xref: /openbmc/linux/fs/btrfs/relocation.c (revision 6491d698)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "volumes.h"
16 #include "locking.h"
17 #include "btrfs_inode.h"
18 #include "async-thread.h"
19 #include "free-space-cache.h"
20 #include "inode-map.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 
24 /*
25  * backref_node, mapping_node and tree_block start with this
26  */
27 struct tree_entry {
28 	struct rb_node rb_node;
29 	u64 bytenr;
30 };
31 
32 /*
33  * present a tree block in the backref cache
34  */
35 struct backref_node {
36 	struct rb_node rb_node;
37 	u64 bytenr;
38 
39 	u64 new_bytenr;
40 	/* objectid of tree block owner, can be not uptodate */
41 	u64 owner;
42 	/* link to pending, changed or detached list */
43 	struct list_head list;
44 	/* list of upper level blocks reference this block */
45 	struct list_head upper;
46 	/* list of child blocks in the cache */
47 	struct list_head lower;
48 	/* NULL if this node is not tree root */
49 	struct btrfs_root *root;
50 	/* extent buffer got by COW the block */
51 	struct extent_buffer *eb;
52 	/* level of tree block */
53 	unsigned int level:8;
54 	/* is the block in non-reference counted tree */
55 	unsigned int cowonly:1;
56 	/* 1 if no child node in the cache */
57 	unsigned int lowest:1;
58 	/* is the extent buffer locked */
59 	unsigned int locked:1;
60 	/* has the block been processed */
61 	unsigned int processed:1;
62 	/* have backrefs of this block been checked */
63 	unsigned int checked:1;
64 	/*
65 	 * 1 if corresponding block has been cowed but some upper
66 	 * level block pointers may not point to the new location
67 	 */
68 	unsigned int pending:1;
69 	/*
70 	 * 1 if the backref node isn't connected to any other
71 	 * backref node.
72 	 */
73 	unsigned int detached:1;
74 };
75 
76 /*
77  * present a block pointer in the backref cache
78  */
79 struct backref_edge {
80 	struct list_head list[2];
81 	struct backref_node *node[2];
82 };
83 
84 #define LOWER	0
85 #define UPPER	1
86 #define RELOCATION_RESERVED_NODES	256
87 
88 struct backref_cache {
89 	/* red black tree of all backref nodes in the cache */
90 	struct rb_root rb_root;
91 	/* for passing backref nodes to btrfs_reloc_cow_block */
92 	struct backref_node *path[BTRFS_MAX_LEVEL];
93 	/*
94 	 * list of blocks that have been cowed but some block
95 	 * pointers in upper level blocks may not reflect the
96 	 * new location
97 	 */
98 	struct list_head pending[BTRFS_MAX_LEVEL];
99 	/* list of backref nodes with no child node */
100 	struct list_head leaves;
101 	/* list of blocks that have been cowed in current transaction */
102 	struct list_head changed;
103 	/* list of detached backref node. */
104 	struct list_head detached;
105 
106 	u64 last_trans;
107 
108 	int nr_nodes;
109 	int nr_edges;
110 };
111 
112 /*
113  * map address of tree root to tree
114  */
115 struct mapping_node {
116 	struct rb_node rb_node;
117 	u64 bytenr;
118 	void *data;
119 };
120 
121 struct mapping_tree {
122 	struct rb_root rb_root;
123 	spinlock_t lock;
124 };
125 
126 /*
127  * present a tree block to process
128  */
129 struct tree_block {
130 	struct rb_node rb_node;
131 	u64 bytenr;
132 	struct btrfs_key key;
133 	unsigned int level:8;
134 	unsigned int key_ready:1;
135 };
136 
137 #define MAX_EXTENTS 128
138 
139 struct file_extent_cluster {
140 	u64 start;
141 	u64 end;
142 	u64 boundary[MAX_EXTENTS];
143 	unsigned int nr;
144 };
145 
146 struct reloc_control {
147 	/* block group to relocate */
148 	struct btrfs_block_group_cache *block_group;
149 	/* extent tree */
150 	struct btrfs_root *extent_root;
151 	/* inode for moving data */
152 	struct inode *data_inode;
153 
154 	struct btrfs_block_rsv *block_rsv;
155 
156 	struct backref_cache backref_cache;
157 
158 	struct file_extent_cluster cluster;
159 	/* tree blocks have been processed */
160 	struct extent_io_tree processed_blocks;
161 	/* map start of tree root to corresponding reloc tree */
162 	struct mapping_tree reloc_root_tree;
163 	/* list of reloc trees */
164 	struct list_head reloc_roots;
165 	/* list of subvolume trees that get relocated */
166 	struct list_head dirty_subvol_roots;
167 	/* size of metadata reservation for merging reloc trees */
168 	u64 merging_rsv_size;
169 	/* size of relocated tree nodes */
170 	u64 nodes_relocated;
171 	/* reserved size for block group relocation*/
172 	u64 reserved_bytes;
173 
174 	u64 search_start;
175 	u64 extents_found;
176 
177 	unsigned int stage:8;
178 	unsigned int create_reloc_tree:1;
179 	unsigned int merge_reloc_tree:1;
180 	unsigned int found_file_extent:1;
181 };
182 
183 /* stages of data relocation */
184 #define MOVE_DATA_EXTENTS	0
185 #define UPDATE_DATA_PTRS	1
186 
187 static void remove_backref_node(struct backref_cache *cache,
188 				struct backref_node *node);
189 static void __mark_block_processed(struct reloc_control *rc,
190 				   struct backref_node *node);
191 
192 static void mapping_tree_init(struct mapping_tree *tree)
193 {
194 	tree->rb_root = RB_ROOT;
195 	spin_lock_init(&tree->lock);
196 }
197 
198 static void backref_cache_init(struct backref_cache *cache)
199 {
200 	int i;
201 	cache->rb_root = RB_ROOT;
202 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
203 		INIT_LIST_HEAD(&cache->pending[i]);
204 	INIT_LIST_HEAD(&cache->changed);
205 	INIT_LIST_HEAD(&cache->detached);
206 	INIT_LIST_HEAD(&cache->leaves);
207 }
208 
209 static void backref_cache_cleanup(struct backref_cache *cache)
210 {
211 	struct backref_node *node;
212 	int i;
213 
214 	while (!list_empty(&cache->detached)) {
215 		node = list_entry(cache->detached.next,
216 				  struct backref_node, list);
217 		remove_backref_node(cache, node);
218 	}
219 
220 	while (!list_empty(&cache->leaves)) {
221 		node = list_entry(cache->leaves.next,
222 				  struct backref_node, lower);
223 		remove_backref_node(cache, node);
224 	}
225 
226 	cache->last_trans = 0;
227 
228 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
229 		ASSERT(list_empty(&cache->pending[i]));
230 	ASSERT(list_empty(&cache->changed));
231 	ASSERT(list_empty(&cache->detached));
232 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
233 	ASSERT(!cache->nr_nodes);
234 	ASSERT(!cache->nr_edges);
235 }
236 
237 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
238 {
239 	struct backref_node *node;
240 
241 	node = kzalloc(sizeof(*node), GFP_NOFS);
242 	if (node) {
243 		INIT_LIST_HEAD(&node->list);
244 		INIT_LIST_HEAD(&node->upper);
245 		INIT_LIST_HEAD(&node->lower);
246 		RB_CLEAR_NODE(&node->rb_node);
247 		cache->nr_nodes++;
248 	}
249 	return node;
250 }
251 
252 static void free_backref_node(struct backref_cache *cache,
253 			      struct backref_node *node)
254 {
255 	if (node) {
256 		cache->nr_nodes--;
257 		kfree(node);
258 	}
259 }
260 
261 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
262 {
263 	struct backref_edge *edge;
264 
265 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
266 	if (edge)
267 		cache->nr_edges++;
268 	return edge;
269 }
270 
271 static void free_backref_edge(struct backref_cache *cache,
272 			      struct backref_edge *edge)
273 {
274 	if (edge) {
275 		cache->nr_edges--;
276 		kfree(edge);
277 	}
278 }
279 
280 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
281 				   struct rb_node *node)
282 {
283 	struct rb_node **p = &root->rb_node;
284 	struct rb_node *parent = NULL;
285 	struct tree_entry *entry;
286 
287 	while (*p) {
288 		parent = *p;
289 		entry = rb_entry(parent, struct tree_entry, rb_node);
290 
291 		if (bytenr < entry->bytenr)
292 			p = &(*p)->rb_left;
293 		else if (bytenr > entry->bytenr)
294 			p = &(*p)->rb_right;
295 		else
296 			return parent;
297 	}
298 
299 	rb_link_node(node, parent, p);
300 	rb_insert_color(node, root);
301 	return NULL;
302 }
303 
304 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
305 {
306 	struct rb_node *n = root->rb_node;
307 	struct tree_entry *entry;
308 
309 	while (n) {
310 		entry = rb_entry(n, struct tree_entry, rb_node);
311 
312 		if (bytenr < entry->bytenr)
313 			n = n->rb_left;
314 		else if (bytenr > entry->bytenr)
315 			n = n->rb_right;
316 		else
317 			return n;
318 	}
319 	return NULL;
320 }
321 
322 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
323 {
324 
325 	struct btrfs_fs_info *fs_info = NULL;
326 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
327 					      rb_node);
328 	if (bnode->root)
329 		fs_info = bnode->root->fs_info;
330 	btrfs_panic(fs_info, errno,
331 		    "Inconsistency in backref cache found at offset %llu",
332 		    bytenr);
333 }
334 
335 /*
336  * walk up backref nodes until reach node presents tree root
337  */
338 static struct backref_node *walk_up_backref(struct backref_node *node,
339 					    struct backref_edge *edges[],
340 					    int *index)
341 {
342 	struct backref_edge *edge;
343 	int idx = *index;
344 
345 	while (!list_empty(&node->upper)) {
346 		edge = list_entry(node->upper.next,
347 				  struct backref_edge, list[LOWER]);
348 		edges[idx++] = edge;
349 		node = edge->node[UPPER];
350 	}
351 	BUG_ON(node->detached);
352 	*index = idx;
353 	return node;
354 }
355 
356 /*
357  * walk down backref nodes to find start of next reference path
358  */
359 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
360 					      int *index)
361 {
362 	struct backref_edge *edge;
363 	struct backref_node *lower;
364 	int idx = *index;
365 
366 	while (idx > 0) {
367 		edge = edges[idx - 1];
368 		lower = edge->node[LOWER];
369 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
370 			idx--;
371 			continue;
372 		}
373 		edge = list_entry(edge->list[LOWER].next,
374 				  struct backref_edge, list[LOWER]);
375 		edges[idx - 1] = edge;
376 		*index = idx;
377 		return edge->node[UPPER];
378 	}
379 	*index = 0;
380 	return NULL;
381 }
382 
383 static void unlock_node_buffer(struct backref_node *node)
384 {
385 	if (node->locked) {
386 		btrfs_tree_unlock(node->eb);
387 		node->locked = 0;
388 	}
389 }
390 
391 static void drop_node_buffer(struct backref_node *node)
392 {
393 	if (node->eb) {
394 		unlock_node_buffer(node);
395 		free_extent_buffer(node->eb);
396 		node->eb = NULL;
397 	}
398 }
399 
400 static void drop_backref_node(struct backref_cache *tree,
401 			      struct backref_node *node)
402 {
403 	BUG_ON(!list_empty(&node->upper));
404 
405 	drop_node_buffer(node);
406 	list_del(&node->list);
407 	list_del(&node->lower);
408 	if (!RB_EMPTY_NODE(&node->rb_node))
409 		rb_erase(&node->rb_node, &tree->rb_root);
410 	free_backref_node(tree, node);
411 }
412 
413 /*
414  * remove a backref node from the backref cache
415  */
416 static void remove_backref_node(struct backref_cache *cache,
417 				struct backref_node *node)
418 {
419 	struct backref_node *upper;
420 	struct backref_edge *edge;
421 
422 	if (!node)
423 		return;
424 
425 	BUG_ON(!node->lowest && !node->detached);
426 	while (!list_empty(&node->upper)) {
427 		edge = list_entry(node->upper.next, struct backref_edge,
428 				  list[LOWER]);
429 		upper = edge->node[UPPER];
430 		list_del(&edge->list[LOWER]);
431 		list_del(&edge->list[UPPER]);
432 		free_backref_edge(cache, edge);
433 
434 		if (RB_EMPTY_NODE(&upper->rb_node)) {
435 			BUG_ON(!list_empty(&node->upper));
436 			drop_backref_node(cache, node);
437 			node = upper;
438 			node->lowest = 1;
439 			continue;
440 		}
441 		/*
442 		 * add the node to leaf node list if no other
443 		 * child block cached.
444 		 */
445 		if (list_empty(&upper->lower)) {
446 			list_add_tail(&upper->lower, &cache->leaves);
447 			upper->lowest = 1;
448 		}
449 	}
450 
451 	drop_backref_node(cache, node);
452 }
453 
454 static void update_backref_node(struct backref_cache *cache,
455 				struct backref_node *node, u64 bytenr)
456 {
457 	struct rb_node *rb_node;
458 	rb_erase(&node->rb_node, &cache->rb_root);
459 	node->bytenr = bytenr;
460 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
461 	if (rb_node)
462 		backref_tree_panic(rb_node, -EEXIST, bytenr);
463 }
464 
465 /*
466  * update backref cache after a transaction commit
467  */
468 static int update_backref_cache(struct btrfs_trans_handle *trans,
469 				struct backref_cache *cache)
470 {
471 	struct backref_node *node;
472 	int level = 0;
473 
474 	if (cache->last_trans == 0) {
475 		cache->last_trans = trans->transid;
476 		return 0;
477 	}
478 
479 	if (cache->last_trans == trans->transid)
480 		return 0;
481 
482 	/*
483 	 * detached nodes are used to avoid unnecessary backref
484 	 * lookup. transaction commit changes the extent tree.
485 	 * so the detached nodes are no longer useful.
486 	 */
487 	while (!list_empty(&cache->detached)) {
488 		node = list_entry(cache->detached.next,
489 				  struct backref_node, list);
490 		remove_backref_node(cache, node);
491 	}
492 
493 	while (!list_empty(&cache->changed)) {
494 		node = list_entry(cache->changed.next,
495 				  struct backref_node, list);
496 		list_del_init(&node->list);
497 		BUG_ON(node->pending);
498 		update_backref_node(cache, node, node->new_bytenr);
499 	}
500 
501 	/*
502 	 * some nodes can be left in the pending list if there were
503 	 * errors during processing the pending nodes.
504 	 */
505 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
506 		list_for_each_entry(node, &cache->pending[level], list) {
507 			BUG_ON(!node->pending);
508 			if (node->bytenr == node->new_bytenr)
509 				continue;
510 			update_backref_node(cache, node, node->new_bytenr);
511 		}
512 	}
513 
514 	cache->last_trans = 0;
515 	return 1;
516 }
517 
518 
519 static int should_ignore_root(struct btrfs_root *root)
520 {
521 	struct btrfs_root *reloc_root;
522 
523 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
524 		return 0;
525 
526 	reloc_root = root->reloc_root;
527 	if (!reloc_root)
528 		return 0;
529 
530 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
531 	    root->fs_info->running_transaction->transid - 1)
532 		return 0;
533 	/*
534 	 * if there is reloc tree and it was created in previous
535 	 * transaction backref lookup can find the reloc tree,
536 	 * so backref node for the fs tree root is useless for
537 	 * relocation.
538 	 */
539 	return 1;
540 }
541 /*
542  * find reloc tree by address of tree root
543  */
544 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
545 					  u64 bytenr)
546 {
547 	struct rb_node *rb_node;
548 	struct mapping_node *node;
549 	struct btrfs_root *root = NULL;
550 
551 	spin_lock(&rc->reloc_root_tree.lock);
552 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
553 	if (rb_node) {
554 		node = rb_entry(rb_node, struct mapping_node, rb_node);
555 		root = (struct btrfs_root *)node->data;
556 	}
557 	spin_unlock(&rc->reloc_root_tree.lock);
558 	return root;
559 }
560 
561 static int is_cowonly_root(u64 root_objectid)
562 {
563 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
564 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
565 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
566 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
567 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
568 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
569 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
570 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
572 		return 1;
573 	return 0;
574 }
575 
576 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
577 					u64 root_objectid)
578 {
579 	struct btrfs_key key;
580 
581 	key.objectid = root_objectid;
582 	key.type = BTRFS_ROOT_ITEM_KEY;
583 	if (is_cowonly_root(root_objectid))
584 		key.offset = 0;
585 	else
586 		key.offset = (u64)-1;
587 
588 	return btrfs_get_fs_root(fs_info, &key, false);
589 }
590 
591 static noinline_for_stack
592 int find_inline_backref(struct extent_buffer *leaf, int slot,
593 			unsigned long *ptr, unsigned long *end)
594 {
595 	struct btrfs_key key;
596 	struct btrfs_extent_item *ei;
597 	struct btrfs_tree_block_info *bi;
598 	u32 item_size;
599 
600 	btrfs_item_key_to_cpu(leaf, &key, slot);
601 
602 	item_size = btrfs_item_size_nr(leaf, slot);
603 	if (item_size < sizeof(*ei)) {
604 		btrfs_print_v0_err(leaf->fs_info);
605 		btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL);
606 		return 1;
607 	}
608 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
609 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
610 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
611 
612 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
613 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
614 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
615 		return 1;
616 	}
617 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
618 	    item_size <= sizeof(*ei)) {
619 		WARN_ON(item_size < sizeof(*ei));
620 		return 1;
621 	}
622 
623 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
624 		bi = (struct btrfs_tree_block_info *)(ei + 1);
625 		*ptr = (unsigned long)(bi + 1);
626 	} else {
627 		*ptr = (unsigned long)(ei + 1);
628 	}
629 	*end = (unsigned long)ei + item_size;
630 	return 0;
631 }
632 
633 /*
634  * build backref tree for a given tree block. root of the backref tree
635  * corresponds the tree block, leaves of the backref tree correspond
636  * roots of b-trees that reference the tree block.
637  *
638  * the basic idea of this function is check backrefs of a given block
639  * to find upper level blocks that reference the block, and then check
640  * backrefs of these upper level blocks recursively. the recursion stop
641  * when tree root is reached or backrefs for the block is cached.
642  *
643  * NOTE: if we find backrefs for a block are cached, we know backrefs
644  * for all upper level blocks that directly/indirectly reference the
645  * block are also cached.
646  */
647 static noinline_for_stack
648 struct backref_node *build_backref_tree(struct reloc_control *rc,
649 					struct btrfs_key *node_key,
650 					int level, u64 bytenr)
651 {
652 	struct backref_cache *cache = &rc->backref_cache;
653 	struct btrfs_path *path1; /* For searching extent root */
654 	struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root;
657 	struct backref_node *cur;
658 	struct backref_node *upper;
659 	struct backref_node *lower;
660 	struct backref_node *node = NULL;
661 	struct backref_node *exist = NULL;
662 	struct backref_edge *edge;
663 	struct rb_node *rb_node;
664 	struct btrfs_key key;
665 	unsigned long end;
666 	unsigned long ptr;
667 	LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */
668 	LIST_HEAD(useless);
669 	int cowonly;
670 	int ret;
671 	int err = 0;
672 	bool need_check = true;
673 
674 	path1 = btrfs_alloc_path();
675 	path2 = btrfs_alloc_path();
676 	if (!path1 || !path2) {
677 		err = -ENOMEM;
678 		goto out;
679 	}
680 	path1->reada = READA_FORWARD;
681 	path2->reada = READA_FORWARD;
682 
683 	node = alloc_backref_node(cache);
684 	if (!node) {
685 		err = -ENOMEM;
686 		goto out;
687 	}
688 
689 	node->bytenr = bytenr;
690 	node->level = level;
691 	node->lowest = 1;
692 	cur = node;
693 again:
694 	end = 0;
695 	ptr = 0;
696 	key.objectid = cur->bytenr;
697 	key.type = BTRFS_METADATA_ITEM_KEY;
698 	key.offset = (u64)-1;
699 
700 	path1->search_commit_root = 1;
701 	path1->skip_locking = 1;
702 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
703 				0, 0);
704 	if (ret < 0) {
705 		err = ret;
706 		goto out;
707 	}
708 	ASSERT(ret);
709 	ASSERT(path1->slots[0]);
710 
711 	path1->slots[0]--;
712 
713 	WARN_ON(cur->checked);
714 	if (!list_empty(&cur->upper)) {
715 		/*
716 		 * the backref was added previously when processing
717 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
718 		 */
719 		ASSERT(list_is_singular(&cur->upper));
720 		edge = list_entry(cur->upper.next, struct backref_edge,
721 				  list[LOWER]);
722 		ASSERT(list_empty(&edge->list[UPPER]));
723 		exist = edge->node[UPPER];
724 		/*
725 		 * add the upper level block to pending list if we need
726 		 * check its backrefs
727 		 */
728 		if (!exist->checked)
729 			list_add_tail(&edge->list[UPPER], &list);
730 	} else {
731 		exist = NULL;
732 	}
733 
734 	while (1) {
735 		cond_resched();
736 		eb = path1->nodes[0];
737 
738 		if (ptr >= end) {
739 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
740 				ret = btrfs_next_leaf(rc->extent_root, path1);
741 				if (ret < 0) {
742 					err = ret;
743 					goto out;
744 				}
745 				if (ret > 0)
746 					break;
747 				eb = path1->nodes[0];
748 			}
749 
750 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
751 			if (key.objectid != cur->bytenr) {
752 				WARN_ON(exist);
753 				break;
754 			}
755 
756 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
757 			    key.type == BTRFS_METADATA_ITEM_KEY) {
758 				ret = find_inline_backref(eb, path1->slots[0],
759 							  &ptr, &end);
760 				if (ret)
761 					goto next;
762 			}
763 		}
764 
765 		if (ptr < end) {
766 			/* update key for inline back ref */
767 			struct btrfs_extent_inline_ref *iref;
768 			int type;
769 			iref = (struct btrfs_extent_inline_ref *)ptr;
770 			type = btrfs_get_extent_inline_ref_type(eb, iref,
771 							BTRFS_REF_TYPE_BLOCK);
772 			if (type == BTRFS_REF_TYPE_INVALID) {
773 				err = -EUCLEAN;
774 				goto out;
775 			}
776 			key.type = type;
777 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
778 
779 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
780 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
781 		}
782 
783 		/*
784 		 * Parent node found and matches current inline ref, no need to
785 		 * rebuild this node for this inline ref.
786 		 */
787 		if (exist &&
788 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
789 		      exist->owner == key.offset) ||
790 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
791 		      exist->bytenr == key.offset))) {
792 			exist = NULL;
793 			goto next;
794 		}
795 
796 		/* SHARED_BLOCK_REF means key.offset is the parent bytenr */
797 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
798 			if (key.objectid == key.offset) {
799 				/*
800 				 * Only root blocks of reloc trees use backref
801 				 * pointing to itself.
802 				 */
803 				root = find_reloc_root(rc, cur->bytenr);
804 				ASSERT(root);
805 				cur->root = root;
806 				break;
807 			}
808 
809 			edge = alloc_backref_edge(cache);
810 			if (!edge) {
811 				err = -ENOMEM;
812 				goto out;
813 			}
814 			rb_node = tree_search(&cache->rb_root, key.offset);
815 			if (!rb_node) {
816 				upper = alloc_backref_node(cache);
817 				if (!upper) {
818 					free_backref_edge(cache, edge);
819 					err = -ENOMEM;
820 					goto out;
821 				}
822 				upper->bytenr = key.offset;
823 				upper->level = cur->level + 1;
824 				/*
825 				 *  backrefs for the upper level block isn't
826 				 *  cached, add the block to pending list
827 				 */
828 				list_add_tail(&edge->list[UPPER], &list);
829 			} else {
830 				upper = rb_entry(rb_node, struct backref_node,
831 						 rb_node);
832 				ASSERT(upper->checked);
833 				INIT_LIST_HEAD(&edge->list[UPPER]);
834 			}
835 			list_add_tail(&edge->list[LOWER], &cur->upper);
836 			edge->node[LOWER] = cur;
837 			edge->node[UPPER] = upper;
838 
839 			goto next;
840 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
841 			err = -EINVAL;
842 			btrfs_print_v0_err(rc->extent_root->fs_info);
843 			btrfs_handle_fs_error(rc->extent_root->fs_info, err,
844 					      NULL);
845 			goto out;
846 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
847 			goto next;
848 		}
849 
850 		/*
851 		 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
852 		 * means the root objectid. We need to search the tree to get
853 		 * its parent bytenr.
854 		 */
855 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
856 		if (IS_ERR(root)) {
857 			err = PTR_ERR(root);
858 			goto out;
859 		}
860 
861 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
862 			cur->cowonly = 1;
863 
864 		if (btrfs_root_level(&root->root_item) == cur->level) {
865 			/* tree root */
866 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
867 			       cur->bytenr);
868 			if (should_ignore_root(root))
869 				list_add(&cur->list, &useless);
870 			else
871 				cur->root = root;
872 			break;
873 		}
874 
875 		level = cur->level + 1;
876 
877 		/* Search the tree to find parent blocks referring the block. */
878 		path2->search_commit_root = 1;
879 		path2->skip_locking = 1;
880 		path2->lowest_level = level;
881 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
882 		path2->lowest_level = 0;
883 		if (ret < 0) {
884 			err = ret;
885 			goto out;
886 		}
887 		if (ret > 0 && path2->slots[level] > 0)
888 			path2->slots[level]--;
889 
890 		eb = path2->nodes[level];
891 		if (btrfs_node_blockptr(eb, path2->slots[level]) !=
892 		    cur->bytenr) {
893 			btrfs_err(root->fs_info,
894 	"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
895 				  cur->bytenr, level - 1,
896 				  root->root_key.objectid,
897 				  node_key->objectid, node_key->type,
898 				  node_key->offset);
899 			err = -ENOENT;
900 			goto out;
901 		}
902 		lower = cur;
903 		need_check = true;
904 
905 		/* Add all nodes and edges in the path */
906 		for (; level < BTRFS_MAX_LEVEL; level++) {
907 			if (!path2->nodes[level]) {
908 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
909 				       lower->bytenr);
910 				if (should_ignore_root(root))
911 					list_add(&lower->list, &useless);
912 				else
913 					lower->root = root;
914 				break;
915 			}
916 
917 			edge = alloc_backref_edge(cache);
918 			if (!edge) {
919 				err = -ENOMEM;
920 				goto out;
921 			}
922 
923 			eb = path2->nodes[level];
924 			rb_node = tree_search(&cache->rb_root, eb->start);
925 			if (!rb_node) {
926 				upper = alloc_backref_node(cache);
927 				if (!upper) {
928 					free_backref_edge(cache, edge);
929 					err = -ENOMEM;
930 					goto out;
931 				}
932 				upper->bytenr = eb->start;
933 				upper->owner = btrfs_header_owner(eb);
934 				upper->level = lower->level + 1;
935 				if (!test_bit(BTRFS_ROOT_REF_COWS,
936 					      &root->state))
937 					upper->cowonly = 1;
938 
939 				/*
940 				 * if we know the block isn't shared
941 				 * we can void checking its backrefs.
942 				 */
943 				if (btrfs_block_can_be_shared(root, eb))
944 					upper->checked = 0;
945 				else
946 					upper->checked = 1;
947 
948 				/*
949 				 * add the block to pending list if we
950 				 * need check its backrefs, we only do this once
951 				 * while walking up a tree as we will catch
952 				 * anything else later on.
953 				 */
954 				if (!upper->checked && need_check) {
955 					need_check = false;
956 					list_add_tail(&edge->list[UPPER],
957 						      &list);
958 				} else {
959 					if (upper->checked)
960 						need_check = true;
961 					INIT_LIST_HEAD(&edge->list[UPPER]);
962 				}
963 			} else {
964 				upper = rb_entry(rb_node, struct backref_node,
965 						 rb_node);
966 				ASSERT(upper->checked);
967 				INIT_LIST_HEAD(&edge->list[UPPER]);
968 				if (!upper->owner)
969 					upper->owner = btrfs_header_owner(eb);
970 			}
971 			list_add_tail(&edge->list[LOWER], &lower->upper);
972 			edge->node[LOWER] = lower;
973 			edge->node[UPPER] = upper;
974 
975 			if (rb_node)
976 				break;
977 			lower = upper;
978 			upper = NULL;
979 		}
980 		btrfs_release_path(path2);
981 next:
982 		if (ptr < end) {
983 			ptr += btrfs_extent_inline_ref_size(key.type);
984 			if (ptr >= end) {
985 				WARN_ON(ptr > end);
986 				ptr = 0;
987 				end = 0;
988 			}
989 		}
990 		if (ptr >= end)
991 			path1->slots[0]++;
992 	}
993 	btrfs_release_path(path1);
994 
995 	cur->checked = 1;
996 	WARN_ON(exist);
997 
998 	/* the pending list isn't empty, take the first block to process */
999 	if (!list_empty(&list)) {
1000 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1001 		list_del_init(&edge->list[UPPER]);
1002 		cur = edge->node[UPPER];
1003 		goto again;
1004 	}
1005 
1006 	/*
1007 	 * everything goes well, connect backref nodes and insert backref nodes
1008 	 * into the cache.
1009 	 */
1010 	ASSERT(node->checked);
1011 	cowonly = node->cowonly;
1012 	if (!cowonly) {
1013 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1014 				      &node->rb_node);
1015 		if (rb_node)
1016 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1017 		list_add_tail(&node->lower, &cache->leaves);
1018 	}
1019 
1020 	list_for_each_entry(edge, &node->upper, list[LOWER])
1021 		list_add_tail(&edge->list[UPPER], &list);
1022 
1023 	while (!list_empty(&list)) {
1024 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 		list_del_init(&edge->list[UPPER]);
1026 		upper = edge->node[UPPER];
1027 		if (upper->detached) {
1028 			list_del(&edge->list[LOWER]);
1029 			lower = edge->node[LOWER];
1030 			free_backref_edge(cache, edge);
1031 			if (list_empty(&lower->upper))
1032 				list_add(&lower->list, &useless);
1033 			continue;
1034 		}
1035 
1036 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1037 			if (upper->lowest) {
1038 				list_del_init(&upper->lower);
1039 				upper->lowest = 0;
1040 			}
1041 
1042 			list_add_tail(&edge->list[UPPER], &upper->lower);
1043 			continue;
1044 		}
1045 
1046 		if (!upper->checked) {
1047 			/*
1048 			 * Still want to blow up for developers since this is a
1049 			 * logic bug.
1050 			 */
1051 			ASSERT(0);
1052 			err = -EINVAL;
1053 			goto out;
1054 		}
1055 		if (cowonly != upper->cowonly) {
1056 			ASSERT(0);
1057 			err = -EINVAL;
1058 			goto out;
1059 		}
1060 
1061 		if (!cowonly) {
1062 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1063 					      &upper->rb_node);
1064 			if (rb_node)
1065 				backref_tree_panic(rb_node, -EEXIST,
1066 						   upper->bytenr);
1067 		}
1068 
1069 		list_add_tail(&edge->list[UPPER], &upper->lower);
1070 
1071 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1072 			list_add_tail(&edge->list[UPPER], &list);
1073 	}
1074 	/*
1075 	 * process useless backref nodes. backref nodes for tree leaves
1076 	 * are deleted from the cache. backref nodes for upper level
1077 	 * tree blocks are left in the cache to avoid unnecessary backref
1078 	 * lookup.
1079 	 */
1080 	while (!list_empty(&useless)) {
1081 		upper = list_entry(useless.next, struct backref_node, list);
1082 		list_del_init(&upper->list);
1083 		ASSERT(list_empty(&upper->upper));
1084 		if (upper == node)
1085 			node = NULL;
1086 		if (upper->lowest) {
1087 			list_del_init(&upper->lower);
1088 			upper->lowest = 0;
1089 		}
1090 		while (!list_empty(&upper->lower)) {
1091 			edge = list_entry(upper->lower.next,
1092 					  struct backref_edge, list[UPPER]);
1093 			list_del(&edge->list[UPPER]);
1094 			list_del(&edge->list[LOWER]);
1095 			lower = edge->node[LOWER];
1096 			free_backref_edge(cache, edge);
1097 
1098 			if (list_empty(&lower->upper))
1099 				list_add(&lower->list, &useless);
1100 		}
1101 		__mark_block_processed(rc, upper);
1102 		if (upper->level > 0) {
1103 			list_add(&upper->list, &cache->detached);
1104 			upper->detached = 1;
1105 		} else {
1106 			rb_erase(&upper->rb_node, &cache->rb_root);
1107 			free_backref_node(cache, upper);
1108 		}
1109 	}
1110 out:
1111 	btrfs_free_path(path1);
1112 	btrfs_free_path(path2);
1113 	if (err) {
1114 		while (!list_empty(&useless)) {
1115 			lower = list_entry(useless.next,
1116 					   struct backref_node, list);
1117 			list_del_init(&lower->list);
1118 		}
1119 		while (!list_empty(&list)) {
1120 			edge = list_first_entry(&list, struct backref_edge,
1121 						list[UPPER]);
1122 			list_del(&edge->list[UPPER]);
1123 			list_del(&edge->list[LOWER]);
1124 			lower = edge->node[LOWER];
1125 			upper = edge->node[UPPER];
1126 			free_backref_edge(cache, edge);
1127 
1128 			/*
1129 			 * Lower is no longer linked to any upper backref nodes
1130 			 * and isn't in the cache, we can free it ourselves.
1131 			 */
1132 			if (list_empty(&lower->upper) &&
1133 			    RB_EMPTY_NODE(&lower->rb_node))
1134 				list_add(&lower->list, &useless);
1135 
1136 			if (!RB_EMPTY_NODE(&upper->rb_node))
1137 				continue;
1138 
1139 			/* Add this guy's upper edges to the list to process */
1140 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1141 				list_add_tail(&edge->list[UPPER], &list);
1142 			if (list_empty(&upper->upper))
1143 				list_add(&upper->list, &useless);
1144 		}
1145 
1146 		while (!list_empty(&useless)) {
1147 			lower = list_entry(useless.next,
1148 					   struct backref_node, list);
1149 			list_del_init(&lower->list);
1150 			if (lower == node)
1151 				node = NULL;
1152 			free_backref_node(cache, lower);
1153 		}
1154 
1155 		free_backref_node(cache, node);
1156 		return ERR_PTR(err);
1157 	}
1158 	ASSERT(!node || !node->detached);
1159 	return node;
1160 }
1161 
1162 /*
1163  * helper to add backref node for the newly created snapshot.
1164  * the backref node is created by cloning backref node that
1165  * corresponds to root of source tree
1166  */
1167 static int clone_backref_node(struct btrfs_trans_handle *trans,
1168 			      struct reloc_control *rc,
1169 			      struct btrfs_root *src,
1170 			      struct btrfs_root *dest)
1171 {
1172 	struct btrfs_root *reloc_root = src->reloc_root;
1173 	struct backref_cache *cache = &rc->backref_cache;
1174 	struct backref_node *node = NULL;
1175 	struct backref_node *new_node;
1176 	struct backref_edge *edge;
1177 	struct backref_edge *new_edge;
1178 	struct rb_node *rb_node;
1179 
1180 	if (cache->last_trans > 0)
1181 		update_backref_cache(trans, cache);
1182 
1183 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1184 	if (rb_node) {
1185 		node = rb_entry(rb_node, struct backref_node, rb_node);
1186 		if (node->detached)
1187 			node = NULL;
1188 		else
1189 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1190 	}
1191 
1192 	if (!node) {
1193 		rb_node = tree_search(&cache->rb_root,
1194 				      reloc_root->commit_root->start);
1195 		if (rb_node) {
1196 			node = rb_entry(rb_node, struct backref_node,
1197 					rb_node);
1198 			BUG_ON(node->detached);
1199 		}
1200 	}
1201 
1202 	if (!node)
1203 		return 0;
1204 
1205 	new_node = alloc_backref_node(cache);
1206 	if (!new_node)
1207 		return -ENOMEM;
1208 
1209 	new_node->bytenr = dest->node->start;
1210 	new_node->level = node->level;
1211 	new_node->lowest = node->lowest;
1212 	new_node->checked = 1;
1213 	new_node->root = dest;
1214 
1215 	if (!node->lowest) {
1216 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1217 			new_edge = alloc_backref_edge(cache);
1218 			if (!new_edge)
1219 				goto fail;
1220 
1221 			new_edge->node[UPPER] = new_node;
1222 			new_edge->node[LOWER] = edge->node[LOWER];
1223 			list_add_tail(&new_edge->list[UPPER],
1224 				      &new_node->lower);
1225 		}
1226 	} else {
1227 		list_add_tail(&new_node->lower, &cache->leaves);
1228 	}
1229 
1230 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1231 			      &new_node->rb_node);
1232 	if (rb_node)
1233 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1234 
1235 	if (!new_node->lowest) {
1236 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1237 			list_add_tail(&new_edge->list[LOWER],
1238 				      &new_edge->node[LOWER]->upper);
1239 		}
1240 	}
1241 	return 0;
1242 fail:
1243 	while (!list_empty(&new_node->lower)) {
1244 		new_edge = list_entry(new_node->lower.next,
1245 				      struct backref_edge, list[UPPER]);
1246 		list_del(&new_edge->list[UPPER]);
1247 		free_backref_edge(cache, new_edge);
1248 	}
1249 	free_backref_node(cache, new_node);
1250 	return -ENOMEM;
1251 }
1252 
1253 /*
1254  * helper to add 'address of tree root -> reloc tree' mapping
1255  */
1256 static int __must_check __add_reloc_root(struct btrfs_root *root)
1257 {
1258 	struct btrfs_fs_info *fs_info = root->fs_info;
1259 	struct rb_node *rb_node;
1260 	struct mapping_node *node;
1261 	struct reloc_control *rc = fs_info->reloc_ctl;
1262 
1263 	node = kmalloc(sizeof(*node), GFP_NOFS);
1264 	if (!node)
1265 		return -ENOMEM;
1266 
1267 	node->bytenr = root->node->start;
1268 	node->data = root;
1269 
1270 	spin_lock(&rc->reloc_root_tree.lock);
1271 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1272 			      node->bytenr, &node->rb_node);
1273 	spin_unlock(&rc->reloc_root_tree.lock);
1274 	if (rb_node) {
1275 		btrfs_panic(fs_info, -EEXIST,
1276 			    "Duplicate root found for start=%llu while inserting into relocation tree",
1277 			    node->bytenr);
1278 	}
1279 
1280 	list_add_tail(&root->root_list, &rc->reloc_roots);
1281 	return 0;
1282 }
1283 
1284 /*
1285  * helper to delete the 'address of tree root -> reloc tree'
1286  * mapping
1287  */
1288 static void __del_reloc_root(struct btrfs_root *root)
1289 {
1290 	struct btrfs_fs_info *fs_info = root->fs_info;
1291 	struct rb_node *rb_node;
1292 	struct mapping_node *node = NULL;
1293 	struct reloc_control *rc = fs_info->reloc_ctl;
1294 
1295 	if (rc && root->node) {
1296 		spin_lock(&rc->reloc_root_tree.lock);
1297 		rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1298 				      root->node->start);
1299 		if (rb_node) {
1300 			node = rb_entry(rb_node, struct mapping_node, rb_node);
1301 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1302 		}
1303 		spin_unlock(&rc->reloc_root_tree.lock);
1304 		if (!node)
1305 			return;
1306 		BUG_ON((struct btrfs_root *)node->data != root);
1307 	}
1308 
1309 	spin_lock(&fs_info->trans_lock);
1310 	list_del_init(&root->root_list);
1311 	spin_unlock(&fs_info->trans_lock);
1312 	kfree(node);
1313 }
1314 
1315 /*
1316  * helper to update the 'address of tree root -> reloc tree'
1317  * mapping
1318  */
1319 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1320 {
1321 	struct btrfs_fs_info *fs_info = root->fs_info;
1322 	struct rb_node *rb_node;
1323 	struct mapping_node *node = NULL;
1324 	struct reloc_control *rc = fs_info->reloc_ctl;
1325 
1326 	spin_lock(&rc->reloc_root_tree.lock);
1327 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1328 			      root->node->start);
1329 	if (rb_node) {
1330 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1331 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1332 	}
1333 	spin_unlock(&rc->reloc_root_tree.lock);
1334 
1335 	if (!node)
1336 		return 0;
1337 	BUG_ON((struct btrfs_root *)node->data != root);
1338 
1339 	spin_lock(&rc->reloc_root_tree.lock);
1340 	node->bytenr = new_bytenr;
1341 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1342 			      node->bytenr, &node->rb_node);
1343 	spin_unlock(&rc->reloc_root_tree.lock);
1344 	if (rb_node)
1345 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1346 	return 0;
1347 }
1348 
1349 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1350 					struct btrfs_root *root, u64 objectid)
1351 {
1352 	struct btrfs_fs_info *fs_info = root->fs_info;
1353 	struct btrfs_root *reloc_root;
1354 	struct extent_buffer *eb;
1355 	struct btrfs_root_item *root_item;
1356 	struct btrfs_key root_key;
1357 	int ret;
1358 
1359 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1360 	BUG_ON(!root_item);
1361 
1362 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1363 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1364 	root_key.offset = objectid;
1365 
1366 	if (root->root_key.objectid == objectid) {
1367 		u64 commit_root_gen;
1368 
1369 		/* called by btrfs_init_reloc_root */
1370 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1371 				      BTRFS_TREE_RELOC_OBJECTID);
1372 		BUG_ON(ret);
1373 		/*
1374 		 * Set the last_snapshot field to the generation of the commit
1375 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
1376 		 * correctly (returns true) when the relocation root is created
1377 		 * either inside the critical section of a transaction commit
1378 		 * (through transaction.c:qgroup_account_snapshot()) and when
1379 		 * it's created before the transaction commit is started.
1380 		 */
1381 		commit_root_gen = btrfs_header_generation(root->commit_root);
1382 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
1383 	} else {
1384 		/*
1385 		 * called by btrfs_reloc_post_snapshot_hook.
1386 		 * the source tree is a reloc tree, all tree blocks
1387 		 * modified after it was created have RELOC flag
1388 		 * set in their headers. so it's OK to not update
1389 		 * the 'last_snapshot'.
1390 		 */
1391 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1392 				      BTRFS_TREE_RELOC_OBJECTID);
1393 		BUG_ON(ret);
1394 	}
1395 
1396 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1397 	btrfs_set_root_bytenr(root_item, eb->start);
1398 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1399 	btrfs_set_root_generation(root_item, trans->transid);
1400 
1401 	if (root->root_key.objectid == objectid) {
1402 		btrfs_set_root_refs(root_item, 0);
1403 		memset(&root_item->drop_progress, 0,
1404 		       sizeof(struct btrfs_disk_key));
1405 		root_item->drop_level = 0;
1406 	}
1407 
1408 	btrfs_tree_unlock(eb);
1409 	free_extent_buffer(eb);
1410 
1411 	ret = btrfs_insert_root(trans, fs_info->tree_root,
1412 				&root_key, root_item);
1413 	BUG_ON(ret);
1414 	kfree(root_item);
1415 
1416 	reloc_root = btrfs_read_fs_root(fs_info->tree_root, &root_key);
1417 	BUG_ON(IS_ERR(reloc_root));
1418 	reloc_root->last_trans = trans->transid;
1419 	return reloc_root;
1420 }
1421 
1422 /*
1423  * create reloc tree for a given fs tree. reloc tree is just a
1424  * snapshot of the fs tree with special root objectid.
1425  */
1426 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1427 			  struct btrfs_root *root)
1428 {
1429 	struct btrfs_fs_info *fs_info = root->fs_info;
1430 	struct btrfs_root *reloc_root;
1431 	struct reloc_control *rc = fs_info->reloc_ctl;
1432 	struct btrfs_block_rsv *rsv;
1433 	int clear_rsv = 0;
1434 	int ret;
1435 
1436 	if (root->reloc_root) {
1437 		reloc_root = root->reloc_root;
1438 		reloc_root->last_trans = trans->transid;
1439 		return 0;
1440 	}
1441 
1442 	if (!rc || !rc->create_reloc_tree ||
1443 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1444 		return 0;
1445 
1446 	if (!trans->reloc_reserved) {
1447 		rsv = trans->block_rsv;
1448 		trans->block_rsv = rc->block_rsv;
1449 		clear_rsv = 1;
1450 	}
1451 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1452 	if (clear_rsv)
1453 		trans->block_rsv = rsv;
1454 
1455 	ret = __add_reloc_root(reloc_root);
1456 	BUG_ON(ret < 0);
1457 	root->reloc_root = reloc_root;
1458 	return 0;
1459 }
1460 
1461 /*
1462  * update root item of reloc tree
1463  */
1464 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1465 			    struct btrfs_root *root)
1466 {
1467 	struct btrfs_fs_info *fs_info = root->fs_info;
1468 	struct btrfs_root *reloc_root;
1469 	struct btrfs_root_item *root_item;
1470 	int ret;
1471 
1472 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state) ||
1473 	    !root->reloc_root)
1474 		goto out;
1475 
1476 	reloc_root = root->reloc_root;
1477 	root_item = &reloc_root->root_item;
1478 
1479 	/* root->reloc_root will stay until current relocation finished */
1480 	if (fs_info->reloc_ctl->merge_reloc_tree &&
1481 	    btrfs_root_refs(root_item) == 0) {
1482 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1483 		__del_reloc_root(reloc_root);
1484 	}
1485 
1486 	if (reloc_root->commit_root != reloc_root->node) {
1487 		btrfs_set_root_node(root_item, reloc_root->node);
1488 		free_extent_buffer(reloc_root->commit_root);
1489 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1490 	}
1491 
1492 	ret = btrfs_update_root(trans, fs_info->tree_root,
1493 				&reloc_root->root_key, root_item);
1494 	BUG_ON(ret);
1495 
1496 out:
1497 	return 0;
1498 }
1499 
1500 /*
1501  * helper to find first cached inode with inode number >= objectid
1502  * in a subvolume
1503  */
1504 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1505 {
1506 	struct rb_node *node;
1507 	struct rb_node *prev;
1508 	struct btrfs_inode *entry;
1509 	struct inode *inode;
1510 
1511 	spin_lock(&root->inode_lock);
1512 again:
1513 	node = root->inode_tree.rb_node;
1514 	prev = NULL;
1515 	while (node) {
1516 		prev = node;
1517 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1518 
1519 		if (objectid < btrfs_ino(entry))
1520 			node = node->rb_left;
1521 		else if (objectid > btrfs_ino(entry))
1522 			node = node->rb_right;
1523 		else
1524 			break;
1525 	}
1526 	if (!node) {
1527 		while (prev) {
1528 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1529 			if (objectid <= btrfs_ino(entry)) {
1530 				node = prev;
1531 				break;
1532 			}
1533 			prev = rb_next(prev);
1534 		}
1535 	}
1536 	while (node) {
1537 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1538 		inode = igrab(&entry->vfs_inode);
1539 		if (inode) {
1540 			spin_unlock(&root->inode_lock);
1541 			return inode;
1542 		}
1543 
1544 		objectid = btrfs_ino(entry) + 1;
1545 		if (cond_resched_lock(&root->inode_lock))
1546 			goto again;
1547 
1548 		node = rb_next(node);
1549 	}
1550 	spin_unlock(&root->inode_lock);
1551 	return NULL;
1552 }
1553 
1554 static int in_block_group(u64 bytenr,
1555 			  struct btrfs_block_group_cache *block_group)
1556 {
1557 	if (bytenr >= block_group->key.objectid &&
1558 	    bytenr < block_group->key.objectid + block_group->key.offset)
1559 		return 1;
1560 	return 0;
1561 }
1562 
1563 /*
1564  * get new location of data
1565  */
1566 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1567 			    u64 bytenr, u64 num_bytes)
1568 {
1569 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1570 	struct btrfs_path *path;
1571 	struct btrfs_file_extent_item *fi;
1572 	struct extent_buffer *leaf;
1573 	int ret;
1574 
1575 	path = btrfs_alloc_path();
1576 	if (!path)
1577 		return -ENOMEM;
1578 
1579 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1580 	ret = btrfs_lookup_file_extent(NULL, root, path,
1581 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1582 	if (ret < 0)
1583 		goto out;
1584 	if (ret > 0) {
1585 		ret = -ENOENT;
1586 		goto out;
1587 	}
1588 
1589 	leaf = path->nodes[0];
1590 	fi = btrfs_item_ptr(leaf, path->slots[0],
1591 			    struct btrfs_file_extent_item);
1592 
1593 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1594 	       btrfs_file_extent_compression(leaf, fi) ||
1595 	       btrfs_file_extent_encryption(leaf, fi) ||
1596 	       btrfs_file_extent_other_encoding(leaf, fi));
1597 
1598 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1599 		ret = -EINVAL;
1600 		goto out;
1601 	}
1602 
1603 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1604 	ret = 0;
1605 out:
1606 	btrfs_free_path(path);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * update file extent items in the tree leaf to point to
1612  * the new locations.
1613  */
1614 static noinline_for_stack
1615 int replace_file_extents(struct btrfs_trans_handle *trans,
1616 			 struct reloc_control *rc,
1617 			 struct btrfs_root *root,
1618 			 struct extent_buffer *leaf)
1619 {
1620 	struct btrfs_fs_info *fs_info = root->fs_info;
1621 	struct btrfs_key key;
1622 	struct btrfs_file_extent_item *fi;
1623 	struct inode *inode = NULL;
1624 	u64 parent;
1625 	u64 bytenr;
1626 	u64 new_bytenr = 0;
1627 	u64 num_bytes;
1628 	u64 end;
1629 	u32 nritems;
1630 	u32 i;
1631 	int ret = 0;
1632 	int first = 1;
1633 	int dirty = 0;
1634 
1635 	if (rc->stage != UPDATE_DATA_PTRS)
1636 		return 0;
1637 
1638 	/* reloc trees always use full backref */
1639 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1640 		parent = leaf->start;
1641 	else
1642 		parent = 0;
1643 
1644 	nritems = btrfs_header_nritems(leaf);
1645 	for (i = 0; i < nritems; i++) {
1646 		cond_resched();
1647 		btrfs_item_key_to_cpu(leaf, &key, i);
1648 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1649 			continue;
1650 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1651 		if (btrfs_file_extent_type(leaf, fi) ==
1652 		    BTRFS_FILE_EXTENT_INLINE)
1653 			continue;
1654 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1655 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1656 		if (bytenr == 0)
1657 			continue;
1658 		if (!in_block_group(bytenr, rc->block_group))
1659 			continue;
1660 
1661 		/*
1662 		 * if we are modifying block in fs tree, wait for readpage
1663 		 * to complete and drop the extent cache
1664 		 */
1665 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1666 			if (first) {
1667 				inode = find_next_inode(root, key.objectid);
1668 				first = 0;
1669 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1670 				btrfs_add_delayed_iput(inode);
1671 				inode = find_next_inode(root, key.objectid);
1672 			}
1673 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1674 				end = key.offset +
1675 				      btrfs_file_extent_num_bytes(leaf, fi);
1676 				WARN_ON(!IS_ALIGNED(key.offset,
1677 						    fs_info->sectorsize));
1678 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1679 				end--;
1680 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1681 						      key.offset, end);
1682 				if (!ret)
1683 					continue;
1684 
1685 				btrfs_drop_extent_cache(BTRFS_I(inode),
1686 						key.offset,	end, 1);
1687 				unlock_extent(&BTRFS_I(inode)->io_tree,
1688 					      key.offset, end);
1689 			}
1690 		}
1691 
1692 		ret = get_new_location(rc->data_inode, &new_bytenr,
1693 				       bytenr, num_bytes);
1694 		if (ret) {
1695 			/*
1696 			 * Don't have to abort since we've not changed anything
1697 			 * in the file extent yet.
1698 			 */
1699 			break;
1700 		}
1701 
1702 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1703 		dirty = 1;
1704 
1705 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1706 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1707 					   num_bytes, parent,
1708 					   btrfs_header_owner(leaf),
1709 					   key.objectid, key.offset);
1710 		if (ret) {
1711 			btrfs_abort_transaction(trans, ret);
1712 			break;
1713 		}
1714 
1715 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1716 					parent, btrfs_header_owner(leaf),
1717 					key.objectid, key.offset);
1718 		if (ret) {
1719 			btrfs_abort_transaction(trans, ret);
1720 			break;
1721 		}
1722 	}
1723 	if (dirty)
1724 		btrfs_mark_buffer_dirty(leaf);
1725 	if (inode)
1726 		btrfs_add_delayed_iput(inode);
1727 	return ret;
1728 }
1729 
1730 static noinline_for_stack
1731 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1732 		     struct btrfs_path *path, int level)
1733 {
1734 	struct btrfs_disk_key key1;
1735 	struct btrfs_disk_key key2;
1736 	btrfs_node_key(eb, &key1, slot);
1737 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1738 	return memcmp(&key1, &key2, sizeof(key1));
1739 }
1740 
1741 /*
1742  * try to replace tree blocks in fs tree with the new blocks
1743  * in reloc tree. tree blocks haven't been modified since the
1744  * reloc tree was create can be replaced.
1745  *
1746  * if a block was replaced, level of the block + 1 is returned.
1747  * if no block got replaced, 0 is returned. if there are other
1748  * errors, a negative error number is returned.
1749  */
1750 static noinline_for_stack
1751 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1752 		 struct btrfs_root *dest, struct btrfs_root *src,
1753 		 struct btrfs_path *path, struct btrfs_key *next_key,
1754 		 int lowest_level, int max_level)
1755 {
1756 	struct btrfs_fs_info *fs_info = dest->fs_info;
1757 	struct extent_buffer *eb;
1758 	struct extent_buffer *parent;
1759 	struct btrfs_key key;
1760 	u64 old_bytenr;
1761 	u64 new_bytenr;
1762 	u64 old_ptr_gen;
1763 	u64 new_ptr_gen;
1764 	u64 last_snapshot;
1765 	u32 blocksize;
1766 	int cow = 0;
1767 	int level;
1768 	int ret;
1769 	int slot;
1770 
1771 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1772 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1773 
1774 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1775 again:
1776 	slot = path->slots[lowest_level];
1777 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1778 
1779 	eb = btrfs_lock_root_node(dest);
1780 	btrfs_set_lock_blocking_write(eb);
1781 	level = btrfs_header_level(eb);
1782 
1783 	if (level < lowest_level) {
1784 		btrfs_tree_unlock(eb);
1785 		free_extent_buffer(eb);
1786 		return 0;
1787 	}
1788 
1789 	if (cow) {
1790 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1791 		BUG_ON(ret);
1792 	}
1793 	btrfs_set_lock_blocking_write(eb);
1794 
1795 	if (next_key) {
1796 		next_key->objectid = (u64)-1;
1797 		next_key->type = (u8)-1;
1798 		next_key->offset = (u64)-1;
1799 	}
1800 
1801 	parent = eb;
1802 	while (1) {
1803 		struct btrfs_key first_key;
1804 
1805 		level = btrfs_header_level(parent);
1806 		BUG_ON(level < lowest_level);
1807 
1808 		ret = btrfs_bin_search(parent, &key, level, &slot);
1809 		if (ret < 0)
1810 			break;
1811 		if (ret && slot > 0)
1812 			slot--;
1813 
1814 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1815 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1816 
1817 		old_bytenr = btrfs_node_blockptr(parent, slot);
1818 		blocksize = fs_info->nodesize;
1819 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1820 		btrfs_node_key_to_cpu(parent, &first_key, slot);
1821 
1822 		if (level <= max_level) {
1823 			eb = path->nodes[level];
1824 			new_bytenr = btrfs_node_blockptr(eb,
1825 							path->slots[level]);
1826 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1827 							path->slots[level]);
1828 		} else {
1829 			new_bytenr = 0;
1830 			new_ptr_gen = 0;
1831 		}
1832 
1833 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1834 			ret = level;
1835 			break;
1836 		}
1837 
1838 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1839 		    memcmp_node_keys(parent, slot, path, level)) {
1840 			if (level <= lowest_level) {
1841 				ret = 0;
1842 				break;
1843 			}
1844 
1845 			eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen,
1846 					     level - 1, &first_key);
1847 			if (IS_ERR(eb)) {
1848 				ret = PTR_ERR(eb);
1849 				break;
1850 			} else if (!extent_buffer_uptodate(eb)) {
1851 				ret = -EIO;
1852 				free_extent_buffer(eb);
1853 				break;
1854 			}
1855 			btrfs_tree_lock(eb);
1856 			if (cow) {
1857 				ret = btrfs_cow_block(trans, dest, eb, parent,
1858 						      slot, &eb);
1859 				BUG_ON(ret);
1860 			}
1861 			btrfs_set_lock_blocking_write(eb);
1862 
1863 			btrfs_tree_unlock(parent);
1864 			free_extent_buffer(parent);
1865 
1866 			parent = eb;
1867 			continue;
1868 		}
1869 
1870 		if (!cow) {
1871 			btrfs_tree_unlock(parent);
1872 			free_extent_buffer(parent);
1873 			cow = 1;
1874 			goto again;
1875 		}
1876 
1877 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1878 				      path->slots[level]);
1879 		btrfs_release_path(path);
1880 
1881 		path->lowest_level = level;
1882 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1883 		path->lowest_level = 0;
1884 		BUG_ON(ret);
1885 
1886 		/*
1887 		 * Info qgroup to trace both subtrees.
1888 		 *
1889 		 * We must trace both trees.
1890 		 * 1) Tree reloc subtree
1891 		 *    If not traced, we will leak data numbers
1892 		 * 2) Fs subtree
1893 		 *    If not traced, we will double count old data
1894 		 *
1895 		 * We don't scan the subtree right now, but only record
1896 		 * the swapped tree blocks.
1897 		 * The real subtree rescan is delayed until we have new
1898 		 * CoW on the subtree root node before transaction commit.
1899 		 */
1900 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1901 				rc->block_group, parent, slot,
1902 				path->nodes[level], path->slots[level],
1903 				last_snapshot);
1904 		if (ret < 0)
1905 			break;
1906 		/*
1907 		 * swap blocks in fs tree and reloc tree.
1908 		 */
1909 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1910 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1911 		btrfs_mark_buffer_dirty(parent);
1912 
1913 		btrfs_set_node_blockptr(path->nodes[level],
1914 					path->slots[level], old_bytenr);
1915 		btrfs_set_node_ptr_generation(path->nodes[level],
1916 					      path->slots[level], old_ptr_gen);
1917 		btrfs_mark_buffer_dirty(path->nodes[level]);
1918 
1919 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr,
1920 					blocksize, path->nodes[level]->start,
1921 					src->root_key.objectid, level - 1, 0);
1922 		BUG_ON(ret);
1923 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr,
1924 					blocksize, 0, dest->root_key.objectid,
1925 					level - 1, 0);
1926 		BUG_ON(ret);
1927 
1928 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1929 					path->nodes[level]->start,
1930 					src->root_key.objectid, level - 1, 0);
1931 		BUG_ON(ret);
1932 
1933 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1934 					0, dest->root_key.objectid, level - 1,
1935 					0);
1936 		BUG_ON(ret);
1937 
1938 		btrfs_unlock_up_safe(path, 0);
1939 
1940 		ret = level;
1941 		break;
1942 	}
1943 	btrfs_tree_unlock(parent);
1944 	free_extent_buffer(parent);
1945 	return ret;
1946 }
1947 
1948 /*
1949  * helper to find next relocated block in reloc tree
1950  */
1951 static noinline_for_stack
1952 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1953 		       int *level)
1954 {
1955 	struct extent_buffer *eb;
1956 	int i;
1957 	u64 last_snapshot;
1958 	u32 nritems;
1959 
1960 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1961 
1962 	for (i = 0; i < *level; i++) {
1963 		free_extent_buffer(path->nodes[i]);
1964 		path->nodes[i] = NULL;
1965 	}
1966 
1967 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1968 		eb = path->nodes[i];
1969 		nritems = btrfs_header_nritems(eb);
1970 		while (path->slots[i] + 1 < nritems) {
1971 			path->slots[i]++;
1972 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1973 			    last_snapshot)
1974 				continue;
1975 
1976 			*level = i;
1977 			return 0;
1978 		}
1979 		free_extent_buffer(path->nodes[i]);
1980 		path->nodes[i] = NULL;
1981 	}
1982 	return 1;
1983 }
1984 
1985 /*
1986  * walk down reloc tree to find relocated block of lowest level
1987  */
1988 static noinline_for_stack
1989 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1990 			 int *level)
1991 {
1992 	struct btrfs_fs_info *fs_info = root->fs_info;
1993 	struct extent_buffer *eb = NULL;
1994 	int i;
1995 	u64 bytenr;
1996 	u64 ptr_gen = 0;
1997 	u64 last_snapshot;
1998 	u32 nritems;
1999 
2000 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2001 
2002 	for (i = *level; i > 0; i--) {
2003 		struct btrfs_key first_key;
2004 
2005 		eb = path->nodes[i];
2006 		nritems = btrfs_header_nritems(eb);
2007 		while (path->slots[i] < nritems) {
2008 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
2009 			if (ptr_gen > last_snapshot)
2010 				break;
2011 			path->slots[i]++;
2012 		}
2013 		if (path->slots[i] >= nritems) {
2014 			if (i == *level)
2015 				break;
2016 			*level = i + 1;
2017 			return 0;
2018 		}
2019 		if (i == 1) {
2020 			*level = i;
2021 			return 0;
2022 		}
2023 
2024 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2025 		btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]);
2026 		eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1,
2027 				     &first_key);
2028 		if (IS_ERR(eb)) {
2029 			return PTR_ERR(eb);
2030 		} else if (!extent_buffer_uptodate(eb)) {
2031 			free_extent_buffer(eb);
2032 			return -EIO;
2033 		}
2034 		BUG_ON(btrfs_header_level(eb) != i - 1);
2035 		path->nodes[i - 1] = eb;
2036 		path->slots[i - 1] = 0;
2037 	}
2038 	return 1;
2039 }
2040 
2041 /*
2042  * invalidate extent cache for file extents whose key in range of
2043  * [min_key, max_key)
2044  */
2045 static int invalidate_extent_cache(struct btrfs_root *root,
2046 				   struct btrfs_key *min_key,
2047 				   struct btrfs_key *max_key)
2048 {
2049 	struct btrfs_fs_info *fs_info = root->fs_info;
2050 	struct inode *inode = NULL;
2051 	u64 objectid;
2052 	u64 start, end;
2053 	u64 ino;
2054 
2055 	objectid = min_key->objectid;
2056 	while (1) {
2057 		cond_resched();
2058 		iput(inode);
2059 
2060 		if (objectid > max_key->objectid)
2061 			break;
2062 
2063 		inode = find_next_inode(root, objectid);
2064 		if (!inode)
2065 			break;
2066 		ino = btrfs_ino(BTRFS_I(inode));
2067 
2068 		if (ino > max_key->objectid) {
2069 			iput(inode);
2070 			break;
2071 		}
2072 
2073 		objectid = ino + 1;
2074 		if (!S_ISREG(inode->i_mode))
2075 			continue;
2076 
2077 		if (unlikely(min_key->objectid == ino)) {
2078 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2079 				continue;
2080 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2081 				start = 0;
2082 			else {
2083 				start = min_key->offset;
2084 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
2085 			}
2086 		} else {
2087 			start = 0;
2088 		}
2089 
2090 		if (unlikely(max_key->objectid == ino)) {
2091 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2092 				continue;
2093 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2094 				end = (u64)-1;
2095 			} else {
2096 				if (max_key->offset == 0)
2097 					continue;
2098 				end = max_key->offset;
2099 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
2100 				end--;
2101 			}
2102 		} else {
2103 			end = (u64)-1;
2104 		}
2105 
2106 		/* the lock_extent waits for readpage to complete */
2107 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2108 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
2109 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2110 	}
2111 	return 0;
2112 }
2113 
2114 static int find_next_key(struct btrfs_path *path, int level,
2115 			 struct btrfs_key *key)
2116 
2117 {
2118 	while (level < BTRFS_MAX_LEVEL) {
2119 		if (!path->nodes[level])
2120 			break;
2121 		if (path->slots[level] + 1 <
2122 		    btrfs_header_nritems(path->nodes[level])) {
2123 			btrfs_node_key_to_cpu(path->nodes[level], key,
2124 					      path->slots[level] + 1);
2125 			return 0;
2126 		}
2127 		level++;
2128 	}
2129 	return 1;
2130 }
2131 
2132 /*
2133  * Insert current subvolume into reloc_control::dirty_subvol_roots
2134  */
2135 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
2136 				struct reloc_control *rc,
2137 				struct btrfs_root *root)
2138 {
2139 	struct btrfs_root *reloc_root = root->reloc_root;
2140 	struct btrfs_root_item *reloc_root_item;
2141 
2142 	/* @root must be a subvolume tree root with a valid reloc tree */
2143 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
2144 	ASSERT(reloc_root);
2145 
2146 	reloc_root_item = &reloc_root->root_item;
2147 	memset(&reloc_root_item->drop_progress, 0,
2148 		sizeof(reloc_root_item->drop_progress));
2149 	reloc_root_item->drop_level = 0;
2150 	btrfs_set_root_refs(reloc_root_item, 0);
2151 	btrfs_update_reloc_root(trans, root);
2152 
2153 	if (list_empty(&root->reloc_dirty_list)) {
2154 		btrfs_grab_fs_root(root);
2155 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
2156 	}
2157 }
2158 
2159 static int clean_dirty_subvols(struct reloc_control *rc)
2160 {
2161 	struct btrfs_root *root;
2162 	struct btrfs_root *next;
2163 	int ret = 0;
2164 
2165 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
2166 				 reloc_dirty_list) {
2167 		struct btrfs_root *reloc_root = root->reloc_root;
2168 
2169 		clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
2170 		list_del_init(&root->reloc_dirty_list);
2171 		root->reloc_root = NULL;
2172 		if (reloc_root) {
2173 			int ret2;
2174 
2175 			ret2 = btrfs_drop_snapshot(reloc_root, NULL, 0, 1);
2176 			if (ret2 < 0 && !ret)
2177 				ret = ret2;
2178 		}
2179 		btrfs_put_fs_root(root);
2180 	}
2181 	return ret;
2182 }
2183 
2184 /*
2185  * merge the relocated tree blocks in reloc tree with corresponding
2186  * fs tree.
2187  */
2188 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2189 					       struct btrfs_root *root)
2190 {
2191 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2192 	struct btrfs_key key;
2193 	struct btrfs_key next_key;
2194 	struct btrfs_trans_handle *trans = NULL;
2195 	struct btrfs_root *reloc_root;
2196 	struct btrfs_root_item *root_item;
2197 	struct btrfs_path *path;
2198 	struct extent_buffer *leaf;
2199 	int level;
2200 	int max_level;
2201 	int replaced = 0;
2202 	int ret;
2203 	int err = 0;
2204 	u32 min_reserved;
2205 
2206 	path = btrfs_alloc_path();
2207 	if (!path)
2208 		return -ENOMEM;
2209 	path->reada = READA_FORWARD;
2210 
2211 	reloc_root = root->reloc_root;
2212 	root_item = &reloc_root->root_item;
2213 
2214 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2215 		level = btrfs_root_level(root_item);
2216 		extent_buffer_get(reloc_root->node);
2217 		path->nodes[level] = reloc_root->node;
2218 		path->slots[level] = 0;
2219 	} else {
2220 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2221 
2222 		level = root_item->drop_level;
2223 		BUG_ON(level == 0);
2224 		path->lowest_level = level;
2225 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2226 		path->lowest_level = 0;
2227 		if (ret < 0) {
2228 			btrfs_free_path(path);
2229 			return ret;
2230 		}
2231 
2232 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2233 				      path->slots[level]);
2234 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2235 
2236 		btrfs_unlock_up_safe(path, 0);
2237 	}
2238 
2239 	min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2240 	memset(&next_key, 0, sizeof(next_key));
2241 
2242 	while (1) {
2243 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2244 					     BTRFS_RESERVE_FLUSH_ALL);
2245 		if (ret) {
2246 			err = ret;
2247 			goto out;
2248 		}
2249 		trans = btrfs_start_transaction(root, 0);
2250 		if (IS_ERR(trans)) {
2251 			err = PTR_ERR(trans);
2252 			trans = NULL;
2253 			goto out;
2254 		}
2255 		trans->block_rsv = rc->block_rsv;
2256 
2257 		replaced = 0;
2258 		max_level = level;
2259 
2260 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2261 		if (ret < 0) {
2262 			err = ret;
2263 			goto out;
2264 		}
2265 		if (ret > 0)
2266 			break;
2267 
2268 		if (!find_next_key(path, level, &key) &&
2269 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2270 			ret = 0;
2271 		} else {
2272 			ret = replace_path(trans, rc, root, reloc_root, path,
2273 					   &next_key, level, max_level);
2274 		}
2275 		if (ret < 0) {
2276 			err = ret;
2277 			goto out;
2278 		}
2279 
2280 		if (ret > 0) {
2281 			level = ret;
2282 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2283 					      path->slots[level]);
2284 			replaced = 1;
2285 		}
2286 
2287 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2288 		if (ret > 0)
2289 			break;
2290 
2291 		BUG_ON(level == 0);
2292 		/*
2293 		 * save the merging progress in the drop_progress.
2294 		 * this is OK since root refs == 1 in this case.
2295 		 */
2296 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2297 			       path->slots[level]);
2298 		root_item->drop_level = level;
2299 
2300 		btrfs_end_transaction_throttle(trans);
2301 		trans = NULL;
2302 
2303 		btrfs_btree_balance_dirty(fs_info);
2304 
2305 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2306 			invalidate_extent_cache(root, &key, &next_key);
2307 	}
2308 
2309 	/*
2310 	 * handle the case only one block in the fs tree need to be
2311 	 * relocated and the block is tree root.
2312 	 */
2313 	leaf = btrfs_lock_root_node(root);
2314 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2315 	btrfs_tree_unlock(leaf);
2316 	free_extent_buffer(leaf);
2317 	if (ret < 0)
2318 		err = ret;
2319 out:
2320 	btrfs_free_path(path);
2321 
2322 	if (err == 0)
2323 		insert_dirty_subvol(trans, rc, root);
2324 
2325 	if (trans)
2326 		btrfs_end_transaction_throttle(trans);
2327 
2328 	btrfs_btree_balance_dirty(fs_info);
2329 
2330 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2331 		invalidate_extent_cache(root, &key, &next_key);
2332 
2333 	return err;
2334 }
2335 
2336 static noinline_for_stack
2337 int prepare_to_merge(struct reloc_control *rc, int err)
2338 {
2339 	struct btrfs_root *root = rc->extent_root;
2340 	struct btrfs_fs_info *fs_info = root->fs_info;
2341 	struct btrfs_root *reloc_root;
2342 	struct btrfs_trans_handle *trans;
2343 	LIST_HEAD(reloc_roots);
2344 	u64 num_bytes = 0;
2345 	int ret;
2346 
2347 	mutex_lock(&fs_info->reloc_mutex);
2348 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2349 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2350 	mutex_unlock(&fs_info->reloc_mutex);
2351 
2352 again:
2353 	if (!err) {
2354 		num_bytes = rc->merging_rsv_size;
2355 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2356 					  BTRFS_RESERVE_FLUSH_ALL);
2357 		if (ret)
2358 			err = ret;
2359 	}
2360 
2361 	trans = btrfs_join_transaction(rc->extent_root);
2362 	if (IS_ERR(trans)) {
2363 		if (!err)
2364 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2365 						num_bytes);
2366 		return PTR_ERR(trans);
2367 	}
2368 
2369 	if (!err) {
2370 		if (num_bytes != rc->merging_rsv_size) {
2371 			btrfs_end_transaction(trans);
2372 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
2373 						num_bytes);
2374 			goto again;
2375 		}
2376 	}
2377 
2378 	rc->merge_reloc_tree = 1;
2379 
2380 	while (!list_empty(&rc->reloc_roots)) {
2381 		reloc_root = list_entry(rc->reloc_roots.next,
2382 					struct btrfs_root, root_list);
2383 		list_del_init(&reloc_root->root_list);
2384 
2385 		root = read_fs_root(fs_info, reloc_root->root_key.offset);
2386 		BUG_ON(IS_ERR(root));
2387 		BUG_ON(root->reloc_root != reloc_root);
2388 
2389 		/*
2390 		 * set reference count to 1, so btrfs_recover_relocation
2391 		 * knows it should resumes merging
2392 		 */
2393 		if (!err)
2394 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2395 		btrfs_update_reloc_root(trans, root);
2396 
2397 		list_add(&reloc_root->root_list, &reloc_roots);
2398 	}
2399 
2400 	list_splice(&reloc_roots, &rc->reloc_roots);
2401 
2402 	if (!err)
2403 		btrfs_commit_transaction(trans);
2404 	else
2405 		btrfs_end_transaction(trans);
2406 	return err;
2407 }
2408 
2409 static noinline_for_stack
2410 void free_reloc_roots(struct list_head *list)
2411 {
2412 	struct btrfs_root *reloc_root;
2413 
2414 	while (!list_empty(list)) {
2415 		reloc_root = list_entry(list->next, struct btrfs_root,
2416 					root_list);
2417 		__del_reloc_root(reloc_root);
2418 		free_extent_buffer(reloc_root->node);
2419 		free_extent_buffer(reloc_root->commit_root);
2420 		reloc_root->node = NULL;
2421 		reloc_root->commit_root = NULL;
2422 	}
2423 }
2424 
2425 static noinline_for_stack
2426 void merge_reloc_roots(struct reloc_control *rc)
2427 {
2428 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2429 	struct btrfs_root *root;
2430 	struct btrfs_root *reloc_root;
2431 	LIST_HEAD(reloc_roots);
2432 	int found = 0;
2433 	int ret = 0;
2434 again:
2435 	root = rc->extent_root;
2436 
2437 	/*
2438 	 * this serializes us with btrfs_record_root_in_transaction,
2439 	 * we have to make sure nobody is in the middle of
2440 	 * adding their roots to the list while we are
2441 	 * doing this splice
2442 	 */
2443 	mutex_lock(&fs_info->reloc_mutex);
2444 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2445 	mutex_unlock(&fs_info->reloc_mutex);
2446 
2447 	while (!list_empty(&reloc_roots)) {
2448 		found = 1;
2449 		reloc_root = list_entry(reloc_roots.next,
2450 					struct btrfs_root, root_list);
2451 
2452 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2453 			root = read_fs_root(fs_info,
2454 					    reloc_root->root_key.offset);
2455 			BUG_ON(IS_ERR(root));
2456 			BUG_ON(root->reloc_root != reloc_root);
2457 
2458 			ret = merge_reloc_root(rc, root);
2459 			if (ret) {
2460 				if (list_empty(&reloc_root->root_list))
2461 					list_add_tail(&reloc_root->root_list,
2462 						      &reloc_roots);
2463 				goto out;
2464 			}
2465 		} else {
2466 			list_del_init(&reloc_root->root_list);
2467 		}
2468 	}
2469 
2470 	if (found) {
2471 		found = 0;
2472 		goto again;
2473 	}
2474 out:
2475 	if (ret) {
2476 		btrfs_handle_fs_error(fs_info, ret, NULL);
2477 		if (!list_empty(&reloc_roots))
2478 			free_reloc_roots(&reloc_roots);
2479 
2480 		/* new reloc root may be added */
2481 		mutex_lock(&fs_info->reloc_mutex);
2482 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2483 		mutex_unlock(&fs_info->reloc_mutex);
2484 		if (!list_empty(&reloc_roots))
2485 			free_reloc_roots(&reloc_roots);
2486 	}
2487 
2488 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2489 }
2490 
2491 static void free_block_list(struct rb_root *blocks)
2492 {
2493 	struct tree_block *block;
2494 	struct rb_node *rb_node;
2495 	while ((rb_node = rb_first(blocks))) {
2496 		block = rb_entry(rb_node, struct tree_block, rb_node);
2497 		rb_erase(rb_node, blocks);
2498 		kfree(block);
2499 	}
2500 }
2501 
2502 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2503 				      struct btrfs_root *reloc_root)
2504 {
2505 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2506 	struct btrfs_root *root;
2507 
2508 	if (reloc_root->last_trans == trans->transid)
2509 		return 0;
2510 
2511 	root = read_fs_root(fs_info, reloc_root->root_key.offset);
2512 	BUG_ON(IS_ERR(root));
2513 	BUG_ON(root->reloc_root != reloc_root);
2514 
2515 	return btrfs_record_root_in_trans(trans, root);
2516 }
2517 
2518 static noinline_for_stack
2519 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2520 				     struct reloc_control *rc,
2521 				     struct backref_node *node,
2522 				     struct backref_edge *edges[])
2523 {
2524 	struct backref_node *next;
2525 	struct btrfs_root *root;
2526 	int index = 0;
2527 
2528 	next = node;
2529 	while (1) {
2530 		cond_resched();
2531 		next = walk_up_backref(next, edges, &index);
2532 		root = next->root;
2533 		BUG_ON(!root);
2534 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2535 
2536 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2537 			record_reloc_root_in_trans(trans, root);
2538 			break;
2539 		}
2540 
2541 		btrfs_record_root_in_trans(trans, root);
2542 		root = root->reloc_root;
2543 
2544 		if (next->new_bytenr != root->node->start) {
2545 			BUG_ON(next->new_bytenr);
2546 			BUG_ON(!list_empty(&next->list));
2547 			next->new_bytenr = root->node->start;
2548 			next->root = root;
2549 			list_add_tail(&next->list,
2550 				      &rc->backref_cache.changed);
2551 			__mark_block_processed(rc, next);
2552 			break;
2553 		}
2554 
2555 		WARN_ON(1);
2556 		root = NULL;
2557 		next = walk_down_backref(edges, &index);
2558 		if (!next || next->level <= node->level)
2559 			break;
2560 	}
2561 	if (!root)
2562 		return NULL;
2563 
2564 	next = node;
2565 	/* setup backref node path for btrfs_reloc_cow_block */
2566 	while (1) {
2567 		rc->backref_cache.path[next->level] = next;
2568 		if (--index < 0)
2569 			break;
2570 		next = edges[index]->node[UPPER];
2571 	}
2572 	return root;
2573 }
2574 
2575 /*
2576  * select a tree root for relocation. return NULL if the block
2577  * is reference counted. we should use do_relocation() in this
2578  * case. return a tree root pointer if the block isn't reference
2579  * counted. return -ENOENT if the block is root of reloc tree.
2580  */
2581 static noinline_for_stack
2582 struct btrfs_root *select_one_root(struct backref_node *node)
2583 {
2584 	struct backref_node *next;
2585 	struct btrfs_root *root;
2586 	struct btrfs_root *fs_root = NULL;
2587 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2588 	int index = 0;
2589 
2590 	next = node;
2591 	while (1) {
2592 		cond_resched();
2593 		next = walk_up_backref(next, edges, &index);
2594 		root = next->root;
2595 		BUG_ON(!root);
2596 
2597 		/* no other choice for non-references counted tree */
2598 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2599 			return root;
2600 
2601 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2602 			fs_root = root;
2603 
2604 		if (next != node)
2605 			return NULL;
2606 
2607 		next = walk_down_backref(edges, &index);
2608 		if (!next || next->level <= node->level)
2609 			break;
2610 	}
2611 
2612 	if (!fs_root)
2613 		return ERR_PTR(-ENOENT);
2614 	return fs_root;
2615 }
2616 
2617 static noinline_for_stack
2618 u64 calcu_metadata_size(struct reloc_control *rc,
2619 			struct backref_node *node, int reserve)
2620 {
2621 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2622 	struct backref_node *next = node;
2623 	struct backref_edge *edge;
2624 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2625 	u64 num_bytes = 0;
2626 	int index = 0;
2627 
2628 	BUG_ON(reserve && node->processed);
2629 
2630 	while (next) {
2631 		cond_resched();
2632 		while (1) {
2633 			if (next->processed && (reserve || next != node))
2634 				break;
2635 
2636 			num_bytes += fs_info->nodesize;
2637 
2638 			if (list_empty(&next->upper))
2639 				break;
2640 
2641 			edge = list_entry(next->upper.next,
2642 					  struct backref_edge, list[LOWER]);
2643 			edges[index++] = edge;
2644 			next = edge->node[UPPER];
2645 		}
2646 		next = walk_down_backref(edges, &index);
2647 	}
2648 	return num_bytes;
2649 }
2650 
2651 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2652 				  struct reloc_control *rc,
2653 				  struct backref_node *node)
2654 {
2655 	struct btrfs_root *root = rc->extent_root;
2656 	struct btrfs_fs_info *fs_info = root->fs_info;
2657 	u64 num_bytes;
2658 	int ret;
2659 	u64 tmp;
2660 
2661 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2662 
2663 	trans->block_rsv = rc->block_rsv;
2664 	rc->reserved_bytes += num_bytes;
2665 
2666 	/*
2667 	 * We are under a transaction here so we can only do limited flushing.
2668 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2669 	 * transaction and try to refill when we can flush all the things.
2670 	 */
2671 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2672 				BTRFS_RESERVE_FLUSH_LIMIT);
2673 	if (ret) {
2674 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2675 		while (tmp <= rc->reserved_bytes)
2676 			tmp <<= 1;
2677 		/*
2678 		 * only one thread can access block_rsv at this point,
2679 		 * so we don't need hold lock to protect block_rsv.
2680 		 * we expand more reservation size here to allow enough
2681 		 * space for relocation and we will return earlier in
2682 		 * enospc case.
2683 		 */
2684 		rc->block_rsv->size = tmp + fs_info->nodesize *
2685 				      RELOCATION_RESERVED_NODES;
2686 		return -EAGAIN;
2687 	}
2688 
2689 	return 0;
2690 }
2691 
2692 /*
2693  * relocate a block tree, and then update pointers in upper level
2694  * blocks that reference the block to point to the new location.
2695  *
2696  * if called by link_to_upper, the block has already been relocated.
2697  * in that case this function just updates pointers.
2698  */
2699 static int do_relocation(struct btrfs_trans_handle *trans,
2700 			 struct reloc_control *rc,
2701 			 struct backref_node *node,
2702 			 struct btrfs_key *key,
2703 			 struct btrfs_path *path, int lowest)
2704 {
2705 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2706 	struct backref_node *upper;
2707 	struct backref_edge *edge;
2708 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2709 	struct btrfs_root *root;
2710 	struct extent_buffer *eb;
2711 	u32 blocksize;
2712 	u64 bytenr;
2713 	u64 generation;
2714 	int slot;
2715 	int ret;
2716 	int err = 0;
2717 
2718 	BUG_ON(lowest && node->eb);
2719 
2720 	path->lowest_level = node->level + 1;
2721 	rc->backref_cache.path[node->level] = node;
2722 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2723 		struct btrfs_key first_key;
2724 
2725 		cond_resched();
2726 
2727 		upper = edge->node[UPPER];
2728 		root = select_reloc_root(trans, rc, upper, edges);
2729 		BUG_ON(!root);
2730 
2731 		if (upper->eb && !upper->locked) {
2732 			if (!lowest) {
2733 				ret = btrfs_bin_search(upper->eb, key,
2734 						       upper->level, &slot);
2735 				if (ret < 0) {
2736 					err = ret;
2737 					goto next;
2738 				}
2739 				BUG_ON(ret);
2740 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2741 				if (node->eb->start == bytenr)
2742 					goto next;
2743 			}
2744 			drop_node_buffer(upper);
2745 		}
2746 
2747 		if (!upper->eb) {
2748 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2749 			if (ret) {
2750 				if (ret < 0)
2751 					err = ret;
2752 				else
2753 					err = -ENOENT;
2754 
2755 				btrfs_release_path(path);
2756 				break;
2757 			}
2758 
2759 			if (!upper->eb) {
2760 				upper->eb = path->nodes[upper->level];
2761 				path->nodes[upper->level] = NULL;
2762 			} else {
2763 				BUG_ON(upper->eb != path->nodes[upper->level]);
2764 			}
2765 
2766 			upper->locked = 1;
2767 			path->locks[upper->level] = 0;
2768 
2769 			slot = path->slots[upper->level];
2770 			btrfs_release_path(path);
2771 		} else {
2772 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2773 					       &slot);
2774 			if (ret < 0) {
2775 				err = ret;
2776 				goto next;
2777 			}
2778 			BUG_ON(ret);
2779 		}
2780 
2781 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2782 		if (lowest) {
2783 			if (bytenr != node->bytenr) {
2784 				btrfs_err(root->fs_info,
2785 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2786 					  bytenr, node->bytenr, slot,
2787 					  upper->eb->start);
2788 				err = -EIO;
2789 				goto next;
2790 			}
2791 		} else {
2792 			if (node->eb->start == bytenr)
2793 				goto next;
2794 		}
2795 
2796 		blocksize = root->fs_info->nodesize;
2797 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2798 		btrfs_node_key_to_cpu(upper->eb, &first_key, slot);
2799 		eb = read_tree_block(fs_info, bytenr, generation,
2800 				     upper->level - 1, &first_key);
2801 		if (IS_ERR(eb)) {
2802 			err = PTR_ERR(eb);
2803 			goto next;
2804 		} else if (!extent_buffer_uptodate(eb)) {
2805 			free_extent_buffer(eb);
2806 			err = -EIO;
2807 			goto next;
2808 		}
2809 		btrfs_tree_lock(eb);
2810 		btrfs_set_lock_blocking_write(eb);
2811 
2812 		if (!node->eb) {
2813 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2814 					      slot, &eb);
2815 			btrfs_tree_unlock(eb);
2816 			free_extent_buffer(eb);
2817 			if (ret < 0) {
2818 				err = ret;
2819 				goto next;
2820 			}
2821 			BUG_ON(node->eb != eb);
2822 		} else {
2823 			btrfs_set_node_blockptr(upper->eb, slot,
2824 						node->eb->start);
2825 			btrfs_set_node_ptr_generation(upper->eb, slot,
2826 						      trans->transid);
2827 			btrfs_mark_buffer_dirty(upper->eb);
2828 
2829 			ret = btrfs_inc_extent_ref(trans, root,
2830 						node->eb->start, blocksize,
2831 						upper->eb->start,
2832 						btrfs_header_owner(upper->eb),
2833 						node->level, 0);
2834 			BUG_ON(ret);
2835 
2836 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2837 			BUG_ON(ret);
2838 		}
2839 next:
2840 		if (!upper->pending)
2841 			drop_node_buffer(upper);
2842 		else
2843 			unlock_node_buffer(upper);
2844 		if (err)
2845 			break;
2846 	}
2847 
2848 	if (!err && node->pending) {
2849 		drop_node_buffer(node);
2850 		list_move_tail(&node->list, &rc->backref_cache.changed);
2851 		node->pending = 0;
2852 	}
2853 
2854 	path->lowest_level = 0;
2855 	BUG_ON(err == -ENOSPC);
2856 	return err;
2857 }
2858 
2859 static int link_to_upper(struct btrfs_trans_handle *trans,
2860 			 struct reloc_control *rc,
2861 			 struct backref_node *node,
2862 			 struct btrfs_path *path)
2863 {
2864 	struct btrfs_key key;
2865 
2866 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2867 	return do_relocation(trans, rc, node, &key, path, 0);
2868 }
2869 
2870 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2871 				struct reloc_control *rc,
2872 				struct btrfs_path *path, int err)
2873 {
2874 	LIST_HEAD(list);
2875 	struct backref_cache *cache = &rc->backref_cache;
2876 	struct backref_node *node;
2877 	int level;
2878 	int ret;
2879 
2880 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2881 		while (!list_empty(&cache->pending[level])) {
2882 			node = list_entry(cache->pending[level].next,
2883 					  struct backref_node, list);
2884 			list_move_tail(&node->list, &list);
2885 			BUG_ON(!node->pending);
2886 
2887 			if (!err) {
2888 				ret = link_to_upper(trans, rc, node, path);
2889 				if (ret < 0)
2890 					err = ret;
2891 			}
2892 		}
2893 		list_splice_init(&list, &cache->pending[level]);
2894 	}
2895 	return err;
2896 }
2897 
2898 static void mark_block_processed(struct reloc_control *rc,
2899 				 u64 bytenr, u32 blocksize)
2900 {
2901 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2902 			EXTENT_DIRTY);
2903 }
2904 
2905 static void __mark_block_processed(struct reloc_control *rc,
2906 				   struct backref_node *node)
2907 {
2908 	u32 blocksize;
2909 	if (node->level == 0 ||
2910 	    in_block_group(node->bytenr, rc->block_group)) {
2911 		blocksize = rc->extent_root->fs_info->nodesize;
2912 		mark_block_processed(rc, node->bytenr, blocksize);
2913 	}
2914 	node->processed = 1;
2915 }
2916 
2917 /*
2918  * mark a block and all blocks directly/indirectly reference the block
2919  * as processed.
2920  */
2921 static void update_processed_blocks(struct reloc_control *rc,
2922 				    struct backref_node *node)
2923 {
2924 	struct backref_node *next = node;
2925 	struct backref_edge *edge;
2926 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2927 	int index = 0;
2928 
2929 	while (next) {
2930 		cond_resched();
2931 		while (1) {
2932 			if (next->processed)
2933 				break;
2934 
2935 			__mark_block_processed(rc, next);
2936 
2937 			if (list_empty(&next->upper))
2938 				break;
2939 
2940 			edge = list_entry(next->upper.next,
2941 					  struct backref_edge, list[LOWER]);
2942 			edges[index++] = edge;
2943 			next = edge->node[UPPER];
2944 		}
2945 		next = walk_down_backref(edges, &index);
2946 	}
2947 }
2948 
2949 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2950 {
2951 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2952 
2953 	if (test_range_bit(&rc->processed_blocks, bytenr,
2954 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2955 		return 1;
2956 	return 0;
2957 }
2958 
2959 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2960 			      struct tree_block *block)
2961 {
2962 	struct extent_buffer *eb;
2963 
2964 	BUG_ON(block->key_ready);
2965 	eb = read_tree_block(fs_info, block->bytenr, block->key.offset,
2966 			     block->level, NULL);
2967 	if (IS_ERR(eb)) {
2968 		return PTR_ERR(eb);
2969 	} else if (!extent_buffer_uptodate(eb)) {
2970 		free_extent_buffer(eb);
2971 		return -EIO;
2972 	}
2973 	if (block->level == 0)
2974 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2975 	else
2976 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2977 	free_extent_buffer(eb);
2978 	block->key_ready = 1;
2979 	return 0;
2980 }
2981 
2982 /*
2983  * helper function to relocate a tree block
2984  */
2985 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2986 				struct reloc_control *rc,
2987 				struct backref_node *node,
2988 				struct btrfs_key *key,
2989 				struct btrfs_path *path)
2990 {
2991 	struct btrfs_root *root;
2992 	int ret = 0;
2993 
2994 	if (!node)
2995 		return 0;
2996 
2997 	BUG_ON(node->processed);
2998 	root = select_one_root(node);
2999 	if (root == ERR_PTR(-ENOENT)) {
3000 		update_processed_blocks(rc, node);
3001 		goto out;
3002 	}
3003 
3004 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3005 		ret = reserve_metadata_space(trans, rc, node);
3006 		if (ret)
3007 			goto out;
3008 	}
3009 
3010 	if (root) {
3011 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
3012 			BUG_ON(node->new_bytenr);
3013 			BUG_ON(!list_empty(&node->list));
3014 			btrfs_record_root_in_trans(trans, root);
3015 			root = root->reloc_root;
3016 			node->new_bytenr = root->node->start;
3017 			node->root = root;
3018 			list_add_tail(&node->list, &rc->backref_cache.changed);
3019 		} else {
3020 			path->lowest_level = node->level;
3021 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
3022 			btrfs_release_path(path);
3023 			if (ret > 0)
3024 				ret = 0;
3025 		}
3026 		if (!ret)
3027 			update_processed_blocks(rc, node);
3028 	} else {
3029 		ret = do_relocation(trans, rc, node, key, path, 1);
3030 	}
3031 out:
3032 	if (ret || node->level == 0 || node->cowonly)
3033 		remove_backref_node(&rc->backref_cache, node);
3034 	return ret;
3035 }
3036 
3037 /*
3038  * relocate a list of blocks
3039  */
3040 static noinline_for_stack
3041 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
3042 			 struct reloc_control *rc, struct rb_root *blocks)
3043 {
3044 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3045 	struct backref_node *node;
3046 	struct btrfs_path *path;
3047 	struct tree_block *block;
3048 	struct tree_block *next;
3049 	int ret;
3050 	int err = 0;
3051 
3052 	path = btrfs_alloc_path();
3053 	if (!path) {
3054 		err = -ENOMEM;
3055 		goto out_free_blocks;
3056 	}
3057 
3058 	/* Kick in readahead for tree blocks with missing keys */
3059 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3060 		if (!block->key_ready)
3061 			readahead_tree_block(fs_info, block->bytenr);
3062 	}
3063 
3064 	/* Get first keys */
3065 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3066 		if (!block->key_ready) {
3067 			err = get_tree_block_key(fs_info, block);
3068 			if (err)
3069 				goto out_free_path;
3070 		}
3071 	}
3072 
3073 	/* Do tree relocation */
3074 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
3075 		node = build_backref_tree(rc, &block->key,
3076 					  block->level, block->bytenr);
3077 		if (IS_ERR(node)) {
3078 			err = PTR_ERR(node);
3079 			goto out;
3080 		}
3081 
3082 		ret = relocate_tree_block(trans, rc, node, &block->key,
3083 					  path);
3084 		if (ret < 0) {
3085 			if (ret != -EAGAIN || &block->rb_node == rb_first(blocks))
3086 				err = ret;
3087 			goto out;
3088 		}
3089 	}
3090 out:
3091 	err = finish_pending_nodes(trans, rc, path, err);
3092 
3093 out_free_path:
3094 	btrfs_free_path(path);
3095 out_free_blocks:
3096 	free_block_list(blocks);
3097 	return err;
3098 }
3099 
3100 static noinline_for_stack
3101 int prealloc_file_extent_cluster(struct inode *inode,
3102 				 struct file_extent_cluster *cluster)
3103 {
3104 	u64 alloc_hint = 0;
3105 	u64 start;
3106 	u64 end;
3107 	u64 offset = BTRFS_I(inode)->index_cnt;
3108 	u64 num_bytes;
3109 	int nr = 0;
3110 	int ret = 0;
3111 	u64 prealloc_start = cluster->start - offset;
3112 	u64 prealloc_end = cluster->end - offset;
3113 	u64 cur_offset;
3114 	struct extent_changeset *data_reserved = NULL;
3115 
3116 	BUG_ON(cluster->start != cluster->boundary[0]);
3117 	inode_lock(inode);
3118 
3119 	ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start,
3120 					  prealloc_end + 1 - prealloc_start);
3121 	if (ret)
3122 		goto out;
3123 
3124 	cur_offset = prealloc_start;
3125 	while (nr < cluster->nr) {
3126 		start = cluster->boundary[nr] - offset;
3127 		if (nr + 1 < cluster->nr)
3128 			end = cluster->boundary[nr + 1] - 1 - offset;
3129 		else
3130 			end = cluster->end - offset;
3131 
3132 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3133 		num_bytes = end + 1 - start;
3134 		if (cur_offset < start)
3135 			btrfs_free_reserved_data_space(inode, data_reserved,
3136 					cur_offset, start - cur_offset);
3137 		ret = btrfs_prealloc_file_range(inode, 0, start,
3138 						num_bytes, num_bytes,
3139 						end + 1, &alloc_hint);
3140 		cur_offset = end + 1;
3141 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3142 		if (ret)
3143 			break;
3144 		nr++;
3145 	}
3146 	if (cur_offset < prealloc_end)
3147 		btrfs_free_reserved_data_space(inode, data_reserved,
3148 				cur_offset, prealloc_end + 1 - cur_offset);
3149 out:
3150 	inode_unlock(inode);
3151 	extent_changeset_free(data_reserved);
3152 	return ret;
3153 }
3154 
3155 static noinline_for_stack
3156 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3157 			 u64 block_start)
3158 {
3159 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3160 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3161 	struct extent_map *em;
3162 	int ret = 0;
3163 
3164 	em = alloc_extent_map();
3165 	if (!em)
3166 		return -ENOMEM;
3167 
3168 	em->start = start;
3169 	em->len = end + 1 - start;
3170 	em->block_len = em->len;
3171 	em->block_start = block_start;
3172 	em->bdev = fs_info->fs_devices->latest_bdev;
3173 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3174 
3175 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3176 	while (1) {
3177 		write_lock(&em_tree->lock);
3178 		ret = add_extent_mapping(em_tree, em, 0);
3179 		write_unlock(&em_tree->lock);
3180 		if (ret != -EEXIST) {
3181 			free_extent_map(em);
3182 			break;
3183 		}
3184 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
3185 	}
3186 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3187 	return ret;
3188 }
3189 
3190 static int relocate_file_extent_cluster(struct inode *inode,
3191 					struct file_extent_cluster *cluster)
3192 {
3193 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3194 	u64 page_start;
3195 	u64 page_end;
3196 	u64 offset = BTRFS_I(inode)->index_cnt;
3197 	unsigned long index;
3198 	unsigned long last_index;
3199 	struct page *page;
3200 	struct file_ra_state *ra;
3201 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3202 	int nr = 0;
3203 	int ret = 0;
3204 
3205 	if (!cluster->nr)
3206 		return 0;
3207 
3208 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3209 	if (!ra)
3210 		return -ENOMEM;
3211 
3212 	ret = prealloc_file_extent_cluster(inode, cluster);
3213 	if (ret)
3214 		goto out;
3215 
3216 	file_ra_state_init(ra, inode->i_mapping);
3217 
3218 	ret = setup_extent_mapping(inode, cluster->start - offset,
3219 				   cluster->end - offset, cluster->start);
3220 	if (ret)
3221 		goto out;
3222 
3223 	index = (cluster->start - offset) >> PAGE_SHIFT;
3224 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3225 	while (index <= last_index) {
3226 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3227 				PAGE_SIZE);
3228 		if (ret)
3229 			goto out;
3230 
3231 		page = find_lock_page(inode->i_mapping, index);
3232 		if (!page) {
3233 			page_cache_sync_readahead(inode->i_mapping,
3234 						  ra, NULL, index,
3235 						  last_index + 1 - index);
3236 			page = find_or_create_page(inode->i_mapping, index,
3237 						   mask);
3238 			if (!page) {
3239 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3240 							PAGE_SIZE, true);
3241 				ret = -ENOMEM;
3242 				goto out;
3243 			}
3244 		}
3245 
3246 		if (PageReadahead(page)) {
3247 			page_cache_async_readahead(inode->i_mapping,
3248 						   ra, NULL, page, index,
3249 						   last_index + 1 - index);
3250 		}
3251 
3252 		if (!PageUptodate(page)) {
3253 			btrfs_readpage(NULL, page);
3254 			lock_page(page);
3255 			if (!PageUptodate(page)) {
3256 				unlock_page(page);
3257 				put_page(page);
3258 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
3259 							PAGE_SIZE, true);
3260 				btrfs_delalloc_release_extents(BTRFS_I(inode),
3261 							       PAGE_SIZE, true);
3262 				ret = -EIO;
3263 				goto out;
3264 			}
3265 		}
3266 
3267 		page_start = page_offset(page);
3268 		page_end = page_start + PAGE_SIZE - 1;
3269 
3270 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3271 
3272 		set_page_extent_mapped(page);
3273 
3274 		if (nr < cluster->nr &&
3275 		    page_start + offset == cluster->boundary[nr]) {
3276 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3277 					page_start, page_end,
3278 					EXTENT_BOUNDARY);
3279 			nr++;
3280 		}
3281 
3282 		ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0,
3283 						NULL, 0);
3284 		if (ret) {
3285 			unlock_page(page);
3286 			put_page(page);
3287 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3288 							 PAGE_SIZE, true);
3289 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3290 			                               PAGE_SIZE, true);
3291 
3292 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
3293 					  page_start, page_end,
3294 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
3295 			goto out;
3296 
3297 		}
3298 		set_page_dirty(page);
3299 
3300 		unlock_extent(&BTRFS_I(inode)->io_tree,
3301 			      page_start, page_end);
3302 		unlock_page(page);
3303 		put_page(page);
3304 
3305 		index++;
3306 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE,
3307 					       false);
3308 		balance_dirty_pages_ratelimited(inode->i_mapping);
3309 		btrfs_throttle(fs_info);
3310 	}
3311 	WARN_ON(nr != cluster->nr);
3312 out:
3313 	kfree(ra);
3314 	return ret;
3315 }
3316 
3317 static noinline_for_stack
3318 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3319 			 struct file_extent_cluster *cluster)
3320 {
3321 	int ret;
3322 
3323 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3324 		ret = relocate_file_extent_cluster(inode, cluster);
3325 		if (ret)
3326 			return ret;
3327 		cluster->nr = 0;
3328 	}
3329 
3330 	if (!cluster->nr)
3331 		cluster->start = extent_key->objectid;
3332 	else
3333 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3334 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3335 	cluster->boundary[cluster->nr] = extent_key->objectid;
3336 	cluster->nr++;
3337 
3338 	if (cluster->nr >= MAX_EXTENTS) {
3339 		ret = relocate_file_extent_cluster(inode, cluster);
3340 		if (ret)
3341 			return ret;
3342 		cluster->nr = 0;
3343 	}
3344 	return 0;
3345 }
3346 
3347 /*
3348  * helper to add a tree block to the list.
3349  * the major work is getting the generation and level of the block
3350  */
3351 static int add_tree_block(struct reloc_control *rc,
3352 			  struct btrfs_key *extent_key,
3353 			  struct btrfs_path *path,
3354 			  struct rb_root *blocks)
3355 {
3356 	struct extent_buffer *eb;
3357 	struct btrfs_extent_item *ei;
3358 	struct btrfs_tree_block_info *bi;
3359 	struct tree_block *block;
3360 	struct rb_node *rb_node;
3361 	u32 item_size;
3362 	int level = -1;
3363 	u64 generation;
3364 
3365 	eb =  path->nodes[0];
3366 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3367 
3368 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3369 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3370 		ei = btrfs_item_ptr(eb, path->slots[0],
3371 				struct btrfs_extent_item);
3372 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3373 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3374 			level = btrfs_tree_block_level(eb, bi);
3375 		} else {
3376 			level = (int)extent_key->offset;
3377 		}
3378 		generation = btrfs_extent_generation(eb, ei);
3379 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3380 		btrfs_print_v0_err(eb->fs_info);
3381 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3382 		return -EINVAL;
3383 	} else {
3384 		BUG();
3385 	}
3386 
3387 	btrfs_release_path(path);
3388 
3389 	BUG_ON(level == -1);
3390 
3391 	block = kmalloc(sizeof(*block), GFP_NOFS);
3392 	if (!block)
3393 		return -ENOMEM;
3394 
3395 	block->bytenr = extent_key->objectid;
3396 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3397 	block->key.offset = generation;
3398 	block->level = level;
3399 	block->key_ready = 0;
3400 
3401 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3402 	if (rb_node)
3403 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3404 
3405 	return 0;
3406 }
3407 
3408 /*
3409  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3410  */
3411 static int __add_tree_block(struct reloc_control *rc,
3412 			    u64 bytenr, u32 blocksize,
3413 			    struct rb_root *blocks)
3414 {
3415 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3416 	struct btrfs_path *path;
3417 	struct btrfs_key key;
3418 	int ret;
3419 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3420 
3421 	if (tree_block_processed(bytenr, rc))
3422 		return 0;
3423 
3424 	if (tree_search(blocks, bytenr))
3425 		return 0;
3426 
3427 	path = btrfs_alloc_path();
3428 	if (!path)
3429 		return -ENOMEM;
3430 again:
3431 	key.objectid = bytenr;
3432 	if (skinny) {
3433 		key.type = BTRFS_METADATA_ITEM_KEY;
3434 		key.offset = (u64)-1;
3435 	} else {
3436 		key.type = BTRFS_EXTENT_ITEM_KEY;
3437 		key.offset = blocksize;
3438 	}
3439 
3440 	path->search_commit_root = 1;
3441 	path->skip_locking = 1;
3442 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3443 	if (ret < 0)
3444 		goto out;
3445 
3446 	if (ret > 0 && skinny) {
3447 		if (path->slots[0]) {
3448 			path->slots[0]--;
3449 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3450 					      path->slots[0]);
3451 			if (key.objectid == bytenr &&
3452 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3453 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3454 			      key.offset == blocksize)))
3455 				ret = 0;
3456 		}
3457 
3458 		if (ret) {
3459 			skinny = false;
3460 			btrfs_release_path(path);
3461 			goto again;
3462 		}
3463 	}
3464 	if (ret) {
3465 		ASSERT(ret == 1);
3466 		btrfs_print_leaf(path->nodes[0]);
3467 		btrfs_err(fs_info,
3468 	     "tree block extent item (%llu) is not found in extent tree",
3469 		     bytenr);
3470 		WARN_ON(1);
3471 		ret = -EINVAL;
3472 		goto out;
3473 	}
3474 
3475 	ret = add_tree_block(rc, &key, path, blocks);
3476 out:
3477 	btrfs_free_path(path);
3478 	return ret;
3479 }
3480 
3481 /*
3482  * helper to check if the block use full backrefs for pointers in it
3483  */
3484 static int block_use_full_backref(struct reloc_control *rc,
3485 				  struct extent_buffer *eb)
3486 {
3487 	u64 flags;
3488 	int ret;
3489 
3490 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3491 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3492 		return 1;
3493 
3494 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root->fs_info,
3495 				       eb->start, btrfs_header_level(eb), 1,
3496 				       NULL, &flags);
3497 	BUG_ON(ret);
3498 
3499 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3500 		ret = 1;
3501 	else
3502 		ret = 0;
3503 	return ret;
3504 }
3505 
3506 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3507 				    struct btrfs_block_group_cache *block_group,
3508 				    struct inode *inode,
3509 				    u64 ino)
3510 {
3511 	struct btrfs_key key;
3512 	struct btrfs_root *root = fs_info->tree_root;
3513 	struct btrfs_trans_handle *trans;
3514 	int ret = 0;
3515 
3516 	if (inode)
3517 		goto truncate;
3518 
3519 	key.objectid = ino;
3520 	key.type = BTRFS_INODE_ITEM_KEY;
3521 	key.offset = 0;
3522 
3523 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3524 	if (IS_ERR(inode))
3525 		return -ENOENT;
3526 
3527 truncate:
3528 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3529 						 &fs_info->global_block_rsv);
3530 	if (ret)
3531 		goto out;
3532 
3533 	trans = btrfs_join_transaction(root);
3534 	if (IS_ERR(trans)) {
3535 		ret = PTR_ERR(trans);
3536 		goto out;
3537 	}
3538 
3539 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3540 
3541 	btrfs_end_transaction(trans);
3542 	btrfs_btree_balance_dirty(fs_info);
3543 out:
3544 	iput(inode);
3545 	return ret;
3546 }
3547 
3548 /*
3549  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3550  * this function scans fs tree to find blocks reference the data extent
3551  */
3552 static int find_data_references(struct reloc_control *rc,
3553 				struct btrfs_key *extent_key,
3554 				struct extent_buffer *leaf,
3555 				struct btrfs_extent_data_ref *ref,
3556 				struct rb_root *blocks)
3557 {
3558 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3559 	struct btrfs_path *path;
3560 	struct tree_block *block;
3561 	struct btrfs_root *root;
3562 	struct btrfs_file_extent_item *fi;
3563 	struct rb_node *rb_node;
3564 	struct btrfs_key key;
3565 	u64 ref_root;
3566 	u64 ref_objectid;
3567 	u64 ref_offset;
3568 	u32 ref_count;
3569 	u32 nritems;
3570 	int err = 0;
3571 	int added = 0;
3572 	int counted;
3573 	int ret;
3574 
3575 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3576 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3577 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3578 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3579 
3580 	/*
3581 	 * This is an extent belonging to the free space cache, lets just delete
3582 	 * it and redo the search.
3583 	 */
3584 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3585 		ret = delete_block_group_cache(fs_info, rc->block_group,
3586 					       NULL, ref_objectid);
3587 		if (ret != -ENOENT)
3588 			return ret;
3589 		ret = 0;
3590 	}
3591 
3592 	path = btrfs_alloc_path();
3593 	if (!path)
3594 		return -ENOMEM;
3595 	path->reada = READA_FORWARD;
3596 
3597 	root = read_fs_root(fs_info, ref_root);
3598 	if (IS_ERR(root)) {
3599 		err = PTR_ERR(root);
3600 		goto out;
3601 	}
3602 
3603 	key.objectid = ref_objectid;
3604 	key.type = BTRFS_EXTENT_DATA_KEY;
3605 	if (ref_offset > ((u64)-1 << 32))
3606 		key.offset = 0;
3607 	else
3608 		key.offset = ref_offset;
3609 
3610 	path->search_commit_root = 1;
3611 	path->skip_locking = 1;
3612 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3613 	if (ret < 0) {
3614 		err = ret;
3615 		goto out;
3616 	}
3617 
3618 	leaf = path->nodes[0];
3619 	nritems = btrfs_header_nritems(leaf);
3620 	/*
3621 	 * the references in tree blocks that use full backrefs
3622 	 * are not counted in
3623 	 */
3624 	if (block_use_full_backref(rc, leaf))
3625 		counted = 0;
3626 	else
3627 		counted = 1;
3628 	rb_node = tree_search(blocks, leaf->start);
3629 	if (rb_node) {
3630 		if (counted)
3631 			added = 1;
3632 		else
3633 			path->slots[0] = nritems;
3634 	}
3635 
3636 	while (ref_count > 0) {
3637 		while (path->slots[0] >= nritems) {
3638 			ret = btrfs_next_leaf(root, path);
3639 			if (ret < 0) {
3640 				err = ret;
3641 				goto out;
3642 			}
3643 			if (WARN_ON(ret > 0))
3644 				goto out;
3645 
3646 			leaf = path->nodes[0];
3647 			nritems = btrfs_header_nritems(leaf);
3648 			added = 0;
3649 
3650 			if (block_use_full_backref(rc, leaf))
3651 				counted = 0;
3652 			else
3653 				counted = 1;
3654 			rb_node = tree_search(blocks, leaf->start);
3655 			if (rb_node) {
3656 				if (counted)
3657 					added = 1;
3658 				else
3659 					path->slots[0] = nritems;
3660 			}
3661 		}
3662 
3663 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3664 		if (WARN_ON(key.objectid != ref_objectid ||
3665 		    key.type != BTRFS_EXTENT_DATA_KEY))
3666 			break;
3667 
3668 		fi = btrfs_item_ptr(leaf, path->slots[0],
3669 				    struct btrfs_file_extent_item);
3670 
3671 		if (btrfs_file_extent_type(leaf, fi) ==
3672 		    BTRFS_FILE_EXTENT_INLINE)
3673 			goto next;
3674 
3675 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3676 		    extent_key->objectid)
3677 			goto next;
3678 
3679 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3680 		if (key.offset != ref_offset)
3681 			goto next;
3682 
3683 		if (counted)
3684 			ref_count--;
3685 		if (added)
3686 			goto next;
3687 
3688 		if (!tree_block_processed(leaf->start, rc)) {
3689 			block = kmalloc(sizeof(*block), GFP_NOFS);
3690 			if (!block) {
3691 				err = -ENOMEM;
3692 				break;
3693 			}
3694 			block->bytenr = leaf->start;
3695 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3696 			block->level = 0;
3697 			block->key_ready = 1;
3698 			rb_node = tree_insert(blocks, block->bytenr,
3699 					      &block->rb_node);
3700 			if (rb_node)
3701 				backref_tree_panic(rb_node, -EEXIST,
3702 						   block->bytenr);
3703 		}
3704 		if (counted)
3705 			added = 1;
3706 		else
3707 			path->slots[0] = nritems;
3708 next:
3709 		path->slots[0]++;
3710 
3711 	}
3712 out:
3713 	btrfs_free_path(path);
3714 	return err;
3715 }
3716 
3717 /*
3718  * helper to find all tree blocks that reference a given data extent
3719  */
3720 static noinline_for_stack
3721 int add_data_references(struct reloc_control *rc,
3722 			struct btrfs_key *extent_key,
3723 			struct btrfs_path *path,
3724 			struct rb_root *blocks)
3725 {
3726 	struct btrfs_key key;
3727 	struct extent_buffer *eb;
3728 	struct btrfs_extent_data_ref *dref;
3729 	struct btrfs_extent_inline_ref *iref;
3730 	unsigned long ptr;
3731 	unsigned long end;
3732 	u32 blocksize = rc->extent_root->fs_info->nodesize;
3733 	int ret = 0;
3734 	int err = 0;
3735 
3736 	eb = path->nodes[0];
3737 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3738 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3739 	ptr += sizeof(struct btrfs_extent_item);
3740 
3741 	while (ptr < end) {
3742 		iref = (struct btrfs_extent_inline_ref *)ptr;
3743 		key.type = btrfs_get_extent_inline_ref_type(eb, iref,
3744 							BTRFS_REF_TYPE_DATA);
3745 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3746 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3747 			ret = __add_tree_block(rc, key.offset, blocksize,
3748 					       blocks);
3749 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3750 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3751 			ret = find_data_references(rc, extent_key,
3752 						   eb, dref, blocks);
3753 		} else {
3754 			ret = -EUCLEAN;
3755 			btrfs_err(rc->extent_root->fs_info,
3756 		     "extent %llu slot %d has an invalid inline ref type",
3757 			     eb->start, path->slots[0]);
3758 		}
3759 		if (ret) {
3760 			err = ret;
3761 			goto out;
3762 		}
3763 		ptr += btrfs_extent_inline_ref_size(key.type);
3764 	}
3765 	WARN_ON(ptr > end);
3766 
3767 	while (1) {
3768 		cond_resched();
3769 		eb = path->nodes[0];
3770 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3771 			ret = btrfs_next_leaf(rc->extent_root, path);
3772 			if (ret < 0) {
3773 				err = ret;
3774 				break;
3775 			}
3776 			if (ret > 0)
3777 				break;
3778 			eb = path->nodes[0];
3779 		}
3780 
3781 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3782 		if (key.objectid != extent_key->objectid)
3783 			break;
3784 
3785 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3786 			ret = __add_tree_block(rc, key.offset, blocksize,
3787 					       blocks);
3788 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3789 			dref = btrfs_item_ptr(eb, path->slots[0],
3790 					      struct btrfs_extent_data_ref);
3791 			ret = find_data_references(rc, extent_key,
3792 						   eb, dref, blocks);
3793 		} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
3794 			btrfs_print_v0_err(eb->fs_info);
3795 			btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3796 			ret = -EINVAL;
3797 		} else {
3798 			ret = 0;
3799 		}
3800 		if (ret) {
3801 			err = ret;
3802 			break;
3803 		}
3804 		path->slots[0]++;
3805 	}
3806 out:
3807 	btrfs_release_path(path);
3808 	if (err)
3809 		free_block_list(blocks);
3810 	return err;
3811 }
3812 
3813 /*
3814  * helper to find next unprocessed extent
3815  */
3816 static noinline_for_stack
3817 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3818 		     struct btrfs_key *extent_key)
3819 {
3820 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3821 	struct btrfs_key key;
3822 	struct extent_buffer *leaf;
3823 	u64 start, end, last;
3824 	int ret;
3825 
3826 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3827 	while (1) {
3828 		cond_resched();
3829 		if (rc->search_start >= last) {
3830 			ret = 1;
3831 			break;
3832 		}
3833 
3834 		key.objectid = rc->search_start;
3835 		key.type = BTRFS_EXTENT_ITEM_KEY;
3836 		key.offset = 0;
3837 
3838 		path->search_commit_root = 1;
3839 		path->skip_locking = 1;
3840 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3841 					0, 0);
3842 		if (ret < 0)
3843 			break;
3844 next:
3845 		leaf = path->nodes[0];
3846 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3847 			ret = btrfs_next_leaf(rc->extent_root, path);
3848 			if (ret != 0)
3849 				break;
3850 			leaf = path->nodes[0];
3851 		}
3852 
3853 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3854 		if (key.objectid >= last) {
3855 			ret = 1;
3856 			break;
3857 		}
3858 
3859 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3860 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3861 			path->slots[0]++;
3862 			goto next;
3863 		}
3864 
3865 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3866 		    key.objectid + key.offset <= rc->search_start) {
3867 			path->slots[0]++;
3868 			goto next;
3869 		}
3870 
3871 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3872 		    key.objectid + fs_info->nodesize <=
3873 		    rc->search_start) {
3874 			path->slots[0]++;
3875 			goto next;
3876 		}
3877 
3878 		ret = find_first_extent_bit(&rc->processed_blocks,
3879 					    key.objectid, &start, &end,
3880 					    EXTENT_DIRTY, NULL);
3881 
3882 		if (ret == 0 && start <= key.objectid) {
3883 			btrfs_release_path(path);
3884 			rc->search_start = end + 1;
3885 		} else {
3886 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3887 				rc->search_start = key.objectid + key.offset;
3888 			else
3889 				rc->search_start = key.objectid +
3890 					fs_info->nodesize;
3891 			memcpy(extent_key, &key, sizeof(key));
3892 			return 0;
3893 		}
3894 	}
3895 	btrfs_release_path(path);
3896 	return ret;
3897 }
3898 
3899 static void set_reloc_control(struct reloc_control *rc)
3900 {
3901 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3902 
3903 	mutex_lock(&fs_info->reloc_mutex);
3904 	fs_info->reloc_ctl = rc;
3905 	mutex_unlock(&fs_info->reloc_mutex);
3906 }
3907 
3908 static void unset_reloc_control(struct reloc_control *rc)
3909 {
3910 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3911 
3912 	mutex_lock(&fs_info->reloc_mutex);
3913 	fs_info->reloc_ctl = NULL;
3914 	mutex_unlock(&fs_info->reloc_mutex);
3915 }
3916 
3917 static int check_extent_flags(u64 flags)
3918 {
3919 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3920 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3921 		return 1;
3922 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3923 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3924 		return 1;
3925 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3926 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3927 		return 1;
3928 	return 0;
3929 }
3930 
3931 static noinline_for_stack
3932 int prepare_to_relocate(struct reloc_control *rc)
3933 {
3934 	struct btrfs_trans_handle *trans;
3935 	int ret;
3936 
3937 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3938 					      BTRFS_BLOCK_RSV_TEMP);
3939 	if (!rc->block_rsv)
3940 		return -ENOMEM;
3941 
3942 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3943 	rc->search_start = rc->block_group->key.objectid;
3944 	rc->extents_found = 0;
3945 	rc->nodes_relocated = 0;
3946 	rc->merging_rsv_size = 0;
3947 	rc->reserved_bytes = 0;
3948 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3949 			      RELOCATION_RESERVED_NODES;
3950 	ret = btrfs_block_rsv_refill(rc->extent_root,
3951 				     rc->block_rsv, rc->block_rsv->size,
3952 				     BTRFS_RESERVE_FLUSH_ALL);
3953 	if (ret)
3954 		return ret;
3955 
3956 	rc->create_reloc_tree = 1;
3957 	set_reloc_control(rc);
3958 
3959 	trans = btrfs_join_transaction(rc->extent_root);
3960 	if (IS_ERR(trans)) {
3961 		unset_reloc_control(rc);
3962 		/*
3963 		 * extent tree is not a ref_cow tree and has no reloc_root to
3964 		 * cleanup.  And callers are responsible to free the above
3965 		 * block rsv.
3966 		 */
3967 		return PTR_ERR(trans);
3968 	}
3969 	btrfs_commit_transaction(trans);
3970 	return 0;
3971 }
3972 
3973 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3974 {
3975 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3976 	struct rb_root blocks = RB_ROOT;
3977 	struct btrfs_key key;
3978 	struct btrfs_trans_handle *trans = NULL;
3979 	struct btrfs_path *path;
3980 	struct btrfs_extent_item *ei;
3981 	u64 flags;
3982 	u32 item_size;
3983 	int ret;
3984 	int err = 0;
3985 	int progress = 0;
3986 
3987 	path = btrfs_alloc_path();
3988 	if (!path)
3989 		return -ENOMEM;
3990 	path->reada = READA_FORWARD;
3991 
3992 	ret = prepare_to_relocate(rc);
3993 	if (ret) {
3994 		err = ret;
3995 		goto out_free;
3996 	}
3997 
3998 	while (1) {
3999 		rc->reserved_bytes = 0;
4000 		ret = btrfs_block_rsv_refill(rc->extent_root,
4001 					rc->block_rsv, rc->block_rsv->size,
4002 					BTRFS_RESERVE_FLUSH_ALL);
4003 		if (ret) {
4004 			err = ret;
4005 			break;
4006 		}
4007 		progress++;
4008 		trans = btrfs_start_transaction(rc->extent_root, 0);
4009 		if (IS_ERR(trans)) {
4010 			err = PTR_ERR(trans);
4011 			trans = NULL;
4012 			break;
4013 		}
4014 restart:
4015 		if (update_backref_cache(trans, &rc->backref_cache)) {
4016 			btrfs_end_transaction(trans);
4017 			trans = NULL;
4018 			continue;
4019 		}
4020 
4021 		ret = find_next_extent(rc, path, &key);
4022 		if (ret < 0)
4023 			err = ret;
4024 		if (ret != 0)
4025 			break;
4026 
4027 		rc->extents_found++;
4028 
4029 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
4030 				    struct btrfs_extent_item);
4031 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
4032 		if (item_size >= sizeof(*ei)) {
4033 			flags = btrfs_extent_flags(path->nodes[0], ei);
4034 			ret = check_extent_flags(flags);
4035 			BUG_ON(ret);
4036 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
4037 			err = -EINVAL;
4038 			btrfs_print_v0_err(trans->fs_info);
4039 			btrfs_abort_transaction(trans, err);
4040 			break;
4041 		} else {
4042 			BUG();
4043 		}
4044 
4045 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4046 			ret = add_tree_block(rc, &key, path, &blocks);
4047 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4048 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4049 			ret = add_data_references(rc, &key, path, &blocks);
4050 		} else {
4051 			btrfs_release_path(path);
4052 			ret = 0;
4053 		}
4054 		if (ret < 0) {
4055 			err = ret;
4056 			break;
4057 		}
4058 
4059 		if (!RB_EMPTY_ROOT(&blocks)) {
4060 			ret = relocate_tree_blocks(trans, rc, &blocks);
4061 			if (ret < 0) {
4062 				/*
4063 				 * if we fail to relocate tree blocks, force to update
4064 				 * backref cache when committing transaction.
4065 				 */
4066 				rc->backref_cache.last_trans = trans->transid - 1;
4067 
4068 				if (ret != -EAGAIN) {
4069 					err = ret;
4070 					break;
4071 				}
4072 				rc->extents_found--;
4073 				rc->search_start = key.objectid;
4074 			}
4075 		}
4076 
4077 		btrfs_end_transaction_throttle(trans);
4078 		btrfs_btree_balance_dirty(fs_info);
4079 		trans = NULL;
4080 
4081 		if (rc->stage == MOVE_DATA_EXTENTS &&
4082 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4083 			rc->found_file_extent = 1;
4084 			ret = relocate_data_extent(rc->data_inode,
4085 						   &key, &rc->cluster);
4086 			if (ret < 0) {
4087 				err = ret;
4088 				break;
4089 			}
4090 		}
4091 	}
4092 	if (trans && progress && err == -ENOSPC) {
4093 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
4094 		if (ret == 1) {
4095 			err = 0;
4096 			progress = 0;
4097 			goto restart;
4098 		}
4099 	}
4100 
4101 	btrfs_release_path(path);
4102 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4103 
4104 	if (trans) {
4105 		btrfs_end_transaction_throttle(trans);
4106 		btrfs_btree_balance_dirty(fs_info);
4107 	}
4108 
4109 	if (!err) {
4110 		ret = relocate_file_extent_cluster(rc->data_inode,
4111 						   &rc->cluster);
4112 		if (ret < 0)
4113 			err = ret;
4114 	}
4115 
4116 	rc->create_reloc_tree = 0;
4117 	set_reloc_control(rc);
4118 
4119 	backref_cache_cleanup(&rc->backref_cache);
4120 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4121 
4122 	err = prepare_to_merge(rc, err);
4123 
4124 	merge_reloc_roots(rc);
4125 
4126 	rc->merge_reloc_tree = 0;
4127 	unset_reloc_control(rc);
4128 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1);
4129 
4130 	/* get rid of pinned extents */
4131 	trans = btrfs_join_transaction(rc->extent_root);
4132 	if (IS_ERR(trans)) {
4133 		err = PTR_ERR(trans);
4134 		goto out_free;
4135 	}
4136 	btrfs_commit_transaction(trans);
4137 	ret = clean_dirty_subvols(rc);
4138 	if (ret < 0 && !err)
4139 		err = ret;
4140 out_free:
4141 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
4142 	btrfs_free_path(path);
4143 	return err;
4144 }
4145 
4146 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4147 				 struct btrfs_root *root, u64 objectid)
4148 {
4149 	struct btrfs_path *path;
4150 	struct btrfs_inode_item *item;
4151 	struct extent_buffer *leaf;
4152 	int ret;
4153 
4154 	path = btrfs_alloc_path();
4155 	if (!path)
4156 		return -ENOMEM;
4157 
4158 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4159 	if (ret)
4160 		goto out;
4161 
4162 	leaf = path->nodes[0];
4163 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4164 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
4165 	btrfs_set_inode_generation(leaf, item, 1);
4166 	btrfs_set_inode_size(leaf, item, 0);
4167 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4168 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4169 					  BTRFS_INODE_PREALLOC);
4170 	btrfs_mark_buffer_dirty(leaf);
4171 out:
4172 	btrfs_free_path(path);
4173 	return ret;
4174 }
4175 
4176 /*
4177  * helper to create inode for data relocation.
4178  * the inode is in data relocation tree and its link count is 0
4179  */
4180 static noinline_for_stack
4181 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4182 				 struct btrfs_block_group_cache *group)
4183 {
4184 	struct inode *inode = NULL;
4185 	struct btrfs_trans_handle *trans;
4186 	struct btrfs_root *root;
4187 	struct btrfs_key key;
4188 	u64 objectid;
4189 	int err = 0;
4190 
4191 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4192 	if (IS_ERR(root))
4193 		return ERR_CAST(root);
4194 
4195 	trans = btrfs_start_transaction(root, 6);
4196 	if (IS_ERR(trans))
4197 		return ERR_CAST(trans);
4198 
4199 	err = btrfs_find_free_objectid(root, &objectid);
4200 	if (err)
4201 		goto out;
4202 
4203 	err = __insert_orphan_inode(trans, root, objectid);
4204 	BUG_ON(err);
4205 
4206 	key.objectid = objectid;
4207 	key.type = BTRFS_INODE_ITEM_KEY;
4208 	key.offset = 0;
4209 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4210 	BUG_ON(IS_ERR(inode));
4211 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4212 
4213 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
4214 out:
4215 	btrfs_end_transaction(trans);
4216 	btrfs_btree_balance_dirty(fs_info);
4217 	if (err) {
4218 		if (inode)
4219 			iput(inode);
4220 		inode = ERR_PTR(err);
4221 	}
4222 	return inode;
4223 }
4224 
4225 static struct reloc_control *alloc_reloc_control(void)
4226 {
4227 	struct reloc_control *rc;
4228 
4229 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4230 	if (!rc)
4231 		return NULL;
4232 
4233 	INIT_LIST_HEAD(&rc->reloc_roots);
4234 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
4235 	backref_cache_init(&rc->backref_cache);
4236 	mapping_tree_init(&rc->reloc_root_tree);
4237 	extent_io_tree_init(&rc->processed_blocks, NULL);
4238 	return rc;
4239 }
4240 
4241 /*
4242  * Print the block group being relocated
4243  */
4244 static void describe_relocation(struct btrfs_fs_info *fs_info,
4245 				struct btrfs_block_group_cache *block_group)
4246 {
4247 	char buf[128] = {'\0'};
4248 
4249 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
4250 
4251 	btrfs_info(fs_info,
4252 		   "relocating block group %llu flags %s",
4253 		   block_group->key.objectid, buf);
4254 }
4255 
4256 /*
4257  * function to relocate all extents in a block group.
4258  */
4259 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4260 {
4261 	struct btrfs_block_group_cache *bg;
4262 	struct btrfs_root *extent_root = fs_info->extent_root;
4263 	struct reloc_control *rc;
4264 	struct inode *inode;
4265 	struct btrfs_path *path;
4266 	int ret;
4267 	int rw = 0;
4268 	int err = 0;
4269 
4270 	bg = btrfs_lookup_block_group(fs_info, group_start);
4271 	if (!bg)
4272 		return -ENOENT;
4273 
4274 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4275 		btrfs_put_block_group(bg);
4276 		return -ETXTBSY;
4277 	}
4278 
4279 	rc = alloc_reloc_control();
4280 	if (!rc) {
4281 		btrfs_put_block_group(bg);
4282 		return -ENOMEM;
4283 	}
4284 
4285 	rc->extent_root = extent_root;
4286 	rc->block_group = bg;
4287 
4288 	ret = btrfs_inc_block_group_ro(rc->block_group);
4289 	if (ret) {
4290 		err = ret;
4291 		goto out;
4292 	}
4293 	rw = 1;
4294 
4295 	path = btrfs_alloc_path();
4296 	if (!path) {
4297 		err = -ENOMEM;
4298 		goto out;
4299 	}
4300 
4301 	inode = lookup_free_space_inode(fs_info, rc->block_group, path);
4302 	btrfs_free_path(path);
4303 
4304 	if (!IS_ERR(inode))
4305 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4306 	else
4307 		ret = PTR_ERR(inode);
4308 
4309 	if (ret && ret != -ENOENT) {
4310 		err = ret;
4311 		goto out;
4312 	}
4313 
4314 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4315 	if (IS_ERR(rc->data_inode)) {
4316 		err = PTR_ERR(rc->data_inode);
4317 		rc->data_inode = NULL;
4318 		goto out;
4319 	}
4320 
4321 	describe_relocation(fs_info, rc->block_group);
4322 
4323 	btrfs_wait_block_group_reservations(rc->block_group);
4324 	btrfs_wait_nocow_writers(rc->block_group);
4325 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4326 				 rc->block_group->key.objectid,
4327 				 rc->block_group->key.offset);
4328 
4329 	while (1) {
4330 		mutex_lock(&fs_info->cleaner_mutex);
4331 		ret = relocate_block_group(rc);
4332 		mutex_unlock(&fs_info->cleaner_mutex);
4333 		if (ret < 0) {
4334 			err = ret;
4335 			goto out;
4336 		}
4337 
4338 		if (rc->extents_found == 0)
4339 			break;
4340 
4341 		btrfs_info(fs_info, "found %llu extents", rc->extents_found);
4342 
4343 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4344 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4345 						       (u64)-1);
4346 			if (ret) {
4347 				err = ret;
4348 				goto out;
4349 			}
4350 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4351 						 0, -1);
4352 			rc->stage = UPDATE_DATA_PTRS;
4353 		}
4354 	}
4355 
4356 	WARN_ON(rc->block_group->pinned > 0);
4357 	WARN_ON(rc->block_group->reserved > 0);
4358 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4359 out:
4360 	if (err && rw)
4361 		btrfs_dec_block_group_ro(rc->block_group);
4362 	iput(rc->data_inode);
4363 	btrfs_put_block_group(rc->block_group);
4364 	kfree(rc);
4365 	return err;
4366 }
4367 
4368 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4369 {
4370 	struct btrfs_fs_info *fs_info = root->fs_info;
4371 	struct btrfs_trans_handle *trans;
4372 	int ret, err;
4373 
4374 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4375 	if (IS_ERR(trans))
4376 		return PTR_ERR(trans);
4377 
4378 	memset(&root->root_item.drop_progress, 0,
4379 		sizeof(root->root_item.drop_progress));
4380 	root->root_item.drop_level = 0;
4381 	btrfs_set_root_refs(&root->root_item, 0);
4382 	ret = btrfs_update_root(trans, fs_info->tree_root,
4383 				&root->root_key, &root->root_item);
4384 
4385 	err = btrfs_end_transaction(trans);
4386 	if (err)
4387 		return err;
4388 	return ret;
4389 }
4390 
4391 /*
4392  * recover relocation interrupted by system crash.
4393  *
4394  * this function resumes merging reloc trees with corresponding fs trees.
4395  * this is important for keeping the sharing of tree blocks
4396  */
4397 int btrfs_recover_relocation(struct btrfs_root *root)
4398 {
4399 	struct btrfs_fs_info *fs_info = root->fs_info;
4400 	LIST_HEAD(reloc_roots);
4401 	struct btrfs_key key;
4402 	struct btrfs_root *fs_root;
4403 	struct btrfs_root *reloc_root;
4404 	struct btrfs_path *path;
4405 	struct extent_buffer *leaf;
4406 	struct reloc_control *rc = NULL;
4407 	struct btrfs_trans_handle *trans;
4408 	int ret;
4409 	int err = 0;
4410 
4411 	path = btrfs_alloc_path();
4412 	if (!path)
4413 		return -ENOMEM;
4414 	path->reada = READA_BACK;
4415 
4416 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4417 	key.type = BTRFS_ROOT_ITEM_KEY;
4418 	key.offset = (u64)-1;
4419 
4420 	while (1) {
4421 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4422 					path, 0, 0);
4423 		if (ret < 0) {
4424 			err = ret;
4425 			goto out;
4426 		}
4427 		if (ret > 0) {
4428 			if (path->slots[0] == 0)
4429 				break;
4430 			path->slots[0]--;
4431 		}
4432 		leaf = path->nodes[0];
4433 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4434 		btrfs_release_path(path);
4435 
4436 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4437 		    key.type != BTRFS_ROOT_ITEM_KEY)
4438 			break;
4439 
4440 		reloc_root = btrfs_read_fs_root(root, &key);
4441 		if (IS_ERR(reloc_root)) {
4442 			err = PTR_ERR(reloc_root);
4443 			goto out;
4444 		}
4445 
4446 		list_add(&reloc_root->root_list, &reloc_roots);
4447 
4448 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4449 			fs_root = read_fs_root(fs_info,
4450 					       reloc_root->root_key.offset);
4451 			if (IS_ERR(fs_root)) {
4452 				ret = PTR_ERR(fs_root);
4453 				if (ret != -ENOENT) {
4454 					err = ret;
4455 					goto out;
4456 				}
4457 				ret = mark_garbage_root(reloc_root);
4458 				if (ret < 0) {
4459 					err = ret;
4460 					goto out;
4461 				}
4462 			}
4463 		}
4464 
4465 		if (key.offset == 0)
4466 			break;
4467 
4468 		key.offset--;
4469 	}
4470 	btrfs_release_path(path);
4471 
4472 	if (list_empty(&reloc_roots))
4473 		goto out;
4474 
4475 	rc = alloc_reloc_control();
4476 	if (!rc) {
4477 		err = -ENOMEM;
4478 		goto out;
4479 	}
4480 
4481 	rc->extent_root = fs_info->extent_root;
4482 
4483 	set_reloc_control(rc);
4484 
4485 	trans = btrfs_join_transaction(rc->extent_root);
4486 	if (IS_ERR(trans)) {
4487 		unset_reloc_control(rc);
4488 		err = PTR_ERR(trans);
4489 		goto out_free;
4490 	}
4491 
4492 	rc->merge_reloc_tree = 1;
4493 
4494 	while (!list_empty(&reloc_roots)) {
4495 		reloc_root = list_entry(reloc_roots.next,
4496 					struct btrfs_root, root_list);
4497 		list_del(&reloc_root->root_list);
4498 
4499 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4500 			list_add_tail(&reloc_root->root_list,
4501 				      &rc->reloc_roots);
4502 			continue;
4503 		}
4504 
4505 		fs_root = read_fs_root(fs_info, reloc_root->root_key.offset);
4506 		if (IS_ERR(fs_root)) {
4507 			err = PTR_ERR(fs_root);
4508 			goto out_free;
4509 		}
4510 
4511 		err = __add_reloc_root(reloc_root);
4512 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4513 		fs_root->reloc_root = reloc_root;
4514 	}
4515 
4516 	err = btrfs_commit_transaction(trans);
4517 	if (err)
4518 		goto out_free;
4519 
4520 	merge_reloc_roots(rc);
4521 
4522 	unset_reloc_control(rc);
4523 
4524 	trans = btrfs_join_transaction(rc->extent_root);
4525 	if (IS_ERR(trans)) {
4526 		err = PTR_ERR(trans);
4527 		goto out_free;
4528 	}
4529 	err = btrfs_commit_transaction(trans);
4530 
4531 	ret = clean_dirty_subvols(rc);
4532 	if (ret < 0 && !err)
4533 		err = ret;
4534 out_free:
4535 	kfree(rc);
4536 out:
4537 	if (!list_empty(&reloc_roots))
4538 		free_reloc_roots(&reloc_roots);
4539 
4540 	btrfs_free_path(path);
4541 
4542 	if (err == 0) {
4543 		/* cleanup orphan inode in data relocation tree */
4544 		fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4545 		if (IS_ERR(fs_root))
4546 			err = PTR_ERR(fs_root);
4547 		else
4548 			err = btrfs_orphan_cleanup(fs_root);
4549 	}
4550 	return err;
4551 }
4552 
4553 /*
4554  * helper to add ordered checksum for data relocation.
4555  *
4556  * cloning checksum properly handles the nodatasum extents.
4557  * it also saves CPU time to re-calculate the checksum.
4558  */
4559 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4560 {
4561 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4562 	struct btrfs_ordered_sum *sums;
4563 	struct btrfs_ordered_extent *ordered;
4564 	int ret;
4565 	u64 disk_bytenr;
4566 	u64 new_bytenr;
4567 	LIST_HEAD(list);
4568 
4569 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4570 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4571 
4572 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4573 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
4574 				       disk_bytenr + len - 1, &list, 0);
4575 	if (ret)
4576 		goto out;
4577 
4578 	while (!list_empty(&list)) {
4579 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4580 		list_del_init(&sums->list);
4581 
4582 		/*
4583 		 * We need to offset the new_bytenr based on where the csum is.
4584 		 * We need to do this because we will read in entire prealloc
4585 		 * extents but we may have written to say the middle of the
4586 		 * prealloc extent, so we need to make sure the csum goes with
4587 		 * the right disk offset.
4588 		 *
4589 		 * We can do this because the data reloc inode refers strictly
4590 		 * to the on disk bytes, so we don't have to worry about
4591 		 * disk_len vs real len like with real inodes since it's all
4592 		 * disk length.
4593 		 */
4594 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4595 		sums->bytenr = new_bytenr;
4596 
4597 		btrfs_add_ordered_sum(inode, ordered, sums);
4598 	}
4599 out:
4600 	btrfs_put_ordered_extent(ordered);
4601 	return ret;
4602 }
4603 
4604 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4605 			  struct btrfs_root *root, struct extent_buffer *buf,
4606 			  struct extent_buffer *cow)
4607 {
4608 	struct btrfs_fs_info *fs_info = root->fs_info;
4609 	struct reloc_control *rc;
4610 	struct backref_node *node;
4611 	int first_cow = 0;
4612 	int level;
4613 	int ret = 0;
4614 
4615 	rc = fs_info->reloc_ctl;
4616 	if (!rc)
4617 		return 0;
4618 
4619 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4620 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4621 
4622 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4623 		if (buf == root->node)
4624 			__update_reloc_root(root, cow->start);
4625 	}
4626 
4627 	level = btrfs_header_level(buf);
4628 	if (btrfs_header_generation(buf) <=
4629 	    btrfs_root_last_snapshot(&root->root_item))
4630 		first_cow = 1;
4631 
4632 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4633 	    rc->create_reloc_tree) {
4634 		WARN_ON(!first_cow && level == 0);
4635 
4636 		node = rc->backref_cache.path[level];
4637 		BUG_ON(node->bytenr != buf->start &&
4638 		       node->new_bytenr != buf->start);
4639 
4640 		drop_node_buffer(node);
4641 		extent_buffer_get(cow);
4642 		node->eb = cow;
4643 		node->new_bytenr = cow->start;
4644 
4645 		if (!node->pending) {
4646 			list_move_tail(&node->list,
4647 				       &rc->backref_cache.pending[level]);
4648 			node->pending = 1;
4649 		}
4650 
4651 		if (first_cow)
4652 			__mark_block_processed(rc, node);
4653 
4654 		if (first_cow && level > 0)
4655 			rc->nodes_relocated += buf->len;
4656 	}
4657 
4658 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4659 		ret = replace_file_extents(trans, rc, root, cow);
4660 	return ret;
4661 }
4662 
4663 /*
4664  * called before creating snapshot. it calculates metadata reservation
4665  * required for relocating tree blocks in the snapshot
4666  */
4667 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4668 			      u64 *bytes_to_reserve)
4669 {
4670 	struct btrfs_root *root;
4671 	struct reloc_control *rc;
4672 
4673 	root = pending->root;
4674 	if (!root->reloc_root)
4675 		return;
4676 
4677 	rc = root->fs_info->reloc_ctl;
4678 	if (!rc->merge_reloc_tree)
4679 		return;
4680 
4681 	root = root->reloc_root;
4682 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4683 	/*
4684 	 * relocation is in the stage of merging trees. the space
4685 	 * used by merging a reloc tree is twice the size of
4686 	 * relocated tree nodes in the worst case. half for cowing
4687 	 * the reloc tree, half for cowing the fs tree. the space
4688 	 * used by cowing the reloc tree will be freed after the
4689 	 * tree is dropped. if we create snapshot, cowing the fs
4690 	 * tree may use more space than it frees. so we need
4691 	 * reserve extra space.
4692 	 */
4693 	*bytes_to_reserve += rc->nodes_relocated;
4694 }
4695 
4696 /*
4697  * called after snapshot is created. migrate block reservation
4698  * and create reloc root for the newly created snapshot
4699  */
4700 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4701 			       struct btrfs_pending_snapshot *pending)
4702 {
4703 	struct btrfs_root *root = pending->root;
4704 	struct btrfs_root *reloc_root;
4705 	struct btrfs_root *new_root;
4706 	struct reloc_control *rc;
4707 	int ret;
4708 
4709 	if (!root->reloc_root)
4710 		return 0;
4711 
4712 	rc = root->fs_info->reloc_ctl;
4713 	rc->merging_rsv_size += rc->nodes_relocated;
4714 
4715 	if (rc->merge_reloc_tree) {
4716 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4717 					      rc->block_rsv,
4718 					      rc->nodes_relocated, true);
4719 		if (ret)
4720 			return ret;
4721 	}
4722 
4723 	new_root = pending->snap;
4724 	reloc_root = create_reloc_root(trans, root->reloc_root,
4725 				       new_root->root_key.objectid);
4726 	if (IS_ERR(reloc_root))
4727 		return PTR_ERR(reloc_root);
4728 
4729 	ret = __add_reloc_root(reloc_root);
4730 	BUG_ON(ret < 0);
4731 	new_root->reloc_root = reloc_root;
4732 
4733 	if (rc->create_reloc_tree)
4734 		ret = clone_backref_node(trans, rc, root, reloc_root);
4735 	return ret;
4736 }
4737