1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "volumes.h" 16 #include "locking.h" 17 #include "btrfs_inode.h" 18 #include "async-thread.h" 19 #include "free-space-cache.h" 20 #include "inode-map.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 26 /* 27 * backref_node, mapping_node and tree_block start with this 28 */ 29 struct tree_entry { 30 struct rb_node rb_node; 31 u64 bytenr; 32 }; 33 34 /* 35 * present a tree block in the backref cache 36 */ 37 struct backref_node { 38 struct rb_node rb_node; 39 u64 bytenr; 40 41 u64 new_bytenr; 42 /* objectid of tree block owner, can be not uptodate */ 43 u64 owner; 44 /* link to pending, changed or detached list */ 45 struct list_head list; 46 /* list of upper level blocks reference this block */ 47 struct list_head upper; 48 /* list of child blocks in the cache */ 49 struct list_head lower; 50 /* NULL if this node is not tree root */ 51 struct btrfs_root *root; 52 /* extent buffer got by COW the block */ 53 struct extent_buffer *eb; 54 /* level of tree block */ 55 unsigned int level:8; 56 /* is the block in non-reference counted tree */ 57 unsigned int cowonly:1; 58 /* 1 if no child node in the cache */ 59 unsigned int lowest:1; 60 /* is the extent buffer locked */ 61 unsigned int locked:1; 62 /* has the block been processed */ 63 unsigned int processed:1; 64 /* have backrefs of this block been checked */ 65 unsigned int checked:1; 66 /* 67 * 1 if corresponding block has been cowed but some upper 68 * level block pointers may not point to the new location 69 */ 70 unsigned int pending:1; 71 /* 72 * 1 if the backref node isn't connected to any other 73 * backref node. 74 */ 75 unsigned int detached:1; 76 }; 77 78 /* 79 * present a block pointer in the backref cache 80 */ 81 struct backref_edge { 82 struct list_head list[2]; 83 struct backref_node *node[2]; 84 }; 85 86 #define LOWER 0 87 #define UPPER 1 88 #define RELOCATION_RESERVED_NODES 256 89 90 struct backref_cache { 91 /* red black tree of all backref nodes in the cache */ 92 struct rb_root rb_root; 93 /* for passing backref nodes to btrfs_reloc_cow_block */ 94 struct backref_node *path[BTRFS_MAX_LEVEL]; 95 /* 96 * list of blocks that have been cowed but some block 97 * pointers in upper level blocks may not reflect the 98 * new location 99 */ 100 struct list_head pending[BTRFS_MAX_LEVEL]; 101 /* list of backref nodes with no child node */ 102 struct list_head leaves; 103 /* list of blocks that have been cowed in current transaction */ 104 struct list_head changed; 105 /* list of detached backref node. */ 106 struct list_head detached; 107 108 u64 last_trans; 109 110 int nr_nodes; 111 int nr_edges; 112 }; 113 114 /* 115 * map address of tree root to tree 116 */ 117 struct mapping_node { 118 struct rb_node rb_node; 119 u64 bytenr; 120 void *data; 121 }; 122 123 struct mapping_tree { 124 struct rb_root rb_root; 125 spinlock_t lock; 126 }; 127 128 /* 129 * present a tree block to process 130 */ 131 struct tree_block { 132 struct rb_node rb_node; 133 u64 bytenr; 134 struct btrfs_key key; 135 unsigned int level:8; 136 unsigned int key_ready:1; 137 }; 138 139 #define MAX_EXTENTS 128 140 141 struct file_extent_cluster { 142 u64 start; 143 u64 end; 144 u64 boundary[MAX_EXTENTS]; 145 unsigned int nr; 146 }; 147 148 struct reloc_control { 149 /* block group to relocate */ 150 struct btrfs_block_group *block_group; 151 /* extent tree */ 152 struct btrfs_root *extent_root; 153 /* inode for moving data */ 154 struct inode *data_inode; 155 156 struct btrfs_block_rsv *block_rsv; 157 158 struct backref_cache backref_cache; 159 160 struct file_extent_cluster cluster; 161 /* tree blocks have been processed */ 162 struct extent_io_tree processed_blocks; 163 /* map start of tree root to corresponding reloc tree */ 164 struct mapping_tree reloc_root_tree; 165 /* list of reloc trees */ 166 struct list_head reloc_roots; 167 /* list of subvolume trees that get relocated */ 168 struct list_head dirty_subvol_roots; 169 /* size of metadata reservation for merging reloc trees */ 170 u64 merging_rsv_size; 171 /* size of relocated tree nodes */ 172 u64 nodes_relocated; 173 /* reserved size for block group relocation*/ 174 u64 reserved_bytes; 175 176 u64 search_start; 177 u64 extents_found; 178 179 unsigned int stage:8; 180 unsigned int create_reloc_tree:1; 181 unsigned int merge_reloc_tree:1; 182 unsigned int found_file_extent:1; 183 }; 184 185 /* stages of data relocation */ 186 #define MOVE_DATA_EXTENTS 0 187 #define UPDATE_DATA_PTRS 1 188 189 static void remove_backref_node(struct backref_cache *cache, 190 struct backref_node *node); 191 static void __mark_block_processed(struct reloc_control *rc, 192 struct backref_node *node); 193 194 static void mapping_tree_init(struct mapping_tree *tree) 195 { 196 tree->rb_root = RB_ROOT; 197 spin_lock_init(&tree->lock); 198 } 199 200 static void backref_cache_init(struct backref_cache *cache) 201 { 202 int i; 203 cache->rb_root = RB_ROOT; 204 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 205 INIT_LIST_HEAD(&cache->pending[i]); 206 INIT_LIST_HEAD(&cache->changed); 207 INIT_LIST_HEAD(&cache->detached); 208 INIT_LIST_HEAD(&cache->leaves); 209 } 210 211 static void backref_cache_cleanup(struct backref_cache *cache) 212 { 213 struct backref_node *node; 214 int i; 215 216 while (!list_empty(&cache->detached)) { 217 node = list_entry(cache->detached.next, 218 struct backref_node, list); 219 remove_backref_node(cache, node); 220 } 221 222 while (!list_empty(&cache->leaves)) { 223 node = list_entry(cache->leaves.next, 224 struct backref_node, lower); 225 remove_backref_node(cache, node); 226 } 227 228 cache->last_trans = 0; 229 230 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 231 ASSERT(list_empty(&cache->pending[i])); 232 ASSERT(list_empty(&cache->changed)); 233 ASSERT(list_empty(&cache->detached)); 234 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 235 ASSERT(!cache->nr_nodes); 236 ASSERT(!cache->nr_edges); 237 } 238 239 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 240 { 241 struct backref_node *node; 242 243 node = kzalloc(sizeof(*node), GFP_NOFS); 244 if (node) { 245 INIT_LIST_HEAD(&node->list); 246 INIT_LIST_HEAD(&node->upper); 247 INIT_LIST_HEAD(&node->lower); 248 RB_CLEAR_NODE(&node->rb_node); 249 cache->nr_nodes++; 250 } 251 return node; 252 } 253 254 static void free_backref_node(struct backref_cache *cache, 255 struct backref_node *node) 256 { 257 if (node) { 258 cache->nr_nodes--; 259 kfree(node); 260 } 261 } 262 263 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 264 { 265 struct backref_edge *edge; 266 267 edge = kzalloc(sizeof(*edge), GFP_NOFS); 268 if (edge) 269 cache->nr_edges++; 270 return edge; 271 } 272 273 static void free_backref_edge(struct backref_cache *cache, 274 struct backref_edge *edge) 275 { 276 if (edge) { 277 cache->nr_edges--; 278 kfree(edge); 279 } 280 } 281 282 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 283 struct rb_node *node) 284 { 285 struct rb_node **p = &root->rb_node; 286 struct rb_node *parent = NULL; 287 struct tree_entry *entry; 288 289 while (*p) { 290 parent = *p; 291 entry = rb_entry(parent, struct tree_entry, rb_node); 292 293 if (bytenr < entry->bytenr) 294 p = &(*p)->rb_left; 295 else if (bytenr > entry->bytenr) 296 p = &(*p)->rb_right; 297 else 298 return parent; 299 } 300 301 rb_link_node(node, parent, p); 302 rb_insert_color(node, root); 303 return NULL; 304 } 305 306 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 307 { 308 struct rb_node *n = root->rb_node; 309 struct tree_entry *entry; 310 311 while (n) { 312 entry = rb_entry(n, struct tree_entry, rb_node); 313 314 if (bytenr < entry->bytenr) 315 n = n->rb_left; 316 else if (bytenr > entry->bytenr) 317 n = n->rb_right; 318 else 319 return n; 320 } 321 return NULL; 322 } 323 324 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 325 { 326 327 struct btrfs_fs_info *fs_info = NULL; 328 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 329 rb_node); 330 if (bnode->root) 331 fs_info = bnode->root->fs_info; 332 btrfs_panic(fs_info, errno, 333 "Inconsistency in backref cache found at offset %llu", 334 bytenr); 335 } 336 337 /* 338 * walk up backref nodes until reach node presents tree root 339 */ 340 static struct backref_node *walk_up_backref(struct backref_node *node, 341 struct backref_edge *edges[], 342 int *index) 343 { 344 struct backref_edge *edge; 345 int idx = *index; 346 347 while (!list_empty(&node->upper)) { 348 edge = list_entry(node->upper.next, 349 struct backref_edge, list[LOWER]); 350 edges[idx++] = edge; 351 node = edge->node[UPPER]; 352 } 353 BUG_ON(node->detached); 354 *index = idx; 355 return node; 356 } 357 358 /* 359 * walk down backref nodes to find start of next reference path 360 */ 361 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 362 int *index) 363 { 364 struct backref_edge *edge; 365 struct backref_node *lower; 366 int idx = *index; 367 368 while (idx > 0) { 369 edge = edges[idx - 1]; 370 lower = edge->node[LOWER]; 371 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 372 idx--; 373 continue; 374 } 375 edge = list_entry(edge->list[LOWER].next, 376 struct backref_edge, list[LOWER]); 377 edges[idx - 1] = edge; 378 *index = idx; 379 return edge->node[UPPER]; 380 } 381 *index = 0; 382 return NULL; 383 } 384 385 static void unlock_node_buffer(struct backref_node *node) 386 { 387 if (node->locked) { 388 btrfs_tree_unlock(node->eb); 389 node->locked = 0; 390 } 391 } 392 393 static void drop_node_buffer(struct backref_node *node) 394 { 395 if (node->eb) { 396 unlock_node_buffer(node); 397 free_extent_buffer(node->eb); 398 node->eb = NULL; 399 } 400 } 401 402 static void drop_backref_node(struct backref_cache *tree, 403 struct backref_node *node) 404 { 405 BUG_ON(!list_empty(&node->upper)); 406 407 drop_node_buffer(node); 408 list_del(&node->list); 409 list_del(&node->lower); 410 if (!RB_EMPTY_NODE(&node->rb_node)) 411 rb_erase(&node->rb_node, &tree->rb_root); 412 free_backref_node(tree, node); 413 } 414 415 /* 416 * remove a backref node from the backref cache 417 */ 418 static void remove_backref_node(struct backref_cache *cache, 419 struct backref_node *node) 420 { 421 struct backref_node *upper; 422 struct backref_edge *edge; 423 424 if (!node) 425 return; 426 427 BUG_ON(!node->lowest && !node->detached); 428 while (!list_empty(&node->upper)) { 429 edge = list_entry(node->upper.next, struct backref_edge, 430 list[LOWER]); 431 upper = edge->node[UPPER]; 432 list_del(&edge->list[LOWER]); 433 list_del(&edge->list[UPPER]); 434 free_backref_edge(cache, edge); 435 436 if (RB_EMPTY_NODE(&upper->rb_node)) { 437 BUG_ON(!list_empty(&node->upper)); 438 drop_backref_node(cache, node); 439 node = upper; 440 node->lowest = 1; 441 continue; 442 } 443 /* 444 * add the node to leaf node list if no other 445 * child block cached. 446 */ 447 if (list_empty(&upper->lower)) { 448 list_add_tail(&upper->lower, &cache->leaves); 449 upper->lowest = 1; 450 } 451 } 452 453 drop_backref_node(cache, node); 454 } 455 456 static void update_backref_node(struct backref_cache *cache, 457 struct backref_node *node, u64 bytenr) 458 { 459 struct rb_node *rb_node; 460 rb_erase(&node->rb_node, &cache->rb_root); 461 node->bytenr = bytenr; 462 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 463 if (rb_node) 464 backref_tree_panic(rb_node, -EEXIST, bytenr); 465 } 466 467 /* 468 * update backref cache after a transaction commit 469 */ 470 static int update_backref_cache(struct btrfs_trans_handle *trans, 471 struct backref_cache *cache) 472 { 473 struct backref_node *node; 474 int level = 0; 475 476 if (cache->last_trans == 0) { 477 cache->last_trans = trans->transid; 478 return 0; 479 } 480 481 if (cache->last_trans == trans->transid) 482 return 0; 483 484 /* 485 * detached nodes are used to avoid unnecessary backref 486 * lookup. transaction commit changes the extent tree. 487 * so the detached nodes are no longer useful. 488 */ 489 while (!list_empty(&cache->detached)) { 490 node = list_entry(cache->detached.next, 491 struct backref_node, list); 492 remove_backref_node(cache, node); 493 } 494 495 while (!list_empty(&cache->changed)) { 496 node = list_entry(cache->changed.next, 497 struct backref_node, list); 498 list_del_init(&node->list); 499 BUG_ON(node->pending); 500 update_backref_node(cache, node, node->new_bytenr); 501 } 502 503 /* 504 * some nodes can be left in the pending list if there were 505 * errors during processing the pending nodes. 506 */ 507 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 508 list_for_each_entry(node, &cache->pending[level], list) { 509 BUG_ON(!node->pending); 510 if (node->bytenr == node->new_bytenr) 511 continue; 512 update_backref_node(cache, node, node->new_bytenr); 513 } 514 } 515 516 cache->last_trans = 0; 517 return 1; 518 } 519 520 static bool reloc_root_is_dead(struct btrfs_root *root) 521 { 522 /* 523 * Pair with set_bit/clear_bit in clean_dirty_subvols and 524 * btrfs_update_reloc_root. We need to see the updated bit before 525 * trying to access reloc_root 526 */ 527 smp_rmb(); 528 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 529 return true; 530 return false; 531 } 532 533 /* 534 * Check if this subvolume tree has valid reloc tree. 535 * 536 * Reloc tree after swap is considered dead, thus not considered as valid. 537 * This is enough for most callers, as they don't distinguish dead reloc root 538 * from no reloc root. But should_ignore_root() below is a special case. 539 */ 540 static bool have_reloc_root(struct btrfs_root *root) 541 { 542 if (reloc_root_is_dead(root)) 543 return false; 544 if (!root->reloc_root) 545 return false; 546 return true; 547 } 548 549 static int should_ignore_root(struct btrfs_root *root) 550 { 551 struct btrfs_root *reloc_root; 552 553 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 554 return 0; 555 556 /* This root has been merged with its reloc tree, we can ignore it */ 557 if (reloc_root_is_dead(root)) 558 return 1; 559 560 reloc_root = root->reloc_root; 561 if (!reloc_root) 562 return 0; 563 564 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 565 root->fs_info->running_transaction->transid - 1) 566 return 0; 567 /* 568 * if there is reloc tree and it was created in previous 569 * transaction backref lookup can find the reloc tree, 570 * so backref node for the fs tree root is useless for 571 * relocation. 572 */ 573 return 1; 574 } 575 /* 576 * find reloc tree by address of tree root 577 */ 578 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 579 u64 bytenr) 580 { 581 struct rb_node *rb_node; 582 struct mapping_node *node; 583 struct btrfs_root *root = NULL; 584 585 spin_lock(&rc->reloc_root_tree.lock); 586 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 587 if (rb_node) { 588 node = rb_entry(rb_node, struct mapping_node, rb_node); 589 root = (struct btrfs_root *)node->data; 590 } 591 spin_unlock(&rc->reloc_root_tree.lock); 592 return root; 593 } 594 595 static int is_cowonly_root(u64 root_objectid) 596 { 597 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 598 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 599 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 600 root_objectid == BTRFS_DEV_TREE_OBJECTID || 601 root_objectid == BTRFS_TREE_LOG_OBJECTID || 602 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 603 root_objectid == BTRFS_UUID_TREE_OBJECTID || 604 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 605 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 606 return 1; 607 return 0; 608 } 609 610 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 611 u64 root_objectid) 612 { 613 struct btrfs_key key; 614 615 key.objectid = root_objectid; 616 key.type = BTRFS_ROOT_ITEM_KEY; 617 if (is_cowonly_root(root_objectid)) 618 key.offset = 0; 619 else 620 key.offset = (u64)-1; 621 622 return btrfs_get_fs_root(fs_info, &key, false); 623 } 624 625 static noinline_for_stack 626 int find_inline_backref(struct extent_buffer *leaf, int slot, 627 unsigned long *ptr, unsigned long *end) 628 { 629 struct btrfs_key key; 630 struct btrfs_extent_item *ei; 631 struct btrfs_tree_block_info *bi; 632 u32 item_size; 633 634 btrfs_item_key_to_cpu(leaf, &key, slot); 635 636 item_size = btrfs_item_size_nr(leaf, slot); 637 if (item_size < sizeof(*ei)) { 638 btrfs_print_v0_err(leaf->fs_info); 639 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL); 640 return 1; 641 } 642 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 643 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 644 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 645 646 if (key.type == BTRFS_EXTENT_ITEM_KEY && 647 item_size <= sizeof(*ei) + sizeof(*bi)) { 648 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 649 return 1; 650 } 651 if (key.type == BTRFS_METADATA_ITEM_KEY && 652 item_size <= sizeof(*ei)) { 653 WARN_ON(item_size < sizeof(*ei)); 654 return 1; 655 } 656 657 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 658 bi = (struct btrfs_tree_block_info *)(ei + 1); 659 *ptr = (unsigned long)(bi + 1); 660 } else { 661 *ptr = (unsigned long)(ei + 1); 662 } 663 *end = (unsigned long)ei + item_size; 664 return 0; 665 } 666 667 /* 668 * build backref tree for a given tree block. root of the backref tree 669 * corresponds the tree block, leaves of the backref tree correspond 670 * roots of b-trees that reference the tree block. 671 * 672 * the basic idea of this function is check backrefs of a given block 673 * to find upper level blocks that reference the block, and then check 674 * backrefs of these upper level blocks recursively. the recursion stop 675 * when tree root is reached or backrefs for the block is cached. 676 * 677 * NOTE: if we find backrefs for a block are cached, we know backrefs 678 * for all upper level blocks that directly/indirectly reference the 679 * block are also cached. 680 */ 681 static noinline_for_stack 682 struct backref_node *build_backref_tree(struct reloc_control *rc, 683 struct btrfs_key *node_key, 684 int level, u64 bytenr) 685 { 686 struct backref_cache *cache = &rc->backref_cache; 687 struct btrfs_path *path1; /* For searching extent root */ 688 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */ 689 struct extent_buffer *eb; 690 struct btrfs_root *root; 691 struct backref_node *cur; 692 struct backref_node *upper; 693 struct backref_node *lower; 694 struct backref_node *node = NULL; 695 struct backref_node *exist = NULL; 696 struct backref_edge *edge; 697 struct rb_node *rb_node; 698 struct btrfs_key key; 699 unsigned long end; 700 unsigned long ptr; 701 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */ 702 LIST_HEAD(useless); 703 int cowonly; 704 int ret; 705 int err = 0; 706 bool need_check = true; 707 708 path1 = btrfs_alloc_path(); 709 path2 = btrfs_alloc_path(); 710 if (!path1 || !path2) { 711 err = -ENOMEM; 712 goto out; 713 } 714 path1->reada = READA_FORWARD; 715 path2->reada = READA_FORWARD; 716 717 node = alloc_backref_node(cache); 718 if (!node) { 719 err = -ENOMEM; 720 goto out; 721 } 722 723 node->bytenr = bytenr; 724 node->level = level; 725 node->lowest = 1; 726 cur = node; 727 again: 728 end = 0; 729 ptr = 0; 730 key.objectid = cur->bytenr; 731 key.type = BTRFS_METADATA_ITEM_KEY; 732 key.offset = (u64)-1; 733 734 path1->search_commit_root = 1; 735 path1->skip_locking = 1; 736 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 737 0, 0); 738 if (ret < 0) { 739 err = ret; 740 goto out; 741 } 742 ASSERT(ret); 743 ASSERT(path1->slots[0]); 744 745 path1->slots[0]--; 746 747 WARN_ON(cur->checked); 748 if (!list_empty(&cur->upper)) { 749 /* 750 * the backref was added previously when processing 751 * backref of type BTRFS_TREE_BLOCK_REF_KEY 752 */ 753 ASSERT(list_is_singular(&cur->upper)); 754 edge = list_entry(cur->upper.next, struct backref_edge, 755 list[LOWER]); 756 ASSERT(list_empty(&edge->list[UPPER])); 757 exist = edge->node[UPPER]; 758 /* 759 * add the upper level block to pending list if we need 760 * check its backrefs 761 */ 762 if (!exist->checked) 763 list_add_tail(&edge->list[UPPER], &list); 764 } else { 765 exist = NULL; 766 } 767 768 while (1) { 769 cond_resched(); 770 eb = path1->nodes[0]; 771 772 if (ptr >= end) { 773 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 774 ret = btrfs_next_leaf(rc->extent_root, path1); 775 if (ret < 0) { 776 err = ret; 777 goto out; 778 } 779 if (ret > 0) 780 break; 781 eb = path1->nodes[0]; 782 } 783 784 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 785 if (key.objectid != cur->bytenr) { 786 WARN_ON(exist); 787 break; 788 } 789 790 if (key.type == BTRFS_EXTENT_ITEM_KEY || 791 key.type == BTRFS_METADATA_ITEM_KEY) { 792 ret = find_inline_backref(eb, path1->slots[0], 793 &ptr, &end); 794 if (ret) 795 goto next; 796 } 797 } 798 799 if (ptr < end) { 800 /* update key for inline back ref */ 801 struct btrfs_extent_inline_ref *iref; 802 int type; 803 iref = (struct btrfs_extent_inline_ref *)ptr; 804 type = btrfs_get_extent_inline_ref_type(eb, iref, 805 BTRFS_REF_TYPE_BLOCK); 806 if (type == BTRFS_REF_TYPE_INVALID) { 807 err = -EUCLEAN; 808 goto out; 809 } 810 key.type = type; 811 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 812 813 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 814 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 815 } 816 817 /* 818 * Parent node found and matches current inline ref, no need to 819 * rebuild this node for this inline ref. 820 */ 821 if (exist && 822 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 823 exist->owner == key.offset) || 824 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 825 exist->bytenr == key.offset))) { 826 exist = NULL; 827 goto next; 828 } 829 830 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 831 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 832 if (key.objectid == key.offset) { 833 /* 834 * Only root blocks of reloc trees use backref 835 * pointing to itself. 836 */ 837 root = find_reloc_root(rc, cur->bytenr); 838 ASSERT(root); 839 cur->root = root; 840 break; 841 } 842 843 edge = alloc_backref_edge(cache); 844 if (!edge) { 845 err = -ENOMEM; 846 goto out; 847 } 848 rb_node = tree_search(&cache->rb_root, key.offset); 849 if (!rb_node) { 850 upper = alloc_backref_node(cache); 851 if (!upper) { 852 free_backref_edge(cache, edge); 853 err = -ENOMEM; 854 goto out; 855 } 856 upper->bytenr = key.offset; 857 upper->level = cur->level + 1; 858 /* 859 * backrefs for the upper level block isn't 860 * cached, add the block to pending list 861 */ 862 list_add_tail(&edge->list[UPPER], &list); 863 } else { 864 upper = rb_entry(rb_node, struct backref_node, 865 rb_node); 866 ASSERT(upper->checked); 867 INIT_LIST_HEAD(&edge->list[UPPER]); 868 } 869 list_add_tail(&edge->list[LOWER], &cur->upper); 870 edge->node[LOWER] = cur; 871 edge->node[UPPER] = upper; 872 873 goto next; 874 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 875 err = -EINVAL; 876 btrfs_print_v0_err(rc->extent_root->fs_info); 877 btrfs_handle_fs_error(rc->extent_root->fs_info, err, 878 NULL); 879 goto out; 880 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 881 goto next; 882 } 883 884 /* 885 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 886 * means the root objectid. We need to search the tree to get 887 * its parent bytenr. 888 */ 889 root = read_fs_root(rc->extent_root->fs_info, key.offset); 890 if (IS_ERR(root)) { 891 err = PTR_ERR(root); 892 goto out; 893 } 894 895 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 896 cur->cowonly = 1; 897 898 if (btrfs_root_level(&root->root_item) == cur->level) { 899 /* tree root */ 900 ASSERT(btrfs_root_bytenr(&root->root_item) == 901 cur->bytenr); 902 if (should_ignore_root(root)) 903 list_add(&cur->list, &useless); 904 else 905 cur->root = root; 906 break; 907 } 908 909 level = cur->level + 1; 910 911 /* Search the tree to find parent blocks referring the block. */ 912 path2->search_commit_root = 1; 913 path2->skip_locking = 1; 914 path2->lowest_level = level; 915 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 916 path2->lowest_level = 0; 917 if (ret < 0) { 918 err = ret; 919 goto out; 920 } 921 if (ret > 0 && path2->slots[level] > 0) 922 path2->slots[level]--; 923 924 eb = path2->nodes[level]; 925 if (btrfs_node_blockptr(eb, path2->slots[level]) != 926 cur->bytenr) { 927 btrfs_err(root->fs_info, 928 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 929 cur->bytenr, level - 1, 930 root->root_key.objectid, 931 node_key->objectid, node_key->type, 932 node_key->offset); 933 err = -ENOENT; 934 goto out; 935 } 936 lower = cur; 937 need_check = true; 938 939 /* Add all nodes and edges in the path */ 940 for (; level < BTRFS_MAX_LEVEL; level++) { 941 if (!path2->nodes[level]) { 942 ASSERT(btrfs_root_bytenr(&root->root_item) == 943 lower->bytenr); 944 if (should_ignore_root(root)) 945 list_add(&lower->list, &useless); 946 else 947 lower->root = root; 948 break; 949 } 950 951 edge = alloc_backref_edge(cache); 952 if (!edge) { 953 err = -ENOMEM; 954 goto out; 955 } 956 957 eb = path2->nodes[level]; 958 rb_node = tree_search(&cache->rb_root, eb->start); 959 if (!rb_node) { 960 upper = alloc_backref_node(cache); 961 if (!upper) { 962 free_backref_edge(cache, edge); 963 err = -ENOMEM; 964 goto out; 965 } 966 upper->bytenr = eb->start; 967 upper->owner = btrfs_header_owner(eb); 968 upper->level = lower->level + 1; 969 if (!test_bit(BTRFS_ROOT_REF_COWS, 970 &root->state)) 971 upper->cowonly = 1; 972 973 /* 974 * if we know the block isn't shared 975 * we can void checking its backrefs. 976 */ 977 if (btrfs_block_can_be_shared(root, eb)) 978 upper->checked = 0; 979 else 980 upper->checked = 1; 981 982 /* 983 * add the block to pending list if we 984 * need check its backrefs, we only do this once 985 * while walking up a tree as we will catch 986 * anything else later on. 987 */ 988 if (!upper->checked && need_check) { 989 need_check = false; 990 list_add_tail(&edge->list[UPPER], 991 &list); 992 } else { 993 if (upper->checked) 994 need_check = true; 995 INIT_LIST_HEAD(&edge->list[UPPER]); 996 } 997 } else { 998 upper = rb_entry(rb_node, struct backref_node, 999 rb_node); 1000 ASSERT(upper->checked); 1001 INIT_LIST_HEAD(&edge->list[UPPER]); 1002 if (!upper->owner) 1003 upper->owner = btrfs_header_owner(eb); 1004 } 1005 list_add_tail(&edge->list[LOWER], &lower->upper); 1006 edge->node[LOWER] = lower; 1007 edge->node[UPPER] = upper; 1008 1009 if (rb_node) 1010 break; 1011 lower = upper; 1012 upper = NULL; 1013 } 1014 btrfs_release_path(path2); 1015 next: 1016 if (ptr < end) { 1017 ptr += btrfs_extent_inline_ref_size(key.type); 1018 if (ptr >= end) { 1019 WARN_ON(ptr > end); 1020 ptr = 0; 1021 end = 0; 1022 } 1023 } 1024 if (ptr >= end) 1025 path1->slots[0]++; 1026 } 1027 btrfs_release_path(path1); 1028 1029 cur->checked = 1; 1030 WARN_ON(exist); 1031 1032 /* the pending list isn't empty, take the first block to process */ 1033 if (!list_empty(&list)) { 1034 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1035 list_del_init(&edge->list[UPPER]); 1036 cur = edge->node[UPPER]; 1037 goto again; 1038 } 1039 1040 /* 1041 * everything goes well, connect backref nodes and insert backref nodes 1042 * into the cache. 1043 */ 1044 ASSERT(node->checked); 1045 cowonly = node->cowonly; 1046 if (!cowonly) { 1047 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1048 &node->rb_node); 1049 if (rb_node) 1050 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1051 list_add_tail(&node->lower, &cache->leaves); 1052 } 1053 1054 list_for_each_entry(edge, &node->upper, list[LOWER]) 1055 list_add_tail(&edge->list[UPPER], &list); 1056 1057 while (!list_empty(&list)) { 1058 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1059 list_del_init(&edge->list[UPPER]); 1060 upper = edge->node[UPPER]; 1061 if (upper->detached) { 1062 list_del(&edge->list[LOWER]); 1063 lower = edge->node[LOWER]; 1064 free_backref_edge(cache, edge); 1065 if (list_empty(&lower->upper)) 1066 list_add(&lower->list, &useless); 1067 continue; 1068 } 1069 1070 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1071 if (upper->lowest) { 1072 list_del_init(&upper->lower); 1073 upper->lowest = 0; 1074 } 1075 1076 list_add_tail(&edge->list[UPPER], &upper->lower); 1077 continue; 1078 } 1079 1080 if (!upper->checked) { 1081 /* 1082 * Still want to blow up for developers since this is a 1083 * logic bug. 1084 */ 1085 ASSERT(0); 1086 err = -EINVAL; 1087 goto out; 1088 } 1089 if (cowonly != upper->cowonly) { 1090 ASSERT(0); 1091 err = -EINVAL; 1092 goto out; 1093 } 1094 1095 if (!cowonly) { 1096 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1097 &upper->rb_node); 1098 if (rb_node) 1099 backref_tree_panic(rb_node, -EEXIST, 1100 upper->bytenr); 1101 } 1102 1103 list_add_tail(&edge->list[UPPER], &upper->lower); 1104 1105 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1106 list_add_tail(&edge->list[UPPER], &list); 1107 } 1108 /* 1109 * process useless backref nodes. backref nodes for tree leaves 1110 * are deleted from the cache. backref nodes for upper level 1111 * tree blocks are left in the cache to avoid unnecessary backref 1112 * lookup. 1113 */ 1114 while (!list_empty(&useless)) { 1115 upper = list_entry(useless.next, struct backref_node, list); 1116 list_del_init(&upper->list); 1117 ASSERT(list_empty(&upper->upper)); 1118 if (upper == node) 1119 node = NULL; 1120 if (upper->lowest) { 1121 list_del_init(&upper->lower); 1122 upper->lowest = 0; 1123 } 1124 while (!list_empty(&upper->lower)) { 1125 edge = list_entry(upper->lower.next, 1126 struct backref_edge, list[UPPER]); 1127 list_del(&edge->list[UPPER]); 1128 list_del(&edge->list[LOWER]); 1129 lower = edge->node[LOWER]; 1130 free_backref_edge(cache, edge); 1131 1132 if (list_empty(&lower->upper)) 1133 list_add(&lower->list, &useless); 1134 } 1135 __mark_block_processed(rc, upper); 1136 if (upper->level > 0) { 1137 list_add(&upper->list, &cache->detached); 1138 upper->detached = 1; 1139 } else { 1140 rb_erase(&upper->rb_node, &cache->rb_root); 1141 free_backref_node(cache, upper); 1142 } 1143 } 1144 out: 1145 btrfs_free_path(path1); 1146 btrfs_free_path(path2); 1147 if (err) { 1148 while (!list_empty(&useless)) { 1149 lower = list_entry(useless.next, 1150 struct backref_node, list); 1151 list_del_init(&lower->list); 1152 } 1153 while (!list_empty(&list)) { 1154 edge = list_first_entry(&list, struct backref_edge, 1155 list[UPPER]); 1156 list_del(&edge->list[UPPER]); 1157 list_del(&edge->list[LOWER]); 1158 lower = edge->node[LOWER]; 1159 upper = edge->node[UPPER]; 1160 free_backref_edge(cache, edge); 1161 1162 /* 1163 * Lower is no longer linked to any upper backref nodes 1164 * and isn't in the cache, we can free it ourselves. 1165 */ 1166 if (list_empty(&lower->upper) && 1167 RB_EMPTY_NODE(&lower->rb_node)) 1168 list_add(&lower->list, &useless); 1169 1170 if (!RB_EMPTY_NODE(&upper->rb_node)) 1171 continue; 1172 1173 /* Add this guy's upper edges to the list to process */ 1174 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1175 list_add_tail(&edge->list[UPPER], &list); 1176 if (list_empty(&upper->upper)) 1177 list_add(&upper->list, &useless); 1178 } 1179 1180 while (!list_empty(&useless)) { 1181 lower = list_entry(useless.next, 1182 struct backref_node, list); 1183 list_del_init(&lower->list); 1184 if (lower == node) 1185 node = NULL; 1186 free_backref_node(cache, lower); 1187 } 1188 1189 free_backref_node(cache, node); 1190 return ERR_PTR(err); 1191 } 1192 ASSERT(!node || !node->detached); 1193 return node; 1194 } 1195 1196 /* 1197 * helper to add backref node for the newly created snapshot. 1198 * the backref node is created by cloning backref node that 1199 * corresponds to root of source tree 1200 */ 1201 static int clone_backref_node(struct btrfs_trans_handle *trans, 1202 struct reloc_control *rc, 1203 struct btrfs_root *src, 1204 struct btrfs_root *dest) 1205 { 1206 struct btrfs_root *reloc_root = src->reloc_root; 1207 struct backref_cache *cache = &rc->backref_cache; 1208 struct backref_node *node = NULL; 1209 struct backref_node *new_node; 1210 struct backref_edge *edge; 1211 struct backref_edge *new_edge; 1212 struct rb_node *rb_node; 1213 1214 if (cache->last_trans > 0) 1215 update_backref_cache(trans, cache); 1216 1217 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1218 if (rb_node) { 1219 node = rb_entry(rb_node, struct backref_node, rb_node); 1220 if (node->detached) 1221 node = NULL; 1222 else 1223 BUG_ON(node->new_bytenr != reloc_root->node->start); 1224 } 1225 1226 if (!node) { 1227 rb_node = tree_search(&cache->rb_root, 1228 reloc_root->commit_root->start); 1229 if (rb_node) { 1230 node = rb_entry(rb_node, struct backref_node, 1231 rb_node); 1232 BUG_ON(node->detached); 1233 } 1234 } 1235 1236 if (!node) 1237 return 0; 1238 1239 new_node = alloc_backref_node(cache); 1240 if (!new_node) 1241 return -ENOMEM; 1242 1243 new_node->bytenr = dest->node->start; 1244 new_node->level = node->level; 1245 new_node->lowest = node->lowest; 1246 new_node->checked = 1; 1247 new_node->root = dest; 1248 1249 if (!node->lowest) { 1250 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1251 new_edge = alloc_backref_edge(cache); 1252 if (!new_edge) 1253 goto fail; 1254 1255 new_edge->node[UPPER] = new_node; 1256 new_edge->node[LOWER] = edge->node[LOWER]; 1257 list_add_tail(&new_edge->list[UPPER], 1258 &new_node->lower); 1259 } 1260 } else { 1261 list_add_tail(&new_node->lower, &cache->leaves); 1262 } 1263 1264 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1265 &new_node->rb_node); 1266 if (rb_node) 1267 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1268 1269 if (!new_node->lowest) { 1270 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1271 list_add_tail(&new_edge->list[LOWER], 1272 &new_edge->node[LOWER]->upper); 1273 } 1274 } 1275 return 0; 1276 fail: 1277 while (!list_empty(&new_node->lower)) { 1278 new_edge = list_entry(new_node->lower.next, 1279 struct backref_edge, list[UPPER]); 1280 list_del(&new_edge->list[UPPER]); 1281 free_backref_edge(cache, new_edge); 1282 } 1283 free_backref_node(cache, new_node); 1284 return -ENOMEM; 1285 } 1286 1287 /* 1288 * helper to add 'address of tree root -> reloc tree' mapping 1289 */ 1290 static int __must_check __add_reloc_root(struct btrfs_root *root) 1291 { 1292 struct btrfs_fs_info *fs_info = root->fs_info; 1293 struct rb_node *rb_node; 1294 struct mapping_node *node; 1295 struct reloc_control *rc = fs_info->reloc_ctl; 1296 1297 node = kmalloc(sizeof(*node), GFP_NOFS); 1298 if (!node) 1299 return -ENOMEM; 1300 1301 node->bytenr = root->node->start; 1302 node->data = root; 1303 1304 spin_lock(&rc->reloc_root_tree.lock); 1305 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1306 node->bytenr, &node->rb_node); 1307 spin_unlock(&rc->reloc_root_tree.lock); 1308 if (rb_node) { 1309 btrfs_panic(fs_info, -EEXIST, 1310 "Duplicate root found for start=%llu while inserting into relocation tree", 1311 node->bytenr); 1312 } 1313 1314 list_add_tail(&root->root_list, &rc->reloc_roots); 1315 return 0; 1316 } 1317 1318 /* 1319 * helper to delete the 'address of tree root -> reloc tree' 1320 * mapping 1321 */ 1322 static void __del_reloc_root(struct btrfs_root *root) 1323 { 1324 struct btrfs_fs_info *fs_info = root->fs_info; 1325 struct rb_node *rb_node; 1326 struct mapping_node *node = NULL; 1327 struct reloc_control *rc = fs_info->reloc_ctl; 1328 1329 if (rc && root->node) { 1330 spin_lock(&rc->reloc_root_tree.lock); 1331 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1332 root->node->start); 1333 if (rb_node) { 1334 node = rb_entry(rb_node, struct mapping_node, rb_node); 1335 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1336 } 1337 spin_unlock(&rc->reloc_root_tree.lock); 1338 if (!node) 1339 return; 1340 BUG_ON((struct btrfs_root *)node->data != root); 1341 } 1342 1343 spin_lock(&fs_info->trans_lock); 1344 list_del_init(&root->root_list); 1345 spin_unlock(&fs_info->trans_lock); 1346 kfree(node); 1347 } 1348 1349 /* 1350 * helper to update the 'address of tree root -> reloc tree' 1351 * mapping 1352 */ 1353 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1354 { 1355 struct btrfs_fs_info *fs_info = root->fs_info; 1356 struct rb_node *rb_node; 1357 struct mapping_node *node = NULL; 1358 struct reloc_control *rc = fs_info->reloc_ctl; 1359 1360 spin_lock(&rc->reloc_root_tree.lock); 1361 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1362 root->node->start); 1363 if (rb_node) { 1364 node = rb_entry(rb_node, struct mapping_node, rb_node); 1365 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1366 } 1367 spin_unlock(&rc->reloc_root_tree.lock); 1368 1369 if (!node) 1370 return 0; 1371 BUG_ON((struct btrfs_root *)node->data != root); 1372 1373 spin_lock(&rc->reloc_root_tree.lock); 1374 node->bytenr = new_bytenr; 1375 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1376 node->bytenr, &node->rb_node); 1377 spin_unlock(&rc->reloc_root_tree.lock); 1378 if (rb_node) 1379 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1380 return 0; 1381 } 1382 1383 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1384 struct btrfs_root *root, u64 objectid) 1385 { 1386 struct btrfs_fs_info *fs_info = root->fs_info; 1387 struct btrfs_root *reloc_root; 1388 struct extent_buffer *eb; 1389 struct btrfs_root_item *root_item; 1390 struct btrfs_key root_key; 1391 int ret; 1392 1393 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1394 BUG_ON(!root_item); 1395 1396 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1397 root_key.type = BTRFS_ROOT_ITEM_KEY; 1398 root_key.offset = objectid; 1399 1400 if (root->root_key.objectid == objectid) { 1401 u64 commit_root_gen; 1402 1403 /* called by btrfs_init_reloc_root */ 1404 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1405 BTRFS_TREE_RELOC_OBJECTID); 1406 BUG_ON(ret); 1407 /* 1408 * Set the last_snapshot field to the generation of the commit 1409 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1410 * correctly (returns true) when the relocation root is created 1411 * either inside the critical section of a transaction commit 1412 * (through transaction.c:qgroup_account_snapshot()) and when 1413 * it's created before the transaction commit is started. 1414 */ 1415 commit_root_gen = btrfs_header_generation(root->commit_root); 1416 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1417 } else { 1418 /* 1419 * called by btrfs_reloc_post_snapshot_hook. 1420 * the source tree is a reloc tree, all tree blocks 1421 * modified after it was created have RELOC flag 1422 * set in their headers. so it's OK to not update 1423 * the 'last_snapshot'. 1424 */ 1425 ret = btrfs_copy_root(trans, root, root->node, &eb, 1426 BTRFS_TREE_RELOC_OBJECTID); 1427 BUG_ON(ret); 1428 } 1429 1430 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1431 btrfs_set_root_bytenr(root_item, eb->start); 1432 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1433 btrfs_set_root_generation(root_item, trans->transid); 1434 1435 if (root->root_key.objectid == objectid) { 1436 btrfs_set_root_refs(root_item, 0); 1437 memset(&root_item->drop_progress, 0, 1438 sizeof(struct btrfs_disk_key)); 1439 root_item->drop_level = 0; 1440 } 1441 1442 btrfs_tree_unlock(eb); 1443 free_extent_buffer(eb); 1444 1445 ret = btrfs_insert_root(trans, fs_info->tree_root, 1446 &root_key, root_item); 1447 BUG_ON(ret); 1448 kfree(root_item); 1449 1450 reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key); 1451 BUG_ON(IS_ERR(reloc_root)); 1452 reloc_root->last_trans = trans->transid; 1453 return reloc_root; 1454 } 1455 1456 /* 1457 * create reloc tree for a given fs tree. reloc tree is just a 1458 * snapshot of the fs tree with special root objectid. 1459 */ 1460 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1461 struct btrfs_root *root) 1462 { 1463 struct btrfs_fs_info *fs_info = root->fs_info; 1464 struct btrfs_root *reloc_root; 1465 struct reloc_control *rc = fs_info->reloc_ctl; 1466 struct btrfs_block_rsv *rsv; 1467 int clear_rsv = 0; 1468 int ret; 1469 1470 /* 1471 * The subvolume has reloc tree but the swap is finished, no need to 1472 * create/update the dead reloc tree 1473 */ 1474 if (reloc_root_is_dead(root)) 1475 return 0; 1476 1477 if (root->reloc_root) { 1478 reloc_root = root->reloc_root; 1479 reloc_root->last_trans = trans->transid; 1480 return 0; 1481 } 1482 1483 if (!rc || !rc->create_reloc_tree || 1484 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1485 return 0; 1486 1487 if (!trans->reloc_reserved) { 1488 rsv = trans->block_rsv; 1489 trans->block_rsv = rc->block_rsv; 1490 clear_rsv = 1; 1491 } 1492 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1493 if (clear_rsv) 1494 trans->block_rsv = rsv; 1495 1496 ret = __add_reloc_root(reloc_root); 1497 BUG_ON(ret < 0); 1498 root->reloc_root = reloc_root; 1499 return 0; 1500 } 1501 1502 /* 1503 * update root item of reloc tree 1504 */ 1505 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1506 struct btrfs_root *root) 1507 { 1508 struct btrfs_fs_info *fs_info = root->fs_info; 1509 struct btrfs_root *reloc_root; 1510 struct btrfs_root_item *root_item; 1511 int ret; 1512 1513 if (!have_reloc_root(root)) 1514 goto out; 1515 1516 reloc_root = root->reloc_root; 1517 root_item = &reloc_root->root_item; 1518 1519 /* root->reloc_root will stay until current relocation finished */ 1520 if (fs_info->reloc_ctl->merge_reloc_tree && 1521 btrfs_root_refs(root_item) == 0) { 1522 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1523 /* 1524 * Mark the tree as dead before we change reloc_root so 1525 * have_reloc_root will not touch it from now on. 1526 */ 1527 smp_wmb(); 1528 __del_reloc_root(reloc_root); 1529 } 1530 1531 if (reloc_root->commit_root != reloc_root->node) { 1532 btrfs_set_root_node(root_item, reloc_root->node); 1533 free_extent_buffer(reloc_root->commit_root); 1534 reloc_root->commit_root = btrfs_root_node(reloc_root); 1535 } 1536 1537 ret = btrfs_update_root(trans, fs_info->tree_root, 1538 &reloc_root->root_key, root_item); 1539 BUG_ON(ret); 1540 1541 out: 1542 return 0; 1543 } 1544 1545 /* 1546 * helper to find first cached inode with inode number >= objectid 1547 * in a subvolume 1548 */ 1549 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1550 { 1551 struct rb_node *node; 1552 struct rb_node *prev; 1553 struct btrfs_inode *entry; 1554 struct inode *inode; 1555 1556 spin_lock(&root->inode_lock); 1557 again: 1558 node = root->inode_tree.rb_node; 1559 prev = NULL; 1560 while (node) { 1561 prev = node; 1562 entry = rb_entry(node, struct btrfs_inode, rb_node); 1563 1564 if (objectid < btrfs_ino(entry)) 1565 node = node->rb_left; 1566 else if (objectid > btrfs_ino(entry)) 1567 node = node->rb_right; 1568 else 1569 break; 1570 } 1571 if (!node) { 1572 while (prev) { 1573 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1574 if (objectid <= btrfs_ino(entry)) { 1575 node = prev; 1576 break; 1577 } 1578 prev = rb_next(prev); 1579 } 1580 } 1581 while (node) { 1582 entry = rb_entry(node, struct btrfs_inode, rb_node); 1583 inode = igrab(&entry->vfs_inode); 1584 if (inode) { 1585 spin_unlock(&root->inode_lock); 1586 return inode; 1587 } 1588 1589 objectid = btrfs_ino(entry) + 1; 1590 if (cond_resched_lock(&root->inode_lock)) 1591 goto again; 1592 1593 node = rb_next(node); 1594 } 1595 spin_unlock(&root->inode_lock); 1596 return NULL; 1597 } 1598 1599 static int in_block_group(u64 bytenr, struct btrfs_block_group *block_group) 1600 { 1601 if (bytenr >= block_group->start && 1602 bytenr < block_group->start + block_group->length) 1603 return 1; 1604 return 0; 1605 } 1606 1607 /* 1608 * get new location of data 1609 */ 1610 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1611 u64 bytenr, u64 num_bytes) 1612 { 1613 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1614 struct btrfs_path *path; 1615 struct btrfs_file_extent_item *fi; 1616 struct extent_buffer *leaf; 1617 int ret; 1618 1619 path = btrfs_alloc_path(); 1620 if (!path) 1621 return -ENOMEM; 1622 1623 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1624 ret = btrfs_lookup_file_extent(NULL, root, path, 1625 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1626 if (ret < 0) 1627 goto out; 1628 if (ret > 0) { 1629 ret = -ENOENT; 1630 goto out; 1631 } 1632 1633 leaf = path->nodes[0]; 1634 fi = btrfs_item_ptr(leaf, path->slots[0], 1635 struct btrfs_file_extent_item); 1636 1637 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1638 btrfs_file_extent_compression(leaf, fi) || 1639 btrfs_file_extent_encryption(leaf, fi) || 1640 btrfs_file_extent_other_encoding(leaf, fi)); 1641 1642 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1643 ret = -EINVAL; 1644 goto out; 1645 } 1646 1647 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1648 ret = 0; 1649 out: 1650 btrfs_free_path(path); 1651 return ret; 1652 } 1653 1654 /* 1655 * update file extent items in the tree leaf to point to 1656 * the new locations. 1657 */ 1658 static noinline_for_stack 1659 int replace_file_extents(struct btrfs_trans_handle *trans, 1660 struct reloc_control *rc, 1661 struct btrfs_root *root, 1662 struct extent_buffer *leaf) 1663 { 1664 struct btrfs_fs_info *fs_info = root->fs_info; 1665 struct btrfs_key key; 1666 struct btrfs_file_extent_item *fi; 1667 struct inode *inode = NULL; 1668 u64 parent; 1669 u64 bytenr; 1670 u64 new_bytenr = 0; 1671 u64 num_bytes; 1672 u64 end; 1673 u32 nritems; 1674 u32 i; 1675 int ret = 0; 1676 int first = 1; 1677 int dirty = 0; 1678 1679 if (rc->stage != UPDATE_DATA_PTRS) 1680 return 0; 1681 1682 /* reloc trees always use full backref */ 1683 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1684 parent = leaf->start; 1685 else 1686 parent = 0; 1687 1688 nritems = btrfs_header_nritems(leaf); 1689 for (i = 0; i < nritems; i++) { 1690 struct btrfs_ref ref = { 0 }; 1691 1692 cond_resched(); 1693 btrfs_item_key_to_cpu(leaf, &key, i); 1694 if (key.type != BTRFS_EXTENT_DATA_KEY) 1695 continue; 1696 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1697 if (btrfs_file_extent_type(leaf, fi) == 1698 BTRFS_FILE_EXTENT_INLINE) 1699 continue; 1700 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1701 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1702 if (bytenr == 0) 1703 continue; 1704 if (!in_block_group(bytenr, rc->block_group)) 1705 continue; 1706 1707 /* 1708 * if we are modifying block in fs tree, wait for readpage 1709 * to complete and drop the extent cache 1710 */ 1711 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1712 if (first) { 1713 inode = find_next_inode(root, key.objectid); 1714 first = 0; 1715 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1716 btrfs_add_delayed_iput(inode); 1717 inode = find_next_inode(root, key.objectid); 1718 } 1719 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1720 end = key.offset + 1721 btrfs_file_extent_num_bytes(leaf, fi); 1722 WARN_ON(!IS_ALIGNED(key.offset, 1723 fs_info->sectorsize)); 1724 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1725 end--; 1726 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1727 key.offset, end); 1728 if (!ret) 1729 continue; 1730 1731 btrfs_drop_extent_cache(BTRFS_I(inode), 1732 key.offset, end, 1); 1733 unlock_extent(&BTRFS_I(inode)->io_tree, 1734 key.offset, end); 1735 } 1736 } 1737 1738 ret = get_new_location(rc->data_inode, &new_bytenr, 1739 bytenr, num_bytes); 1740 if (ret) { 1741 /* 1742 * Don't have to abort since we've not changed anything 1743 * in the file extent yet. 1744 */ 1745 break; 1746 } 1747 1748 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1749 dirty = 1; 1750 1751 key.offset -= btrfs_file_extent_offset(leaf, fi); 1752 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1753 num_bytes, parent); 1754 ref.real_root = root->root_key.objectid; 1755 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1756 key.objectid, key.offset); 1757 ret = btrfs_inc_extent_ref(trans, &ref); 1758 if (ret) { 1759 btrfs_abort_transaction(trans, ret); 1760 break; 1761 } 1762 1763 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1764 num_bytes, parent); 1765 ref.real_root = root->root_key.objectid; 1766 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1767 key.objectid, key.offset); 1768 ret = btrfs_free_extent(trans, &ref); 1769 if (ret) { 1770 btrfs_abort_transaction(trans, ret); 1771 break; 1772 } 1773 } 1774 if (dirty) 1775 btrfs_mark_buffer_dirty(leaf); 1776 if (inode) 1777 btrfs_add_delayed_iput(inode); 1778 return ret; 1779 } 1780 1781 static noinline_for_stack 1782 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1783 struct btrfs_path *path, int level) 1784 { 1785 struct btrfs_disk_key key1; 1786 struct btrfs_disk_key key2; 1787 btrfs_node_key(eb, &key1, slot); 1788 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1789 return memcmp(&key1, &key2, sizeof(key1)); 1790 } 1791 1792 /* 1793 * try to replace tree blocks in fs tree with the new blocks 1794 * in reloc tree. tree blocks haven't been modified since the 1795 * reloc tree was create can be replaced. 1796 * 1797 * if a block was replaced, level of the block + 1 is returned. 1798 * if no block got replaced, 0 is returned. if there are other 1799 * errors, a negative error number is returned. 1800 */ 1801 static noinline_for_stack 1802 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1803 struct btrfs_root *dest, struct btrfs_root *src, 1804 struct btrfs_path *path, struct btrfs_key *next_key, 1805 int lowest_level, int max_level) 1806 { 1807 struct btrfs_fs_info *fs_info = dest->fs_info; 1808 struct extent_buffer *eb; 1809 struct extent_buffer *parent; 1810 struct btrfs_ref ref = { 0 }; 1811 struct btrfs_key key; 1812 u64 old_bytenr; 1813 u64 new_bytenr; 1814 u64 old_ptr_gen; 1815 u64 new_ptr_gen; 1816 u64 last_snapshot; 1817 u32 blocksize; 1818 int cow = 0; 1819 int level; 1820 int ret; 1821 int slot; 1822 1823 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1824 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1825 1826 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1827 again: 1828 slot = path->slots[lowest_level]; 1829 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1830 1831 eb = btrfs_lock_root_node(dest); 1832 btrfs_set_lock_blocking_write(eb); 1833 level = btrfs_header_level(eb); 1834 1835 if (level < lowest_level) { 1836 btrfs_tree_unlock(eb); 1837 free_extent_buffer(eb); 1838 return 0; 1839 } 1840 1841 if (cow) { 1842 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1843 BUG_ON(ret); 1844 } 1845 btrfs_set_lock_blocking_write(eb); 1846 1847 if (next_key) { 1848 next_key->objectid = (u64)-1; 1849 next_key->type = (u8)-1; 1850 next_key->offset = (u64)-1; 1851 } 1852 1853 parent = eb; 1854 while (1) { 1855 struct btrfs_key first_key; 1856 1857 level = btrfs_header_level(parent); 1858 BUG_ON(level < lowest_level); 1859 1860 ret = btrfs_bin_search(parent, &key, level, &slot); 1861 if (ret < 0) 1862 break; 1863 if (ret && slot > 0) 1864 slot--; 1865 1866 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1867 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1868 1869 old_bytenr = btrfs_node_blockptr(parent, slot); 1870 blocksize = fs_info->nodesize; 1871 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1872 btrfs_node_key_to_cpu(parent, &first_key, slot); 1873 1874 if (level <= max_level) { 1875 eb = path->nodes[level]; 1876 new_bytenr = btrfs_node_blockptr(eb, 1877 path->slots[level]); 1878 new_ptr_gen = btrfs_node_ptr_generation(eb, 1879 path->slots[level]); 1880 } else { 1881 new_bytenr = 0; 1882 new_ptr_gen = 0; 1883 } 1884 1885 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1886 ret = level; 1887 break; 1888 } 1889 1890 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1891 memcmp_node_keys(parent, slot, path, level)) { 1892 if (level <= lowest_level) { 1893 ret = 0; 1894 break; 1895 } 1896 1897 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1898 level - 1, &first_key); 1899 if (IS_ERR(eb)) { 1900 ret = PTR_ERR(eb); 1901 break; 1902 } else if (!extent_buffer_uptodate(eb)) { 1903 ret = -EIO; 1904 free_extent_buffer(eb); 1905 break; 1906 } 1907 btrfs_tree_lock(eb); 1908 if (cow) { 1909 ret = btrfs_cow_block(trans, dest, eb, parent, 1910 slot, &eb); 1911 BUG_ON(ret); 1912 } 1913 btrfs_set_lock_blocking_write(eb); 1914 1915 btrfs_tree_unlock(parent); 1916 free_extent_buffer(parent); 1917 1918 parent = eb; 1919 continue; 1920 } 1921 1922 if (!cow) { 1923 btrfs_tree_unlock(parent); 1924 free_extent_buffer(parent); 1925 cow = 1; 1926 goto again; 1927 } 1928 1929 btrfs_node_key_to_cpu(path->nodes[level], &key, 1930 path->slots[level]); 1931 btrfs_release_path(path); 1932 1933 path->lowest_level = level; 1934 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1935 path->lowest_level = 0; 1936 BUG_ON(ret); 1937 1938 /* 1939 * Info qgroup to trace both subtrees. 1940 * 1941 * We must trace both trees. 1942 * 1) Tree reloc subtree 1943 * If not traced, we will leak data numbers 1944 * 2) Fs subtree 1945 * If not traced, we will double count old data 1946 * 1947 * We don't scan the subtree right now, but only record 1948 * the swapped tree blocks. 1949 * The real subtree rescan is delayed until we have new 1950 * CoW on the subtree root node before transaction commit. 1951 */ 1952 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1953 rc->block_group, parent, slot, 1954 path->nodes[level], path->slots[level], 1955 last_snapshot); 1956 if (ret < 0) 1957 break; 1958 /* 1959 * swap blocks in fs tree and reloc tree. 1960 */ 1961 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1962 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1963 btrfs_mark_buffer_dirty(parent); 1964 1965 btrfs_set_node_blockptr(path->nodes[level], 1966 path->slots[level], old_bytenr); 1967 btrfs_set_node_ptr_generation(path->nodes[level], 1968 path->slots[level], old_ptr_gen); 1969 btrfs_mark_buffer_dirty(path->nodes[level]); 1970 1971 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1972 blocksize, path->nodes[level]->start); 1973 ref.skip_qgroup = true; 1974 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1975 ret = btrfs_inc_extent_ref(trans, &ref); 1976 BUG_ON(ret); 1977 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1978 blocksize, 0); 1979 ref.skip_qgroup = true; 1980 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1981 ret = btrfs_inc_extent_ref(trans, &ref); 1982 BUG_ON(ret); 1983 1984 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1985 blocksize, path->nodes[level]->start); 1986 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1987 ref.skip_qgroup = true; 1988 ret = btrfs_free_extent(trans, &ref); 1989 BUG_ON(ret); 1990 1991 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1992 blocksize, 0); 1993 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1994 ref.skip_qgroup = true; 1995 ret = btrfs_free_extent(trans, &ref); 1996 BUG_ON(ret); 1997 1998 btrfs_unlock_up_safe(path, 0); 1999 2000 ret = level; 2001 break; 2002 } 2003 btrfs_tree_unlock(parent); 2004 free_extent_buffer(parent); 2005 return ret; 2006 } 2007 2008 /* 2009 * helper to find next relocated block in reloc tree 2010 */ 2011 static noinline_for_stack 2012 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2013 int *level) 2014 { 2015 struct extent_buffer *eb; 2016 int i; 2017 u64 last_snapshot; 2018 u32 nritems; 2019 2020 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2021 2022 for (i = 0; i < *level; i++) { 2023 free_extent_buffer(path->nodes[i]); 2024 path->nodes[i] = NULL; 2025 } 2026 2027 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 2028 eb = path->nodes[i]; 2029 nritems = btrfs_header_nritems(eb); 2030 while (path->slots[i] + 1 < nritems) { 2031 path->slots[i]++; 2032 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 2033 last_snapshot) 2034 continue; 2035 2036 *level = i; 2037 return 0; 2038 } 2039 free_extent_buffer(path->nodes[i]); 2040 path->nodes[i] = NULL; 2041 } 2042 return 1; 2043 } 2044 2045 /* 2046 * walk down reloc tree to find relocated block of lowest level 2047 */ 2048 static noinline_for_stack 2049 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2050 int *level) 2051 { 2052 struct btrfs_fs_info *fs_info = root->fs_info; 2053 struct extent_buffer *eb = NULL; 2054 int i; 2055 u64 bytenr; 2056 u64 ptr_gen = 0; 2057 u64 last_snapshot; 2058 u32 nritems; 2059 2060 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2061 2062 for (i = *level; i > 0; i--) { 2063 struct btrfs_key first_key; 2064 2065 eb = path->nodes[i]; 2066 nritems = btrfs_header_nritems(eb); 2067 while (path->slots[i] < nritems) { 2068 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2069 if (ptr_gen > last_snapshot) 2070 break; 2071 path->slots[i]++; 2072 } 2073 if (path->slots[i] >= nritems) { 2074 if (i == *level) 2075 break; 2076 *level = i + 1; 2077 return 0; 2078 } 2079 if (i == 1) { 2080 *level = i; 2081 return 0; 2082 } 2083 2084 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2085 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2086 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2087 &first_key); 2088 if (IS_ERR(eb)) { 2089 return PTR_ERR(eb); 2090 } else if (!extent_buffer_uptodate(eb)) { 2091 free_extent_buffer(eb); 2092 return -EIO; 2093 } 2094 BUG_ON(btrfs_header_level(eb) != i - 1); 2095 path->nodes[i - 1] = eb; 2096 path->slots[i - 1] = 0; 2097 } 2098 return 1; 2099 } 2100 2101 /* 2102 * invalidate extent cache for file extents whose key in range of 2103 * [min_key, max_key) 2104 */ 2105 static int invalidate_extent_cache(struct btrfs_root *root, 2106 struct btrfs_key *min_key, 2107 struct btrfs_key *max_key) 2108 { 2109 struct btrfs_fs_info *fs_info = root->fs_info; 2110 struct inode *inode = NULL; 2111 u64 objectid; 2112 u64 start, end; 2113 u64 ino; 2114 2115 objectid = min_key->objectid; 2116 while (1) { 2117 cond_resched(); 2118 iput(inode); 2119 2120 if (objectid > max_key->objectid) 2121 break; 2122 2123 inode = find_next_inode(root, objectid); 2124 if (!inode) 2125 break; 2126 ino = btrfs_ino(BTRFS_I(inode)); 2127 2128 if (ino > max_key->objectid) { 2129 iput(inode); 2130 break; 2131 } 2132 2133 objectid = ino + 1; 2134 if (!S_ISREG(inode->i_mode)) 2135 continue; 2136 2137 if (unlikely(min_key->objectid == ino)) { 2138 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2139 continue; 2140 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2141 start = 0; 2142 else { 2143 start = min_key->offset; 2144 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2145 } 2146 } else { 2147 start = 0; 2148 } 2149 2150 if (unlikely(max_key->objectid == ino)) { 2151 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2152 continue; 2153 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2154 end = (u64)-1; 2155 } else { 2156 if (max_key->offset == 0) 2157 continue; 2158 end = max_key->offset; 2159 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2160 end--; 2161 } 2162 } else { 2163 end = (u64)-1; 2164 } 2165 2166 /* the lock_extent waits for readpage to complete */ 2167 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2168 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2169 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2170 } 2171 return 0; 2172 } 2173 2174 static int find_next_key(struct btrfs_path *path, int level, 2175 struct btrfs_key *key) 2176 2177 { 2178 while (level < BTRFS_MAX_LEVEL) { 2179 if (!path->nodes[level]) 2180 break; 2181 if (path->slots[level] + 1 < 2182 btrfs_header_nritems(path->nodes[level])) { 2183 btrfs_node_key_to_cpu(path->nodes[level], key, 2184 path->slots[level] + 1); 2185 return 0; 2186 } 2187 level++; 2188 } 2189 return 1; 2190 } 2191 2192 /* 2193 * Insert current subvolume into reloc_control::dirty_subvol_roots 2194 */ 2195 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 2196 struct reloc_control *rc, 2197 struct btrfs_root *root) 2198 { 2199 struct btrfs_root *reloc_root = root->reloc_root; 2200 struct btrfs_root_item *reloc_root_item; 2201 2202 /* @root must be a subvolume tree root with a valid reloc tree */ 2203 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 2204 ASSERT(reloc_root); 2205 2206 reloc_root_item = &reloc_root->root_item; 2207 memset(&reloc_root_item->drop_progress, 0, 2208 sizeof(reloc_root_item->drop_progress)); 2209 reloc_root_item->drop_level = 0; 2210 btrfs_set_root_refs(reloc_root_item, 0); 2211 btrfs_update_reloc_root(trans, root); 2212 2213 if (list_empty(&root->reloc_dirty_list)) { 2214 btrfs_grab_fs_root(root); 2215 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 2216 } 2217 } 2218 2219 static int clean_dirty_subvols(struct reloc_control *rc) 2220 { 2221 struct btrfs_root *root; 2222 struct btrfs_root *next; 2223 int ret = 0; 2224 int ret2; 2225 2226 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 2227 reloc_dirty_list) { 2228 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2229 /* Merged subvolume, cleanup its reloc root */ 2230 struct btrfs_root *reloc_root = root->reloc_root; 2231 2232 list_del_init(&root->reloc_dirty_list); 2233 root->reloc_root = NULL; 2234 if (reloc_root) { 2235 2236 ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1); 2237 if (ret2 < 0 && !ret) 2238 ret = ret2; 2239 } 2240 /* 2241 * Need barrier to ensure clear_bit() only happens after 2242 * root->reloc_root = NULL. Pairs with have_reloc_root. 2243 */ 2244 smp_wmb(); 2245 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 2246 btrfs_put_fs_root(root); 2247 } else { 2248 /* Orphan reloc tree, just clean it up */ 2249 ret2 = btrfs_drop_snapshot(root, NULL, 0, 1); 2250 if (ret2 < 0 && !ret) 2251 ret = ret2; 2252 } 2253 } 2254 return ret; 2255 } 2256 2257 /* 2258 * merge the relocated tree blocks in reloc tree with corresponding 2259 * fs tree. 2260 */ 2261 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2262 struct btrfs_root *root) 2263 { 2264 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2265 struct btrfs_key key; 2266 struct btrfs_key next_key; 2267 struct btrfs_trans_handle *trans = NULL; 2268 struct btrfs_root *reloc_root; 2269 struct btrfs_root_item *root_item; 2270 struct btrfs_path *path; 2271 struct extent_buffer *leaf; 2272 int level; 2273 int max_level; 2274 int replaced = 0; 2275 int ret; 2276 int err = 0; 2277 u32 min_reserved; 2278 2279 path = btrfs_alloc_path(); 2280 if (!path) 2281 return -ENOMEM; 2282 path->reada = READA_FORWARD; 2283 2284 reloc_root = root->reloc_root; 2285 root_item = &reloc_root->root_item; 2286 2287 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2288 level = btrfs_root_level(root_item); 2289 atomic_inc(&reloc_root->node->refs); 2290 path->nodes[level] = reloc_root->node; 2291 path->slots[level] = 0; 2292 } else { 2293 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2294 2295 level = root_item->drop_level; 2296 BUG_ON(level == 0); 2297 path->lowest_level = level; 2298 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2299 path->lowest_level = 0; 2300 if (ret < 0) { 2301 btrfs_free_path(path); 2302 return ret; 2303 } 2304 2305 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2306 path->slots[level]); 2307 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2308 2309 btrfs_unlock_up_safe(path, 0); 2310 } 2311 2312 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2313 memset(&next_key, 0, sizeof(next_key)); 2314 2315 while (1) { 2316 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2317 BTRFS_RESERVE_FLUSH_ALL); 2318 if (ret) { 2319 err = ret; 2320 goto out; 2321 } 2322 trans = btrfs_start_transaction(root, 0); 2323 if (IS_ERR(trans)) { 2324 err = PTR_ERR(trans); 2325 trans = NULL; 2326 goto out; 2327 } 2328 trans->block_rsv = rc->block_rsv; 2329 2330 replaced = 0; 2331 max_level = level; 2332 2333 ret = walk_down_reloc_tree(reloc_root, path, &level); 2334 if (ret < 0) { 2335 err = ret; 2336 goto out; 2337 } 2338 if (ret > 0) 2339 break; 2340 2341 if (!find_next_key(path, level, &key) && 2342 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2343 ret = 0; 2344 } else { 2345 ret = replace_path(trans, rc, root, reloc_root, path, 2346 &next_key, level, max_level); 2347 } 2348 if (ret < 0) { 2349 err = ret; 2350 goto out; 2351 } 2352 2353 if (ret > 0) { 2354 level = ret; 2355 btrfs_node_key_to_cpu(path->nodes[level], &key, 2356 path->slots[level]); 2357 replaced = 1; 2358 } 2359 2360 ret = walk_up_reloc_tree(reloc_root, path, &level); 2361 if (ret > 0) 2362 break; 2363 2364 BUG_ON(level == 0); 2365 /* 2366 * save the merging progress in the drop_progress. 2367 * this is OK since root refs == 1 in this case. 2368 */ 2369 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2370 path->slots[level]); 2371 root_item->drop_level = level; 2372 2373 btrfs_end_transaction_throttle(trans); 2374 trans = NULL; 2375 2376 btrfs_btree_balance_dirty(fs_info); 2377 2378 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2379 invalidate_extent_cache(root, &key, &next_key); 2380 } 2381 2382 /* 2383 * handle the case only one block in the fs tree need to be 2384 * relocated and the block is tree root. 2385 */ 2386 leaf = btrfs_lock_root_node(root); 2387 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2388 btrfs_tree_unlock(leaf); 2389 free_extent_buffer(leaf); 2390 if (ret < 0) 2391 err = ret; 2392 out: 2393 btrfs_free_path(path); 2394 2395 if (err == 0) 2396 insert_dirty_subvol(trans, rc, root); 2397 2398 if (trans) 2399 btrfs_end_transaction_throttle(trans); 2400 2401 btrfs_btree_balance_dirty(fs_info); 2402 2403 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2404 invalidate_extent_cache(root, &key, &next_key); 2405 2406 return err; 2407 } 2408 2409 static noinline_for_stack 2410 int prepare_to_merge(struct reloc_control *rc, int err) 2411 { 2412 struct btrfs_root *root = rc->extent_root; 2413 struct btrfs_fs_info *fs_info = root->fs_info; 2414 struct btrfs_root *reloc_root; 2415 struct btrfs_trans_handle *trans; 2416 LIST_HEAD(reloc_roots); 2417 u64 num_bytes = 0; 2418 int ret; 2419 2420 mutex_lock(&fs_info->reloc_mutex); 2421 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2422 rc->merging_rsv_size += rc->nodes_relocated * 2; 2423 mutex_unlock(&fs_info->reloc_mutex); 2424 2425 again: 2426 if (!err) { 2427 num_bytes = rc->merging_rsv_size; 2428 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2429 BTRFS_RESERVE_FLUSH_ALL); 2430 if (ret) 2431 err = ret; 2432 } 2433 2434 trans = btrfs_join_transaction(rc->extent_root); 2435 if (IS_ERR(trans)) { 2436 if (!err) 2437 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2438 num_bytes); 2439 return PTR_ERR(trans); 2440 } 2441 2442 if (!err) { 2443 if (num_bytes != rc->merging_rsv_size) { 2444 btrfs_end_transaction(trans); 2445 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2446 num_bytes); 2447 goto again; 2448 } 2449 } 2450 2451 rc->merge_reloc_tree = 1; 2452 2453 while (!list_empty(&rc->reloc_roots)) { 2454 reloc_root = list_entry(rc->reloc_roots.next, 2455 struct btrfs_root, root_list); 2456 list_del_init(&reloc_root->root_list); 2457 2458 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2459 BUG_ON(IS_ERR(root)); 2460 BUG_ON(root->reloc_root != reloc_root); 2461 2462 /* 2463 * set reference count to 1, so btrfs_recover_relocation 2464 * knows it should resumes merging 2465 */ 2466 if (!err) 2467 btrfs_set_root_refs(&reloc_root->root_item, 1); 2468 btrfs_update_reloc_root(trans, root); 2469 2470 list_add(&reloc_root->root_list, &reloc_roots); 2471 } 2472 2473 list_splice(&reloc_roots, &rc->reloc_roots); 2474 2475 if (!err) 2476 btrfs_commit_transaction(trans); 2477 else 2478 btrfs_end_transaction(trans); 2479 return err; 2480 } 2481 2482 static noinline_for_stack 2483 void free_reloc_roots(struct list_head *list) 2484 { 2485 struct btrfs_root *reloc_root; 2486 2487 while (!list_empty(list)) { 2488 reloc_root = list_entry(list->next, struct btrfs_root, 2489 root_list); 2490 __del_reloc_root(reloc_root); 2491 free_extent_buffer(reloc_root->node); 2492 free_extent_buffer(reloc_root->commit_root); 2493 reloc_root->node = NULL; 2494 reloc_root->commit_root = NULL; 2495 } 2496 } 2497 2498 static noinline_for_stack 2499 void merge_reloc_roots(struct reloc_control *rc) 2500 { 2501 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2502 struct btrfs_root *root; 2503 struct btrfs_root *reloc_root; 2504 LIST_HEAD(reloc_roots); 2505 int found = 0; 2506 int ret = 0; 2507 again: 2508 root = rc->extent_root; 2509 2510 /* 2511 * this serializes us with btrfs_record_root_in_transaction, 2512 * we have to make sure nobody is in the middle of 2513 * adding their roots to the list while we are 2514 * doing this splice 2515 */ 2516 mutex_lock(&fs_info->reloc_mutex); 2517 list_splice_init(&rc->reloc_roots, &reloc_roots); 2518 mutex_unlock(&fs_info->reloc_mutex); 2519 2520 while (!list_empty(&reloc_roots)) { 2521 found = 1; 2522 reloc_root = list_entry(reloc_roots.next, 2523 struct btrfs_root, root_list); 2524 2525 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2526 root = read_fs_root(fs_info, 2527 reloc_root->root_key.offset); 2528 BUG_ON(IS_ERR(root)); 2529 BUG_ON(root->reloc_root != reloc_root); 2530 2531 ret = merge_reloc_root(rc, root); 2532 if (ret) { 2533 if (list_empty(&reloc_root->root_list)) 2534 list_add_tail(&reloc_root->root_list, 2535 &reloc_roots); 2536 goto out; 2537 } 2538 } else { 2539 list_del_init(&reloc_root->root_list); 2540 /* Don't forget to queue this reloc root for cleanup */ 2541 list_add_tail(&reloc_root->reloc_dirty_list, 2542 &rc->dirty_subvol_roots); 2543 } 2544 } 2545 2546 if (found) { 2547 found = 0; 2548 goto again; 2549 } 2550 out: 2551 if (ret) { 2552 btrfs_handle_fs_error(fs_info, ret, NULL); 2553 if (!list_empty(&reloc_roots)) 2554 free_reloc_roots(&reloc_roots); 2555 2556 /* new reloc root may be added */ 2557 mutex_lock(&fs_info->reloc_mutex); 2558 list_splice_init(&rc->reloc_roots, &reloc_roots); 2559 mutex_unlock(&fs_info->reloc_mutex); 2560 if (!list_empty(&reloc_roots)) 2561 free_reloc_roots(&reloc_roots); 2562 } 2563 2564 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2565 } 2566 2567 static void free_block_list(struct rb_root *blocks) 2568 { 2569 struct tree_block *block; 2570 struct rb_node *rb_node; 2571 while ((rb_node = rb_first(blocks))) { 2572 block = rb_entry(rb_node, struct tree_block, rb_node); 2573 rb_erase(rb_node, blocks); 2574 kfree(block); 2575 } 2576 } 2577 2578 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2579 struct btrfs_root *reloc_root) 2580 { 2581 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2582 struct btrfs_root *root; 2583 2584 if (reloc_root->last_trans == trans->transid) 2585 return 0; 2586 2587 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2588 BUG_ON(IS_ERR(root)); 2589 BUG_ON(root->reloc_root != reloc_root); 2590 2591 return btrfs_record_root_in_trans(trans, root); 2592 } 2593 2594 static noinline_for_stack 2595 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2596 struct reloc_control *rc, 2597 struct backref_node *node, 2598 struct backref_edge *edges[]) 2599 { 2600 struct backref_node *next; 2601 struct btrfs_root *root; 2602 int index = 0; 2603 2604 next = node; 2605 while (1) { 2606 cond_resched(); 2607 next = walk_up_backref(next, edges, &index); 2608 root = next->root; 2609 BUG_ON(!root); 2610 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2611 2612 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2613 record_reloc_root_in_trans(trans, root); 2614 break; 2615 } 2616 2617 btrfs_record_root_in_trans(trans, root); 2618 root = root->reloc_root; 2619 2620 if (next->new_bytenr != root->node->start) { 2621 BUG_ON(next->new_bytenr); 2622 BUG_ON(!list_empty(&next->list)); 2623 next->new_bytenr = root->node->start; 2624 next->root = root; 2625 list_add_tail(&next->list, 2626 &rc->backref_cache.changed); 2627 __mark_block_processed(rc, next); 2628 break; 2629 } 2630 2631 WARN_ON(1); 2632 root = NULL; 2633 next = walk_down_backref(edges, &index); 2634 if (!next || next->level <= node->level) 2635 break; 2636 } 2637 if (!root) 2638 return NULL; 2639 2640 next = node; 2641 /* setup backref node path for btrfs_reloc_cow_block */ 2642 while (1) { 2643 rc->backref_cache.path[next->level] = next; 2644 if (--index < 0) 2645 break; 2646 next = edges[index]->node[UPPER]; 2647 } 2648 return root; 2649 } 2650 2651 /* 2652 * select a tree root for relocation. return NULL if the block 2653 * is reference counted. we should use do_relocation() in this 2654 * case. return a tree root pointer if the block isn't reference 2655 * counted. return -ENOENT if the block is root of reloc tree. 2656 */ 2657 static noinline_for_stack 2658 struct btrfs_root *select_one_root(struct backref_node *node) 2659 { 2660 struct backref_node *next; 2661 struct btrfs_root *root; 2662 struct btrfs_root *fs_root = NULL; 2663 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2664 int index = 0; 2665 2666 next = node; 2667 while (1) { 2668 cond_resched(); 2669 next = walk_up_backref(next, edges, &index); 2670 root = next->root; 2671 BUG_ON(!root); 2672 2673 /* no other choice for non-references counted tree */ 2674 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2675 return root; 2676 2677 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2678 fs_root = root; 2679 2680 if (next != node) 2681 return NULL; 2682 2683 next = walk_down_backref(edges, &index); 2684 if (!next || next->level <= node->level) 2685 break; 2686 } 2687 2688 if (!fs_root) 2689 return ERR_PTR(-ENOENT); 2690 return fs_root; 2691 } 2692 2693 static noinline_for_stack 2694 u64 calcu_metadata_size(struct reloc_control *rc, 2695 struct backref_node *node, int reserve) 2696 { 2697 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2698 struct backref_node *next = node; 2699 struct backref_edge *edge; 2700 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2701 u64 num_bytes = 0; 2702 int index = 0; 2703 2704 BUG_ON(reserve && node->processed); 2705 2706 while (next) { 2707 cond_resched(); 2708 while (1) { 2709 if (next->processed && (reserve || next != node)) 2710 break; 2711 2712 num_bytes += fs_info->nodesize; 2713 2714 if (list_empty(&next->upper)) 2715 break; 2716 2717 edge = list_entry(next->upper.next, 2718 struct backref_edge, list[LOWER]); 2719 edges[index++] = edge; 2720 next = edge->node[UPPER]; 2721 } 2722 next = walk_down_backref(edges, &index); 2723 } 2724 return num_bytes; 2725 } 2726 2727 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2728 struct reloc_control *rc, 2729 struct backref_node *node) 2730 { 2731 struct btrfs_root *root = rc->extent_root; 2732 struct btrfs_fs_info *fs_info = root->fs_info; 2733 u64 num_bytes; 2734 int ret; 2735 u64 tmp; 2736 2737 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2738 2739 trans->block_rsv = rc->block_rsv; 2740 rc->reserved_bytes += num_bytes; 2741 2742 /* 2743 * We are under a transaction here so we can only do limited flushing. 2744 * If we get an enospc just kick back -EAGAIN so we know to drop the 2745 * transaction and try to refill when we can flush all the things. 2746 */ 2747 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2748 BTRFS_RESERVE_FLUSH_LIMIT); 2749 if (ret) { 2750 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2751 while (tmp <= rc->reserved_bytes) 2752 tmp <<= 1; 2753 /* 2754 * only one thread can access block_rsv at this point, 2755 * so we don't need hold lock to protect block_rsv. 2756 * we expand more reservation size here to allow enough 2757 * space for relocation and we will return earlier in 2758 * enospc case. 2759 */ 2760 rc->block_rsv->size = tmp + fs_info->nodesize * 2761 RELOCATION_RESERVED_NODES; 2762 return -EAGAIN; 2763 } 2764 2765 return 0; 2766 } 2767 2768 /* 2769 * relocate a block tree, and then update pointers in upper level 2770 * blocks that reference the block to point to the new location. 2771 * 2772 * if called by link_to_upper, the block has already been relocated. 2773 * in that case this function just updates pointers. 2774 */ 2775 static int do_relocation(struct btrfs_trans_handle *trans, 2776 struct reloc_control *rc, 2777 struct backref_node *node, 2778 struct btrfs_key *key, 2779 struct btrfs_path *path, int lowest) 2780 { 2781 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2782 struct backref_node *upper; 2783 struct backref_edge *edge; 2784 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2785 struct btrfs_root *root; 2786 struct extent_buffer *eb; 2787 u32 blocksize; 2788 u64 bytenr; 2789 u64 generation; 2790 int slot; 2791 int ret; 2792 int err = 0; 2793 2794 BUG_ON(lowest && node->eb); 2795 2796 path->lowest_level = node->level + 1; 2797 rc->backref_cache.path[node->level] = node; 2798 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2799 struct btrfs_key first_key; 2800 struct btrfs_ref ref = { 0 }; 2801 2802 cond_resched(); 2803 2804 upper = edge->node[UPPER]; 2805 root = select_reloc_root(trans, rc, upper, edges); 2806 BUG_ON(!root); 2807 2808 if (upper->eb && !upper->locked) { 2809 if (!lowest) { 2810 ret = btrfs_bin_search(upper->eb, key, 2811 upper->level, &slot); 2812 if (ret < 0) { 2813 err = ret; 2814 goto next; 2815 } 2816 BUG_ON(ret); 2817 bytenr = btrfs_node_blockptr(upper->eb, slot); 2818 if (node->eb->start == bytenr) 2819 goto next; 2820 } 2821 drop_node_buffer(upper); 2822 } 2823 2824 if (!upper->eb) { 2825 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2826 if (ret) { 2827 if (ret < 0) 2828 err = ret; 2829 else 2830 err = -ENOENT; 2831 2832 btrfs_release_path(path); 2833 break; 2834 } 2835 2836 if (!upper->eb) { 2837 upper->eb = path->nodes[upper->level]; 2838 path->nodes[upper->level] = NULL; 2839 } else { 2840 BUG_ON(upper->eb != path->nodes[upper->level]); 2841 } 2842 2843 upper->locked = 1; 2844 path->locks[upper->level] = 0; 2845 2846 slot = path->slots[upper->level]; 2847 btrfs_release_path(path); 2848 } else { 2849 ret = btrfs_bin_search(upper->eb, key, upper->level, 2850 &slot); 2851 if (ret < 0) { 2852 err = ret; 2853 goto next; 2854 } 2855 BUG_ON(ret); 2856 } 2857 2858 bytenr = btrfs_node_blockptr(upper->eb, slot); 2859 if (lowest) { 2860 if (bytenr != node->bytenr) { 2861 btrfs_err(root->fs_info, 2862 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2863 bytenr, node->bytenr, slot, 2864 upper->eb->start); 2865 err = -EIO; 2866 goto next; 2867 } 2868 } else { 2869 if (node->eb->start == bytenr) 2870 goto next; 2871 } 2872 2873 blocksize = root->fs_info->nodesize; 2874 generation = btrfs_node_ptr_generation(upper->eb, slot); 2875 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2876 eb = read_tree_block(fs_info, bytenr, generation, 2877 upper->level - 1, &first_key); 2878 if (IS_ERR(eb)) { 2879 err = PTR_ERR(eb); 2880 goto next; 2881 } else if (!extent_buffer_uptodate(eb)) { 2882 free_extent_buffer(eb); 2883 err = -EIO; 2884 goto next; 2885 } 2886 btrfs_tree_lock(eb); 2887 btrfs_set_lock_blocking_write(eb); 2888 2889 if (!node->eb) { 2890 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2891 slot, &eb); 2892 btrfs_tree_unlock(eb); 2893 free_extent_buffer(eb); 2894 if (ret < 0) { 2895 err = ret; 2896 goto next; 2897 } 2898 BUG_ON(node->eb != eb); 2899 } else { 2900 btrfs_set_node_blockptr(upper->eb, slot, 2901 node->eb->start); 2902 btrfs_set_node_ptr_generation(upper->eb, slot, 2903 trans->transid); 2904 btrfs_mark_buffer_dirty(upper->eb); 2905 2906 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2907 node->eb->start, blocksize, 2908 upper->eb->start); 2909 ref.real_root = root->root_key.objectid; 2910 btrfs_init_tree_ref(&ref, node->level, 2911 btrfs_header_owner(upper->eb)); 2912 ret = btrfs_inc_extent_ref(trans, &ref); 2913 BUG_ON(ret); 2914 2915 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2916 BUG_ON(ret); 2917 } 2918 next: 2919 if (!upper->pending) 2920 drop_node_buffer(upper); 2921 else 2922 unlock_node_buffer(upper); 2923 if (err) 2924 break; 2925 } 2926 2927 if (!err && node->pending) { 2928 drop_node_buffer(node); 2929 list_move_tail(&node->list, &rc->backref_cache.changed); 2930 node->pending = 0; 2931 } 2932 2933 path->lowest_level = 0; 2934 BUG_ON(err == -ENOSPC); 2935 return err; 2936 } 2937 2938 static int link_to_upper(struct btrfs_trans_handle *trans, 2939 struct reloc_control *rc, 2940 struct backref_node *node, 2941 struct btrfs_path *path) 2942 { 2943 struct btrfs_key key; 2944 2945 btrfs_node_key_to_cpu(node->eb, &key, 0); 2946 return do_relocation(trans, rc, node, &key, path, 0); 2947 } 2948 2949 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2950 struct reloc_control *rc, 2951 struct btrfs_path *path, int err) 2952 { 2953 LIST_HEAD(list); 2954 struct backref_cache *cache = &rc->backref_cache; 2955 struct backref_node *node; 2956 int level; 2957 int ret; 2958 2959 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2960 while (!list_empty(&cache->pending[level])) { 2961 node = list_entry(cache->pending[level].next, 2962 struct backref_node, list); 2963 list_move_tail(&node->list, &list); 2964 BUG_ON(!node->pending); 2965 2966 if (!err) { 2967 ret = link_to_upper(trans, rc, node, path); 2968 if (ret < 0) 2969 err = ret; 2970 } 2971 } 2972 list_splice_init(&list, &cache->pending[level]); 2973 } 2974 return err; 2975 } 2976 2977 static void mark_block_processed(struct reloc_control *rc, 2978 u64 bytenr, u32 blocksize) 2979 { 2980 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2981 EXTENT_DIRTY); 2982 } 2983 2984 static void __mark_block_processed(struct reloc_control *rc, 2985 struct backref_node *node) 2986 { 2987 u32 blocksize; 2988 if (node->level == 0 || 2989 in_block_group(node->bytenr, rc->block_group)) { 2990 blocksize = rc->extent_root->fs_info->nodesize; 2991 mark_block_processed(rc, node->bytenr, blocksize); 2992 } 2993 node->processed = 1; 2994 } 2995 2996 /* 2997 * mark a block and all blocks directly/indirectly reference the block 2998 * as processed. 2999 */ 3000 static void update_processed_blocks(struct reloc_control *rc, 3001 struct backref_node *node) 3002 { 3003 struct backref_node *next = node; 3004 struct backref_edge *edge; 3005 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 3006 int index = 0; 3007 3008 while (next) { 3009 cond_resched(); 3010 while (1) { 3011 if (next->processed) 3012 break; 3013 3014 __mark_block_processed(rc, next); 3015 3016 if (list_empty(&next->upper)) 3017 break; 3018 3019 edge = list_entry(next->upper.next, 3020 struct backref_edge, list[LOWER]); 3021 edges[index++] = edge; 3022 next = edge->node[UPPER]; 3023 } 3024 next = walk_down_backref(edges, &index); 3025 } 3026 } 3027 3028 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 3029 { 3030 u32 blocksize = rc->extent_root->fs_info->nodesize; 3031 3032 if (test_range_bit(&rc->processed_blocks, bytenr, 3033 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 3034 return 1; 3035 return 0; 3036 } 3037 3038 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 3039 struct tree_block *block) 3040 { 3041 struct extent_buffer *eb; 3042 3043 BUG_ON(block->key_ready); 3044 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 3045 block->level, NULL); 3046 if (IS_ERR(eb)) { 3047 return PTR_ERR(eb); 3048 } else if (!extent_buffer_uptodate(eb)) { 3049 free_extent_buffer(eb); 3050 return -EIO; 3051 } 3052 if (block->level == 0) 3053 btrfs_item_key_to_cpu(eb, &block->key, 0); 3054 else 3055 btrfs_node_key_to_cpu(eb, &block->key, 0); 3056 free_extent_buffer(eb); 3057 block->key_ready = 1; 3058 return 0; 3059 } 3060 3061 /* 3062 * helper function to relocate a tree block 3063 */ 3064 static int relocate_tree_block(struct btrfs_trans_handle *trans, 3065 struct reloc_control *rc, 3066 struct backref_node *node, 3067 struct btrfs_key *key, 3068 struct btrfs_path *path) 3069 { 3070 struct btrfs_root *root; 3071 int ret = 0; 3072 3073 if (!node) 3074 return 0; 3075 3076 BUG_ON(node->processed); 3077 root = select_one_root(node); 3078 if (root == ERR_PTR(-ENOENT)) { 3079 update_processed_blocks(rc, node); 3080 goto out; 3081 } 3082 3083 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3084 ret = reserve_metadata_space(trans, rc, node); 3085 if (ret) 3086 goto out; 3087 } 3088 3089 if (root) { 3090 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3091 BUG_ON(node->new_bytenr); 3092 BUG_ON(!list_empty(&node->list)); 3093 btrfs_record_root_in_trans(trans, root); 3094 root = root->reloc_root; 3095 node->new_bytenr = root->node->start; 3096 node->root = root; 3097 list_add_tail(&node->list, &rc->backref_cache.changed); 3098 } else { 3099 path->lowest_level = node->level; 3100 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3101 btrfs_release_path(path); 3102 if (ret > 0) 3103 ret = 0; 3104 } 3105 if (!ret) 3106 update_processed_blocks(rc, node); 3107 } else { 3108 ret = do_relocation(trans, rc, node, key, path, 1); 3109 } 3110 out: 3111 if (ret || node->level == 0 || node->cowonly) 3112 remove_backref_node(&rc->backref_cache, node); 3113 return ret; 3114 } 3115 3116 /* 3117 * relocate a list of blocks 3118 */ 3119 static noinline_for_stack 3120 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3121 struct reloc_control *rc, struct rb_root *blocks) 3122 { 3123 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3124 struct backref_node *node; 3125 struct btrfs_path *path; 3126 struct tree_block *block; 3127 struct tree_block *next; 3128 int ret; 3129 int err = 0; 3130 3131 path = btrfs_alloc_path(); 3132 if (!path) { 3133 err = -ENOMEM; 3134 goto out_free_blocks; 3135 } 3136 3137 /* Kick in readahead for tree blocks with missing keys */ 3138 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3139 if (!block->key_ready) 3140 readahead_tree_block(fs_info, block->bytenr); 3141 } 3142 3143 /* Get first keys */ 3144 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3145 if (!block->key_ready) { 3146 err = get_tree_block_key(fs_info, block); 3147 if (err) 3148 goto out_free_path; 3149 } 3150 } 3151 3152 /* Do tree relocation */ 3153 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3154 node = build_backref_tree(rc, &block->key, 3155 block->level, block->bytenr); 3156 if (IS_ERR(node)) { 3157 err = PTR_ERR(node); 3158 goto out; 3159 } 3160 3161 ret = relocate_tree_block(trans, rc, node, &block->key, 3162 path); 3163 if (ret < 0) { 3164 if (ret != -EAGAIN || &block->rb_node == rb_first(blocks)) 3165 err = ret; 3166 goto out; 3167 } 3168 } 3169 out: 3170 err = finish_pending_nodes(trans, rc, path, err); 3171 3172 out_free_path: 3173 btrfs_free_path(path); 3174 out_free_blocks: 3175 free_block_list(blocks); 3176 return err; 3177 } 3178 3179 static noinline_for_stack 3180 int prealloc_file_extent_cluster(struct inode *inode, 3181 struct file_extent_cluster *cluster) 3182 { 3183 u64 alloc_hint = 0; 3184 u64 start; 3185 u64 end; 3186 u64 offset = BTRFS_I(inode)->index_cnt; 3187 u64 num_bytes; 3188 int nr = 0; 3189 int ret = 0; 3190 u64 prealloc_start = cluster->start - offset; 3191 u64 prealloc_end = cluster->end - offset; 3192 u64 cur_offset; 3193 struct extent_changeset *data_reserved = NULL; 3194 3195 BUG_ON(cluster->start != cluster->boundary[0]); 3196 inode_lock(inode); 3197 3198 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3199 prealloc_end + 1 - prealloc_start); 3200 if (ret) 3201 goto out; 3202 3203 cur_offset = prealloc_start; 3204 while (nr < cluster->nr) { 3205 start = cluster->boundary[nr] - offset; 3206 if (nr + 1 < cluster->nr) 3207 end = cluster->boundary[nr + 1] - 1 - offset; 3208 else 3209 end = cluster->end - offset; 3210 3211 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3212 num_bytes = end + 1 - start; 3213 if (cur_offset < start) 3214 btrfs_free_reserved_data_space(inode, data_reserved, 3215 cur_offset, start - cur_offset); 3216 ret = btrfs_prealloc_file_range(inode, 0, start, 3217 num_bytes, num_bytes, 3218 end + 1, &alloc_hint); 3219 cur_offset = end + 1; 3220 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3221 if (ret) 3222 break; 3223 nr++; 3224 } 3225 if (cur_offset < prealloc_end) 3226 btrfs_free_reserved_data_space(inode, data_reserved, 3227 cur_offset, prealloc_end + 1 - cur_offset); 3228 out: 3229 inode_unlock(inode); 3230 extent_changeset_free(data_reserved); 3231 return ret; 3232 } 3233 3234 static noinline_for_stack 3235 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3236 u64 block_start) 3237 { 3238 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3239 struct extent_map *em; 3240 int ret = 0; 3241 3242 em = alloc_extent_map(); 3243 if (!em) 3244 return -ENOMEM; 3245 3246 em->start = start; 3247 em->len = end + 1 - start; 3248 em->block_len = em->len; 3249 em->block_start = block_start; 3250 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3251 3252 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3253 while (1) { 3254 write_lock(&em_tree->lock); 3255 ret = add_extent_mapping(em_tree, em, 0); 3256 write_unlock(&em_tree->lock); 3257 if (ret != -EEXIST) { 3258 free_extent_map(em); 3259 break; 3260 } 3261 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3262 } 3263 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3264 return ret; 3265 } 3266 3267 static int relocate_file_extent_cluster(struct inode *inode, 3268 struct file_extent_cluster *cluster) 3269 { 3270 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3271 u64 page_start; 3272 u64 page_end; 3273 u64 offset = BTRFS_I(inode)->index_cnt; 3274 unsigned long index; 3275 unsigned long last_index; 3276 struct page *page; 3277 struct file_ra_state *ra; 3278 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3279 int nr = 0; 3280 int ret = 0; 3281 3282 if (!cluster->nr) 3283 return 0; 3284 3285 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3286 if (!ra) 3287 return -ENOMEM; 3288 3289 ret = prealloc_file_extent_cluster(inode, cluster); 3290 if (ret) 3291 goto out; 3292 3293 file_ra_state_init(ra, inode->i_mapping); 3294 3295 ret = setup_extent_mapping(inode, cluster->start - offset, 3296 cluster->end - offset, cluster->start); 3297 if (ret) 3298 goto out; 3299 3300 index = (cluster->start - offset) >> PAGE_SHIFT; 3301 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3302 while (index <= last_index) { 3303 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3304 PAGE_SIZE); 3305 if (ret) 3306 goto out; 3307 3308 page = find_lock_page(inode->i_mapping, index); 3309 if (!page) { 3310 page_cache_sync_readahead(inode->i_mapping, 3311 ra, NULL, index, 3312 last_index + 1 - index); 3313 page = find_or_create_page(inode->i_mapping, index, 3314 mask); 3315 if (!page) { 3316 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3317 PAGE_SIZE, true); 3318 btrfs_delalloc_release_extents(BTRFS_I(inode), 3319 PAGE_SIZE); 3320 ret = -ENOMEM; 3321 goto out; 3322 } 3323 } 3324 3325 if (PageReadahead(page)) { 3326 page_cache_async_readahead(inode->i_mapping, 3327 ra, NULL, page, index, 3328 last_index + 1 - index); 3329 } 3330 3331 if (!PageUptodate(page)) { 3332 btrfs_readpage(NULL, page); 3333 lock_page(page); 3334 if (!PageUptodate(page)) { 3335 unlock_page(page); 3336 put_page(page); 3337 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3338 PAGE_SIZE, true); 3339 btrfs_delalloc_release_extents(BTRFS_I(inode), 3340 PAGE_SIZE); 3341 ret = -EIO; 3342 goto out; 3343 } 3344 } 3345 3346 page_start = page_offset(page); 3347 page_end = page_start + PAGE_SIZE - 1; 3348 3349 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3350 3351 set_page_extent_mapped(page); 3352 3353 if (nr < cluster->nr && 3354 page_start + offset == cluster->boundary[nr]) { 3355 set_extent_bits(&BTRFS_I(inode)->io_tree, 3356 page_start, page_end, 3357 EXTENT_BOUNDARY); 3358 nr++; 3359 } 3360 3361 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3362 NULL); 3363 if (ret) { 3364 unlock_page(page); 3365 put_page(page); 3366 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3367 PAGE_SIZE, true); 3368 btrfs_delalloc_release_extents(BTRFS_I(inode), 3369 PAGE_SIZE); 3370 3371 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3372 page_start, page_end, 3373 EXTENT_LOCKED | EXTENT_BOUNDARY); 3374 goto out; 3375 3376 } 3377 set_page_dirty(page); 3378 3379 unlock_extent(&BTRFS_I(inode)->io_tree, 3380 page_start, page_end); 3381 unlock_page(page); 3382 put_page(page); 3383 3384 index++; 3385 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 3386 balance_dirty_pages_ratelimited(inode->i_mapping); 3387 btrfs_throttle(fs_info); 3388 } 3389 WARN_ON(nr != cluster->nr); 3390 out: 3391 kfree(ra); 3392 return ret; 3393 } 3394 3395 static noinline_for_stack 3396 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3397 struct file_extent_cluster *cluster) 3398 { 3399 int ret; 3400 3401 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3402 ret = relocate_file_extent_cluster(inode, cluster); 3403 if (ret) 3404 return ret; 3405 cluster->nr = 0; 3406 } 3407 3408 if (!cluster->nr) 3409 cluster->start = extent_key->objectid; 3410 else 3411 BUG_ON(cluster->nr >= MAX_EXTENTS); 3412 cluster->end = extent_key->objectid + extent_key->offset - 1; 3413 cluster->boundary[cluster->nr] = extent_key->objectid; 3414 cluster->nr++; 3415 3416 if (cluster->nr >= MAX_EXTENTS) { 3417 ret = relocate_file_extent_cluster(inode, cluster); 3418 if (ret) 3419 return ret; 3420 cluster->nr = 0; 3421 } 3422 return 0; 3423 } 3424 3425 /* 3426 * helper to add a tree block to the list. 3427 * the major work is getting the generation and level of the block 3428 */ 3429 static int add_tree_block(struct reloc_control *rc, 3430 struct btrfs_key *extent_key, 3431 struct btrfs_path *path, 3432 struct rb_root *blocks) 3433 { 3434 struct extent_buffer *eb; 3435 struct btrfs_extent_item *ei; 3436 struct btrfs_tree_block_info *bi; 3437 struct tree_block *block; 3438 struct rb_node *rb_node; 3439 u32 item_size; 3440 int level = -1; 3441 u64 generation; 3442 3443 eb = path->nodes[0]; 3444 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3445 3446 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3447 item_size >= sizeof(*ei) + sizeof(*bi)) { 3448 ei = btrfs_item_ptr(eb, path->slots[0], 3449 struct btrfs_extent_item); 3450 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3451 bi = (struct btrfs_tree_block_info *)(ei + 1); 3452 level = btrfs_tree_block_level(eb, bi); 3453 } else { 3454 level = (int)extent_key->offset; 3455 } 3456 generation = btrfs_extent_generation(eb, ei); 3457 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3458 btrfs_print_v0_err(eb->fs_info); 3459 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3460 return -EINVAL; 3461 } else { 3462 BUG(); 3463 } 3464 3465 btrfs_release_path(path); 3466 3467 BUG_ON(level == -1); 3468 3469 block = kmalloc(sizeof(*block), GFP_NOFS); 3470 if (!block) 3471 return -ENOMEM; 3472 3473 block->bytenr = extent_key->objectid; 3474 block->key.objectid = rc->extent_root->fs_info->nodesize; 3475 block->key.offset = generation; 3476 block->level = level; 3477 block->key_ready = 0; 3478 3479 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3480 if (rb_node) 3481 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3482 3483 return 0; 3484 } 3485 3486 /* 3487 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3488 */ 3489 static int __add_tree_block(struct reloc_control *rc, 3490 u64 bytenr, u32 blocksize, 3491 struct rb_root *blocks) 3492 { 3493 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3494 struct btrfs_path *path; 3495 struct btrfs_key key; 3496 int ret; 3497 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3498 3499 if (tree_block_processed(bytenr, rc)) 3500 return 0; 3501 3502 if (tree_search(blocks, bytenr)) 3503 return 0; 3504 3505 path = btrfs_alloc_path(); 3506 if (!path) 3507 return -ENOMEM; 3508 again: 3509 key.objectid = bytenr; 3510 if (skinny) { 3511 key.type = BTRFS_METADATA_ITEM_KEY; 3512 key.offset = (u64)-1; 3513 } else { 3514 key.type = BTRFS_EXTENT_ITEM_KEY; 3515 key.offset = blocksize; 3516 } 3517 3518 path->search_commit_root = 1; 3519 path->skip_locking = 1; 3520 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3521 if (ret < 0) 3522 goto out; 3523 3524 if (ret > 0 && skinny) { 3525 if (path->slots[0]) { 3526 path->slots[0]--; 3527 btrfs_item_key_to_cpu(path->nodes[0], &key, 3528 path->slots[0]); 3529 if (key.objectid == bytenr && 3530 (key.type == BTRFS_METADATA_ITEM_KEY || 3531 (key.type == BTRFS_EXTENT_ITEM_KEY && 3532 key.offset == blocksize))) 3533 ret = 0; 3534 } 3535 3536 if (ret) { 3537 skinny = false; 3538 btrfs_release_path(path); 3539 goto again; 3540 } 3541 } 3542 if (ret) { 3543 ASSERT(ret == 1); 3544 btrfs_print_leaf(path->nodes[0]); 3545 btrfs_err(fs_info, 3546 "tree block extent item (%llu) is not found in extent tree", 3547 bytenr); 3548 WARN_ON(1); 3549 ret = -EINVAL; 3550 goto out; 3551 } 3552 3553 ret = add_tree_block(rc, &key, path, blocks); 3554 out: 3555 btrfs_free_path(path); 3556 return ret; 3557 } 3558 3559 /* 3560 * helper to check if the block use full backrefs for pointers in it 3561 */ 3562 static int block_use_full_backref(struct reloc_control *rc, 3563 struct extent_buffer *eb) 3564 { 3565 u64 flags; 3566 int ret; 3567 3568 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3569 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3570 return 1; 3571 3572 ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info, 3573 eb->start, btrfs_header_level(eb), 1, 3574 NULL, &flags); 3575 BUG_ON(ret); 3576 3577 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3578 ret = 1; 3579 else 3580 ret = 0; 3581 return ret; 3582 } 3583 3584 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3585 struct btrfs_block_group *block_group, 3586 struct inode *inode, 3587 u64 ino) 3588 { 3589 struct btrfs_key key; 3590 struct btrfs_root *root = fs_info->tree_root; 3591 struct btrfs_trans_handle *trans; 3592 int ret = 0; 3593 3594 if (inode) 3595 goto truncate; 3596 3597 key.objectid = ino; 3598 key.type = BTRFS_INODE_ITEM_KEY; 3599 key.offset = 0; 3600 3601 inode = btrfs_iget(fs_info->sb, &key, root); 3602 if (IS_ERR(inode)) 3603 return -ENOENT; 3604 3605 truncate: 3606 ret = btrfs_check_trunc_cache_free_space(fs_info, 3607 &fs_info->global_block_rsv); 3608 if (ret) 3609 goto out; 3610 3611 trans = btrfs_join_transaction(root); 3612 if (IS_ERR(trans)) { 3613 ret = PTR_ERR(trans); 3614 goto out; 3615 } 3616 3617 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3618 3619 btrfs_end_transaction(trans); 3620 btrfs_btree_balance_dirty(fs_info); 3621 out: 3622 iput(inode); 3623 return ret; 3624 } 3625 3626 /* 3627 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3628 * this function scans fs tree to find blocks reference the data extent 3629 */ 3630 static int find_data_references(struct reloc_control *rc, 3631 struct btrfs_key *extent_key, 3632 struct extent_buffer *leaf, 3633 struct btrfs_extent_data_ref *ref, 3634 struct rb_root *blocks) 3635 { 3636 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3637 struct btrfs_path *path; 3638 struct tree_block *block; 3639 struct btrfs_root *root; 3640 struct btrfs_file_extent_item *fi; 3641 struct rb_node *rb_node; 3642 struct btrfs_key key; 3643 u64 ref_root; 3644 u64 ref_objectid; 3645 u64 ref_offset; 3646 u32 ref_count; 3647 u32 nritems; 3648 int err = 0; 3649 int added = 0; 3650 int counted; 3651 int ret; 3652 3653 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3654 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3655 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3656 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3657 3658 /* 3659 * This is an extent belonging to the free space cache, lets just delete 3660 * it and redo the search. 3661 */ 3662 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3663 ret = delete_block_group_cache(fs_info, rc->block_group, 3664 NULL, ref_objectid); 3665 if (ret != -ENOENT) 3666 return ret; 3667 ret = 0; 3668 } 3669 3670 path = btrfs_alloc_path(); 3671 if (!path) 3672 return -ENOMEM; 3673 path->reada = READA_FORWARD; 3674 3675 root = read_fs_root(fs_info, ref_root); 3676 if (IS_ERR(root)) { 3677 err = PTR_ERR(root); 3678 goto out; 3679 } 3680 3681 key.objectid = ref_objectid; 3682 key.type = BTRFS_EXTENT_DATA_KEY; 3683 if (ref_offset > ((u64)-1 << 32)) 3684 key.offset = 0; 3685 else 3686 key.offset = ref_offset; 3687 3688 path->search_commit_root = 1; 3689 path->skip_locking = 1; 3690 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3691 if (ret < 0) { 3692 err = ret; 3693 goto out; 3694 } 3695 3696 leaf = path->nodes[0]; 3697 nritems = btrfs_header_nritems(leaf); 3698 /* 3699 * the references in tree blocks that use full backrefs 3700 * are not counted in 3701 */ 3702 if (block_use_full_backref(rc, leaf)) 3703 counted = 0; 3704 else 3705 counted = 1; 3706 rb_node = tree_search(blocks, leaf->start); 3707 if (rb_node) { 3708 if (counted) 3709 added = 1; 3710 else 3711 path->slots[0] = nritems; 3712 } 3713 3714 while (ref_count > 0) { 3715 while (path->slots[0] >= nritems) { 3716 ret = btrfs_next_leaf(root, path); 3717 if (ret < 0) { 3718 err = ret; 3719 goto out; 3720 } 3721 if (WARN_ON(ret > 0)) 3722 goto out; 3723 3724 leaf = path->nodes[0]; 3725 nritems = btrfs_header_nritems(leaf); 3726 added = 0; 3727 3728 if (block_use_full_backref(rc, leaf)) 3729 counted = 0; 3730 else 3731 counted = 1; 3732 rb_node = tree_search(blocks, leaf->start); 3733 if (rb_node) { 3734 if (counted) 3735 added = 1; 3736 else 3737 path->slots[0] = nritems; 3738 } 3739 } 3740 3741 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3742 if (WARN_ON(key.objectid != ref_objectid || 3743 key.type != BTRFS_EXTENT_DATA_KEY)) 3744 break; 3745 3746 fi = btrfs_item_ptr(leaf, path->slots[0], 3747 struct btrfs_file_extent_item); 3748 3749 if (btrfs_file_extent_type(leaf, fi) == 3750 BTRFS_FILE_EXTENT_INLINE) 3751 goto next; 3752 3753 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3754 extent_key->objectid) 3755 goto next; 3756 3757 key.offset -= btrfs_file_extent_offset(leaf, fi); 3758 if (key.offset != ref_offset) 3759 goto next; 3760 3761 if (counted) 3762 ref_count--; 3763 if (added) 3764 goto next; 3765 3766 if (!tree_block_processed(leaf->start, rc)) { 3767 block = kmalloc(sizeof(*block), GFP_NOFS); 3768 if (!block) { 3769 err = -ENOMEM; 3770 break; 3771 } 3772 block->bytenr = leaf->start; 3773 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3774 block->level = 0; 3775 block->key_ready = 1; 3776 rb_node = tree_insert(blocks, block->bytenr, 3777 &block->rb_node); 3778 if (rb_node) 3779 backref_tree_panic(rb_node, -EEXIST, 3780 block->bytenr); 3781 } 3782 if (counted) 3783 added = 1; 3784 else 3785 path->slots[0] = nritems; 3786 next: 3787 path->slots[0]++; 3788 3789 } 3790 out: 3791 btrfs_free_path(path); 3792 return err; 3793 } 3794 3795 /* 3796 * helper to find all tree blocks that reference a given data extent 3797 */ 3798 static noinline_for_stack 3799 int add_data_references(struct reloc_control *rc, 3800 struct btrfs_key *extent_key, 3801 struct btrfs_path *path, 3802 struct rb_root *blocks) 3803 { 3804 struct btrfs_key key; 3805 struct extent_buffer *eb; 3806 struct btrfs_extent_data_ref *dref; 3807 struct btrfs_extent_inline_ref *iref; 3808 unsigned long ptr; 3809 unsigned long end; 3810 u32 blocksize = rc->extent_root->fs_info->nodesize; 3811 int ret = 0; 3812 int err = 0; 3813 3814 eb = path->nodes[0]; 3815 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3816 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3817 ptr += sizeof(struct btrfs_extent_item); 3818 3819 while (ptr < end) { 3820 iref = (struct btrfs_extent_inline_ref *)ptr; 3821 key.type = btrfs_get_extent_inline_ref_type(eb, iref, 3822 BTRFS_REF_TYPE_DATA); 3823 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3824 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3825 ret = __add_tree_block(rc, key.offset, blocksize, 3826 blocks); 3827 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3828 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3829 ret = find_data_references(rc, extent_key, 3830 eb, dref, blocks); 3831 } else { 3832 ret = -EUCLEAN; 3833 btrfs_err(rc->extent_root->fs_info, 3834 "extent %llu slot %d has an invalid inline ref type", 3835 eb->start, path->slots[0]); 3836 } 3837 if (ret) { 3838 err = ret; 3839 goto out; 3840 } 3841 ptr += btrfs_extent_inline_ref_size(key.type); 3842 } 3843 WARN_ON(ptr > end); 3844 3845 while (1) { 3846 cond_resched(); 3847 eb = path->nodes[0]; 3848 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3849 ret = btrfs_next_leaf(rc->extent_root, path); 3850 if (ret < 0) { 3851 err = ret; 3852 break; 3853 } 3854 if (ret > 0) 3855 break; 3856 eb = path->nodes[0]; 3857 } 3858 3859 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3860 if (key.objectid != extent_key->objectid) 3861 break; 3862 3863 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3864 ret = __add_tree_block(rc, key.offset, blocksize, 3865 blocks); 3866 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3867 dref = btrfs_item_ptr(eb, path->slots[0], 3868 struct btrfs_extent_data_ref); 3869 ret = find_data_references(rc, extent_key, 3870 eb, dref, blocks); 3871 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 3872 btrfs_print_v0_err(eb->fs_info); 3873 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3874 ret = -EINVAL; 3875 } else { 3876 ret = 0; 3877 } 3878 if (ret) { 3879 err = ret; 3880 break; 3881 } 3882 path->slots[0]++; 3883 } 3884 out: 3885 btrfs_release_path(path); 3886 if (err) 3887 free_block_list(blocks); 3888 return err; 3889 } 3890 3891 /* 3892 * helper to find next unprocessed extent 3893 */ 3894 static noinline_for_stack 3895 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3896 struct btrfs_key *extent_key) 3897 { 3898 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3899 struct btrfs_key key; 3900 struct extent_buffer *leaf; 3901 u64 start, end, last; 3902 int ret; 3903 3904 last = rc->block_group->start + rc->block_group->length; 3905 while (1) { 3906 cond_resched(); 3907 if (rc->search_start >= last) { 3908 ret = 1; 3909 break; 3910 } 3911 3912 key.objectid = rc->search_start; 3913 key.type = BTRFS_EXTENT_ITEM_KEY; 3914 key.offset = 0; 3915 3916 path->search_commit_root = 1; 3917 path->skip_locking = 1; 3918 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3919 0, 0); 3920 if (ret < 0) 3921 break; 3922 next: 3923 leaf = path->nodes[0]; 3924 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3925 ret = btrfs_next_leaf(rc->extent_root, path); 3926 if (ret != 0) 3927 break; 3928 leaf = path->nodes[0]; 3929 } 3930 3931 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3932 if (key.objectid >= last) { 3933 ret = 1; 3934 break; 3935 } 3936 3937 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3938 key.type != BTRFS_METADATA_ITEM_KEY) { 3939 path->slots[0]++; 3940 goto next; 3941 } 3942 3943 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3944 key.objectid + key.offset <= rc->search_start) { 3945 path->slots[0]++; 3946 goto next; 3947 } 3948 3949 if (key.type == BTRFS_METADATA_ITEM_KEY && 3950 key.objectid + fs_info->nodesize <= 3951 rc->search_start) { 3952 path->slots[0]++; 3953 goto next; 3954 } 3955 3956 ret = find_first_extent_bit(&rc->processed_blocks, 3957 key.objectid, &start, &end, 3958 EXTENT_DIRTY, NULL); 3959 3960 if (ret == 0 && start <= key.objectid) { 3961 btrfs_release_path(path); 3962 rc->search_start = end + 1; 3963 } else { 3964 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3965 rc->search_start = key.objectid + key.offset; 3966 else 3967 rc->search_start = key.objectid + 3968 fs_info->nodesize; 3969 memcpy(extent_key, &key, sizeof(key)); 3970 return 0; 3971 } 3972 } 3973 btrfs_release_path(path); 3974 return ret; 3975 } 3976 3977 static void set_reloc_control(struct reloc_control *rc) 3978 { 3979 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3980 3981 mutex_lock(&fs_info->reloc_mutex); 3982 fs_info->reloc_ctl = rc; 3983 mutex_unlock(&fs_info->reloc_mutex); 3984 } 3985 3986 static void unset_reloc_control(struct reloc_control *rc) 3987 { 3988 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3989 3990 mutex_lock(&fs_info->reloc_mutex); 3991 fs_info->reloc_ctl = NULL; 3992 mutex_unlock(&fs_info->reloc_mutex); 3993 } 3994 3995 static int check_extent_flags(u64 flags) 3996 { 3997 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3998 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3999 return 1; 4000 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 4001 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 4002 return 1; 4003 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 4004 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 4005 return 1; 4006 return 0; 4007 } 4008 4009 static noinline_for_stack 4010 int prepare_to_relocate(struct reloc_control *rc) 4011 { 4012 struct btrfs_trans_handle *trans; 4013 int ret; 4014 4015 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 4016 BTRFS_BLOCK_RSV_TEMP); 4017 if (!rc->block_rsv) 4018 return -ENOMEM; 4019 4020 memset(&rc->cluster, 0, sizeof(rc->cluster)); 4021 rc->search_start = rc->block_group->start; 4022 rc->extents_found = 0; 4023 rc->nodes_relocated = 0; 4024 rc->merging_rsv_size = 0; 4025 rc->reserved_bytes = 0; 4026 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 4027 RELOCATION_RESERVED_NODES; 4028 ret = btrfs_block_rsv_refill(rc->extent_root, 4029 rc->block_rsv, rc->block_rsv->size, 4030 BTRFS_RESERVE_FLUSH_ALL); 4031 if (ret) 4032 return ret; 4033 4034 rc->create_reloc_tree = 1; 4035 set_reloc_control(rc); 4036 4037 trans = btrfs_join_transaction(rc->extent_root); 4038 if (IS_ERR(trans)) { 4039 unset_reloc_control(rc); 4040 /* 4041 * extent tree is not a ref_cow tree and has no reloc_root to 4042 * cleanup. And callers are responsible to free the above 4043 * block rsv. 4044 */ 4045 return PTR_ERR(trans); 4046 } 4047 btrfs_commit_transaction(trans); 4048 return 0; 4049 } 4050 4051 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 4052 { 4053 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 4054 struct rb_root blocks = RB_ROOT; 4055 struct btrfs_key key; 4056 struct btrfs_trans_handle *trans = NULL; 4057 struct btrfs_path *path; 4058 struct btrfs_extent_item *ei; 4059 u64 flags; 4060 u32 item_size; 4061 int ret; 4062 int err = 0; 4063 int progress = 0; 4064 4065 path = btrfs_alloc_path(); 4066 if (!path) 4067 return -ENOMEM; 4068 path->reada = READA_FORWARD; 4069 4070 ret = prepare_to_relocate(rc); 4071 if (ret) { 4072 err = ret; 4073 goto out_free; 4074 } 4075 4076 while (1) { 4077 rc->reserved_bytes = 0; 4078 ret = btrfs_block_rsv_refill(rc->extent_root, 4079 rc->block_rsv, rc->block_rsv->size, 4080 BTRFS_RESERVE_FLUSH_ALL); 4081 if (ret) { 4082 err = ret; 4083 break; 4084 } 4085 progress++; 4086 trans = btrfs_start_transaction(rc->extent_root, 0); 4087 if (IS_ERR(trans)) { 4088 err = PTR_ERR(trans); 4089 trans = NULL; 4090 break; 4091 } 4092 restart: 4093 if (update_backref_cache(trans, &rc->backref_cache)) { 4094 btrfs_end_transaction(trans); 4095 trans = NULL; 4096 continue; 4097 } 4098 4099 ret = find_next_extent(rc, path, &key); 4100 if (ret < 0) 4101 err = ret; 4102 if (ret != 0) 4103 break; 4104 4105 rc->extents_found++; 4106 4107 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4108 struct btrfs_extent_item); 4109 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4110 if (item_size >= sizeof(*ei)) { 4111 flags = btrfs_extent_flags(path->nodes[0], ei); 4112 ret = check_extent_flags(flags); 4113 BUG_ON(ret); 4114 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 4115 err = -EINVAL; 4116 btrfs_print_v0_err(trans->fs_info); 4117 btrfs_abort_transaction(trans, err); 4118 break; 4119 } else { 4120 BUG(); 4121 } 4122 4123 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4124 ret = add_tree_block(rc, &key, path, &blocks); 4125 } else if (rc->stage == UPDATE_DATA_PTRS && 4126 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4127 ret = add_data_references(rc, &key, path, &blocks); 4128 } else { 4129 btrfs_release_path(path); 4130 ret = 0; 4131 } 4132 if (ret < 0) { 4133 err = ret; 4134 break; 4135 } 4136 4137 if (!RB_EMPTY_ROOT(&blocks)) { 4138 ret = relocate_tree_blocks(trans, rc, &blocks); 4139 if (ret < 0) { 4140 /* 4141 * if we fail to relocate tree blocks, force to update 4142 * backref cache when committing transaction. 4143 */ 4144 rc->backref_cache.last_trans = trans->transid - 1; 4145 4146 if (ret != -EAGAIN) { 4147 err = ret; 4148 break; 4149 } 4150 rc->extents_found--; 4151 rc->search_start = key.objectid; 4152 } 4153 } 4154 4155 btrfs_end_transaction_throttle(trans); 4156 btrfs_btree_balance_dirty(fs_info); 4157 trans = NULL; 4158 4159 if (rc->stage == MOVE_DATA_EXTENTS && 4160 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4161 rc->found_file_extent = 1; 4162 ret = relocate_data_extent(rc->data_inode, 4163 &key, &rc->cluster); 4164 if (ret < 0) { 4165 err = ret; 4166 break; 4167 } 4168 } 4169 } 4170 if (trans && progress && err == -ENOSPC) { 4171 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 4172 if (ret == 1) { 4173 err = 0; 4174 progress = 0; 4175 goto restart; 4176 } 4177 } 4178 4179 btrfs_release_path(path); 4180 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4181 4182 if (trans) { 4183 btrfs_end_transaction_throttle(trans); 4184 btrfs_btree_balance_dirty(fs_info); 4185 } 4186 4187 if (!err) { 4188 ret = relocate_file_extent_cluster(rc->data_inode, 4189 &rc->cluster); 4190 if (ret < 0) 4191 err = ret; 4192 } 4193 4194 rc->create_reloc_tree = 0; 4195 set_reloc_control(rc); 4196 4197 backref_cache_cleanup(&rc->backref_cache); 4198 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4199 4200 err = prepare_to_merge(rc, err); 4201 4202 merge_reloc_roots(rc); 4203 4204 rc->merge_reloc_tree = 0; 4205 unset_reloc_control(rc); 4206 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1); 4207 4208 /* get rid of pinned extents */ 4209 trans = btrfs_join_transaction(rc->extent_root); 4210 if (IS_ERR(trans)) { 4211 err = PTR_ERR(trans); 4212 goto out_free; 4213 } 4214 btrfs_commit_transaction(trans); 4215 ret = clean_dirty_subvols(rc); 4216 if (ret < 0 && !err) 4217 err = ret; 4218 out_free: 4219 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4220 btrfs_free_path(path); 4221 return err; 4222 } 4223 4224 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4225 struct btrfs_root *root, u64 objectid) 4226 { 4227 struct btrfs_path *path; 4228 struct btrfs_inode_item *item; 4229 struct extent_buffer *leaf; 4230 int ret; 4231 4232 path = btrfs_alloc_path(); 4233 if (!path) 4234 return -ENOMEM; 4235 4236 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4237 if (ret) 4238 goto out; 4239 4240 leaf = path->nodes[0]; 4241 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4242 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4243 btrfs_set_inode_generation(leaf, item, 1); 4244 btrfs_set_inode_size(leaf, item, 0); 4245 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4246 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4247 BTRFS_INODE_PREALLOC); 4248 btrfs_mark_buffer_dirty(leaf); 4249 out: 4250 btrfs_free_path(path); 4251 return ret; 4252 } 4253 4254 /* 4255 * helper to create inode for data relocation. 4256 * the inode is in data relocation tree and its link count is 0 4257 */ 4258 static noinline_for_stack 4259 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4260 struct btrfs_block_group *group) 4261 { 4262 struct inode *inode = NULL; 4263 struct btrfs_trans_handle *trans; 4264 struct btrfs_root *root; 4265 struct btrfs_key key; 4266 u64 objectid; 4267 int err = 0; 4268 4269 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4270 if (IS_ERR(root)) 4271 return ERR_CAST(root); 4272 4273 trans = btrfs_start_transaction(root, 6); 4274 if (IS_ERR(trans)) 4275 return ERR_CAST(trans); 4276 4277 err = btrfs_find_free_objectid(root, &objectid); 4278 if (err) 4279 goto out; 4280 4281 err = __insert_orphan_inode(trans, root, objectid); 4282 BUG_ON(err); 4283 4284 key.objectid = objectid; 4285 key.type = BTRFS_INODE_ITEM_KEY; 4286 key.offset = 0; 4287 inode = btrfs_iget(fs_info->sb, &key, root); 4288 BUG_ON(IS_ERR(inode)); 4289 BTRFS_I(inode)->index_cnt = group->start; 4290 4291 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4292 out: 4293 btrfs_end_transaction(trans); 4294 btrfs_btree_balance_dirty(fs_info); 4295 if (err) { 4296 if (inode) 4297 iput(inode); 4298 inode = ERR_PTR(err); 4299 } 4300 return inode; 4301 } 4302 4303 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4304 { 4305 struct reloc_control *rc; 4306 4307 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4308 if (!rc) 4309 return NULL; 4310 4311 INIT_LIST_HEAD(&rc->reloc_roots); 4312 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4313 backref_cache_init(&rc->backref_cache); 4314 mapping_tree_init(&rc->reloc_root_tree); 4315 extent_io_tree_init(fs_info, &rc->processed_blocks, 4316 IO_TREE_RELOC_BLOCKS, NULL); 4317 return rc; 4318 } 4319 4320 /* 4321 * Print the block group being relocated 4322 */ 4323 static void describe_relocation(struct btrfs_fs_info *fs_info, 4324 struct btrfs_block_group *block_group) 4325 { 4326 char buf[128] = {'\0'}; 4327 4328 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4329 4330 btrfs_info(fs_info, 4331 "relocating block group %llu flags %s", 4332 block_group->start, buf); 4333 } 4334 4335 static const char *stage_to_string(int stage) 4336 { 4337 if (stage == MOVE_DATA_EXTENTS) 4338 return "move data extents"; 4339 if (stage == UPDATE_DATA_PTRS) 4340 return "update data pointers"; 4341 return "unknown"; 4342 } 4343 4344 /* 4345 * function to relocate all extents in a block group. 4346 */ 4347 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4348 { 4349 struct btrfs_block_group *bg; 4350 struct btrfs_root *extent_root = fs_info->extent_root; 4351 struct reloc_control *rc; 4352 struct inode *inode; 4353 struct btrfs_path *path; 4354 int ret; 4355 int rw = 0; 4356 int err = 0; 4357 4358 bg = btrfs_lookup_block_group(fs_info, group_start); 4359 if (!bg) 4360 return -ENOENT; 4361 4362 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4363 btrfs_put_block_group(bg); 4364 return -ETXTBSY; 4365 } 4366 4367 rc = alloc_reloc_control(fs_info); 4368 if (!rc) { 4369 btrfs_put_block_group(bg); 4370 return -ENOMEM; 4371 } 4372 4373 rc->extent_root = extent_root; 4374 rc->block_group = bg; 4375 4376 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4377 if (ret) { 4378 err = ret; 4379 goto out; 4380 } 4381 rw = 1; 4382 4383 path = btrfs_alloc_path(); 4384 if (!path) { 4385 err = -ENOMEM; 4386 goto out; 4387 } 4388 4389 inode = lookup_free_space_inode(rc->block_group, path); 4390 btrfs_free_path(path); 4391 4392 if (!IS_ERR(inode)) 4393 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4394 else 4395 ret = PTR_ERR(inode); 4396 4397 if (ret && ret != -ENOENT) { 4398 err = ret; 4399 goto out; 4400 } 4401 4402 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4403 if (IS_ERR(rc->data_inode)) { 4404 err = PTR_ERR(rc->data_inode); 4405 rc->data_inode = NULL; 4406 goto out; 4407 } 4408 4409 describe_relocation(fs_info, rc->block_group); 4410 4411 btrfs_wait_block_group_reservations(rc->block_group); 4412 btrfs_wait_nocow_writers(rc->block_group); 4413 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4414 rc->block_group->start, 4415 rc->block_group->length); 4416 4417 while (1) { 4418 int finishes_stage; 4419 4420 mutex_lock(&fs_info->cleaner_mutex); 4421 ret = relocate_block_group(rc); 4422 mutex_unlock(&fs_info->cleaner_mutex); 4423 if (ret < 0) 4424 err = ret; 4425 4426 finishes_stage = rc->stage; 4427 /* 4428 * We may have gotten ENOSPC after we already dirtied some 4429 * extents. If writeout happens while we're relocating a 4430 * different block group we could end up hitting the 4431 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4432 * btrfs_reloc_cow_block. Make sure we write everything out 4433 * properly so we don't trip over this problem, and then break 4434 * out of the loop if we hit an error. 4435 */ 4436 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4437 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4438 (u64)-1); 4439 if (ret) 4440 err = ret; 4441 invalidate_mapping_pages(rc->data_inode->i_mapping, 4442 0, -1); 4443 rc->stage = UPDATE_DATA_PTRS; 4444 } 4445 4446 if (err < 0) 4447 goto out; 4448 4449 if (rc->extents_found == 0) 4450 break; 4451 4452 btrfs_info(fs_info, "found %llu extents, stage: %s", 4453 rc->extents_found, stage_to_string(finishes_stage)); 4454 } 4455 4456 WARN_ON(rc->block_group->pinned > 0); 4457 WARN_ON(rc->block_group->reserved > 0); 4458 WARN_ON(rc->block_group->used > 0); 4459 out: 4460 if (err && rw) 4461 btrfs_dec_block_group_ro(rc->block_group); 4462 iput(rc->data_inode); 4463 btrfs_put_block_group(rc->block_group); 4464 kfree(rc); 4465 return err; 4466 } 4467 4468 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4469 { 4470 struct btrfs_fs_info *fs_info = root->fs_info; 4471 struct btrfs_trans_handle *trans; 4472 int ret, err; 4473 4474 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4475 if (IS_ERR(trans)) 4476 return PTR_ERR(trans); 4477 4478 memset(&root->root_item.drop_progress, 0, 4479 sizeof(root->root_item.drop_progress)); 4480 root->root_item.drop_level = 0; 4481 btrfs_set_root_refs(&root->root_item, 0); 4482 ret = btrfs_update_root(trans, fs_info->tree_root, 4483 &root->root_key, &root->root_item); 4484 4485 err = btrfs_end_transaction(trans); 4486 if (err) 4487 return err; 4488 return ret; 4489 } 4490 4491 /* 4492 * recover relocation interrupted by system crash. 4493 * 4494 * this function resumes merging reloc trees with corresponding fs trees. 4495 * this is important for keeping the sharing of tree blocks 4496 */ 4497 int btrfs_recover_relocation(struct btrfs_root *root) 4498 { 4499 struct btrfs_fs_info *fs_info = root->fs_info; 4500 LIST_HEAD(reloc_roots); 4501 struct btrfs_key key; 4502 struct btrfs_root *fs_root; 4503 struct btrfs_root *reloc_root; 4504 struct btrfs_path *path; 4505 struct extent_buffer *leaf; 4506 struct reloc_control *rc = NULL; 4507 struct btrfs_trans_handle *trans; 4508 int ret; 4509 int err = 0; 4510 4511 path = btrfs_alloc_path(); 4512 if (!path) 4513 return -ENOMEM; 4514 path->reada = READA_BACK; 4515 4516 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4517 key.type = BTRFS_ROOT_ITEM_KEY; 4518 key.offset = (u64)-1; 4519 4520 while (1) { 4521 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4522 path, 0, 0); 4523 if (ret < 0) { 4524 err = ret; 4525 goto out; 4526 } 4527 if (ret > 0) { 4528 if (path->slots[0] == 0) 4529 break; 4530 path->slots[0]--; 4531 } 4532 leaf = path->nodes[0]; 4533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4534 btrfs_release_path(path); 4535 4536 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4537 key.type != BTRFS_ROOT_ITEM_KEY) 4538 break; 4539 4540 reloc_root = btrfs_read_fs_root(root, &key); 4541 if (IS_ERR(reloc_root)) { 4542 err = PTR_ERR(reloc_root); 4543 goto out; 4544 } 4545 4546 list_add(&reloc_root->root_list, &reloc_roots); 4547 4548 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4549 fs_root = read_fs_root(fs_info, 4550 reloc_root->root_key.offset); 4551 if (IS_ERR(fs_root)) { 4552 ret = PTR_ERR(fs_root); 4553 if (ret != -ENOENT) { 4554 err = ret; 4555 goto out; 4556 } 4557 ret = mark_garbage_root(reloc_root); 4558 if (ret < 0) { 4559 err = ret; 4560 goto out; 4561 } 4562 } 4563 } 4564 4565 if (key.offset == 0) 4566 break; 4567 4568 key.offset--; 4569 } 4570 btrfs_release_path(path); 4571 4572 if (list_empty(&reloc_roots)) 4573 goto out; 4574 4575 rc = alloc_reloc_control(fs_info); 4576 if (!rc) { 4577 err = -ENOMEM; 4578 goto out; 4579 } 4580 4581 rc->extent_root = fs_info->extent_root; 4582 4583 set_reloc_control(rc); 4584 4585 trans = btrfs_join_transaction(rc->extent_root); 4586 if (IS_ERR(trans)) { 4587 unset_reloc_control(rc); 4588 err = PTR_ERR(trans); 4589 goto out_free; 4590 } 4591 4592 rc->merge_reloc_tree = 1; 4593 4594 while (!list_empty(&reloc_roots)) { 4595 reloc_root = list_entry(reloc_roots.next, 4596 struct btrfs_root, root_list); 4597 list_del(&reloc_root->root_list); 4598 4599 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4600 list_add_tail(&reloc_root->root_list, 4601 &rc->reloc_roots); 4602 continue; 4603 } 4604 4605 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4606 if (IS_ERR(fs_root)) { 4607 err = PTR_ERR(fs_root); 4608 list_add_tail(&reloc_root->root_list, &reloc_roots); 4609 goto out_free; 4610 } 4611 4612 err = __add_reloc_root(reloc_root); 4613 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4614 fs_root->reloc_root = reloc_root; 4615 } 4616 4617 err = btrfs_commit_transaction(trans); 4618 if (err) 4619 goto out_free; 4620 4621 merge_reloc_roots(rc); 4622 4623 unset_reloc_control(rc); 4624 4625 trans = btrfs_join_transaction(rc->extent_root); 4626 if (IS_ERR(trans)) { 4627 err = PTR_ERR(trans); 4628 goto out_free; 4629 } 4630 err = btrfs_commit_transaction(trans); 4631 4632 ret = clean_dirty_subvols(rc); 4633 if (ret < 0 && !err) 4634 err = ret; 4635 out_free: 4636 kfree(rc); 4637 out: 4638 if (!list_empty(&reloc_roots)) 4639 free_reloc_roots(&reloc_roots); 4640 4641 btrfs_free_path(path); 4642 4643 if (err == 0) { 4644 /* cleanup orphan inode in data relocation tree */ 4645 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4646 if (IS_ERR(fs_root)) 4647 err = PTR_ERR(fs_root); 4648 else 4649 err = btrfs_orphan_cleanup(fs_root); 4650 } 4651 return err; 4652 } 4653 4654 /* 4655 * helper to add ordered checksum for data relocation. 4656 * 4657 * cloning checksum properly handles the nodatasum extents. 4658 * it also saves CPU time to re-calculate the checksum. 4659 */ 4660 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4661 { 4662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4663 struct btrfs_ordered_sum *sums; 4664 struct btrfs_ordered_extent *ordered; 4665 int ret; 4666 u64 disk_bytenr; 4667 u64 new_bytenr; 4668 LIST_HEAD(list); 4669 4670 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4671 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4672 4673 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4674 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4675 disk_bytenr + len - 1, &list, 0); 4676 if (ret) 4677 goto out; 4678 4679 while (!list_empty(&list)) { 4680 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4681 list_del_init(&sums->list); 4682 4683 /* 4684 * We need to offset the new_bytenr based on where the csum is. 4685 * We need to do this because we will read in entire prealloc 4686 * extents but we may have written to say the middle of the 4687 * prealloc extent, so we need to make sure the csum goes with 4688 * the right disk offset. 4689 * 4690 * We can do this because the data reloc inode refers strictly 4691 * to the on disk bytes, so we don't have to worry about 4692 * disk_len vs real len like with real inodes since it's all 4693 * disk length. 4694 */ 4695 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4696 sums->bytenr = new_bytenr; 4697 4698 btrfs_add_ordered_sum(ordered, sums); 4699 } 4700 out: 4701 btrfs_put_ordered_extent(ordered); 4702 return ret; 4703 } 4704 4705 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4706 struct btrfs_root *root, struct extent_buffer *buf, 4707 struct extent_buffer *cow) 4708 { 4709 struct btrfs_fs_info *fs_info = root->fs_info; 4710 struct reloc_control *rc; 4711 struct backref_node *node; 4712 int first_cow = 0; 4713 int level; 4714 int ret = 0; 4715 4716 rc = fs_info->reloc_ctl; 4717 if (!rc) 4718 return 0; 4719 4720 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4721 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4722 4723 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4724 if (buf == root->node) 4725 __update_reloc_root(root, cow->start); 4726 } 4727 4728 level = btrfs_header_level(buf); 4729 if (btrfs_header_generation(buf) <= 4730 btrfs_root_last_snapshot(&root->root_item)) 4731 first_cow = 1; 4732 4733 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4734 rc->create_reloc_tree) { 4735 WARN_ON(!first_cow && level == 0); 4736 4737 node = rc->backref_cache.path[level]; 4738 BUG_ON(node->bytenr != buf->start && 4739 node->new_bytenr != buf->start); 4740 4741 drop_node_buffer(node); 4742 atomic_inc(&cow->refs); 4743 node->eb = cow; 4744 node->new_bytenr = cow->start; 4745 4746 if (!node->pending) { 4747 list_move_tail(&node->list, 4748 &rc->backref_cache.pending[level]); 4749 node->pending = 1; 4750 } 4751 4752 if (first_cow) 4753 __mark_block_processed(rc, node); 4754 4755 if (first_cow && level > 0) 4756 rc->nodes_relocated += buf->len; 4757 } 4758 4759 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4760 ret = replace_file_extents(trans, rc, root, cow); 4761 return ret; 4762 } 4763 4764 /* 4765 * called before creating snapshot. it calculates metadata reservation 4766 * required for relocating tree blocks in the snapshot 4767 */ 4768 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4769 u64 *bytes_to_reserve) 4770 { 4771 struct btrfs_root *root = pending->root; 4772 struct reloc_control *rc = root->fs_info->reloc_ctl; 4773 4774 if (!rc || !have_reloc_root(root)) 4775 return; 4776 4777 if (!rc->merge_reloc_tree) 4778 return; 4779 4780 root = root->reloc_root; 4781 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4782 /* 4783 * relocation is in the stage of merging trees. the space 4784 * used by merging a reloc tree is twice the size of 4785 * relocated tree nodes in the worst case. half for cowing 4786 * the reloc tree, half for cowing the fs tree. the space 4787 * used by cowing the reloc tree will be freed after the 4788 * tree is dropped. if we create snapshot, cowing the fs 4789 * tree may use more space than it frees. so we need 4790 * reserve extra space. 4791 */ 4792 *bytes_to_reserve += rc->nodes_relocated; 4793 } 4794 4795 /* 4796 * called after snapshot is created. migrate block reservation 4797 * and create reloc root for the newly created snapshot 4798 */ 4799 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4800 struct btrfs_pending_snapshot *pending) 4801 { 4802 struct btrfs_root *root = pending->root; 4803 struct btrfs_root *reloc_root; 4804 struct btrfs_root *new_root; 4805 struct reloc_control *rc = root->fs_info->reloc_ctl; 4806 int ret; 4807 4808 if (!rc || !have_reloc_root(root)) 4809 return 0; 4810 4811 rc = root->fs_info->reloc_ctl; 4812 rc->merging_rsv_size += rc->nodes_relocated; 4813 4814 if (rc->merge_reloc_tree) { 4815 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4816 rc->block_rsv, 4817 rc->nodes_relocated, true); 4818 if (ret) 4819 return ret; 4820 } 4821 4822 new_root = pending->snap; 4823 reloc_root = create_reloc_root(trans, root->reloc_root, 4824 new_root->root_key.objectid); 4825 if (IS_ERR(reloc_root)) 4826 return PTR_ERR(reloc_root); 4827 4828 ret = __add_reloc_root(reloc_root); 4829 BUG_ON(ret < 0); 4830 new_root->reloc_root = reloc_root; 4831 4832 if (rc->create_reloc_tree) 4833 ret = clone_backref_node(trans, rc, root, reloc_root); 4834 return ret; 4835 } 4836