1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 void backref_tree_panic(struct rb_node *rb_node, int errno, 330 u64 bytenr) 331 { 332 333 struct btrfs_fs_info *fs_info = NULL; 334 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 335 rb_node); 336 if (bnode->root) 337 fs_info = bnode->root->fs_info; 338 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 339 "found at offset %llu\n", (unsigned long long)bytenr); 340 } 341 342 /* 343 * walk up backref nodes until reach node presents tree root 344 */ 345 static struct backref_node *walk_up_backref(struct backref_node *node, 346 struct backref_edge *edges[], 347 int *index) 348 { 349 struct backref_edge *edge; 350 int idx = *index; 351 352 while (!list_empty(&node->upper)) { 353 edge = list_entry(node->upper.next, 354 struct backref_edge, list[LOWER]); 355 edges[idx++] = edge; 356 node = edge->node[UPPER]; 357 } 358 BUG_ON(node->detached); 359 *index = idx; 360 return node; 361 } 362 363 /* 364 * walk down backref nodes to find start of next reference path 365 */ 366 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 367 int *index) 368 { 369 struct backref_edge *edge; 370 struct backref_node *lower; 371 int idx = *index; 372 373 while (idx > 0) { 374 edge = edges[idx - 1]; 375 lower = edge->node[LOWER]; 376 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 377 idx--; 378 continue; 379 } 380 edge = list_entry(edge->list[LOWER].next, 381 struct backref_edge, list[LOWER]); 382 edges[idx - 1] = edge; 383 *index = idx; 384 return edge->node[UPPER]; 385 } 386 *index = 0; 387 return NULL; 388 } 389 390 static void unlock_node_buffer(struct backref_node *node) 391 { 392 if (node->locked) { 393 btrfs_tree_unlock(node->eb); 394 node->locked = 0; 395 } 396 } 397 398 static void drop_node_buffer(struct backref_node *node) 399 { 400 if (node->eb) { 401 unlock_node_buffer(node); 402 free_extent_buffer(node->eb); 403 node->eb = NULL; 404 } 405 } 406 407 static void drop_backref_node(struct backref_cache *tree, 408 struct backref_node *node) 409 { 410 BUG_ON(!list_empty(&node->upper)); 411 412 drop_node_buffer(node); 413 list_del(&node->list); 414 list_del(&node->lower); 415 if (!RB_EMPTY_NODE(&node->rb_node)) 416 rb_erase(&node->rb_node, &tree->rb_root); 417 free_backref_node(tree, node); 418 } 419 420 /* 421 * remove a backref node from the backref cache 422 */ 423 static void remove_backref_node(struct backref_cache *cache, 424 struct backref_node *node) 425 { 426 struct backref_node *upper; 427 struct backref_edge *edge; 428 429 if (!node) 430 return; 431 432 BUG_ON(!node->lowest && !node->detached); 433 while (!list_empty(&node->upper)) { 434 edge = list_entry(node->upper.next, struct backref_edge, 435 list[LOWER]); 436 upper = edge->node[UPPER]; 437 list_del(&edge->list[LOWER]); 438 list_del(&edge->list[UPPER]); 439 free_backref_edge(cache, edge); 440 441 if (RB_EMPTY_NODE(&upper->rb_node)) { 442 BUG_ON(!list_empty(&node->upper)); 443 drop_backref_node(cache, node); 444 node = upper; 445 node->lowest = 1; 446 continue; 447 } 448 /* 449 * add the node to leaf node list if no other 450 * child block cached. 451 */ 452 if (list_empty(&upper->lower)) { 453 list_add_tail(&upper->lower, &cache->leaves); 454 upper->lowest = 1; 455 } 456 } 457 458 drop_backref_node(cache, node); 459 } 460 461 static void update_backref_node(struct backref_cache *cache, 462 struct backref_node *node, u64 bytenr) 463 { 464 struct rb_node *rb_node; 465 rb_erase(&node->rb_node, &cache->rb_root); 466 node->bytenr = bytenr; 467 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 468 if (rb_node) 469 backref_tree_panic(rb_node, -EEXIST, bytenr); 470 } 471 472 /* 473 * update backref cache after a transaction commit 474 */ 475 static int update_backref_cache(struct btrfs_trans_handle *trans, 476 struct backref_cache *cache) 477 { 478 struct backref_node *node; 479 int level = 0; 480 481 if (cache->last_trans == 0) { 482 cache->last_trans = trans->transid; 483 return 0; 484 } 485 486 if (cache->last_trans == trans->transid) 487 return 0; 488 489 /* 490 * detached nodes are used to avoid unnecessary backref 491 * lookup. transaction commit changes the extent tree. 492 * so the detached nodes are no longer useful. 493 */ 494 while (!list_empty(&cache->detached)) { 495 node = list_entry(cache->detached.next, 496 struct backref_node, list); 497 remove_backref_node(cache, node); 498 } 499 500 while (!list_empty(&cache->changed)) { 501 node = list_entry(cache->changed.next, 502 struct backref_node, list); 503 list_del_init(&node->list); 504 BUG_ON(node->pending); 505 update_backref_node(cache, node, node->new_bytenr); 506 } 507 508 /* 509 * some nodes can be left in the pending list if there were 510 * errors during processing the pending nodes. 511 */ 512 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 513 list_for_each_entry(node, &cache->pending[level], list) { 514 BUG_ON(!node->pending); 515 if (node->bytenr == node->new_bytenr) 516 continue; 517 update_backref_node(cache, node, node->new_bytenr); 518 } 519 } 520 521 cache->last_trans = 0; 522 return 1; 523 } 524 525 526 static int should_ignore_root(struct btrfs_root *root) 527 { 528 struct btrfs_root *reloc_root; 529 530 if (!root->ref_cows) 531 return 0; 532 533 reloc_root = root->reloc_root; 534 if (!reloc_root) 535 return 0; 536 537 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 538 root->fs_info->running_transaction->transid - 1) 539 return 0; 540 /* 541 * if there is reloc tree and it was created in previous 542 * transaction backref lookup can find the reloc tree, 543 * so backref node for the fs tree root is useless for 544 * relocation. 545 */ 546 return 1; 547 } 548 /* 549 * find reloc tree by address of tree root 550 */ 551 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 552 u64 bytenr) 553 { 554 struct rb_node *rb_node; 555 struct mapping_node *node; 556 struct btrfs_root *root = NULL; 557 558 spin_lock(&rc->reloc_root_tree.lock); 559 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 560 if (rb_node) { 561 node = rb_entry(rb_node, struct mapping_node, rb_node); 562 root = (struct btrfs_root *)node->data; 563 } 564 spin_unlock(&rc->reloc_root_tree.lock); 565 return root; 566 } 567 568 static int is_cowonly_root(u64 root_objectid) 569 { 570 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 571 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 572 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 573 root_objectid == BTRFS_DEV_TREE_OBJECTID || 574 root_objectid == BTRFS_TREE_LOG_OBJECTID || 575 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 576 return 1; 577 return 0; 578 } 579 580 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 581 u64 root_objectid) 582 { 583 struct btrfs_key key; 584 585 key.objectid = root_objectid; 586 key.type = BTRFS_ROOT_ITEM_KEY; 587 if (is_cowonly_root(root_objectid)) 588 key.offset = 0; 589 else 590 key.offset = (u64)-1; 591 592 return btrfs_read_fs_root_no_name(fs_info, &key); 593 } 594 595 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 596 static noinline_for_stack 597 struct btrfs_root *find_tree_root(struct reloc_control *rc, 598 struct extent_buffer *leaf, 599 struct btrfs_extent_ref_v0 *ref0) 600 { 601 struct btrfs_root *root; 602 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 603 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 604 605 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 606 607 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 608 BUG_ON(IS_ERR(root)); 609 610 if (root->ref_cows && 611 generation != btrfs_root_generation(&root->root_item)) 612 return NULL; 613 614 return root; 615 } 616 #endif 617 618 static noinline_for_stack 619 int find_inline_backref(struct extent_buffer *leaf, int slot, 620 unsigned long *ptr, unsigned long *end) 621 { 622 struct btrfs_extent_item *ei; 623 struct btrfs_tree_block_info *bi; 624 u32 item_size; 625 626 item_size = btrfs_item_size_nr(leaf, slot); 627 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 628 if (item_size < sizeof(*ei)) { 629 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 630 return 1; 631 } 632 #endif 633 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 634 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 635 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 636 637 if (item_size <= sizeof(*ei) + sizeof(*bi)) { 638 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 639 return 1; 640 } 641 642 bi = (struct btrfs_tree_block_info *)(ei + 1); 643 *ptr = (unsigned long)(bi + 1); 644 *end = (unsigned long)ei + item_size; 645 return 0; 646 } 647 648 /* 649 * build backref tree for a given tree block. root of the backref tree 650 * corresponds the tree block, leaves of the backref tree correspond 651 * roots of b-trees that reference the tree block. 652 * 653 * the basic idea of this function is check backrefs of a given block 654 * to find upper level blocks that refernece the block, and then check 655 * bakcrefs of these upper level blocks recursively. the recursion stop 656 * when tree root is reached or backrefs for the block is cached. 657 * 658 * NOTE: if we find backrefs for a block are cached, we know backrefs 659 * for all upper level blocks that directly/indirectly reference the 660 * block are also cached. 661 */ 662 static noinline_for_stack 663 struct backref_node *build_backref_tree(struct reloc_control *rc, 664 struct btrfs_key *node_key, 665 int level, u64 bytenr) 666 { 667 struct backref_cache *cache = &rc->backref_cache; 668 struct btrfs_path *path1; 669 struct btrfs_path *path2; 670 struct extent_buffer *eb; 671 struct btrfs_root *root; 672 struct backref_node *cur; 673 struct backref_node *upper; 674 struct backref_node *lower; 675 struct backref_node *node = NULL; 676 struct backref_node *exist = NULL; 677 struct backref_edge *edge; 678 struct rb_node *rb_node; 679 struct btrfs_key key; 680 unsigned long end; 681 unsigned long ptr; 682 LIST_HEAD(list); 683 LIST_HEAD(useless); 684 int cowonly; 685 int ret; 686 int err = 0; 687 688 path1 = btrfs_alloc_path(); 689 path2 = btrfs_alloc_path(); 690 if (!path1 || !path2) { 691 err = -ENOMEM; 692 goto out; 693 } 694 path1->reada = 1; 695 path2->reada = 2; 696 697 node = alloc_backref_node(cache); 698 if (!node) { 699 err = -ENOMEM; 700 goto out; 701 } 702 703 node->bytenr = bytenr; 704 node->level = level; 705 node->lowest = 1; 706 cur = node; 707 again: 708 end = 0; 709 ptr = 0; 710 key.objectid = cur->bytenr; 711 key.type = BTRFS_EXTENT_ITEM_KEY; 712 key.offset = (u64)-1; 713 714 path1->search_commit_root = 1; 715 path1->skip_locking = 1; 716 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 717 0, 0); 718 if (ret < 0) { 719 err = ret; 720 goto out; 721 } 722 BUG_ON(!ret || !path1->slots[0]); 723 724 path1->slots[0]--; 725 726 WARN_ON(cur->checked); 727 if (!list_empty(&cur->upper)) { 728 /* 729 * the backref was added previously when processing 730 * backref of type BTRFS_TREE_BLOCK_REF_KEY 731 */ 732 BUG_ON(!list_is_singular(&cur->upper)); 733 edge = list_entry(cur->upper.next, struct backref_edge, 734 list[LOWER]); 735 BUG_ON(!list_empty(&edge->list[UPPER])); 736 exist = edge->node[UPPER]; 737 /* 738 * add the upper level block to pending list if we need 739 * check its backrefs 740 */ 741 if (!exist->checked) 742 list_add_tail(&edge->list[UPPER], &list); 743 } else { 744 exist = NULL; 745 } 746 747 while (1) { 748 cond_resched(); 749 eb = path1->nodes[0]; 750 751 if (ptr >= end) { 752 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 753 ret = btrfs_next_leaf(rc->extent_root, path1); 754 if (ret < 0) { 755 err = ret; 756 goto out; 757 } 758 if (ret > 0) 759 break; 760 eb = path1->nodes[0]; 761 } 762 763 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 764 if (key.objectid != cur->bytenr) { 765 WARN_ON(exist); 766 break; 767 } 768 769 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 770 ret = find_inline_backref(eb, path1->slots[0], 771 &ptr, &end); 772 if (ret) 773 goto next; 774 } 775 } 776 777 if (ptr < end) { 778 /* update key for inline back ref */ 779 struct btrfs_extent_inline_ref *iref; 780 iref = (struct btrfs_extent_inline_ref *)ptr; 781 key.type = btrfs_extent_inline_ref_type(eb, iref); 782 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 783 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 784 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 785 } 786 787 if (exist && 788 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 789 exist->owner == key.offset) || 790 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 791 exist->bytenr == key.offset))) { 792 exist = NULL; 793 goto next; 794 } 795 796 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 797 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 798 key.type == BTRFS_EXTENT_REF_V0_KEY) { 799 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 800 struct btrfs_extent_ref_v0 *ref0; 801 ref0 = btrfs_item_ptr(eb, path1->slots[0], 802 struct btrfs_extent_ref_v0); 803 if (key.objectid == key.offset) { 804 root = find_tree_root(rc, eb, ref0); 805 if (root && !should_ignore_root(root)) 806 cur->root = root; 807 else 808 list_add(&cur->list, &useless); 809 break; 810 } 811 if (is_cowonly_root(btrfs_ref_root_v0(eb, 812 ref0))) 813 cur->cowonly = 1; 814 } 815 #else 816 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 817 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 818 #endif 819 if (key.objectid == key.offset) { 820 /* 821 * only root blocks of reloc trees use 822 * backref of this type. 823 */ 824 root = find_reloc_root(rc, cur->bytenr); 825 BUG_ON(!root); 826 cur->root = root; 827 break; 828 } 829 830 edge = alloc_backref_edge(cache); 831 if (!edge) { 832 err = -ENOMEM; 833 goto out; 834 } 835 rb_node = tree_search(&cache->rb_root, key.offset); 836 if (!rb_node) { 837 upper = alloc_backref_node(cache); 838 if (!upper) { 839 free_backref_edge(cache, edge); 840 err = -ENOMEM; 841 goto out; 842 } 843 upper->bytenr = key.offset; 844 upper->level = cur->level + 1; 845 /* 846 * backrefs for the upper level block isn't 847 * cached, add the block to pending list 848 */ 849 list_add_tail(&edge->list[UPPER], &list); 850 } else { 851 upper = rb_entry(rb_node, struct backref_node, 852 rb_node); 853 BUG_ON(!upper->checked); 854 INIT_LIST_HEAD(&edge->list[UPPER]); 855 } 856 list_add_tail(&edge->list[LOWER], &cur->upper); 857 edge->node[LOWER] = cur; 858 edge->node[UPPER] = upper; 859 860 goto next; 861 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 862 goto next; 863 } 864 865 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 866 root = read_fs_root(rc->extent_root->fs_info, key.offset); 867 if (IS_ERR(root)) { 868 err = PTR_ERR(root); 869 goto out; 870 } 871 872 if (!root->ref_cows) 873 cur->cowonly = 1; 874 875 if (btrfs_root_level(&root->root_item) == cur->level) { 876 /* tree root */ 877 BUG_ON(btrfs_root_bytenr(&root->root_item) != 878 cur->bytenr); 879 if (should_ignore_root(root)) 880 list_add(&cur->list, &useless); 881 else 882 cur->root = root; 883 break; 884 } 885 886 level = cur->level + 1; 887 888 /* 889 * searching the tree to find upper level blocks 890 * reference the block. 891 */ 892 path2->search_commit_root = 1; 893 path2->skip_locking = 1; 894 path2->lowest_level = level; 895 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 896 path2->lowest_level = 0; 897 if (ret < 0) { 898 err = ret; 899 goto out; 900 } 901 if (ret > 0 && path2->slots[level] > 0) 902 path2->slots[level]--; 903 904 eb = path2->nodes[level]; 905 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 906 cur->bytenr); 907 908 lower = cur; 909 for (; level < BTRFS_MAX_LEVEL; level++) { 910 if (!path2->nodes[level]) { 911 BUG_ON(btrfs_root_bytenr(&root->root_item) != 912 lower->bytenr); 913 if (should_ignore_root(root)) 914 list_add(&lower->list, &useless); 915 else 916 lower->root = root; 917 break; 918 } 919 920 edge = alloc_backref_edge(cache); 921 if (!edge) { 922 err = -ENOMEM; 923 goto out; 924 } 925 926 eb = path2->nodes[level]; 927 rb_node = tree_search(&cache->rb_root, eb->start); 928 if (!rb_node) { 929 upper = alloc_backref_node(cache); 930 if (!upper) { 931 free_backref_edge(cache, edge); 932 err = -ENOMEM; 933 goto out; 934 } 935 upper->bytenr = eb->start; 936 upper->owner = btrfs_header_owner(eb); 937 upper->level = lower->level + 1; 938 if (!root->ref_cows) 939 upper->cowonly = 1; 940 941 /* 942 * if we know the block isn't shared 943 * we can void checking its backrefs. 944 */ 945 if (btrfs_block_can_be_shared(root, eb)) 946 upper->checked = 0; 947 else 948 upper->checked = 1; 949 950 /* 951 * add the block to pending list if we 952 * need check its backrefs. only block 953 * at 'cur->level + 1' is added to the 954 * tail of pending list. this guarantees 955 * we check backrefs from lower level 956 * blocks to upper level blocks. 957 */ 958 if (!upper->checked && 959 level == cur->level + 1) { 960 list_add_tail(&edge->list[UPPER], 961 &list); 962 } else 963 INIT_LIST_HEAD(&edge->list[UPPER]); 964 } else { 965 upper = rb_entry(rb_node, struct backref_node, 966 rb_node); 967 BUG_ON(!upper->checked); 968 INIT_LIST_HEAD(&edge->list[UPPER]); 969 if (!upper->owner) 970 upper->owner = btrfs_header_owner(eb); 971 } 972 list_add_tail(&edge->list[LOWER], &lower->upper); 973 edge->node[LOWER] = lower; 974 edge->node[UPPER] = upper; 975 976 if (rb_node) 977 break; 978 lower = upper; 979 upper = NULL; 980 } 981 btrfs_release_path(path2); 982 next: 983 if (ptr < end) { 984 ptr += btrfs_extent_inline_ref_size(key.type); 985 if (ptr >= end) { 986 WARN_ON(ptr > end); 987 ptr = 0; 988 end = 0; 989 } 990 } 991 if (ptr >= end) 992 path1->slots[0]++; 993 } 994 btrfs_release_path(path1); 995 996 cur->checked = 1; 997 WARN_ON(exist); 998 999 /* the pending list isn't empty, take the first block to process */ 1000 if (!list_empty(&list)) { 1001 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1002 list_del_init(&edge->list[UPPER]); 1003 cur = edge->node[UPPER]; 1004 goto again; 1005 } 1006 1007 /* 1008 * everything goes well, connect backref nodes and insert backref nodes 1009 * into the cache. 1010 */ 1011 BUG_ON(!node->checked); 1012 cowonly = node->cowonly; 1013 if (!cowonly) { 1014 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1015 &node->rb_node); 1016 if (rb_node) 1017 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1018 list_add_tail(&node->lower, &cache->leaves); 1019 } 1020 1021 list_for_each_entry(edge, &node->upper, list[LOWER]) 1022 list_add_tail(&edge->list[UPPER], &list); 1023 1024 while (!list_empty(&list)) { 1025 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1026 list_del_init(&edge->list[UPPER]); 1027 upper = edge->node[UPPER]; 1028 if (upper->detached) { 1029 list_del(&edge->list[LOWER]); 1030 lower = edge->node[LOWER]; 1031 free_backref_edge(cache, edge); 1032 if (list_empty(&lower->upper)) 1033 list_add(&lower->list, &useless); 1034 continue; 1035 } 1036 1037 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1038 if (upper->lowest) { 1039 list_del_init(&upper->lower); 1040 upper->lowest = 0; 1041 } 1042 1043 list_add_tail(&edge->list[UPPER], &upper->lower); 1044 continue; 1045 } 1046 1047 BUG_ON(!upper->checked); 1048 BUG_ON(cowonly != upper->cowonly); 1049 if (!cowonly) { 1050 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1051 &upper->rb_node); 1052 if (rb_node) 1053 backref_tree_panic(rb_node, -EEXIST, 1054 upper->bytenr); 1055 } 1056 1057 list_add_tail(&edge->list[UPPER], &upper->lower); 1058 1059 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1060 list_add_tail(&edge->list[UPPER], &list); 1061 } 1062 /* 1063 * process useless backref nodes. backref nodes for tree leaves 1064 * are deleted from the cache. backref nodes for upper level 1065 * tree blocks are left in the cache to avoid unnecessary backref 1066 * lookup. 1067 */ 1068 while (!list_empty(&useless)) { 1069 upper = list_entry(useless.next, struct backref_node, list); 1070 list_del_init(&upper->list); 1071 BUG_ON(!list_empty(&upper->upper)); 1072 if (upper == node) 1073 node = NULL; 1074 if (upper->lowest) { 1075 list_del_init(&upper->lower); 1076 upper->lowest = 0; 1077 } 1078 while (!list_empty(&upper->lower)) { 1079 edge = list_entry(upper->lower.next, 1080 struct backref_edge, list[UPPER]); 1081 list_del(&edge->list[UPPER]); 1082 list_del(&edge->list[LOWER]); 1083 lower = edge->node[LOWER]; 1084 free_backref_edge(cache, edge); 1085 1086 if (list_empty(&lower->upper)) 1087 list_add(&lower->list, &useless); 1088 } 1089 __mark_block_processed(rc, upper); 1090 if (upper->level > 0) { 1091 list_add(&upper->list, &cache->detached); 1092 upper->detached = 1; 1093 } else { 1094 rb_erase(&upper->rb_node, &cache->rb_root); 1095 free_backref_node(cache, upper); 1096 } 1097 } 1098 out: 1099 btrfs_free_path(path1); 1100 btrfs_free_path(path2); 1101 if (err) { 1102 while (!list_empty(&useless)) { 1103 lower = list_entry(useless.next, 1104 struct backref_node, upper); 1105 list_del_init(&lower->upper); 1106 } 1107 upper = node; 1108 INIT_LIST_HEAD(&list); 1109 while (upper) { 1110 if (RB_EMPTY_NODE(&upper->rb_node)) { 1111 list_splice_tail(&upper->upper, &list); 1112 free_backref_node(cache, upper); 1113 } 1114 1115 if (list_empty(&list)) 1116 break; 1117 1118 edge = list_entry(list.next, struct backref_edge, 1119 list[LOWER]); 1120 list_del(&edge->list[LOWER]); 1121 upper = edge->node[UPPER]; 1122 free_backref_edge(cache, edge); 1123 } 1124 return ERR_PTR(err); 1125 } 1126 BUG_ON(node && node->detached); 1127 return node; 1128 } 1129 1130 /* 1131 * helper to add backref node for the newly created snapshot. 1132 * the backref node is created by cloning backref node that 1133 * corresponds to root of source tree 1134 */ 1135 static int clone_backref_node(struct btrfs_trans_handle *trans, 1136 struct reloc_control *rc, 1137 struct btrfs_root *src, 1138 struct btrfs_root *dest) 1139 { 1140 struct btrfs_root *reloc_root = src->reloc_root; 1141 struct backref_cache *cache = &rc->backref_cache; 1142 struct backref_node *node = NULL; 1143 struct backref_node *new_node; 1144 struct backref_edge *edge; 1145 struct backref_edge *new_edge; 1146 struct rb_node *rb_node; 1147 1148 if (cache->last_trans > 0) 1149 update_backref_cache(trans, cache); 1150 1151 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1152 if (rb_node) { 1153 node = rb_entry(rb_node, struct backref_node, rb_node); 1154 if (node->detached) 1155 node = NULL; 1156 else 1157 BUG_ON(node->new_bytenr != reloc_root->node->start); 1158 } 1159 1160 if (!node) { 1161 rb_node = tree_search(&cache->rb_root, 1162 reloc_root->commit_root->start); 1163 if (rb_node) { 1164 node = rb_entry(rb_node, struct backref_node, 1165 rb_node); 1166 BUG_ON(node->detached); 1167 } 1168 } 1169 1170 if (!node) 1171 return 0; 1172 1173 new_node = alloc_backref_node(cache); 1174 if (!new_node) 1175 return -ENOMEM; 1176 1177 new_node->bytenr = dest->node->start; 1178 new_node->level = node->level; 1179 new_node->lowest = node->lowest; 1180 new_node->checked = 1; 1181 new_node->root = dest; 1182 1183 if (!node->lowest) { 1184 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1185 new_edge = alloc_backref_edge(cache); 1186 if (!new_edge) 1187 goto fail; 1188 1189 new_edge->node[UPPER] = new_node; 1190 new_edge->node[LOWER] = edge->node[LOWER]; 1191 list_add_tail(&new_edge->list[UPPER], 1192 &new_node->lower); 1193 } 1194 } else { 1195 list_add_tail(&new_node->lower, &cache->leaves); 1196 } 1197 1198 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1199 &new_node->rb_node); 1200 if (rb_node) 1201 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1202 1203 if (!new_node->lowest) { 1204 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1205 list_add_tail(&new_edge->list[LOWER], 1206 &new_edge->node[LOWER]->upper); 1207 } 1208 } 1209 return 0; 1210 fail: 1211 while (!list_empty(&new_node->lower)) { 1212 new_edge = list_entry(new_node->lower.next, 1213 struct backref_edge, list[UPPER]); 1214 list_del(&new_edge->list[UPPER]); 1215 free_backref_edge(cache, new_edge); 1216 } 1217 free_backref_node(cache, new_node); 1218 return -ENOMEM; 1219 } 1220 1221 /* 1222 * helper to add 'address of tree root -> reloc tree' mapping 1223 */ 1224 static int __must_check __add_reloc_root(struct btrfs_root *root) 1225 { 1226 struct rb_node *rb_node; 1227 struct mapping_node *node; 1228 struct reloc_control *rc = root->fs_info->reloc_ctl; 1229 1230 node = kmalloc(sizeof(*node), GFP_NOFS); 1231 if (!node) 1232 return -ENOMEM; 1233 1234 node->bytenr = root->node->start; 1235 node->data = root; 1236 1237 spin_lock(&rc->reloc_root_tree.lock); 1238 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1239 node->bytenr, &node->rb_node); 1240 spin_unlock(&rc->reloc_root_tree.lock); 1241 if (rb_node) { 1242 kfree(node); 1243 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1244 "for start=%llu while inserting into relocation " 1245 "tree\n"); 1246 } 1247 1248 list_add_tail(&root->root_list, &rc->reloc_roots); 1249 return 0; 1250 } 1251 1252 /* 1253 * helper to update/delete the 'address of tree root -> reloc tree' 1254 * mapping 1255 */ 1256 static int __update_reloc_root(struct btrfs_root *root, int del) 1257 { 1258 struct rb_node *rb_node; 1259 struct mapping_node *node = NULL; 1260 struct reloc_control *rc = root->fs_info->reloc_ctl; 1261 1262 spin_lock(&rc->reloc_root_tree.lock); 1263 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1264 root->commit_root->start); 1265 if (rb_node) { 1266 node = rb_entry(rb_node, struct mapping_node, rb_node); 1267 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1268 } 1269 spin_unlock(&rc->reloc_root_tree.lock); 1270 1271 BUG_ON((struct btrfs_root *)node->data != root); 1272 1273 if (!del) { 1274 spin_lock(&rc->reloc_root_tree.lock); 1275 node->bytenr = root->node->start; 1276 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1277 node->bytenr, &node->rb_node); 1278 spin_unlock(&rc->reloc_root_tree.lock); 1279 if (rb_node) 1280 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1281 } else { 1282 spin_lock(&root->fs_info->trans_lock); 1283 list_del_init(&root->root_list); 1284 spin_unlock(&root->fs_info->trans_lock); 1285 kfree(node); 1286 } 1287 return 0; 1288 } 1289 1290 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1291 struct btrfs_root *root, u64 objectid) 1292 { 1293 struct btrfs_root *reloc_root; 1294 struct extent_buffer *eb; 1295 struct btrfs_root_item *root_item; 1296 struct btrfs_key root_key; 1297 int ret; 1298 1299 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1300 BUG_ON(!root_item); 1301 1302 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1303 root_key.type = BTRFS_ROOT_ITEM_KEY; 1304 root_key.offset = objectid; 1305 1306 if (root->root_key.objectid == objectid) { 1307 /* called by btrfs_init_reloc_root */ 1308 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1309 BTRFS_TREE_RELOC_OBJECTID); 1310 BUG_ON(ret); 1311 1312 btrfs_set_root_last_snapshot(&root->root_item, 1313 trans->transid - 1); 1314 } else { 1315 /* 1316 * called by btrfs_reloc_post_snapshot_hook. 1317 * the source tree is a reloc tree, all tree blocks 1318 * modified after it was created have RELOC flag 1319 * set in their headers. so it's OK to not update 1320 * the 'last_snapshot'. 1321 */ 1322 ret = btrfs_copy_root(trans, root, root->node, &eb, 1323 BTRFS_TREE_RELOC_OBJECTID); 1324 BUG_ON(ret); 1325 } 1326 1327 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1328 btrfs_set_root_bytenr(root_item, eb->start); 1329 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1330 btrfs_set_root_generation(root_item, trans->transid); 1331 1332 if (root->root_key.objectid == objectid) { 1333 btrfs_set_root_refs(root_item, 0); 1334 memset(&root_item->drop_progress, 0, 1335 sizeof(struct btrfs_disk_key)); 1336 root_item->drop_level = 0; 1337 } 1338 1339 btrfs_tree_unlock(eb); 1340 free_extent_buffer(eb); 1341 1342 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1343 &root_key, root_item); 1344 BUG_ON(ret); 1345 kfree(root_item); 1346 1347 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 1348 &root_key); 1349 BUG_ON(IS_ERR(reloc_root)); 1350 reloc_root->last_trans = trans->transid; 1351 return reloc_root; 1352 } 1353 1354 /* 1355 * create reloc tree for a given fs tree. reloc tree is just a 1356 * snapshot of the fs tree with special root objectid. 1357 */ 1358 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1359 struct btrfs_root *root) 1360 { 1361 struct btrfs_root *reloc_root; 1362 struct reloc_control *rc = root->fs_info->reloc_ctl; 1363 int clear_rsv = 0; 1364 int ret; 1365 1366 if (root->reloc_root) { 1367 reloc_root = root->reloc_root; 1368 reloc_root->last_trans = trans->transid; 1369 return 0; 1370 } 1371 1372 if (!rc || !rc->create_reloc_tree || 1373 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1374 return 0; 1375 1376 if (!trans->block_rsv) { 1377 trans->block_rsv = rc->block_rsv; 1378 clear_rsv = 1; 1379 } 1380 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1381 if (clear_rsv) 1382 trans->block_rsv = NULL; 1383 1384 ret = __add_reloc_root(reloc_root); 1385 BUG_ON(ret < 0); 1386 root->reloc_root = reloc_root; 1387 return 0; 1388 } 1389 1390 /* 1391 * update root item of reloc tree 1392 */ 1393 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1394 struct btrfs_root *root) 1395 { 1396 struct btrfs_root *reloc_root; 1397 struct btrfs_root_item *root_item; 1398 int del = 0; 1399 int ret; 1400 1401 if (!root->reloc_root) 1402 goto out; 1403 1404 reloc_root = root->reloc_root; 1405 root_item = &reloc_root->root_item; 1406 1407 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1408 btrfs_root_refs(root_item) == 0) { 1409 root->reloc_root = NULL; 1410 del = 1; 1411 } 1412 1413 __update_reloc_root(reloc_root, del); 1414 1415 if (reloc_root->commit_root != reloc_root->node) { 1416 btrfs_set_root_node(root_item, reloc_root->node); 1417 free_extent_buffer(reloc_root->commit_root); 1418 reloc_root->commit_root = btrfs_root_node(reloc_root); 1419 } 1420 1421 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1422 &reloc_root->root_key, root_item); 1423 BUG_ON(ret); 1424 1425 out: 1426 return 0; 1427 } 1428 1429 /* 1430 * helper to find first cached inode with inode number >= objectid 1431 * in a subvolume 1432 */ 1433 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1434 { 1435 struct rb_node *node; 1436 struct rb_node *prev; 1437 struct btrfs_inode *entry; 1438 struct inode *inode; 1439 1440 spin_lock(&root->inode_lock); 1441 again: 1442 node = root->inode_tree.rb_node; 1443 prev = NULL; 1444 while (node) { 1445 prev = node; 1446 entry = rb_entry(node, struct btrfs_inode, rb_node); 1447 1448 if (objectid < btrfs_ino(&entry->vfs_inode)) 1449 node = node->rb_left; 1450 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1451 node = node->rb_right; 1452 else 1453 break; 1454 } 1455 if (!node) { 1456 while (prev) { 1457 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1458 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1459 node = prev; 1460 break; 1461 } 1462 prev = rb_next(prev); 1463 } 1464 } 1465 while (node) { 1466 entry = rb_entry(node, struct btrfs_inode, rb_node); 1467 inode = igrab(&entry->vfs_inode); 1468 if (inode) { 1469 spin_unlock(&root->inode_lock); 1470 return inode; 1471 } 1472 1473 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1474 if (cond_resched_lock(&root->inode_lock)) 1475 goto again; 1476 1477 node = rb_next(node); 1478 } 1479 spin_unlock(&root->inode_lock); 1480 return NULL; 1481 } 1482 1483 static int in_block_group(u64 bytenr, 1484 struct btrfs_block_group_cache *block_group) 1485 { 1486 if (bytenr >= block_group->key.objectid && 1487 bytenr < block_group->key.objectid + block_group->key.offset) 1488 return 1; 1489 return 0; 1490 } 1491 1492 /* 1493 * get new location of data 1494 */ 1495 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1496 u64 bytenr, u64 num_bytes) 1497 { 1498 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1499 struct btrfs_path *path; 1500 struct btrfs_file_extent_item *fi; 1501 struct extent_buffer *leaf; 1502 int ret; 1503 1504 path = btrfs_alloc_path(); 1505 if (!path) 1506 return -ENOMEM; 1507 1508 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1509 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1510 bytenr, 0); 1511 if (ret < 0) 1512 goto out; 1513 if (ret > 0) { 1514 ret = -ENOENT; 1515 goto out; 1516 } 1517 1518 leaf = path->nodes[0]; 1519 fi = btrfs_item_ptr(leaf, path->slots[0], 1520 struct btrfs_file_extent_item); 1521 1522 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1523 btrfs_file_extent_compression(leaf, fi) || 1524 btrfs_file_extent_encryption(leaf, fi) || 1525 btrfs_file_extent_other_encoding(leaf, fi)); 1526 1527 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1528 ret = 1; 1529 goto out; 1530 } 1531 1532 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1533 ret = 0; 1534 out: 1535 btrfs_free_path(path); 1536 return ret; 1537 } 1538 1539 /* 1540 * update file extent items in the tree leaf to point to 1541 * the new locations. 1542 */ 1543 static noinline_for_stack 1544 int replace_file_extents(struct btrfs_trans_handle *trans, 1545 struct reloc_control *rc, 1546 struct btrfs_root *root, 1547 struct extent_buffer *leaf) 1548 { 1549 struct btrfs_key key; 1550 struct btrfs_file_extent_item *fi; 1551 struct inode *inode = NULL; 1552 u64 parent; 1553 u64 bytenr; 1554 u64 new_bytenr = 0; 1555 u64 num_bytes; 1556 u64 end; 1557 u32 nritems; 1558 u32 i; 1559 int ret; 1560 int first = 1; 1561 int dirty = 0; 1562 1563 if (rc->stage != UPDATE_DATA_PTRS) 1564 return 0; 1565 1566 /* reloc trees always use full backref */ 1567 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1568 parent = leaf->start; 1569 else 1570 parent = 0; 1571 1572 nritems = btrfs_header_nritems(leaf); 1573 for (i = 0; i < nritems; i++) { 1574 cond_resched(); 1575 btrfs_item_key_to_cpu(leaf, &key, i); 1576 if (key.type != BTRFS_EXTENT_DATA_KEY) 1577 continue; 1578 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1579 if (btrfs_file_extent_type(leaf, fi) == 1580 BTRFS_FILE_EXTENT_INLINE) 1581 continue; 1582 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1583 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1584 if (bytenr == 0) 1585 continue; 1586 if (!in_block_group(bytenr, rc->block_group)) 1587 continue; 1588 1589 /* 1590 * if we are modifying block in fs tree, wait for readpage 1591 * to complete and drop the extent cache 1592 */ 1593 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1594 if (first) { 1595 inode = find_next_inode(root, key.objectid); 1596 first = 0; 1597 } else if (inode && btrfs_ino(inode) < key.objectid) { 1598 btrfs_add_delayed_iput(inode); 1599 inode = find_next_inode(root, key.objectid); 1600 } 1601 if (inode && btrfs_ino(inode) == key.objectid) { 1602 end = key.offset + 1603 btrfs_file_extent_num_bytes(leaf, fi); 1604 WARN_ON(!IS_ALIGNED(key.offset, 1605 root->sectorsize)); 1606 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1607 end--; 1608 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1609 key.offset, end); 1610 if (!ret) 1611 continue; 1612 1613 btrfs_drop_extent_cache(inode, key.offset, end, 1614 1); 1615 unlock_extent(&BTRFS_I(inode)->io_tree, 1616 key.offset, end); 1617 } 1618 } 1619 1620 ret = get_new_location(rc->data_inode, &new_bytenr, 1621 bytenr, num_bytes); 1622 if (ret > 0) { 1623 WARN_ON(1); 1624 continue; 1625 } 1626 BUG_ON(ret < 0); 1627 1628 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1629 dirty = 1; 1630 1631 key.offset -= btrfs_file_extent_offset(leaf, fi); 1632 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1633 num_bytes, parent, 1634 btrfs_header_owner(leaf), 1635 key.objectid, key.offset, 1); 1636 BUG_ON(ret); 1637 1638 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1639 parent, btrfs_header_owner(leaf), 1640 key.objectid, key.offset, 1); 1641 BUG_ON(ret); 1642 } 1643 if (dirty) 1644 btrfs_mark_buffer_dirty(leaf); 1645 if (inode) 1646 btrfs_add_delayed_iput(inode); 1647 return 0; 1648 } 1649 1650 static noinline_for_stack 1651 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1652 struct btrfs_path *path, int level) 1653 { 1654 struct btrfs_disk_key key1; 1655 struct btrfs_disk_key key2; 1656 btrfs_node_key(eb, &key1, slot); 1657 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1658 return memcmp(&key1, &key2, sizeof(key1)); 1659 } 1660 1661 /* 1662 * try to replace tree blocks in fs tree with the new blocks 1663 * in reloc tree. tree blocks haven't been modified since the 1664 * reloc tree was create can be replaced. 1665 * 1666 * if a block was replaced, level of the block + 1 is returned. 1667 * if no block got replaced, 0 is returned. if there are other 1668 * errors, a negative error number is returned. 1669 */ 1670 static noinline_for_stack 1671 int replace_path(struct btrfs_trans_handle *trans, 1672 struct btrfs_root *dest, struct btrfs_root *src, 1673 struct btrfs_path *path, struct btrfs_key *next_key, 1674 int lowest_level, int max_level) 1675 { 1676 struct extent_buffer *eb; 1677 struct extent_buffer *parent; 1678 struct btrfs_key key; 1679 u64 old_bytenr; 1680 u64 new_bytenr; 1681 u64 old_ptr_gen; 1682 u64 new_ptr_gen; 1683 u64 last_snapshot; 1684 u32 blocksize; 1685 int cow = 0; 1686 int level; 1687 int ret; 1688 int slot; 1689 1690 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1691 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1692 1693 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1694 again: 1695 slot = path->slots[lowest_level]; 1696 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1697 1698 eb = btrfs_lock_root_node(dest); 1699 btrfs_set_lock_blocking(eb); 1700 level = btrfs_header_level(eb); 1701 1702 if (level < lowest_level) { 1703 btrfs_tree_unlock(eb); 1704 free_extent_buffer(eb); 1705 return 0; 1706 } 1707 1708 if (cow) { 1709 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1710 BUG_ON(ret); 1711 } 1712 btrfs_set_lock_blocking(eb); 1713 1714 if (next_key) { 1715 next_key->objectid = (u64)-1; 1716 next_key->type = (u8)-1; 1717 next_key->offset = (u64)-1; 1718 } 1719 1720 parent = eb; 1721 while (1) { 1722 level = btrfs_header_level(parent); 1723 BUG_ON(level < lowest_level); 1724 1725 ret = btrfs_bin_search(parent, &key, level, &slot); 1726 if (ret && slot > 0) 1727 slot--; 1728 1729 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1730 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1731 1732 old_bytenr = btrfs_node_blockptr(parent, slot); 1733 blocksize = btrfs_level_size(dest, level - 1); 1734 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1735 1736 if (level <= max_level) { 1737 eb = path->nodes[level]; 1738 new_bytenr = btrfs_node_blockptr(eb, 1739 path->slots[level]); 1740 new_ptr_gen = btrfs_node_ptr_generation(eb, 1741 path->slots[level]); 1742 } else { 1743 new_bytenr = 0; 1744 new_ptr_gen = 0; 1745 } 1746 1747 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1748 WARN_ON(1); 1749 ret = level; 1750 break; 1751 } 1752 1753 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1754 memcmp_node_keys(parent, slot, path, level)) { 1755 if (level <= lowest_level) { 1756 ret = 0; 1757 break; 1758 } 1759 1760 eb = read_tree_block(dest, old_bytenr, blocksize, 1761 old_ptr_gen); 1762 BUG_ON(!eb); 1763 btrfs_tree_lock(eb); 1764 if (cow) { 1765 ret = btrfs_cow_block(trans, dest, eb, parent, 1766 slot, &eb); 1767 BUG_ON(ret); 1768 } 1769 btrfs_set_lock_blocking(eb); 1770 1771 btrfs_tree_unlock(parent); 1772 free_extent_buffer(parent); 1773 1774 parent = eb; 1775 continue; 1776 } 1777 1778 if (!cow) { 1779 btrfs_tree_unlock(parent); 1780 free_extent_buffer(parent); 1781 cow = 1; 1782 goto again; 1783 } 1784 1785 btrfs_node_key_to_cpu(path->nodes[level], &key, 1786 path->slots[level]); 1787 btrfs_release_path(path); 1788 1789 path->lowest_level = level; 1790 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1791 path->lowest_level = 0; 1792 BUG_ON(ret); 1793 1794 /* 1795 * swap blocks in fs tree and reloc tree. 1796 */ 1797 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1798 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1799 btrfs_mark_buffer_dirty(parent); 1800 1801 btrfs_set_node_blockptr(path->nodes[level], 1802 path->slots[level], old_bytenr); 1803 btrfs_set_node_ptr_generation(path->nodes[level], 1804 path->slots[level], old_ptr_gen); 1805 btrfs_mark_buffer_dirty(path->nodes[level]); 1806 1807 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1808 path->nodes[level]->start, 1809 src->root_key.objectid, level - 1, 0, 1810 1); 1811 BUG_ON(ret); 1812 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1813 0, dest->root_key.objectid, level - 1, 1814 0, 1); 1815 BUG_ON(ret); 1816 1817 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1818 path->nodes[level]->start, 1819 src->root_key.objectid, level - 1, 0, 1820 1); 1821 BUG_ON(ret); 1822 1823 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1824 0, dest->root_key.objectid, level - 1, 1825 0, 1); 1826 BUG_ON(ret); 1827 1828 btrfs_unlock_up_safe(path, 0); 1829 1830 ret = level; 1831 break; 1832 } 1833 btrfs_tree_unlock(parent); 1834 free_extent_buffer(parent); 1835 return ret; 1836 } 1837 1838 /* 1839 * helper to find next relocated block in reloc tree 1840 */ 1841 static noinline_for_stack 1842 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1843 int *level) 1844 { 1845 struct extent_buffer *eb; 1846 int i; 1847 u64 last_snapshot; 1848 u32 nritems; 1849 1850 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1851 1852 for (i = 0; i < *level; i++) { 1853 free_extent_buffer(path->nodes[i]); 1854 path->nodes[i] = NULL; 1855 } 1856 1857 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1858 eb = path->nodes[i]; 1859 nritems = btrfs_header_nritems(eb); 1860 while (path->slots[i] + 1 < nritems) { 1861 path->slots[i]++; 1862 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1863 last_snapshot) 1864 continue; 1865 1866 *level = i; 1867 return 0; 1868 } 1869 free_extent_buffer(path->nodes[i]); 1870 path->nodes[i] = NULL; 1871 } 1872 return 1; 1873 } 1874 1875 /* 1876 * walk down reloc tree to find relocated block of lowest level 1877 */ 1878 static noinline_for_stack 1879 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1880 int *level) 1881 { 1882 struct extent_buffer *eb = NULL; 1883 int i; 1884 u64 bytenr; 1885 u64 ptr_gen = 0; 1886 u64 last_snapshot; 1887 u32 blocksize; 1888 u32 nritems; 1889 1890 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1891 1892 for (i = *level; i > 0; i--) { 1893 eb = path->nodes[i]; 1894 nritems = btrfs_header_nritems(eb); 1895 while (path->slots[i] < nritems) { 1896 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1897 if (ptr_gen > last_snapshot) 1898 break; 1899 path->slots[i]++; 1900 } 1901 if (path->slots[i] >= nritems) { 1902 if (i == *level) 1903 break; 1904 *level = i + 1; 1905 return 0; 1906 } 1907 if (i == 1) { 1908 *level = i; 1909 return 0; 1910 } 1911 1912 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1913 blocksize = btrfs_level_size(root, i - 1); 1914 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1915 BUG_ON(btrfs_header_level(eb) != i - 1); 1916 path->nodes[i - 1] = eb; 1917 path->slots[i - 1] = 0; 1918 } 1919 return 1; 1920 } 1921 1922 /* 1923 * invalidate extent cache for file extents whose key in range of 1924 * [min_key, max_key) 1925 */ 1926 static int invalidate_extent_cache(struct btrfs_root *root, 1927 struct btrfs_key *min_key, 1928 struct btrfs_key *max_key) 1929 { 1930 struct inode *inode = NULL; 1931 u64 objectid; 1932 u64 start, end; 1933 u64 ino; 1934 1935 objectid = min_key->objectid; 1936 while (1) { 1937 cond_resched(); 1938 iput(inode); 1939 1940 if (objectid > max_key->objectid) 1941 break; 1942 1943 inode = find_next_inode(root, objectid); 1944 if (!inode) 1945 break; 1946 ino = btrfs_ino(inode); 1947 1948 if (ino > max_key->objectid) { 1949 iput(inode); 1950 break; 1951 } 1952 1953 objectid = ino + 1; 1954 if (!S_ISREG(inode->i_mode)) 1955 continue; 1956 1957 if (unlikely(min_key->objectid == ino)) { 1958 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1959 continue; 1960 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1961 start = 0; 1962 else { 1963 start = min_key->offset; 1964 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1965 } 1966 } else { 1967 start = 0; 1968 } 1969 1970 if (unlikely(max_key->objectid == ino)) { 1971 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1972 continue; 1973 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1974 end = (u64)-1; 1975 } else { 1976 if (max_key->offset == 0) 1977 continue; 1978 end = max_key->offset; 1979 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1980 end--; 1981 } 1982 } else { 1983 end = (u64)-1; 1984 } 1985 1986 /* the lock_extent waits for readpage to complete */ 1987 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1988 btrfs_drop_extent_cache(inode, start, end, 1); 1989 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1990 } 1991 return 0; 1992 } 1993 1994 static int find_next_key(struct btrfs_path *path, int level, 1995 struct btrfs_key *key) 1996 1997 { 1998 while (level < BTRFS_MAX_LEVEL) { 1999 if (!path->nodes[level]) 2000 break; 2001 if (path->slots[level] + 1 < 2002 btrfs_header_nritems(path->nodes[level])) { 2003 btrfs_node_key_to_cpu(path->nodes[level], key, 2004 path->slots[level] + 1); 2005 return 0; 2006 } 2007 level++; 2008 } 2009 return 1; 2010 } 2011 2012 /* 2013 * merge the relocated tree blocks in reloc tree with corresponding 2014 * fs tree. 2015 */ 2016 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2017 struct btrfs_root *root) 2018 { 2019 LIST_HEAD(inode_list); 2020 struct btrfs_key key; 2021 struct btrfs_key next_key; 2022 struct btrfs_trans_handle *trans; 2023 struct btrfs_root *reloc_root; 2024 struct btrfs_root_item *root_item; 2025 struct btrfs_path *path; 2026 struct extent_buffer *leaf; 2027 unsigned long nr; 2028 int level; 2029 int max_level; 2030 int replaced = 0; 2031 int ret; 2032 int err = 0; 2033 u32 min_reserved; 2034 2035 path = btrfs_alloc_path(); 2036 if (!path) 2037 return -ENOMEM; 2038 path->reada = 1; 2039 2040 reloc_root = root->reloc_root; 2041 root_item = &reloc_root->root_item; 2042 2043 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2044 level = btrfs_root_level(root_item); 2045 extent_buffer_get(reloc_root->node); 2046 path->nodes[level] = reloc_root->node; 2047 path->slots[level] = 0; 2048 } else { 2049 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2050 2051 level = root_item->drop_level; 2052 BUG_ON(level == 0); 2053 path->lowest_level = level; 2054 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2055 path->lowest_level = 0; 2056 if (ret < 0) { 2057 btrfs_free_path(path); 2058 return ret; 2059 } 2060 2061 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2062 path->slots[level]); 2063 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2064 2065 btrfs_unlock_up_safe(path, 0); 2066 } 2067 2068 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2069 memset(&next_key, 0, sizeof(next_key)); 2070 2071 while (1) { 2072 trans = btrfs_start_transaction(root, 0); 2073 BUG_ON(IS_ERR(trans)); 2074 trans->block_rsv = rc->block_rsv; 2075 2076 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved); 2077 if (ret) { 2078 BUG_ON(ret != -EAGAIN); 2079 ret = btrfs_commit_transaction(trans, root); 2080 BUG_ON(ret); 2081 continue; 2082 } 2083 2084 replaced = 0; 2085 max_level = level; 2086 2087 ret = walk_down_reloc_tree(reloc_root, path, &level); 2088 if (ret < 0) { 2089 err = ret; 2090 goto out; 2091 } 2092 if (ret > 0) 2093 break; 2094 2095 if (!find_next_key(path, level, &key) && 2096 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2097 ret = 0; 2098 } else { 2099 ret = replace_path(trans, root, reloc_root, path, 2100 &next_key, level, max_level); 2101 } 2102 if (ret < 0) { 2103 err = ret; 2104 goto out; 2105 } 2106 2107 if (ret > 0) { 2108 level = ret; 2109 btrfs_node_key_to_cpu(path->nodes[level], &key, 2110 path->slots[level]); 2111 replaced = 1; 2112 } 2113 2114 ret = walk_up_reloc_tree(reloc_root, path, &level); 2115 if (ret > 0) 2116 break; 2117 2118 BUG_ON(level == 0); 2119 /* 2120 * save the merging progress in the drop_progress. 2121 * this is OK since root refs == 1 in this case. 2122 */ 2123 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2124 path->slots[level]); 2125 root_item->drop_level = level; 2126 2127 nr = trans->blocks_used; 2128 btrfs_end_transaction_throttle(trans, root); 2129 2130 btrfs_btree_balance_dirty(root, nr); 2131 2132 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2133 invalidate_extent_cache(root, &key, &next_key); 2134 } 2135 2136 /* 2137 * handle the case only one block in the fs tree need to be 2138 * relocated and the block is tree root. 2139 */ 2140 leaf = btrfs_lock_root_node(root); 2141 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2142 btrfs_tree_unlock(leaf); 2143 free_extent_buffer(leaf); 2144 if (ret < 0) 2145 err = ret; 2146 out: 2147 btrfs_free_path(path); 2148 2149 if (err == 0) { 2150 memset(&root_item->drop_progress, 0, 2151 sizeof(root_item->drop_progress)); 2152 root_item->drop_level = 0; 2153 btrfs_set_root_refs(root_item, 0); 2154 btrfs_update_reloc_root(trans, root); 2155 } 2156 2157 nr = trans->blocks_used; 2158 btrfs_end_transaction_throttle(trans, root); 2159 2160 btrfs_btree_balance_dirty(root, nr); 2161 2162 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2163 invalidate_extent_cache(root, &key, &next_key); 2164 2165 return err; 2166 } 2167 2168 static noinline_for_stack 2169 int prepare_to_merge(struct reloc_control *rc, int err) 2170 { 2171 struct btrfs_root *root = rc->extent_root; 2172 struct btrfs_root *reloc_root; 2173 struct btrfs_trans_handle *trans; 2174 LIST_HEAD(reloc_roots); 2175 u64 num_bytes = 0; 2176 int ret; 2177 2178 mutex_lock(&root->fs_info->reloc_mutex); 2179 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2180 rc->merging_rsv_size += rc->nodes_relocated * 2; 2181 mutex_unlock(&root->fs_info->reloc_mutex); 2182 2183 again: 2184 if (!err) { 2185 num_bytes = rc->merging_rsv_size; 2186 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2187 if (ret) 2188 err = ret; 2189 } 2190 2191 trans = btrfs_join_transaction(rc->extent_root); 2192 if (IS_ERR(trans)) { 2193 if (!err) 2194 btrfs_block_rsv_release(rc->extent_root, 2195 rc->block_rsv, num_bytes); 2196 return PTR_ERR(trans); 2197 } 2198 2199 if (!err) { 2200 if (num_bytes != rc->merging_rsv_size) { 2201 btrfs_end_transaction(trans, rc->extent_root); 2202 btrfs_block_rsv_release(rc->extent_root, 2203 rc->block_rsv, num_bytes); 2204 goto again; 2205 } 2206 } 2207 2208 rc->merge_reloc_tree = 1; 2209 2210 while (!list_empty(&rc->reloc_roots)) { 2211 reloc_root = list_entry(rc->reloc_roots.next, 2212 struct btrfs_root, root_list); 2213 list_del_init(&reloc_root->root_list); 2214 2215 root = read_fs_root(reloc_root->fs_info, 2216 reloc_root->root_key.offset); 2217 BUG_ON(IS_ERR(root)); 2218 BUG_ON(root->reloc_root != reloc_root); 2219 2220 /* 2221 * set reference count to 1, so btrfs_recover_relocation 2222 * knows it should resumes merging 2223 */ 2224 if (!err) 2225 btrfs_set_root_refs(&reloc_root->root_item, 1); 2226 btrfs_update_reloc_root(trans, root); 2227 2228 list_add(&reloc_root->root_list, &reloc_roots); 2229 } 2230 2231 list_splice(&reloc_roots, &rc->reloc_roots); 2232 2233 if (!err) 2234 btrfs_commit_transaction(trans, rc->extent_root); 2235 else 2236 btrfs_end_transaction(trans, rc->extent_root); 2237 return err; 2238 } 2239 2240 static noinline_for_stack 2241 int merge_reloc_roots(struct reloc_control *rc) 2242 { 2243 struct btrfs_root *root; 2244 struct btrfs_root *reloc_root; 2245 LIST_HEAD(reloc_roots); 2246 int found = 0; 2247 int ret; 2248 again: 2249 root = rc->extent_root; 2250 2251 /* 2252 * this serializes us with btrfs_record_root_in_transaction, 2253 * we have to make sure nobody is in the middle of 2254 * adding their roots to the list while we are 2255 * doing this splice 2256 */ 2257 mutex_lock(&root->fs_info->reloc_mutex); 2258 list_splice_init(&rc->reloc_roots, &reloc_roots); 2259 mutex_unlock(&root->fs_info->reloc_mutex); 2260 2261 while (!list_empty(&reloc_roots)) { 2262 found = 1; 2263 reloc_root = list_entry(reloc_roots.next, 2264 struct btrfs_root, root_list); 2265 2266 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2267 root = read_fs_root(reloc_root->fs_info, 2268 reloc_root->root_key.offset); 2269 BUG_ON(IS_ERR(root)); 2270 BUG_ON(root->reloc_root != reloc_root); 2271 2272 ret = merge_reloc_root(rc, root); 2273 BUG_ON(ret); 2274 } else { 2275 list_del_init(&reloc_root->root_list); 2276 } 2277 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2278 BUG_ON(ret < 0); 2279 } 2280 2281 if (found) { 2282 found = 0; 2283 goto again; 2284 } 2285 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2286 return 0; 2287 } 2288 2289 static void free_block_list(struct rb_root *blocks) 2290 { 2291 struct tree_block *block; 2292 struct rb_node *rb_node; 2293 while ((rb_node = rb_first(blocks))) { 2294 block = rb_entry(rb_node, struct tree_block, rb_node); 2295 rb_erase(rb_node, blocks); 2296 kfree(block); 2297 } 2298 } 2299 2300 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2301 struct btrfs_root *reloc_root) 2302 { 2303 struct btrfs_root *root; 2304 2305 if (reloc_root->last_trans == trans->transid) 2306 return 0; 2307 2308 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2309 BUG_ON(IS_ERR(root)); 2310 BUG_ON(root->reloc_root != reloc_root); 2311 2312 return btrfs_record_root_in_trans(trans, root); 2313 } 2314 2315 static noinline_for_stack 2316 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2317 struct reloc_control *rc, 2318 struct backref_node *node, 2319 struct backref_edge *edges[], int *nr) 2320 { 2321 struct backref_node *next; 2322 struct btrfs_root *root; 2323 int index = 0; 2324 2325 next = node; 2326 while (1) { 2327 cond_resched(); 2328 next = walk_up_backref(next, edges, &index); 2329 root = next->root; 2330 BUG_ON(!root); 2331 BUG_ON(!root->ref_cows); 2332 2333 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2334 record_reloc_root_in_trans(trans, root); 2335 break; 2336 } 2337 2338 btrfs_record_root_in_trans(trans, root); 2339 root = root->reloc_root; 2340 2341 if (next->new_bytenr != root->node->start) { 2342 BUG_ON(next->new_bytenr); 2343 BUG_ON(!list_empty(&next->list)); 2344 next->new_bytenr = root->node->start; 2345 next->root = root; 2346 list_add_tail(&next->list, 2347 &rc->backref_cache.changed); 2348 __mark_block_processed(rc, next); 2349 break; 2350 } 2351 2352 WARN_ON(1); 2353 root = NULL; 2354 next = walk_down_backref(edges, &index); 2355 if (!next || next->level <= node->level) 2356 break; 2357 } 2358 if (!root) 2359 return NULL; 2360 2361 *nr = index; 2362 next = node; 2363 /* setup backref node path for btrfs_reloc_cow_block */ 2364 while (1) { 2365 rc->backref_cache.path[next->level] = next; 2366 if (--index < 0) 2367 break; 2368 next = edges[index]->node[UPPER]; 2369 } 2370 return root; 2371 } 2372 2373 /* 2374 * select a tree root for relocation. return NULL if the block 2375 * is reference counted. we should use do_relocation() in this 2376 * case. return a tree root pointer if the block isn't reference 2377 * counted. return -ENOENT if the block is root of reloc tree. 2378 */ 2379 static noinline_for_stack 2380 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2381 struct backref_node *node) 2382 { 2383 struct backref_node *next; 2384 struct btrfs_root *root; 2385 struct btrfs_root *fs_root = NULL; 2386 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2387 int index = 0; 2388 2389 next = node; 2390 while (1) { 2391 cond_resched(); 2392 next = walk_up_backref(next, edges, &index); 2393 root = next->root; 2394 BUG_ON(!root); 2395 2396 /* no other choice for non-references counted tree */ 2397 if (!root->ref_cows) 2398 return root; 2399 2400 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2401 fs_root = root; 2402 2403 if (next != node) 2404 return NULL; 2405 2406 next = walk_down_backref(edges, &index); 2407 if (!next || next->level <= node->level) 2408 break; 2409 } 2410 2411 if (!fs_root) 2412 return ERR_PTR(-ENOENT); 2413 return fs_root; 2414 } 2415 2416 static noinline_for_stack 2417 u64 calcu_metadata_size(struct reloc_control *rc, 2418 struct backref_node *node, int reserve) 2419 { 2420 struct backref_node *next = node; 2421 struct backref_edge *edge; 2422 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2423 u64 num_bytes = 0; 2424 int index = 0; 2425 2426 BUG_ON(reserve && node->processed); 2427 2428 while (next) { 2429 cond_resched(); 2430 while (1) { 2431 if (next->processed && (reserve || next != node)) 2432 break; 2433 2434 num_bytes += btrfs_level_size(rc->extent_root, 2435 next->level); 2436 2437 if (list_empty(&next->upper)) 2438 break; 2439 2440 edge = list_entry(next->upper.next, 2441 struct backref_edge, list[LOWER]); 2442 edges[index++] = edge; 2443 next = edge->node[UPPER]; 2444 } 2445 next = walk_down_backref(edges, &index); 2446 } 2447 return num_bytes; 2448 } 2449 2450 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2451 struct reloc_control *rc, 2452 struct backref_node *node) 2453 { 2454 struct btrfs_root *root = rc->extent_root; 2455 u64 num_bytes; 2456 int ret; 2457 2458 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2459 2460 trans->block_rsv = rc->block_rsv; 2461 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2462 if (ret) { 2463 if (ret == -EAGAIN) 2464 rc->commit_transaction = 1; 2465 return ret; 2466 } 2467 2468 return 0; 2469 } 2470 2471 static void release_metadata_space(struct reloc_control *rc, 2472 struct backref_node *node) 2473 { 2474 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2475 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2476 } 2477 2478 /* 2479 * relocate a block tree, and then update pointers in upper level 2480 * blocks that reference the block to point to the new location. 2481 * 2482 * if called by link_to_upper, the block has already been relocated. 2483 * in that case this function just updates pointers. 2484 */ 2485 static int do_relocation(struct btrfs_trans_handle *trans, 2486 struct reloc_control *rc, 2487 struct backref_node *node, 2488 struct btrfs_key *key, 2489 struct btrfs_path *path, int lowest) 2490 { 2491 struct backref_node *upper; 2492 struct backref_edge *edge; 2493 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2494 struct btrfs_root *root; 2495 struct extent_buffer *eb; 2496 u32 blocksize; 2497 u64 bytenr; 2498 u64 generation; 2499 int nr; 2500 int slot; 2501 int ret; 2502 int err = 0; 2503 2504 BUG_ON(lowest && node->eb); 2505 2506 path->lowest_level = node->level + 1; 2507 rc->backref_cache.path[node->level] = node; 2508 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2509 cond_resched(); 2510 2511 upper = edge->node[UPPER]; 2512 root = select_reloc_root(trans, rc, upper, edges, &nr); 2513 BUG_ON(!root); 2514 2515 if (upper->eb && !upper->locked) { 2516 if (!lowest) { 2517 ret = btrfs_bin_search(upper->eb, key, 2518 upper->level, &slot); 2519 BUG_ON(ret); 2520 bytenr = btrfs_node_blockptr(upper->eb, slot); 2521 if (node->eb->start == bytenr) 2522 goto next; 2523 } 2524 drop_node_buffer(upper); 2525 } 2526 2527 if (!upper->eb) { 2528 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2529 if (ret < 0) { 2530 err = ret; 2531 break; 2532 } 2533 BUG_ON(ret > 0); 2534 2535 if (!upper->eb) { 2536 upper->eb = path->nodes[upper->level]; 2537 path->nodes[upper->level] = NULL; 2538 } else { 2539 BUG_ON(upper->eb != path->nodes[upper->level]); 2540 } 2541 2542 upper->locked = 1; 2543 path->locks[upper->level] = 0; 2544 2545 slot = path->slots[upper->level]; 2546 btrfs_release_path(path); 2547 } else { 2548 ret = btrfs_bin_search(upper->eb, key, upper->level, 2549 &slot); 2550 BUG_ON(ret); 2551 } 2552 2553 bytenr = btrfs_node_blockptr(upper->eb, slot); 2554 if (lowest) { 2555 BUG_ON(bytenr != node->bytenr); 2556 } else { 2557 if (node->eb->start == bytenr) 2558 goto next; 2559 } 2560 2561 blocksize = btrfs_level_size(root, node->level); 2562 generation = btrfs_node_ptr_generation(upper->eb, slot); 2563 eb = read_tree_block(root, bytenr, blocksize, generation); 2564 if (!eb) { 2565 err = -EIO; 2566 goto next; 2567 } 2568 btrfs_tree_lock(eb); 2569 btrfs_set_lock_blocking(eb); 2570 2571 if (!node->eb) { 2572 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2573 slot, &eb); 2574 btrfs_tree_unlock(eb); 2575 free_extent_buffer(eb); 2576 if (ret < 0) { 2577 err = ret; 2578 goto next; 2579 } 2580 BUG_ON(node->eb != eb); 2581 } else { 2582 btrfs_set_node_blockptr(upper->eb, slot, 2583 node->eb->start); 2584 btrfs_set_node_ptr_generation(upper->eb, slot, 2585 trans->transid); 2586 btrfs_mark_buffer_dirty(upper->eb); 2587 2588 ret = btrfs_inc_extent_ref(trans, root, 2589 node->eb->start, blocksize, 2590 upper->eb->start, 2591 btrfs_header_owner(upper->eb), 2592 node->level, 0, 1); 2593 BUG_ON(ret); 2594 2595 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2596 BUG_ON(ret); 2597 } 2598 next: 2599 if (!upper->pending) 2600 drop_node_buffer(upper); 2601 else 2602 unlock_node_buffer(upper); 2603 if (err) 2604 break; 2605 } 2606 2607 if (!err && node->pending) { 2608 drop_node_buffer(node); 2609 list_move_tail(&node->list, &rc->backref_cache.changed); 2610 node->pending = 0; 2611 } 2612 2613 path->lowest_level = 0; 2614 BUG_ON(err == -ENOSPC); 2615 return err; 2616 } 2617 2618 static int link_to_upper(struct btrfs_trans_handle *trans, 2619 struct reloc_control *rc, 2620 struct backref_node *node, 2621 struct btrfs_path *path) 2622 { 2623 struct btrfs_key key; 2624 2625 btrfs_node_key_to_cpu(node->eb, &key, 0); 2626 return do_relocation(trans, rc, node, &key, path, 0); 2627 } 2628 2629 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2630 struct reloc_control *rc, 2631 struct btrfs_path *path, int err) 2632 { 2633 LIST_HEAD(list); 2634 struct backref_cache *cache = &rc->backref_cache; 2635 struct backref_node *node; 2636 int level; 2637 int ret; 2638 2639 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2640 while (!list_empty(&cache->pending[level])) { 2641 node = list_entry(cache->pending[level].next, 2642 struct backref_node, list); 2643 list_move_tail(&node->list, &list); 2644 BUG_ON(!node->pending); 2645 2646 if (!err) { 2647 ret = link_to_upper(trans, rc, node, path); 2648 if (ret < 0) 2649 err = ret; 2650 } 2651 } 2652 list_splice_init(&list, &cache->pending[level]); 2653 } 2654 return err; 2655 } 2656 2657 static void mark_block_processed(struct reloc_control *rc, 2658 u64 bytenr, u32 blocksize) 2659 { 2660 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2661 EXTENT_DIRTY, GFP_NOFS); 2662 } 2663 2664 static void __mark_block_processed(struct reloc_control *rc, 2665 struct backref_node *node) 2666 { 2667 u32 blocksize; 2668 if (node->level == 0 || 2669 in_block_group(node->bytenr, rc->block_group)) { 2670 blocksize = btrfs_level_size(rc->extent_root, node->level); 2671 mark_block_processed(rc, node->bytenr, blocksize); 2672 } 2673 node->processed = 1; 2674 } 2675 2676 /* 2677 * mark a block and all blocks directly/indirectly reference the block 2678 * as processed. 2679 */ 2680 static void update_processed_blocks(struct reloc_control *rc, 2681 struct backref_node *node) 2682 { 2683 struct backref_node *next = node; 2684 struct backref_edge *edge; 2685 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2686 int index = 0; 2687 2688 while (next) { 2689 cond_resched(); 2690 while (1) { 2691 if (next->processed) 2692 break; 2693 2694 __mark_block_processed(rc, next); 2695 2696 if (list_empty(&next->upper)) 2697 break; 2698 2699 edge = list_entry(next->upper.next, 2700 struct backref_edge, list[LOWER]); 2701 edges[index++] = edge; 2702 next = edge->node[UPPER]; 2703 } 2704 next = walk_down_backref(edges, &index); 2705 } 2706 } 2707 2708 static int tree_block_processed(u64 bytenr, u32 blocksize, 2709 struct reloc_control *rc) 2710 { 2711 if (test_range_bit(&rc->processed_blocks, bytenr, 2712 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2713 return 1; 2714 return 0; 2715 } 2716 2717 static int get_tree_block_key(struct reloc_control *rc, 2718 struct tree_block *block) 2719 { 2720 struct extent_buffer *eb; 2721 2722 BUG_ON(block->key_ready); 2723 eb = read_tree_block(rc->extent_root, block->bytenr, 2724 block->key.objectid, block->key.offset); 2725 BUG_ON(!eb); 2726 WARN_ON(btrfs_header_level(eb) != block->level); 2727 if (block->level == 0) 2728 btrfs_item_key_to_cpu(eb, &block->key, 0); 2729 else 2730 btrfs_node_key_to_cpu(eb, &block->key, 0); 2731 free_extent_buffer(eb); 2732 block->key_ready = 1; 2733 return 0; 2734 } 2735 2736 static int reada_tree_block(struct reloc_control *rc, 2737 struct tree_block *block) 2738 { 2739 BUG_ON(block->key_ready); 2740 readahead_tree_block(rc->extent_root, block->bytenr, 2741 block->key.objectid, block->key.offset); 2742 return 0; 2743 } 2744 2745 /* 2746 * helper function to relocate a tree block 2747 */ 2748 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2749 struct reloc_control *rc, 2750 struct backref_node *node, 2751 struct btrfs_key *key, 2752 struct btrfs_path *path) 2753 { 2754 struct btrfs_root *root; 2755 int release = 0; 2756 int ret = 0; 2757 2758 if (!node) 2759 return 0; 2760 2761 BUG_ON(node->processed); 2762 root = select_one_root(trans, node); 2763 if (root == ERR_PTR(-ENOENT)) { 2764 update_processed_blocks(rc, node); 2765 goto out; 2766 } 2767 2768 if (!root || root->ref_cows) { 2769 ret = reserve_metadata_space(trans, rc, node); 2770 if (ret) 2771 goto out; 2772 release = 1; 2773 } 2774 2775 if (root) { 2776 if (root->ref_cows) { 2777 BUG_ON(node->new_bytenr); 2778 BUG_ON(!list_empty(&node->list)); 2779 btrfs_record_root_in_trans(trans, root); 2780 root = root->reloc_root; 2781 node->new_bytenr = root->node->start; 2782 node->root = root; 2783 list_add_tail(&node->list, &rc->backref_cache.changed); 2784 } else { 2785 path->lowest_level = node->level; 2786 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2787 btrfs_release_path(path); 2788 if (ret > 0) 2789 ret = 0; 2790 } 2791 if (!ret) 2792 update_processed_blocks(rc, node); 2793 } else { 2794 ret = do_relocation(trans, rc, node, key, path, 1); 2795 } 2796 out: 2797 if (ret || node->level == 0 || node->cowonly) { 2798 if (release) 2799 release_metadata_space(rc, node); 2800 remove_backref_node(&rc->backref_cache, node); 2801 } 2802 return ret; 2803 } 2804 2805 /* 2806 * relocate a list of blocks 2807 */ 2808 static noinline_for_stack 2809 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2810 struct reloc_control *rc, struct rb_root *blocks) 2811 { 2812 struct backref_node *node; 2813 struct btrfs_path *path; 2814 struct tree_block *block; 2815 struct rb_node *rb_node; 2816 int ret; 2817 int err = 0; 2818 2819 path = btrfs_alloc_path(); 2820 if (!path) 2821 return -ENOMEM; 2822 2823 rb_node = rb_first(blocks); 2824 while (rb_node) { 2825 block = rb_entry(rb_node, struct tree_block, rb_node); 2826 if (!block->key_ready) 2827 reada_tree_block(rc, block); 2828 rb_node = rb_next(rb_node); 2829 } 2830 2831 rb_node = rb_first(blocks); 2832 while (rb_node) { 2833 block = rb_entry(rb_node, struct tree_block, rb_node); 2834 if (!block->key_ready) 2835 get_tree_block_key(rc, block); 2836 rb_node = rb_next(rb_node); 2837 } 2838 2839 rb_node = rb_first(blocks); 2840 while (rb_node) { 2841 block = rb_entry(rb_node, struct tree_block, rb_node); 2842 2843 node = build_backref_tree(rc, &block->key, 2844 block->level, block->bytenr); 2845 if (IS_ERR(node)) { 2846 err = PTR_ERR(node); 2847 goto out; 2848 } 2849 2850 ret = relocate_tree_block(trans, rc, node, &block->key, 2851 path); 2852 if (ret < 0) { 2853 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2854 err = ret; 2855 goto out; 2856 } 2857 rb_node = rb_next(rb_node); 2858 } 2859 out: 2860 free_block_list(blocks); 2861 err = finish_pending_nodes(trans, rc, path, err); 2862 2863 btrfs_free_path(path); 2864 return err; 2865 } 2866 2867 static noinline_for_stack 2868 int prealloc_file_extent_cluster(struct inode *inode, 2869 struct file_extent_cluster *cluster) 2870 { 2871 u64 alloc_hint = 0; 2872 u64 start; 2873 u64 end; 2874 u64 offset = BTRFS_I(inode)->index_cnt; 2875 u64 num_bytes; 2876 int nr = 0; 2877 int ret = 0; 2878 2879 BUG_ON(cluster->start != cluster->boundary[0]); 2880 mutex_lock(&inode->i_mutex); 2881 2882 ret = btrfs_check_data_free_space(inode, cluster->end + 2883 1 - cluster->start); 2884 if (ret) 2885 goto out; 2886 2887 while (nr < cluster->nr) { 2888 start = cluster->boundary[nr] - offset; 2889 if (nr + 1 < cluster->nr) 2890 end = cluster->boundary[nr + 1] - 1 - offset; 2891 else 2892 end = cluster->end - offset; 2893 2894 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2895 num_bytes = end + 1 - start; 2896 ret = btrfs_prealloc_file_range(inode, 0, start, 2897 num_bytes, num_bytes, 2898 end + 1, &alloc_hint); 2899 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2900 if (ret) 2901 break; 2902 nr++; 2903 } 2904 btrfs_free_reserved_data_space(inode, cluster->end + 2905 1 - cluster->start); 2906 out: 2907 mutex_unlock(&inode->i_mutex); 2908 return ret; 2909 } 2910 2911 static noinline_for_stack 2912 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2913 u64 block_start) 2914 { 2915 struct btrfs_root *root = BTRFS_I(inode)->root; 2916 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2917 struct extent_map *em; 2918 int ret = 0; 2919 2920 em = alloc_extent_map(); 2921 if (!em) 2922 return -ENOMEM; 2923 2924 em->start = start; 2925 em->len = end + 1 - start; 2926 em->block_len = em->len; 2927 em->block_start = block_start; 2928 em->bdev = root->fs_info->fs_devices->latest_bdev; 2929 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2930 2931 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2932 while (1) { 2933 write_lock(&em_tree->lock); 2934 ret = add_extent_mapping(em_tree, em); 2935 write_unlock(&em_tree->lock); 2936 if (ret != -EEXIST) { 2937 free_extent_map(em); 2938 break; 2939 } 2940 btrfs_drop_extent_cache(inode, start, end, 0); 2941 } 2942 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2943 return ret; 2944 } 2945 2946 static int relocate_file_extent_cluster(struct inode *inode, 2947 struct file_extent_cluster *cluster) 2948 { 2949 u64 page_start; 2950 u64 page_end; 2951 u64 offset = BTRFS_I(inode)->index_cnt; 2952 unsigned long index; 2953 unsigned long last_index; 2954 struct page *page; 2955 struct file_ra_state *ra; 2956 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2957 int nr = 0; 2958 int ret = 0; 2959 2960 if (!cluster->nr) 2961 return 0; 2962 2963 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2964 if (!ra) 2965 return -ENOMEM; 2966 2967 ret = prealloc_file_extent_cluster(inode, cluster); 2968 if (ret) 2969 goto out; 2970 2971 file_ra_state_init(ra, inode->i_mapping); 2972 2973 ret = setup_extent_mapping(inode, cluster->start - offset, 2974 cluster->end - offset, cluster->start); 2975 if (ret) 2976 goto out; 2977 2978 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 2979 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 2980 while (index <= last_index) { 2981 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 2982 if (ret) 2983 goto out; 2984 2985 page = find_lock_page(inode->i_mapping, index); 2986 if (!page) { 2987 page_cache_sync_readahead(inode->i_mapping, 2988 ra, NULL, index, 2989 last_index + 1 - index); 2990 page = find_or_create_page(inode->i_mapping, index, 2991 mask); 2992 if (!page) { 2993 btrfs_delalloc_release_metadata(inode, 2994 PAGE_CACHE_SIZE); 2995 ret = -ENOMEM; 2996 goto out; 2997 } 2998 } 2999 3000 if (PageReadahead(page)) { 3001 page_cache_async_readahead(inode->i_mapping, 3002 ra, NULL, page, index, 3003 last_index + 1 - index); 3004 } 3005 3006 if (!PageUptodate(page)) { 3007 btrfs_readpage(NULL, page); 3008 lock_page(page); 3009 if (!PageUptodate(page)) { 3010 unlock_page(page); 3011 page_cache_release(page); 3012 btrfs_delalloc_release_metadata(inode, 3013 PAGE_CACHE_SIZE); 3014 ret = -EIO; 3015 goto out; 3016 } 3017 } 3018 3019 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 3020 page_end = page_start + PAGE_CACHE_SIZE - 1; 3021 3022 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3023 3024 set_page_extent_mapped(page); 3025 3026 if (nr < cluster->nr && 3027 page_start + offset == cluster->boundary[nr]) { 3028 set_extent_bits(&BTRFS_I(inode)->io_tree, 3029 page_start, page_end, 3030 EXTENT_BOUNDARY, GFP_NOFS); 3031 nr++; 3032 } 3033 3034 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3035 set_page_dirty(page); 3036 3037 unlock_extent(&BTRFS_I(inode)->io_tree, 3038 page_start, page_end); 3039 unlock_page(page); 3040 page_cache_release(page); 3041 3042 index++; 3043 balance_dirty_pages_ratelimited(inode->i_mapping); 3044 btrfs_throttle(BTRFS_I(inode)->root); 3045 } 3046 WARN_ON(nr != cluster->nr); 3047 out: 3048 kfree(ra); 3049 return ret; 3050 } 3051 3052 static noinline_for_stack 3053 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3054 struct file_extent_cluster *cluster) 3055 { 3056 int ret; 3057 3058 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3059 ret = relocate_file_extent_cluster(inode, cluster); 3060 if (ret) 3061 return ret; 3062 cluster->nr = 0; 3063 } 3064 3065 if (!cluster->nr) 3066 cluster->start = extent_key->objectid; 3067 else 3068 BUG_ON(cluster->nr >= MAX_EXTENTS); 3069 cluster->end = extent_key->objectid + extent_key->offset - 1; 3070 cluster->boundary[cluster->nr] = extent_key->objectid; 3071 cluster->nr++; 3072 3073 if (cluster->nr >= MAX_EXTENTS) { 3074 ret = relocate_file_extent_cluster(inode, cluster); 3075 if (ret) 3076 return ret; 3077 cluster->nr = 0; 3078 } 3079 return 0; 3080 } 3081 3082 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3083 static int get_ref_objectid_v0(struct reloc_control *rc, 3084 struct btrfs_path *path, 3085 struct btrfs_key *extent_key, 3086 u64 *ref_objectid, int *path_change) 3087 { 3088 struct btrfs_key key; 3089 struct extent_buffer *leaf; 3090 struct btrfs_extent_ref_v0 *ref0; 3091 int ret; 3092 int slot; 3093 3094 leaf = path->nodes[0]; 3095 slot = path->slots[0]; 3096 while (1) { 3097 if (slot >= btrfs_header_nritems(leaf)) { 3098 ret = btrfs_next_leaf(rc->extent_root, path); 3099 if (ret < 0) 3100 return ret; 3101 BUG_ON(ret > 0); 3102 leaf = path->nodes[0]; 3103 slot = path->slots[0]; 3104 if (path_change) 3105 *path_change = 1; 3106 } 3107 btrfs_item_key_to_cpu(leaf, &key, slot); 3108 if (key.objectid != extent_key->objectid) 3109 return -ENOENT; 3110 3111 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3112 slot++; 3113 continue; 3114 } 3115 ref0 = btrfs_item_ptr(leaf, slot, 3116 struct btrfs_extent_ref_v0); 3117 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3118 break; 3119 } 3120 return 0; 3121 } 3122 #endif 3123 3124 /* 3125 * helper to add a tree block to the list. 3126 * the major work is getting the generation and level of the block 3127 */ 3128 static int add_tree_block(struct reloc_control *rc, 3129 struct btrfs_key *extent_key, 3130 struct btrfs_path *path, 3131 struct rb_root *blocks) 3132 { 3133 struct extent_buffer *eb; 3134 struct btrfs_extent_item *ei; 3135 struct btrfs_tree_block_info *bi; 3136 struct tree_block *block; 3137 struct rb_node *rb_node; 3138 u32 item_size; 3139 int level = -1; 3140 int generation; 3141 3142 eb = path->nodes[0]; 3143 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3144 3145 if (item_size >= sizeof(*ei) + sizeof(*bi)) { 3146 ei = btrfs_item_ptr(eb, path->slots[0], 3147 struct btrfs_extent_item); 3148 bi = (struct btrfs_tree_block_info *)(ei + 1); 3149 generation = btrfs_extent_generation(eb, ei); 3150 level = btrfs_tree_block_level(eb, bi); 3151 } else { 3152 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3153 u64 ref_owner; 3154 int ret; 3155 3156 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3157 ret = get_ref_objectid_v0(rc, path, extent_key, 3158 &ref_owner, NULL); 3159 if (ret < 0) 3160 return ret; 3161 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3162 level = (int)ref_owner; 3163 /* FIXME: get real generation */ 3164 generation = 0; 3165 #else 3166 BUG(); 3167 #endif 3168 } 3169 3170 btrfs_release_path(path); 3171 3172 BUG_ON(level == -1); 3173 3174 block = kmalloc(sizeof(*block), GFP_NOFS); 3175 if (!block) 3176 return -ENOMEM; 3177 3178 block->bytenr = extent_key->objectid; 3179 block->key.objectid = extent_key->offset; 3180 block->key.offset = generation; 3181 block->level = level; 3182 block->key_ready = 0; 3183 3184 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3185 if (rb_node) 3186 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3187 3188 return 0; 3189 } 3190 3191 /* 3192 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3193 */ 3194 static int __add_tree_block(struct reloc_control *rc, 3195 u64 bytenr, u32 blocksize, 3196 struct rb_root *blocks) 3197 { 3198 struct btrfs_path *path; 3199 struct btrfs_key key; 3200 int ret; 3201 3202 if (tree_block_processed(bytenr, blocksize, rc)) 3203 return 0; 3204 3205 if (tree_search(blocks, bytenr)) 3206 return 0; 3207 3208 path = btrfs_alloc_path(); 3209 if (!path) 3210 return -ENOMEM; 3211 3212 key.objectid = bytenr; 3213 key.type = BTRFS_EXTENT_ITEM_KEY; 3214 key.offset = blocksize; 3215 3216 path->search_commit_root = 1; 3217 path->skip_locking = 1; 3218 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3219 if (ret < 0) 3220 goto out; 3221 BUG_ON(ret); 3222 3223 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3224 ret = add_tree_block(rc, &key, path, blocks); 3225 out: 3226 btrfs_free_path(path); 3227 return ret; 3228 } 3229 3230 /* 3231 * helper to check if the block use full backrefs for pointers in it 3232 */ 3233 static int block_use_full_backref(struct reloc_control *rc, 3234 struct extent_buffer *eb) 3235 { 3236 u64 flags; 3237 int ret; 3238 3239 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3240 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3241 return 1; 3242 3243 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3244 eb->start, eb->len, NULL, &flags); 3245 BUG_ON(ret); 3246 3247 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3248 ret = 1; 3249 else 3250 ret = 0; 3251 return ret; 3252 } 3253 3254 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3255 struct inode *inode, u64 ino) 3256 { 3257 struct btrfs_key key; 3258 struct btrfs_path *path; 3259 struct btrfs_root *root = fs_info->tree_root; 3260 struct btrfs_trans_handle *trans; 3261 unsigned long nr; 3262 int ret = 0; 3263 3264 if (inode) 3265 goto truncate; 3266 3267 key.objectid = ino; 3268 key.type = BTRFS_INODE_ITEM_KEY; 3269 key.offset = 0; 3270 3271 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3272 if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) { 3273 if (inode && !IS_ERR(inode)) 3274 iput(inode); 3275 return -ENOENT; 3276 } 3277 3278 truncate: 3279 path = btrfs_alloc_path(); 3280 if (!path) { 3281 ret = -ENOMEM; 3282 goto out; 3283 } 3284 3285 trans = btrfs_join_transaction(root); 3286 if (IS_ERR(trans)) { 3287 btrfs_free_path(path); 3288 ret = PTR_ERR(trans); 3289 goto out; 3290 } 3291 3292 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3293 3294 btrfs_free_path(path); 3295 nr = trans->blocks_used; 3296 btrfs_end_transaction(trans, root); 3297 btrfs_btree_balance_dirty(root, nr); 3298 out: 3299 iput(inode); 3300 return ret; 3301 } 3302 3303 /* 3304 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3305 * this function scans fs tree to find blocks reference the data extent 3306 */ 3307 static int find_data_references(struct reloc_control *rc, 3308 struct btrfs_key *extent_key, 3309 struct extent_buffer *leaf, 3310 struct btrfs_extent_data_ref *ref, 3311 struct rb_root *blocks) 3312 { 3313 struct btrfs_path *path; 3314 struct tree_block *block; 3315 struct btrfs_root *root; 3316 struct btrfs_file_extent_item *fi; 3317 struct rb_node *rb_node; 3318 struct btrfs_key key; 3319 u64 ref_root; 3320 u64 ref_objectid; 3321 u64 ref_offset; 3322 u32 ref_count; 3323 u32 nritems; 3324 int err = 0; 3325 int added = 0; 3326 int counted; 3327 int ret; 3328 3329 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3330 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3331 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3332 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3333 3334 /* 3335 * This is an extent belonging to the free space cache, lets just delete 3336 * it and redo the search. 3337 */ 3338 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3339 ret = delete_block_group_cache(rc->extent_root->fs_info, 3340 NULL, ref_objectid); 3341 if (ret != -ENOENT) 3342 return ret; 3343 ret = 0; 3344 } 3345 3346 path = btrfs_alloc_path(); 3347 if (!path) 3348 return -ENOMEM; 3349 path->reada = 1; 3350 3351 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3352 if (IS_ERR(root)) { 3353 err = PTR_ERR(root); 3354 goto out; 3355 } 3356 3357 key.objectid = ref_objectid; 3358 key.type = BTRFS_EXTENT_DATA_KEY; 3359 if (ref_offset > ((u64)-1 << 32)) 3360 key.offset = 0; 3361 else 3362 key.offset = ref_offset; 3363 3364 path->search_commit_root = 1; 3365 path->skip_locking = 1; 3366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3367 if (ret < 0) { 3368 err = ret; 3369 goto out; 3370 } 3371 3372 leaf = path->nodes[0]; 3373 nritems = btrfs_header_nritems(leaf); 3374 /* 3375 * the references in tree blocks that use full backrefs 3376 * are not counted in 3377 */ 3378 if (block_use_full_backref(rc, leaf)) 3379 counted = 0; 3380 else 3381 counted = 1; 3382 rb_node = tree_search(blocks, leaf->start); 3383 if (rb_node) { 3384 if (counted) 3385 added = 1; 3386 else 3387 path->slots[0] = nritems; 3388 } 3389 3390 while (ref_count > 0) { 3391 while (path->slots[0] >= nritems) { 3392 ret = btrfs_next_leaf(root, path); 3393 if (ret < 0) { 3394 err = ret; 3395 goto out; 3396 } 3397 if (ret > 0) { 3398 WARN_ON(1); 3399 goto out; 3400 } 3401 3402 leaf = path->nodes[0]; 3403 nritems = btrfs_header_nritems(leaf); 3404 added = 0; 3405 3406 if (block_use_full_backref(rc, leaf)) 3407 counted = 0; 3408 else 3409 counted = 1; 3410 rb_node = tree_search(blocks, leaf->start); 3411 if (rb_node) { 3412 if (counted) 3413 added = 1; 3414 else 3415 path->slots[0] = nritems; 3416 } 3417 } 3418 3419 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3420 if (key.objectid != ref_objectid || 3421 key.type != BTRFS_EXTENT_DATA_KEY) { 3422 WARN_ON(1); 3423 break; 3424 } 3425 3426 fi = btrfs_item_ptr(leaf, path->slots[0], 3427 struct btrfs_file_extent_item); 3428 3429 if (btrfs_file_extent_type(leaf, fi) == 3430 BTRFS_FILE_EXTENT_INLINE) 3431 goto next; 3432 3433 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3434 extent_key->objectid) 3435 goto next; 3436 3437 key.offset -= btrfs_file_extent_offset(leaf, fi); 3438 if (key.offset != ref_offset) 3439 goto next; 3440 3441 if (counted) 3442 ref_count--; 3443 if (added) 3444 goto next; 3445 3446 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3447 block = kmalloc(sizeof(*block), GFP_NOFS); 3448 if (!block) { 3449 err = -ENOMEM; 3450 break; 3451 } 3452 block->bytenr = leaf->start; 3453 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3454 block->level = 0; 3455 block->key_ready = 1; 3456 rb_node = tree_insert(blocks, block->bytenr, 3457 &block->rb_node); 3458 if (rb_node) 3459 backref_tree_panic(rb_node, -EEXIST, 3460 block->bytenr); 3461 } 3462 if (counted) 3463 added = 1; 3464 else 3465 path->slots[0] = nritems; 3466 next: 3467 path->slots[0]++; 3468 3469 } 3470 out: 3471 btrfs_free_path(path); 3472 return err; 3473 } 3474 3475 /* 3476 * hepler to find all tree blocks that reference a given data extent 3477 */ 3478 static noinline_for_stack 3479 int add_data_references(struct reloc_control *rc, 3480 struct btrfs_key *extent_key, 3481 struct btrfs_path *path, 3482 struct rb_root *blocks) 3483 { 3484 struct btrfs_key key; 3485 struct extent_buffer *eb; 3486 struct btrfs_extent_data_ref *dref; 3487 struct btrfs_extent_inline_ref *iref; 3488 unsigned long ptr; 3489 unsigned long end; 3490 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3491 int ret; 3492 int err = 0; 3493 3494 eb = path->nodes[0]; 3495 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3496 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3497 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3498 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3499 ptr = end; 3500 else 3501 #endif 3502 ptr += sizeof(struct btrfs_extent_item); 3503 3504 while (ptr < end) { 3505 iref = (struct btrfs_extent_inline_ref *)ptr; 3506 key.type = btrfs_extent_inline_ref_type(eb, iref); 3507 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3508 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3509 ret = __add_tree_block(rc, key.offset, blocksize, 3510 blocks); 3511 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3512 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3513 ret = find_data_references(rc, extent_key, 3514 eb, dref, blocks); 3515 } else { 3516 BUG(); 3517 } 3518 ptr += btrfs_extent_inline_ref_size(key.type); 3519 } 3520 WARN_ON(ptr > end); 3521 3522 while (1) { 3523 cond_resched(); 3524 eb = path->nodes[0]; 3525 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3526 ret = btrfs_next_leaf(rc->extent_root, path); 3527 if (ret < 0) { 3528 err = ret; 3529 break; 3530 } 3531 if (ret > 0) 3532 break; 3533 eb = path->nodes[0]; 3534 } 3535 3536 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3537 if (key.objectid != extent_key->objectid) 3538 break; 3539 3540 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3541 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3542 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3543 #else 3544 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3545 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3546 #endif 3547 ret = __add_tree_block(rc, key.offset, blocksize, 3548 blocks); 3549 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3550 dref = btrfs_item_ptr(eb, path->slots[0], 3551 struct btrfs_extent_data_ref); 3552 ret = find_data_references(rc, extent_key, 3553 eb, dref, blocks); 3554 } else { 3555 ret = 0; 3556 } 3557 if (ret) { 3558 err = ret; 3559 break; 3560 } 3561 path->slots[0]++; 3562 } 3563 btrfs_release_path(path); 3564 if (err) 3565 free_block_list(blocks); 3566 return err; 3567 } 3568 3569 /* 3570 * hepler to find next unprocessed extent 3571 */ 3572 static noinline_for_stack 3573 int find_next_extent(struct btrfs_trans_handle *trans, 3574 struct reloc_control *rc, struct btrfs_path *path, 3575 struct btrfs_key *extent_key) 3576 { 3577 struct btrfs_key key; 3578 struct extent_buffer *leaf; 3579 u64 start, end, last; 3580 int ret; 3581 3582 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3583 while (1) { 3584 cond_resched(); 3585 if (rc->search_start >= last) { 3586 ret = 1; 3587 break; 3588 } 3589 3590 key.objectid = rc->search_start; 3591 key.type = BTRFS_EXTENT_ITEM_KEY; 3592 key.offset = 0; 3593 3594 path->search_commit_root = 1; 3595 path->skip_locking = 1; 3596 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3597 0, 0); 3598 if (ret < 0) 3599 break; 3600 next: 3601 leaf = path->nodes[0]; 3602 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3603 ret = btrfs_next_leaf(rc->extent_root, path); 3604 if (ret != 0) 3605 break; 3606 leaf = path->nodes[0]; 3607 } 3608 3609 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3610 if (key.objectid >= last) { 3611 ret = 1; 3612 break; 3613 } 3614 3615 if (key.type != BTRFS_EXTENT_ITEM_KEY || 3616 key.objectid + key.offset <= rc->search_start) { 3617 path->slots[0]++; 3618 goto next; 3619 } 3620 3621 ret = find_first_extent_bit(&rc->processed_blocks, 3622 key.objectid, &start, &end, 3623 EXTENT_DIRTY); 3624 3625 if (ret == 0 && start <= key.objectid) { 3626 btrfs_release_path(path); 3627 rc->search_start = end + 1; 3628 } else { 3629 rc->search_start = key.objectid + key.offset; 3630 memcpy(extent_key, &key, sizeof(key)); 3631 return 0; 3632 } 3633 } 3634 btrfs_release_path(path); 3635 return ret; 3636 } 3637 3638 static void set_reloc_control(struct reloc_control *rc) 3639 { 3640 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3641 3642 mutex_lock(&fs_info->reloc_mutex); 3643 fs_info->reloc_ctl = rc; 3644 mutex_unlock(&fs_info->reloc_mutex); 3645 } 3646 3647 static void unset_reloc_control(struct reloc_control *rc) 3648 { 3649 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3650 3651 mutex_lock(&fs_info->reloc_mutex); 3652 fs_info->reloc_ctl = NULL; 3653 mutex_unlock(&fs_info->reloc_mutex); 3654 } 3655 3656 static int check_extent_flags(u64 flags) 3657 { 3658 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3659 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3660 return 1; 3661 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3662 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3663 return 1; 3664 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3665 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3666 return 1; 3667 return 0; 3668 } 3669 3670 static noinline_for_stack 3671 int prepare_to_relocate(struct reloc_control *rc) 3672 { 3673 struct btrfs_trans_handle *trans; 3674 int ret; 3675 3676 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root); 3677 if (!rc->block_rsv) 3678 return -ENOMEM; 3679 3680 /* 3681 * reserve some space for creating reloc trees. 3682 * btrfs_init_reloc_root will use them when there 3683 * is no reservation in transaction handle. 3684 */ 3685 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3686 rc->extent_root->nodesize * 256); 3687 if (ret) 3688 return ret; 3689 3690 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3691 rc->search_start = rc->block_group->key.objectid; 3692 rc->extents_found = 0; 3693 rc->nodes_relocated = 0; 3694 rc->merging_rsv_size = 0; 3695 3696 rc->create_reloc_tree = 1; 3697 set_reloc_control(rc); 3698 3699 trans = btrfs_join_transaction(rc->extent_root); 3700 BUG_ON(IS_ERR(trans)); 3701 btrfs_commit_transaction(trans, rc->extent_root); 3702 return 0; 3703 } 3704 3705 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3706 { 3707 struct rb_root blocks = RB_ROOT; 3708 struct btrfs_key key; 3709 struct btrfs_trans_handle *trans = NULL; 3710 struct btrfs_path *path; 3711 struct btrfs_extent_item *ei; 3712 unsigned long nr; 3713 u64 flags; 3714 u32 item_size; 3715 int ret; 3716 int err = 0; 3717 int progress = 0; 3718 3719 path = btrfs_alloc_path(); 3720 if (!path) 3721 return -ENOMEM; 3722 path->reada = 1; 3723 3724 ret = prepare_to_relocate(rc); 3725 if (ret) { 3726 err = ret; 3727 goto out_free; 3728 } 3729 3730 while (1) { 3731 progress++; 3732 trans = btrfs_start_transaction(rc->extent_root, 0); 3733 BUG_ON(IS_ERR(trans)); 3734 restart: 3735 if (update_backref_cache(trans, &rc->backref_cache)) { 3736 btrfs_end_transaction(trans, rc->extent_root); 3737 continue; 3738 } 3739 3740 ret = find_next_extent(trans, rc, path, &key); 3741 if (ret < 0) 3742 err = ret; 3743 if (ret != 0) 3744 break; 3745 3746 rc->extents_found++; 3747 3748 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3749 struct btrfs_extent_item); 3750 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3751 if (item_size >= sizeof(*ei)) { 3752 flags = btrfs_extent_flags(path->nodes[0], ei); 3753 ret = check_extent_flags(flags); 3754 BUG_ON(ret); 3755 3756 } else { 3757 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3758 u64 ref_owner; 3759 int path_change = 0; 3760 3761 BUG_ON(item_size != 3762 sizeof(struct btrfs_extent_item_v0)); 3763 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3764 &path_change); 3765 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3766 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3767 else 3768 flags = BTRFS_EXTENT_FLAG_DATA; 3769 3770 if (path_change) { 3771 btrfs_release_path(path); 3772 3773 path->search_commit_root = 1; 3774 path->skip_locking = 1; 3775 ret = btrfs_search_slot(NULL, rc->extent_root, 3776 &key, path, 0, 0); 3777 if (ret < 0) { 3778 err = ret; 3779 break; 3780 } 3781 BUG_ON(ret > 0); 3782 } 3783 #else 3784 BUG(); 3785 #endif 3786 } 3787 3788 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3789 ret = add_tree_block(rc, &key, path, &blocks); 3790 } else if (rc->stage == UPDATE_DATA_PTRS && 3791 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3792 ret = add_data_references(rc, &key, path, &blocks); 3793 } else { 3794 btrfs_release_path(path); 3795 ret = 0; 3796 } 3797 if (ret < 0) { 3798 err = ret; 3799 break; 3800 } 3801 3802 if (!RB_EMPTY_ROOT(&blocks)) { 3803 ret = relocate_tree_blocks(trans, rc, &blocks); 3804 if (ret < 0) { 3805 if (ret != -EAGAIN) { 3806 err = ret; 3807 break; 3808 } 3809 rc->extents_found--; 3810 rc->search_start = key.objectid; 3811 } 3812 } 3813 3814 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 3815 if (ret < 0) { 3816 if (ret != -ENOSPC) { 3817 err = ret; 3818 WARN_ON(1); 3819 break; 3820 } 3821 rc->commit_transaction = 1; 3822 } 3823 3824 if (rc->commit_transaction) { 3825 rc->commit_transaction = 0; 3826 ret = btrfs_commit_transaction(trans, rc->extent_root); 3827 BUG_ON(ret); 3828 } else { 3829 nr = trans->blocks_used; 3830 btrfs_end_transaction_throttle(trans, rc->extent_root); 3831 btrfs_btree_balance_dirty(rc->extent_root, nr); 3832 } 3833 trans = NULL; 3834 3835 if (rc->stage == MOVE_DATA_EXTENTS && 3836 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3837 rc->found_file_extent = 1; 3838 ret = relocate_data_extent(rc->data_inode, 3839 &key, &rc->cluster); 3840 if (ret < 0) { 3841 err = ret; 3842 break; 3843 } 3844 } 3845 } 3846 if (trans && progress && err == -ENOSPC) { 3847 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 3848 rc->block_group->flags); 3849 if (ret == 0) { 3850 err = 0; 3851 progress = 0; 3852 goto restart; 3853 } 3854 } 3855 3856 btrfs_release_path(path); 3857 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 3858 GFP_NOFS); 3859 3860 if (trans) { 3861 nr = trans->blocks_used; 3862 btrfs_end_transaction_throttle(trans, rc->extent_root); 3863 btrfs_btree_balance_dirty(rc->extent_root, nr); 3864 } 3865 3866 if (!err) { 3867 ret = relocate_file_extent_cluster(rc->data_inode, 3868 &rc->cluster); 3869 if (ret < 0) 3870 err = ret; 3871 } 3872 3873 rc->create_reloc_tree = 0; 3874 set_reloc_control(rc); 3875 3876 backref_cache_cleanup(&rc->backref_cache); 3877 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3878 3879 err = prepare_to_merge(rc, err); 3880 3881 merge_reloc_roots(rc); 3882 3883 rc->merge_reloc_tree = 0; 3884 unset_reloc_control(rc); 3885 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3886 3887 /* get rid of pinned extents */ 3888 trans = btrfs_join_transaction(rc->extent_root); 3889 if (IS_ERR(trans)) 3890 err = PTR_ERR(trans); 3891 else 3892 btrfs_commit_transaction(trans, rc->extent_root); 3893 out_free: 3894 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 3895 btrfs_free_path(path); 3896 return err; 3897 } 3898 3899 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3900 struct btrfs_root *root, u64 objectid) 3901 { 3902 struct btrfs_path *path; 3903 struct btrfs_inode_item *item; 3904 struct extent_buffer *leaf; 3905 int ret; 3906 3907 path = btrfs_alloc_path(); 3908 if (!path) 3909 return -ENOMEM; 3910 3911 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3912 if (ret) 3913 goto out; 3914 3915 leaf = path->nodes[0]; 3916 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3917 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3918 btrfs_set_inode_generation(leaf, item, 1); 3919 btrfs_set_inode_size(leaf, item, 0); 3920 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3921 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3922 BTRFS_INODE_PREALLOC); 3923 btrfs_mark_buffer_dirty(leaf); 3924 btrfs_release_path(path); 3925 out: 3926 btrfs_free_path(path); 3927 return ret; 3928 } 3929 3930 /* 3931 * helper to create inode for data relocation. 3932 * the inode is in data relocation tree and its link count is 0 3933 */ 3934 static noinline_for_stack 3935 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3936 struct btrfs_block_group_cache *group) 3937 { 3938 struct inode *inode = NULL; 3939 struct btrfs_trans_handle *trans; 3940 struct btrfs_root *root; 3941 struct btrfs_key key; 3942 unsigned long nr; 3943 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 3944 int err = 0; 3945 3946 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 3947 if (IS_ERR(root)) 3948 return ERR_CAST(root); 3949 3950 trans = btrfs_start_transaction(root, 6); 3951 if (IS_ERR(trans)) 3952 return ERR_CAST(trans); 3953 3954 err = btrfs_find_free_objectid(root, &objectid); 3955 if (err) 3956 goto out; 3957 3958 err = __insert_orphan_inode(trans, root, objectid); 3959 BUG_ON(err); 3960 3961 key.objectid = objectid; 3962 key.type = BTRFS_INODE_ITEM_KEY; 3963 key.offset = 0; 3964 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 3965 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 3966 BTRFS_I(inode)->index_cnt = group->key.objectid; 3967 3968 err = btrfs_orphan_add(trans, inode); 3969 out: 3970 nr = trans->blocks_used; 3971 btrfs_end_transaction(trans, root); 3972 btrfs_btree_balance_dirty(root, nr); 3973 if (err) { 3974 if (inode) 3975 iput(inode); 3976 inode = ERR_PTR(err); 3977 } 3978 return inode; 3979 } 3980 3981 static struct reloc_control *alloc_reloc_control(void) 3982 { 3983 struct reloc_control *rc; 3984 3985 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3986 if (!rc) 3987 return NULL; 3988 3989 INIT_LIST_HEAD(&rc->reloc_roots); 3990 backref_cache_init(&rc->backref_cache); 3991 mapping_tree_init(&rc->reloc_root_tree); 3992 extent_io_tree_init(&rc->processed_blocks, NULL); 3993 return rc; 3994 } 3995 3996 /* 3997 * function to relocate all extents in a block group. 3998 */ 3999 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4000 { 4001 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4002 struct reloc_control *rc; 4003 struct inode *inode; 4004 struct btrfs_path *path; 4005 int ret; 4006 int rw = 0; 4007 int err = 0; 4008 4009 rc = alloc_reloc_control(); 4010 if (!rc) 4011 return -ENOMEM; 4012 4013 rc->extent_root = extent_root; 4014 4015 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4016 BUG_ON(!rc->block_group); 4017 4018 if (!rc->block_group->ro) { 4019 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4020 if (ret) { 4021 err = ret; 4022 goto out; 4023 } 4024 rw = 1; 4025 } 4026 4027 path = btrfs_alloc_path(); 4028 if (!path) { 4029 err = -ENOMEM; 4030 goto out; 4031 } 4032 4033 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4034 path); 4035 btrfs_free_path(path); 4036 4037 if (!IS_ERR(inode)) 4038 ret = delete_block_group_cache(fs_info, inode, 0); 4039 else 4040 ret = PTR_ERR(inode); 4041 4042 if (ret && ret != -ENOENT) { 4043 err = ret; 4044 goto out; 4045 } 4046 4047 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4048 if (IS_ERR(rc->data_inode)) { 4049 err = PTR_ERR(rc->data_inode); 4050 rc->data_inode = NULL; 4051 goto out; 4052 } 4053 4054 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4055 (unsigned long long)rc->block_group->key.objectid, 4056 (unsigned long long)rc->block_group->flags); 4057 4058 btrfs_start_delalloc_inodes(fs_info->tree_root, 0); 4059 btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0); 4060 4061 while (1) { 4062 mutex_lock(&fs_info->cleaner_mutex); 4063 4064 btrfs_clean_old_snapshots(fs_info->tree_root); 4065 ret = relocate_block_group(rc); 4066 4067 mutex_unlock(&fs_info->cleaner_mutex); 4068 if (ret < 0) { 4069 err = ret; 4070 goto out; 4071 } 4072 4073 if (rc->extents_found == 0) 4074 break; 4075 4076 printk(KERN_INFO "btrfs: found %llu extents\n", 4077 (unsigned long long)rc->extents_found); 4078 4079 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4080 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4081 invalidate_mapping_pages(rc->data_inode->i_mapping, 4082 0, -1); 4083 rc->stage = UPDATE_DATA_PTRS; 4084 } 4085 } 4086 4087 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4088 rc->block_group->key.objectid, 4089 rc->block_group->key.objectid + 4090 rc->block_group->key.offset - 1); 4091 4092 WARN_ON(rc->block_group->pinned > 0); 4093 WARN_ON(rc->block_group->reserved > 0); 4094 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4095 out: 4096 if (err && rw) 4097 btrfs_set_block_group_rw(extent_root, rc->block_group); 4098 iput(rc->data_inode); 4099 btrfs_put_block_group(rc->block_group); 4100 kfree(rc); 4101 return err; 4102 } 4103 4104 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4105 { 4106 struct btrfs_trans_handle *trans; 4107 int ret, err; 4108 4109 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4110 if (IS_ERR(trans)) 4111 return PTR_ERR(trans); 4112 4113 memset(&root->root_item.drop_progress, 0, 4114 sizeof(root->root_item.drop_progress)); 4115 root->root_item.drop_level = 0; 4116 btrfs_set_root_refs(&root->root_item, 0); 4117 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4118 &root->root_key, &root->root_item); 4119 4120 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4121 if (err) 4122 return err; 4123 return ret; 4124 } 4125 4126 /* 4127 * recover relocation interrupted by system crash. 4128 * 4129 * this function resumes merging reloc trees with corresponding fs trees. 4130 * this is important for keeping the sharing of tree blocks 4131 */ 4132 int btrfs_recover_relocation(struct btrfs_root *root) 4133 { 4134 LIST_HEAD(reloc_roots); 4135 struct btrfs_key key; 4136 struct btrfs_root *fs_root; 4137 struct btrfs_root *reloc_root; 4138 struct btrfs_path *path; 4139 struct extent_buffer *leaf; 4140 struct reloc_control *rc = NULL; 4141 struct btrfs_trans_handle *trans; 4142 int ret; 4143 int err = 0; 4144 4145 path = btrfs_alloc_path(); 4146 if (!path) 4147 return -ENOMEM; 4148 path->reada = -1; 4149 4150 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4151 key.type = BTRFS_ROOT_ITEM_KEY; 4152 key.offset = (u64)-1; 4153 4154 while (1) { 4155 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4156 path, 0, 0); 4157 if (ret < 0) { 4158 err = ret; 4159 goto out; 4160 } 4161 if (ret > 0) { 4162 if (path->slots[0] == 0) 4163 break; 4164 path->slots[0]--; 4165 } 4166 leaf = path->nodes[0]; 4167 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4168 btrfs_release_path(path); 4169 4170 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4171 key.type != BTRFS_ROOT_ITEM_KEY) 4172 break; 4173 4174 reloc_root = btrfs_read_fs_root_no_radix(root, &key); 4175 if (IS_ERR(reloc_root)) { 4176 err = PTR_ERR(reloc_root); 4177 goto out; 4178 } 4179 4180 list_add(&reloc_root->root_list, &reloc_roots); 4181 4182 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4183 fs_root = read_fs_root(root->fs_info, 4184 reloc_root->root_key.offset); 4185 if (IS_ERR(fs_root)) { 4186 ret = PTR_ERR(fs_root); 4187 if (ret != -ENOENT) { 4188 err = ret; 4189 goto out; 4190 } 4191 ret = mark_garbage_root(reloc_root); 4192 if (ret < 0) { 4193 err = ret; 4194 goto out; 4195 } 4196 } 4197 } 4198 4199 if (key.offset == 0) 4200 break; 4201 4202 key.offset--; 4203 } 4204 btrfs_release_path(path); 4205 4206 if (list_empty(&reloc_roots)) 4207 goto out; 4208 4209 rc = alloc_reloc_control(); 4210 if (!rc) { 4211 err = -ENOMEM; 4212 goto out; 4213 } 4214 4215 rc->extent_root = root->fs_info->extent_root; 4216 4217 set_reloc_control(rc); 4218 4219 trans = btrfs_join_transaction(rc->extent_root); 4220 if (IS_ERR(trans)) { 4221 unset_reloc_control(rc); 4222 err = PTR_ERR(trans); 4223 goto out_free; 4224 } 4225 4226 rc->merge_reloc_tree = 1; 4227 4228 while (!list_empty(&reloc_roots)) { 4229 reloc_root = list_entry(reloc_roots.next, 4230 struct btrfs_root, root_list); 4231 list_del(&reloc_root->root_list); 4232 4233 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4234 list_add_tail(&reloc_root->root_list, 4235 &rc->reloc_roots); 4236 continue; 4237 } 4238 4239 fs_root = read_fs_root(root->fs_info, 4240 reloc_root->root_key.offset); 4241 if (IS_ERR(fs_root)) { 4242 err = PTR_ERR(fs_root); 4243 goto out_free; 4244 } 4245 4246 err = __add_reloc_root(reloc_root); 4247 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4248 fs_root->reloc_root = reloc_root; 4249 } 4250 4251 err = btrfs_commit_transaction(trans, rc->extent_root); 4252 if (err) 4253 goto out_free; 4254 4255 merge_reloc_roots(rc); 4256 4257 unset_reloc_control(rc); 4258 4259 trans = btrfs_join_transaction(rc->extent_root); 4260 if (IS_ERR(trans)) 4261 err = PTR_ERR(trans); 4262 else 4263 err = btrfs_commit_transaction(trans, rc->extent_root); 4264 out_free: 4265 kfree(rc); 4266 out: 4267 while (!list_empty(&reloc_roots)) { 4268 reloc_root = list_entry(reloc_roots.next, 4269 struct btrfs_root, root_list); 4270 list_del(&reloc_root->root_list); 4271 free_extent_buffer(reloc_root->node); 4272 free_extent_buffer(reloc_root->commit_root); 4273 kfree(reloc_root); 4274 } 4275 btrfs_free_path(path); 4276 4277 if (err == 0) { 4278 /* cleanup orphan inode in data relocation tree */ 4279 fs_root = read_fs_root(root->fs_info, 4280 BTRFS_DATA_RELOC_TREE_OBJECTID); 4281 if (IS_ERR(fs_root)) 4282 err = PTR_ERR(fs_root); 4283 else 4284 err = btrfs_orphan_cleanup(fs_root); 4285 } 4286 return err; 4287 } 4288 4289 /* 4290 * helper to add ordered checksum for data relocation. 4291 * 4292 * cloning checksum properly handles the nodatasum extents. 4293 * it also saves CPU time to re-calculate the checksum. 4294 */ 4295 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4296 { 4297 struct btrfs_ordered_sum *sums; 4298 struct btrfs_sector_sum *sector_sum; 4299 struct btrfs_ordered_extent *ordered; 4300 struct btrfs_root *root = BTRFS_I(inode)->root; 4301 size_t offset; 4302 int ret; 4303 u64 disk_bytenr; 4304 LIST_HEAD(list); 4305 4306 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4307 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4308 4309 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4310 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4311 disk_bytenr + len - 1, &list, 0); 4312 if (ret) 4313 goto out; 4314 4315 while (!list_empty(&list)) { 4316 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4317 list_del_init(&sums->list); 4318 4319 sector_sum = sums->sums; 4320 sums->bytenr = ordered->start; 4321 4322 offset = 0; 4323 while (offset < sums->len) { 4324 sector_sum->bytenr += ordered->start - disk_bytenr; 4325 sector_sum++; 4326 offset += root->sectorsize; 4327 } 4328 4329 btrfs_add_ordered_sum(inode, ordered, sums); 4330 } 4331 out: 4332 btrfs_put_ordered_extent(ordered); 4333 return ret; 4334 } 4335 4336 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4337 struct btrfs_root *root, struct extent_buffer *buf, 4338 struct extent_buffer *cow) 4339 { 4340 struct reloc_control *rc; 4341 struct backref_node *node; 4342 int first_cow = 0; 4343 int level; 4344 int ret; 4345 4346 rc = root->fs_info->reloc_ctl; 4347 if (!rc) 4348 return; 4349 4350 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4351 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4352 4353 level = btrfs_header_level(buf); 4354 if (btrfs_header_generation(buf) <= 4355 btrfs_root_last_snapshot(&root->root_item)) 4356 first_cow = 1; 4357 4358 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4359 rc->create_reloc_tree) { 4360 WARN_ON(!first_cow && level == 0); 4361 4362 node = rc->backref_cache.path[level]; 4363 BUG_ON(node->bytenr != buf->start && 4364 node->new_bytenr != buf->start); 4365 4366 drop_node_buffer(node); 4367 extent_buffer_get(cow); 4368 node->eb = cow; 4369 node->new_bytenr = cow->start; 4370 4371 if (!node->pending) { 4372 list_move_tail(&node->list, 4373 &rc->backref_cache.pending[level]); 4374 node->pending = 1; 4375 } 4376 4377 if (first_cow) 4378 __mark_block_processed(rc, node); 4379 4380 if (first_cow && level > 0) 4381 rc->nodes_relocated += buf->len; 4382 } 4383 4384 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4385 ret = replace_file_extents(trans, rc, root, cow); 4386 BUG_ON(ret); 4387 } 4388 } 4389 4390 /* 4391 * called before creating snapshot. it calculates metadata reservation 4392 * requried for relocating tree blocks in the snapshot 4393 */ 4394 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4395 struct btrfs_pending_snapshot *pending, 4396 u64 *bytes_to_reserve) 4397 { 4398 struct btrfs_root *root; 4399 struct reloc_control *rc; 4400 4401 root = pending->root; 4402 if (!root->reloc_root) 4403 return; 4404 4405 rc = root->fs_info->reloc_ctl; 4406 if (!rc->merge_reloc_tree) 4407 return; 4408 4409 root = root->reloc_root; 4410 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4411 /* 4412 * relocation is in the stage of merging trees. the space 4413 * used by merging a reloc tree is twice the size of 4414 * relocated tree nodes in the worst case. half for cowing 4415 * the reloc tree, half for cowing the fs tree. the space 4416 * used by cowing the reloc tree will be freed after the 4417 * tree is dropped. if we create snapshot, cowing the fs 4418 * tree may use more space than it frees. so we need 4419 * reserve extra space. 4420 */ 4421 *bytes_to_reserve += rc->nodes_relocated; 4422 } 4423 4424 /* 4425 * called after snapshot is created. migrate block reservation 4426 * and create reloc root for the newly created snapshot 4427 */ 4428 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4429 struct btrfs_pending_snapshot *pending) 4430 { 4431 struct btrfs_root *root = pending->root; 4432 struct btrfs_root *reloc_root; 4433 struct btrfs_root *new_root; 4434 struct reloc_control *rc; 4435 int ret; 4436 4437 if (!root->reloc_root) 4438 return 0; 4439 4440 rc = root->fs_info->reloc_ctl; 4441 rc->merging_rsv_size += rc->nodes_relocated; 4442 4443 if (rc->merge_reloc_tree) { 4444 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4445 rc->block_rsv, 4446 rc->nodes_relocated); 4447 if (ret) 4448 return ret; 4449 } 4450 4451 new_root = pending->snap; 4452 reloc_root = create_reloc_root(trans, root->reloc_root, 4453 new_root->root_key.objectid); 4454 if (IS_ERR(reloc_root)) 4455 return PTR_ERR(reloc_root); 4456 4457 ret = __add_reloc_root(reloc_root); 4458 BUG_ON(ret < 0); 4459 new_root->reloc_root = reloc_root; 4460 4461 if (rc->create_reloc_tree) 4462 ret = clone_backref_node(trans, rc, root, reloc_root); 4463 return ret; 4464 } 4465