1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 #include "subpage.h" 28 #include "zoned.h" 29 #include "inode-item.h" 30 #include "space-info.h" 31 #include "fs.h" 32 #include "accessors.h" 33 #include "extent-tree.h" 34 #include "root-tree.h" 35 #include "file-item.h" 36 #include "relocation.h" 37 #include "super.h" 38 #include "tree-checker.h" 39 40 /* 41 * Relocation overview 42 * 43 * [What does relocation do] 44 * 45 * The objective of relocation is to relocate all extents of the target block 46 * group to other block groups. 47 * This is utilized by resize (shrink only), profile converting, compacting 48 * space, or balance routine to spread chunks over devices. 49 * 50 * Before | After 51 * ------------------------------------------------------------------ 52 * BG A: 10 data extents | BG A: deleted 53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 55 * 56 * [How does relocation work] 57 * 58 * 1. Mark the target block group read-only 59 * New extents won't be allocated from the target block group. 60 * 61 * 2.1 Record each extent in the target block group 62 * To build a proper map of extents to be relocated. 63 * 64 * 2.2 Build data reloc tree and reloc trees 65 * Data reloc tree will contain an inode, recording all newly relocated 66 * data extents. 67 * There will be only one data reloc tree for one data block group. 68 * 69 * Reloc tree will be a special snapshot of its source tree, containing 70 * relocated tree blocks. 71 * Each tree referring to a tree block in target block group will get its 72 * reloc tree built. 73 * 74 * 2.3 Swap source tree with its corresponding reloc tree 75 * Each involved tree only refers to new extents after swap. 76 * 77 * 3. Cleanup reloc trees and data reloc tree. 78 * As old extents in the target block group are still referenced by reloc 79 * trees, we need to clean them up before really freeing the target block 80 * group. 81 * 82 * The main complexity is in steps 2.2 and 2.3. 83 * 84 * The entry point of relocation is relocate_block_group() function. 85 */ 86 87 #define RELOCATION_RESERVED_NODES 256 88 /* 89 * map address of tree root to tree 90 */ 91 struct mapping_node { 92 struct { 93 struct rb_node rb_node; 94 u64 bytenr; 95 }; /* Use rb_simle_node for search/insert */ 96 void *data; 97 }; 98 99 struct mapping_tree { 100 struct rb_root rb_root; 101 spinlock_t lock; 102 }; 103 104 /* 105 * present a tree block to process 106 */ 107 struct tree_block { 108 struct { 109 struct rb_node rb_node; 110 u64 bytenr; 111 }; /* Use rb_simple_node for search/insert */ 112 u64 owner; 113 struct btrfs_key key; 114 unsigned int level:8; 115 unsigned int key_ready:1; 116 }; 117 118 #define MAX_EXTENTS 128 119 120 struct file_extent_cluster { 121 u64 start; 122 u64 end; 123 u64 boundary[MAX_EXTENTS]; 124 unsigned int nr; 125 }; 126 127 struct reloc_control { 128 /* block group to relocate */ 129 struct btrfs_block_group *block_group; 130 /* extent tree */ 131 struct btrfs_root *extent_root; 132 /* inode for moving data */ 133 struct inode *data_inode; 134 135 struct btrfs_block_rsv *block_rsv; 136 137 struct btrfs_backref_cache backref_cache; 138 139 struct file_extent_cluster cluster; 140 /* tree blocks have been processed */ 141 struct extent_io_tree processed_blocks; 142 /* map start of tree root to corresponding reloc tree */ 143 struct mapping_tree reloc_root_tree; 144 /* list of reloc trees */ 145 struct list_head reloc_roots; 146 /* list of subvolume trees that get relocated */ 147 struct list_head dirty_subvol_roots; 148 /* size of metadata reservation for merging reloc trees */ 149 u64 merging_rsv_size; 150 /* size of relocated tree nodes */ 151 u64 nodes_relocated; 152 /* reserved size for block group relocation*/ 153 u64 reserved_bytes; 154 155 u64 search_start; 156 u64 extents_found; 157 158 unsigned int stage:8; 159 unsigned int create_reloc_tree:1; 160 unsigned int merge_reloc_tree:1; 161 unsigned int found_file_extent:1; 162 }; 163 164 /* stages of data relocation */ 165 #define MOVE_DATA_EXTENTS 0 166 #define UPDATE_DATA_PTRS 1 167 168 static void mark_block_processed(struct reloc_control *rc, 169 struct btrfs_backref_node *node) 170 { 171 u32 blocksize; 172 173 if (node->level == 0 || 174 in_range(node->bytenr, rc->block_group->start, 175 rc->block_group->length)) { 176 blocksize = rc->extent_root->fs_info->nodesize; 177 set_extent_bit(&rc->processed_blocks, node->bytenr, 178 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL); 179 } 180 node->processed = 1; 181 } 182 183 184 static void mapping_tree_init(struct mapping_tree *tree) 185 { 186 tree->rb_root = RB_ROOT; 187 spin_lock_init(&tree->lock); 188 } 189 190 /* 191 * walk up backref nodes until reach node presents tree root 192 */ 193 static struct btrfs_backref_node *walk_up_backref( 194 struct btrfs_backref_node *node, 195 struct btrfs_backref_edge *edges[], int *index) 196 { 197 struct btrfs_backref_edge *edge; 198 int idx = *index; 199 200 while (!list_empty(&node->upper)) { 201 edge = list_entry(node->upper.next, 202 struct btrfs_backref_edge, list[LOWER]); 203 edges[idx++] = edge; 204 node = edge->node[UPPER]; 205 } 206 BUG_ON(node->detached); 207 *index = idx; 208 return node; 209 } 210 211 /* 212 * walk down backref nodes to find start of next reference path 213 */ 214 static struct btrfs_backref_node *walk_down_backref( 215 struct btrfs_backref_edge *edges[], int *index) 216 { 217 struct btrfs_backref_edge *edge; 218 struct btrfs_backref_node *lower; 219 int idx = *index; 220 221 while (idx > 0) { 222 edge = edges[idx - 1]; 223 lower = edge->node[LOWER]; 224 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 225 idx--; 226 continue; 227 } 228 edge = list_entry(edge->list[LOWER].next, 229 struct btrfs_backref_edge, list[LOWER]); 230 edges[idx - 1] = edge; 231 *index = idx; 232 return edge->node[UPPER]; 233 } 234 *index = 0; 235 return NULL; 236 } 237 238 static void update_backref_node(struct btrfs_backref_cache *cache, 239 struct btrfs_backref_node *node, u64 bytenr) 240 { 241 struct rb_node *rb_node; 242 rb_erase(&node->rb_node, &cache->rb_root); 243 node->bytenr = bytenr; 244 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 245 if (rb_node) 246 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 247 } 248 249 /* 250 * update backref cache after a transaction commit 251 */ 252 static int update_backref_cache(struct btrfs_trans_handle *trans, 253 struct btrfs_backref_cache *cache) 254 { 255 struct btrfs_backref_node *node; 256 int level = 0; 257 258 if (cache->last_trans == 0) { 259 cache->last_trans = trans->transid; 260 return 0; 261 } 262 263 if (cache->last_trans == trans->transid) 264 return 0; 265 266 /* 267 * detached nodes are used to avoid unnecessary backref 268 * lookup. transaction commit changes the extent tree. 269 * so the detached nodes are no longer useful. 270 */ 271 while (!list_empty(&cache->detached)) { 272 node = list_entry(cache->detached.next, 273 struct btrfs_backref_node, list); 274 btrfs_backref_cleanup_node(cache, node); 275 } 276 277 while (!list_empty(&cache->changed)) { 278 node = list_entry(cache->changed.next, 279 struct btrfs_backref_node, list); 280 list_del_init(&node->list); 281 BUG_ON(node->pending); 282 update_backref_node(cache, node, node->new_bytenr); 283 } 284 285 /* 286 * some nodes can be left in the pending list if there were 287 * errors during processing the pending nodes. 288 */ 289 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 290 list_for_each_entry(node, &cache->pending[level], list) { 291 BUG_ON(!node->pending); 292 if (node->bytenr == node->new_bytenr) 293 continue; 294 update_backref_node(cache, node, node->new_bytenr); 295 } 296 } 297 298 cache->last_trans = 0; 299 return 1; 300 } 301 302 static bool reloc_root_is_dead(struct btrfs_root *root) 303 { 304 /* 305 * Pair with set_bit/clear_bit in clean_dirty_subvols and 306 * btrfs_update_reloc_root. We need to see the updated bit before 307 * trying to access reloc_root 308 */ 309 smp_rmb(); 310 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 311 return true; 312 return false; 313 } 314 315 /* 316 * Check if this subvolume tree has valid reloc tree. 317 * 318 * Reloc tree after swap is considered dead, thus not considered as valid. 319 * This is enough for most callers, as they don't distinguish dead reloc root 320 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 321 * special case. 322 */ 323 static bool have_reloc_root(struct btrfs_root *root) 324 { 325 if (reloc_root_is_dead(root)) 326 return false; 327 if (!root->reloc_root) 328 return false; 329 return true; 330 } 331 332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 333 { 334 struct btrfs_root *reloc_root; 335 336 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 337 return 0; 338 339 /* This root has been merged with its reloc tree, we can ignore it */ 340 if (reloc_root_is_dead(root)) 341 return 1; 342 343 reloc_root = root->reloc_root; 344 if (!reloc_root) 345 return 0; 346 347 if (btrfs_header_generation(reloc_root->commit_root) == 348 root->fs_info->running_transaction->transid) 349 return 0; 350 /* 351 * if there is reloc tree and it was created in previous 352 * transaction backref lookup can find the reloc tree, 353 * so backref node for the fs tree root is useless for 354 * relocation. 355 */ 356 return 1; 357 } 358 359 /* 360 * find reloc tree by address of tree root 361 */ 362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 363 { 364 struct reloc_control *rc = fs_info->reloc_ctl; 365 struct rb_node *rb_node; 366 struct mapping_node *node; 367 struct btrfs_root *root = NULL; 368 369 ASSERT(rc); 370 spin_lock(&rc->reloc_root_tree.lock); 371 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 372 if (rb_node) { 373 node = rb_entry(rb_node, struct mapping_node, rb_node); 374 root = node->data; 375 } 376 spin_unlock(&rc->reloc_root_tree.lock); 377 return btrfs_grab_root(root); 378 } 379 380 /* 381 * For useless nodes, do two major clean ups: 382 * 383 * - Cleanup the children edges and nodes 384 * If child node is also orphan (no parent) during cleanup, then the child 385 * node will also be cleaned up. 386 * 387 * - Freeing up leaves (level 0), keeps nodes detached 388 * For nodes, the node is still cached as "detached" 389 * 390 * Return false if @node is not in the @useless_nodes list. 391 * Return true if @node is in the @useless_nodes list. 392 */ 393 static bool handle_useless_nodes(struct reloc_control *rc, 394 struct btrfs_backref_node *node) 395 { 396 struct btrfs_backref_cache *cache = &rc->backref_cache; 397 struct list_head *useless_node = &cache->useless_node; 398 bool ret = false; 399 400 while (!list_empty(useless_node)) { 401 struct btrfs_backref_node *cur; 402 403 cur = list_first_entry(useless_node, struct btrfs_backref_node, 404 list); 405 list_del_init(&cur->list); 406 407 /* Only tree root nodes can be added to @useless_nodes */ 408 ASSERT(list_empty(&cur->upper)); 409 410 if (cur == node) 411 ret = true; 412 413 /* The node is the lowest node */ 414 if (cur->lowest) { 415 list_del_init(&cur->lower); 416 cur->lowest = 0; 417 } 418 419 /* Cleanup the lower edges */ 420 while (!list_empty(&cur->lower)) { 421 struct btrfs_backref_edge *edge; 422 struct btrfs_backref_node *lower; 423 424 edge = list_entry(cur->lower.next, 425 struct btrfs_backref_edge, list[UPPER]); 426 list_del(&edge->list[UPPER]); 427 list_del(&edge->list[LOWER]); 428 lower = edge->node[LOWER]; 429 btrfs_backref_free_edge(cache, edge); 430 431 /* Child node is also orphan, queue for cleanup */ 432 if (list_empty(&lower->upper)) 433 list_add(&lower->list, useless_node); 434 } 435 /* Mark this block processed for relocation */ 436 mark_block_processed(rc, cur); 437 438 /* 439 * Backref nodes for tree leaves are deleted from the cache. 440 * Backref nodes for upper level tree blocks are left in the 441 * cache to avoid unnecessary backref lookup. 442 */ 443 if (cur->level > 0) { 444 list_add(&cur->list, &cache->detached); 445 cur->detached = 1; 446 } else { 447 rb_erase(&cur->rb_node, &cache->rb_root); 448 btrfs_backref_free_node(cache, cur); 449 } 450 } 451 return ret; 452 } 453 454 /* 455 * Build backref tree for a given tree block. Root of the backref tree 456 * corresponds the tree block, leaves of the backref tree correspond roots of 457 * b-trees that reference the tree block. 458 * 459 * The basic idea of this function is check backrefs of a given block to find 460 * upper level blocks that reference the block, and then check backrefs of 461 * these upper level blocks recursively. The recursion stops when tree root is 462 * reached or backrefs for the block is cached. 463 * 464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 465 * all upper level blocks that directly/indirectly reference the block are also 466 * cached. 467 */ 468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 469 struct reloc_control *rc, struct btrfs_key *node_key, 470 int level, u64 bytenr) 471 { 472 struct btrfs_backref_iter *iter; 473 struct btrfs_backref_cache *cache = &rc->backref_cache; 474 /* For searching parent of TREE_BLOCK_REF */ 475 struct btrfs_path *path; 476 struct btrfs_backref_node *cur; 477 struct btrfs_backref_node *node = NULL; 478 struct btrfs_backref_edge *edge; 479 int ret; 480 int err = 0; 481 482 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info); 483 if (!iter) 484 return ERR_PTR(-ENOMEM); 485 path = btrfs_alloc_path(); 486 if (!path) { 487 err = -ENOMEM; 488 goto out; 489 } 490 491 node = btrfs_backref_alloc_node(cache, bytenr, level); 492 if (!node) { 493 err = -ENOMEM; 494 goto out; 495 } 496 497 node->lowest = 1; 498 cur = node; 499 500 /* Breadth-first search to build backref cache */ 501 do { 502 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 503 cur); 504 if (ret < 0) { 505 err = ret; 506 goto out; 507 } 508 edge = list_first_entry_or_null(&cache->pending_edge, 509 struct btrfs_backref_edge, list[UPPER]); 510 /* 511 * The pending list isn't empty, take the first block to 512 * process 513 */ 514 if (edge) { 515 list_del_init(&edge->list[UPPER]); 516 cur = edge->node[UPPER]; 517 } 518 } while (edge); 519 520 /* Finish the upper linkage of newly added edges/nodes */ 521 ret = btrfs_backref_finish_upper_links(cache, node); 522 if (ret < 0) { 523 err = ret; 524 goto out; 525 } 526 527 if (handle_useless_nodes(rc, node)) 528 node = NULL; 529 out: 530 btrfs_backref_iter_free(iter); 531 btrfs_free_path(path); 532 if (err) { 533 btrfs_backref_error_cleanup(cache, node); 534 return ERR_PTR(err); 535 } 536 ASSERT(!node || !node->detached); 537 ASSERT(list_empty(&cache->useless_node) && 538 list_empty(&cache->pending_edge)); 539 return node; 540 } 541 542 /* 543 * helper to add backref node for the newly created snapshot. 544 * the backref node is created by cloning backref node that 545 * corresponds to root of source tree 546 */ 547 static int clone_backref_node(struct btrfs_trans_handle *trans, 548 struct reloc_control *rc, 549 struct btrfs_root *src, 550 struct btrfs_root *dest) 551 { 552 struct btrfs_root *reloc_root = src->reloc_root; 553 struct btrfs_backref_cache *cache = &rc->backref_cache; 554 struct btrfs_backref_node *node = NULL; 555 struct btrfs_backref_node *new_node; 556 struct btrfs_backref_edge *edge; 557 struct btrfs_backref_edge *new_edge; 558 struct rb_node *rb_node; 559 560 if (cache->last_trans > 0) 561 update_backref_cache(trans, cache); 562 563 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 564 if (rb_node) { 565 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 566 if (node->detached) 567 node = NULL; 568 else 569 BUG_ON(node->new_bytenr != reloc_root->node->start); 570 } 571 572 if (!node) { 573 rb_node = rb_simple_search(&cache->rb_root, 574 reloc_root->commit_root->start); 575 if (rb_node) { 576 node = rb_entry(rb_node, struct btrfs_backref_node, 577 rb_node); 578 BUG_ON(node->detached); 579 } 580 } 581 582 if (!node) 583 return 0; 584 585 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 586 node->level); 587 if (!new_node) 588 return -ENOMEM; 589 590 new_node->lowest = node->lowest; 591 new_node->checked = 1; 592 new_node->root = btrfs_grab_root(dest); 593 ASSERT(new_node->root); 594 595 if (!node->lowest) { 596 list_for_each_entry(edge, &node->lower, list[UPPER]) { 597 new_edge = btrfs_backref_alloc_edge(cache); 598 if (!new_edge) 599 goto fail; 600 601 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 602 new_node, LINK_UPPER); 603 } 604 } else { 605 list_add_tail(&new_node->lower, &cache->leaves); 606 } 607 608 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 609 &new_node->rb_node); 610 if (rb_node) 611 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 612 613 if (!new_node->lowest) { 614 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 615 list_add_tail(&new_edge->list[LOWER], 616 &new_edge->node[LOWER]->upper); 617 } 618 } 619 return 0; 620 fail: 621 while (!list_empty(&new_node->lower)) { 622 new_edge = list_entry(new_node->lower.next, 623 struct btrfs_backref_edge, list[UPPER]); 624 list_del(&new_edge->list[UPPER]); 625 btrfs_backref_free_edge(cache, new_edge); 626 } 627 btrfs_backref_free_node(cache, new_node); 628 return -ENOMEM; 629 } 630 631 /* 632 * helper to add 'address of tree root -> reloc tree' mapping 633 */ 634 static int __must_check __add_reloc_root(struct btrfs_root *root) 635 { 636 struct btrfs_fs_info *fs_info = root->fs_info; 637 struct rb_node *rb_node; 638 struct mapping_node *node; 639 struct reloc_control *rc = fs_info->reloc_ctl; 640 641 node = kmalloc(sizeof(*node), GFP_NOFS); 642 if (!node) 643 return -ENOMEM; 644 645 node->bytenr = root->commit_root->start; 646 node->data = root; 647 648 spin_lock(&rc->reloc_root_tree.lock); 649 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 650 node->bytenr, &node->rb_node); 651 spin_unlock(&rc->reloc_root_tree.lock); 652 if (rb_node) { 653 btrfs_err(fs_info, 654 "Duplicate root found for start=%llu while inserting into relocation tree", 655 node->bytenr); 656 return -EEXIST; 657 } 658 659 list_add_tail(&root->root_list, &rc->reloc_roots); 660 return 0; 661 } 662 663 /* 664 * helper to delete the 'address of tree root -> reloc tree' 665 * mapping 666 */ 667 static void __del_reloc_root(struct btrfs_root *root) 668 { 669 struct btrfs_fs_info *fs_info = root->fs_info; 670 struct rb_node *rb_node; 671 struct mapping_node *node = NULL; 672 struct reloc_control *rc = fs_info->reloc_ctl; 673 bool put_ref = false; 674 675 if (rc && root->node) { 676 spin_lock(&rc->reloc_root_tree.lock); 677 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 678 root->commit_root->start); 679 if (rb_node) { 680 node = rb_entry(rb_node, struct mapping_node, rb_node); 681 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 682 RB_CLEAR_NODE(&node->rb_node); 683 } 684 spin_unlock(&rc->reloc_root_tree.lock); 685 ASSERT(!node || (struct btrfs_root *)node->data == root); 686 } 687 688 /* 689 * We only put the reloc root here if it's on the list. There's a lot 690 * of places where the pattern is to splice the rc->reloc_roots, process 691 * the reloc roots, and then add the reloc root back onto 692 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 693 * list we don't want the reference being dropped, because the guy 694 * messing with the list is in charge of the reference. 695 */ 696 spin_lock(&fs_info->trans_lock); 697 if (!list_empty(&root->root_list)) { 698 put_ref = true; 699 list_del_init(&root->root_list); 700 } 701 spin_unlock(&fs_info->trans_lock); 702 if (put_ref) 703 btrfs_put_root(root); 704 kfree(node); 705 } 706 707 /* 708 * helper to update the 'address of tree root -> reloc tree' 709 * mapping 710 */ 711 static int __update_reloc_root(struct btrfs_root *root) 712 { 713 struct btrfs_fs_info *fs_info = root->fs_info; 714 struct rb_node *rb_node; 715 struct mapping_node *node = NULL; 716 struct reloc_control *rc = fs_info->reloc_ctl; 717 718 spin_lock(&rc->reloc_root_tree.lock); 719 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 720 root->commit_root->start); 721 if (rb_node) { 722 node = rb_entry(rb_node, struct mapping_node, rb_node); 723 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 724 } 725 spin_unlock(&rc->reloc_root_tree.lock); 726 727 if (!node) 728 return 0; 729 BUG_ON((struct btrfs_root *)node->data != root); 730 731 spin_lock(&rc->reloc_root_tree.lock); 732 node->bytenr = root->node->start; 733 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 734 node->bytenr, &node->rb_node); 735 spin_unlock(&rc->reloc_root_tree.lock); 736 if (rb_node) 737 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 738 return 0; 739 } 740 741 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 742 struct btrfs_root *root, u64 objectid) 743 { 744 struct btrfs_fs_info *fs_info = root->fs_info; 745 struct btrfs_root *reloc_root; 746 struct extent_buffer *eb; 747 struct btrfs_root_item *root_item; 748 struct btrfs_key root_key; 749 int ret = 0; 750 bool must_abort = false; 751 752 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 753 if (!root_item) 754 return ERR_PTR(-ENOMEM); 755 756 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 757 root_key.type = BTRFS_ROOT_ITEM_KEY; 758 root_key.offset = objectid; 759 760 if (root->root_key.objectid == objectid) { 761 u64 commit_root_gen; 762 763 /* called by btrfs_init_reloc_root */ 764 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 765 BTRFS_TREE_RELOC_OBJECTID); 766 if (ret) 767 goto fail; 768 769 /* 770 * Set the last_snapshot field to the generation of the commit 771 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 772 * correctly (returns true) when the relocation root is created 773 * either inside the critical section of a transaction commit 774 * (through transaction.c:qgroup_account_snapshot()) and when 775 * it's created before the transaction commit is started. 776 */ 777 commit_root_gen = btrfs_header_generation(root->commit_root); 778 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 779 } else { 780 /* 781 * called by btrfs_reloc_post_snapshot_hook. 782 * the source tree is a reloc tree, all tree blocks 783 * modified after it was created have RELOC flag 784 * set in their headers. so it's OK to not update 785 * the 'last_snapshot'. 786 */ 787 ret = btrfs_copy_root(trans, root, root->node, &eb, 788 BTRFS_TREE_RELOC_OBJECTID); 789 if (ret) 790 goto fail; 791 } 792 793 /* 794 * We have changed references at this point, we must abort the 795 * transaction if anything fails. 796 */ 797 must_abort = true; 798 799 memcpy(root_item, &root->root_item, sizeof(*root_item)); 800 btrfs_set_root_bytenr(root_item, eb->start); 801 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 802 btrfs_set_root_generation(root_item, trans->transid); 803 804 if (root->root_key.objectid == objectid) { 805 btrfs_set_root_refs(root_item, 0); 806 memset(&root_item->drop_progress, 0, 807 sizeof(struct btrfs_disk_key)); 808 btrfs_set_root_drop_level(root_item, 0); 809 } 810 811 btrfs_tree_unlock(eb); 812 free_extent_buffer(eb); 813 814 ret = btrfs_insert_root(trans, fs_info->tree_root, 815 &root_key, root_item); 816 if (ret) 817 goto fail; 818 819 kfree(root_item); 820 821 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 822 if (IS_ERR(reloc_root)) { 823 ret = PTR_ERR(reloc_root); 824 goto abort; 825 } 826 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 827 reloc_root->last_trans = trans->transid; 828 return reloc_root; 829 fail: 830 kfree(root_item); 831 abort: 832 if (must_abort) 833 btrfs_abort_transaction(trans, ret); 834 return ERR_PTR(ret); 835 } 836 837 /* 838 * create reloc tree for a given fs tree. reloc tree is just a 839 * snapshot of the fs tree with special root objectid. 840 * 841 * The reloc_root comes out of here with two references, one for 842 * root->reloc_root, and another for being on the rc->reloc_roots list. 843 */ 844 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root) 846 { 847 struct btrfs_fs_info *fs_info = root->fs_info; 848 struct btrfs_root *reloc_root; 849 struct reloc_control *rc = fs_info->reloc_ctl; 850 struct btrfs_block_rsv *rsv; 851 int clear_rsv = 0; 852 int ret; 853 854 if (!rc) 855 return 0; 856 857 /* 858 * The subvolume has reloc tree but the swap is finished, no need to 859 * create/update the dead reloc tree 860 */ 861 if (reloc_root_is_dead(root)) 862 return 0; 863 864 /* 865 * This is subtle but important. We do not do 866 * record_root_in_transaction for reloc roots, instead we record their 867 * corresponding fs root, and then here we update the last trans for the 868 * reloc root. This means that we have to do this for the entire life 869 * of the reloc root, regardless of which stage of the relocation we are 870 * in. 871 */ 872 if (root->reloc_root) { 873 reloc_root = root->reloc_root; 874 reloc_root->last_trans = trans->transid; 875 return 0; 876 } 877 878 /* 879 * We are merging reloc roots, we do not need new reloc trees. Also 880 * reloc trees never need their own reloc tree. 881 */ 882 if (!rc->create_reloc_tree || 883 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 884 return 0; 885 886 if (!trans->reloc_reserved) { 887 rsv = trans->block_rsv; 888 trans->block_rsv = rc->block_rsv; 889 clear_rsv = 1; 890 } 891 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 892 if (clear_rsv) 893 trans->block_rsv = rsv; 894 if (IS_ERR(reloc_root)) 895 return PTR_ERR(reloc_root); 896 897 ret = __add_reloc_root(reloc_root); 898 ASSERT(ret != -EEXIST); 899 if (ret) { 900 /* Pairs with create_reloc_root */ 901 btrfs_put_root(reloc_root); 902 return ret; 903 } 904 root->reloc_root = btrfs_grab_root(reloc_root); 905 return 0; 906 } 907 908 /* 909 * update root item of reloc tree 910 */ 911 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 912 struct btrfs_root *root) 913 { 914 struct btrfs_fs_info *fs_info = root->fs_info; 915 struct btrfs_root *reloc_root; 916 struct btrfs_root_item *root_item; 917 int ret; 918 919 if (!have_reloc_root(root)) 920 return 0; 921 922 reloc_root = root->reloc_root; 923 root_item = &reloc_root->root_item; 924 925 /* 926 * We are probably ok here, but __del_reloc_root() will drop its ref of 927 * the root. We have the ref for root->reloc_root, but just in case 928 * hold it while we update the reloc root. 929 */ 930 btrfs_grab_root(reloc_root); 931 932 /* root->reloc_root will stay until current relocation finished */ 933 if (fs_info->reloc_ctl->merge_reloc_tree && 934 btrfs_root_refs(root_item) == 0) { 935 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 936 /* 937 * Mark the tree as dead before we change reloc_root so 938 * have_reloc_root will not touch it from now on. 939 */ 940 smp_wmb(); 941 __del_reloc_root(reloc_root); 942 } 943 944 if (reloc_root->commit_root != reloc_root->node) { 945 __update_reloc_root(reloc_root); 946 btrfs_set_root_node(root_item, reloc_root->node); 947 free_extent_buffer(reloc_root->commit_root); 948 reloc_root->commit_root = btrfs_root_node(reloc_root); 949 } 950 951 ret = btrfs_update_root(trans, fs_info->tree_root, 952 &reloc_root->root_key, root_item); 953 btrfs_put_root(reloc_root); 954 return ret; 955 } 956 957 /* 958 * helper to find first cached inode with inode number >= objectid 959 * in a subvolume 960 */ 961 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 962 { 963 struct rb_node *node; 964 struct rb_node *prev; 965 struct btrfs_inode *entry; 966 struct inode *inode; 967 968 spin_lock(&root->inode_lock); 969 again: 970 node = root->inode_tree.rb_node; 971 prev = NULL; 972 while (node) { 973 prev = node; 974 entry = rb_entry(node, struct btrfs_inode, rb_node); 975 976 if (objectid < btrfs_ino(entry)) 977 node = node->rb_left; 978 else if (objectid > btrfs_ino(entry)) 979 node = node->rb_right; 980 else 981 break; 982 } 983 if (!node) { 984 while (prev) { 985 entry = rb_entry(prev, struct btrfs_inode, rb_node); 986 if (objectid <= btrfs_ino(entry)) { 987 node = prev; 988 break; 989 } 990 prev = rb_next(prev); 991 } 992 } 993 while (node) { 994 entry = rb_entry(node, struct btrfs_inode, rb_node); 995 inode = igrab(&entry->vfs_inode); 996 if (inode) { 997 spin_unlock(&root->inode_lock); 998 return inode; 999 } 1000 1001 objectid = btrfs_ino(entry) + 1; 1002 if (cond_resched_lock(&root->inode_lock)) 1003 goto again; 1004 1005 node = rb_next(node); 1006 } 1007 spin_unlock(&root->inode_lock); 1008 return NULL; 1009 } 1010 1011 /* 1012 * get new location of data 1013 */ 1014 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1015 u64 bytenr, u64 num_bytes) 1016 { 1017 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1018 struct btrfs_path *path; 1019 struct btrfs_file_extent_item *fi; 1020 struct extent_buffer *leaf; 1021 int ret; 1022 1023 path = btrfs_alloc_path(); 1024 if (!path) 1025 return -ENOMEM; 1026 1027 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1028 ret = btrfs_lookup_file_extent(NULL, root, path, 1029 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1030 if (ret < 0) 1031 goto out; 1032 if (ret > 0) { 1033 ret = -ENOENT; 1034 goto out; 1035 } 1036 1037 leaf = path->nodes[0]; 1038 fi = btrfs_item_ptr(leaf, path->slots[0], 1039 struct btrfs_file_extent_item); 1040 1041 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1042 btrfs_file_extent_compression(leaf, fi) || 1043 btrfs_file_extent_encryption(leaf, fi) || 1044 btrfs_file_extent_other_encoding(leaf, fi)); 1045 1046 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1047 ret = -EINVAL; 1048 goto out; 1049 } 1050 1051 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1052 ret = 0; 1053 out: 1054 btrfs_free_path(path); 1055 return ret; 1056 } 1057 1058 /* 1059 * update file extent items in the tree leaf to point to 1060 * the new locations. 1061 */ 1062 static noinline_for_stack 1063 int replace_file_extents(struct btrfs_trans_handle *trans, 1064 struct reloc_control *rc, 1065 struct btrfs_root *root, 1066 struct extent_buffer *leaf) 1067 { 1068 struct btrfs_fs_info *fs_info = root->fs_info; 1069 struct btrfs_key key; 1070 struct btrfs_file_extent_item *fi; 1071 struct inode *inode = NULL; 1072 u64 parent; 1073 u64 bytenr; 1074 u64 new_bytenr = 0; 1075 u64 num_bytes; 1076 u64 end; 1077 u32 nritems; 1078 u32 i; 1079 int ret = 0; 1080 int first = 1; 1081 int dirty = 0; 1082 1083 if (rc->stage != UPDATE_DATA_PTRS) 1084 return 0; 1085 1086 /* reloc trees always use full backref */ 1087 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1088 parent = leaf->start; 1089 else 1090 parent = 0; 1091 1092 nritems = btrfs_header_nritems(leaf); 1093 for (i = 0; i < nritems; i++) { 1094 struct btrfs_ref ref = { 0 }; 1095 1096 cond_resched(); 1097 btrfs_item_key_to_cpu(leaf, &key, i); 1098 if (key.type != BTRFS_EXTENT_DATA_KEY) 1099 continue; 1100 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1101 if (btrfs_file_extent_type(leaf, fi) == 1102 BTRFS_FILE_EXTENT_INLINE) 1103 continue; 1104 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1105 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1106 if (bytenr == 0) 1107 continue; 1108 if (!in_range(bytenr, rc->block_group->start, 1109 rc->block_group->length)) 1110 continue; 1111 1112 /* 1113 * if we are modifying block in fs tree, wait for read_folio 1114 * to complete and drop the extent cache 1115 */ 1116 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1117 if (first) { 1118 inode = find_next_inode(root, key.objectid); 1119 first = 0; 1120 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1121 btrfs_add_delayed_iput(BTRFS_I(inode)); 1122 inode = find_next_inode(root, key.objectid); 1123 } 1124 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1125 struct extent_state *cached_state = NULL; 1126 1127 end = key.offset + 1128 btrfs_file_extent_num_bytes(leaf, fi); 1129 WARN_ON(!IS_ALIGNED(key.offset, 1130 fs_info->sectorsize)); 1131 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1132 end--; 1133 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1134 key.offset, end, 1135 &cached_state); 1136 if (!ret) 1137 continue; 1138 1139 btrfs_drop_extent_map_range(BTRFS_I(inode), 1140 key.offset, end, true); 1141 unlock_extent(&BTRFS_I(inode)->io_tree, 1142 key.offset, end, &cached_state); 1143 } 1144 } 1145 1146 ret = get_new_location(rc->data_inode, &new_bytenr, 1147 bytenr, num_bytes); 1148 if (ret) { 1149 /* 1150 * Don't have to abort since we've not changed anything 1151 * in the file extent yet. 1152 */ 1153 break; 1154 } 1155 1156 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1157 dirty = 1; 1158 1159 key.offset -= btrfs_file_extent_offset(leaf, fi); 1160 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1161 num_bytes, parent); 1162 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1163 key.objectid, key.offset, 1164 root->root_key.objectid, false); 1165 ret = btrfs_inc_extent_ref(trans, &ref); 1166 if (ret) { 1167 btrfs_abort_transaction(trans, ret); 1168 break; 1169 } 1170 1171 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1172 num_bytes, parent); 1173 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1174 key.objectid, key.offset, 1175 root->root_key.objectid, false); 1176 ret = btrfs_free_extent(trans, &ref); 1177 if (ret) { 1178 btrfs_abort_transaction(trans, ret); 1179 break; 1180 } 1181 } 1182 if (dirty) 1183 btrfs_mark_buffer_dirty(leaf); 1184 if (inode) 1185 btrfs_add_delayed_iput(BTRFS_I(inode)); 1186 return ret; 1187 } 1188 1189 static noinline_for_stack 1190 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1191 struct btrfs_path *path, int level) 1192 { 1193 struct btrfs_disk_key key1; 1194 struct btrfs_disk_key key2; 1195 btrfs_node_key(eb, &key1, slot); 1196 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1197 return memcmp(&key1, &key2, sizeof(key1)); 1198 } 1199 1200 /* 1201 * try to replace tree blocks in fs tree with the new blocks 1202 * in reloc tree. tree blocks haven't been modified since the 1203 * reloc tree was create can be replaced. 1204 * 1205 * if a block was replaced, level of the block + 1 is returned. 1206 * if no block got replaced, 0 is returned. if there are other 1207 * errors, a negative error number is returned. 1208 */ 1209 static noinline_for_stack 1210 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1211 struct btrfs_root *dest, struct btrfs_root *src, 1212 struct btrfs_path *path, struct btrfs_key *next_key, 1213 int lowest_level, int max_level) 1214 { 1215 struct btrfs_fs_info *fs_info = dest->fs_info; 1216 struct extent_buffer *eb; 1217 struct extent_buffer *parent; 1218 struct btrfs_ref ref = { 0 }; 1219 struct btrfs_key key; 1220 u64 old_bytenr; 1221 u64 new_bytenr; 1222 u64 old_ptr_gen; 1223 u64 new_ptr_gen; 1224 u64 last_snapshot; 1225 u32 blocksize; 1226 int cow = 0; 1227 int level; 1228 int ret; 1229 int slot; 1230 1231 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1232 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1233 1234 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1235 again: 1236 slot = path->slots[lowest_level]; 1237 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1238 1239 eb = btrfs_lock_root_node(dest); 1240 level = btrfs_header_level(eb); 1241 1242 if (level < lowest_level) { 1243 btrfs_tree_unlock(eb); 1244 free_extent_buffer(eb); 1245 return 0; 1246 } 1247 1248 if (cow) { 1249 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1250 BTRFS_NESTING_COW); 1251 if (ret) { 1252 btrfs_tree_unlock(eb); 1253 free_extent_buffer(eb); 1254 return ret; 1255 } 1256 } 1257 1258 if (next_key) { 1259 next_key->objectid = (u64)-1; 1260 next_key->type = (u8)-1; 1261 next_key->offset = (u64)-1; 1262 } 1263 1264 parent = eb; 1265 while (1) { 1266 level = btrfs_header_level(parent); 1267 ASSERT(level >= lowest_level); 1268 1269 ret = btrfs_bin_search(parent, 0, &key, &slot); 1270 if (ret < 0) 1271 break; 1272 if (ret && slot > 0) 1273 slot--; 1274 1275 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1276 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1277 1278 old_bytenr = btrfs_node_blockptr(parent, slot); 1279 blocksize = fs_info->nodesize; 1280 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1281 1282 if (level <= max_level) { 1283 eb = path->nodes[level]; 1284 new_bytenr = btrfs_node_blockptr(eb, 1285 path->slots[level]); 1286 new_ptr_gen = btrfs_node_ptr_generation(eb, 1287 path->slots[level]); 1288 } else { 1289 new_bytenr = 0; 1290 new_ptr_gen = 0; 1291 } 1292 1293 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1294 ret = level; 1295 break; 1296 } 1297 1298 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1299 memcmp_node_keys(parent, slot, path, level)) { 1300 if (level <= lowest_level) { 1301 ret = 0; 1302 break; 1303 } 1304 1305 eb = btrfs_read_node_slot(parent, slot); 1306 if (IS_ERR(eb)) { 1307 ret = PTR_ERR(eb); 1308 break; 1309 } 1310 btrfs_tree_lock(eb); 1311 if (cow) { 1312 ret = btrfs_cow_block(trans, dest, eb, parent, 1313 slot, &eb, 1314 BTRFS_NESTING_COW); 1315 if (ret) { 1316 btrfs_tree_unlock(eb); 1317 free_extent_buffer(eb); 1318 break; 1319 } 1320 } 1321 1322 btrfs_tree_unlock(parent); 1323 free_extent_buffer(parent); 1324 1325 parent = eb; 1326 continue; 1327 } 1328 1329 if (!cow) { 1330 btrfs_tree_unlock(parent); 1331 free_extent_buffer(parent); 1332 cow = 1; 1333 goto again; 1334 } 1335 1336 btrfs_node_key_to_cpu(path->nodes[level], &key, 1337 path->slots[level]); 1338 btrfs_release_path(path); 1339 1340 path->lowest_level = level; 1341 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1342 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1343 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state); 1344 path->lowest_level = 0; 1345 if (ret) { 1346 if (ret > 0) 1347 ret = -ENOENT; 1348 break; 1349 } 1350 1351 /* 1352 * Info qgroup to trace both subtrees. 1353 * 1354 * We must trace both trees. 1355 * 1) Tree reloc subtree 1356 * If not traced, we will leak data numbers 1357 * 2) Fs subtree 1358 * If not traced, we will double count old data 1359 * 1360 * We don't scan the subtree right now, but only record 1361 * the swapped tree blocks. 1362 * The real subtree rescan is delayed until we have new 1363 * CoW on the subtree root node before transaction commit. 1364 */ 1365 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1366 rc->block_group, parent, slot, 1367 path->nodes[level], path->slots[level], 1368 last_snapshot); 1369 if (ret < 0) 1370 break; 1371 /* 1372 * swap blocks in fs tree and reloc tree. 1373 */ 1374 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1375 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1376 btrfs_mark_buffer_dirty(parent); 1377 1378 btrfs_set_node_blockptr(path->nodes[level], 1379 path->slots[level], old_bytenr); 1380 btrfs_set_node_ptr_generation(path->nodes[level], 1381 path->slots[level], old_ptr_gen); 1382 btrfs_mark_buffer_dirty(path->nodes[level]); 1383 1384 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1385 blocksize, path->nodes[level]->start); 1386 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1387 0, true); 1388 ret = btrfs_inc_extent_ref(trans, &ref); 1389 if (ret) { 1390 btrfs_abort_transaction(trans, ret); 1391 break; 1392 } 1393 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1394 blocksize, 0); 1395 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0, 1396 true); 1397 ret = btrfs_inc_extent_ref(trans, &ref); 1398 if (ret) { 1399 btrfs_abort_transaction(trans, ret); 1400 break; 1401 } 1402 1403 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1404 blocksize, path->nodes[level]->start); 1405 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid, 1406 0, true); 1407 ret = btrfs_free_extent(trans, &ref); 1408 if (ret) { 1409 btrfs_abort_transaction(trans, ret); 1410 break; 1411 } 1412 1413 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1414 blocksize, 0); 1415 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 1416 0, true); 1417 ret = btrfs_free_extent(trans, &ref); 1418 if (ret) { 1419 btrfs_abort_transaction(trans, ret); 1420 break; 1421 } 1422 1423 btrfs_unlock_up_safe(path, 0); 1424 1425 ret = level; 1426 break; 1427 } 1428 btrfs_tree_unlock(parent); 1429 free_extent_buffer(parent); 1430 return ret; 1431 } 1432 1433 /* 1434 * helper to find next relocated block in reloc tree 1435 */ 1436 static noinline_for_stack 1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1438 int *level) 1439 { 1440 struct extent_buffer *eb; 1441 int i; 1442 u64 last_snapshot; 1443 u32 nritems; 1444 1445 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1446 1447 for (i = 0; i < *level; i++) { 1448 free_extent_buffer(path->nodes[i]); 1449 path->nodes[i] = NULL; 1450 } 1451 1452 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1453 eb = path->nodes[i]; 1454 nritems = btrfs_header_nritems(eb); 1455 while (path->slots[i] + 1 < nritems) { 1456 path->slots[i]++; 1457 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1458 last_snapshot) 1459 continue; 1460 1461 *level = i; 1462 return 0; 1463 } 1464 free_extent_buffer(path->nodes[i]); 1465 path->nodes[i] = NULL; 1466 } 1467 return 1; 1468 } 1469 1470 /* 1471 * walk down reloc tree to find relocated block of lowest level 1472 */ 1473 static noinline_for_stack 1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1475 int *level) 1476 { 1477 struct extent_buffer *eb = NULL; 1478 int i; 1479 u64 ptr_gen = 0; 1480 u64 last_snapshot; 1481 u32 nritems; 1482 1483 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1484 1485 for (i = *level; i > 0; i--) { 1486 eb = path->nodes[i]; 1487 nritems = btrfs_header_nritems(eb); 1488 while (path->slots[i] < nritems) { 1489 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1490 if (ptr_gen > last_snapshot) 1491 break; 1492 path->slots[i]++; 1493 } 1494 if (path->slots[i] >= nritems) { 1495 if (i == *level) 1496 break; 1497 *level = i + 1; 1498 return 0; 1499 } 1500 if (i == 1) { 1501 *level = i; 1502 return 0; 1503 } 1504 1505 eb = btrfs_read_node_slot(eb, path->slots[i]); 1506 if (IS_ERR(eb)) 1507 return PTR_ERR(eb); 1508 BUG_ON(btrfs_header_level(eb) != i - 1); 1509 path->nodes[i - 1] = eb; 1510 path->slots[i - 1] = 0; 1511 } 1512 return 1; 1513 } 1514 1515 /* 1516 * invalidate extent cache for file extents whose key in range of 1517 * [min_key, max_key) 1518 */ 1519 static int invalidate_extent_cache(struct btrfs_root *root, 1520 struct btrfs_key *min_key, 1521 struct btrfs_key *max_key) 1522 { 1523 struct btrfs_fs_info *fs_info = root->fs_info; 1524 struct inode *inode = NULL; 1525 u64 objectid; 1526 u64 start, end; 1527 u64 ino; 1528 1529 objectid = min_key->objectid; 1530 while (1) { 1531 struct extent_state *cached_state = NULL; 1532 1533 cond_resched(); 1534 iput(inode); 1535 1536 if (objectid > max_key->objectid) 1537 break; 1538 1539 inode = find_next_inode(root, objectid); 1540 if (!inode) 1541 break; 1542 ino = btrfs_ino(BTRFS_I(inode)); 1543 1544 if (ino > max_key->objectid) { 1545 iput(inode); 1546 break; 1547 } 1548 1549 objectid = ino + 1; 1550 if (!S_ISREG(inode->i_mode)) 1551 continue; 1552 1553 if (unlikely(min_key->objectid == ino)) { 1554 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1555 continue; 1556 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1557 start = 0; 1558 else { 1559 start = min_key->offset; 1560 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1561 } 1562 } else { 1563 start = 0; 1564 } 1565 1566 if (unlikely(max_key->objectid == ino)) { 1567 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1568 continue; 1569 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1570 end = (u64)-1; 1571 } else { 1572 if (max_key->offset == 0) 1573 continue; 1574 end = max_key->offset; 1575 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1576 end--; 1577 } 1578 } else { 1579 end = (u64)-1; 1580 } 1581 1582 /* the lock_extent waits for read_folio to complete */ 1583 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1584 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true); 1585 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 1586 } 1587 return 0; 1588 } 1589 1590 static int find_next_key(struct btrfs_path *path, int level, 1591 struct btrfs_key *key) 1592 1593 { 1594 while (level < BTRFS_MAX_LEVEL) { 1595 if (!path->nodes[level]) 1596 break; 1597 if (path->slots[level] + 1 < 1598 btrfs_header_nritems(path->nodes[level])) { 1599 btrfs_node_key_to_cpu(path->nodes[level], key, 1600 path->slots[level] + 1); 1601 return 0; 1602 } 1603 level++; 1604 } 1605 return 1; 1606 } 1607 1608 /* 1609 * Insert current subvolume into reloc_control::dirty_subvol_roots 1610 */ 1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans, 1612 struct reloc_control *rc, 1613 struct btrfs_root *root) 1614 { 1615 struct btrfs_root *reloc_root = root->reloc_root; 1616 struct btrfs_root_item *reloc_root_item; 1617 int ret; 1618 1619 /* @root must be a subvolume tree root with a valid reloc tree */ 1620 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1621 ASSERT(reloc_root); 1622 1623 reloc_root_item = &reloc_root->root_item; 1624 memset(&reloc_root_item->drop_progress, 0, 1625 sizeof(reloc_root_item->drop_progress)); 1626 btrfs_set_root_drop_level(reloc_root_item, 0); 1627 btrfs_set_root_refs(reloc_root_item, 0); 1628 ret = btrfs_update_reloc_root(trans, root); 1629 if (ret) 1630 return ret; 1631 1632 if (list_empty(&root->reloc_dirty_list)) { 1633 btrfs_grab_root(root); 1634 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1635 } 1636 1637 return 0; 1638 } 1639 1640 static int clean_dirty_subvols(struct reloc_control *rc) 1641 { 1642 struct btrfs_root *root; 1643 struct btrfs_root *next; 1644 int ret = 0; 1645 int ret2; 1646 1647 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1648 reloc_dirty_list) { 1649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1650 /* Merged subvolume, cleanup its reloc root */ 1651 struct btrfs_root *reloc_root = root->reloc_root; 1652 1653 list_del_init(&root->reloc_dirty_list); 1654 root->reloc_root = NULL; 1655 /* 1656 * Need barrier to ensure clear_bit() only happens after 1657 * root->reloc_root = NULL. Pairs with have_reloc_root. 1658 */ 1659 smp_wmb(); 1660 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1661 if (reloc_root) { 1662 /* 1663 * btrfs_drop_snapshot drops our ref we hold for 1664 * ->reloc_root. If it fails however we must 1665 * drop the ref ourselves. 1666 */ 1667 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1668 if (ret2 < 0) { 1669 btrfs_put_root(reloc_root); 1670 if (!ret) 1671 ret = ret2; 1672 } 1673 } 1674 btrfs_put_root(root); 1675 } else { 1676 /* Orphan reloc tree, just clean it up */ 1677 ret2 = btrfs_drop_snapshot(root, 0, 1); 1678 if (ret2 < 0) { 1679 btrfs_put_root(root); 1680 if (!ret) 1681 ret = ret2; 1682 } 1683 } 1684 } 1685 return ret; 1686 } 1687 1688 /* 1689 * merge the relocated tree blocks in reloc tree with corresponding 1690 * fs tree. 1691 */ 1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1693 struct btrfs_root *root) 1694 { 1695 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1696 struct btrfs_key key; 1697 struct btrfs_key next_key; 1698 struct btrfs_trans_handle *trans = NULL; 1699 struct btrfs_root *reloc_root; 1700 struct btrfs_root_item *root_item; 1701 struct btrfs_path *path; 1702 struct extent_buffer *leaf; 1703 int reserve_level; 1704 int level; 1705 int max_level; 1706 int replaced = 0; 1707 int ret = 0; 1708 u32 min_reserved; 1709 1710 path = btrfs_alloc_path(); 1711 if (!path) 1712 return -ENOMEM; 1713 path->reada = READA_FORWARD; 1714 1715 reloc_root = root->reloc_root; 1716 root_item = &reloc_root->root_item; 1717 1718 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1719 level = btrfs_root_level(root_item); 1720 atomic_inc(&reloc_root->node->refs); 1721 path->nodes[level] = reloc_root->node; 1722 path->slots[level] = 0; 1723 } else { 1724 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1725 1726 level = btrfs_root_drop_level(root_item); 1727 BUG_ON(level == 0); 1728 path->lowest_level = level; 1729 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1730 path->lowest_level = 0; 1731 if (ret < 0) { 1732 btrfs_free_path(path); 1733 return ret; 1734 } 1735 1736 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1737 path->slots[level]); 1738 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1739 1740 btrfs_unlock_up_safe(path, 0); 1741 } 1742 1743 /* 1744 * In merge_reloc_root(), we modify the upper level pointer to swap the 1745 * tree blocks between reloc tree and subvolume tree. Thus for tree 1746 * block COW, we COW at most from level 1 to root level for each tree. 1747 * 1748 * Thus the needed metadata size is at most root_level * nodesize, 1749 * and * 2 since we have two trees to COW. 1750 */ 1751 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1752 min_reserved = fs_info->nodesize * reserve_level * 2; 1753 memset(&next_key, 0, sizeof(next_key)); 1754 1755 while (1) { 1756 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 1757 min_reserved, 1758 BTRFS_RESERVE_FLUSH_LIMIT); 1759 if (ret) 1760 goto out; 1761 trans = btrfs_start_transaction(root, 0); 1762 if (IS_ERR(trans)) { 1763 ret = PTR_ERR(trans); 1764 trans = NULL; 1765 goto out; 1766 } 1767 1768 /* 1769 * At this point we no longer have a reloc_control, so we can't 1770 * depend on btrfs_init_reloc_root to update our last_trans. 1771 * 1772 * But that's ok, we started the trans handle on our 1773 * corresponding fs_root, which means it's been added to the 1774 * dirty list. At commit time we'll still call 1775 * btrfs_update_reloc_root() and update our root item 1776 * appropriately. 1777 */ 1778 reloc_root->last_trans = trans->transid; 1779 trans->block_rsv = rc->block_rsv; 1780 1781 replaced = 0; 1782 max_level = level; 1783 1784 ret = walk_down_reloc_tree(reloc_root, path, &level); 1785 if (ret < 0) 1786 goto out; 1787 if (ret > 0) 1788 break; 1789 1790 if (!find_next_key(path, level, &key) && 1791 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1792 ret = 0; 1793 } else { 1794 ret = replace_path(trans, rc, root, reloc_root, path, 1795 &next_key, level, max_level); 1796 } 1797 if (ret < 0) 1798 goto out; 1799 if (ret > 0) { 1800 level = ret; 1801 btrfs_node_key_to_cpu(path->nodes[level], &key, 1802 path->slots[level]); 1803 replaced = 1; 1804 } 1805 1806 ret = walk_up_reloc_tree(reloc_root, path, &level); 1807 if (ret > 0) 1808 break; 1809 1810 BUG_ON(level == 0); 1811 /* 1812 * save the merging progress in the drop_progress. 1813 * this is OK since root refs == 1 in this case. 1814 */ 1815 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1816 path->slots[level]); 1817 btrfs_set_root_drop_level(root_item, level); 1818 1819 btrfs_end_transaction_throttle(trans); 1820 trans = NULL; 1821 1822 btrfs_btree_balance_dirty(fs_info); 1823 1824 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1825 invalidate_extent_cache(root, &key, &next_key); 1826 } 1827 1828 /* 1829 * handle the case only one block in the fs tree need to be 1830 * relocated and the block is tree root. 1831 */ 1832 leaf = btrfs_lock_root_node(root); 1833 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1834 BTRFS_NESTING_COW); 1835 btrfs_tree_unlock(leaf); 1836 free_extent_buffer(leaf); 1837 out: 1838 btrfs_free_path(path); 1839 1840 if (ret == 0) { 1841 ret = insert_dirty_subvol(trans, rc, root); 1842 if (ret) 1843 btrfs_abort_transaction(trans, ret); 1844 } 1845 1846 if (trans) 1847 btrfs_end_transaction_throttle(trans); 1848 1849 btrfs_btree_balance_dirty(fs_info); 1850 1851 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1852 invalidate_extent_cache(root, &key, &next_key); 1853 1854 return ret; 1855 } 1856 1857 static noinline_for_stack 1858 int prepare_to_merge(struct reloc_control *rc, int err) 1859 { 1860 struct btrfs_root *root = rc->extent_root; 1861 struct btrfs_fs_info *fs_info = root->fs_info; 1862 struct btrfs_root *reloc_root; 1863 struct btrfs_trans_handle *trans; 1864 LIST_HEAD(reloc_roots); 1865 u64 num_bytes = 0; 1866 int ret; 1867 1868 mutex_lock(&fs_info->reloc_mutex); 1869 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1870 rc->merging_rsv_size += rc->nodes_relocated * 2; 1871 mutex_unlock(&fs_info->reloc_mutex); 1872 1873 again: 1874 if (!err) { 1875 num_bytes = rc->merging_rsv_size; 1876 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes, 1877 BTRFS_RESERVE_FLUSH_ALL); 1878 if (ret) 1879 err = ret; 1880 } 1881 1882 trans = btrfs_join_transaction(rc->extent_root); 1883 if (IS_ERR(trans)) { 1884 if (!err) 1885 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1886 num_bytes, NULL); 1887 return PTR_ERR(trans); 1888 } 1889 1890 if (!err) { 1891 if (num_bytes != rc->merging_rsv_size) { 1892 btrfs_end_transaction(trans); 1893 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1894 num_bytes, NULL); 1895 goto again; 1896 } 1897 } 1898 1899 rc->merge_reloc_tree = 1; 1900 1901 while (!list_empty(&rc->reloc_roots)) { 1902 reloc_root = list_entry(rc->reloc_roots.next, 1903 struct btrfs_root, root_list); 1904 list_del_init(&reloc_root->root_list); 1905 1906 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1907 false); 1908 if (IS_ERR(root)) { 1909 /* 1910 * Even if we have an error we need this reloc root 1911 * back on our list so we can clean up properly. 1912 */ 1913 list_add(&reloc_root->root_list, &reloc_roots); 1914 btrfs_abort_transaction(trans, (int)PTR_ERR(root)); 1915 if (!err) 1916 err = PTR_ERR(root); 1917 break; 1918 } 1919 1920 if (unlikely(root->reloc_root != reloc_root)) { 1921 if (root->reloc_root) { 1922 btrfs_err(fs_info, 1923 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu", 1924 root->root_key.objectid, 1925 root->reloc_root->root_key.objectid, 1926 root->reloc_root->root_key.type, 1927 root->reloc_root->root_key.offset, 1928 btrfs_root_generation( 1929 &root->reloc_root->root_item), 1930 reloc_root->root_key.objectid, 1931 reloc_root->root_key.type, 1932 reloc_root->root_key.offset, 1933 btrfs_root_generation( 1934 &reloc_root->root_item)); 1935 } else { 1936 btrfs_err(fs_info, 1937 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu", 1938 root->root_key.objectid, 1939 reloc_root->root_key.objectid, 1940 reloc_root->root_key.type, 1941 reloc_root->root_key.offset, 1942 btrfs_root_generation( 1943 &reloc_root->root_item)); 1944 } 1945 list_add(&reloc_root->root_list, &reloc_roots); 1946 btrfs_put_root(root); 1947 btrfs_abort_transaction(trans, -EUCLEAN); 1948 if (!err) 1949 err = -EUCLEAN; 1950 break; 1951 } 1952 1953 /* 1954 * set reference count to 1, so btrfs_recover_relocation 1955 * knows it should resumes merging 1956 */ 1957 if (!err) 1958 btrfs_set_root_refs(&reloc_root->root_item, 1); 1959 ret = btrfs_update_reloc_root(trans, root); 1960 1961 /* 1962 * Even if we have an error we need this reloc root back on our 1963 * list so we can clean up properly. 1964 */ 1965 list_add(&reloc_root->root_list, &reloc_roots); 1966 btrfs_put_root(root); 1967 1968 if (ret) { 1969 btrfs_abort_transaction(trans, ret); 1970 if (!err) 1971 err = ret; 1972 break; 1973 } 1974 } 1975 1976 list_splice(&reloc_roots, &rc->reloc_roots); 1977 1978 if (!err) 1979 err = btrfs_commit_transaction(trans); 1980 else 1981 btrfs_end_transaction(trans); 1982 return err; 1983 } 1984 1985 static noinline_for_stack 1986 void free_reloc_roots(struct list_head *list) 1987 { 1988 struct btrfs_root *reloc_root, *tmp; 1989 1990 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1991 __del_reloc_root(reloc_root); 1992 } 1993 1994 static noinline_for_stack 1995 void merge_reloc_roots(struct reloc_control *rc) 1996 { 1997 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1998 struct btrfs_root *root; 1999 struct btrfs_root *reloc_root; 2000 LIST_HEAD(reloc_roots); 2001 int found = 0; 2002 int ret = 0; 2003 again: 2004 root = rc->extent_root; 2005 2006 /* 2007 * this serializes us with btrfs_record_root_in_transaction, 2008 * we have to make sure nobody is in the middle of 2009 * adding their roots to the list while we are 2010 * doing this splice 2011 */ 2012 mutex_lock(&fs_info->reloc_mutex); 2013 list_splice_init(&rc->reloc_roots, &reloc_roots); 2014 mutex_unlock(&fs_info->reloc_mutex); 2015 2016 while (!list_empty(&reloc_roots)) { 2017 found = 1; 2018 reloc_root = list_entry(reloc_roots.next, 2019 struct btrfs_root, root_list); 2020 2021 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 2022 false); 2023 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2024 if (WARN_ON(IS_ERR(root))) { 2025 /* 2026 * For recovery we read the fs roots on mount, 2027 * and if we didn't find the root then we marked 2028 * the reloc root as a garbage root. For normal 2029 * relocation obviously the root should exist in 2030 * memory. However there's no reason we can't 2031 * handle the error properly here just in case. 2032 */ 2033 ret = PTR_ERR(root); 2034 goto out; 2035 } 2036 if (WARN_ON(root->reloc_root != reloc_root)) { 2037 /* 2038 * This can happen if on-disk metadata has some 2039 * corruption, e.g. bad reloc tree key offset. 2040 */ 2041 ret = -EINVAL; 2042 goto out; 2043 } 2044 ret = merge_reloc_root(rc, root); 2045 btrfs_put_root(root); 2046 if (ret) { 2047 if (list_empty(&reloc_root->root_list)) 2048 list_add_tail(&reloc_root->root_list, 2049 &reloc_roots); 2050 goto out; 2051 } 2052 } else { 2053 if (!IS_ERR(root)) { 2054 if (root->reloc_root == reloc_root) { 2055 root->reloc_root = NULL; 2056 btrfs_put_root(reloc_root); 2057 } 2058 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 2059 &root->state); 2060 btrfs_put_root(root); 2061 } 2062 2063 list_del_init(&reloc_root->root_list); 2064 /* Don't forget to queue this reloc root for cleanup */ 2065 list_add_tail(&reloc_root->reloc_dirty_list, 2066 &rc->dirty_subvol_roots); 2067 } 2068 } 2069 2070 if (found) { 2071 found = 0; 2072 goto again; 2073 } 2074 out: 2075 if (ret) { 2076 btrfs_handle_fs_error(fs_info, ret, NULL); 2077 free_reloc_roots(&reloc_roots); 2078 2079 /* new reloc root may be added */ 2080 mutex_lock(&fs_info->reloc_mutex); 2081 list_splice_init(&rc->reloc_roots, &reloc_roots); 2082 mutex_unlock(&fs_info->reloc_mutex); 2083 free_reloc_roots(&reloc_roots); 2084 } 2085 2086 /* 2087 * We used to have 2088 * 2089 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2090 * 2091 * here, but it's wrong. If we fail to start the transaction in 2092 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2093 * have actually been removed from the reloc_root_tree rb tree. This is 2094 * fine because we're bailing here, and we hold a reference on the root 2095 * for the list that holds it, so these roots will be cleaned up when we 2096 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2097 * will be cleaned up on unmount. 2098 * 2099 * The remaining nodes will be cleaned up by free_reloc_control. 2100 */ 2101 } 2102 2103 static void free_block_list(struct rb_root *blocks) 2104 { 2105 struct tree_block *block; 2106 struct rb_node *rb_node; 2107 while ((rb_node = rb_first(blocks))) { 2108 block = rb_entry(rb_node, struct tree_block, rb_node); 2109 rb_erase(rb_node, blocks); 2110 kfree(block); 2111 } 2112 } 2113 2114 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2115 struct btrfs_root *reloc_root) 2116 { 2117 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2118 struct btrfs_root *root; 2119 int ret; 2120 2121 if (reloc_root->last_trans == trans->transid) 2122 return 0; 2123 2124 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 2125 2126 /* 2127 * This should succeed, since we can't have a reloc root without having 2128 * already looked up the actual root and created the reloc root for this 2129 * root. 2130 * 2131 * However if there's some sort of corruption where we have a ref to a 2132 * reloc root without a corresponding root this could return ENOENT. 2133 */ 2134 if (IS_ERR(root)) { 2135 ASSERT(0); 2136 return PTR_ERR(root); 2137 } 2138 if (root->reloc_root != reloc_root) { 2139 ASSERT(0); 2140 btrfs_err(fs_info, 2141 "root %llu has two reloc roots associated with it", 2142 reloc_root->root_key.offset); 2143 btrfs_put_root(root); 2144 return -EUCLEAN; 2145 } 2146 ret = btrfs_record_root_in_trans(trans, root); 2147 btrfs_put_root(root); 2148 2149 return ret; 2150 } 2151 2152 static noinline_for_stack 2153 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2154 struct reloc_control *rc, 2155 struct btrfs_backref_node *node, 2156 struct btrfs_backref_edge *edges[]) 2157 { 2158 struct btrfs_backref_node *next; 2159 struct btrfs_root *root; 2160 int index = 0; 2161 int ret; 2162 2163 next = node; 2164 while (1) { 2165 cond_resched(); 2166 next = walk_up_backref(next, edges, &index); 2167 root = next->root; 2168 2169 /* 2170 * If there is no root, then our references for this block are 2171 * incomplete, as we should be able to walk all the way up to a 2172 * block that is owned by a root. 2173 * 2174 * This path is only for SHAREABLE roots, so if we come upon a 2175 * non-SHAREABLE root then we have backrefs that resolve 2176 * improperly. 2177 * 2178 * Both of these cases indicate file system corruption, or a bug 2179 * in the backref walking code. 2180 */ 2181 if (!root) { 2182 ASSERT(0); 2183 btrfs_err(trans->fs_info, 2184 "bytenr %llu doesn't have a backref path ending in a root", 2185 node->bytenr); 2186 return ERR_PTR(-EUCLEAN); 2187 } 2188 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2189 ASSERT(0); 2190 btrfs_err(trans->fs_info, 2191 "bytenr %llu has multiple refs with one ending in a non-shareable root", 2192 node->bytenr); 2193 return ERR_PTR(-EUCLEAN); 2194 } 2195 2196 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2197 ret = record_reloc_root_in_trans(trans, root); 2198 if (ret) 2199 return ERR_PTR(ret); 2200 break; 2201 } 2202 2203 ret = btrfs_record_root_in_trans(trans, root); 2204 if (ret) 2205 return ERR_PTR(ret); 2206 root = root->reloc_root; 2207 2208 /* 2209 * We could have raced with another thread which failed, so 2210 * root->reloc_root may not be set, return ENOENT in this case. 2211 */ 2212 if (!root) 2213 return ERR_PTR(-ENOENT); 2214 2215 if (next->new_bytenr != root->node->start) { 2216 /* 2217 * We just created the reloc root, so we shouldn't have 2218 * ->new_bytenr set and this shouldn't be in the changed 2219 * list. If it is then we have multiple roots pointing 2220 * at the same bytenr which indicates corruption, or 2221 * we've made a mistake in the backref walking code. 2222 */ 2223 ASSERT(next->new_bytenr == 0); 2224 ASSERT(list_empty(&next->list)); 2225 if (next->new_bytenr || !list_empty(&next->list)) { 2226 btrfs_err(trans->fs_info, 2227 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu", 2228 node->bytenr, next->bytenr); 2229 return ERR_PTR(-EUCLEAN); 2230 } 2231 2232 next->new_bytenr = root->node->start; 2233 btrfs_put_root(next->root); 2234 next->root = btrfs_grab_root(root); 2235 ASSERT(next->root); 2236 list_add_tail(&next->list, 2237 &rc->backref_cache.changed); 2238 mark_block_processed(rc, next); 2239 break; 2240 } 2241 2242 WARN_ON(1); 2243 root = NULL; 2244 next = walk_down_backref(edges, &index); 2245 if (!next || next->level <= node->level) 2246 break; 2247 } 2248 if (!root) { 2249 /* 2250 * This can happen if there's fs corruption or if there's a bug 2251 * in the backref lookup code. 2252 */ 2253 ASSERT(0); 2254 return ERR_PTR(-ENOENT); 2255 } 2256 2257 next = node; 2258 /* setup backref node path for btrfs_reloc_cow_block */ 2259 while (1) { 2260 rc->backref_cache.path[next->level] = next; 2261 if (--index < 0) 2262 break; 2263 next = edges[index]->node[UPPER]; 2264 } 2265 return root; 2266 } 2267 2268 /* 2269 * Select a tree root for relocation. 2270 * 2271 * Return NULL if the block is not shareable. We should use do_relocation() in 2272 * this case. 2273 * 2274 * Return a tree root pointer if the block is shareable. 2275 * Return -ENOENT if the block is root of reloc tree. 2276 */ 2277 static noinline_for_stack 2278 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2279 { 2280 struct btrfs_backref_node *next; 2281 struct btrfs_root *root; 2282 struct btrfs_root *fs_root = NULL; 2283 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2284 int index = 0; 2285 2286 next = node; 2287 while (1) { 2288 cond_resched(); 2289 next = walk_up_backref(next, edges, &index); 2290 root = next->root; 2291 2292 /* 2293 * This can occur if we have incomplete extent refs leading all 2294 * the way up a particular path, in this case return -EUCLEAN. 2295 */ 2296 if (!root) 2297 return ERR_PTR(-EUCLEAN); 2298 2299 /* No other choice for non-shareable tree */ 2300 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2301 return root; 2302 2303 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2304 fs_root = root; 2305 2306 if (next != node) 2307 return NULL; 2308 2309 next = walk_down_backref(edges, &index); 2310 if (!next || next->level <= node->level) 2311 break; 2312 } 2313 2314 if (!fs_root) 2315 return ERR_PTR(-ENOENT); 2316 return fs_root; 2317 } 2318 2319 static noinline_for_stack 2320 u64 calcu_metadata_size(struct reloc_control *rc, 2321 struct btrfs_backref_node *node, int reserve) 2322 { 2323 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2324 struct btrfs_backref_node *next = node; 2325 struct btrfs_backref_edge *edge; 2326 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2327 u64 num_bytes = 0; 2328 int index = 0; 2329 2330 BUG_ON(reserve && node->processed); 2331 2332 while (next) { 2333 cond_resched(); 2334 while (1) { 2335 if (next->processed && (reserve || next != node)) 2336 break; 2337 2338 num_bytes += fs_info->nodesize; 2339 2340 if (list_empty(&next->upper)) 2341 break; 2342 2343 edge = list_entry(next->upper.next, 2344 struct btrfs_backref_edge, list[LOWER]); 2345 edges[index++] = edge; 2346 next = edge->node[UPPER]; 2347 } 2348 next = walk_down_backref(edges, &index); 2349 } 2350 return num_bytes; 2351 } 2352 2353 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2354 struct reloc_control *rc, 2355 struct btrfs_backref_node *node) 2356 { 2357 struct btrfs_root *root = rc->extent_root; 2358 struct btrfs_fs_info *fs_info = root->fs_info; 2359 u64 num_bytes; 2360 int ret; 2361 u64 tmp; 2362 2363 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2364 2365 trans->block_rsv = rc->block_rsv; 2366 rc->reserved_bytes += num_bytes; 2367 2368 /* 2369 * We are under a transaction here so we can only do limited flushing. 2370 * If we get an enospc just kick back -EAGAIN so we know to drop the 2371 * transaction and try to refill when we can flush all the things. 2372 */ 2373 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes, 2374 BTRFS_RESERVE_FLUSH_LIMIT); 2375 if (ret) { 2376 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2377 while (tmp <= rc->reserved_bytes) 2378 tmp <<= 1; 2379 /* 2380 * only one thread can access block_rsv at this point, 2381 * so we don't need hold lock to protect block_rsv. 2382 * we expand more reservation size here to allow enough 2383 * space for relocation and we will return earlier in 2384 * enospc case. 2385 */ 2386 rc->block_rsv->size = tmp + fs_info->nodesize * 2387 RELOCATION_RESERVED_NODES; 2388 return -EAGAIN; 2389 } 2390 2391 return 0; 2392 } 2393 2394 /* 2395 * relocate a block tree, and then update pointers in upper level 2396 * blocks that reference the block to point to the new location. 2397 * 2398 * if called by link_to_upper, the block has already been relocated. 2399 * in that case this function just updates pointers. 2400 */ 2401 static int do_relocation(struct btrfs_trans_handle *trans, 2402 struct reloc_control *rc, 2403 struct btrfs_backref_node *node, 2404 struct btrfs_key *key, 2405 struct btrfs_path *path, int lowest) 2406 { 2407 struct btrfs_backref_node *upper; 2408 struct btrfs_backref_edge *edge; 2409 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2410 struct btrfs_root *root; 2411 struct extent_buffer *eb; 2412 u32 blocksize; 2413 u64 bytenr; 2414 int slot; 2415 int ret = 0; 2416 2417 /* 2418 * If we are lowest then this is the first time we're processing this 2419 * block, and thus shouldn't have an eb associated with it yet. 2420 */ 2421 ASSERT(!lowest || !node->eb); 2422 2423 path->lowest_level = node->level + 1; 2424 rc->backref_cache.path[node->level] = node; 2425 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2426 struct btrfs_ref ref = { 0 }; 2427 2428 cond_resched(); 2429 2430 upper = edge->node[UPPER]; 2431 root = select_reloc_root(trans, rc, upper, edges); 2432 if (IS_ERR(root)) { 2433 ret = PTR_ERR(root); 2434 goto next; 2435 } 2436 2437 if (upper->eb && !upper->locked) { 2438 if (!lowest) { 2439 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2440 if (ret < 0) 2441 goto next; 2442 BUG_ON(ret); 2443 bytenr = btrfs_node_blockptr(upper->eb, slot); 2444 if (node->eb->start == bytenr) 2445 goto next; 2446 } 2447 btrfs_backref_drop_node_buffer(upper); 2448 } 2449 2450 if (!upper->eb) { 2451 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2452 if (ret) { 2453 if (ret > 0) 2454 ret = -ENOENT; 2455 2456 btrfs_release_path(path); 2457 break; 2458 } 2459 2460 if (!upper->eb) { 2461 upper->eb = path->nodes[upper->level]; 2462 path->nodes[upper->level] = NULL; 2463 } else { 2464 BUG_ON(upper->eb != path->nodes[upper->level]); 2465 } 2466 2467 upper->locked = 1; 2468 path->locks[upper->level] = 0; 2469 2470 slot = path->slots[upper->level]; 2471 btrfs_release_path(path); 2472 } else { 2473 ret = btrfs_bin_search(upper->eb, 0, key, &slot); 2474 if (ret < 0) 2475 goto next; 2476 BUG_ON(ret); 2477 } 2478 2479 bytenr = btrfs_node_blockptr(upper->eb, slot); 2480 if (lowest) { 2481 if (bytenr != node->bytenr) { 2482 btrfs_err(root->fs_info, 2483 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2484 bytenr, node->bytenr, slot, 2485 upper->eb->start); 2486 ret = -EIO; 2487 goto next; 2488 } 2489 } else { 2490 if (node->eb->start == bytenr) 2491 goto next; 2492 } 2493 2494 blocksize = root->fs_info->nodesize; 2495 eb = btrfs_read_node_slot(upper->eb, slot); 2496 if (IS_ERR(eb)) { 2497 ret = PTR_ERR(eb); 2498 goto next; 2499 } 2500 btrfs_tree_lock(eb); 2501 2502 if (!node->eb) { 2503 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2504 slot, &eb, BTRFS_NESTING_COW); 2505 btrfs_tree_unlock(eb); 2506 free_extent_buffer(eb); 2507 if (ret < 0) 2508 goto next; 2509 /* 2510 * We've just COWed this block, it should have updated 2511 * the correct backref node entry. 2512 */ 2513 ASSERT(node->eb == eb); 2514 } else { 2515 btrfs_set_node_blockptr(upper->eb, slot, 2516 node->eb->start); 2517 btrfs_set_node_ptr_generation(upper->eb, slot, 2518 trans->transid); 2519 btrfs_mark_buffer_dirty(upper->eb); 2520 2521 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2522 node->eb->start, blocksize, 2523 upper->eb->start); 2524 btrfs_init_tree_ref(&ref, node->level, 2525 btrfs_header_owner(upper->eb), 2526 root->root_key.objectid, false); 2527 ret = btrfs_inc_extent_ref(trans, &ref); 2528 if (!ret) 2529 ret = btrfs_drop_subtree(trans, root, eb, 2530 upper->eb); 2531 if (ret) 2532 btrfs_abort_transaction(trans, ret); 2533 } 2534 next: 2535 if (!upper->pending) 2536 btrfs_backref_drop_node_buffer(upper); 2537 else 2538 btrfs_backref_unlock_node_buffer(upper); 2539 if (ret) 2540 break; 2541 } 2542 2543 if (!ret && node->pending) { 2544 btrfs_backref_drop_node_buffer(node); 2545 list_move_tail(&node->list, &rc->backref_cache.changed); 2546 node->pending = 0; 2547 } 2548 2549 path->lowest_level = 0; 2550 2551 /* 2552 * We should have allocated all of our space in the block rsv and thus 2553 * shouldn't ENOSPC. 2554 */ 2555 ASSERT(ret != -ENOSPC); 2556 return ret; 2557 } 2558 2559 static int link_to_upper(struct btrfs_trans_handle *trans, 2560 struct reloc_control *rc, 2561 struct btrfs_backref_node *node, 2562 struct btrfs_path *path) 2563 { 2564 struct btrfs_key key; 2565 2566 btrfs_node_key_to_cpu(node->eb, &key, 0); 2567 return do_relocation(trans, rc, node, &key, path, 0); 2568 } 2569 2570 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2571 struct reloc_control *rc, 2572 struct btrfs_path *path, int err) 2573 { 2574 LIST_HEAD(list); 2575 struct btrfs_backref_cache *cache = &rc->backref_cache; 2576 struct btrfs_backref_node *node; 2577 int level; 2578 int ret; 2579 2580 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2581 while (!list_empty(&cache->pending[level])) { 2582 node = list_entry(cache->pending[level].next, 2583 struct btrfs_backref_node, list); 2584 list_move_tail(&node->list, &list); 2585 BUG_ON(!node->pending); 2586 2587 if (!err) { 2588 ret = link_to_upper(trans, rc, node, path); 2589 if (ret < 0) 2590 err = ret; 2591 } 2592 } 2593 list_splice_init(&list, &cache->pending[level]); 2594 } 2595 return err; 2596 } 2597 2598 /* 2599 * mark a block and all blocks directly/indirectly reference the block 2600 * as processed. 2601 */ 2602 static void update_processed_blocks(struct reloc_control *rc, 2603 struct btrfs_backref_node *node) 2604 { 2605 struct btrfs_backref_node *next = node; 2606 struct btrfs_backref_edge *edge; 2607 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2608 int index = 0; 2609 2610 while (next) { 2611 cond_resched(); 2612 while (1) { 2613 if (next->processed) 2614 break; 2615 2616 mark_block_processed(rc, next); 2617 2618 if (list_empty(&next->upper)) 2619 break; 2620 2621 edge = list_entry(next->upper.next, 2622 struct btrfs_backref_edge, list[LOWER]); 2623 edges[index++] = edge; 2624 next = edge->node[UPPER]; 2625 } 2626 next = walk_down_backref(edges, &index); 2627 } 2628 } 2629 2630 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2631 { 2632 u32 blocksize = rc->extent_root->fs_info->nodesize; 2633 2634 if (test_range_bit(&rc->processed_blocks, bytenr, 2635 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2636 return 1; 2637 return 0; 2638 } 2639 2640 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2641 struct tree_block *block) 2642 { 2643 struct btrfs_tree_parent_check check = { 2644 .level = block->level, 2645 .owner_root = block->owner, 2646 .transid = block->key.offset 2647 }; 2648 struct extent_buffer *eb; 2649 2650 eb = read_tree_block(fs_info, block->bytenr, &check); 2651 if (IS_ERR(eb)) 2652 return PTR_ERR(eb); 2653 if (!extent_buffer_uptodate(eb)) { 2654 free_extent_buffer(eb); 2655 return -EIO; 2656 } 2657 if (block->level == 0) 2658 btrfs_item_key_to_cpu(eb, &block->key, 0); 2659 else 2660 btrfs_node_key_to_cpu(eb, &block->key, 0); 2661 free_extent_buffer(eb); 2662 block->key_ready = 1; 2663 return 0; 2664 } 2665 2666 /* 2667 * helper function to relocate a tree block 2668 */ 2669 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2670 struct reloc_control *rc, 2671 struct btrfs_backref_node *node, 2672 struct btrfs_key *key, 2673 struct btrfs_path *path) 2674 { 2675 struct btrfs_root *root; 2676 int ret = 0; 2677 2678 if (!node) 2679 return 0; 2680 2681 /* 2682 * If we fail here we want to drop our backref_node because we are going 2683 * to start over and regenerate the tree for it. 2684 */ 2685 ret = reserve_metadata_space(trans, rc, node); 2686 if (ret) 2687 goto out; 2688 2689 BUG_ON(node->processed); 2690 root = select_one_root(node); 2691 if (IS_ERR(root)) { 2692 ret = PTR_ERR(root); 2693 2694 /* See explanation in select_one_root for the -EUCLEAN case. */ 2695 ASSERT(ret == -ENOENT); 2696 if (ret == -ENOENT) { 2697 ret = 0; 2698 update_processed_blocks(rc, node); 2699 } 2700 goto out; 2701 } 2702 2703 if (root) { 2704 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2705 /* 2706 * This block was the root block of a root, and this is 2707 * the first time we're processing the block and thus it 2708 * should not have had the ->new_bytenr modified and 2709 * should have not been included on the changed list. 2710 * 2711 * However in the case of corruption we could have 2712 * multiple refs pointing to the same block improperly, 2713 * and thus we would trip over these checks. ASSERT() 2714 * for the developer case, because it could indicate a 2715 * bug in the backref code, however error out for a 2716 * normal user in the case of corruption. 2717 */ 2718 ASSERT(node->new_bytenr == 0); 2719 ASSERT(list_empty(&node->list)); 2720 if (node->new_bytenr || !list_empty(&node->list)) { 2721 btrfs_err(root->fs_info, 2722 "bytenr %llu has improper references to it", 2723 node->bytenr); 2724 ret = -EUCLEAN; 2725 goto out; 2726 } 2727 ret = btrfs_record_root_in_trans(trans, root); 2728 if (ret) 2729 goto out; 2730 /* 2731 * Another thread could have failed, need to check if we 2732 * have reloc_root actually set. 2733 */ 2734 if (!root->reloc_root) { 2735 ret = -ENOENT; 2736 goto out; 2737 } 2738 root = root->reloc_root; 2739 node->new_bytenr = root->node->start; 2740 btrfs_put_root(node->root); 2741 node->root = btrfs_grab_root(root); 2742 ASSERT(node->root); 2743 list_add_tail(&node->list, &rc->backref_cache.changed); 2744 } else { 2745 path->lowest_level = node->level; 2746 if (root == root->fs_info->chunk_root) 2747 btrfs_reserve_chunk_metadata(trans, false); 2748 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2749 btrfs_release_path(path); 2750 if (root == root->fs_info->chunk_root) 2751 btrfs_trans_release_chunk_metadata(trans); 2752 if (ret > 0) 2753 ret = 0; 2754 } 2755 if (!ret) 2756 update_processed_blocks(rc, node); 2757 } else { 2758 ret = do_relocation(trans, rc, node, key, path, 1); 2759 } 2760 out: 2761 if (ret || node->level == 0 || node->cowonly) 2762 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2763 return ret; 2764 } 2765 2766 /* 2767 * relocate a list of blocks 2768 */ 2769 static noinline_for_stack 2770 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2771 struct reloc_control *rc, struct rb_root *blocks) 2772 { 2773 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2774 struct btrfs_backref_node *node; 2775 struct btrfs_path *path; 2776 struct tree_block *block; 2777 struct tree_block *next; 2778 int ret; 2779 int err = 0; 2780 2781 path = btrfs_alloc_path(); 2782 if (!path) { 2783 err = -ENOMEM; 2784 goto out_free_blocks; 2785 } 2786 2787 /* Kick in readahead for tree blocks with missing keys */ 2788 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2789 if (!block->key_ready) 2790 btrfs_readahead_tree_block(fs_info, block->bytenr, 2791 block->owner, 0, 2792 block->level); 2793 } 2794 2795 /* Get first keys */ 2796 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2797 if (!block->key_ready) { 2798 err = get_tree_block_key(fs_info, block); 2799 if (err) 2800 goto out_free_path; 2801 } 2802 } 2803 2804 /* Do tree relocation */ 2805 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2806 node = build_backref_tree(rc, &block->key, 2807 block->level, block->bytenr); 2808 if (IS_ERR(node)) { 2809 err = PTR_ERR(node); 2810 goto out; 2811 } 2812 2813 ret = relocate_tree_block(trans, rc, node, &block->key, 2814 path); 2815 if (ret < 0) { 2816 err = ret; 2817 break; 2818 } 2819 } 2820 out: 2821 err = finish_pending_nodes(trans, rc, path, err); 2822 2823 out_free_path: 2824 btrfs_free_path(path); 2825 out_free_blocks: 2826 free_block_list(blocks); 2827 return err; 2828 } 2829 2830 static noinline_for_stack int prealloc_file_extent_cluster( 2831 struct btrfs_inode *inode, 2832 struct file_extent_cluster *cluster) 2833 { 2834 u64 alloc_hint = 0; 2835 u64 start; 2836 u64 end; 2837 u64 offset = inode->index_cnt; 2838 u64 num_bytes; 2839 int nr; 2840 int ret = 0; 2841 u64 i_size = i_size_read(&inode->vfs_inode); 2842 u64 prealloc_start = cluster->start - offset; 2843 u64 prealloc_end = cluster->end - offset; 2844 u64 cur_offset = prealloc_start; 2845 2846 /* 2847 * For subpage case, previous i_size may not be aligned to PAGE_SIZE. 2848 * This means the range [i_size, PAGE_END + 1) is filled with zeros by 2849 * btrfs_do_readpage() call of previously relocated file cluster. 2850 * 2851 * If the current cluster starts in the above range, btrfs_do_readpage() 2852 * will skip the read, and relocate_one_page() will later writeback 2853 * the padding zeros as new data, causing data corruption. 2854 * 2855 * Here we have to manually invalidate the range (i_size, PAGE_END + 1). 2856 */ 2857 if (!PAGE_ALIGNED(i_size)) { 2858 struct address_space *mapping = inode->vfs_inode.i_mapping; 2859 struct btrfs_fs_info *fs_info = inode->root->fs_info; 2860 const u32 sectorsize = fs_info->sectorsize; 2861 struct page *page; 2862 2863 ASSERT(sectorsize < PAGE_SIZE); 2864 ASSERT(IS_ALIGNED(i_size, sectorsize)); 2865 2866 /* 2867 * Subpage can't handle page with DIRTY but without UPTODATE 2868 * bit as it can lead to the following deadlock: 2869 * 2870 * btrfs_read_folio() 2871 * | Page already *locked* 2872 * |- btrfs_lock_and_flush_ordered_range() 2873 * |- btrfs_start_ordered_extent() 2874 * |- extent_write_cache_pages() 2875 * |- lock_page() 2876 * We try to lock the page we already hold. 2877 * 2878 * Here we just writeback the whole data reloc inode, so that 2879 * we will be ensured to have no dirty range in the page, and 2880 * are safe to clear the uptodate bits. 2881 * 2882 * This shouldn't cause too much overhead, as we need to write 2883 * the data back anyway. 2884 */ 2885 ret = filemap_write_and_wait(mapping); 2886 if (ret < 0) 2887 return ret; 2888 2889 clear_extent_bits(&inode->io_tree, i_size, 2890 round_up(i_size, PAGE_SIZE) - 1, 2891 EXTENT_UPTODATE); 2892 page = find_lock_page(mapping, i_size >> PAGE_SHIFT); 2893 /* 2894 * If page is freed we don't need to do anything then, as we 2895 * will re-read the whole page anyway. 2896 */ 2897 if (page) { 2898 btrfs_subpage_clear_uptodate(fs_info, page, i_size, 2899 round_up(i_size, PAGE_SIZE) - i_size); 2900 unlock_page(page); 2901 put_page(page); 2902 } 2903 } 2904 2905 BUG_ON(cluster->start != cluster->boundary[0]); 2906 ret = btrfs_alloc_data_chunk_ondemand(inode, 2907 prealloc_end + 1 - prealloc_start); 2908 if (ret) 2909 return ret; 2910 2911 btrfs_inode_lock(inode, 0); 2912 for (nr = 0; nr < cluster->nr; nr++) { 2913 struct extent_state *cached_state = NULL; 2914 2915 start = cluster->boundary[nr] - offset; 2916 if (nr + 1 < cluster->nr) 2917 end = cluster->boundary[nr + 1] - 1 - offset; 2918 else 2919 end = cluster->end - offset; 2920 2921 lock_extent(&inode->io_tree, start, end, &cached_state); 2922 num_bytes = end + 1 - start; 2923 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2924 num_bytes, num_bytes, 2925 end + 1, &alloc_hint); 2926 cur_offset = end + 1; 2927 unlock_extent(&inode->io_tree, start, end, &cached_state); 2928 if (ret) 2929 break; 2930 } 2931 btrfs_inode_unlock(inode, 0); 2932 2933 if (cur_offset < prealloc_end) 2934 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2935 prealloc_end + 1 - cur_offset); 2936 return ret; 2937 } 2938 2939 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode, 2940 u64 start, u64 end, u64 block_start) 2941 { 2942 struct extent_map *em; 2943 struct extent_state *cached_state = NULL; 2944 int ret = 0; 2945 2946 em = alloc_extent_map(); 2947 if (!em) 2948 return -ENOMEM; 2949 2950 em->start = start; 2951 em->len = end + 1 - start; 2952 em->block_len = em->len; 2953 em->block_start = block_start; 2954 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2955 2956 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2957 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false); 2958 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state); 2959 free_extent_map(em); 2960 2961 return ret; 2962 } 2963 2964 /* 2965 * Allow error injection to test balance/relocation cancellation 2966 */ 2967 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2968 { 2969 return atomic_read(&fs_info->balance_cancel_req) || 2970 atomic_read(&fs_info->reloc_cancel_req) || 2971 fatal_signal_pending(current); 2972 } 2973 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2974 2975 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster, 2976 int cluster_nr) 2977 { 2978 /* Last extent, use cluster end directly */ 2979 if (cluster_nr >= cluster->nr - 1) 2980 return cluster->end; 2981 2982 /* Use next boundary start*/ 2983 return cluster->boundary[cluster_nr + 1] - 1; 2984 } 2985 2986 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra, 2987 struct file_extent_cluster *cluster, 2988 int *cluster_nr, unsigned long page_index) 2989 { 2990 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2991 u64 offset = BTRFS_I(inode)->index_cnt; 2992 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT; 2993 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2994 struct page *page; 2995 u64 page_start; 2996 u64 page_end; 2997 u64 cur; 2998 int ret; 2999 3000 ASSERT(page_index <= last_index); 3001 page = find_lock_page(inode->i_mapping, page_index); 3002 if (!page) { 3003 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 3004 page_index, last_index + 1 - page_index); 3005 page = find_or_create_page(inode->i_mapping, page_index, mask); 3006 if (!page) 3007 return -ENOMEM; 3008 } 3009 ret = set_page_extent_mapped(page); 3010 if (ret < 0) 3011 goto release_page; 3012 3013 if (PageReadahead(page)) 3014 page_cache_async_readahead(inode->i_mapping, ra, NULL, 3015 page_folio(page), page_index, 3016 last_index + 1 - page_index); 3017 3018 if (!PageUptodate(page)) { 3019 btrfs_read_folio(NULL, page_folio(page)); 3020 lock_page(page); 3021 if (!PageUptodate(page)) { 3022 ret = -EIO; 3023 goto release_page; 3024 } 3025 } 3026 3027 page_start = page_offset(page); 3028 page_end = page_start + PAGE_SIZE - 1; 3029 3030 /* 3031 * Start from the cluster, as for subpage case, the cluster can start 3032 * inside the page. 3033 */ 3034 cur = max(page_start, cluster->boundary[*cluster_nr] - offset); 3035 while (cur <= page_end) { 3036 struct extent_state *cached_state = NULL; 3037 u64 extent_start = cluster->boundary[*cluster_nr] - offset; 3038 u64 extent_end = get_cluster_boundary_end(cluster, 3039 *cluster_nr) - offset; 3040 u64 clamped_start = max(page_start, extent_start); 3041 u64 clamped_end = min(page_end, extent_end); 3042 u32 clamped_len = clamped_end + 1 - clamped_start; 3043 3044 /* Reserve metadata for this range */ 3045 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3046 clamped_len, clamped_len, 3047 false); 3048 if (ret) 3049 goto release_page; 3050 3051 /* Mark the range delalloc and dirty for later writeback */ 3052 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3053 &cached_state); 3054 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start, 3055 clamped_end, 0, &cached_state); 3056 if (ret) { 3057 clear_extent_bit(&BTRFS_I(inode)->io_tree, 3058 clamped_start, clamped_end, 3059 EXTENT_LOCKED | EXTENT_BOUNDARY, 3060 &cached_state); 3061 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3062 clamped_len, true); 3063 btrfs_delalloc_release_extents(BTRFS_I(inode), 3064 clamped_len); 3065 goto release_page; 3066 } 3067 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len); 3068 3069 /* 3070 * Set the boundary if it's inside the page. 3071 * Data relocation requires the destination extents to have the 3072 * same size as the source. 3073 * EXTENT_BOUNDARY bit prevents current extent from being merged 3074 * with previous extent. 3075 */ 3076 if (in_range(cluster->boundary[*cluster_nr] - offset, 3077 page_start, PAGE_SIZE)) { 3078 u64 boundary_start = cluster->boundary[*cluster_nr] - 3079 offset; 3080 u64 boundary_end = boundary_start + 3081 fs_info->sectorsize - 1; 3082 3083 set_extent_bit(&BTRFS_I(inode)->io_tree, 3084 boundary_start, boundary_end, 3085 EXTENT_BOUNDARY, NULL); 3086 } 3087 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end, 3088 &cached_state); 3089 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len); 3090 cur += clamped_len; 3091 3092 /* Crossed extent end, go to next extent */ 3093 if (cur >= extent_end) { 3094 (*cluster_nr)++; 3095 /* Just finished the last extent of the cluster, exit. */ 3096 if (*cluster_nr >= cluster->nr) 3097 break; 3098 } 3099 } 3100 unlock_page(page); 3101 put_page(page); 3102 3103 balance_dirty_pages_ratelimited(inode->i_mapping); 3104 btrfs_throttle(fs_info); 3105 if (btrfs_should_cancel_balance(fs_info)) 3106 ret = -ECANCELED; 3107 return ret; 3108 3109 release_page: 3110 unlock_page(page); 3111 put_page(page); 3112 return ret; 3113 } 3114 3115 static int relocate_file_extent_cluster(struct inode *inode, 3116 struct file_extent_cluster *cluster) 3117 { 3118 u64 offset = BTRFS_I(inode)->index_cnt; 3119 unsigned long index; 3120 unsigned long last_index; 3121 struct file_ra_state *ra; 3122 int cluster_nr = 0; 3123 int ret = 0; 3124 3125 if (!cluster->nr) 3126 return 0; 3127 3128 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3129 if (!ra) 3130 return -ENOMEM; 3131 3132 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 3133 if (ret) 3134 goto out; 3135 3136 file_ra_state_init(ra, inode->i_mapping); 3137 3138 ret = setup_relocation_extent_mapping(inode, cluster->start - offset, 3139 cluster->end - offset, cluster->start); 3140 if (ret) 3141 goto out; 3142 3143 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3144 for (index = (cluster->start - offset) >> PAGE_SHIFT; 3145 index <= last_index && !ret; index++) 3146 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index); 3147 if (ret == 0) 3148 WARN_ON(cluster_nr != cluster->nr); 3149 out: 3150 kfree(ra); 3151 return ret; 3152 } 3153 3154 static noinline_for_stack 3155 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3156 struct file_extent_cluster *cluster) 3157 { 3158 int ret; 3159 3160 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3161 ret = relocate_file_extent_cluster(inode, cluster); 3162 if (ret) 3163 return ret; 3164 cluster->nr = 0; 3165 } 3166 3167 if (!cluster->nr) 3168 cluster->start = extent_key->objectid; 3169 else 3170 BUG_ON(cluster->nr >= MAX_EXTENTS); 3171 cluster->end = extent_key->objectid + extent_key->offset - 1; 3172 cluster->boundary[cluster->nr] = extent_key->objectid; 3173 cluster->nr++; 3174 3175 if (cluster->nr >= MAX_EXTENTS) { 3176 ret = relocate_file_extent_cluster(inode, cluster); 3177 if (ret) 3178 return ret; 3179 cluster->nr = 0; 3180 } 3181 return 0; 3182 } 3183 3184 /* 3185 * helper to add a tree block to the list. 3186 * the major work is getting the generation and level of the block 3187 */ 3188 static int add_tree_block(struct reloc_control *rc, 3189 struct btrfs_key *extent_key, 3190 struct btrfs_path *path, 3191 struct rb_root *blocks) 3192 { 3193 struct extent_buffer *eb; 3194 struct btrfs_extent_item *ei; 3195 struct btrfs_tree_block_info *bi; 3196 struct tree_block *block; 3197 struct rb_node *rb_node; 3198 u32 item_size; 3199 int level = -1; 3200 u64 generation; 3201 u64 owner = 0; 3202 3203 eb = path->nodes[0]; 3204 item_size = btrfs_item_size(eb, path->slots[0]); 3205 3206 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3207 item_size >= sizeof(*ei) + sizeof(*bi)) { 3208 unsigned long ptr = 0, end; 3209 3210 ei = btrfs_item_ptr(eb, path->slots[0], 3211 struct btrfs_extent_item); 3212 end = (unsigned long)ei + item_size; 3213 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3214 bi = (struct btrfs_tree_block_info *)(ei + 1); 3215 level = btrfs_tree_block_level(eb, bi); 3216 ptr = (unsigned long)(bi + 1); 3217 } else { 3218 level = (int)extent_key->offset; 3219 ptr = (unsigned long)(ei + 1); 3220 } 3221 generation = btrfs_extent_generation(eb, ei); 3222 3223 /* 3224 * We're reading random blocks without knowing their owner ahead 3225 * of time. This is ok most of the time, as all reloc roots and 3226 * fs roots have the same lock type. However normal trees do 3227 * not, and the only way to know ahead of time is to read the 3228 * inline ref offset. We know it's an fs root if 3229 * 3230 * 1. There's more than one ref. 3231 * 2. There's a SHARED_DATA_REF_KEY set. 3232 * 3. FULL_BACKREF is set on the flags. 3233 * 3234 * Otherwise it's safe to assume that the ref offset == the 3235 * owner of this block, so we can use that when calling 3236 * read_tree_block. 3237 */ 3238 if (btrfs_extent_refs(eb, ei) == 1 && 3239 !(btrfs_extent_flags(eb, ei) & 3240 BTRFS_BLOCK_FLAG_FULL_BACKREF) && 3241 ptr < end) { 3242 struct btrfs_extent_inline_ref *iref; 3243 int type; 3244 3245 iref = (struct btrfs_extent_inline_ref *)ptr; 3246 type = btrfs_get_extent_inline_ref_type(eb, iref, 3247 BTRFS_REF_TYPE_BLOCK); 3248 if (type == BTRFS_REF_TYPE_INVALID) 3249 return -EINVAL; 3250 if (type == BTRFS_TREE_BLOCK_REF_KEY) 3251 owner = btrfs_extent_inline_ref_offset(eb, iref); 3252 } 3253 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3254 btrfs_print_v0_err(eb->fs_info); 3255 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3256 return -EINVAL; 3257 } else { 3258 BUG(); 3259 } 3260 3261 btrfs_release_path(path); 3262 3263 BUG_ON(level == -1); 3264 3265 block = kmalloc(sizeof(*block), GFP_NOFS); 3266 if (!block) 3267 return -ENOMEM; 3268 3269 block->bytenr = extent_key->objectid; 3270 block->key.objectid = rc->extent_root->fs_info->nodesize; 3271 block->key.offset = generation; 3272 block->level = level; 3273 block->key_ready = 0; 3274 block->owner = owner; 3275 3276 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 3277 if (rb_node) 3278 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 3279 -EEXIST); 3280 3281 return 0; 3282 } 3283 3284 /* 3285 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3286 */ 3287 static int __add_tree_block(struct reloc_control *rc, 3288 u64 bytenr, u32 blocksize, 3289 struct rb_root *blocks) 3290 { 3291 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3292 struct btrfs_path *path; 3293 struct btrfs_key key; 3294 int ret; 3295 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3296 3297 if (tree_block_processed(bytenr, rc)) 3298 return 0; 3299 3300 if (rb_simple_search(blocks, bytenr)) 3301 return 0; 3302 3303 path = btrfs_alloc_path(); 3304 if (!path) 3305 return -ENOMEM; 3306 again: 3307 key.objectid = bytenr; 3308 if (skinny) { 3309 key.type = BTRFS_METADATA_ITEM_KEY; 3310 key.offset = (u64)-1; 3311 } else { 3312 key.type = BTRFS_EXTENT_ITEM_KEY; 3313 key.offset = blocksize; 3314 } 3315 3316 path->search_commit_root = 1; 3317 path->skip_locking = 1; 3318 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3319 if (ret < 0) 3320 goto out; 3321 3322 if (ret > 0 && skinny) { 3323 if (path->slots[0]) { 3324 path->slots[0]--; 3325 btrfs_item_key_to_cpu(path->nodes[0], &key, 3326 path->slots[0]); 3327 if (key.objectid == bytenr && 3328 (key.type == BTRFS_METADATA_ITEM_KEY || 3329 (key.type == BTRFS_EXTENT_ITEM_KEY && 3330 key.offset == blocksize))) 3331 ret = 0; 3332 } 3333 3334 if (ret) { 3335 skinny = false; 3336 btrfs_release_path(path); 3337 goto again; 3338 } 3339 } 3340 if (ret) { 3341 ASSERT(ret == 1); 3342 btrfs_print_leaf(path->nodes[0]); 3343 btrfs_err(fs_info, 3344 "tree block extent item (%llu) is not found in extent tree", 3345 bytenr); 3346 WARN_ON(1); 3347 ret = -EINVAL; 3348 goto out; 3349 } 3350 3351 ret = add_tree_block(rc, &key, path, blocks); 3352 out: 3353 btrfs_free_path(path); 3354 return ret; 3355 } 3356 3357 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3358 struct btrfs_block_group *block_group, 3359 struct inode *inode, 3360 u64 ino) 3361 { 3362 struct btrfs_root *root = fs_info->tree_root; 3363 struct btrfs_trans_handle *trans; 3364 int ret = 0; 3365 3366 if (inode) 3367 goto truncate; 3368 3369 inode = btrfs_iget(fs_info->sb, ino, root); 3370 if (IS_ERR(inode)) 3371 return -ENOENT; 3372 3373 truncate: 3374 ret = btrfs_check_trunc_cache_free_space(fs_info, 3375 &fs_info->global_block_rsv); 3376 if (ret) 3377 goto out; 3378 3379 trans = btrfs_join_transaction(root); 3380 if (IS_ERR(trans)) { 3381 ret = PTR_ERR(trans); 3382 goto out; 3383 } 3384 3385 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3386 3387 btrfs_end_transaction(trans); 3388 btrfs_btree_balance_dirty(fs_info); 3389 out: 3390 iput(inode); 3391 return ret; 3392 } 3393 3394 /* 3395 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3396 * cache inode, to avoid free space cache data extent blocking data relocation. 3397 */ 3398 static int delete_v1_space_cache(struct extent_buffer *leaf, 3399 struct btrfs_block_group *block_group, 3400 u64 data_bytenr) 3401 { 3402 u64 space_cache_ino; 3403 struct btrfs_file_extent_item *ei; 3404 struct btrfs_key key; 3405 bool found = false; 3406 int i; 3407 int ret; 3408 3409 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3410 return 0; 3411 3412 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3413 u8 type; 3414 3415 btrfs_item_key_to_cpu(leaf, &key, i); 3416 if (key.type != BTRFS_EXTENT_DATA_KEY) 3417 continue; 3418 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3419 type = btrfs_file_extent_type(leaf, ei); 3420 3421 if ((type == BTRFS_FILE_EXTENT_REG || 3422 type == BTRFS_FILE_EXTENT_PREALLOC) && 3423 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3424 found = true; 3425 space_cache_ino = key.objectid; 3426 break; 3427 } 3428 } 3429 if (!found) 3430 return -ENOENT; 3431 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3432 space_cache_ino); 3433 return ret; 3434 } 3435 3436 /* 3437 * helper to find all tree blocks that reference a given data extent 3438 */ 3439 static noinline_for_stack 3440 int add_data_references(struct reloc_control *rc, 3441 struct btrfs_key *extent_key, 3442 struct btrfs_path *path, 3443 struct rb_root *blocks) 3444 { 3445 struct btrfs_backref_walk_ctx ctx = { 0 }; 3446 struct ulist_iterator leaf_uiter; 3447 struct ulist_node *ref_node = NULL; 3448 const u32 blocksize = rc->extent_root->fs_info->nodesize; 3449 int ret = 0; 3450 3451 btrfs_release_path(path); 3452 3453 ctx.bytenr = extent_key->objectid; 3454 ctx.skip_inode_ref_list = true; 3455 ctx.fs_info = rc->extent_root->fs_info; 3456 3457 ret = btrfs_find_all_leafs(&ctx); 3458 if (ret < 0) 3459 return ret; 3460 3461 ULIST_ITER_INIT(&leaf_uiter); 3462 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) { 3463 struct btrfs_tree_parent_check check = { 0 }; 3464 struct extent_buffer *eb; 3465 3466 eb = read_tree_block(ctx.fs_info, ref_node->val, &check); 3467 if (IS_ERR(eb)) { 3468 ret = PTR_ERR(eb); 3469 break; 3470 } 3471 ret = delete_v1_space_cache(eb, rc->block_group, 3472 extent_key->objectid); 3473 free_extent_buffer(eb); 3474 if (ret < 0) 3475 break; 3476 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3477 if (ret < 0) 3478 break; 3479 } 3480 if (ret < 0) 3481 free_block_list(blocks); 3482 ulist_free(ctx.refs); 3483 return ret; 3484 } 3485 3486 /* 3487 * helper to find next unprocessed extent 3488 */ 3489 static noinline_for_stack 3490 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3491 struct btrfs_key *extent_key) 3492 { 3493 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3494 struct btrfs_key key; 3495 struct extent_buffer *leaf; 3496 u64 start, end, last; 3497 int ret; 3498 3499 last = rc->block_group->start + rc->block_group->length; 3500 while (1) { 3501 cond_resched(); 3502 if (rc->search_start >= last) { 3503 ret = 1; 3504 break; 3505 } 3506 3507 key.objectid = rc->search_start; 3508 key.type = BTRFS_EXTENT_ITEM_KEY; 3509 key.offset = 0; 3510 3511 path->search_commit_root = 1; 3512 path->skip_locking = 1; 3513 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3514 0, 0); 3515 if (ret < 0) 3516 break; 3517 next: 3518 leaf = path->nodes[0]; 3519 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3520 ret = btrfs_next_leaf(rc->extent_root, path); 3521 if (ret != 0) 3522 break; 3523 leaf = path->nodes[0]; 3524 } 3525 3526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3527 if (key.objectid >= last) { 3528 ret = 1; 3529 break; 3530 } 3531 3532 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3533 key.type != BTRFS_METADATA_ITEM_KEY) { 3534 path->slots[0]++; 3535 goto next; 3536 } 3537 3538 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3539 key.objectid + key.offset <= rc->search_start) { 3540 path->slots[0]++; 3541 goto next; 3542 } 3543 3544 if (key.type == BTRFS_METADATA_ITEM_KEY && 3545 key.objectid + fs_info->nodesize <= 3546 rc->search_start) { 3547 path->slots[0]++; 3548 goto next; 3549 } 3550 3551 ret = find_first_extent_bit(&rc->processed_blocks, 3552 key.objectid, &start, &end, 3553 EXTENT_DIRTY, NULL); 3554 3555 if (ret == 0 && start <= key.objectid) { 3556 btrfs_release_path(path); 3557 rc->search_start = end + 1; 3558 } else { 3559 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3560 rc->search_start = key.objectid + key.offset; 3561 else 3562 rc->search_start = key.objectid + 3563 fs_info->nodesize; 3564 memcpy(extent_key, &key, sizeof(key)); 3565 return 0; 3566 } 3567 } 3568 btrfs_release_path(path); 3569 return ret; 3570 } 3571 3572 static void set_reloc_control(struct reloc_control *rc) 3573 { 3574 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3575 3576 mutex_lock(&fs_info->reloc_mutex); 3577 fs_info->reloc_ctl = rc; 3578 mutex_unlock(&fs_info->reloc_mutex); 3579 } 3580 3581 static void unset_reloc_control(struct reloc_control *rc) 3582 { 3583 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3584 3585 mutex_lock(&fs_info->reloc_mutex); 3586 fs_info->reloc_ctl = NULL; 3587 mutex_unlock(&fs_info->reloc_mutex); 3588 } 3589 3590 static noinline_for_stack 3591 int prepare_to_relocate(struct reloc_control *rc) 3592 { 3593 struct btrfs_trans_handle *trans; 3594 int ret; 3595 3596 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3597 BTRFS_BLOCK_RSV_TEMP); 3598 if (!rc->block_rsv) 3599 return -ENOMEM; 3600 3601 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3602 rc->search_start = rc->block_group->start; 3603 rc->extents_found = 0; 3604 rc->nodes_relocated = 0; 3605 rc->merging_rsv_size = 0; 3606 rc->reserved_bytes = 0; 3607 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3608 RELOCATION_RESERVED_NODES; 3609 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info, 3610 rc->block_rsv, rc->block_rsv->size, 3611 BTRFS_RESERVE_FLUSH_ALL); 3612 if (ret) 3613 return ret; 3614 3615 rc->create_reloc_tree = 1; 3616 set_reloc_control(rc); 3617 3618 trans = btrfs_join_transaction(rc->extent_root); 3619 if (IS_ERR(trans)) { 3620 unset_reloc_control(rc); 3621 /* 3622 * extent tree is not a ref_cow tree and has no reloc_root to 3623 * cleanup. And callers are responsible to free the above 3624 * block rsv. 3625 */ 3626 return PTR_ERR(trans); 3627 } 3628 3629 ret = btrfs_commit_transaction(trans); 3630 if (ret) 3631 unset_reloc_control(rc); 3632 3633 return ret; 3634 } 3635 3636 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3637 { 3638 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3639 struct rb_root blocks = RB_ROOT; 3640 struct btrfs_key key; 3641 struct btrfs_trans_handle *trans = NULL; 3642 struct btrfs_path *path; 3643 struct btrfs_extent_item *ei; 3644 u64 flags; 3645 int ret; 3646 int err = 0; 3647 int progress = 0; 3648 3649 path = btrfs_alloc_path(); 3650 if (!path) 3651 return -ENOMEM; 3652 path->reada = READA_FORWARD; 3653 3654 ret = prepare_to_relocate(rc); 3655 if (ret) { 3656 err = ret; 3657 goto out_free; 3658 } 3659 3660 while (1) { 3661 rc->reserved_bytes = 0; 3662 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, 3663 rc->block_rsv->size, 3664 BTRFS_RESERVE_FLUSH_ALL); 3665 if (ret) { 3666 err = ret; 3667 break; 3668 } 3669 progress++; 3670 trans = btrfs_start_transaction(rc->extent_root, 0); 3671 if (IS_ERR(trans)) { 3672 err = PTR_ERR(trans); 3673 trans = NULL; 3674 break; 3675 } 3676 restart: 3677 if (update_backref_cache(trans, &rc->backref_cache)) { 3678 btrfs_end_transaction(trans); 3679 trans = NULL; 3680 continue; 3681 } 3682 3683 ret = find_next_extent(rc, path, &key); 3684 if (ret < 0) 3685 err = ret; 3686 if (ret != 0) 3687 break; 3688 3689 rc->extents_found++; 3690 3691 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3692 struct btrfs_extent_item); 3693 flags = btrfs_extent_flags(path->nodes[0], ei); 3694 3695 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3696 ret = add_tree_block(rc, &key, path, &blocks); 3697 } else if (rc->stage == UPDATE_DATA_PTRS && 3698 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3699 ret = add_data_references(rc, &key, path, &blocks); 3700 } else { 3701 btrfs_release_path(path); 3702 ret = 0; 3703 } 3704 if (ret < 0) { 3705 err = ret; 3706 break; 3707 } 3708 3709 if (!RB_EMPTY_ROOT(&blocks)) { 3710 ret = relocate_tree_blocks(trans, rc, &blocks); 3711 if (ret < 0) { 3712 if (ret != -EAGAIN) { 3713 err = ret; 3714 break; 3715 } 3716 rc->extents_found--; 3717 rc->search_start = key.objectid; 3718 } 3719 } 3720 3721 btrfs_end_transaction_throttle(trans); 3722 btrfs_btree_balance_dirty(fs_info); 3723 trans = NULL; 3724 3725 if (rc->stage == MOVE_DATA_EXTENTS && 3726 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3727 rc->found_file_extent = 1; 3728 ret = relocate_data_extent(rc->data_inode, 3729 &key, &rc->cluster); 3730 if (ret < 0) { 3731 err = ret; 3732 break; 3733 } 3734 } 3735 if (btrfs_should_cancel_balance(fs_info)) { 3736 err = -ECANCELED; 3737 break; 3738 } 3739 } 3740 if (trans && progress && err == -ENOSPC) { 3741 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3742 if (ret == 1) { 3743 err = 0; 3744 progress = 0; 3745 goto restart; 3746 } 3747 } 3748 3749 btrfs_release_path(path); 3750 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3751 3752 if (trans) { 3753 btrfs_end_transaction_throttle(trans); 3754 btrfs_btree_balance_dirty(fs_info); 3755 } 3756 3757 if (!err) { 3758 ret = relocate_file_extent_cluster(rc->data_inode, 3759 &rc->cluster); 3760 if (ret < 0) 3761 err = ret; 3762 } 3763 3764 rc->create_reloc_tree = 0; 3765 set_reloc_control(rc); 3766 3767 btrfs_backref_release_cache(&rc->backref_cache); 3768 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3769 3770 /* 3771 * Even in the case when the relocation is cancelled, we should all go 3772 * through prepare_to_merge() and merge_reloc_roots(). 3773 * 3774 * For error (including cancelled balance), prepare_to_merge() will 3775 * mark all reloc trees orphan, then queue them for cleanup in 3776 * merge_reloc_roots() 3777 */ 3778 err = prepare_to_merge(rc, err); 3779 3780 merge_reloc_roots(rc); 3781 3782 rc->merge_reloc_tree = 0; 3783 unset_reloc_control(rc); 3784 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3785 3786 /* get rid of pinned extents */ 3787 trans = btrfs_join_transaction(rc->extent_root); 3788 if (IS_ERR(trans)) { 3789 err = PTR_ERR(trans); 3790 goto out_free; 3791 } 3792 ret = btrfs_commit_transaction(trans); 3793 if (ret && !err) 3794 err = ret; 3795 out_free: 3796 ret = clean_dirty_subvols(rc); 3797 if (ret < 0 && !err) 3798 err = ret; 3799 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3800 btrfs_free_path(path); 3801 return err; 3802 } 3803 3804 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3805 struct btrfs_root *root, u64 objectid) 3806 { 3807 struct btrfs_path *path; 3808 struct btrfs_inode_item *item; 3809 struct extent_buffer *leaf; 3810 int ret; 3811 3812 path = btrfs_alloc_path(); 3813 if (!path) 3814 return -ENOMEM; 3815 3816 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3817 if (ret) 3818 goto out; 3819 3820 leaf = path->nodes[0]; 3821 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3822 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3823 btrfs_set_inode_generation(leaf, item, 1); 3824 btrfs_set_inode_size(leaf, item, 0); 3825 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3826 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3827 BTRFS_INODE_PREALLOC); 3828 btrfs_mark_buffer_dirty(leaf); 3829 out: 3830 btrfs_free_path(path); 3831 return ret; 3832 } 3833 3834 static void delete_orphan_inode(struct btrfs_trans_handle *trans, 3835 struct btrfs_root *root, u64 objectid) 3836 { 3837 struct btrfs_path *path; 3838 struct btrfs_key key; 3839 int ret = 0; 3840 3841 path = btrfs_alloc_path(); 3842 if (!path) { 3843 ret = -ENOMEM; 3844 goto out; 3845 } 3846 3847 key.objectid = objectid; 3848 key.type = BTRFS_INODE_ITEM_KEY; 3849 key.offset = 0; 3850 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3851 if (ret) { 3852 if (ret > 0) 3853 ret = -ENOENT; 3854 goto out; 3855 } 3856 ret = btrfs_del_item(trans, root, path); 3857 out: 3858 if (ret) 3859 btrfs_abort_transaction(trans, ret); 3860 btrfs_free_path(path); 3861 } 3862 3863 /* 3864 * helper to create inode for data relocation. 3865 * the inode is in data relocation tree and its link count is 0 3866 */ 3867 static noinline_for_stack 3868 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3869 struct btrfs_block_group *group) 3870 { 3871 struct inode *inode = NULL; 3872 struct btrfs_trans_handle *trans; 3873 struct btrfs_root *root; 3874 u64 objectid; 3875 int err = 0; 3876 3877 root = btrfs_grab_root(fs_info->data_reloc_root); 3878 trans = btrfs_start_transaction(root, 6); 3879 if (IS_ERR(trans)) { 3880 btrfs_put_root(root); 3881 return ERR_CAST(trans); 3882 } 3883 3884 err = btrfs_get_free_objectid(root, &objectid); 3885 if (err) 3886 goto out; 3887 3888 err = __insert_orphan_inode(trans, root, objectid); 3889 if (err) 3890 goto out; 3891 3892 inode = btrfs_iget(fs_info->sb, objectid, root); 3893 if (IS_ERR(inode)) { 3894 delete_orphan_inode(trans, root, objectid); 3895 err = PTR_ERR(inode); 3896 inode = NULL; 3897 goto out; 3898 } 3899 BTRFS_I(inode)->index_cnt = group->start; 3900 3901 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3902 out: 3903 btrfs_put_root(root); 3904 btrfs_end_transaction(trans); 3905 btrfs_btree_balance_dirty(fs_info); 3906 if (err) { 3907 iput(inode); 3908 inode = ERR_PTR(err); 3909 } 3910 return inode; 3911 } 3912 3913 /* 3914 * Mark start of chunk relocation that is cancellable. Check if the cancellation 3915 * has been requested meanwhile and don't start in that case. 3916 * 3917 * Return: 3918 * 0 success 3919 * -EINPROGRESS operation is already in progress, that's probably a bug 3920 * -ECANCELED cancellation request was set before the operation started 3921 */ 3922 static int reloc_chunk_start(struct btrfs_fs_info *fs_info) 3923 { 3924 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) { 3925 /* This should not happen */ 3926 btrfs_err(fs_info, "reloc already running, cannot start"); 3927 return -EINPROGRESS; 3928 } 3929 3930 if (atomic_read(&fs_info->reloc_cancel_req) > 0) { 3931 btrfs_info(fs_info, "chunk relocation canceled on start"); 3932 /* 3933 * On cancel, clear all requests but let the caller mark 3934 * the end after cleanup operations. 3935 */ 3936 atomic_set(&fs_info->reloc_cancel_req, 0); 3937 return -ECANCELED; 3938 } 3939 return 0; 3940 } 3941 3942 /* 3943 * Mark end of chunk relocation that is cancellable and wake any waiters. 3944 */ 3945 static void reloc_chunk_end(struct btrfs_fs_info *fs_info) 3946 { 3947 /* Requested after start, clear bit first so any waiters can continue */ 3948 if (atomic_read(&fs_info->reloc_cancel_req) > 0) 3949 btrfs_info(fs_info, "chunk relocation canceled during operation"); 3950 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags); 3951 atomic_set(&fs_info->reloc_cancel_req, 0); 3952 } 3953 3954 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3955 { 3956 struct reloc_control *rc; 3957 3958 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3959 if (!rc) 3960 return NULL; 3961 3962 INIT_LIST_HEAD(&rc->reloc_roots); 3963 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3964 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3965 mapping_tree_init(&rc->reloc_root_tree); 3966 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS); 3967 return rc; 3968 } 3969 3970 static void free_reloc_control(struct reloc_control *rc) 3971 { 3972 struct mapping_node *node, *tmp; 3973 3974 free_reloc_roots(&rc->reloc_roots); 3975 rbtree_postorder_for_each_entry_safe(node, tmp, 3976 &rc->reloc_root_tree.rb_root, rb_node) 3977 kfree(node); 3978 3979 kfree(rc); 3980 } 3981 3982 /* 3983 * Print the block group being relocated 3984 */ 3985 static void describe_relocation(struct btrfs_fs_info *fs_info, 3986 struct btrfs_block_group *block_group) 3987 { 3988 char buf[128] = {'\0'}; 3989 3990 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3991 3992 btrfs_info(fs_info, 3993 "relocating block group %llu flags %s", 3994 block_group->start, buf); 3995 } 3996 3997 static const char *stage_to_string(int stage) 3998 { 3999 if (stage == MOVE_DATA_EXTENTS) 4000 return "move data extents"; 4001 if (stage == UPDATE_DATA_PTRS) 4002 return "update data pointers"; 4003 return "unknown"; 4004 } 4005 4006 /* 4007 * function to relocate all extents in a block group. 4008 */ 4009 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4010 { 4011 struct btrfs_block_group *bg; 4012 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start); 4013 struct reloc_control *rc; 4014 struct inode *inode; 4015 struct btrfs_path *path; 4016 int ret; 4017 int rw = 0; 4018 int err = 0; 4019 4020 /* 4021 * This only gets set if we had a half-deleted snapshot on mount. We 4022 * cannot allow relocation to start while we're still trying to clean up 4023 * these pending deletions. 4024 */ 4025 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE); 4026 if (ret) 4027 return ret; 4028 4029 /* We may have been woken up by close_ctree, so bail if we're closing. */ 4030 if (btrfs_fs_closing(fs_info)) 4031 return -EINTR; 4032 4033 bg = btrfs_lookup_block_group(fs_info, group_start); 4034 if (!bg) 4035 return -ENOENT; 4036 4037 /* 4038 * Relocation of a data block group creates ordered extents. Without 4039 * sb_start_write(), we can freeze the filesystem while unfinished 4040 * ordered extents are left. Such ordered extents can cause a deadlock 4041 * e.g. when syncfs() is waiting for their completion but they can't 4042 * finish because they block when joining a transaction, due to the 4043 * fact that the freeze locks are being held in write mode. 4044 */ 4045 if (bg->flags & BTRFS_BLOCK_GROUP_DATA) 4046 ASSERT(sb_write_started(fs_info->sb)); 4047 4048 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4049 btrfs_put_block_group(bg); 4050 return -ETXTBSY; 4051 } 4052 4053 rc = alloc_reloc_control(fs_info); 4054 if (!rc) { 4055 btrfs_put_block_group(bg); 4056 return -ENOMEM; 4057 } 4058 4059 ret = reloc_chunk_start(fs_info); 4060 if (ret < 0) { 4061 err = ret; 4062 goto out_put_bg; 4063 } 4064 4065 rc->extent_root = extent_root; 4066 rc->block_group = bg; 4067 4068 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4069 if (ret) { 4070 err = ret; 4071 goto out; 4072 } 4073 rw = 1; 4074 4075 path = btrfs_alloc_path(); 4076 if (!path) { 4077 err = -ENOMEM; 4078 goto out; 4079 } 4080 4081 inode = lookup_free_space_inode(rc->block_group, path); 4082 btrfs_free_path(path); 4083 4084 if (!IS_ERR(inode)) 4085 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4086 else 4087 ret = PTR_ERR(inode); 4088 4089 if (ret && ret != -ENOENT) { 4090 err = ret; 4091 goto out; 4092 } 4093 4094 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4095 if (IS_ERR(rc->data_inode)) { 4096 err = PTR_ERR(rc->data_inode); 4097 rc->data_inode = NULL; 4098 goto out; 4099 } 4100 4101 describe_relocation(fs_info, rc->block_group); 4102 4103 btrfs_wait_block_group_reservations(rc->block_group); 4104 btrfs_wait_nocow_writers(rc->block_group); 4105 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4106 rc->block_group->start, 4107 rc->block_group->length); 4108 4109 ret = btrfs_zone_finish(rc->block_group); 4110 WARN_ON(ret && ret != -EAGAIN); 4111 4112 while (1) { 4113 int finishes_stage; 4114 4115 mutex_lock(&fs_info->cleaner_mutex); 4116 ret = relocate_block_group(rc); 4117 mutex_unlock(&fs_info->cleaner_mutex); 4118 if (ret < 0) 4119 err = ret; 4120 4121 finishes_stage = rc->stage; 4122 /* 4123 * We may have gotten ENOSPC after we already dirtied some 4124 * extents. If writeout happens while we're relocating a 4125 * different block group we could end up hitting the 4126 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4127 * btrfs_reloc_cow_block. Make sure we write everything out 4128 * properly so we don't trip over this problem, and then break 4129 * out of the loop if we hit an error. 4130 */ 4131 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4132 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4133 (u64)-1); 4134 if (ret) 4135 err = ret; 4136 invalidate_mapping_pages(rc->data_inode->i_mapping, 4137 0, -1); 4138 rc->stage = UPDATE_DATA_PTRS; 4139 } 4140 4141 if (err < 0) 4142 goto out; 4143 4144 if (rc->extents_found == 0) 4145 break; 4146 4147 btrfs_info(fs_info, "found %llu extents, stage: %s", 4148 rc->extents_found, stage_to_string(finishes_stage)); 4149 } 4150 4151 WARN_ON(rc->block_group->pinned > 0); 4152 WARN_ON(rc->block_group->reserved > 0); 4153 WARN_ON(rc->block_group->used > 0); 4154 out: 4155 if (err && rw) 4156 btrfs_dec_block_group_ro(rc->block_group); 4157 iput(rc->data_inode); 4158 out_put_bg: 4159 btrfs_put_block_group(bg); 4160 reloc_chunk_end(fs_info); 4161 free_reloc_control(rc); 4162 return err; 4163 } 4164 4165 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4166 { 4167 struct btrfs_fs_info *fs_info = root->fs_info; 4168 struct btrfs_trans_handle *trans; 4169 int ret, err; 4170 4171 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4172 if (IS_ERR(trans)) 4173 return PTR_ERR(trans); 4174 4175 memset(&root->root_item.drop_progress, 0, 4176 sizeof(root->root_item.drop_progress)); 4177 btrfs_set_root_drop_level(&root->root_item, 0); 4178 btrfs_set_root_refs(&root->root_item, 0); 4179 ret = btrfs_update_root(trans, fs_info->tree_root, 4180 &root->root_key, &root->root_item); 4181 4182 err = btrfs_end_transaction(trans); 4183 if (err) 4184 return err; 4185 return ret; 4186 } 4187 4188 /* 4189 * recover relocation interrupted by system crash. 4190 * 4191 * this function resumes merging reloc trees with corresponding fs trees. 4192 * this is important for keeping the sharing of tree blocks 4193 */ 4194 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info) 4195 { 4196 LIST_HEAD(reloc_roots); 4197 struct btrfs_key key; 4198 struct btrfs_root *fs_root; 4199 struct btrfs_root *reloc_root; 4200 struct btrfs_path *path; 4201 struct extent_buffer *leaf; 4202 struct reloc_control *rc = NULL; 4203 struct btrfs_trans_handle *trans; 4204 int ret; 4205 int err = 0; 4206 4207 path = btrfs_alloc_path(); 4208 if (!path) 4209 return -ENOMEM; 4210 path->reada = READA_BACK; 4211 4212 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4213 key.type = BTRFS_ROOT_ITEM_KEY; 4214 key.offset = (u64)-1; 4215 4216 while (1) { 4217 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4218 path, 0, 0); 4219 if (ret < 0) { 4220 err = ret; 4221 goto out; 4222 } 4223 if (ret > 0) { 4224 if (path->slots[0] == 0) 4225 break; 4226 path->slots[0]--; 4227 } 4228 leaf = path->nodes[0]; 4229 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4230 btrfs_release_path(path); 4231 4232 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4233 key.type != BTRFS_ROOT_ITEM_KEY) 4234 break; 4235 4236 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key); 4237 if (IS_ERR(reloc_root)) { 4238 err = PTR_ERR(reloc_root); 4239 goto out; 4240 } 4241 4242 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 4243 list_add(&reloc_root->root_list, &reloc_roots); 4244 4245 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4246 fs_root = btrfs_get_fs_root(fs_info, 4247 reloc_root->root_key.offset, false); 4248 if (IS_ERR(fs_root)) { 4249 ret = PTR_ERR(fs_root); 4250 if (ret != -ENOENT) { 4251 err = ret; 4252 goto out; 4253 } 4254 ret = mark_garbage_root(reloc_root); 4255 if (ret < 0) { 4256 err = ret; 4257 goto out; 4258 } 4259 } else { 4260 btrfs_put_root(fs_root); 4261 } 4262 } 4263 4264 if (key.offset == 0) 4265 break; 4266 4267 key.offset--; 4268 } 4269 btrfs_release_path(path); 4270 4271 if (list_empty(&reloc_roots)) 4272 goto out; 4273 4274 rc = alloc_reloc_control(fs_info); 4275 if (!rc) { 4276 err = -ENOMEM; 4277 goto out; 4278 } 4279 4280 ret = reloc_chunk_start(fs_info); 4281 if (ret < 0) { 4282 err = ret; 4283 goto out_end; 4284 } 4285 4286 rc->extent_root = btrfs_extent_root(fs_info, 0); 4287 4288 set_reloc_control(rc); 4289 4290 trans = btrfs_join_transaction(rc->extent_root); 4291 if (IS_ERR(trans)) { 4292 err = PTR_ERR(trans); 4293 goto out_unset; 4294 } 4295 4296 rc->merge_reloc_tree = 1; 4297 4298 while (!list_empty(&reloc_roots)) { 4299 reloc_root = list_entry(reloc_roots.next, 4300 struct btrfs_root, root_list); 4301 list_del(&reloc_root->root_list); 4302 4303 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4304 list_add_tail(&reloc_root->root_list, 4305 &rc->reloc_roots); 4306 continue; 4307 } 4308 4309 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 4310 false); 4311 if (IS_ERR(fs_root)) { 4312 err = PTR_ERR(fs_root); 4313 list_add_tail(&reloc_root->root_list, &reloc_roots); 4314 btrfs_end_transaction(trans); 4315 goto out_unset; 4316 } 4317 4318 err = __add_reloc_root(reloc_root); 4319 ASSERT(err != -EEXIST); 4320 if (err) { 4321 list_add_tail(&reloc_root->root_list, &reloc_roots); 4322 btrfs_put_root(fs_root); 4323 btrfs_end_transaction(trans); 4324 goto out_unset; 4325 } 4326 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4327 btrfs_put_root(fs_root); 4328 } 4329 4330 err = btrfs_commit_transaction(trans); 4331 if (err) 4332 goto out_unset; 4333 4334 merge_reloc_roots(rc); 4335 4336 unset_reloc_control(rc); 4337 4338 trans = btrfs_join_transaction(rc->extent_root); 4339 if (IS_ERR(trans)) { 4340 err = PTR_ERR(trans); 4341 goto out_clean; 4342 } 4343 err = btrfs_commit_transaction(trans); 4344 out_clean: 4345 ret = clean_dirty_subvols(rc); 4346 if (ret < 0 && !err) 4347 err = ret; 4348 out_unset: 4349 unset_reloc_control(rc); 4350 out_end: 4351 reloc_chunk_end(fs_info); 4352 free_reloc_control(rc); 4353 out: 4354 free_reloc_roots(&reloc_roots); 4355 4356 btrfs_free_path(path); 4357 4358 if (err == 0) { 4359 /* cleanup orphan inode in data relocation tree */ 4360 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 4361 ASSERT(fs_root); 4362 err = btrfs_orphan_cleanup(fs_root); 4363 btrfs_put_root(fs_root); 4364 } 4365 return err; 4366 } 4367 4368 /* 4369 * helper to add ordered checksum for data relocation. 4370 * 4371 * cloning checksum properly handles the nodatasum extents. 4372 * it also saves CPU time to re-calculate the checksum. 4373 */ 4374 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered) 4375 { 4376 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 4377 struct btrfs_fs_info *fs_info = inode->root->fs_info; 4378 u64 disk_bytenr = ordered->file_offset + inode->index_cnt; 4379 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr); 4380 LIST_HEAD(list); 4381 int ret; 4382 4383 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr, 4384 disk_bytenr + ordered->num_bytes - 1, 4385 &list, 0, false); 4386 if (ret) 4387 return ret; 4388 4389 while (!list_empty(&list)) { 4390 struct btrfs_ordered_sum *sums = 4391 list_entry(list.next, struct btrfs_ordered_sum, list); 4392 4393 list_del_init(&sums->list); 4394 4395 /* 4396 * We need to offset the new_bytenr based on where the csum is. 4397 * We need to do this because we will read in entire prealloc 4398 * extents but we may have written to say the middle of the 4399 * prealloc extent, so we need to make sure the csum goes with 4400 * the right disk offset. 4401 * 4402 * We can do this because the data reloc inode refers strictly 4403 * to the on disk bytes, so we don't have to worry about 4404 * disk_len vs real len like with real inodes since it's all 4405 * disk length. 4406 */ 4407 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr; 4408 btrfs_add_ordered_sum(ordered, sums); 4409 } 4410 4411 return 0; 4412 } 4413 4414 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4415 struct btrfs_root *root, struct extent_buffer *buf, 4416 struct extent_buffer *cow) 4417 { 4418 struct btrfs_fs_info *fs_info = root->fs_info; 4419 struct reloc_control *rc; 4420 struct btrfs_backref_node *node; 4421 int first_cow = 0; 4422 int level; 4423 int ret = 0; 4424 4425 rc = fs_info->reloc_ctl; 4426 if (!rc) 4427 return 0; 4428 4429 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root)); 4430 4431 level = btrfs_header_level(buf); 4432 if (btrfs_header_generation(buf) <= 4433 btrfs_root_last_snapshot(&root->root_item)) 4434 first_cow = 1; 4435 4436 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4437 rc->create_reloc_tree) { 4438 WARN_ON(!first_cow && level == 0); 4439 4440 node = rc->backref_cache.path[level]; 4441 BUG_ON(node->bytenr != buf->start && 4442 node->new_bytenr != buf->start); 4443 4444 btrfs_backref_drop_node_buffer(node); 4445 atomic_inc(&cow->refs); 4446 node->eb = cow; 4447 node->new_bytenr = cow->start; 4448 4449 if (!node->pending) { 4450 list_move_tail(&node->list, 4451 &rc->backref_cache.pending[level]); 4452 node->pending = 1; 4453 } 4454 4455 if (first_cow) 4456 mark_block_processed(rc, node); 4457 4458 if (first_cow && level > 0) 4459 rc->nodes_relocated += buf->len; 4460 } 4461 4462 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4463 ret = replace_file_extents(trans, rc, root, cow); 4464 return ret; 4465 } 4466 4467 /* 4468 * called before creating snapshot. it calculates metadata reservation 4469 * required for relocating tree blocks in the snapshot 4470 */ 4471 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4472 u64 *bytes_to_reserve) 4473 { 4474 struct btrfs_root *root = pending->root; 4475 struct reloc_control *rc = root->fs_info->reloc_ctl; 4476 4477 if (!rc || !have_reloc_root(root)) 4478 return; 4479 4480 if (!rc->merge_reloc_tree) 4481 return; 4482 4483 root = root->reloc_root; 4484 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4485 /* 4486 * relocation is in the stage of merging trees. the space 4487 * used by merging a reloc tree is twice the size of 4488 * relocated tree nodes in the worst case. half for cowing 4489 * the reloc tree, half for cowing the fs tree. the space 4490 * used by cowing the reloc tree will be freed after the 4491 * tree is dropped. if we create snapshot, cowing the fs 4492 * tree may use more space than it frees. so we need 4493 * reserve extra space. 4494 */ 4495 *bytes_to_reserve += rc->nodes_relocated; 4496 } 4497 4498 /* 4499 * called after snapshot is created. migrate block reservation 4500 * and create reloc root for the newly created snapshot 4501 * 4502 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4503 * references held on the reloc_root, one for root->reloc_root and one for 4504 * rc->reloc_roots. 4505 */ 4506 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4507 struct btrfs_pending_snapshot *pending) 4508 { 4509 struct btrfs_root *root = pending->root; 4510 struct btrfs_root *reloc_root; 4511 struct btrfs_root *new_root; 4512 struct reloc_control *rc = root->fs_info->reloc_ctl; 4513 int ret; 4514 4515 if (!rc || !have_reloc_root(root)) 4516 return 0; 4517 4518 rc = root->fs_info->reloc_ctl; 4519 rc->merging_rsv_size += rc->nodes_relocated; 4520 4521 if (rc->merge_reloc_tree) { 4522 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4523 rc->block_rsv, 4524 rc->nodes_relocated, true); 4525 if (ret) 4526 return ret; 4527 } 4528 4529 new_root = pending->snap; 4530 reloc_root = create_reloc_root(trans, root->reloc_root, 4531 new_root->root_key.objectid); 4532 if (IS_ERR(reloc_root)) 4533 return PTR_ERR(reloc_root); 4534 4535 ret = __add_reloc_root(reloc_root); 4536 ASSERT(ret != -EEXIST); 4537 if (ret) { 4538 /* Pairs with create_reloc_root */ 4539 btrfs_put_root(reloc_root); 4540 return ret; 4541 } 4542 new_root->reloc_root = btrfs_grab_root(reloc_root); 4543 4544 if (rc->create_reloc_tree) 4545 ret = clone_backref_node(trans, rc, root, reloc_root); 4546 return ret; 4547 } 4548 4549 /* 4550 * Get the current bytenr for the block group which is being relocated. 4551 * 4552 * Return U64_MAX if no running relocation. 4553 */ 4554 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info) 4555 { 4556 u64 logical = U64_MAX; 4557 4558 lockdep_assert_held(&fs_info->reloc_mutex); 4559 4560 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group) 4561 logical = fs_info->reloc_ctl->block_group->start; 4562 return logical; 4563 } 4564