL;
1554 		goto out;
1555 	}
1556 
1557 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1558 	ret = 0;
1559 out:
1560 	btrfs_free_path(path);
1561 	return ret;
1562 }
1563 
1564 /*
1565  * update file extent items in the tree leaf to point to
1566  * the new locations.
1567  */
1568 static noinline_for_stack
1569 int replace_file_extents(struct btrfs_trans_handle *trans,
1570 			 struct reloc_control *rc,
1571 			 struct btrfs_root *root,
1572 			 struct extent_buffer *leaf)
1573 {
1574 	struct btrfs_key key;
1575 	struct btrfs_file_extent_item *fi;
1576 	struct inode *inode = NULL;
1577 	u64 parent;
1578 	u64 bytenr;
1579 	u64 new_bytenr = 0;
1580 	u64 num_bytes;
1581 	u64 end;
1582 	u32 nritems;
1583 	u32 i;
1584 	int ret = 0;
1585 	int first = 1;
1586 	int dirty = 0;
1587 
1588 	if (rc->stage != UPDATE_DATA_PTRS)
1589 		return 0;
1590 
1591 	/* reloc trees always use full backref */
1592 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1593 		parent = leaf->start;
1594 	else
1595 		parent = 0;
1596 
1597 	nritems = btrfs_header_nritems(leaf);
1598 	for (i = 0; i < nritems; i++) {
1599 		cond_resched();
1600 		btrfs_item_key_to_cpu(leaf, &key, i);
1601 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1602 			continue;
1603 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1604 		if (btrfs_file_extent_type(leaf, fi) ==
1605 		    BTRFS_FILE_EXTENT_INLINE)
1606 			continue;
1607 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1608 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1609 		if (bytenr == 0)
1610 			continue;
1611 		if (!in_block_group(bytenr, rc->block_group))
1612 			continue;
1613 
1614 		/*
1615 		 * if we are modifying block in fs tree, wait for readpage
1616 		 * to complete and drop the extent cache
1617 		 */
1618 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1619 			if (first) {
1620 				inode = find_next_inode(root, key.objectid);
1621 				first = 0;
1622 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1623 				btrfs_add_delayed_iput(inode);
1624 				inode = find_next_inode(root, key.objectid);
1625 			}
1626 			if (inode && btrfs_ino(inode) == key.objectid) {
1627 				end = key.offset +
1628 				      btrfs_file_extent_num_bytes(leaf, fi);
1629 				WARN_ON(!IS_ALIGNED(key.offset,
1630 						    root->sectorsize));
1631 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1632 				end--;
1633 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1634 						      key.offset, end);
1635 				if (!ret)
1636 					continue;
1637 
1638 				btrfs_drop_extent_cache(inode, key.offset, end,
1639 							1);
1640 				unlock_extent(&BTRFS_I(inode)->io_tree,
1641 					      key.offset, end);
1642 			}
1643 		}
1644 
1645 		ret = get_new_location(rc->data_inode, &new_bytenr,
1646 				       bytenr, num_bytes);
1647 		if (ret) {
1648 			/*
1649 			 * Don't have to abort since we've not changed anything
1650 			 * in the file extent yet.
1651 			 */
1652 			break;
1653 		}
1654 
1655 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1656 		dirty = 1;
1657 
1658 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1659 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1660 					   num_bytes, parent,
1661 					   btrfs_header_owner(leaf),
1662 					   key.objectid, key.offset, 1);
1663 		if (ret) {
1664 			btrfs_abort_transaction(trans, root, ret);
1665 			break;
1666 		}
1667 
1668 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1669 					parent, btrfs_header_owner(leaf),
1670 					key.objectid, key.offset, 1);
1671 		if (ret) {
1672 			btrfs_abort_transaction(trans, root, ret);
1673 			break;
1674 		}
1675 	}
1676 	if (dirty)
1677 		btrfs_mark_buffer_dirty(leaf);
1678 	if (inode)
1679 		btrfs_add_delayed_iput(inode);
1680 	return ret;
1681 }
1682 
1683 static noinline_for_stack
1684 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1685 		     struct btrfs_path *path, int level)
1686 {
1687 	struct btrfs_disk_key key1;
1688 	struct btrfs_disk_key key2;
1689 	btrfs_node_key(eb, &key1, slot);
1690 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1691 	return memcmp(&key1, &key2, sizeof(key1));
1692 }
1693 
1694 /*
1695  * try to replace tree blocks in fs tree with the new blocks
1696  * in reloc tree. tree blocks haven't been modified since the
1697  * reloc tree was create can be replaced.
1698  *
1699  * if a block was replaced, level of the block + 1 is returned.
1700  * if no block got replaced, 0 is returned. if there are other
1701  * errors, a negative error number is returned.
1702  */
1703 static noinline_for_stack
1704 int replace_path(struct btrfs_trans_handle *trans,
1705 		 struct btrfs_root *dest, struct btrfs_root *src,
1706 		 struct btrfs_path *path, struct btrfs_key *next_key,
1707 		 int lowest_level, int max_level)
1708 {
1709 	struct extent_buffer *eb;
1710 	struct extent_buffer *parent;
1711 	struct btrfs_key key;
1712 	u64 old_bytenr;
1713 	u64 new_bytenr;
1714 	u64 old_ptr_gen;
1715 	u64 new_ptr_gen;
1716 	u64 last_snapshot;
1717 	u32 blocksize;
1718 	int cow = 0;
1719 	int level;
1720 	int ret;
1721 	int slot;
1722 
1723 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1724 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1725 
1726 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1727 again:
1728 	slot = path->slots[lowest_level];
1729 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1730 
1731 	eb = btrfs_lock_root_node(dest);
1732 	btrfs_set_lock_blocking(eb);
1733 	level = btrfs_header_level(eb);
1734 
1735 	if (level < lowest_level) {
1736 		btrfs_tree_unlock(eb);
1737 		free_extent_buffer(eb);
1738 		return 0;
1739 	}
1740 
1741 	if (cow) {
1742 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1743 		BUG_ON(ret);
1744 	}
1745 	btrfs_set_lock_blocking(eb);
1746 
1747 	if (next_key) {
1748 		next_key->objectid = (u64)-1;
1749 		next_key->type = (u8)-1;
1750 		next_key->offset = (u64)-1;
1751 	}
1752 
1753 	parent = eb;
1754 	while (1) {
1755 		level = btrfs_header_level(parent);
1756 		BUG_ON(level < lowest_level);
1757 
1758 		ret = btrfs_bin_search(parent, &key, level, &slot);
1759 		if (ret && slot > 0)
1760 			slot--;
1761 
1762 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1763 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1764 
1765 		old_bytenr = btrfs_node_blockptr(parent, slot);
1766 		blocksize = btrfs_level_size(dest, level - 1);
1767 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1768 
1769 		if (level <= max_level) {
1770 			eb = path->nodes[level];
1771 			new_bytenr = btrfs_node_blockptr(eb,
1772 							path->slots[level]);
1773 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1774 							path->slots[level]);
1775 		} else {
1776 			new_bytenr = 0;
1777 			new_ptr_gen = 0;
1778 		}
1779 
1780 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1781 			ret = level;
1782 			break;
1783 		}
1784 
1785 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1786 		    memcmp_node_keys(parent, slot, path, level)) {
1787 			if (level <= lowest_level) {
1788 				ret = 0;
1789 				break;
1790 			}
1791 
1792 			eb = read_tree_block(dest, old_bytenr, blocksize,
1793 					     old_ptr_gen);
1794 			if (!eb || !extent_buffer_uptodate(eb)) {
1795 				ret = (!eb) ? -ENOMEM : -EIO;
1796 				free_extent_buffer(eb);
1797 				break;
1798 			}
1799 			btrfs_tree_lock(eb);
1800 			if (cow) {
1801 				ret = btrfs_cow_block(trans, dest, eb, parent,
1802 						      slot, &eb);
1803 				BUG_ON(ret);
1804 			}
1805 			btrfs_set_lock_blocking(eb);
1806 
1807 			btrfs_tree_unlock(parent);
1808 			free_extent_buffer(parent);
1809 
1810 			parent = eb;
1811 			continue;
1812 		}
1813 
1814 		if (!cow) {
1815 			btrfs_tree_unlock(parent);
1816 			free_extent_buffer(parent);
1817 			cow = 1;
1818 			goto again;
1819 		}
1820 
1821 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1822 				      path->slots[level]);
1823 		btrfs_release_path(path);
1824 
1825 		path->lowest_level = level;
1826 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1827 		path->lowest_level = 0;
1828 		BUG_ON(ret);
1829 
1830 		/*
1831 		 * swap blocks in fs tree and reloc tree.
1832 		 */
1833 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1834 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1835 		btrfs_mark_buffer_dirty(parent);
1836 
1837 		btrfs_set_node_blockptr(path->nodes[level],
1838 					path->slots[level], old_bytenr);
1839 		btrfs_set_node_ptr_generation(path->nodes[level],
1840 					      path->slots[level], old_ptr_gen);
1841 		btrfs_mark_buffer_dirty(path->nodes[level]);
1842 
1843 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1844 					path->nodes[level]->start,
1845 					src->root_key.objectid, level - 1, 0,
1846 					1);
1847 		BUG_ON(ret);
1848 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1849 					0, dest->root_key.objectid, level - 1,
1850 					0, 1);
1851 		BUG_ON(ret);
1852 
1853 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1854 					path->nodes[level]->start,
1855 					src->root_key.objectid, level - 1, 0,
1856 					1);
1857 		BUG_ON(ret);
1858 
1859 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1860 					0, dest->root_key.objectid, level - 1,
1861 					0, 1);
1862 		BUG_ON(ret);
1863 
1864 		btrfs_unlock_up_safe(path, 0);
1865 
1866 		ret = level;
1867 		break;
1868 	}
1869 	btrfs_tree_unlock(parent);
1870 	free_extent_buffer(parent);
1871 	return ret;
1872 }
1873 
1874 /*
1875  * helper to find next relocated block in reloc tree
1876  */
1877 static noinline_for_stack
1878 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1879 		       int *level)
1880 {
1881 	struct extent_buffer *eb;
1882 	int i;
1883 	u64 last_snapshot;
1884 	u32 nritems;
1885 
1886 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1887 
1888 	for (i = 0; i < *level; i++) {
1889 		free_extent_buffer(path->nodes[i]);
1890 		path->nodes[i] = NULL;
1891 	}
1892 
1893 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1894 		eb = path->nodes[i];
1895 		nritems = btrfs_header_nritems(eb);
1896 		while (path->slots[i] + 1 < nritems) {
1897 			path->slots[i]++;
1898 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1899 			    last_snapshot)
1900 				continue;
1901 
1902 			*level = i;
1903 			return 0;
1904 		}
1905 		free_extent_buffer(path->nodes[i]);
1906 		path->nodes[i] = NULL;
1907 	}
1908 	return 1;
1909 }
1910 
1911 /*
1912  * walk down reloc tree to find relocated block of lowest level
1913  */
1914 static noinline_for_stack
1915 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1916 			 int *level)
1917 {
1918 	struct extent_buffer *eb = NULL;
1919 	int i;
1920 	u64 bytenr;
1921 	u64 ptr_gen = 0;
1922 	u64 last_snapshot;
1923 	u32 blocksize;
1924 	u32 nritems;
1925 
1926 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1927 
1928 	for (i = *level; i > 0; i--) {
1929 		eb = path->nodes[i];
1930 		nritems = btrfs_header_nritems(eb);
1931 		while (path->slots[i] < nritems) {
1932 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1933 			if (ptr_gen > last_snapshot)
1934 				break;
1935 			path->slots[i]++;
1936 		}
1937 		if (path->slots[i] >= nritems) {
1938 			if (i == *level)
1939 				break;
1940 			*level = i + 1;
1941 			return 0;
1942 		}
1943 		if (i == 1) {
1944 			*level = i;
1945 			return 0;
1946 		}
1947 
1948 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1949 		blocksize = btrfs_level_size(root, i - 1);
1950 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1951 		if (!eb || !extent_buffer_uptodate(eb)) {
1952 			free_extent_buffer(eb);
1953 			return -EIO;
1954 		}
1955 		BUG_ON(btrfs_header_level(eb) != i - 1);
1956 		path->nodes[i - 1] = eb;
1957 		path->slots[i - 1] = 0;
1958 	}
1959 	return 1;
1960 }
1961 
1962 /*
1963  * invalidate extent cache for file extents whose key in range of
1964  * [min_key, max_key)
1965  */
1966 static int invalidate_extent_cache(struct btrfs_root *root,
1967 				   struct btrfs_key *min_key,
1968 				   struct btrfs_key *max_key)
1969 {
1970 	struct inode *inode = NULL;
1971 	u64 objectid;
1972 	u64 start, end;
1973 	u64 ino;
1974 
1975 	objectid = min_key->objectid;
1976 	while (1) {
1977 		cond_resched();
1978 		iput(inode);
1979 
1980 		if (objectid > max_key->objectid)
1981 			break;
1982 
1983 		inode = find_next_inode(root, objectid);
1984 		if (!inode)
1985 			break;
1986 		ino = btrfs_ino(inode);
1987 
1988 		if (ino > max_key->objectid) {
1989 			iput(inode);
1990 			break;
1991 		}
1992 
1993 		objectid = ino + 1;
1994 		if (!S_ISREG(inode->i_mode))
1995 			continue;
1996 
1997 		if (unlikely(min_key->objectid == ino)) {
1998 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1999 				continue;
2000 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2001 				start = 0;
2002 			else {
2003 				start = min_key->offset;
2004 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2005 			}
2006 		} else {
2007 			start = 0;
2008 		}
2009 
2010 		if (unlikely(max_key->objectid == ino)) {
2011 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2012 				continue;
2013 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2014 				end = (u64)-1;
2015 			} else {
2016 				if (max_key->offset == 0)
2017 					continue;
2018 				end = max_key->offset;
2019 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2020 				end--;
2021 			}
2022 		} else {
2023 			end = (u64)-1;
2024 		}
2025 
2026 		/* the lock_extent waits for readpage to complete */
2027 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2028 		btrfs_drop_extent_cache(inode, start, end, 1);
2029 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2030 	}
2031 	return 0;
2032 }
2033 
2034 static int find_next_key(struct btrfs_path *path, int level,
2035 			 struct btrfs_key *key)
2036 
2037 {
2038 	while (level < BTRFS_MAX_LEVEL) {
2039 		if (!path->nodes[level])
2040 			break;
2041 		if (path->slots[level] + 1 <
2042 		    btrfs_header_nritems(path->nodes[level])) {
2043 			btrfs_node_key_to_cpu(path->nodes[level], key,
2044 					      path->slots[level] + 1);
2045 			return 0;
2046 		}
2047 		level++;
2048 	}
2049 	return 1;
2050 }
2051 
2052 /*
2053  * merge the relocated tree blocks in reloc tree with corresponding
2054  * fs tree.
2055  */
2056 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2057 					       struct btrfs_root *root)
2058 {
2059 	LIST_HEAD(inode_list);
2060 	struct btrfs_key key;
2061 	struct btrfs_key next_key;
2062 	struct btrfs_trans_handle *trans = NULL;
2063 	struct btrfs_root *reloc_root;
2064 	struct btrfs_root_item *root_item;
2065 	struct btrfs_path *path;
2066 	struct extent_buffer *leaf;
2067 	int level;
2068 	int max_level;
2069 	int replaced = 0;
2070 	int ret;
2071 	int err = 0;
2072 	u32 min_reserved;
2073 
2074 	path = btrfs_alloc_path();
2075 	if (!path)
2076 		return -ENOMEM;
2077 	path->reada = 1;
2078 
2079 	reloc_root = root->reloc_root;
2080 	root_item = &reloc_root->root_item;
2081 
2082 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2083 		level = btrfs_root_level(root_item);
2084 		extent_buffer_get(reloc_root->node);
2085 		path->nodes[level] = reloc_root->node;
2086 		path->slots[level] = 0;
2087 	} else {
2088 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2089 
2090 		level = root_item->drop_level;
2091 		BUG_ON(level == 0);
2092 		path->lowest_level = level;
2093 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2094 		path->lowest_level = 0;
2095 		if (ret < 0) {
2096 			btrfs_free_path(path);
2097 			return ret;
2098 		}
2099 
2100 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2101 				      path->slots[level]);
2102 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2103 
2104 		btrfs_unlock_up_safe(path, 0);
2105 	}
2106 
2107 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2108 	memset(&next_key, 0, sizeof(next_key));
2109 
2110 	while (1) {
2111 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2112 					     BTRFS_RESERVE_FLUSH_ALL);
2113 		if (ret) {
2114 			err = ret;
2115 			goto out;
2116 		}
2117 		trans = btrfs_start_transaction(root, 0);
2118 		if (IS_ERR(trans)) {
2119 			err = PTR_ERR(trans);
2120 			trans = NULL;
2121 			goto out;
2122 		}
2123 		trans->block_rsv = rc->block_rsv;
2124 
2125 		replaced = 0;
2126 		max_level = level;
2127 
2128 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2129 		if (ret < 0) {
2130 			err = ret;
2131 			goto out;
2132 		}
2133 		if (ret > 0)
2134 			break;
2135 
2136 		if (!find_next_key(path, level, &key) &&
2137 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2138 			ret = 0;
2139 		} else {
2140 			ret = replace_path(trans, root, reloc_root, path,
2141 					   &next_key, level, max_level);
2142 		}
2143 		if (ret < 0) {
2144 			err = ret;
2145 			goto out;
2146 		}
2147 
2148 		if (ret > 0) {
2149 			level = ret;
2150 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2151 					      path->slots[level]);
2152 			replaced = 1;
2153 		}
2154 
2155 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2156 		if (ret > 0)
2157 			break;
2158 
2159 		BUG_ON(level == 0);
2160 		/*
2161 		 * save the merging progress in the drop_progress.
2162 		 * this is OK since root refs == 1 in this case.
2163 		 */
2164 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2165 			       path->slots[level]);
2166 		root_item->drop_level = level;
2167 
2168 		btrfs_end_transaction_throttle(trans, root);
2169 		trans = NULL;
2170 
2171 		btrfs_btree_balance_dirty(root);
2172 
2173 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2174 			invalidate_extent_cache(root, &key, &next_key);
2175 	}
2176 
2177 	/*
2178 	 * handle the case only one block in the fs tree need to be
2179 	 * relocated and the block is tree root.
2180 	 */
2181 	leaf = btrfs_lock_root_node(root);
2182 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2183 	btrfs_tree_unlock(leaf);
2184 	free_extent_buffer(leaf);
2185 	if (ret < 0)
2186 		err = ret;
2187 out:
2188 	btrfs_free_path(path);
2189 
2190 	if (err == 0) {
2191 		memset(&root_item->drop_progress, 0,
2192 		       sizeof(root_item->drop_progress));
2193 		root_item->drop_level = 0;
2194 		btrfs_set_root_refs(root_item, 0);
2195 		btrfs_update_reloc_root(trans, root);
2196 	}
2197 
2198 	if (trans)
2199 		btrfs_end_transaction_throttle(trans, root);
2200 
2201 	btrfs_btree_balance_dirty(root);
2202 
2203 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2204 		invalidate_extent_cache(root, &key, &next_key);
2205 
2206 	return err;
2207 }
2208 
2209 static noinline_for_stack
2210 int prepare_to_merge(struct reloc_control *rc, int err)
2211 {
2212 	struct btrfs_root *root = rc->extent_root;
2213 	struct btrfs_root *reloc_root;
2214 	struct btrfs_trans_handle *trans;
2215 	LIST_HEAD(reloc_roots);
2216 	u64 num_bytes = 0;
2217 	int ret;
2218 
2219 	mutex_lock(&root->fs_info->reloc_mutex);
2220 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2221 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2222 	mutex_unlock(&root->fs_info->reloc_mutex);
2223 
2224 again:
2225 	if (!err) {
2226 		num_bytes = rc->merging_rsv_size;
2227 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2228 					  BTRFS_RESERVE_FLUSH_ALL);
2229 		if (ret)
2230 			err = ret;
2231 	}
2232 
2233 	trans = btrfs_join_transaction(rc->extent_root);
2234 	if (IS_ERR(trans)) {
2235 		if (!err)
2236 			btrfs_block_rsv_release(rc->extent_root,
2237 						rc->block_rsv, num_bytes);
2238 		return PTR_ERR(trans);
2239 	}
2240 
2241 	if (!err) {
2242 		if (num_bytes != rc->merging_rsv_size) {
2243 			btrfs_end_transaction(trans, rc->extent_root);
2244 			btrfs_block_rsv_release(rc->extent_root,
2245 						rc->block_rsv, num_bytes);
2246 			goto again;
2247 		}
2248 	}
2249 
2250 	rc->merge_reloc_tree = 1;
2251 
2252 	while (!list_empty(&rc->reloc_roots)) {
2253 		reloc_root = list_entry(rc->reloc_roots.next,
2254 					struct btrfs_root, root_list);
2255 		list_del_init(&reloc_root->root_list);
2256 
2257 		root = read_fs_root(reloc_root->fs_info,
2258 				    reloc_root->root_key.offset);
2259 		BUG_ON(IS_ERR(root));
2260 		BUG_ON(root->reloc_root != reloc_root);
2261 
2262 		/*
2263 		 * set reference count to 1, so btrfs_recover_relocation
2264 		 * knows it should resumes merging
2265 		 */
2266 		if (!err)
2267 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2268 		btrfs_update_reloc_root(trans, root);
2269 
2270 		list_add(&reloc_root->root_list, &reloc_roots);
2271 	}
2272 
2273 	list_splice(&reloc_roots, &rc->reloc_roots);
2274 
2275 	if (!err)
2276 		btrfs_commit_transaction(trans, rc->extent_root);
2277 	else
2278 		btrfs_end_transaction(trans, rc->extent_root);
2279 	return err;
2280 }
2281 
2282 static noinline_for_stack
2283 void free_reloc_roots(struct list_head *list)
2284 {
2285 	struct btrfs_root *reloc_root;
2286 
2287 	while (!list_empty(list)) {
2288 		reloc_root = list_entry(list->next, struct btrfs_root,
2289 					root_list);
2290 		__update_reloc_root(reloc_root, 1);
2291 		free_extent_buffer(reloc_root->node);
2292 		free_extent_buffer(reloc_root->commit_root);
2293 		kfree(reloc_root);
2294 	}
2295 }
2296 
2297 static noinline_for_stack
2298 int merge_reloc_roots(struct reloc_control *rc)
2299 {
2300 	struct btrfs_trans_handle *trans;
2301 	struct btrfs_root *root;
2302 	struct btrfs_root *reloc_root;
2303 	u64 last_snap;
2304 	u64 otransid;
2305 	u64 objectid;
2306 	LIST_HEAD(reloc_roots);
2307 	int found = 0;
2308 	int ret = 0;
2309 again:
2310 	root = rc->extent_root;
2311 
2312 	/*
2313 	 * this serializes us with btrfs_record_root_in_transaction,
2314 	 * we have to make sure nobody is in the middle of
2315 	 * adding their roots to the list while we are
2316 	 * doing this splice
2317 	 */
2318 	mutex_lock(&root->fs_info->reloc_mutex);
2319 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2320 	mutex_unlock(&root->fs_info->reloc_mutex);
2321 
2322 	while (!list_empty(&reloc_roots)) {
2323 		found = 1;
2324 		reloc_root = list_entry(reloc_roots.next,
2325 					struct btrfs_root, root_list);
2326 
2327 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2328 			root = read_fs_root(reloc_root->fs_info,
2329 					    reloc_root->root_key.offset);
2330 			BUG_ON(IS_ERR(root));
2331 			BUG_ON(root->reloc_root != reloc_root);
2332 
2333 			ret = merge_reloc_root(rc, root);
2334 			if (ret) {
2335 				__update_reloc_root(reloc_root, 1);
2336 				free_extent_buffer(reloc_root->node);
2337 				free_extent_buffer(reloc_root->commit_root);
2338 				kfree(reloc_root);
2339 				goto out;
2340 			}
2341 		} else {
2342 			list_del_init(&reloc_root->root_list);
2343 		}
2344 
2345 		/*
2346 		 * we keep the old last snapshod transid in rtranid when we
2347 		 * created the relocation tree.
2348 		 */
2349 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2350 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2351 		objectid = reloc_root->root_key.offset;
2352 
2353 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2354 		if (ret < 0) {
2355 			if (list_empty(&reloc_root->root_list))
2356 				list_add_tail(&reloc_root->root_list,
2357 					      &reloc_roots);
2358 			goto out;
2359 		} else if (!ret) {
2360 			/*
2361 			 * recover the last snapshot tranid to avoid
2362 			 * the space balance break NOCOW.
2363 			 */
2364 			root = read_fs_root(rc->extent_root->fs_info,
2365 					    objectid);
2366 			if (IS_ERR(root))
2367 				continue;
2368 
2369 			trans = btrfs_join_transaction(root);
2370 			BUG_ON(IS_ERR(trans));
2371 
2372 			/* Check if the fs/file tree was snapshoted or not. */
2373 			if (btrfs_root_last_snapshot(&root->root_item) ==
2374 			    otransid - 1)
2375 				btrfs_set_root_last_snapshot(&root->root_item,
2376 							     last_snap);
2377 
2378 			btrfs_end_transaction(trans, root);
2379 		}
2380 	}
2381 
2382 	if (found) {
2383 		found = 0;
2384 		goto again;
2385 	}
2386 out:
2387 	if (ret) {
2388 		btrfs_std_error(root->fs_info, ret);
2389 		if (!list_empty(&reloc_roots))
2390 			free_reloc_roots(&reloc_roots);
2391 	}
2392 
2393 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2394 	return ret;
2395 }
2396 
2397 static void free_block_list(struct rb_root *blocks)
2398 {
2399 	struct tree_block *block;
2400 	struct rb_node *rb_node;
2401 	while ((rb_node = rb_first(blocks))) {
2402 		block = rb_entry(rb_node, struct tree_block, rb_node);
2403 		rb_erase(rb_node, blocks);
2404 		kfree(block);
2405 	}
2406 }
2407 
2408 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2409 				      struct btrfs_root *reloc_root)
2410 {
2411 	struct btrfs_root *root;
2412 
2413 	if (reloc_root->last_trans == trans->transid)
2414 		return 0;
2415 
2416 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2417 	BUG_ON(IS_ERR(root));
2418 	BUG_ON(root->reloc_root != reloc_root);
2419 
2420 	return btrfs_record_root_in_trans(trans, root);
2421 }
2422 
2423 static noinline_for_stack
2424 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2425 				     struct reloc_control *rc,
2426 				     struct backref_node *node,
2427 				     struct backref_edge *edges[], int *nr)
2428 {
2429 	struct backref_node *next;
2430 	struct btrfs_root *root;
2431 	int index = 0;
2432 
2433 	next = node;
2434 	while (1) {
2435 		cond_resched();
2436 		next = walk_up_backref(next, edges, &index);
2437 		root = next->root;
2438 		BUG_ON(!root);
2439 		BUG_ON(!root->ref_cows);
2440 
2441 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2442 			record_reloc_root_in_trans(trans, root);
2443 			break;
2444 		}
2445 
2446 		btrfs_record_root_in_trans(trans, root);
2447 		root = root->reloc_root;
2448 
2449 		if (next->new_bytenr != root->node->start) {
2450 			BUG_ON(next->new_bytenr);
2451 			BUG_ON(!list_empty(&next->list));
2452 			next->new_bytenr = root->node->start;
2453 			next->root = root;
2454 			list_add_tail(&next->list,
2455 				      &rc->backref_cache.changed);
2456 			__mark_block_processed(rc, next);
2457 			break;
2458 		}
2459 
2460 		WARN_ON(1);
2461 		root = NULL;
2462 		next = walk_down_backref(edges, &index);
2463 		if (!next || next->level <= node->level)
2464 			break;
2465 	}
2466 	if (!root)
2467 		return NULL;
2468 
2469 	*nr = index;
2470 	next = node;
2471 	/* setup backref node path for btrfs_reloc_cow_block */
2472 	while (1) {
2473 		rc->backref_cache.path[next->level] = next;
2474 		if (--index < 0)
2475 			break;
2476 		next = edges[index]->node[UPPER];
2477 	}
2478 	return root;
2479 }
2480 
2481 /*
2482  * select a tree root for relocation. return NULL if the block
2483  * is reference counted. we should use do_relocation() in this
2484  * case. return a tree root pointer if the block isn't reference
2485  * counted. return -ENOENT if the block is root of reloc tree.
2486  */
2487 static noinline_for_stack
2488 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2489 				   struct backref_node *node)
2490 {
2491 	struct backref_node *next;
2492 	struct btrfs_root *root;
2493 	struct btrfs_root *fs_root = NULL;
2494 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2495 	int index = 0;
2496 
2497 	next = node;
2498 	while (1) {
2499 		cond_resched();
2500 		next = walk_up_backref(next, edges, &index);
2501 		root = next->root;
2502 		BUG_ON(!root);
2503 
2504 		/* no other choice for non-references counted tree */
2505 		if (!root->ref_cows)
2506 			return root;
2507 
2508 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2509 			fs_root = root;
2510 
2511 		if (next != node)
2512 			return NULL;
2513 
2514 		next = walk_down_backref(edges, &index);
2515 		if (!next || next->level <= node->level)
2516 			break;
2517 	}
2518 
2519 	if (!fs_root)
2520 		return ERR_PTR(-ENOENT);
2521 	return fs_root;
2522 }
2523 
2524 static noinline_for_stack
2525 u64 calcu_metadata_size(struct reloc_control *rc,
2526 			struct backref_node *node, int reserve)
2527 {
2528 	struct backref_node *next = node;
2529 	struct backref_edge *edge;
2530 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2531 	u64 num_bytes = 0;
2532 	int index = 0;
2533 
2534 	BUG_ON(reserve && node->processed);
2535 
2536 	while (next) {
2537 		cond_resched();
2538 		while (1) {
2539 			if (next->processed && (reserve || next != node))
2540 				break;
2541 
2542 			num_bytes += btrfs_level_size(rc->extent_root,
2543 						      next->level);
2544 
2545 			if (list_empty(&next->upper))
2546 				break;
2547 
2548 			edge = list_entry(next->upper.next,
2549 					  struct backref_edge, list[LOWER]);
2550 			edges[index++] = edge;
2551 			next = edge->node[UPPER];
2552 		}
2553 		next = walk_down_backref(edges, &index);
2554 	}
2555 	return num_bytes;
2556 }
2557 
2558 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2559 				  struct reloc_control *rc,
2560 				  struct backref_node *node)
2561 {
2562 	struct btrfs_root *root = rc->extent_root;
2563 	u64 num_bytes;
2564 	int ret;
2565 
2566 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2567 
2568 	trans->block_rsv = rc->block_rsv;
2569 	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2570 				  BTRFS_RESERVE_FLUSH_ALL);
2571 	if (ret) {
2572 		if (ret == -EAGAIN)
2573 			rc->commit_transaction = 1;
2574 		return ret;
2575 	}
2576 
2577 	return 0;
2578 }
2579 
2580 static void release_metadata_space(struct reloc_control *rc,
2581 				   struct backref_node *node)
2582 {
2583 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2584 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2585 }
2586 
2587 /*
2588  * relocate a block tree, and then update pointers in upper level
2589  * blocks that reference the block to point to the new location.
2590  *
2591  * if called by link_to_upper, the block has already been relocated.
2592  * in that case this function just updates pointers.
2593  */
2594 static int do_relocation(struct btrfs_trans_handle *trans,
2595 			 struct reloc_control *rc,
2596 			 struct backref_node *node,
2597 			 struct btrfs_key *key,
2598 			 struct btrfs_path *path, int lowest)
2599 {
2600 	struct backref_node *upper;
2601 	struct backref_edge *edge;
2602 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2603 	struct btrfs_root *root;
2604 	struct extent_buffer *eb;
2605 	u32 blocksize;
2606 	u64 bytenr;
2607 	u64 generation;
2608 	int nr;
2609 	int slot;
2610 	int ret;
2611 	int err = 0;
2612 
2613 	BUG_ON(lowest && node->eb);
2614 
2615 	path->lowest_level = node->level + 1;
2616 	rc->backref_cache.path[node->level] = node;
2617 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2618 		cond_resched();
2619 
2620 		upper = edge->node[UPPER];
2621 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2622 		BUG_ON(!root);
2623 
2624 		if (upper->eb && !upper->locked) {
2625 			if (!lowest) {
2626 				ret = btrfs_bin_search(upper->eb, key,
2627 						       upper->level, &slot);
2628 				BUG_ON(ret);
2629 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2630 				if (node->eb->start == bytenr)
2631 					goto next;
2632 			}
2633 			drop_node_buffer(upper);
2634 		}
2635 
2636 		if (!upper->eb) {
2637 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2638 			if (ret < 0) {
2639 				err = ret;
2640 				break;
2641 			}
2642 			BUG_ON(ret > 0);
2643 
2644 			if (!upper->eb) {
2645 				upper->eb = path->nodes[upper->level];
2646 				path->nodes[upper->level] = NULL;
2647 			} else {
2648 				BUG_ON(upper->eb != path->nodes[upper->level]);
2649 			}
2650 
2651 			upper->locked = 1;
2652 			path->locks[upper->level] = 0;
2653 
2654 			slot = path->slots[upper->level];
2655 			btrfs_release_path(path);
2656 		} else {
2657 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2658 					       &slot);
2659 			BUG_ON(ret);
2660 		}
2661 
2662 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2663 		if (lowest) {
2664 			BUG_ON(bytenr != node->bytenr);
2665 		} else {
2666 			if (node->eb->start == bytenr)
2667 				goto next;
2668 		}
2669 
2670 		blocksize = btrfs_level_size(root, node->level);
2671 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2672 		eb = read_tree_block(root, bytenr, blocksize, generation);
2673 		if (!eb || !extent_buffer_uptodate(eb)) {
2674 			free_extent_buffer(eb);
2675 			err = -EIO;
2676 			goto next;
2677 		}
2678 		btrfs_tree_lock(eb);
2679 		btrfs_set_lock_blocking(eb);
2680 
2681 		if (!node->eb) {
2682 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2683 					      slot, &eb);
2684 			btrfs_tree_unlock(eb);
2685 			free_extent_buffer(eb);
2686 			if (ret < 0) {
2687 				err = ret;
2688 				goto next;
2689 			}
2690 			BUG_ON(node->eb != eb);
2691 		} else {
2692 			btrfs_set_node_blockptr(upper->eb, slot,
2693 						node->eb->start);
2694 			btrfs_set_node_ptr_generation(upper->eb, slot,
2695 						      trans->transid);
2696 			btrfs_mark_buffer_dirty(upper->eb);
2697 
2698 			ret = btrfs_inc_extent_ref(trans, root,
2699 						node->eb->start, blocksize,
2700 						upper->eb->start,
2701 						btrfs_header_owner(upper->eb),
2702 						node->level, 0, 1);
2703 			BUG_ON(ret);
2704 
2705 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2706 			BUG_ON(ret);
2707 		}
2708 next:
2709 		if (!upper->pending)
2710 			drop_node_buffer(upper);
2711 		else
2712 			unlock_node_buffer(upper);
2713 		if (err)
2714 			break;
2715 	}
2716 
2717 	if (!err && node->pending) {
2718 		drop_node_buffer(node);
2719 		list_move_tail(&node->list, &rc->backref_cache.changed);
2720 		node->pending = 0;
2721 	}
2722 
2723 	path->lowest_level = 0;
2724 	BUG_ON(err == -ENOSPC);
2725 	return err;
2726 }
2727 
2728 static int link_to_upper(struct btrfs_trans_handle *trans,
2729 			 struct reloc_control *rc,
2730 			 struct backref_node *node,
2731 			 struct btrfs_path *path)
2732 {
2733 	struct btrfs_key key;
2734 
2735 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2736 	return do_relocation(trans, rc, node, &key, path, 0);
2737 }
2738 
2739 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2740 				struct reloc_control *rc,
2741 				struct btrfs_path *path, int err)
2742 {
2743 	LIST_HEAD(list);
2744 	struct backref_cache *cache = &rc->backref_cache;
2745 	struct backref_node *node;
2746 	int level;
2747 	int ret;
2748 
2749 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2750 		while (!list_empty(&cache->pending[level])) {
2751 			node = list_entry(cache->pending[level].next,
2752 					  struct backref_node, list);
2753 			list_move_tail(&node->list, &list);
2754 			BUG_ON(!node->pending);
2755 
2756 			if (!err) {
2757 				ret = link_to_upper(trans, rc, node, path);
2758 				if (ret < 0)
2759 					err = ret;
2760 			}
2761 		}
2762 		list_splice_init(&list, &cache->pending[level]);
2763 	}
2764 	return err;
2765 }
2766 
2767 static void mark_block_processed(struct reloc_control *rc,
2768 				 u64 bytenr, u32 blocksize)
2769 {
2770 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2771 			EXTENT_DIRTY, GFP_NOFS);
2772 }
2773 
2774 static void __mark_block_processed(struct reloc_control *rc,
2775 				   struct backref_node *node)
2776 {
2777 	u32 blocksize;
2778 	if (node->level == 0 ||
2779 	    in_block_group(node->bytenr, rc->block_group)) {
2780 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2781 		mark_block_processed(rc, node->bytenr, blocksize);
2782 	}
2783 	node->processed = 1;
2784 }
2785 
2786 /*
2787  * mark a block and all blocks directly/indirectly reference the block
2788  * as processed.
2789  */
2790 static void update_processed_blocks(struct reloc_control *rc,
2791 				    struct backref_node *node)
2792 {
2793 	struct backref_node *next = node;
2794 	struct backref_edge *edge;
2795 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2796 	int index = 0;
2797 
2798 	while (next) {
2799 		cond_resched();
2800 		while (1) {
2801 			if (next->processed)
2802 				break;
2803 
2804 			__mark_block_processed(rc, next);
2805 
2806 			if (list_empty(&next->upper))
2807 				break;
2808 
2809 			edge = list_entry(next->upper.next,
2810 					  struct backref_edge, list[LOWER]);
2811 			edges[index++] = edge;
2812 			next = edge->node[UPPER];
2813 		}
2814 		next = walk_down_backref(edges, &index);
2815 	}
2816 }
2817 
2818 static int tree_block_processed(u64 bytenr, u32 blocksize,
2819 				struct reloc_control *rc)
2820 {
2821 	if (test_range_bit(&rc->processed_blocks, bytenr,
2822 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2823 		return 1;
2824 	return 0;
2825 }
2826 
2827 static int get_tree_block_key(struct reloc_control *rc,
2828 			      struct tree_block *block)
2829 {
2830 	struct extent_buffer *eb;
2831 
2832 	BUG_ON(block->key_ready);
2833 	eb = read_tree_block(rc->extent_root, block->bytenr,
2834 			     block->key.objectid, block->key.offset);
2835 	if (!eb || !extent_buffer_uptodate(eb)) {
2836 		free_extent_buffer(eb);
2837 		return -EIO;
2838 	}
2839 	WARN_ON(btrfs_header_level(eb) != block->level);
2840 	if (block->level == 0)
2841 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2842 	else
2843 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2844 	free_extent_buffer(eb);
2845 	block->key_ready = 1;
2846 	return 0;
2847 }
2848 
2849 static int reada_tree_block(struct reloc_control *rc,
2850 			    struct tree_block *block)
2851 {
2852 	BUG_ON(block->key_ready);
2853 	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2854 		readahead_tree_block(rc->extent_root, block->bytenr,
2855 				     block->key.objectid,
2856 				     rc->extent_root->leafsize);
2857 	else
2858 		readahead_tree_block(rc->extent_root, block->bytenr,
2859 				     block->key.objectid, block->key.offset);
2860 	return 0;
2861 }
2862 
2863 /*
2864  * helper function to relocate a tree block
2865  */
2866 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2867 				struct reloc_control *rc,
2868 				struct backref_node *node,
2869 				struct btrfs_key *key,
2870 				struct btrfs_path *path)
2871 {
2872 	struct btrfs_root *root;
2873 	int release = 0;
2874 	int ret = 0;
2875 
2876 	if (!node)
2877 		return 0;
2878 
2879 	BUG_ON(node->processed);
2880 	root = select_one_root(trans, node);
2881 	if (root == ERR_PTR(-ENOENT)) {
2882 		update_processed_blocks(rc, node);
2883 		goto out;
2884 	}
2885 
2886 	if (!root || root->ref_cows) {
2887 		ret = reserve_metadata_space(trans, rc, node);
2888 		if (ret)
2889 			goto out;
2890 		release = 1;
2891 	}
2892 
2893 	if (root) {
2894 		if (root->ref_cows) {
2895 			BUG_ON(node->new_bytenr);
2896 			BUG_ON(!list_empty(&node->list));
2897 			btrfs_record_root_in_trans(trans, root);
2898 			root = root->reloc_root;
2899 			node->new_bytenr = root->node->start;
2900 			node->root = root;
2901 			list_add_tail(&node->list, &rc->backref_cache.changed);
2902 		} else {
2903 			path->lowest_level = node->level;
2904 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2905 			btrfs_release_path(path);
2906 			if (ret > 0)
2907 				ret = 0;
2908 		}
2909 		if (!ret)
2910 			update_processed_blocks(rc, node);
2911 	} else {
2912 		ret = do_relocation(trans, rc, node, key, path, 1);
2913 	}
2914 out:
2915 	if (ret || node->level == 0 || node->cowonly) {
2916 		if (release)
2917 			release_metadata_space(rc, node);
2918 		remove_backref_node(&rc->backref_cache, node);
2919 	}
2920 	return ret;
2921 }
2922 
2923 /*
2924  * relocate a list of blocks
2925  */
2926 static noinline_for_stack
2927 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2928 			 struct reloc_control *rc, struct rb_root *blocks)
2929 {
2930 	struct backref_node *node;
2931 	struct btrfs_path *path;
2932 	struct tree_block *block;
2933 	struct rb_node *rb_node;
2934 	int ret;
2935 	int err = 0;
2936 
2937 	path = btrfs_alloc_path();
2938 	if (!path) {
2939 		err = -ENOMEM;
2940 		goto out_free_blocks;
2941 	}
2942 
2943 	rb_node = rb_first(blocks);
2944 	while (rb_node) {
2945 		block = rb_entry(rb_node, struct tree_block, rb_node);
2946 		if (!block->key_ready)
2947 			reada_tree_block(rc, block);
2948 		rb_node = rb_next(rb_node);
2949 	}
2950 
2951 	rb_node = rb_first(blocks);
2952 	while (rb_node) {
2953 		block = rb_entry(rb_node, struct tree_block, rb_node);
2954 		if (!block->key_ready) {
2955 			err = get_tree_block_key(rc, block);
2956 			if (err)
2957 				goto out_free_path;
2958 		}
2959 		rb_node = rb_next(rb_node);
2960 	}
2961 
2962 	rb_node = rb_first(blocks);
2963 	while (rb_node) {
2964 		block = rb_entry(rb_node, struct tree_block, rb_node);
2965 
2966 		node = build_backref_tree(rc, &block->key,
2967 					  block->level, block->bytenr);
2968 		if (IS_ERR(node)) {
2969 			err = PTR_ERR(node);
2970 			goto out;
2971 		}
2972 
2973 		ret = relocate_tree_block(trans, rc, node, &block->key,
2974 					  path);
2975 		if (ret < 0) {
2976 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2977 				err = ret;
2978 			goto out;
2979 		}
2980 		rb_node = rb_next(rb_node);
2981 	}
2982 out:
2983 	err = finish_pending_nodes(trans, rc, path, err);
2984 
2985 out_free_path:
2986 	btrfs_free_path(path);
2987 out_free_blocks:
2988 	free_block_list(blocks);
2989 	return err;
2990 }
2991 
2992 static noinline_for_stack
2993 int prealloc_file_extent_cluster(struct inode *inode,
2994 				 struct file_extent_cluster *cluster)
2995 {
2996 	u64 alloc_hint = 0;
2997 	u64 start;
2998 	u64 end;
2999 	u64 offset = BTRFS_I(inode)->index_cnt;
3000 	u64 num_bytes;
3001 	int nr = 0;
3002 	int ret = 0;
3003 
3004 	BUG_ON(cluster->start != cluster->boundary[0]);
3005 	mutex_lock(&inode->i_mutex);
3006 
3007 	ret = btrfs_check_data_free_space(inode, cluster->end +
3008 					  1 - cluster->start);
3009 	if (ret)
3010 		goto out;
3011 
3012 	while (nr < cluster->nr) {
3013 		start = cluster->boundary[nr] - offset;
3014 		if (nr + 1 < cluster->nr)
3015 			end = cluster->boundary[nr + 1] - 1 - offset;
3016 		else
3017 			end = cluster->end - offset;
3018 
3019 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3020 		num_bytes = end + 1 - start;
3021 		ret = btrfs_prealloc_file_range(inode, 0, start,
3022 						num_bytes, num_bytes,
3023 						end + 1, &alloc_hint);
3024 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3025 		if (ret)
3026 			break;
3027 		nr++;
3028 	}
3029 	btrfs_free_reserved_data_space(inode, cluster->end +
3030 				       1 - cluster->start);
3031 out:
3032 	mutex_unlock(&inode->i_mutex);
3033 	return ret;
3034 }
3035 
3036 static noinline_for_stack
3037 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3038 			 u64 block_start)
3039 {
3040 	struct btrfs_root *root = BTRFS_I(inode)->root;
3041 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3042 	struct extent_map *em;
3043 	int ret = 0;
3044 
3045 	em = alloc_extent_map();
3046 	if (!em)
3047 		return -ENOMEM;
3048 
3049 	em->start = start;
3050 	em->len = end + 1 - start;
3051 	em->block_len = em->len;
3052 	em->block_start = block_start;
3053 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3054 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3055 
3056 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3057 	while (1) {
3058 		write_lock(&em_tree->lock);
3059 		ret = add_extent_mapping(em_tree, em, 0);
3060 		write_unlock(&em_tree->lock);
3061 		if (ret != -EEXIST) {
3062 			free_extent_map(em);
3063 			break;
3064 		}
3065 		btrfs_drop_extent_cache(inode, start, end, 0);
3066 	}
3067 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3068 	return ret;
3069 }
3070 
3071 static int relocate_file_extent_cluster(struct inode *inode,
3072 					struct file_extent_cluster *cluster)
3073 {
3074 	u64 page_start;
3075 	u64 page_end;
3076 	u64 offset = BTRFS_I(inode)->index_cnt;
3077 	unsigned long index;
3078 	unsigned long last_index;
3079 	struct page *page;
3080 	struct file_ra_state *ra;
3081 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3082 	int nr = 0;
3083 	int ret = 0;
3084 
3085 	if (!cluster->nr)
3086 		return 0;
3087 
3088 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3089 	if (!ra)
3090 		return -ENOMEM;
3091 
3092 	ret = prealloc_file_extent_cluster(inode, cluster);
3093 	if (ret)
3094 		goto out;
3095 
3096 	file_ra_state_init(ra, inode->i_mapping);
3097 
3098 	ret = setup_extent_mapping(inode, cluster->start - offset,
3099 				   cluster->end - offset, cluster->start);
3100 	if (ret)
3101 		goto out;
3102 
3103 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3104 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3105 	while (index <= last_index) {
3106 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3107 		if (ret)
3108 			goto out;
3109 
3110 		page = find_lock_page(inode->i_mapping, index);
3111 		if (!page) {
3112 			page_cache_sync_readahead(inode->i_mapping,
3113 						  ra, NULL, index,
3114 						  last_index + 1 - index);
3115 			page = find_or_create_page(inode->i_mapping, index,
3116 						   mask);
3117 			if (!page) {
3118 				btrfs_delalloc_release_metadata(inode,
3119 							PAGE_CACHE_SIZE);
3120 				ret = -ENOMEM;
3121 				goto out;
3122 			}
3123 		}
3124 
3125 		if (PageReadahead(page)) {
3126 			page_cache_async_readahead(inode->i_mapping,
3127 						   ra, NULL, page, index,
3128 						   last_index + 1 - index);
3129 		}
3130 
3131 		if (!PageUptodate(page)) {
3132 			btrfs_readpage(NULL, page);
3133 			lock_page(page);
3134 			if (!PageUptodate(page)) {
3135 				unlock_page(page);
3136 				page_cache_release(page);
3137 				btrfs_delalloc_release_metadata(inode,
3138 							PAGE_CACHE_SIZE);
3139 				ret = -EIO;
3140 				goto out;
3141 			}
3142 		}
3143 
3144 		page_start = page_offset(page);
3145 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3146 
3147 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3148 
3149 		set_page_extent_mapped(page);
3150 
3151 		if (nr < cluster->nr &&
3152 		    page_start + offset == cluster->boundary[nr]) {
3153 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3154 					page_start, page_end,
3155 					EXTENT_BOUNDARY, GFP_NOFS);
3156 			nr++;
3157 		}
3158 
3159 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3160 		set_page_dirty(page);
3161 
3162 		unlock_extent(&BTRFS_I(inode)->io_tree,
3163 			      page_start, page_end);
3164 		unlock_page(page);
3165 		page_cache_release(page);
3166 
3167 		index++;
3168 		balance_dirty_pages_ratelimited(inode->i_mapping);
3169 		btrfs_throttle(BTRFS_I(inode)->root);
3170 	}
3171 	WARN_ON(nr != cluster->nr);
3172 out:
3173 	kfree(ra);
3174 	return ret;
3175 }
3176 
3177 static noinline_for_stack
3178 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3179 			 struct file_extent_cluster *cluster)
3180 {
3181 	int ret;
3182 
3183 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3184 		ret = relocate_file_extent_cluster(inode, cluster);
3185 		if (ret)
3186 			return ret;
3187 		cluster->nr = 0;
3188 	}
3189 
3190 	if (!cluster->nr)
3191 		cluster->start = extent_key->objectid;
3192 	else
3193 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3194 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3195 	cluster->boundary[cluster->nr] = extent_key->objectid;
3196 	cluster->nr++;
3197 
3198 	if (cluster->nr >= MAX_EXTENTS) {
3199 		ret = relocate_file_extent_cluster(inode, cluster);
3200 		if (ret)
3201 			return ret;
3202 		cluster->nr = 0;
3203 	}
3204 	return 0;
3205 }
3206 
3207 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3208 static int get_ref_objectid_v0(struct reloc_control *rc,
3209 			       struct btrfs_path *path,
3210 			       struct btrfs_key *extent_key,
3211 			       u64 *ref_objectid, int *path_change)
3212 {
3213 	struct btrfs_key key;
3214 	struct extent_buffer *leaf;
3215 	struct btrfs_extent_ref_v0 *ref0;
3216 	int ret;
3217 	int slot;
3218 
3219 	leaf = path->nodes[0];
3220 	slot = path->slots[0];
3221 	while (1) {
3222 		if (slot >= btrfs_header_nritems(leaf)) {
3223 			ret = btrfs_next_leaf(rc->extent_root, path);
3224 			if (ret < 0)
3225 				return ret;
3226 			BUG_ON(ret > 0);
3227 			leaf = path->nodes[0];
3228 			slot = path->slots[0];
3229 			if (path_change)
3230 				*path_change = 1;
3231 		}
3232 		btrfs_item_key_to_cpu(leaf, &key, slot);
3233 		if (key.objectid != extent_key->objectid)
3234 			return -ENOENT;
3235 
3236 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3237 			slot++;
3238 			continue;
3239 		}
3240 		ref0 = btrfs_item_ptr(leaf, slot,
3241 				struct btrfs_extent_ref_v0);
3242 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3243 		break;
3244 	}
3245 	return 0;
3246 }
3247 #endif
3248 
3249 /*
3250  * helper to add a tree block to the list.
3251  * the major work is getting the generation and level of the block
3252  */
3253 static int add_tree_block(struct reloc_control *rc,
3254 			  struct btrfs_key *extent_key,
3255 			  struct btrfs_path *path,
3256 			  struct rb_root *blocks)
3257 {
3258 	struct extent_buffer *eb;
3259 	struct btrfs_extent_item *ei;
3260 	struct btrfs_tree_block_info *bi;
3261 	struct tree_block *block;
3262 	struct rb_node *rb_node;
3263 	u32 item_size;
3264 	int level = -1;
3265 	u64 generation;
3266 
3267 	eb =  path->nodes[0];
3268 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3269 
3270 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3271 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3272 		ei = btrfs_item_ptr(eb, path->slots[0],
3273 				struct btrfs_extent_item);
3274 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3275 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3276 			level = btrfs_tree_block_level(eb, bi);
3277 		} else {
3278 			level = (int)extent_key->offset;
3279 		}
3280 		generation = btrfs_extent_generation(eb, ei);
3281 	} else {
3282 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3283 		u64 ref_owner;
3284 		int ret;
3285 
3286 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3287 		ret = get_ref_objectid_v0(rc, path, extent_key,
3288 					  &ref_owner, NULL);
3289 		if (ret < 0)
3290 			return ret;
3291 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3292 		level = (int)ref_owner;
3293 		/* FIXME: get real generation */
3294 		generation = 0;
3295 #else
3296 		BUG();
3297 #endif
3298 	}
3299 
3300 	btrfs_release_path(path);
3301 
3302 	BUG_ON(level == -1);
3303 
3304 	block = kmalloc(sizeof(*block), GFP_NOFS);
3305 	if (!block)
3306 		return -ENOMEM;
3307 
3308 	block->bytenr = extent_key->objectid;
3309 	block->key.objectid = rc->extent_root->leafsize;
3310 	block->key.offset = generation;
3311 	block->level = level;
3312 	block->key_ready = 0;
3313 
3314 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3315 	if (rb_node)
3316 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3317 
3318 	return 0;
3319 }
3320 
3321 /*
3322  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3323  */
3324 static int __add_tree_block(struct reloc_control *rc,
3325 			    u64 bytenr, u32 blocksize,
3326 			    struct rb_root *blocks)
3327 {
3328 	struct btrfs_path *path;
3329 	struct btrfs_key key;
3330 	int ret;
3331 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3332 					SKINNY_METADATA);
3333 
3334 	if (tree_block_processed(bytenr, blocksize, rc))
3335 		return 0;
3336 
3337 	if (tree_search(blocks, bytenr))
3338 		return 0;
3339 
3340 	path = btrfs_alloc_path();
3341 	if (!path)
3342 		return -ENOMEM;
3343 again:
3344 	key.objectid = bytenr;
3345 	if (skinny) {
3346 		key.type = BTRFS_METADATA_ITEM_KEY;
3347 		key.offset = (u64)-1;
3348 	} else {
3349 		key.type = BTRFS_EXTENT_ITEM_KEY;
3350 		key.offset = blocksize;
3351 	}
3352 
3353 	path->search_commit_root = 1;
3354 	path->skip_locking = 1;
3355 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3356 	if (ret < 0)
3357 		goto out;
3358 
3359 	if (ret > 0 && skinny) {
3360 		if (path->slots[0]) {
3361 			path->slots[0]--;
3362 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3363 					      path->slots[0]);
3364 			if (key.objectid == bytenr &&
3365 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3366 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3367 			      key.offset == blocksize)))
3368 				ret = 0;
3369 		}
3370 
3371 		if (ret) {
3372 			skinny = false;
3373 			btrfs_release_path(path);
3374 			goto again;
3375 		}
3376 	}
3377 	BUG_ON(ret);
3378 
3379 	ret = add_tree_block(rc, &key, path, blocks);
3380 out:
3381 	btrfs_free_path(path);
3382 	return ret;
3383 }
3384 
3385 /*
3386  * helper to check if the block use full backrefs for pointers in it
3387  */
3388 static int block_use_full_backref(struct reloc_control *rc,
3389 				  struct extent_buffer *eb)
3390 {
3391 	u64 flags;
3392 	int ret;
3393 
3394 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3395 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3396 		return 1;
3397 
3398 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3399 				       eb->start, btrfs_header_level(eb), 1,
3400 				       NULL, &flags);
3401 	BUG_ON(ret);
3402 
3403 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3404 		ret = 1;
3405 	else
3406 		ret = 0;
3407 	return ret;
3408 }
3409 
3410 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3411 				    struct inode *inode, u64 ino)
3412 {
3413 	struct btrfs_key key;
3414 	struct btrfs_root *root = fs_info->tree_root;
3415 	struct btrfs_trans_handle *trans;
3416 	int ret = 0;
3417 
3418 	if (inode)
3419 		goto truncate;
3420 
3421 	key.objectid = ino;
3422 	key.type = BTRFS_INODE_ITEM_KEY;
3423 	key.offset = 0;
3424 
3425 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3426 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3427 		if (!IS_ERR(inode))
3428 			iput(inode);
3429 		return -ENOENT;
3430 	}
3431 
3432 truncate:
3433 	ret = btrfs_check_trunc_cache_free_space(root,
3434 						 &fs_info->global_block_rsv);
3435 	if (ret)
3436 		goto out;
3437 
3438 	trans = btrfs_join_transaction(root);
3439 	if (IS_ERR(trans)) {
3440 		ret = PTR_ERR(trans);
3441 		goto out;
3442 	}
3443 
3444 	ret = btrfs_truncate_free_space_cache(root, trans, inode);
3445 
3446 	btrfs_end_transaction(trans, root);
3447 	btrfs_btree_balance_dirty(root);
3448 out:
3449 	iput(inode);
3450 	return ret;
3451 }
3452 
3453 /*
3454  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3455  * this function scans fs tree to find blocks reference the data extent
3456  */
3457 static int find_data_references(struct reloc_control *rc,
3458 				struct btrfs_key *extent_key,
3459 				struct extent_buffer *leaf,
3460 				struct btrfs_extent_data_ref *ref,
3461 				struct rb_root *blocks)
3462 {
3463 	struct btrfs_path *path;
3464 	struct tree_block *block;
3465 	struct btrfs_root *root;
3466 	struct btrfs_file_extent_item *fi;
3467 	struct rb_node *rb_node;
3468 	struct btrfs_key key;
3469 	u64 ref_root;
3470 	u64 ref_objectid;
3471 	u64 ref_offset;
3472 	u32 ref_count;
3473 	u32 nritems;
3474 	int err = 0;
3475 	int added = 0;
3476 	int counted;
3477 	int ret;
3478 
3479 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3480 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3481 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3482 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3483 
3484 	/*
3485 	 * This is an extent belonging to the free space cache, lets just delete
3486 	 * it and redo the search.
3487 	 */
3488 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3489 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3490 					       NULL, ref_objectid);
3491 		if (ret != -ENOENT)
3492 			return ret;
3493 		ret = 0;
3494 	}
3495 
3496 	path = btrfs_alloc_path();
3497 	if (!path)
3498 		return -ENOMEM;
3499 	path->reada = 1;
3500 
3501 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3502 	if (IS_ERR(root)) {
3503 		err = PTR_ERR(root);
3504 		goto out;
3505 	}
3506 
3507 	key.objectid = ref_objectid;
3508 	key.type = BTRFS_EXTENT_DATA_KEY;
3509 	if (ref_offset > ((u64)-1 << 32))
3510 		key.offset = 0;
3511 	else
3512 		key.offset = ref_offset;
3513 
3514 	path->search_commit_root = 1;
3515 	path->skip_locking = 1;
3516 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3517 	if (ret < 0) {
3518 		err = ret;
3519 		goto out;
3520 	}
3521 
3522 	leaf = path->nodes[0];
3523 	nritems = btrfs_header_nritems(leaf);
3524 	/*
3525 	 * the references in tree blocks that use full backrefs
3526 	 * are not counted in
3527 	 */
3528 	if (block_use_full_backref(rc, leaf))
3529 		counted = 0;
3530 	else
3531 		counted = 1;
3532 	rb_node = tree_search(blocks, leaf->start);
3533 	if (rb_node) {
3534 		if (counted)
3535 			added = 1;
3536 		else
3537 			path->slots[0] = nritems;
3538 	}
3539 
3540 	while (ref_count > 0) {
3541 		while (path->slots[0] >= nritems) {
3542 			ret = btrfs_next_leaf(root, path);
3543 			if (ret < 0) {
3544 				err = ret;
3545 				goto out;
3546 			}
3547 			if (WARN_ON(ret > 0))
3548 				goto out;
3549 
3550 			leaf = path->nodes[0];
3551 			nritems = btrfs_header_nritems(leaf);
3552 			added = 0;
3553 
3554 			if (block_use_full_backref(rc, leaf))
3555 				counted = 0;
3556 			else
3557 				counted = 1;
3558 			rb_node = tree_search(blocks, leaf->start);
3559 			if (rb_node) {
3560 				if (counted)
3561 					added = 1;
3562 				else
3563 					path->slots[0] = nritems;
3564 			}
3565 		}
3566 
3567 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3568 		if (WARN_ON(key.objectid != ref_objectid ||
3569 		    key.type != BTRFS_EXTENT_DATA_KEY))
3570 			break;
3571 
3572 		fi = btrfs_item_ptr(leaf, path->slots[0],
3573 				    struct btrfs_file_extent_item);
3574 
3575 		if (btrfs_file_extent_type(leaf, fi) ==
3576 		    BTRFS_FILE_EXTENT_INLINE)
3577 			goto next;
3578 
3579 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3580 		    extent_key->objectid)
3581 			goto next;
3582 
3583 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3584 		if (key.offset != ref_offset)
3585 			goto next;
3586 
3587 		if (counted)
3588 			ref_count--;
3589 		if (added)
3590 			goto next;
3591 
3592 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3593 			block = kmalloc(sizeof(*block), GFP_NOFS);
3594 			if (!block) {
3595 				err = -ENOMEM;
3596 				break;
3597 			}
3598 			block->bytenr = leaf->start;
3599 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3600 			block->level = 0;
3601 			block->key_ready = 1;
3602 			rb_node = tree_insert(blocks, block->bytenr,
3603 					      &block->rb_node);
3604 			if (rb_node)
3605 				backref_tree_panic(rb_node, -EEXIST,
3606 						   block->bytenr);
3607 		}
3608 		if (counted)
3609 			added = 1;
3610 		else
3611 			path->slots[0] = nritems;
3612 next:
3613 		path->slots[0]++;
3614 
3615 	}
3616 out:
3617 	btrfs_free_path(path);
3618 	return err;
3619 }
3620 
3621 /*
3622  * helper to find all tree blocks that reference a given data extent
3623  */
3624 static noinline_for_stack
3625 int add_data_references(struct reloc_control *rc,
3626 			struct btrfs_key *extent_key,
3627 			struct btrfs_path *path,
3628 			struct rb_root *blocks)
3629 {
3630 	struct btrfs_key key;
3631 	struct extent_buffer *eb;
3632 	struct btrfs_extent_data_ref *dref;
3633 	struct btrfs_extent_inline_ref *iref;
3634 	unsigned long ptr;
3635 	unsigned long end;
3636 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3637 	int ret = 0;
3638 	int err = 0;
3639 
3640 	eb = path->nodes[0];
3641 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3642 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3643 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3644 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3645 		ptr = end;
3646 	else
3647 #endif
3648 		ptr += sizeof(struct btrfs_extent_item);
3649 
3650 	while (ptr < end) {
3651 		iref = (struct btrfs_extent_inline_ref *)ptr;
3652 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3653 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3654 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3655 			ret = __add_tree_block(rc, key.offset, blocksize,
3656 					       blocks);
3657 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3658 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3659 			ret = find_data_references(rc, extent_key,
3660 						   eb, dref, blocks);
3661 		} else {
3662 			BUG();
3663 		}
3664 		if (ret) {
3665 			err = ret;
3666 			goto out;
3667 		}
3668 		ptr += btrfs_extent_inline_ref_size(key.type);
3669 	}
3670 	WARN_ON(ptr > end);
3671 
3672 	while (1) {
3673 		cond_resched();
3674 		eb = path->nodes[0];
3675 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3676 			ret = btrfs_next_leaf(rc->extent_root, path);
3677 			if (ret < 0) {
3678 				err = ret;
3679 				break;
3680 			}
3681 			if (ret > 0)
3682 				break;
3683 			eb = path->nodes[0];
3684 		}
3685 
3686 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3687 		if (key.objectid != extent_key->objectid)
3688 			break;
3689 
3690 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3691 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3692 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3693 #else
3694 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3695 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3696 #endif
3697 			ret = __add_tree_block(rc, key.offset, blocksize,
3698 					       blocks);
3699 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3700 			dref = btrfs_item_ptr(eb, path->slots[0],
3701 					      struct btrfs_extent_data_ref);
3702 			ret = find_data_references(rc, extent_key,
3703 						   eb, dref, blocks);
3704 		} else {
3705 			ret = 0;
3706 		}
3707 		if (ret) {
3708 			err = ret;
3709 			break;
3710 		}
3711 		path->slots[0]++;
3712 	}
3713 out:
3714 	btrfs_release_path(path);
3715 	if (err)
3716 		free_block_list(blocks);
3717 	return err;
3718 }
3719 
3720 /*
3721  * helper to find next unprocessed extent
3722  */
3723 static noinline_for_stack
3724 int find_next_extent(struct btrfs_trans_handle *trans,
3725 		     struct reloc_control *rc, struct btrfs_path *path,
3726 		     struct btrfs_key *extent_key)
3727 {
3728 	struct btrfs_key key;
3729 	struct extent_buffer *leaf;
3730 	u64 start, end, last;
3731 	int ret;
3732 
3733 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3734 	while (1) {
3735 		cond_resched();
3736 		if (rc->search_start >= last) {
3737 			ret = 1;
3738 			break;
3739 		}
3740 
3741 		key.objectid = rc->search_start;
3742 		key.type = BTRFS_EXTENT_ITEM_KEY;
3743 		key.offset = 0;
3744 
3745 		path->search_commit_root = 1;
3746 		path->skip_locking = 1;
3747 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3748 					0, 0);
3749 		if (ret < 0)
3750 			break;
3751 next:
3752 		leaf = path->nodes[0];
3753 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3754 			ret = btrfs_next_leaf(rc->extent_root, path);
3755 			if (ret != 0)
3756 				break;
3757 			leaf = path->nodes[0];
3758 		}
3759 
3760 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3761 		if (key.objectid >= last) {
3762 			ret = 1;
3763 			break;
3764 		}
3765 
3766 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3767 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3768 			path->slots[0]++;
3769 			goto next;
3770 		}
3771 
3772 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3773 		    key.objectid + key.offset <= rc->search_start) {
3774 			path->slots[0]++;
3775 			goto next;
3776 		}
3777 
3778 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3779 		    key.objectid + rc->extent_root->leafsize <=
3780 		    rc->search_start) {
3781 			path->slots[0]++;
3782 			goto next;
3783 		}
3784 
3785 		ret = find_first_extent_bit(&rc->processed_blocks,
3786 					    key.objectid, &start, &end,
3787 					    EXTENT_DIRTY, NULL);
3788 
3789 		if (ret == 0 && start <= key.objectid) {
3790 			btrfs_release_path(path);
3791 			rc->search_start = end + 1;
3792 		} else {
3793 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3794 				rc->search_start = key.objectid + key.offset;
3795 			else
3796 				rc->search_start = key.objectid +
3797 					rc->extent_root->leafsize;
3798 			memcpy(extent_key, &key, sizeof(key));
3799 			return 0;
3800 		}
3801 	}
3802 	btrfs_release_path(path);
3803 	return ret;
3804 }
3805 
3806 static void set_reloc_control(struct reloc_control *rc)
3807 {
3808 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3809 
3810 	mutex_lock(&fs_info->reloc_mutex);
3811 	fs_info->reloc_ctl = rc;
3812 	mutex_unlock(&fs_info->reloc_mutex);
3813 }
3814 
3815 static void unset_reloc_control(struct reloc_control *rc)
3816 {
3817 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3818 
3819 	mutex_lock(&fs_info->reloc_mutex);
3820 	fs_info->reloc_ctl = NULL;
3821 	mutex_unlock(&fs_info->reloc_mutex);
3822 }
3823 
3824 static int check_extent_flags(u64 flags)
3825 {
3826 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3827 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3828 		return 1;
3829 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3830 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3831 		return 1;
3832 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3833 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3834 		return 1;
3835 	return 0;
3836 }
3837 
3838 static noinline_for_stack
3839 int prepare_to_relocate(struct reloc_control *rc)
3840 {
3841 	struct btrfs_trans_handle *trans;
3842 	int ret;
3843 
3844 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3845 					      BTRFS_BLOCK_RSV_TEMP);
3846 	if (!rc->block_rsv)
3847 		return -ENOMEM;
3848 
3849 	/*
3850 	 * reserve some space for creating reloc trees.
3851 	 * btrfs_init_reloc_root will use them when there
3852 	 * is no reservation in transaction handle.
3853 	 */
3854 	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3855 				  rc->extent_root->nodesize * 256,
3856 				  BTRFS_RESERVE_FLUSH_ALL);
3857 	if (ret)
3858 		return ret;
3859 
3860 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3861 	rc->search_start = rc->block_group->key.objectid;
3862 	rc->extents_found = 0;
3863 	rc->nodes_relocated = 0;
3864 	rc->merging_rsv_size = 0;
3865 
3866 	rc->create_reloc_tree = 1;
3867 	set_reloc_control(rc);
3868 
3869 	trans = btrfs_join_transaction(rc->extent_root);
3870 	if (IS_ERR(trans)) {
3871 		unset_reloc_control(rc);
3872 		/*
3873 		 * extent tree is not a ref_cow tree and has no reloc_root to
3874 		 * cleanup.  And callers are responsible to free the above
3875 		 * block rsv.
3876 		 */
3877 		return PTR_ERR(trans);
3878 	}
3879 	btrfs_commit_transaction(trans, rc->extent_root);
3880 	return 0;
3881 }
3882 
3883 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3884 {
3885 	struct rb_root blocks = RB_ROOT;
3886 	struct btrfs_key key;
3887 	struct btrfs_trans_handle *trans = NULL;
3888 	struct btrfs_path *path;
3889 	struct btrfs_extent_item *ei;
3890 	u64 flags;
3891 	u32 item_size;
3892 	int ret;
3893 	int err = 0;
3894 	int progress = 0;
3895 
3896 	path = btrfs_alloc_path();
3897 	if (!path)
3898 		return -ENOMEM;
3899 	path->reada = 1;
3900 
3901 	ret = prepare_to_relocate(rc);
3902 	if (ret) {
3903 		err = ret;
3904 		goto out_free;
3905 	}
3906 
3907 	while (1) {
3908 		progress++;
3909 		trans = btrfs_start_transaction(rc->extent_root, 0);
3910 		if (IS_ERR(trans)) {
3911 			err = PTR_ERR(trans);
3912 			trans = NULL;
3913 			break;
3914 		}
3915 restart:
3916 		if (update_backref_cache(trans, &rc->backref_cache)) {
3917 			btrfs_end_transaction(trans, rc->extent_root);
3918 			continue;
3919 		}
3920 
3921 		ret = find_next_extent(trans, rc, path, &key);
3922 		if (ret < 0)
3923 			err = ret;
3924 		if (ret != 0)
3925 			break;
3926 
3927 		rc->extents_found++;
3928 
3929 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3930 				    struct btrfs_extent_item);
3931 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3932 		if (item_size >= sizeof(*ei)) {
3933 			flags = btrfs_extent_flags(path->nodes[0], ei);
3934 			ret = check_extent_flags(flags);
3935 			BUG_ON(ret);
3936 
3937 		} else {
3938 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3939 			u64 ref_owner;
3940 			int path_change = 0;
3941 
3942 			BUG_ON(item_size !=
3943 			       sizeof(struct btrfs_extent_item_v0));
3944 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3945 						  &path_change);
3946 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3947 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3948 			else
3949 				flags = BTRFS_EXTENT_FLAG_DATA;
3950 
3951 			if (path_change) {
3952 				btrfs_release_path(path);
3953 
3954 				path->search_commit_root = 1;
3955 				path->skip_locking = 1;
3956 				ret = btrfs_search_slot(NULL, rc->extent_root,
3957 							&key, path, 0, 0);
3958 				if (ret < 0) {
3959 					err = ret;
3960 					break;
3961 				}
3962 				BUG_ON(ret > 0);
3963 			}
3964 #else
3965 			BUG();
3966 #endif
3967 		}
3968 
3969 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3970 			ret = add_tree_block(rc, &key, path, &blocks);
3971 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3972 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3973 			ret = add_data_references(rc, &key, path, &blocks);
3974 		} else {
3975 			btrfs_release_path(path);
3976 			ret = 0;
3977 		}
3978 		if (ret < 0) {
3979 			err = ret;
3980 			break;
3981 		}
3982 
3983 		if (!RB_EMPTY_ROOT(&blocks)) {
3984 			ret = relocate_tree_blocks(trans, rc, &blocks);
3985 			if (ret < 0) {
3986 				if (ret != -EAGAIN) {
3987 					err = ret;
3988 					break;
3989 				}
3990 				rc->extents_found--;
3991 				rc->search_start = key.objectid;
3992 			}
3993 		}
3994 
3995 		if (rc->commit_transaction) {
3996 			rc->commit_transaction = 0;
3997 			ret = btrfs_commit_transaction(trans, rc->extent_root);
3998 			BUG_ON(ret);
3999 		} else {
4000 			btrfs_end_transaction_throttle(trans, rc->extent_root);
4001 			btrfs_btree_balance_dirty(rc->extent_root);
4002 		}
4003 		trans = NULL;
4004 
4005 		if (rc->stage == MOVE_DATA_EXTENTS &&
4006 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4007 			rc->found_file_extent = 1;
4008 			ret = relocate_data_extent(rc->data_inode,
4009 						   &key, &rc->cluster);
4010 			if (ret < 0) {
4011 				err = ret;
4012 				break;
4013 			}
4014 		}
4015 	}
4016 	if (trans && progress && err == -ENOSPC) {
4017 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4018 					      rc->block_group->flags);
4019 		if (ret == 0) {
4020 			err = 0;
4021 			progress = 0;
4022 			goto restart;
4023 		}
4024 	}
4025 
4026 	btrfs_release_path(path);
4027 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4028 			  GFP_NOFS);
4029 
4030 	if (trans) {
4031 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4032 		btrfs_btree_balance_dirty(rc->extent_root);
4033 	}
4034 
4035 	if (!err) {
4036 		ret = relocate_file_extent_cluster(rc->data_inode,
4037 						   &rc->cluster);
4038 		if (ret < 0)
4039 			err = ret;
4040 	}
4041 
4042 	rc->create_reloc_tree = 0;
4043 	set_reloc_control(rc);
4044 
4045 	backref_cache_cleanup(&rc->backref_cache);
4046 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4047 
4048 	err = prepare_to_merge(rc, err);
4049 
4050 	merge_reloc_roots(rc);
4051 
4052 	rc->merge_reloc_tree = 0;
4053 	unset_reloc_control(rc);
4054 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4055 
4056 	/* get rid of pinned extents */
4057 	trans = btrfs_join_transaction(rc->extent_root);
4058 	if (IS_ERR(trans))
4059 		err = PTR_ERR(trans);
4060 	else
4061 		btrfs_commit_transaction(trans, rc->extent_root);
4062 out_free:
4063 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4064 	btrfs_free_path(path);
4065 	return err;
4066 }
4067 
4068 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4069 				 struct btrfs_root *root, u64 objectid)
4070 {
4071 	struct btrfs_path *path;
4072 	struct btrfs_inode_item *item;
4073 	struct extent_buffer *leaf;
4074 	int ret;
4075 
4076 	path = btrfs_alloc_path();
4077 	if (!path)
4078 		return -ENOMEM;
4079 
4080 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4081 	if (ret)
4082 		goto out;
4083 
4084 	leaf = path->nodes[0];
4085 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4086 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4087 	btrfs_set_inode_generation(leaf, item, 1);
4088 	btrfs_set_inode_size(leaf, item, 0);
4089 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4090 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4091 					  BTRFS_INODE_PREALLOC);
4092 	btrfs_mark_buffer_dirty(leaf);
4093 	btrfs_release_path(path);
4094 out:
4095 	btrfs_free_path(path);
4096 	return ret;
4097 }
4098 
4099 /*
4100  * helper to create inode for data relocation.
4101  * the inode is in data relocation tree and its link count is 0
4102  */
4103 static noinline_for_stack
4104 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4105 				 struct btrfs_block_group_cache *group)
4106 {
4107 	struct inode *inode = NULL;
4108 	struct btrfs_trans_handle *trans;
4109 	struct btrfs_root *root;
4110 	struct btrfs_key key;
4111 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4112 	int err = 0;
4113 
4114 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4115 	if (IS_ERR(root))
4116 		return ERR_CAST(root);
4117 
4118 	trans = btrfs_start_transaction(root, 6);
4119 	if (IS_ERR(trans))
4120 		return ERR_CAST(trans);
4121 
4122 	err = btrfs_find_free_objectid(root, &objectid);
4123 	if (err)
4124 		goto out;
4125 
4126 	err = __insert_orphan_inode(trans, root, objectid);
4127 	BUG_ON(err);
4128 
4129 	key.objectid = objectid;
4130 	key.type = BTRFS_INODE_ITEM_KEY;
4131 	key.offset = 0;
4132 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4133 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4134 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4135 
4136 	err = btrfs_orphan_add(trans, inode);
4137 out:
4138 	btrfs_end_transaction(trans, root);
4139 	btrfs_btree_balance_dirty(root);
4140 	if (err) {
4141 		if (inode)
4142 			iput(inode);
4143 		inode = ERR_PTR(err);
4144 	}
4145 	return inode;
4146 }
4147 
4148 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4149 {
4150 	struct reloc_control *rc;
4151 
4152 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4153 	if (!rc)
4154 		return NULL;
4155 
4156 	INIT_LIST_HEAD(&rc->reloc_roots);
4157 	backref_cache_init(&rc->backref_cache);
4158 	mapping_tree_init(&rc->reloc_root_tree);
4159 	extent_io_tree_init(&rc->processed_blocks,
4160 			    fs_info->btree_inode->i_mapping);
4161 	return rc;
4162 }
4163 
4164 /*
4165  * function to relocate all extents in a block group.
4166  */
4167 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4168 {
4169 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4170 	struct reloc_control *rc;
4171 	struct inode *inode;
4172 	struct btrfs_path *path;
4173 	int ret;
4174 	int rw = 0;
4175 	int err = 0;
4176 
4177 	rc = alloc_reloc_control(fs_info);
4178 	if (!rc)
4179 		return -ENOMEM;
4180 
4181 	rc->extent_root = extent_root;
4182 
4183 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4184 	BUG_ON(!rc->block_group);
4185 
4186 	if (!rc->block_group->ro) {
4187 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4188 		if (ret) {
4189 			err = ret;
4190 			goto out;
4191 		}
4192 		rw = 1;
4193 	}
4194 
4195 	path = btrfs_alloc_path();
4196 	if (!path) {
4197 		err = -ENOMEM;
4198 		goto out;
4199 	}
4200 
4201 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4202 					path);
4203 	btrfs_free_path(path);
4204 
4205 	if (!IS_ERR(inode))
4206 		ret = delete_block_group_cache(fs_info, inode, 0);
4207 	else
4208 		ret = PTR_ERR(inode);
4209 
4210 	if (ret && ret != -ENOENT) {
4211 		err = ret;
4212 		goto out;
4213 	}
4214 
4215 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4216 	if (IS_ERR(rc->data_inode)) {
4217 		err = PTR_ERR(rc->data_inode);
4218 		rc->data_inode = NULL;
4219 		goto out;
4220 	}
4221 
4222 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4223 	       rc->block_group->key.objectid, rc->block_group->flags);
4224 
4225 	ret = btrfs_start_delalloc_roots(fs_info, 0);
4226 	if (ret < 0) {
4227 		err = ret;
4228 		goto out;
4229 	}
4230 	btrfs_wait_ordered_roots(fs_info, -1);
4231 
4232 	while (1) {
4233 		mutex_lock(&fs_info->cleaner_mutex);
4234 		ret = relocate_block_group(rc);
4235 		mutex_unlock(&fs_info->cleaner_mutex);
4236 		if (ret < 0) {
4237 			err = ret;
4238 			goto out;
4239 		}
4240 
4241 		if (rc->extents_found == 0)
4242 			break;
4243 
4244 		printk(KERN_INFO "btrfs: found %llu extents\n",
4245 			rc->extents_found);
4246 
4247 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4248 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4249 						       (u64)-1);
4250 			if (ret) {
4251 				err = ret;
4252 				goto out;
4253 			}
4254 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4255 						 0, -1);
4256 			rc->stage = UPDATE_DATA_PTRS;
4257 		}
4258 	}
4259 
4260 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4261 				     rc->block_group->key.objectid,
4262 				     rc->block_group->key.objectid +
4263 				     rc->block_group->key.offset - 1);
4264 
4265 	WARN_ON(rc->block_group->pinned > 0);
4266 	WARN_ON(rc->block_group->reserved > 0);
4267 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4268 out:
4269 	if (err && rw)
4270 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4271 	iput(rc->data_inode);
4272 	btrfs_put_block_group(rc->block_group);
4273 	kfree(rc);
4274 	return err;
4275 }
4276 
4277 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4278 {
4279 	struct btrfs_trans_handle *trans;
4280 	int ret, err;
4281 
4282 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4283 	if (IS_ERR(trans))
4284 		return PTR_ERR(trans);
4285 
4286 	memset(&root->root_item.drop_progress, 0,
4287 		sizeof(root->root_item.drop_progress));
4288 	root->root_item.drop_level = 0;
4289 	btrfs_set_root_refs(&root->root_item, 0);
4290 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4291 				&root->root_key, &root->root_item);
4292 
4293 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4294 	if (err)
4295 		return err;
4296 	return ret;
4297 }
4298 
4299 /*
4300  * recover relocation interrupted by system crash.
4301  *
4302  * this function resumes merging reloc trees with corresponding fs trees.
4303  * this is important for keeping the sharing of tree blocks
4304  */
4305 int btrfs_recover_relocation(struct btrfs_root *root)
4306 {
4307 	LIST_HEAD(reloc_roots);
4308 	struct btrfs_key key;
4309 	struct btrfs_root *fs_root;
4310 	struct btrfs_root *reloc_root;
4311 	struct btrfs_path *path;
4312 	struct extent_buffer *leaf;
4313 	struct reloc_control *rc = NULL;
4314 	struct btrfs_trans_handle *trans;
4315 	int ret;
4316 	int err = 0;
4317 
4318 	path = btrfs_alloc_path();
4319 	if (!path)
4320 		return -ENOMEM;
4321 	path->reada = -1;
4322 
4323 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4324 	key.type = BTRFS_ROOT_ITEM_KEY;
4325 	key.offset = (u64)-1;
4326 
4327 	while (1) {
4328 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4329 					path, 0, 0);
4330 		if (ret < 0) {
4331 			err = ret;
4332 			goto out;
4333 		}
4334 		if (ret > 0) {
4335 			if (path->slots[0] == 0)
4336 				break;
4337 			path->slots[0]--;
4338 		}
4339 		leaf = path->nodes[0];
4340 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4341 		btrfs_release_path(path);
4342 
4343 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4344 		    key.type != BTRFS_ROOT_ITEM_KEY)
4345 			break;
4346 
4347 		reloc_root = btrfs_read_fs_root(root, &key);
4348 		if (IS_ERR(reloc_root)) {
4349 			err = PTR_ERR(reloc_root);
4350 			goto out;
4351 		}
4352 
4353 		list_add(&reloc_root->root_list, &reloc_roots);
4354 
4355 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4356 			fs_root = read_fs_root(root->fs_info,
4357 					       reloc_root->root_key.offset);
4358 			if (IS_ERR(fs_root)) {
4359 				ret = PTR_ERR(fs_root);
4360 				if (ret != -ENOENT) {
4361 					err = ret;
4362 					goto out;
4363 				}
4364 				ret = mark_garbage_root(reloc_root);
4365 				if (ret < 0) {
4366 					err = ret;
4367 					goto out;
4368 				}
4369 			}
4370 		}
4371 
4372 		if (key.offset == 0)
4373 			break;
4374 
4375 		key.offset--;
4376 	}
4377 	btrfs_release_path(path);
4378 
4379 	if (list_empty(&reloc_roots))
4380 		goto out;
4381 
4382 	rc = alloc_reloc_control(root->fs_info);
4383 	if (!rc) {
4384 		err = -ENOMEM;
4385 		goto out;
4386 	}
4387 
4388 	rc->extent_root = root->fs_info->extent_root;
4389 
4390 	set_reloc_control(rc);
4391 
4392 	trans = btrfs_join_transaction(rc->extent_root);
4393 	if (IS_ERR(trans)) {
4394 		unset_reloc_control(rc);
4395 		err = PTR_ERR(trans);
4396 		goto out_free;
4397 	}
4398 
4399 	rc->merge_reloc_tree = 1;
4400 
4401 	while (!list_empty(&reloc_roots)) {
4402 		reloc_root = list_entry(reloc_roots.next,
4403 					struct btrfs_root, root_list);
4404 		list_del(&reloc_root->root_list);
4405 
4406 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4407 			list_add_tail(&reloc_root->root_list,
4408 				      &rc->reloc_roots);
4409 			continue;
4410 		}
4411 
4412 		fs_root = read_fs_root(root->fs_info,
4413 				       reloc_root->root_key.offset);
4414 		if (IS_ERR(fs_root)) {
4415 			err = PTR_ERR(fs_root);
4416 			goto out_free;
4417 		}
4418 
4419 		err = __add_reloc_root(reloc_root);
4420 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4421 		fs_root->reloc_root = reloc_root;
4422 	}
4423 
4424 	err = btrfs_commit_transaction(trans, rc->extent_root);
4425 	if (err)
4426 		goto out_free;
4427 
4428 	merge_reloc_roots(rc);
4429 
4430 	unset_reloc_control(rc);
4431 
4432 	trans = btrfs_join_transaction(rc->extent_root);
4433 	if (IS_ERR(trans))
4434 		err = PTR_ERR(trans);
4435 	else
4436 		err = btrfs_commit_transaction(trans, rc->extent_root);
4437 out_free:
4438 	kfree(rc);
4439 out:
4440 	if (!list_empty(&reloc_roots))
4441 		free_reloc_roots(&reloc_roots);
4442 
4443 	btrfs_free_path(path);
4444 
4445 	if (err == 0) {
4446 		/* cleanup orphan inode in data relocation tree */
4447 		fs_root = read_fs_root(root->fs_info,
4448 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4449 		if (IS_ERR(fs_root))
4450 			err = PTR_ERR(fs_root);
4451 		else
4452 			err = btrfs_orphan_cleanup(fs_root);
4453 	}
4454 	return err;
4455 }
4456 
4457 /*
4458  * helper to add ordered checksum for data relocation.
4459  *
4460  * cloning checksum properly handles the nodatasum extents.
4461  * it also saves CPU time to re-calculate the checksum.
4462  */
4463 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4464 {
4465 	struct btrfs_ordered_sum *sums;
4466 	struct btrfs_ordered_extent *ordered;
4467 	struct btrfs_root *root = BTRFS_I(inode)->root;
4468 	int ret;
4469 	u64 disk_bytenr;
4470 	u64 new_bytenr;
4471 	LIST_HEAD(list);
4472 
4473 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4474 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4475 
4476 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4477 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4478 				       disk_bytenr + len - 1, &list, 0);
4479 	if (ret)
4480 		goto out;
4481 
4482 	while (!list_empty(&list)) {
4483 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4484 		list_del_init(&sums->list);
4485 
4486 		/*
4487 		 * We need to offset the new_bytenr based on where the csum is.
4488 		 * We need to do this because we will read in entire prealloc
4489 		 * extents but we may have written to say the middle of the
4490 		 * prealloc extent, so we need to make sure the csum goes with
4491 		 * the right disk offset.
4492 		 *
4493 		 * We can do this because the data reloc inode refers strictly
4494 		 * to the on disk bytes, so we don't have to worry about
4495 		 * disk_len vs real len like with real inodes since it's all
4496 		 * disk length.
4497 		 */
4498 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4499 		sums->bytenr = new_bytenr;
4500 
4501 		btrfs_add_ordered_sum(inode, ordered, sums);
4502 	}
4503 out:
4504 	btrfs_put_ordered_extent(ordered);
4505 	return ret;
4506 }
4507 
4508 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4509 			  struct btrfs_root *root, struct extent_buffer *buf,
4510 			  struct extent_buffer *cow)
4511 {
4512 	struct reloc_control *rc;
4513 	struct backref_node *node;
4514 	int first_cow = 0;
4515 	int level;
4516 	int ret = 0;
4517 
4518 	rc = root->fs_info->reloc_ctl;
4519 	if (!rc)
4520 		return 0;
4521 
4522 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4523 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4524 
4525 	level = btrfs_header_level(buf);
4526 	if (btrfs_header_generation(buf) <=
4527 	    btrfs_root_last_snapshot(&root->root_item))
4528 		first_cow = 1;
4529 
4530 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4531 	    rc->create_reloc_tree) {
4532 		WARN_ON(!first_cow && level == 0);
4533 
4534 		node = rc->backref_cache.path[level];
4535 		BUG_ON(node->bytenr != buf->start &&
4536 		       node->new_bytenr != buf->start);
4537 
4538 		drop_node_buffer(node);
4539 		extent_buffer_get(cow);
4540 		node->eb = cow;
4541 		node->new_bytenr = cow->start;
4542 
4543 		if (!node->pending) {
4544 			list_move_tail(&node->list,
4545 				       &rc->backref_cache.pending[level]);
4546 			node->pending = 1;
4547 		}
4548 
4549 		if (first_cow)
4550 			__mark_block_processed(rc, node);
4551 
4552 		if (first_cow && level > 0)
4553 			rc->nodes_relocated += buf->len;
4554 	}
4555 
4556 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4557 		ret = replace_file_extents(trans, rc, root, cow);
4558 	return ret;
4559 }
4560 
4561 /*
4562  * called before creating snapshot. it calculates metadata reservation
4563  * requried for relocating tree blocks in the snapshot
4564  */
4565 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4566 			      struct btrfs_pending_snapshot *pending,
4567 			      u64 *bytes_to_reserve)
4568 {
4569 	struct btrfs_root *root;
4570 	struct reloc_control *rc;
4571 
4572 	root = pending->root;
4573 	if (!root->reloc_root)
4574 		return;
4575 
4576 	rc = root->fs_info->reloc_ctl;
4577 	if (!rc->merge_reloc_tree)
4578 		return;
4579 
4580 	root = root->reloc_root;
4581 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4582 	/*
4583 	 * relocation is in the stage of merging trees. the space
4584 	 * used by merging a reloc tree is twice the size of
4585 	 * relocated tree nodes in the worst case. half for cowing
4586 	 * the reloc tree, half for cowing the fs tree. the space
4587 	 * used by cowing the reloc tree will be freed after the
4588 	 * tree is dropped. if we create snapshot, cowing the fs
4589 	 * tree may use more space than it frees. so we need
4590 	 * reserve extra space.
4591 	 */
4592 	*bytes_to_reserve += rc->nodes_relocated;
4593 }
4594 
4595 /*
4596  * called after snapshot is created. migrate block reservation
4597  * and create reloc root for the newly created snapshot
4598  */
4599 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4600 			       struct btrfs_pending_snapshot *pending)
4601 {
4602 	struct btrfs_root *root = pending->root;
4603 	struct btrfs_root *reloc_root;
4604 	struct btrfs_root *new_root;
4605 	struct reloc_control *rc;
4606 	int ret;
4607 
4608 	if (!root->reloc_root)
4609 		return 0;
4610 
4611 	rc = root->fs_info->reloc_ctl;
4612 	rc->merging_rsv_size += rc->nodes_relocated;
4613 
4614 	if (rc->merge_reloc_tree) {
4615 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4616 					      rc->block_rsv,
4617 					      rc->nodes_relocated);
4618 		if (ret)
4619 			return ret;
4620 	}
4621 
4622 	new_root = pending->snap;
4623 	reloc_root = create_reloc_root(trans, root->reloc_root,
4624 				       new_root->root_key.objectid);
4625 	if (IS_ERR(reloc_root))
4626 		return PTR_ERR(reloc_root);
4627 
4628 	ret = __add_reloc_root(reloc_root);
4629 	BUG_ON(ret < 0);
4630 	new_root->reloc_root = reloc_root;
4631 
4632 	if (rc->create_reloc_tree)
4633 		ret = clone_backref_node(trans, rc, root, reloc_root);
4634 	return ret;
4635 }
4636