1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 #define RELOCATION_RESERVED_NODES 256 98 99 struct backref_cache { 100 /* red black tree of all backref nodes in the cache */ 101 struct rb_root rb_root; 102 /* for passing backref nodes to btrfs_reloc_cow_block */ 103 struct backref_node *path[BTRFS_MAX_LEVEL]; 104 /* 105 * list of blocks that have been cowed but some block 106 * pointers in upper level blocks may not reflect the 107 * new location 108 */ 109 struct list_head pending[BTRFS_MAX_LEVEL]; 110 /* list of backref nodes with no child node */ 111 struct list_head leaves; 112 /* list of blocks that have been cowed in current transaction */ 113 struct list_head changed; 114 /* list of detached backref node. */ 115 struct list_head detached; 116 117 u64 last_trans; 118 119 int nr_nodes; 120 int nr_edges; 121 }; 122 123 /* 124 * map address of tree root to tree 125 */ 126 struct mapping_node { 127 struct rb_node rb_node; 128 u64 bytenr; 129 void *data; 130 }; 131 132 struct mapping_tree { 133 struct rb_root rb_root; 134 spinlock_t lock; 135 }; 136 137 /* 138 * present a tree block to process 139 */ 140 struct tree_block { 141 struct rb_node rb_node; 142 u64 bytenr; 143 struct btrfs_key key; 144 unsigned int level:8; 145 unsigned int key_ready:1; 146 }; 147 148 #define MAX_EXTENTS 128 149 150 struct file_extent_cluster { 151 u64 start; 152 u64 end; 153 u64 boundary[MAX_EXTENTS]; 154 unsigned int nr; 155 }; 156 157 struct reloc_control { 158 /* block group to relocate */ 159 struct btrfs_block_group_cache *block_group; 160 /* extent tree */ 161 struct btrfs_root *extent_root; 162 /* inode for moving data */ 163 struct inode *data_inode; 164 165 struct btrfs_block_rsv *block_rsv; 166 167 struct backref_cache backref_cache; 168 169 struct file_extent_cluster cluster; 170 /* tree blocks have been processed */ 171 struct extent_io_tree processed_blocks; 172 /* map start of tree root to corresponding reloc tree */ 173 struct mapping_tree reloc_root_tree; 174 /* list of reloc trees */ 175 struct list_head reloc_roots; 176 /* size of metadata reservation for merging reloc trees */ 177 u64 merging_rsv_size; 178 /* size of relocated tree nodes */ 179 u64 nodes_relocated; 180 /* reserved size for block group relocation*/ 181 u64 reserved_bytes; 182 183 u64 search_start; 184 u64 extents_found; 185 186 unsigned int stage:8; 187 unsigned int create_reloc_tree:1; 188 unsigned int merge_reloc_tree:1; 189 unsigned int found_file_extent:1; 190 }; 191 192 /* stages of data relocation */ 193 #define MOVE_DATA_EXTENTS 0 194 #define UPDATE_DATA_PTRS 1 195 196 static void remove_backref_node(struct backref_cache *cache, 197 struct backref_node *node); 198 static void __mark_block_processed(struct reloc_control *rc, 199 struct backref_node *node); 200 201 static void mapping_tree_init(struct mapping_tree *tree) 202 { 203 tree->rb_root = RB_ROOT; 204 spin_lock_init(&tree->lock); 205 } 206 207 static void backref_cache_init(struct backref_cache *cache) 208 { 209 int i; 210 cache->rb_root = RB_ROOT; 211 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 212 INIT_LIST_HEAD(&cache->pending[i]); 213 INIT_LIST_HEAD(&cache->changed); 214 INIT_LIST_HEAD(&cache->detached); 215 INIT_LIST_HEAD(&cache->leaves); 216 } 217 218 static void backref_cache_cleanup(struct backref_cache *cache) 219 { 220 struct backref_node *node; 221 int i; 222 223 while (!list_empty(&cache->detached)) { 224 node = list_entry(cache->detached.next, 225 struct backref_node, list); 226 remove_backref_node(cache, node); 227 } 228 229 while (!list_empty(&cache->leaves)) { 230 node = list_entry(cache->leaves.next, 231 struct backref_node, lower); 232 remove_backref_node(cache, node); 233 } 234 235 cache->last_trans = 0; 236 237 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 238 BUG_ON(!list_empty(&cache->pending[i])); 239 BUG_ON(!list_empty(&cache->changed)); 240 BUG_ON(!list_empty(&cache->detached)); 241 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 242 BUG_ON(cache->nr_nodes); 243 BUG_ON(cache->nr_edges); 244 } 245 246 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 247 { 248 struct backref_node *node; 249 250 node = kzalloc(sizeof(*node), GFP_NOFS); 251 if (node) { 252 INIT_LIST_HEAD(&node->list); 253 INIT_LIST_HEAD(&node->upper); 254 INIT_LIST_HEAD(&node->lower); 255 RB_CLEAR_NODE(&node->rb_node); 256 cache->nr_nodes++; 257 } 258 return node; 259 } 260 261 static void free_backref_node(struct backref_cache *cache, 262 struct backref_node *node) 263 { 264 if (node) { 265 cache->nr_nodes--; 266 kfree(node); 267 } 268 } 269 270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 271 { 272 struct backref_edge *edge; 273 274 edge = kzalloc(sizeof(*edge), GFP_NOFS); 275 if (edge) 276 cache->nr_edges++; 277 return edge; 278 } 279 280 static void free_backref_edge(struct backref_cache *cache, 281 struct backref_edge *edge) 282 { 283 if (edge) { 284 cache->nr_edges--; 285 kfree(edge); 286 } 287 } 288 289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 290 struct rb_node *node) 291 { 292 struct rb_node **p = &root->rb_node; 293 struct rb_node *parent = NULL; 294 struct tree_entry *entry; 295 296 while (*p) { 297 parent = *p; 298 entry = rb_entry(parent, struct tree_entry, rb_node); 299 300 if (bytenr < entry->bytenr) 301 p = &(*p)->rb_left; 302 else if (bytenr > entry->bytenr) 303 p = &(*p)->rb_right; 304 else 305 return parent; 306 } 307 308 rb_link_node(node, parent, p); 309 rb_insert_color(node, root); 310 return NULL; 311 } 312 313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 314 { 315 struct rb_node *n = root->rb_node; 316 struct tree_entry *entry; 317 318 while (n) { 319 entry = rb_entry(n, struct tree_entry, rb_node); 320 321 if (bytenr < entry->bytenr) 322 n = n->rb_left; 323 else if (bytenr > entry->bytenr) 324 n = n->rb_right; 325 else 326 return n; 327 } 328 return NULL; 329 } 330 331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 332 { 333 334 struct btrfs_fs_info *fs_info = NULL; 335 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 336 rb_node); 337 if (bnode->root) 338 fs_info = bnode->root->fs_info; 339 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 340 "found at offset %llu", bytenr); 341 } 342 343 /* 344 * walk up backref nodes until reach node presents tree root 345 */ 346 static struct backref_node *walk_up_backref(struct backref_node *node, 347 struct backref_edge *edges[], 348 int *index) 349 { 350 struct backref_edge *edge; 351 int idx = *index; 352 353 while (!list_empty(&node->upper)) { 354 edge = list_entry(node->upper.next, 355 struct backref_edge, list[LOWER]); 356 edges[idx++] = edge; 357 node = edge->node[UPPER]; 358 } 359 BUG_ON(node->detached); 360 *index = idx; 361 return node; 362 } 363 364 /* 365 * walk down backref nodes to find start of next reference path 366 */ 367 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 368 int *index) 369 { 370 struct backref_edge *edge; 371 struct backref_node *lower; 372 int idx = *index; 373 374 while (idx > 0) { 375 edge = edges[idx - 1]; 376 lower = edge->node[LOWER]; 377 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 378 idx--; 379 continue; 380 } 381 edge = list_entry(edge->list[LOWER].next, 382 struct backref_edge, list[LOWER]); 383 edges[idx - 1] = edge; 384 *index = idx; 385 return edge->node[UPPER]; 386 } 387 *index = 0; 388 return NULL; 389 } 390 391 static void unlock_node_buffer(struct backref_node *node) 392 { 393 if (node->locked) { 394 btrfs_tree_unlock(node->eb); 395 node->locked = 0; 396 } 397 } 398 399 static void drop_node_buffer(struct backref_node *node) 400 { 401 if (node->eb) { 402 unlock_node_buffer(node); 403 free_extent_buffer(node->eb); 404 node->eb = NULL; 405 } 406 } 407 408 static void drop_backref_node(struct backref_cache *tree, 409 struct backref_node *node) 410 { 411 BUG_ON(!list_empty(&node->upper)); 412 413 drop_node_buffer(node); 414 list_del(&node->list); 415 list_del(&node->lower); 416 if (!RB_EMPTY_NODE(&node->rb_node)) 417 rb_erase(&node->rb_node, &tree->rb_root); 418 free_backref_node(tree, node); 419 } 420 421 /* 422 * remove a backref node from the backref cache 423 */ 424 static void remove_backref_node(struct backref_cache *cache, 425 struct backref_node *node) 426 { 427 struct backref_node *upper; 428 struct backref_edge *edge; 429 430 if (!node) 431 return; 432 433 BUG_ON(!node->lowest && !node->detached); 434 while (!list_empty(&node->upper)) { 435 edge = list_entry(node->upper.next, struct backref_edge, 436 list[LOWER]); 437 upper = edge->node[UPPER]; 438 list_del(&edge->list[LOWER]); 439 list_del(&edge->list[UPPER]); 440 free_backref_edge(cache, edge); 441 442 if (RB_EMPTY_NODE(&upper->rb_node)) { 443 BUG_ON(!list_empty(&node->upper)); 444 drop_backref_node(cache, node); 445 node = upper; 446 node->lowest = 1; 447 continue; 448 } 449 /* 450 * add the node to leaf node list if no other 451 * child block cached. 452 */ 453 if (list_empty(&upper->lower)) { 454 list_add_tail(&upper->lower, &cache->leaves); 455 upper->lowest = 1; 456 } 457 } 458 459 drop_backref_node(cache, node); 460 } 461 462 static void update_backref_node(struct backref_cache *cache, 463 struct backref_node *node, u64 bytenr) 464 { 465 struct rb_node *rb_node; 466 rb_erase(&node->rb_node, &cache->rb_root); 467 node->bytenr = bytenr; 468 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 469 if (rb_node) 470 backref_tree_panic(rb_node, -EEXIST, bytenr); 471 } 472 473 /* 474 * update backref cache after a transaction commit 475 */ 476 static int update_backref_cache(struct btrfs_trans_handle *trans, 477 struct backref_cache *cache) 478 { 479 struct backref_node *node; 480 int level = 0; 481 482 if (cache->last_trans == 0) { 483 cache->last_trans = trans->transid; 484 return 0; 485 } 486 487 if (cache->last_trans == trans->transid) 488 return 0; 489 490 /* 491 * detached nodes are used to avoid unnecessary backref 492 * lookup. transaction commit changes the extent tree. 493 * so the detached nodes are no longer useful. 494 */ 495 while (!list_empty(&cache->detached)) { 496 node = list_entry(cache->detached.next, 497 struct backref_node, list); 498 remove_backref_node(cache, node); 499 } 500 501 while (!list_empty(&cache->changed)) { 502 node = list_entry(cache->changed.next, 503 struct backref_node, list); 504 list_del_init(&node->list); 505 BUG_ON(node->pending); 506 update_backref_node(cache, node, node->new_bytenr); 507 } 508 509 /* 510 * some nodes can be left in the pending list if there were 511 * errors during processing the pending nodes. 512 */ 513 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 514 list_for_each_entry(node, &cache->pending[level], list) { 515 BUG_ON(!node->pending); 516 if (node->bytenr == node->new_bytenr) 517 continue; 518 update_backref_node(cache, node, node->new_bytenr); 519 } 520 } 521 522 cache->last_trans = 0; 523 return 1; 524 } 525 526 527 static int should_ignore_root(struct btrfs_root *root) 528 { 529 struct btrfs_root *reloc_root; 530 531 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 532 return 0; 533 534 reloc_root = root->reloc_root; 535 if (!reloc_root) 536 return 0; 537 538 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 539 root->fs_info->running_transaction->transid - 1) 540 return 0; 541 /* 542 * if there is reloc tree and it was created in previous 543 * transaction backref lookup can find the reloc tree, 544 * so backref node for the fs tree root is useless for 545 * relocation. 546 */ 547 return 1; 548 } 549 /* 550 * find reloc tree by address of tree root 551 */ 552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 553 u64 bytenr) 554 { 555 struct rb_node *rb_node; 556 struct mapping_node *node; 557 struct btrfs_root *root = NULL; 558 559 spin_lock(&rc->reloc_root_tree.lock); 560 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 561 if (rb_node) { 562 node = rb_entry(rb_node, struct mapping_node, rb_node); 563 root = (struct btrfs_root *)node->data; 564 } 565 spin_unlock(&rc->reloc_root_tree.lock); 566 return root; 567 } 568 569 static int is_cowonly_root(u64 root_objectid) 570 { 571 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 572 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 573 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 574 root_objectid == BTRFS_DEV_TREE_OBJECTID || 575 root_objectid == BTRFS_TREE_LOG_OBJECTID || 576 root_objectid == BTRFS_CSUM_TREE_OBJECTID || 577 root_objectid == BTRFS_UUID_TREE_OBJECTID || 578 root_objectid == BTRFS_QUOTA_TREE_OBJECTID || 579 root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) 580 return 1; 581 return 0; 582 } 583 584 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 585 u64 root_objectid) 586 { 587 struct btrfs_key key; 588 589 key.objectid = root_objectid; 590 key.type = BTRFS_ROOT_ITEM_KEY; 591 if (is_cowonly_root(root_objectid)) 592 key.offset = 0; 593 else 594 key.offset = (u64)-1; 595 596 return btrfs_get_fs_root(fs_info, &key, false); 597 } 598 599 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 600 static noinline_for_stack 601 struct btrfs_root *find_tree_root(struct reloc_control *rc, 602 struct extent_buffer *leaf, 603 struct btrfs_extent_ref_v0 *ref0) 604 { 605 struct btrfs_root *root; 606 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 607 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 608 609 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 610 611 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 612 BUG_ON(IS_ERR(root)); 613 614 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 615 generation != btrfs_root_generation(&root->root_item)) 616 return NULL; 617 618 return root; 619 } 620 #endif 621 622 static noinline_for_stack 623 int find_inline_backref(struct extent_buffer *leaf, int slot, 624 unsigned long *ptr, unsigned long *end) 625 { 626 struct btrfs_key key; 627 struct btrfs_extent_item *ei; 628 struct btrfs_tree_block_info *bi; 629 u32 item_size; 630 631 btrfs_item_key_to_cpu(leaf, &key, slot); 632 633 item_size = btrfs_item_size_nr(leaf, slot); 634 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 635 if (item_size < sizeof(*ei)) { 636 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 637 return 1; 638 } 639 #endif 640 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 641 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 642 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 643 644 if (key.type == BTRFS_EXTENT_ITEM_KEY && 645 item_size <= sizeof(*ei) + sizeof(*bi)) { 646 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 647 return 1; 648 } 649 if (key.type == BTRFS_METADATA_ITEM_KEY && 650 item_size <= sizeof(*ei)) { 651 WARN_ON(item_size < sizeof(*ei)); 652 return 1; 653 } 654 655 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 656 bi = (struct btrfs_tree_block_info *)(ei + 1); 657 *ptr = (unsigned long)(bi + 1); 658 } else { 659 *ptr = (unsigned long)(ei + 1); 660 } 661 *end = (unsigned long)ei + item_size; 662 return 0; 663 } 664 665 /* 666 * build backref tree for a given tree block. root of the backref tree 667 * corresponds the tree block, leaves of the backref tree correspond 668 * roots of b-trees that reference the tree block. 669 * 670 * the basic idea of this function is check backrefs of a given block 671 * to find upper level blocks that refernece the block, and then check 672 * bakcrefs of these upper level blocks recursively. the recursion stop 673 * when tree root is reached or backrefs for the block is cached. 674 * 675 * NOTE: if we find backrefs for a block are cached, we know backrefs 676 * for all upper level blocks that directly/indirectly reference the 677 * block are also cached. 678 */ 679 static noinline_for_stack 680 struct backref_node *build_backref_tree(struct reloc_control *rc, 681 struct btrfs_key *node_key, 682 int level, u64 bytenr) 683 { 684 struct backref_cache *cache = &rc->backref_cache; 685 struct btrfs_path *path1; 686 struct btrfs_path *path2; 687 struct extent_buffer *eb; 688 struct btrfs_root *root; 689 struct backref_node *cur; 690 struct backref_node *upper; 691 struct backref_node *lower; 692 struct backref_node *node = NULL; 693 struct backref_node *exist = NULL; 694 struct backref_edge *edge; 695 struct rb_node *rb_node; 696 struct btrfs_key key; 697 unsigned long end; 698 unsigned long ptr; 699 LIST_HEAD(list); 700 LIST_HEAD(useless); 701 int cowonly; 702 int ret; 703 int err = 0; 704 bool need_check = true; 705 706 path1 = btrfs_alloc_path(); 707 path2 = btrfs_alloc_path(); 708 if (!path1 || !path2) { 709 err = -ENOMEM; 710 goto out; 711 } 712 path1->reada = READA_FORWARD; 713 path2->reada = READA_FORWARD; 714 715 node = alloc_backref_node(cache); 716 if (!node) { 717 err = -ENOMEM; 718 goto out; 719 } 720 721 node->bytenr = bytenr; 722 node->level = level; 723 node->lowest = 1; 724 cur = node; 725 again: 726 end = 0; 727 ptr = 0; 728 key.objectid = cur->bytenr; 729 key.type = BTRFS_METADATA_ITEM_KEY; 730 key.offset = (u64)-1; 731 732 path1->search_commit_root = 1; 733 path1->skip_locking = 1; 734 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 735 0, 0); 736 if (ret < 0) { 737 err = ret; 738 goto out; 739 } 740 ASSERT(ret); 741 ASSERT(path1->slots[0]); 742 743 path1->slots[0]--; 744 745 WARN_ON(cur->checked); 746 if (!list_empty(&cur->upper)) { 747 /* 748 * the backref was added previously when processing 749 * backref of type BTRFS_TREE_BLOCK_REF_KEY 750 */ 751 ASSERT(list_is_singular(&cur->upper)); 752 edge = list_entry(cur->upper.next, struct backref_edge, 753 list[LOWER]); 754 ASSERT(list_empty(&edge->list[UPPER])); 755 exist = edge->node[UPPER]; 756 /* 757 * add the upper level block to pending list if we need 758 * check its backrefs 759 */ 760 if (!exist->checked) 761 list_add_tail(&edge->list[UPPER], &list); 762 } else { 763 exist = NULL; 764 } 765 766 while (1) { 767 cond_resched(); 768 eb = path1->nodes[0]; 769 770 if (ptr >= end) { 771 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 772 ret = btrfs_next_leaf(rc->extent_root, path1); 773 if (ret < 0) { 774 err = ret; 775 goto out; 776 } 777 if (ret > 0) 778 break; 779 eb = path1->nodes[0]; 780 } 781 782 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 783 if (key.objectid != cur->bytenr) { 784 WARN_ON(exist); 785 break; 786 } 787 788 if (key.type == BTRFS_EXTENT_ITEM_KEY || 789 key.type == BTRFS_METADATA_ITEM_KEY) { 790 ret = find_inline_backref(eb, path1->slots[0], 791 &ptr, &end); 792 if (ret) 793 goto next; 794 } 795 } 796 797 if (ptr < end) { 798 /* update key for inline back ref */ 799 struct btrfs_extent_inline_ref *iref; 800 iref = (struct btrfs_extent_inline_ref *)ptr; 801 key.type = btrfs_extent_inline_ref_type(eb, iref); 802 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 803 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 804 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 805 } 806 807 if (exist && 808 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 809 exist->owner == key.offset) || 810 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 811 exist->bytenr == key.offset))) { 812 exist = NULL; 813 goto next; 814 } 815 816 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 817 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 818 key.type == BTRFS_EXTENT_REF_V0_KEY) { 819 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 820 struct btrfs_extent_ref_v0 *ref0; 821 ref0 = btrfs_item_ptr(eb, path1->slots[0], 822 struct btrfs_extent_ref_v0); 823 if (key.objectid == key.offset) { 824 root = find_tree_root(rc, eb, ref0); 825 if (root && !should_ignore_root(root)) 826 cur->root = root; 827 else 828 list_add(&cur->list, &useless); 829 break; 830 } 831 if (is_cowonly_root(btrfs_ref_root_v0(eb, 832 ref0))) 833 cur->cowonly = 1; 834 } 835 #else 836 ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY); 837 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 838 #endif 839 if (key.objectid == key.offset) { 840 /* 841 * only root blocks of reloc trees use 842 * backref of this type. 843 */ 844 root = find_reloc_root(rc, cur->bytenr); 845 ASSERT(root); 846 cur->root = root; 847 break; 848 } 849 850 edge = alloc_backref_edge(cache); 851 if (!edge) { 852 err = -ENOMEM; 853 goto out; 854 } 855 rb_node = tree_search(&cache->rb_root, key.offset); 856 if (!rb_node) { 857 upper = alloc_backref_node(cache); 858 if (!upper) { 859 free_backref_edge(cache, edge); 860 err = -ENOMEM; 861 goto out; 862 } 863 upper->bytenr = key.offset; 864 upper->level = cur->level + 1; 865 /* 866 * backrefs for the upper level block isn't 867 * cached, add the block to pending list 868 */ 869 list_add_tail(&edge->list[UPPER], &list); 870 } else { 871 upper = rb_entry(rb_node, struct backref_node, 872 rb_node); 873 ASSERT(upper->checked); 874 INIT_LIST_HEAD(&edge->list[UPPER]); 875 } 876 list_add_tail(&edge->list[LOWER], &cur->upper); 877 edge->node[LOWER] = cur; 878 edge->node[UPPER] = upper; 879 880 goto next; 881 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 882 goto next; 883 } 884 885 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 886 root = read_fs_root(rc->extent_root->fs_info, key.offset); 887 if (IS_ERR(root)) { 888 err = PTR_ERR(root); 889 goto out; 890 } 891 892 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 893 cur->cowonly = 1; 894 895 if (btrfs_root_level(&root->root_item) == cur->level) { 896 /* tree root */ 897 ASSERT(btrfs_root_bytenr(&root->root_item) == 898 cur->bytenr); 899 if (should_ignore_root(root)) 900 list_add(&cur->list, &useless); 901 else 902 cur->root = root; 903 break; 904 } 905 906 level = cur->level + 1; 907 908 /* 909 * searching the tree to find upper level blocks 910 * reference the block. 911 */ 912 path2->search_commit_root = 1; 913 path2->skip_locking = 1; 914 path2->lowest_level = level; 915 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 916 path2->lowest_level = 0; 917 if (ret < 0) { 918 err = ret; 919 goto out; 920 } 921 if (ret > 0 && path2->slots[level] > 0) 922 path2->slots[level]--; 923 924 eb = path2->nodes[level]; 925 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 926 cur->bytenr); 927 928 lower = cur; 929 need_check = true; 930 for (; level < BTRFS_MAX_LEVEL; level++) { 931 if (!path2->nodes[level]) { 932 ASSERT(btrfs_root_bytenr(&root->root_item) == 933 lower->bytenr); 934 if (should_ignore_root(root)) 935 list_add(&lower->list, &useless); 936 else 937 lower->root = root; 938 break; 939 } 940 941 edge = alloc_backref_edge(cache); 942 if (!edge) { 943 err = -ENOMEM; 944 goto out; 945 } 946 947 eb = path2->nodes[level]; 948 rb_node = tree_search(&cache->rb_root, eb->start); 949 if (!rb_node) { 950 upper = alloc_backref_node(cache); 951 if (!upper) { 952 free_backref_edge(cache, edge); 953 err = -ENOMEM; 954 goto out; 955 } 956 upper->bytenr = eb->start; 957 upper->owner = btrfs_header_owner(eb); 958 upper->level = lower->level + 1; 959 if (!test_bit(BTRFS_ROOT_REF_COWS, 960 &root->state)) 961 upper->cowonly = 1; 962 963 /* 964 * if we know the block isn't shared 965 * we can void checking its backrefs. 966 */ 967 if (btrfs_block_can_be_shared(root, eb)) 968 upper->checked = 0; 969 else 970 upper->checked = 1; 971 972 /* 973 * add the block to pending list if we 974 * need check its backrefs, we only do this once 975 * while walking up a tree as we will catch 976 * anything else later on. 977 */ 978 if (!upper->checked && need_check) { 979 need_check = false; 980 list_add_tail(&edge->list[UPPER], 981 &list); 982 } else { 983 if (upper->checked) 984 need_check = true; 985 INIT_LIST_HEAD(&edge->list[UPPER]); 986 } 987 } else { 988 upper = rb_entry(rb_node, struct backref_node, 989 rb_node); 990 ASSERT(upper->checked); 991 INIT_LIST_HEAD(&edge->list[UPPER]); 992 if (!upper->owner) 993 upper->owner = btrfs_header_owner(eb); 994 } 995 list_add_tail(&edge->list[LOWER], &lower->upper); 996 edge->node[LOWER] = lower; 997 edge->node[UPPER] = upper; 998 999 if (rb_node) 1000 break; 1001 lower = upper; 1002 upper = NULL; 1003 } 1004 btrfs_release_path(path2); 1005 next: 1006 if (ptr < end) { 1007 ptr += btrfs_extent_inline_ref_size(key.type); 1008 if (ptr >= end) { 1009 WARN_ON(ptr > end); 1010 ptr = 0; 1011 end = 0; 1012 } 1013 } 1014 if (ptr >= end) 1015 path1->slots[0]++; 1016 } 1017 btrfs_release_path(path1); 1018 1019 cur->checked = 1; 1020 WARN_ON(exist); 1021 1022 /* the pending list isn't empty, take the first block to process */ 1023 if (!list_empty(&list)) { 1024 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1025 list_del_init(&edge->list[UPPER]); 1026 cur = edge->node[UPPER]; 1027 goto again; 1028 } 1029 1030 /* 1031 * everything goes well, connect backref nodes and insert backref nodes 1032 * into the cache. 1033 */ 1034 ASSERT(node->checked); 1035 cowonly = node->cowonly; 1036 if (!cowonly) { 1037 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1038 &node->rb_node); 1039 if (rb_node) 1040 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1041 list_add_tail(&node->lower, &cache->leaves); 1042 } 1043 1044 list_for_each_entry(edge, &node->upper, list[LOWER]) 1045 list_add_tail(&edge->list[UPPER], &list); 1046 1047 while (!list_empty(&list)) { 1048 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1049 list_del_init(&edge->list[UPPER]); 1050 upper = edge->node[UPPER]; 1051 if (upper->detached) { 1052 list_del(&edge->list[LOWER]); 1053 lower = edge->node[LOWER]; 1054 free_backref_edge(cache, edge); 1055 if (list_empty(&lower->upper)) 1056 list_add(&lower->list, &useless); 1057 continue; 1058 } 1059 1060 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1061 if (upper->lowest) { 1062 list_del_init(&upper->lower); 1063 upper->lowest = 0; 1064 } 1065 1066 list_add_tail(&edge->list[UPPER], &upper->lower); 1067 continue; 1068 } 1069 1070 if (!upper->checked) { 1071 /* 1072 * Still want to blow up for developers since this is a 1073 * logic bug. 1074 */ 1075 ASSERT(0); 1076 err = -EINVAL; 1077 goto out; 1078 } 1079 if (cowonly != upper->cowonly) { 1080 ASSERT(0); 1081 err = -EINVAL; 1082 goto out; 1083 } 1084 1085 if (!cowonly) { 1086 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1087 &upper->rb_node); 1088 if (rb_node) 1089 backref_tree_panic(rb_node, -EEXIST, 1090 upper->bytenr); 1091 } 1092 1093 list_add_tail(&edge->list[UPPER], &upper->lower); 1094 1095 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1096 list_add_tail(&edge->list[UPPER], &list); 1097 } 1098 /* 1099 * process useless backref nodes. backref nodes for tree leaves 1100 * are deleted from the cache. backref nodes for upper level 1101 * tree blocks are left in the cache to avoid unnecessary backref 1102 * lookup. 1103 */ 1104 while (!list_empty(&useless)) { 1105 upper = list_entry(useless.next, struct backref_node, list); 1106 list_del_init(&upper->list); 1107 ASSERT(list_empty(&upper->upper)); 1108 if (upper == node) 1109 node = NULL; 1110 if (upper->lowest) { 1111 list_del_init(&upper->lower); 1112 upper->lowest = 0; 1113 } 1114 while (!list_empty(&upper->lower)) { 1115 edge = list_entry(upper->lower.next, 1116 struct backref_edge, list[UPPER]); 1117 list_del(&edge->list[UPPER]); 1118 list_del(&edge->list[LOWER]); 1119 lower = edge->node[LOWER]; 1120 free_backref_edge(cache, edge); 1121 1122 if (list_empty(&lower->upper)) 1123 list_add(&lower->list, &useless); 1124 } 1125 __mark_block_processed(rc, upper); 1126 if (upper->level > 0) { 1127 list_add(&upper->list, &cache->detached); 1128 upper->detached = 1; 1129 } else { 1130 rb_erase(&upper->rb_node, &cache->rb_root); 1131 free_backref_node(cache, upper); 1132 } 1133 } 1134 out: 1135 btrfs_free_path(path1); 1136 btrfs_free_path(path2); 1137 if (err) { 1138 while (!list_empty(&useless)) { 1139 lower = list_entry(useless.next, 1140 struct backref_node, list); 1141 list_del_init(&lower->list); 1142 } 1143 while (!list_empty(&list)) { 1144 edge = list_first_entry(&list, struct backref_edge, 1145 list[UPPER]); 1146 list_del(&edge->list[UPPER]); 1147 list_del(&edge->list[LOWER]); 1148 lower = edge->node[LOWER]; 1149 upper = edge->node[UPPER]; 1150 free_backref_edge(cache, edge); 1151 1152 /* 1153 * Lower is no longer linked to any upper backref nodes 1154 * and isn't in the cache, we can free it ourselves. 1155 */ 1156 if (list_empty(&lower->upper) && 1157 RB_EMPTY_NODE(&lower->rb_node)) 1158 list_add(&lower->list, &useless); 1159 1160 if (!RB_EMPTY_NODE(&upper->rb_node)) 1161 continue; 1162 1163 /* Add this guy's upper edges to the list to proces */ 1164 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1165 list_add_tail(&edge->list[UPPER], &list); 1166 if (list_empty(&upper->upper)) 1167 list_add(&upper->list, &useless); 1168 } 1169 1170 while (!list_empty(&useless)) { 1171 lower = list_entry(useless.next, 1172 struct backref_node, list); 1173 list_del_init(&lower->list); 1174 free_backref_node(cache, lower); 1175 } 1176 return ERR_PTR(err); 1177 } 1178 ASSERT(!node || !node->detached); 1179 return node; 1180 } 1181 1182 /* 1183 * helper to add backref node for the newly created snapshot. 1184 * the backref node is created by cloning backref node that 1185 * corresponds to root of source tree 1186 */ 1187 static int clone_backref_node(struct btrfs_trans_handle *trans, 1188 struct reloc_control *rc, 1189 struct btrfs_root *src, 1190 struct btrfs_root *dest) 1191 { 1192 struct btrfs_root *reloc_root = src->reloc_root; 1193 struct backref_cache *cache = &rc->backref_cache; 1194 struct backref_node *node = NULL; 1195 struct backref_node *new_node; 1196 struct backref_edge *edge; 1197 struct backref_edge *new_edge; 1198 struct rb_node *rb_node; 1199 1200 if (cache->last_trans > 0) 1201 update_backref_cache(trans, cache); 1202 1203 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1204 if (rb_node) { 1205 node = rb_entry(rb_node, struct backref_node, rb_node); 1206 if (node->detached) 1207 node = NULL; 1208 else 1209 BUG_ON(node->new_bytenr != reloc_root->node->start); 1210 } 1211 1212 if (!node) { 1213 rb_node = tree_search(&cache->rb_root, 1214 reloc_root->commit_root->start); 1215 if (rb_node) { 1216 node = rb_entry(rb_node, struct backref_node, 1217 rb_node); 1218 BUG_ON(node->detached); 1219 } 1220 } 1221 1222 if (!node) 1223 return 0; 1224 1225 new_node = alloc_backref_node(cache); 1226 if (!new_node) 1227 return -ENOMEM; 1228 1229 new_node->bytenr = dest->node->start; 1230 new_node->level = node->level; 1231 new_node->lowest = node->lowest; 1232 new_node->checked = 1; 1233 new_node->root = dest; 1234 1235 if (!node->lowest) { 1236 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1237 new_edge = alloc_backref_edge(cache); 1238 if (!new_edge) 1239 goto fail; 1240 1241 new_edge->node[UPPER] = new_node; 1242 new_edge->node[LOWER] = edge->node[LOWER]; 1243 list_add_tail(&new_edge->list[UPPER], 1244 &new_node->lower); 1245 } 1246 } else { 1247 list_add_tail(&new_node->lower, &cache->leaves); 1248 } 1249 1250 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1251 &new_node->rb_node); 1252 if (rb_node) 1253 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1254 1255 if (!new_node->lowest) { 1256 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1257 list_add_tail(&new_edge->list[LOWER], 1258 &new_edge->node[LOWER]->upper); 1259 } 1260 } 1261 return 0; 1262 fail: 1263 while (!list_empty(&new_node->lower)) { 1264 new_edge = list_entry(new_node->lower.next, 1265 struct backref_edge, list[UPPER]); 1266 list_del(&new_edge->list[UPPER]); 1267 free_backref_edge(cache, new_edge); 1268 } 1269 free_backref_node(cache, new_node); 1270 return -ENOMEM; 1271 } 1272 1273 /* 1274 * helper to add 'address of tree root -> reloc tree' mapping 1275 */ 1276 static int __must_check __add_reloc_root(struct btrfs_root *root) 1277 { 1278 struct rb_node *rb_node; 1279 struct mapping_node *node; 1280 struct reloc_control *rc = root->fs_info->reloc_ctl; 1281 1282 node = kmalloc(sizeof(*node), GFP_NOFS); 1283 if (!node) 1284 return -ENOMEM; 1285 1286 node->bytenr = root->node->start; 1287 node->data = root; 1288 1289 spin_lock(&rc->reloc_root_tree.lock); 1290 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1291 node->bytenr, &node->rb_node); 1292 spin_unlock(&rc->reloc_root_tree.lock); 1293 if (rb_node) { 1294 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1295 "for start=%llu while inserting into relocation " 1296 "tree", node->bytenr); 1297 kfree(node); 1298 return -EEXIST; 1299 } 1300 1301 list_add_tail(&root->root_list, &rc->reloc_roots); 1302 return 0; 1303 } 1304 1305 /* 1306 * helper to delete the 'address of tree root -> reloc tree' 1307 * mapping 1308 */ 1309 static void __del_reloc_root(struct btrfs_root *root) 1310 { 1311 struct rb_node *rb_node; 1312 struct mapping_node *node = NULL; 1313 struct reloc_control *rc = root->fs_info->reloc_ctl; 1314 1315 spin_lock(&rc->reloc_root_tree.lock); 1316 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1317 root->node->start); 1318 if (rb_node) { 1319 node = rb_entry(rb_node, struct mapping_node, rb_node); 1320 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1321 } 1322 spin_unlock(&rc->reloc_root_tree.lock); 1323 1324 if (!node) 1325 return; 1326 BUG_ON((struct btrfs_root *)node->data != root); 1327 1328 spin_lock(&root->fs_info->trans_lock); 1329 list_del_init(&root->root_list); 1330 spin_unlock(&root->fs_info->trans_lock); 1331 kfree(node); 1332 } 1333 1334 /* 1335 * helper to update the 'address of tree root -> reloc tree' 1336 * mapping 1337 */ 1338 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr) 1339 { 1340 struct rb_node *rb_node; 1341 struct mapping_node *node = NULL; 1342 struct reloc_control *rc = root->fs_info->reloc_ctl; 1343 1344 spin_lock(&rc->reloc_root_tree.lock); 1345 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1346 root->node->start); 1347 if (rb_node) { 1348 node = rb_entry(rb_node, struct mapping_node, rb_node); 1349 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1350 } 1351 spin_unlock(&rc->reloc_root_tree.lock); 1352 1353 if (!node) 1354 return 0; 1355 BUG_ON((struct btrfs_root *)node->data != root); 1356 1357 spin_lock(&rc->reloc_root_tree.lock); 1358 node->bytenr = new_bytenr; 1359 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1360 node->bytenr, &node->rb_node); 1361 spin_unlock(&rc->reloc_root_tree.lock); 1362 if (rb_node) 1363 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1364 return 0; 1365 } 1366 1367 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1368 struct btrfs_root *root, u64 objectid) 1369 { 1370 struct btrfs_root *reloc_root; 1371 struct extent_buffer *eb; 1372 struct btrfs_root_item *root_item; 1373 struct btrfs_key root_key; 1374 u64 last_snap = 0; 1375 int ret; 1376 1377 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1378 BUG_ON(!root_item); 1379 1380 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1381 root_key.type = BTRFS_ROOT_ITEM_KEY; 1382 root_key.offset = objectid; 1383 1384 if (root->root_key.objectid == objectid) { 1385 /* called by btrfs_init_reloc_root */ 1386 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1387 BTRFS_TREE_RELOC_OBJECTID); 1388 BUG_ON(ret); 1389 1390 last_snap = btrfs_root_last_snapshot(&root->root_item); 1391 btrfs_set_root_last_snapshot(&root->root_item, 1392 trans->transid - 1); 1393 } else { 1394 /* 1395 * called by btrfs_reloc_post_snapshot_hook. 1396 * the source tree is a reloc tree, all tree blocks 1397 * modified after it was created have RELOC flag 1398 * set in their headers. so it's OK to not update 1399 * the 'last_snapshot'. 1400 */ 1401 ret = btrfs_copy_root(trans, root, root->node, &eb, 1402 BTRFS_TREE_RELOC_OBJECTID); 1403 BUG_ON(ret); 1404 } 1405 1406 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1407 btrfs_set_root_bytenr(root_item, eb->start); 1408 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1409 btrfs_set_root_generation(root_item, trans->transid); 1410 1411 if (root->root_key.objectid == objectid) { 1412 btrfs_set_root_refs(root_item, 0); 1413 memset(&root_item->drop_progress, 0, 1414 sizeof(struct btrfs_disk_key)); 1415 root_item->drop_level = 0; 1416 /* 1417 * abuse rtransid, it is safe because it is impossible to 1418 * receive data into a relocation tree. 1419 */ 1420 btrfs_set_root_rtransid(root_item, last_snap); 1421 btrfs_set_root_otransid(root_item, trans->transid); 1422 } 1423 1424 btrfs_tree_unlock(eb); 1425 free_extent_buffer(eb); 1426 1427 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1428 &root_key, root_item); 1429 BUG_ON(ret); 1430 kfree(root_item); 1431 1432 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1433 BUG_ON(IS_ERR(reloc_root)); 1434 reloc_root->last_trans = trans->transid; 1435 return reloc_root; 1436 } 1437 1438 /* 1439 * create reloc tree for a given fs tree. reloc tree is just a 1440 * snapshot of the fs tree with special root objectid. 1441 */ 1442 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1443 struct btrfs_root *root) 1444 { 1445 struct btrfs_root *reloc_root; 1446 struct reloc_control *rc = root->fs_info->reloc_ctl; 1447 struct btrfs_block_rsv *rsv; 1448 int clear_rsv = 0; 1449 int ret; 1450 1451 if (root->reloc_root) { 1452 reloc_root = root->reloc_root; 1453 reloc_root->last_trans = trans->transid; 1454 return 0; 1455 } 1456 1457 if (!rc || !rc->create_reloc_tree || 1458 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1459 return 0; 1460 1461 if (!trans->reloc_reserved) { 1462 rsv = trans->block_rsv; 1463 trans->block_rsv = rc->block_rsv; 1464 clear_rsv = 1; 1465 } 1466 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1467 if (clear_rsv) 1468 trans->block_rsv = rsv; 1469 1470 ret = __add_reloc_root(reloc_root); 1471 BUG_ON(ret < 0); 1472 root->reloc_root = reloc_root; 1473 return 0; 1474 } 1475 1476 /* 1477 * update root item of reloc tree 1478 */ 1479 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1480 struct btrfs_root *root) 1481 { 1482 struct btrfs_root *reloc_root; 1483 struct btrfs_root_item *root_item; 1484 int ret; 1485 1486 if (!root->reloc_root) 1487 goto out; 1488 1489 reloc_root = root->reloc_root; 1490 root_item = &reloc_root->root_item; 1491 1492 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1493 btrfs_root_refs(root_item) == 0) { 1494 root->reloc_root = NULL; 1495 __del_reloc_root(reloc_root); 1496 } 1497 1498 if (reloc_root->commit_root != reloc_root->node) { 1499 btrfs_set_root_node(root_item, reloc_root->node); 1500 free_extent_buffer(reloc_root->commit_root); 1501 reloc_root->commit_root = btrfs_root_node(reloc_root); 1502 } 1503 1504 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1505 &reloc_root->root_key, root_item); 1506 BUG_ON(ret); 1507 1508 out: 1509 return 0; 1510 } 1511 1512 /* 1513 * helper to find first cached inode with inode number >= objectid 1514 * in a subvolume 1515 */ 1516 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1517 { 1518 struct rb_node *node; 1519 struct rb_node *prev; 1520 struct btrfs_inode *entry; 1521 struct inode *inode; 1522 1523 spin_lock(&root->inode_lock); 1524 again: 1525 node = root->inode_tree.rb_node; 1526 prev = NULL; 1527 while (node) { 1528 prev = node; 1529 entry = rb_entry(node, struct btrfs_inode, rb_node); 1530 1531 if (objectid < btrfs_ino(&entry->vfs_inode)) 1532 node = node->rb_left; 1533 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1534 node = node->rb_right; 1535 else 1536 break; 1537 } 1538 if (!node) { 1539 while (prev) { 1540 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1541 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1542 node = prev; 1543 break; 1544 } 1545 prev = rb_next(prev); 1546 } 1547 } 1548 while (node) { 1549 entry = rb_entry(node, struct btrfs_inode, rb_node); 1550 inode = igrab(&entry->vfs_inode); 1551 if (inode) { 1552 spin_unlock(&root->inode_lock); 1553 return inode; 1554 } 1555 1556 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1557 if (cond_resched_lock(&root->inode_lock)) 1558 goto again; 1559 1560 node = rb_next(node); 1561 } 1562 spin_unlock(&root->inode_lock); 1563 return NULL; 1564 } 1565 1566 static int in_block_group(u64 bytenr, 1567 struct btrfs_block_group_cache *block_group) 1568 { 1569 if (bytenr >= block_group->key.objectid && 1570 bytenr < block_group->key.objectid + block_group->key.offset) 1571 return 1; 1572 return 0; 1573 } 1574 1575 /* 1576 * get new location of data 1577 */ 1578 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1579 u64 bytenr, u64 num_bytes) 1580 { 1581 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1582 struct btrfs_path *path; 1583 struct btrfs_file_extent_item *fi; 1584 struct extent_buffer *leaf; 1585 int ret; 1586 1587 path = btrfs_alloc_path(); 1588 if (!path) 1589 return -ENOMEM; 1590 1591 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1592 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1593 bytenr, 0); 1594 if (ret < 0) 1595 goto out; 1596 if (ret > 0) { 1597 ret = -ENOENT; 1598 goto out; 1599 } 1600 1601 leaf = path->nodes[0]; 1602 fi = btrfs_item_ptr(leaf, path->slots[0], 1603 struct btrfs_file_extent_item); 1604 1605 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1606 btrfs_file_extent_compression(leaf, fi) || 1607 btrfs_file_extent_encryption(leaf, fi) || 1608 btrfs_file_extent_other_encoding(leaf, fi)); 1609 1610 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1611 ret = -EINVAL; 1612 goto out; 1613 } 1614 1615 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1616 ret = 0; 1617 out: 1618 btrfs_free_path(path); 1619 return ret; 1620 } 1621 1622 /* 1623 * update file extent items in the tree leaf to point to 1624 * the new locations. 1625 */ 1626 static noinline_for_stack 1627 int replace_file_extents(struct btrfs_trans_handle *trans, 1628 struct reloc_control *rc, 1629 struct btrfs_root *root, 1630 struct extent_buffer *leaf) 1631 { 1632 struct btrfs_key key; 1633 struct btrfs_file_extent_item *fi; 1634 struct inode *inode = NULL; 1635 u64 parent; 1636 u64 bytenr; 1637 u64 new_bytenr = 0; 1638 u64 num_bytes; 1639 u64 end; 1640 u32 nritems; 1641 u32 i; 1642 int ret = 0; 1643 int first = 1; 1644 int dirty = 0; 1645 1646 if (rc->stage != UPDATE_DATA_PTRS) 1647 return 0; 1648 1649 /* reloc trees always use full backref */ 1650 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1651 parent = leaf->start; 1652 else 1653 parent = 0; 1654 1655 nritems = btrfs_header_nritems(leaf); 1656 for (i = 0; i < nritems; i++) { 1657 cond_resched(); 1658 btrfs_item_key_to_cpu(leaf, &key, i); 1659 if (key.type != BTRFS_EXTENT_DATA_KEY) 1660 continue; 1661 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1662 if (btrfs_file_extent_type(leaf, fi) == 1663 BTRFS_FILE_EXTENT_INLINE) 1664 continue; 1665 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1666 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1667 if (bytenr == 0) 1668 continue; 1669 if (!in_block_group(bytenr, rc->block_group)) 1670 continue; 1671 1672 /* 1673 * if we are modifying block in fs tree, wait for readpage 1674 * to complete and drop the extent cache 1675 */ 1676 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1677 if (first) { 1678 inode = find_next_inode(root, key.objectid); 1679 first = 0; 1680 } else if (inode && btrfs_ino(inode) < key.objectid) { 1681 btrfs_add_delayed_iput(inode); 1682 inode = find_next_inode(root, key.objectid); 1683 } 1684 if (inode && btrfs_ino(inode) == key.objectid) { 1685 end = key.offset + 1686 btrfs_file_extent_num_bytes(leaf, fi); 1687 WARN_ON(!IS_ALIGNED(key.offset, 1688 root->sectorsize)); 1689 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1690 end--; 1691 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1692 key.offset, end); 1693 if (!ret) 1694 continue; 1695 1696 btrfs_drop_extent_cache(inode, key.offset, end, 1697 1); 1698 unlock_extent(&BTRFS_I(inode)->io_tree, 1699 key.offset, end); 1700 } 1701 } 1702 1703 ret = get_new_location(rc->data_inode, &new_bytenr, 1704 bytenr, num_bytes); 1705 if (ret) { 1706 /* 1707 * Don't have to abort since we've not changed anything 1708 * in the file extent yet. 1709 */ 1710 break; 1711 } 1712 1713 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1714 dirty = 1; 1715 1716 key.offset -= btrfs_file_extent_offset(leaf, fi); 1717 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1718 num_bytes, parent, 1719 btrfs_header_owner(leaf), 1720 key.objectid, key.offset); 1721 if (ret) { 1722 btrfs_abort_transaction(trans, root, ret); 1723 break; 1724 } 1725 1726 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1727 parent, btrfs_header_owner(leaf), 1728 key.objectid, key.offset); 1729 if (ret) { 1730 btrfs_abort_transaction(trans, root, ret); 1731 break; 1732 } 1733 } 1734 if (dirty) 1735 btrfs_mark_buffer_dirty(leaf); 1736 if (inode) 1737 btrfs_add_delayed_iput(inode); 1738 return ret; 1739 } 1740 1741 static noinline_for_stack 1742 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1743 struct btrfs_path *path, int level) 1744 { 1745 struct btrfs_disk_key key1; 1746 struct btrfs_disk_key key2; 1747 btrfs_node_key(eb, &key1, slot); 1748 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1749 return memcmp(&key1, &key2, sizeof(key1)); 1750 } 1751 1752 /* 1753 * try to replace tree blocks in fs tree with the new blocks 1754 * in reloc tree. tree blocks haven't been modified since the 1755 * reloc tree was create can be replaced. 1756 * 1757 * if a block was replaced, level of the block + 1 is returned. 1758 * if no block got replaced, 0 is returned. if there are other 1759 * errors, a negative error number is returned. 1760 */ 1761 static noinline_for_stack 1762 int replace_path(struct btrfs_trans_handle *trans, 1763 struct btrfs_root *dest, struct btrfs_root *src, 1764 struct btrfs_path *path, struct btrfs_key *next_key, 1765 int lowest_level, int max_level) 1766 { 1767 struct extent_buffer *eb; 1768 struct extent_buffer *parent; 1769 struct btrfs_key key; 1770 u64 old_bytenr; 1771 u64 new_bytenr; 1772 u64 old_ptr_gen; 1773 u64 new_ptr_gen; 1774 u64 last_snapshot; 1775 u32 blocksize; 1776 int cow = 0; 1777 int level; 1778 int ret; 1779 int slot; 1780 1781 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1782 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1783 1784 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1785 again: 1786 slot = path->slots[lowest_level]; 1787 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1788 1789 eb = btrfs_lock_root_node(dest); 1790 btrfs_set_lock_blocking(eb); 1791 level = btrfs_header_level(eb); 1792 1793 if (level < lowest_level) { 1794 btrfs_tree_unlock(eb); 1795 free_extent_buffer(eb); 1796 return 0; 1797 } 1798 1799 if (cow) { 1800 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1801 BUG_ON(ret); 1802 } 1803 btrfs_set_lock_blocking(eb); 1804 1805 if (next_key) { 1806 next_key->objectid = (u64)-1; 1807 next_key->type = (u8)-1; 1808 next_key->offset = (u64)-1; 1809 } 1810 1811 parent = eb; 1812 while (1) { 1813 level = btrfs_header_level(parent); 1814 BUG_ON(level < lowest_level); 1815 1816 ret = btrfs_bin_search(parent, &key, level, &slot); 1817 if (ret && slot > 0) 1818 slot--; 1819 1820 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1821 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1822 1823 old_bytenr = btrfs_node_blockptr(parent, slot); 1824 blocksize = dest->nodesize; 1825 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1826 1827 if (level <= max_level) { 1828 eb = path->nodes[level]; 1829 new_bytenr = btrfs_node_blockptr(eb, 1830 path->slots[level]); 1831 new_ptr_gen = btrfs_node_ptr_generation(eb, 1832 path->slots[level]); 1833 } else { 1834 new_bytenr = 0; 1835 new_ptr_gen = 0; 1836 } 1837 1838 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1839 ret = level; 1840 break; 1841 } 1842 1843 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1844 memcmp_node_keys(parent, slot, path, level)) { 1845 if (level <= lowest_level) { 1846 ret = 0; 1847 break; 1848 } 1849 1850 eb = read_tree_block(dest, old_bytenr, old_ptr_gen); 1851 if (IS_ERR(eb)) { 1852 ret = PTR_ERR(eb); 1853 } else if (!extent_buffer_uptodate(eb)) { 1854 ret = -EIO; 1855 free_extent_buffer(eb); 1856 break; 1857 } 1858 btrfs_tree_lock(eb); 1859 if (cow) { 1860 ret = btrfs_cow_block(trans, dest, eb, parent, 1861 slot, &eb); 1862 BUG_ON(ret); 1863 } 1864 btrfs_set_lock_blocking(eb); 1865 1866 btrfs_tree_unlock(parent); 1867 free_extent_buffer(parent); 1868 1869 parent = eb; 1870 continue; 1871 } 1872 1873 if (!cow) { 1874 btrfs_tree_unlock(parent); 1875 free_extent_buffer(parent); 1876 cow = 1; 1877 goto again; 1878 } 1879 1880 btrfs_node_key_to_cpu(path->nodes[level], &key, 1881 path->slots[level]); 1882 btrfs_release_path(path); 1883 1884 path->lowest_level = level; 1885 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1886 path->lowest_level = 0; 1887 BUG_ON(ret); 1888 1889 /* 1890 * swap blocks in fs tree and reloc tree. 1891 */ 1892 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1893 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1894 btrfs_mark_buffer_dirty(parent); 1895 1896 btrfs_set_node_blockptr(path->nodes[level], 1897 path->slots[level], old_bytenr); 1898 btrfs_set_node_ptr_generation(path->nodes[level], 1899 path->slots[level], old_ptr_gen); 1900 btrfs_mark_buffer_dirty(path->nodes[level]); 1901 1902 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1903 path->nodes[level]->start, 1904 src->root_key.objectid, level - 1, 0); 1905 BUG_ON(ret); 1906 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1907 0, dest->root_key.objectid, level - 1, 1908 0); 1909 BUG_ON(ret); 1910 1911 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1912 path->nodes[level]->start, 1913 src->root_key.objectid, level - 1, 0); 1914 BUG_ON(ret); 1915 1916 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1917 0, dest->root_key.objectid, level - 1, 1918 0); 1919 BUG_ON(ret); 1920 1921 btrfs_unlock_up_safe(path, 0); 1922 1923 ret = level; 1924 break; 1925 } 1926 btrfs_tree_unlock(parent); 1927 free_extent_buffer(parent); 1928 return ret; 1929 } 1930 1931 /* 1932 * helper to find next relocated block in reloc tree 1933 */ 1934 static noinline_for_stack 1935 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1936 int *level) 1937 { 1938 struct extent_buffer *eb; 1939 int i; 1940 u64 last_snapshot; 1941 u32 nritems; 1942 1943 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1944 1945 for (i = 0; i < *level; i++) { 1946 free_extent_buffer(path->nodes[i]); 1947 path->nodes[i] = NULL; 1948 } 1949 1950 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1951 eb = path->nodes[i]; 1952 nritems = btrfs_header_nritems(eb); 1953 while (path->slots[i] + 1 < nritems) { 1954 path->slots[i]++; 1955 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1956 last_snapshot) 1957 continue; 1958 1959 *level = i; 1960 return 0; 1961 } 1962 free_extent_buffer(path->nodes[i]); 1963 path->nodes[i] = NULL; 1964 } 1965 return 1; 1966 } 1967 1968 /* 1969 * walk down reloc tree to find relocated block of lowest level 1970 */ 1971 static noinline_for_stack 1972 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1973 int *level) 1974 { 1975 struct extent_buffer *eb = NULL; 1976 int i; 1977 u64 bytenr; 1978 u64 ptr_gen = 0; 1979 u64 last_snapshot; 1980 u32 nritems; 1981 1982 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1983 1984 for (i = *level; i > 0; i--) { 1985 eb = path->nodes[i]; 1986 nritems = btrfs_header_nritems(eb); 1987 while (path->slots[i] < nritems) { 1988 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1989 if (ptr_gen > last_snapshot) 1990 break; 1991 path->slots[i]++; 1992 } 1993 if (path->slots[i] >= nritems) { 1994 if (i == *level) 1995 break; 1996 *level = i + 1; 1997 return 0; 1998 } 1999 if (i == 1) { 2000 *level = i; 2001 return 0; 2002 } 2003 2004 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2005 eb = read_tree_block(root, bytenr, ptr_gen); 2006 if (IS_ERR(eb)) { 2007 return PTR_ERR(eb); 2008 } else if (!extent_buffer_uptodate(eb)) { 2009 free_extent_buffer(eb); 2010 return -EIO; 2011 } 2012 BUG_ON(btrfs_header_level(eb) != i - 1); 2013 path->nodes[i - 1] = eb; 2014 path->slots[i - 1] = 0; 2015 } 2016 return 1; 2017 } 2018 2019 /* 2020 * invalidate extent cache for file extents whose key in range of 2021 * [min_key, max_key) 2022 */ 2023 static int invalidate_extent_cache(struct btrfs_root *root, 2024 struct btrfs_key *min_key, 2025 struct btrfs_key *max_key) 2026 { 2027 struct inode *inode = NULL; 2028 u64 objectid; 2029 u64 start, end; 2030 u64 ino; 2031 2032 objectid = min_key->objectid; 2033 while (1) { 2034 cond_resched(); 2035 iput(inode); 2036 2037 if (objectid > max_key->objectid) 2038 break; 2039 2040 inode = find_next_inode(root, objectid); 2041 if (!inode) 2042 break; 2043 ino = btrfs_ino(inode); 2044 2045 if (ino > max_key->objectid) { 2046 iput(inode); 2047 break; 2048 } 2049 2050 objectid = ino + 1; 2051 if (!S_ISREG(inode->i_mode)) 2052 continue; 2053 2054 if (unlikely(min_key->objectid == ino)) { 2055 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2056 continue; 2057 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2058 start = 0; 2059 else { 2060 start = min_key->offset; 2061 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2062 } 2063 } else { 2064 start = 0; 2065 } 2066 2067 if (unlikely(max_key->objectid == ino)) { 2068 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2069 continue; 2070 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2071 end = (u64)-1; 2072 } else { 2073 if (max_key->offset == 0) 2074 continue; 2075 end = max_key->offset; 2076 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2077 end--; 2078 } 2079 } else { 2080 end = (u64)-1; 2081 } 2082 2083 /* the lock_extent waits for readpage to complete */ 2084 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2085 btrfs_drop_extent_cache(inode, start, end, 1); 2086 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2087 } 2088 return 0; 2089 } 2090 2091 static int find_next_key(struct btrfs_path *path, int level, 2092 struct btrfs_key *key) 2093 2094 { 2095 while (level < BTRFS_MAX_LEVEL) { 2096 if (!path->nodes[level]) 2097 break; 2098 if (path->slots[level] + 1 < 2099 btrfs_header_nritems(path->nodes[level])) { 2100 btrfs_node_key_to_cpu(path->nodes[level], key, 2101 path->slots[level] + 1); 2102 return 0; 2103 } 2104 level++; 2105 } 2106 return 1; 2107 } 2108 2109 /* 2110 * merge the relocated tree blocks in reloc tree with corresponding 2111 * fs tree. 2112 */ 2113 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2114 struct btrfs_root *root) 2115 { 2116 LIST_HEAD(inode_list); 2117 struct btrfs_key key; 2118 struct btrfs_key next_key; 2119 struct btrfs_trans_handle *trans = NULL; 2120 struct btrfs_root *reloc_root; 2121 struct btrfs_root_item *root_item; 2122 struct btrfs_path *path; 2123 struct extent_buffer *leaf; 2124 int level; 2125 int max_level; 2126 int replaced = 0; 2127 int ret; 2128 int err = 0; 2129 u32 min_reserved; 2130 2131 path = btrfs_alloc_path(); 2132 if (!path) 2133 return -ENOMEM; 2134 path->reada = READA_FORWARD; 2135 2136 reloc_root = root->reloc_root; 2137 root_item = &reloc_root->root_item; 2138 2139 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2140 level = btrfs_root_level(root_item); 2141 extent_buffer_get(reloc_root->node); 2142 path->nodes[level] = reloc_root->node; 2143 path->slots[level] = 0; 2144 } else { 2145 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2146 2147 level = root_item->drop_level; 2148 BUG_ON(level == 0); 2149 path->lowest_level = level; 2150 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2151 path->lowest_level = 0; 2152 if (ret < 0) { 2153 btrfs_free_path(path); 2154 return ret; 2155 } 2156 2157 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2158 path->slots[level]); 2159 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2160 2161 btrfs_unlock_up_safe(path, 0); 2162 } 2163 2164 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2165 memset(&next_key, 0, sizeof(next_key)); 2166 2167 while (1) { 2168 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2169 BTRFS_RESERVE_FLUSH_ALL); 2170 if (ret) { 2171 err = ret; 2172 goto out; 2173 } 2174 trans = btrfs_start_transaction(root, 0); 2175 if (IS_ERR(trans)) { 2176 err = PTR_ERR(trans); 2177 trans = NULL; 2178 goto out; 2179 } 2180 trans->block_rsv = rc->block_rsv; 2181 2182 replaced = 0; 2183 max_level = level; 2184 2185 ret = walk_down_reloc_tree(reloc_root, path, &level); 2186 if (ret < 0) { 2187 err = ret; 2188 goto out; 2189 } 2190 if (ret > 0) 2191 break; 2192 2193 if (!find_next_key(path, level, &key) && 2194 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2195 ret = 0; 2196 } else { 2197 ret = replace_path(trans, root, reloc_root, path, 2198 &next_key, level, max_level); 2199 } 2200 if (ret < 0) { 2201 err = ret; 2202 goto out; 2203 } 2204 2205 if (ret > 0) { 2206 level = ret; 2207 btrfs_node_key_to_cpu(path->nodes[level], &key, 2208 path->slots[level]); 2209 replaced = 1; 2210 } 2211 2212 ret = walk_up_reloc_tree(reloc_root, path, &level); 2213 if (ret > 0) 2214 break; 2215 2216 BUG_ON(level == 0); 2217 /* 2218 * save the merging progress in the drop_progress. 2219 * this is OK since root refs == 1 in this case. 2220 */ 2221 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2222 path->slots[level]); 2223 root_item->drop_level = level; 2224 2225 btrfs_end_transaction_throttle(trans, root); 2226 trans = NULL; 2227 2228 btrfs_btree_balance_dirty(root); 2229 2230 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2231 invalidate_extent_cache(root, &key, &next_key); 2232 } 2233 2234 /* 2235 * handle the case only one block in the fs tree need to be 2236 * relocated and the block is tree root. 2237 */ 2238 leaf = btrfs_lock_root_node(root); 2239 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2240 btrfs_tree_unlock(leaf); 2241 free_extent_buffer(leaf); 2242 if (ret < 0) 2243 err = ret; 2244 out: 2245 btrfs_free_path(path); 2246 2247 if (err == 0) { 2248 memset(&root_item->drop_progress, 0, 2249 sizeof(root_item->drop_progress)); 2250 root_item->drop_level = 0; 2251 btrfs_set_root_refs(root_item, 0); 2252 btrfs_update_reloc_root(trans, root); 2253 } 2254 2255 if (trans) 2256 btrfs_end_transaction_throttle(trans, root); 2257 2258 btrfs_btree_balance_dirty(root); 2259 2260 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2261 invalidate_extent_cache(root, &key, &next_key); 2262 2263 return err; 2264 } 2265 2266 static noinline_for_stack 2267 int prepare_to_merge(struct reloc_control *rc, int err) 2268 { 2269 struct btrfs_root *root = rc->extent_root; 2270 struct btrfs_root *reloc_root; 2271 struct btrfs_trans_handle *trans; 2272 LIST_HEAD(reloc_roots); 2273 u64 num_bytes = 0; 2274 int ret; 2275 2276 mutex_lock(&root->fs_info->reloc_mutex); 2277 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2278 rc->merging_rsv_size += rc->nodes_relocated * 2; 2279 mutex_unlock(&root->fs_info->reloc_mutex); 2280 2281 again: 2282 if (!err) { 2283 num_bytes = rc->merging_rsv_size; 2284 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2285 BTRFS_RESERVE_FLUSH_ALL); 2286 if (ret) 2287 err = ret; 2288 } 2289 2290 trans = btrfs_join_transaction(rc->extent_root); 2291 if (IS_ERR(trans)) { 2292 if (!err) 2293 btrfs_block_rsv_release(rc->extent_root, 2294 rc->block_rsv, num_bytes); 2295 return PTR_ERR(trans); 2296 } 2297 2298 if (!err) { 2299 if (num_bytes != rc->merging_rsv_size) { 2300 btrfs_end_transaction(trans, rc->extent_root); 2301 btrfs_block_rsv_release(rc->extent_root, 2302 rc->block_rsv, num_bytes); 2303 goto again; 2304 } 2305 } 2306 2307 rc->merge_reloc_tree = 1; 2308 2309 while (!list_empty(&rc->reloc_roots)) { 2310 reloc_root = list_entry(rc->reloc_roots.next, 2311 struct btrfs_root, root_list); 2312 list_del_init(&reloc_root->root_list); 2313 2314 root = read_fs_root(reloc_root->fs_info, 2315 reloc_root->root_key.offset); 2316 BUG_ON(IS_ERR(root)); 2317 BUG_ON(root->reloc_root != reloc_root); 2318 2319 /* 2320 * set reference count to 1, so btrfs_recover_relocation 2321 * knows it should resumes merging 2322 */ 2323 if (!err) 2324 btrfs_set_root_refs(&reloc_root->root_item, 1); 2325 btrfs_update_reloc_root(trans, root); 2326 2327 list_add(&reloc_root->root_list, &reloc_roots); 2328 } 2329 2330 list_splice(&reloc_roots, &rc->reloc_roots); 2331 2332 if (!err) 2333 btrfs_commit_transaction(trans, rc->extent_root); 2334 else 2335 btrfs_end_transaction(trans, rc->extent_root); 2336 return err; 2337 } 2338 2339 static noinline_for_stack 2340 void free_reloc_roots(struct list_head *list) 2341 { 2342 struct btrfs_root *reloc_root; 2343 2344 while (!list_empty(list)) { 2345 reloc_root = list_entry(list->next, struct btrfs_root, 2346 root_list); 2347 __del_reloc_root(reloc_root); 2348 } 2349 } 2350 2351 static noinline_for_stack 2352 void merge_reloc_roots(struct reloc_control *rc) 2353 { 2354 struct btrfs_root *root; 2355 struct btrfs_root *reloc_root; 2356 u64 last_snap; 2357 u64 otransid; 2358 u64 objectid; 2359 LIST_HEAD(reloc_roots); 2360 int found = 0; 2361 int ret = 0; 2362 again: 2363 root = rc->extent_root; 2364 2365 /* 2366 * this serializes us with btrfs_record_root_in_transaction, 2367 * we have to make sure nobody is in the middle of 2368 * adding their roots to the list while we are 2369 * doing this splice 2370 */ 2371 mutex_lock(&root->fs_info->reloc_mutex); 2372 list_splice_init(&rc->reloc_roots, &reloc_roots); 2373 mutex_unlock(&root->fs_info->reloc_mutex); 2374 2375 while (!list_empty(&reloc_roots)) { 2376 found = 1; 2377 reloc_root = list_entry(reloc_roots.next, 2378 struct btrfs_root, root_list); 2379 2380 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2381 root = read_fs_root(reloc_root->fs_info, 2382 reloc_root->root_key.offset); 2383 BUG_ON(IS_ERR(root)); 2384 BUG_ON(root->reloc_root != reloc_root); 2385 2386 ret = merge_reloc_root(rc, root); 2387 if (ret) { 2388 if (list_empty(&reloc_root->root_list)) 2389 list_add_tail(&reloc_root->root_list, 2390 &reloc_roots); 2391 goto out; 2392 } 2393 } else { 2394 list_del_init(&reloc_root->root_list); 2395 } 2396 2397 /* 2398 * we keep the old last snapshod transid in rtranid when we 2399 * created the relocation tree. 2400 */ 2401 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2402 otransid = btrfs_root_otransid(&reloc_root->root_item); 2403 objectid = reloc_root->root_key.offset; 2404 2405 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2406 if (ret < 0) { 2407 if (list_empty(&reloc_root->root_list)) 2408 list_add_tail(&reloc_root->root_list, 2409 &reloc_roots); 2410 goto out; 2411 } 2412 } 2413 2414 if (found) { 2415 found = 0; 2416 goto again; 2417 } 2418 out: 2419 if (ret) { 2420 btrfs_std_error(root->fs_info, ret, NULL); 2421 if (!list_empty(&reloc_roots)) 2422 free_reloc_roots(&reloc_roots); 2423 2424 /* new reloc root may be added */ 2425 mutex_lock(&root->fs_info->reloc_mutex); 2426 list_splice_init(&rc->reloc_roots, &reloc_roots); 2427 mutex_unlock(&root->fs_info->reloc_mutex); 2428 if (!list_empty(&reloc_roots)) 2429 free_reloc_roots(&reloc_roots); 2430 } 2431 2432 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2433 } 2434 2435 static void free_block_list(struct rb_root *blocks) 2436 { 2437 struct tree_block *block; 2438 struct rb_node *rb_node; 2439 while ((rb_node = rb_first(blocks))) { 2440 block = rb_entry(rb_node, struct tree_block, rb_node); 2441 rb_erase(rb_node, blocks); 2442 kfree(block); 2443 } 2444 } 2445 2446 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2447 struct btrfs_root *reloc_root) 2448 { 2449 struct btrfs_root *root; 2450 2451 if (reloc_root->last_trans == trans->transid) 2452 return 0; 2453 2454 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2455 BUG_ON(IS_ERR(root)); 2456 BUG_ON(root->reloc_root != reloc_root); 2457 2458 return btrfs_record_root_in_trans(trans, root); 2459 } 2460 2461 static noinline_for_stack 2462 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2463 struct reloc_control *rc, 2464 struct backref_node *node, 2465 struct backref_edge *edges[]) 2466 { 2467 struct backref_node *next; 2468 struct btrfs_root *root; 2469 int index = 0; 2470 2471 next = node; 2472 while (1) { 2473 cond_resched(); 2474 next = walk_up_backref(next, edges, &index); 2475 root = next->root; 2476 BUG_ON(!root); 2477 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2478 2479 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2480 record_reloc_root_in_trans(trans, root); 2481 break; 2482 } 2483 2484 btrfs_record_root_in_trans(trans, root); 2485 root = root->reloc_root; 2486 2487 if (next->new_bytenr != root->node->start) { 2488 BUG_ON(next->new_bytenr); 2489 BUG_ON(!list_empty(&next->list)); 2490 next->new_bytenr = root->node->start; 2491 next->root = root; 2492 list_add_tail(&next->list, 2493 &rc->backref_cache.changed); 2494 __mark_block_processed(rc, next); 2495 break; 2496 } 2497 2498 WARN_ON(1); 2499 root = NULL; 2500 next = walk_down_backref(edges, &index); 2501 if (!next || next->level <= node->level) 2502 break; 2503 } 2504 if (!root) 2505 return NULL; 2506 2507 next = node; 2508 /* setup backref node path for btrfs_reloc_cow_block */ 2509 while (1) { 2510 rc->backref_cache.path[next->level] = next; 2511 if (--index < 0) 2512 break; 2513 next = edges[index]->node[UPPER]; 2514 } 2515 return root; 2516 } 2517 2518 /* 2519 * select a tree root for relocation. return NULL if the block 2520 * is reference counted. we should use do_relocation() in this 2521 * case. return a tree root pointer if the block isn't reference 2522 * counted. return -ENOENT if the block is root of reloc tree. 2523 */ 2524 static noinline_for_stack 2525 struct btrfs_root *select_one_root(struct backref_node *node) 2526 { 2527 struct backref_node *next; 2528 struct btrfs_root *root; 2529 struct btrfs_root *fs_root = NULL; 2530 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2531 int index = 0; 2532 2533 next = node; 2534 while (1) { 2535 cond_resched(); 2536 next = walk_up_backref(next, edges, &index); 2537 root = next->root; 2538 BUG_ON(!root); 2539 2540 /* no other choice for non-references counted tree */ 2541 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2542 return root; 2543 2544 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2545 fs_root = root; 2546 2547 if (next != node) 2548 return NULL; 2549 2550 next = walk_down_backref(edges, &index); 2551 if (!next || next->level <= node->level) 2552 break; 2553 } 2554 2555 if (!fs_root) 2556 return ERR_PTR(-ENOENT); 2557 return fs_root; 2558 } 2559 2560 static noinline_for_stack 2561 u64 calcu_metadata_size(struct reloc_control *rc, 2562 struct backref_node *node, int reserve) 2563 { 2564 struct backref_node *next = node; 2565 struct backref_edge *edge; 2566 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2567 u64 num_bytes = 0; 2568 int index = 0; 2569 2570 BUG_ON(reserve && node->processed); 2571 2572 while (next) { 2573 cond_resched(); 2574 while (1) { 2575 if (next->processed && (reserve || next != node)) 2576 break; 2577 2578 num_bytes += rc->extent_root->nodesize; 2579 2580 if (list_empty(&next->upper)) 2581 break; 2582 2583 edge = list_entry(next->upper.next, 2584 struct backref_edge, list[LOWER]); 2585 edges[index++] = edge; 2586 next = edge->node[UPPER]; 2587 } 2588 next = walk_down_backref(edges, &index); 2589 } 2590 return num_bytes; 2591 } 2592 2593 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2594 struct reloc_control *rc, 2595 struct backref_node *node) 2596 { 2597 struct btrfs_root *root = rc->extent_root; 2598 u64 num_bytes; 2599 int ret; 2600 u64 tmp; 2601 2602 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2603 2604 trans->block_rsv = rc->block_rsv; 2605 rc->reserved_bytes += num_bytes; 2606 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2607 BTRFS_RESERVE_FLUSH_ALL); 2608 if (ret) { 2609 if (ret == -EAGAIN) { 2610 tmp = rc->extent_root->nodesize * 2611 RELOCATION_RESERVED_NODES; 2612 while (tmp <= rc->reserved_bytes) 2613 tmp <<= 1; 2614 /* 2615 * only one thread can access block_rsv at this point, 2616 * so we don't need hold lock to protect block_rsv. 2617 * we expand more reservation size here to allow enough 2618 * space for relocation and we will return eailer in 2619 * enospc case. 2620 */ 2621 rc->block_rsv->size = tmp + rc->extent_root->nodesize * 2622 RELOCATION_RESERVED_NODES; 2623 } 2624 return ret; 2625 } 2626 2627 return 0; 2628 } 2629 2630 /* 2631 * relocate a block tree, and then update pointers in upper level 2632 * blocks that reference the block to point to the new location. 2633 * 2634 * if called by link_to_upper, the block has already been relocated. 2635 * in that case this function just updates pointers. 2636 */ 2637 static int do_relocation(struct btrfs_trans_handle *trans, 2638 struct reloc_control *rc, 2639 struct backref_node *node, 2640 struct btrfs_key *key, 2641 struct btrfs_path *path, int lowest) 2642 { 2643 struct backref_node *upper; 2644 struct backref_edge *edge; 2645 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2646 struct btrfs_root *root; 2647 struct extent_buffer *eb; 2648 u32 blocksize; 2649 u64 bytenr; 2650 u64 generation; 2651 int slot; 2652 int ret; 2653 int err = 0; 2654 2655 BUG_ON(lowest && node->eb); 2656 2657 path->lowest_level = node->level + 1; 2658 rc->backref_cache.path[node->level] = node; 2659 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2660 cond_resched(); 2661 2662 upper = edge->node[UPPER]; 2663 root = select_reloc_root(trans, rc, upper, edges); 2664 BUG_ON(!root); 2665 2666 if (upper->eb && !upper->locked) { 2667 if (!lowest) { 2668 ret = btrfs_bin_search(upper->eb, key, 2669 upper->level, &slot); 2670 BUG_ON(ret); 2671 bytenr = btrfs_node_blockptr(upper->eb, slot); 2672 if (node->eb->start == bytenr) 2673 goto next; 2674 } 2675 drop_node_buffer(upper); 2676 } 2677 2678 if (!upper->eb) { 2679 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2680 if (ret < 0) { 2681 err = ret; 2682 break; 2683 } 2684 BUG_ON(ret > 0); 2685 2686 if (!upper->eb) { 2687 upper->eb = path->nodes[upper->level]; 2688 path->nodes[upper->level] = NULL; 2689 } else { 2690 BUG_ON(upper->eb != path->nodes[upper->level]); 2691 } 2692 2693 upper->locked = 1; 2694 path->locks[upper->level] = 0; 2695 2696 slot = path->slots[upper->level]; 2697 btrfs_release_path(path); 2698 } else { 2699 ret = btrfs_bin_search(upper->eb, key, upper->level, 2700 &slot); 2701 BUG_ON(ret); 2702 } 2703 2704 bytenr = btrfs_node_blockptr(upper->eb, slot); 2705 if (lowest) { 2706 BUG_ON(bytenr != node->bytenr); 2707 } else { 2708 if (node->eb->start == bytenr) 2709 goto next; 2710 } 2711 2712 blocksize = root->nodesize; 2713 generation = btrfs_node_ptr_generation(upper->eb, slot); 2714 eb = read_tree_block(root, bytenr, generation); 2715 if (IS_ERR(eb)) { 2716 err = PTR_ERR(eb); 2717 goto next; 2718 } else if (!extent_buffer_uptodate(eb)) { 2719 free_extent_buffer(eb); 2720 err = -EIO; 2721 goto next; 2722 } 2723 btrfs_tree_lock(eb); 2724 btrfs_set_lock_blocking(eb); 2725 2726 if (!node->eb) { 2727 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2728 slot, &eb); 2729 btrfs_tree_unlock(eb); 2730 free_extent_buffer(eb); 2731 if (ret < 0) { 2732 err = ret; 2733 goto next; 2734 } 2735 BUG_ON(node->eb != eb); 2736 } else { 2737 btrfs_set_node_blockptr(upper->eb, slot, 2738 node->eb->start); 2739 btrfs_set_node_ptr_generation(upper->eb, slot, 2740 trans->transid); 2741 btrfs_mark_buffer_dirty(upper->eb); 2742 2743 ret = btrfs_inc_extent_ref(trans, root, 2744 node->eb->start, blocksize, 2745 upper->eb->start, 2746 btrfs_header_owner(upper->eb), 2747 node->level, 0); 2748 BUG_ON(ret); 2749 2750 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2751 BUG_ON(ret); 2752 } 2753 next: 2754 if (!upper->pending) 2755 drop_node_buffer(upper); 2756 else 2757 unlock_node_buffer(upper); 2758 if (err) 2759 break; 2760 } 2761 2762 if (!err && node->pending) { 2763 drop_node_buffer(node); 2764 list_move_tail(&node->list, &rc->backref_cache.changed); 2765 node->pending = 0; 2766 } 2767 2768 path->lowest_level = 0; 2769 BUG_ON(err == -ENOSPC); 2770 return err; 2771 } 2772 2773 static int link_to_upper(struct btrfs_trans_handle *trans, 2774 struct reloc_control *rc, 2775 struct backref_node *node, 2776 struct btrfs_path *path) 2777 { 2778 struct btrfs_key key; 2779 2780 btrfs_node_key_to_cpu(node->eb, &key, 0); 2781 return do_relocation(trans, rc, node, &key, path, 0); 2782 } 2783 2784 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2785 struct reloc_control *rc, 2786 struct btrfs_path *path, int err) 2787 { 2788 LIST_HEAD(list); 2789 struct backref_cache *cache = &rc->backref_cache; 2790 struct backref_node *node; 2791 int level; 2792 int ret; 2793 2794 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2795 while (!list_empty(&cache->pending[level])) { 2796 node = list_entry(cache->pending[level].next, 2797 struct backref_node, list); 2798 list_move_tail(&node->list, &list); 2799 BUG_ON(!node->pending); 2800 2801 if (!err) { 2802 ret = link_to_upper(trans, rc, node, path); 2803 if (ret < 0) 2804 err = ret; 2805 } 2806 } 2807 list_splice_init(&list, &cache->pending[level]); 2808 } 2809 return err; 2810 } 2811 2812 static void mark_block_processed(struct reloc_control *rc, 2813 u64 bytenr, u32 blocksize) 2814 { 2815 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2816 EXTENT_DIRTY, GFP_NOFS); 2817 } 2818 2819 static void __mark_block_processed(struct reloc_control *rc, 2820 struct backref_node *node) 2821 { 2822 u32 blocksize; 2823 if (node->level == 0 || 2824 in_block_group(node->bytenr, rc->block_group)) { 2825 blocksize = rc->extent_root->nodesize; 2826 mark_block_processed(rc, node->bytenr, blocksize); 2827 } 2828 node->processed = 1; 2829 } 2830 2831 /* 2832 * mark a block and all blocks directly/indirectly reference the block 2833 * as processed. 2834 */ 2835 static void update_processed_blocks(struct reloc_control *rc, 2836 struct backref_node *node) 2837 { 2838 struct backref_node *next = node; 2839 struct backref_edge *edge; 2840 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2841 int index = 0; 2842 2843 while (next) { 2844 cond_resched(); 2845 while (1) { 2846 if (next->processed) 2847 break; 2848 2849 __mark_block_processed(rc, next); 2850 2851 if (list_empty(&next->upper)) 2852 break; 2853 2854 edge = list_entry(next->upper.next, 2855 struct backref_edge, list[LOWER]); 2856 edges[index++] = edge; 2857 next = edge->node[UPPER]; 2858 } 2859 next = walk_down_backref(edges, &index); 2860 } 2861 } 2862 2863 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2864 { 2865 u32 blocksize = rc->extent_root->nodesize; 2866 2867 if (test_range_bit(&rc->processed_blocks, bytenr, 2868 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2869 return 1; 2870 return 0; 2871 } 2872 2873 static int get_tree_block_key(struct reloc_control *rc, 2874 struct tree_block *block) 2875 { 2876 struct extent_buffer *eb; 2877 2878 BUG_ON(block->key_ready); 2879 eb = read_tree_block(rc->extent_root, block->bytenr, 2880 block->key.offset); 2881 if (IS_ERR(eb)) { 2882 return PTR_ERR(eb); 2883 } else if (!extent_buffer_uptodate(eb)) { 2884 free_extent_buffer(eb); 2885 return -EIO; 2886 } 2887 WARN_ON(btrfs_header_level(eb) != block->level); 2888 if (block->level == 0) 2889 btrfs_item_key_to_cpu(eb, &block->key, 0); 2890 else 2891 btrfs_node_key_to_cpu(eb, &block->key, 0); 2892 free_extent_buffer(eb); 2893 block->key_ready = 1; 2894 return 0; 2895 } 2896 2897 /* 2898 * helper function to relocate a tree block 2899 */ 2900 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2901 struct reloc_control *rc, 2902 struct backref_node *node, 2903 struct btrfs_key *key, 2904 struct btrfs_path *path) 2905 { 2906 struct btrfs_root *root; 2907 int ret = 0; 2908 2909 if (!node) 2910 return 0; 2911 2912 BUG_ON(node->processed); 2913 root = select_one_root(node); 2914 if (root == ERR_PTR(-ENOENT)) { 2915 update_processed_blocks(rc, node); 2916 goto out; 2917 } 2918 2919 if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2920 ret = reserve_metadata_space(trans, rc, node); 2921 if (ret) 2922 goto out; 2923 } 2924 2925 if (root) { 2926 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 2927 BUG_ON(node->new_bytenr); 2928 BUG_ON(!list_empty(&node->list)); 2929 btrfs_record_root_in_trans(trans, root); 2930 root = root->reloc_root; 2931 node->new_bytenr = root->node->start; 2932 node->root = root; 2933 list_add_tail(&node->list, &rc->backref_cache.changed); 2934 } else { 2935 path->lowest_level = node->level; 2936 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2937 btrfs_release_path(path); 2938 if (ret > 0) 2939 ret = 0; 2940 } 2941 if (!ret) 2942 update_processed_blocks(rc, node); 2943 } else { 2944 ret = do_relocation(trans, rc, node, key, path, 1); 2945 } 2946 out: 2947 if (ret || node->level == 0 || node->cowonly) 2948 remove_backref_node(&rc->backref_cache, node); 2949 return ret; 2950 } 2951 2952 /* 2953 * relocate a list of blocks 2954 */ 2955 static noinline_for_stack 2956 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2957 struct reloc_control *rc, struct rb_root *blocks) 2958 { 2959 struct backref_node *node; 2960 struct btrfs_path *path; 2961 struct tree_block *block; 2962 struct rb_node *rb_node; 2963 int ret; 2964 int err = 0; 2965 2966 path = btrfs_alloc_path(); 2967 if (!path) { 2968 err = -ENOMEM; 2969 goto out_free_blocks; 2970 } 2971 2972 rb_node = rb_first(blocks); 2973 while (rb_node) { 2974 block = rb_entry(rb_node, struct tree_block, rb_node); 2975 if (!block->key_ready) 2976 readahead_tree_block(rc->extent_root, block->bytenr); 2977 rb_node = rb_next(rb_node); 2978 } 2979 2980 rb_node = rb_first(blocks); 2981 while (rb_node) { 2982 block = rb_entry(rb_node, struct tree_block, rb_node); 2983 if (!block->key_ready) { 2984 err = get_tree_block_key(rc, block); 2985 if (err) 2986 goto out_free_path; 2987 } 2988 rb_node = rb_next(rb_node); 2989 } 2990 2991 rb_node = rb_first(blocks); 2992 while (rb_node) { 2993 block = rb_entry(rb_node, struct tree_block, rb_node); 2994 2995 node = build_backref_tree(rc, &block->key, 2996 block->level, block->bytenr); 2997 if (IS_ERR(node)) { 2998 err = PTR_ERR(node); 2999 goto out; 3000 } 3001 3002 ret = relocate_tree_block(trans, rc, node, &block->key, 3003 path); 3004 if (ret < 0) { 3005 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 3006 err = ret; 3007 goto out; 3008 } 3009 rb_node = rb_next(rb_node); 3010 } 3011 out: 3012 err = finish_pending_nodes(trans, rc, path, err); 3013 3014 out_free_path: 3015 btrfs_free_path(path); 3016 out_free_blocks: 3017 free_block_list(blocks); 3018 return err; 3019 } 3020 3021 static noinline_for_stack 3022 int prealloc_file_extent_cluster(struct inode *inode, 3023 struct file_extent_cluster *cluster) 3024 { 3025 u64 alloc_hint = 0; 3026 u64 start; 3027 u64 end; 3028 u64 offset = BTRFS_I(inode)->index_cnt; 3029 u64 num_bytes; 3030 int nr = 0; 3031 int ret = 0; 3032 3033 BUG_ON(cluster->start != cluster->boundary[0]); 3034 inode_lock(inode); 3035 3036 ret = btrfs_check_data_free_space(inode, cluster->start, 3037 cluster->end + 1 - cluster->start); 3038 if (ret) 3039 goto out; 3040 3041 while (nr < cluster->nr) { 3042 start = cluster->boundary[nr] - offset; 3043 if (nr + 1 < cluster->nr) 3044 end = cluster->boundary[nr + 1] - 1 - offset; 3045 else 3046 end = cluster->end - offset; 3047 3048 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3049 num_bytes = end + 1 - start; 3050 ret = btrfs_prealloc_file_range(inode, 0, start, 3051 num_bytes, num_bytes, 3052 end + 1, &alloc_hint); 3053 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3054 if (ret) 3055 break; 3056 nr++; 3057 } 3058 btrfs_free_reserved_data_space(inode, cluster->start, 3059 cluster->end + 1 - cluster->start); 3060 out: 3061 inode_unlock(inode); 3062 return ret; 3063 } 3064 3065 static noinline_for_stack 3066 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3067 u64 block_start) 3068 { 3069 struct btrfs_root *root = BTRFS_I(inode)->root; 3070 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3071 struct extent_map *em; 3072 int ret = 0; 3073 3074 em = alloc_extent_map(); 3075 if (!em) 3076 return -ENOMEM; 3077 3078 em->start = start; 3079 em->len = end + 1 - start; 3080 em->block_len = em->len; 3081 em->block_start = block_start; 3082 em->bdev = root->fs_info->fs_devices->latest_bdev; 3083 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3084 3085 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3086 while (1) { 3087 write_lock(&em_tree->lock); 3088 ret = add_extent_mapping(em_tree, em, 0); 3089 write_unlock(&em_tree->lock); 3090 if (ret != -EEXIST) { 3091 free_extent_map(em); 3092 break; 3093 } 3094 btrfs_drop_extent_cache(inode, start, end, 0); 3095 } 3096 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3097 return ret; 3098 } 3099 3100 static int relocate_file_extent_cluster(struct inode *inode, 3101 struct file_extent_cluster *cluster) 3102 { 3103 u64 page_start; 3104 u64 page_end; 3105 u64 offset = BTRFS_I(inode)->index_cnt; 3106 unsigned long index; 3107 unsigned long last_index; 3108 struct page *page; 3109 struct file_ra_state *ra; 3110 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3111 int nr = 0; 3112 int ret = 0; 3113 3114 if (!cluster->nr) 3115 return 0; 3116 3117 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3118 if (!ra) 3119 return -ENOMEM; 3120 3121 ret = prealloc_file_extent_cluster(inode, cluster); 3122 if (ret) 3123 goto out; 3124 3125 file_ra_state_init(ra, inode->i_mapping); 3126 3127 ret = setup_extent_mapping(inode, cluster->start - offset, 3128 cluster->end - offset, cluster->start); 3129 if (ret) 3130 goto out; 3131 3132 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3133 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3134 while (index <= last_index) { 3135 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3136 if (ret) 3137 goto out; 3138 3139 page = find_lock_page(inode->i_mapping, index); 3140 if (!page) { 3141 page_cache_sync_readahead(inode->i_mapping, 3142 ra, NULL, index, 3143 last_index + 1 - index); 3144 page = find_or_create_page(inode->i_mapping, index, 3145 mask); 3146 if (!page) { 3147 btrfs_delalloc_release_metadata(inode, 3148 PAGE_CACHE_SIZE); 3149 ret = -ENOMEM; 3150 goto out; 3151 } 3152 } 3153 3154 if (PageReadahead(page)) { 3155 page_cache_async_readahead(inode->i_mapping, 3156 ra, NULL, page, index, 3157 last_index + 1 - index); 3158 } 3159 3160 if (!PageUptodate(page)) { 3161 btrfs_readpage(NULL, page); 3162 lock_page(page); 3163 if (!PageUptodate(page)) { 3164 unlock_page(page); 3165 page_cache_release(page); 3166 btrfs_delalloc_release_metadata(inode, 3167 PAGE_CACHE_SIZE); 3168 ret = -EIO; 3169 goto out; 3170 } 3171 } 3172 3173 page_start = page_offset(page); 3174 page_end = page_start + PAGE_CACHE_SIZE - 1; 3175 3176 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3177 3178 set_page_extent_mapped(page); 3179 3180 if (nr < cluster->nr && 3181 page_start + offset == cluster->boundary[nr]) { 3182 set_extent_bits(&BTRFS_I(inode)->io_tree, 3183 page_start, page_end, 3184 EXTENT_BOUNDARY, GFP_NOFS); 3185 nr++; 3186 } 3187 3188 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3189 set_page_dirty(page); 3190 3191 unlock_extent(&BTRFS_I(inode)->io_tree, 3192 page_start, page_end); 3193 unlock_page(page); 3194 page_cache_release(page); 3195 3196 index++; 3197 balance_dirty_pages_ratelimited(inode->i_mapping); 3198 btrfs_throttle(BTRFS_I(inode)->root); 3199 } 3200 WARN_ON(nr != cluster->nr); 3201 out: 3202 kfree(ra); 3203 return ret; 3204 } 3205 3206 static noinline_for_stack 3207 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3208 struct file_extent_cluster *cluster) 3209 { 3210 int ret; 3211 3212 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3213 ret = relocate_file_extent_cluster(inode, cluster); 3214 if (ret) 3215 return ret; 3216 cluster->nr = 0; 3217 } 3218 3219 if (!cluster->nr) 3220 cluster->start = extent_key->objectid; 3221 else 3222 BUG_ON(cluster->nr >= MAX_EXTENTS); 3223 cluster->end = extent_key->objectid + extent_key->offset - 1; 3224 cluster->boundary[cluster->nr] = extent_key->objectid; 3225 cluster->nr++; 3226 3227 if (cluster->nr >= MAX_EXTENTS) { 3228 ret = relocate_file_extent_cluster(inode, cluster); 3229 if (ret) 3230 return ret; 3231 cluster->nr = 0; 3232 } 3233 return 0; 3234 } 3235 3236 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3237 static int get_ref_objectid_v0(struct reloc_control *rc, 3238 struct btrfs_path *path, 3239 struct btrfs_key *extent_key, 3240 u64 *ref_objectid, int *path_change) 3241 { 3242 struct btrfs_key key; 3243 struct extent_buffer *leaf; 3244 struct btrfs_extent_ref_v0 *ref0; 3245 int ret; 3246 int slot; 3247 3248 leaf = path->nodes[0]; 3249 slot = path->slots[0]; 3250 while (1) { 3251 if (slot >= btrfs_header_nritems(leaf)) { 3252 ret = btrfs_next_leaf(rc->extent_root, path); 3253 if (ret < 0) 3254 return ret; 3255 BUG_ON(ret > 0); 3256 leaf = path->nodes[0]; 3257 slot = path->slots[0]; 3258 if (path_change) 3259 *path_change = 1; 3260 } 3261 btrfs_item_key_to_cpu(leaf, &key, slot); 3262 if (key.objectid != extent_key->objectid) 3263 return -ENOENT; 3264 3265 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3266 slot++; 3267 continue; 3268 } 3269 ref0 = btrfs_item_ptr(leaf, slot, 3270 struct btrfs_extent_ref_v0); 3271 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3272 break; 3273 } 3274 return 0; 3275 } 3276 #endif 3277 3278 /* 3279 * helper to add a tree block to the list. 3280 * the major work is getting the generation and level of the block 3281 */ 3282 static int add_tree_block(struct reloc_control *rc, 3283 struct btrfs_key *extent_key, 3284 struct btrfs_path *path, 3285 struct rb_root *blocks) 3286 { 3287 struct extent_buffer *eb; 3288 struct btrfs_extent_item *ei; 3289 struct btrfs_tree_block_info *bi; 3290 struct tree_block *block; 3291 struct rb_node *rb_node; 3292 u32 item_size; 3293 int level = -1; 3294 u64 generation; 3295 3296 eb = path->nodes[0]; 3297 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3298 3299 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3300 item_size >= sizeof(*ei) + sizeof(*bi)) { 3301 ei = btrfs_item_ptr(eb, path->slots[0], 3302 struct btrfs_extent_item); 3303 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3304 bi = (struct btrfs_tree_block_info *)(ei + 1); 3305 level = btrfs_tree_block_level(eb, bi); 3306 } else { 3307 level = (int)extent_key->offset; 3308 } 3309 generation = btrfs_extent_generation(eb, ei); 3310 } else { 3311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3312 u64 ref_owner; 3313 int ret; 3314 3315 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3316 ret = get_ref_objectid_v0(rc, path, extent_key, 3317 &ref_owner, NULL); 3318 if (ret < 0) 3319 return ret; 3320 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3321 level = (int)ref_owner; 3322 /* FIXME: get real generation */ 3323 generation = 0; 3324 #else 3325 BUG(); 3326 #endif 3327 } 3328 3329 btrfs_release_path(path); 3330 3331 BUG_ON(level == -1); 3332 3333 block = kmalloc(sizeof(*block), GFP_NOFS); 3334 if (!block) 3335 return -ENOMEM; 3336 3337 block->bytenr = extent_key->objectid; 3338 block->key.objectid = rc->extent_root->nodesize; 3339 block->key.offset = generation; 3340 block->level = level; 3341 block->key_ready = 0; 3342 3343 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3344 if (rb_node) 3345 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3346 3347 return 0; 3348 } 3349 3350 /* 3351 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3352 */ 3353 static int __add_tree_block(struct reloc_control *rc, 3354 u64 bytenr, u32 blocksize, 3355 struct rb_root *blocks) 3356 { 3357 struct btrfs_path *path; 3358 struct btrfs_key key; 3359 int ret; 3360 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3361 SKINNY_METADATA); 3362 3363 if (tree_block_processed(bytenr, rc)) 3364 return 0; 3365 3366 if (tree_search(blocks, bytenr)) 3367 return 0; 3368 3369 path = btrfs_alloc_path(); 3370 if (!path) 3371 return -ENOMEM; 3372 again: 3373 key.objectid = bytenr; 3374 if (skinny) { 3375 key.type = BTRFS_METADATA_ITEM_KEY; 3376 key.offset = (u64)-1; 3377 } else { 3378 key.type = BTRFS_EXTENT_ITEM_KEY; 3379 key.offset = blocksize; 3380 } 3381 3382 path->search_commit_root = 1; 3383 path->skip_locking = 1; 3384 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3385 if (ret < 0) 3386 goto out; 3387 3388 if (ret > 0 && skinny) { 3389 if (path->slots[0]) { 3390 path->slots[0]--; 3391 btrfs_item_key_to_cpu(path->nodes[0], &key, 3392 path->slots[0]); 3393 if (key.objectid == bytenr && 3394 (key.type == BTRFS_METADATA_ITEM_KEY || 3395 (key.type == BTRFS_EXTENT_ITEM_KEY && 3396 key.offset == blocksize))) 3397 ret = 0; 3398 } 3399 3400 if (ret) { 3401 skinny = false; 3402 btrfs_release_path(path); 3403 goto again; 3404 } 3405 } 3406 BUG_ON(ret); 3407 3408 ret = add_tree_block(rc, &key, path, blocks); 3409 out: 3410 btrfs_free_path(path); 3411 return ret; 3412 } 3413 3414 /* 3415 * helper to check if the block use full backrefs for pointers in it 3416 */ 3417 static int block_use_full_backref(struct reloc_control *rc, 3418 struct extent_buffer *eb) 3419 { 3420 u64 flags; 3421 int ret; 3422 3423 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3424 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3425 return 1; 3426 3427 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3428 eb->start, btrfs_header_level(eb), 1, 3429 NULL, &flags); 3430 BUG_ON(ret); 3431 3432 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3433 ret = 1; 3434 else 3435 ret = 0; 3436 return ret; 3437 } 3438 3439 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3440 struct btrfs_block_group_cache *block_group, 3441 struct inode *inode, 3442 u64 ino) 3443 { 3444 struct btrfs_key key; 3445 struct btrfs_root *root = fs_info->tree_root; 3446 struct btrfs_trans_handle *trans; 3447 int ret = 0; 3448 3449 if (inode) 3450 goto truncate; 3451 3452 key.objectid = ino; 3453 key.type = BTRFS_INODE_ITEM_KEY; 3454 key.offset = 0; 3455 3456 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3457 if (IS_ERR(inode) || is_bad_inode(inode)) { 3458 if (!IS_ERR(inode)) 3459 iput(inode); 3460 return -ENOENT; 3461 } 3462 3463 truncate: 3464 ret = btrfs_check_trunc_cache_free_space(root, 3465 &fs_info->global_block_rsv); 3466 if (ret) 3467 goto out; 3468 3469 trans = btrfs_join_transaction(root); 3470 if (IS_ERR(trans)) { 3471 ret = PTR_ERR(trans); 3472 goto out; 3473 } 3474 3475 ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode); 3476 3477 btrfs_end_transaction(trans, root); 3478 btrfs_btree_balance_dirty(root); 3479 out: 3480 iput(inode); 3481 return ret; 3482 } 3483 3484 /* 3485 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3486 * this function scans fs tree to find blocks reference the data extent 3487 */ 3488 static int find_data_references(struct reloc_control *rc, 3489 struct btrfs_key *extent_key, 3490 struct extent_buffer *leaf, 3491 struct btrfs_extent_data_ref *ref, 3492 struct rb_root *blocks) 3493 { 3494 struct btrfs_path *path; 3495 struct tree_block *block; 3496 struct btrfs_root *root; 3497 struct btrfs_file_extent_item *fi; 3498 struct rb_node *rb_node; 3499 struct btrfs_key key; 3500 u64 ref_root; 3501 u64 ref_objectid; 3502 u64 ref_offset; 3503 u32 ref_count; 3504 u32 nritems; 3505 int err = 0; 3506 int added = 0; 3507 int counted; 3508 int ret; 3509 3510 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3511 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3512 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3513 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3514 3515 /* 3516 * This is an extent belonging to the free space cache, lets just delete 3517 * it and redo the search. 3518 */ 3519 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3520 ret = delete_block_group_cache(rc->extent_root->fs_info, 3521 rc->block_group, 3522 NULL, ref_objectid); 3523 if (ret != -ENOENT) 3524 return ret; 3525 ret = 0; 3526 } 3527 3528 path = btrfs_alloc_path(); 3529 if (!path) 3530 return -ENOMEM; 3531 path->reada = READA_FORWARD; 3532 3533 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3534 if (IS_ERR(root)) { 3535 err = PTR_ERR(root); 3536 goto out; 3537 } 3538 3539 key.objectid = ref_objectid; 3540 key.type = BTRFS_EXTENT_DATA_KEY; 3541 if (ref_offset > ((u64)-1 << 32)) 3542 key.offset = 0; 3543 else 3544 key.offset = ref_offset; 3545 3546 path->search_commit_root = 1; 3547 path->skip_locking = 1; 3548 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3549 if (ret < 0) { 3550 err = ret; 3551 goto out; 3552 } 3553 3554 leaf = path->nodes[0]; 3555 nritems = btrfs_header_nritems(leaf); 3556 /* 3557 * the references in tree blocks that use full backrefs 3558 * are not counted in 3559 */ 3560 if (block_use_full_backref(rc, leaf)) 3561 counted = 0; 3562 else 3563 counted = 1; 3564 rb_node = tree_search(blocks, leaf->start); 3565 if (rb_node) { 3566 if (counted) 3567 added = 1; 3568 else 3569 path->slots[0] = nritems; 3570 } 3571 3572 while (ref_count > 0) { 3573 while (path->slots[0] >= nritems) { 3574 ret = btrfs_next_leaf(root, path); 3575 if (ret < 0) { 3576 err = ret; 3577 goto out; 3578 } 3579 if (WARN_ON(ret > 0)) 3580 goto out; 3581 3582 leaf = path->nodes[0]; 3583 nritems = btrfs_header_nritems(leaf); 3584 added = 0; 3585 3586 if (block_use_full_backref(rc, leaf)) 3587 counted = 0; 3588 else 3589 counted = 1; 3590 rb_node = tree_search(blocks, leaf->start); 3591 if (rb_node) { 3592 if (counted) 3593 added = 1; 3594 else 3595 path->slots[0] = nritems; 3596 } 3597 } 3598 3599 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3600 if (WARN_ON(key.objectid != ref_objectid || 3601 key.type != BTRFS_EXTENT_DATA_KEY)) 3602 break; 3603 3604 fi = btrfs_item_ptr(leaf, path->slots[0], 3605 struct btrfs_file_extent_item); 3606 3607 if (btrfs_file_extent_type(leaf, fi) == 3608 BTRFS_FILE_EXTENT_INLINE) 3609 goto next; 3610 3611 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3612 extent_key->objectid) 3613 goto next; 3614 3615 key.offset -= btrfs_file_extent_offset(leaf, fi); 3616 if (key.offset != ref_offset) 3617 goto next; 3618 3619 if (counted) 3620 ref_count--; 3621 if (added) 3622 goto next; 3623 3624 if (!tree_block_processed(leaf->start, rc)) { 3625 block = kmalloc(sizeof(*block), GFP_NOFS); 3626 if (!block) { 3627 err = -ENOMEM; 3628 break; 3629 } 3630 block->bytenr = leaf->start; 3631 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3632 block->level = 0; 3633 block->key_ready = 1; 3634 rb_node = tree_insert(blocks, block->bytenr, 3635 &block->rb_node); 3636 if (rb_node) 3637 backref_tree_panic(rb_node, -EEXIST, 3638 block->bytenr); 3639 } 3640 if (counted) 3641 added = 1; 3642 else 3643 path->slots[0] = nritems; 3644 next: 3645 path->slots[0]++; 3646 3647 } 3648 out: 3649 btrfs_free_path(path); 3650 return err; 3651 } 3652 3653 /* 3654 * helper to find all tree blocks that reference a given data extent 3655 */ 3656 static noinline_for_stack 3657 int add_data_references(struct reloc_control *rc, 3658 struct btrfs_key *extent_key, 3659 struct btrfs_path *path, 3660 struct rb_root *blocks) 3661 { 3662 struct btrfs_key key; 3663 struct extent_buffer *eb; 3664 struct btrfs_extent_data_ref *dref; 3665 struct btrfs_extent_inline_ref *iref; 3666 unsigned long ptr; 3667 unsigned long end; 3668 u32 blocksize = rc->extent_root->nodesize; 3669 int ret = 0; 3670 int err = 0; 3671 3672 eb = path->nodes[0]; 3673 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3674 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3675 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3676 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3677 ptr = end; 3678 else 3679 #endif 3680 ptr += sizeof(struct btrfs_extent_item); 3681 3682 while (ptr < end) { 3683 iref = (struct btrfs_extent_inline_ref *)ptr; 3684 key.type = btrfs_extent_inline_ref_type(eb, iref); 3685 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3686 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3687 ret = __add_tree_block(rc, key.offset, blocksize, 3688 blocks); 3689 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3690 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3691 ret = find_data_references(rc, extent_key, 3692 eb, dref, blocks); 3693 } else { 3694 BUG(); 3695 } 3696 if (ret) { 3697 err = ret; 3698 goto out; 3699 } 3700 ptr += btrfs_extent_inline_ref_size(key.type); 3701 } 3702 WARN_ON(ptr > end); 3703 3704 while (1) { 3705 cond_resched(); 3706 eb = path->nodes[0]; 3707 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3708 ret = btrfs_next_leaf(rc->extent_root, path); 3709 if (ret < 0) { 3710 err = ret; 3711 break; 3712 } 3713 if (ret > 0) 3714 break; 3715 eb = path->nodes[0]; 3716 } 3717 3718 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3719 if (key.objectid != extent_key->objectid) 3720 break; 3721 3722 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3723 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3724 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3725 #else 3726 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3727 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3728 #endif 3729 ret = __add_tree_block(rc, key.offset, blocksize, 3730 blocks); 3731 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3732 dref = btrfs_item_ptr(eb, path->slots[0], 3733 struct btrfs_extent_data_ref); 3734 ret = find_data_references(rc, extent_key, 3735 eb, dref, blocks); 3736 } else { 3737 ret = 0; 3738 } 3739 if (ret) { 3740 err = ret; 3741 break; 3742 } 3743 path->slots[0]++; 3744 } 3745 out: 3746 btrfs_release_path(path); 3747 if (err) 3748 free_block_list(blocks); 3749 return err; 3750 } 3751 3752 /* 3753 * helper to find next unprocessed extent 3754 */ 3755 static noinline_for_stack 3756 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3757 struct btrfs_key *extent_key) 3758 { 3759 struct btrfs_key key; 3760 struct extent_buffer *leaf; 3761 u64 start, end, last; 3762 int ret; 3763 3764 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3765 while (1) { 3766 cond_resched(); 3767 if (rc->search_start >= last) { 3768 ret = 1; 3769 break; 3770 } 3771 3772 key.objectid = rc->search_start; 3773 key.type = BTRFS_EXTENT_ITEM_KEY; 3774 key.offset = 0; 3775 3776 path->search_commit_root = 1; 3777 path->skip_locking = 1; 3778 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3779 0, 0); 3780 if (ret < 0) 3781 break; 3782 next: 3783 leaf = path->nodes[0]; 3784 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3785 ret = btrfs_next_leaf(rc->extent_root, path); 3786 if (ret != 0) 3787 break; 3788 leaf = path->nodes[0]; 3789 } 3790 3791 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3792 if (key.objectid >= last) { 3793 ret = 1; 3794 break; 3795 } 3796 3797 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3798 key.type != BTRFS_METADATA_ITEM_KEY) { 3799 path->slots[0]++; 3800 goto next; 3801 } 3802 3803 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3804 key.objectid + key.offset <= rc->search_start) { 3805 path->slots[0]++; 3806 goto next; 3807 } 3808 3809 if (key.type == BTRFS_METADATA_ITEM_KEY && 3810 key.objectid + rc->extent_root->nodesize <= 3811 rc->search_start) { 3812 path->slots[0]++; 3813 goto next; 3814 } 3815 3816 ret = find_first_extent_bit(&rc->processed_blocks, 3817 key.objectid, &start, &end, 3818 EXTENT_DIRTY, NULL); 3819 3820 if (ret == 0 && start <= key.objectid) { 3821 btrfs_release_path(path); 3822 rc->search_start = end + 1; 3823 } else { 3824 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3825 rc->search_start = key.objectid + key.offset; 3826 else 3827 rc->search_start = key.objectid + 3828 rc->extent_root->nodesize; 3829 memcpy(extent_key, &key, sizeof(key)); 3830 return 0; 3831 } 3832 } 3833 btrfs_release_path(path); 3834 return ret; 3835 } 3836 3837 static void set_reloc_control(struct reloc_control *rc) 3838 { 3839 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3840 3841 mutex_lock(&fs_info->reloc_mutex); 3842 fs_info->reloc_ctl = rc; 3843 mutex_unlock(&fs_info->reloc_mutex); 3844 } 3845 3846 static void unset_reloc_control(struct reloc_control *rc) 3847 { 3848 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3849 3850 mutex_lock(&fs_info->reloc_mutex); 3851 fs_info->reloc_ctl = NULL; 3852 mutex_unlock(&fs_info->reloc_mutex); 3853 } 3854 3855 static int check_extent_flags(u64 flags) 3856 { 3857 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3858 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3859 return 1; 3860 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3861 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3862 return 1; 3863 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3864 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3865 return 1; 3866 return 0; 3867 } 3868 3869 static noinline_for_stack 3870 int prepare_to_relocate(struct reloc_control *rc) 3871 { 3872 struct btrfs_trans_handle *trans; 3873 3874 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3875 BTRFS_BLOCK_RSV_TEMP); 3876 if (!rc->block_rsv) 3877 return -ENOMEM; 3878 3879 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3880 rc->search_start = rc->block_group->key.objectid; 3881 rc->extents_found = 0; 3882 rc->nodes_relocated = 0; 3883 rc->merging_rsv_size = 0; 3884 rc->reserved_bytes = 0; 3885 rc->block_rsv->size = rc->extent_root->nodesize * 3886 RELOCATION_RESERVED_NODES; 3887 3888 rc->create_reloc_tree = 1; 3889 set_reloc_control(rc); 3890 3891 trans = btrfs_join_transaction(rc->extent_root); 3892 if (IS_ERR(trans)) { 3893 unset_reloc_control(rc); 3894 /* 3895 * extent tree is not a ref_cow tree and has no reloc_root to 3896 * cleanup. And callers are responsible to free the above 3897 * block rsv. 3898 */ 3899 return PTR_ERR(trans); 3900 } 3901 btrfs_commit_transaction(trans, rc->extent_root); 3902 return 0; 3903 } 3904 3905 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3906 { 3907 struct rb_root blocks = RB_ROOT; 3908 struct btrfs_key key; 3909 struct btrfs_trans_handle *trans = NULL; 3910 struct btrfs_path *path; 3911 struct btrfs_extent_item *ei; 3912 u64 flags; 3913 u32 item_size; 3914 int ret; 3915 int err = 0; 3916 int progress = 0; 3917 3918 path = btrfs_alloc_path(); 3919 if (!path) 3920 return -ENOMEM; 3921 path->reada = READA_FORWARD; 3922 3923 ret = prepare_to_relocate(rc); 3924 if (ret) { 3925 err = ret; 3926 goto out_free; 3927 } 3928 3929 while (1) { 3930 rc->reserved_bytes = 0; 3931 ret = btrfs_block_rsv_refill(rc->extent_root, 3932 rc->block_rsv, rc->block_rsv->size, 3933 BTRFS_RESERVE_FLUSH_ALL); 3934 if (ret) { 3935 err = ret; 3936 break; 3937 } 3938 progress++; 3939 trans = btrfs_start_transaction(rc->extent_root, 0); 3940 if (IS_ERR(trans)) { 3941 err = PTR_ERR(trans); 3942 trans = NULL; 3943 break; 3944 } 3945 restart: 3946 if (update_backref_cache(trans, &rc->backref_cache)) { 3947 btrfs_end_transaction(trans, rc->extent_root); 3948 continue; 3949 } 3950 3951 ret = find_next_extent(rc, path, &key); 3952 if (ret < 0) 3953 err = ret; 3954 if (ret != 0) 3955 break; 3956 3957 rc->extents_found++; 3958 3959 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3960 struct btrfs_extent_item); 3961 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3962 if (item_size >= sizeof(*ei)) { 3963 flags = btrfs_extent_flags(path->nodes[0], ei); 3964 ret = check_extent_flags(flags); 3965 BUG_ON(ret); 3966 3967 } else { 3968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3969 u64 ref_owner; 3970 int path_change = 0; 3971 3972 BUG_ON(item_size != 3973 sizeof(struct btrfs_extent_item_v0)); 3974 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3975 &path_change); 3976 if (ret < 0) { 3977 err = ret; 3978 break; 3979 } 3980 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3981 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3982 else 3983 flags = BTRFS_EXTENT_FLAG_DATA; 3984 3985 if (path_change) { 3986 btrfs_release_path(path); 3987 3988 path->search_commit_root = 1; 3989 path->skip_locking = 1; 3990 ret = btrfs_search_slot(NULL, rc->extent_root, 3991 &key, path, 0, 0); 3992 if (ret < 0) { 3993 err = ret; 3994 break; 3995 } 3996 BUG_ON(ret > 0); 3997 } 3998 #else 3999 BUG(); 4000 #endif 4001 } 4002 4003 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4004 ret = add_tree_block(rc, &key, path, &blocks); 4005 } else if (rc->stage == UPDATE_DATA_PTRS && 4006 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4007 ret = add_data_references(rc, &key, path, &blocks); 4008 } else { 4009 btrfs_release_path(path); 4010 ret = 0; 4011 } 4012 if (ret < 0) { 4013 err = ret; 4014 break; 4015 } 4016 4017 if (!RB_EMPTY_ROOT(&blocks)) { 4018 ret = relocate_tree_blocks(trans, rc, &blocks); 4019 if (ret < 0) { 4020 /* 4021 * if we fail to relocate tree blocks, force to update 4022 * backref cache when committing transaction. 4023 */ 4024 rc->backref_cache.last_trans = trans->transid - 1; 4025 4026 if (ret != -EAGAIN) { 4027 err = ret; 4028 break; 4029 } 4030 rc->extents_found--; 4031 rc->search_start = key.objectid; 4032 } 4033 } 4034 4035 btrfs_end_transaction_throttle(trans, rc->extent_root); 4036 btrfs_btree_balance_dirty(rc->extent_root); 4037 trans = NULL; 4038 4039 if (rc->stage == MOVE_DATA_EXTENTS && 4040 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4041 rc->found_file_extent = 1; 4042 ret = relocate_data_extent(rc->data_inode, 4043 &key, &rc->cluster); 4044 if (ret < 0) { 4045 err = ret; 4046 break; 4047 } 4048 } 4049 } 4050 if (trans && progress && err == -ENOSPC) { 4051 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4052 rc->block_group->flags); 4053 if (ret == 1) { 4054 err = 0; 4055 progress = 0; 4056 goto restart; 4057 } 4058 } 4059 4060 btrfs_release_path(path); 4061 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4062 GFP_NOFS); 4063 4064 if (trans) { 4065 btrfs_end_transaction_throttle(trans, rc->extent_root); 4066 btrfs_btree_balance_dirty(rc->extent_root); 4067 } 4068 4069 if (!err) { 4070 ret = relocate_file_extent_cluster(rc->data_inode, 4071 &rc->cluster); 4072 if (ret < 0) 4073 err = ret; 4074 } 4075 4076 rc->create_reloc_tree = 0; 4077 set_reloc_control(rc); 4078 4079 backref_cache_cleanup(&rc->backref_cache); 4080 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4081 4082 err = prepare_to_merge(rc, err); 4083 4084 merge_reloc_roots(rc); 4085 4086 rc->merge_reloc_tree = 0; 4087 unset_reloc_control(rc); 4088 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4089 4090 /* get rid of pinned extents */ 4091 trans = btrfs_join_transaction(rc->extent_root); 4092 if (IS_ERR(trans)) 4093 err = PTR_ERR(trans); 4094 else 4095 btrfs_commit_transaction(trans, rc->extent_root); 4096 out_free: 4097 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4098 btrfs_free_path(path); 4099 return err; 4100 } 4101 4102 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4103 struct btrfs_root *root, u64 objectid) 4104 { 4105 struct btrfs_path *path; 4106 struct btrfs_inode_item *item; 4107 struct extent_buffer *leaf; 4108 int ret; 4109 4110 path = btrfs_alloc_path(); 4111 if (!path) 4112 return -ENOMEM; 4113 4114 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4115 if (ret) 4116 goto out; 4117 4118 leaf = path->nodes[0]; 4119 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4120 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4121 btrfs_set_inode_generation(leaf, item, 1); 4122 btrfs_set_inode_size(leaf, item, 0); 4123 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4124 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4125 BTRFS_INODE_PREALLOC); 4126 btrfs_mark_buffer_dirty(leaf); 4127 out: 4128 btrfs_free_path(path); 4129 return ret; 4130 } 4131 4132 /* 4133 * helper to create inode for data relocation. 4134 * the inode is in data relocation tree and its link count is 0 4135 */ 4136 static noinline_for_stack 4137 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4138 struct btrfs_block_group_cache *group) 4139 { 4140 struct inode *inode = NULL; 4141 struct btrfs_trans_handle *trans; 4142 struct btrfs_root *root; 4143 struct btrfs_key key; 4144 u64 objectid; 4145 int err = 0; 4146 4147 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4148 if (IS_ERR(root)) 4149 return ERR_CAST(root); 4150 4151 trans = btrfs_start_transaction(root, 6); 4152 if (IS_ERR(trans)) 4153 return ERR_CAST(trans); 4154 4155 err = btrfs_find_free_objectid(root, &objectid); 4156 if (err) 4157 goto out; 4158 4159 err = __insert_orphan_inode(trans, root, objectid); 4160 BUG_ON(err); 4161 4162 key.objectid = objectid; 4163 key.type = BTRFS_INODE_ITEM_KEY; 4164 key.offset = 0; 4165 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4166 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4167 BTRFS_I(inode)->index_cnt = group->key.objectid; 4168 4169 err = btrfs_orphan_add(trans, inode); 4170 out: 4171 btrfs_end_transaction(trans, root); 4172 btrfs_btree_balance_dirty(root); 4173 if (err) { 4174 if (inode) 4175 iput(inode); 4176 inode = ERR_PTR(err); 4177 } 4178 return inode; 4179 } 4180 4181 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4182 { 4183 struct reloc_control *rc; 4184 4185 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4186 if (!rc) 4187 return NULL; 4188 4189 INIT_LIST_HEAD(&rc->reloc_roots); 4190 backref_cache_init(&rc->backref_cache); 4191 mapping_tree_init(&rc->reloc_root_tree); 4192 extent_io_tree_init(&rc->processed_blocks, 4193 fs_info->btree_inode->i_mapping); 4194 return rc; 4195 } 4196 4197 /* 4198 * function to relocate all extents in a block group. 4199 */ 4200 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4201 { 4202 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4203 struct reloc_control *rc; 4204 struct inode *inode; 4205 struct btrfs_path *path; 4206 int ret; 4207 int rw = 0; 4208 int err = 0; 4209 4210 rc = alloc_reloc_control(fs_info); 4211 if (!rc) 4212 return -ENOMEM; 4213 4214 rc->extent_root = extent_root; 4215 4216 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4217 BUG_ON(!rc->block_group); 4218 4219 ret = btrfs_inc_block_group_ro(extent_root, rc->block_group); 4220 if (ret) { 4221 err = ret; 4222 goto out; 4223 } 4224 rw = 1; 4225 4226 path = btrfs_alloc_path(); 4227 if (!path) { 4228 err = -ENOMEM; 4229 goto out; 4230 } 4231 4232 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4233 path); 4234 btrfs_free_path(path); 4235 4236 if (!IS_ERR(inode)) 4237 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4238 else 4239 ret = PTR_ERR(inode); 4240 4241 if (ret && ret != -ENOENT) { 4242 err = ret; 4243 goto out; 4244 } 4245 4246 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4247 if (IS_ERR(rc->data_inode)) { 4248 err = PTR_ERR(rc->data_inode); 4249 rc->data_inode = NULL; 4250 goto out; 4251 } 4252 4253 btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu", 4254 rc->block_group->key.objectid, rc->block_group->flags); 4255 4256 ret = btrfs_start_delalloc_roots(fs_info, 0, -1); 4257 if (ret < 0) { 4258 err = ret; 4259 goto out; 4260 } 4261 btrfs_wait_ordered_roots(fs_info, -1); 4262 4263 while (1) { 4264 mutex_lock(&fs_info->cleaner_mutex); 4265 ret = relocate_block_group(rc); 4266 mutex_unlock(&fs_info->cleaner_mutex); 4267 if (ret < 0) { 4268 err = ret; 4269 goto out; 4270 } 4271 4272 if (rc->extents_found == 0) 4273 break; 4274 4275 btrfs_info(extent_root->fs_info, "found %llu extents", 4276 rc->extents_found); 4277 4278 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4279 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4280 (u64)-1); 4281 if (ret) { 4282 err = ret; 4283 goto out; 4284 } 4285 invalidate_mapping_pages(rc->data_inode->i_mapping, 4286 0, -1); 4287 rc->stage = UPDATE_DATA_PTRS; 4288 } 4289 } 4290 4291 WARN_ON(rc->block_group->pinned > 0); 4292 WARN_ON(rc->block_group->reserved > 0); 4293 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4294 out: 4295 if (err && rw) 4296 btrfs_dec_block_group_ro(extent_root, rc->block_group); 4297 iput(rc->data_inode); 4298 btrfs_put_block_group(rc->block_group); 4299 kfree(rc); 4300 return err; 4301 } 4302 4303 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4304 { 4305 struct btrfs_trans_handle *trans; 4306 int ret, err; 4307 4308 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4309 if (IS_ERR(trans)) 4310 return PTR_ERR(trans); 4311 4312 memset(&root->root_item.drop_progress, 0, 4313 sizeof(root->root_item.drop_progress)); 4314 root->root_item.drop_level = 0; 4315 btrfs_set_root_refs(&root->root_item, 0); 4316 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4317 &root->root_key, &root->root_item); 4318 4319 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4320 if (err) 4321 return err; 4322 return ret; 4323 } 4324 4325 /* 4326 * recover relocation interrupted by system crash. 4327 * 4328 * this function resumes merging reloc trees with corresponding fs trees. 4329 * this is important for keeping the sharing of tree blocks 4330 */ 4331 int btrfs_recover_relocation(struct btrfs_root *root) 4332 { 4333 LIST_HEAD(reloc_roots); 4334 struct btrfs_key key; 4335 struct btrfs_root *fs_root; 4336 struct btrfs_root *reloc_root; 4337 struct btrfs_path *path; 4338 struct extent_buffer *leaf; 4339 struct reloc_control *rc = NULL; 4340 struct btrfs_trans_handle *trans; 4341 int ret; 4342 int err = 0; 4343 4344 path = btrfs_alloc_path(); 4345 if (!path) 4346 return -ENOMEM; 4347 path->reada = READA_BACK; 4348 4349 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4350 key.type = BTRFS_ROOT_ITEM_KEY; 4351 key.offset = (u64)-1; 4352 4353 while (1) { 4354 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4355 path, 0, 0); 4356 if (ret < 0) { 4357 err = ret; 4358 goto out; 4359 } 4360 if (ret > 0) { 4361 if (path->slots[0] == 0) 4362 break; 4363 path->slots[0]--; 4364 } 4365 leaf = path->nodes[0]; 4366 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4367 btrfs_release_path(path); 4368 4369 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4370 key.type != BTRFS_ROOT_ITEM_KEY) 4371 break; 4372 4373 reloc_root = btrfs_read_fs_root(root, &key); 4374 if (IS_ERR(reloc_root)) { 4375 err = PTR_ERR(reloc_root); 4376 goto out; 4377 } 4378 4379 list_add(&reloc_root->root_list, &reloc_roots); 4380 4381 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4382 fs_root = read_fs_root(root->fs_info, 4383 reloc_root->root_key.offset); 4384 if (IS_ERR(fs_root)) { 4385 ret = PTR_ERR(fs_root); 4386 if (ret != -ENOENT) { 4387 err = ret; 4388 goto out; 4389 } 4390 ret = mark_garbage_root(reloc_root); 4391 if (ret < 0) { 4392 err = ret; 4393 goto out; 4394 } 4395 } 4396 } 4397 4398 if (key.offset == 0) 4399 break; 4400 4401 key.offset--; 4402 } 4403 btrfs_release_path(path); 4404 4405 if (list_empty(&reloc_roots)) 4406 goto out; 4407 4408 rc = alloc_reloc_control(root->fs_info); 4409 if (!rc) { 4410 err = -ENOMEM; 4411 goto out; 4412 } 4413 4414 rc->extent_root = root->fs_info->extent_root; 4415 4416 set_reloc_control(rc); 4417 4418 trans = btrfs_join_transaction(rc->extent_root); 4419 if (IS_ERR(trans)) { 4420 unset_reloc_control(rc); 4421 err = PTR_ERR(trans); 4422 goto out_free; 4423 } 4424 4425 rc->merge_reloc_tree = 1; 4426 4427 while (!list_empty(&reloc_roots)) { 4428 reloc_root = list_entry(reloc_roots.next, 4429 struct btrfs_root, root_list); 4430 list_del(&reloc_root->root_list); 4431 4432 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4433 list_add_tail(&reloc_root->root_list, 4434 &rc->reloc_roots); 4435 continue; 4436 } 4437 4438 fs_root = read_fs_root(root->fs_info, 4439 reloc_root->root_key.offset); 4440 if (IS_ERR(fs_root)) { 4441 err = PTR_ERR(fs_root); 4442 goto out_free; 4443 } 4444 4445 err = __add_reloc_root(reloc_root); 4446 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4447 fs_root->reloc_root = reloc_root; 4448 } 4449 4450 err = btrfs_commit_transaction(trans, rc->extent_root); 4451 if (err) 4452 goto out_free; 4453 4454 merge_reloc_roots(rc); 4455 4456 unset_reloc_control(rc); 4457 4458 trans = btrfs_join_transaction(rc->extent_root); 4459 if (IS_ERR(trans)) 4460 err = PTR_ERR(trans); 4461 else 4462 err = btrfs_commit_transaction(trans, rc->extent_root); 4463 out_free: 4464 kfree(rc); 4465 out: 4466 if (!list_empty(&reloc_roots)) 4467 free_reloc_roots(&reloc_roots); 4468 4469 btrfs_free_path(path); 4470 4471 if (err == 0) { 4472 /* cleanup orphan inode in data relocation tree */ 4473 fs_root = read_fs_root(root->fs_info, 4474 BTRFS_DATA_RELOC_TREE_OBJECTID); 4475 if (IS_ERR(fs_root)) 4476 err = PTR_ERR(fs_root); 4477 else 4478 err = btrfs_orphan_cleanup(fs_root); 4479 } 4480 return err; 4481 } 4482 4483 /* 4484 * helper to add ordered checksum for data relocation. 4485 * 4486 * cloning checksum properly handles the nodatasum extents. 4487 * it also saves CPU time to re-calculate the checksum. 4488 */ 4489 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4490 { 4491 struct btrfs_ordered_sum *sums; 4492 struct btrfs_ordered_extent *ordered; 4493 struct btrfs_root *root = BTRFS_I(inode)->root; 4494 int ret; 4495 u64 disk_bytenr; 4496 u64 new_bytenr; 4497 LIST_HEAD(list); 4498 4499 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4500 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4501 4502 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4503 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4504 disk_bytenr + len - 1, &list, 0); 4505 if (ret) 4506 goto out; 4507 4508 while (!list_empty(&list)) { 4509 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4510 list_del_init(&sums->list); 4511 4512 /* 4513 * We need to offset the new_bytenr based on where the csum is. 4514 * We need to do this because we will read in entire prealloc 4515 * extents but we may have written to say the middle of the 4516 * prealloc extent, so we need to make sure the csum goes with 4517 * the right disk offset. 4518 * 4519 * We can do this because the data reloc inode refers strictly 4520 * to the on disk bytes, so we don't have to worry about 4521 * disk_len vs real len like with real inodes since it's all 4522 * disk length. 4523 */ 4524 new_bytenr = ordered->start + (sums->bytenr - disk_bytenr); 4525 sums->bytenr = new_bytenr; 4526 4527 btrfs_add_ordered_sum(inode, ordered, sums); 4528 } 4529 out: 4530 btrfs_put_ordered_extent(ordered); 4531 return ret; 4532 } 4533 4534 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4535 struct btrfs_root *root, struct extent_buffer *buf, 4536 struct extent_buffer *cow) 4537 { 4538 struct reloc_control *rc; 4539 struct backref_node *node; 4540 int first_cow = 0; 4541 int level; 4542 int ret = 0; 4543 4544 rc = root->fs_info->reloc_ctl; 4545 if (!rc) 4546 return 0; 4547 4548 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4549 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4550 4551 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 4552 if (buf == root->node) 4553 __update_reloc_root(root, cow->start); 4554 } 4555 4556 level = btrfs_header_level(buf); 4557 if (btrfs_header_generation(buf) <= 4558 btrfs_root_last_snapshot(&root->root_item)) 4559 first_cow = 1; 4560 4561 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4562 rc->create_reloc_tree) { 4563 WARN_ON(!first_cow && level == 0); 4564 4565 node = rc->backref_cache.path[level]; 4566 BUG_ON(node->bytenr != buf->start && 4567 node->new_bytenr != buf->start); 4568 4569 drop_node_buffer(node); 4570 extent_buffer_get(cow); 4571 node->eb = cow; 4572 node->new_bytenr = cow->start; 4573 4574 if (!node->pending) { 4575 list_move_tail(&node->list, 4576 &rc->backref_cache.pending[level]); 4577 node->pending = 1; 4578 } 4579 4580 if (first_cow) 4581 __mark_block_processed(rc, node); 4582 4583 if (first_cow && level > 0) 4584 rc->nodes_relocated += buf->len; 4585 } 4586 4587 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4588 ret = replace_file_extents(trans, rc, root, cow); 4589 return ret; 4590 } 4591 4592 /* 4593 * called before creating snapshot. it calculates metadata reservation 4594 * requried for relocating tree blocks in the snapshot 4595 */ 4596 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4597 u64 *bytes_to_reserve) 4598 { 4599 struct btrfs_root *root; 4600 struct reloc_control *rc; 4601 4602 root = pending->root; 4603 if (!root->reloc_root) 4604 return; 4605 4606 rc = root->fs_info->reloc_ctl; 4607 if (!rc->merge_reloc_tree) 4608 return; 4609 4610 root = root->reloc_root; 4611 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4612 /* 4613 * relocation is in the stage of merging trees. the space 4614 * used by merging a reloc tree is twice the size of 4615 * relocated tree nodes in the worst case. half for cowing 4616 * the reloc tree, half for cowing the fs tree. the space 4617 * used by cowing the reloc tree will be freed after the 4618 * tree is dropped. if we create snapshot, cowing the fs 4619 * tree may use more space than it frees. so we need 4620 * reserve extra space. 4621 */ 4622 *bytes_to_reserve += rc->nodes_relocated; 4623 } 4624 4625 /* 4626 * called after snapshot is created. migrate block reservation 4627 * and create reloc root for the newly created snapshot 4628 */ 4629 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4630 struct btrfs_pending_snapshot *pending) 4631 { 4632 struct btrfs_root *root = pending->root; 4633 struct btrfs_root *reloc_root; 4634 struct btrfs_root *new_root; 4635 struct reloc_control *rc; 4636 int ret; 4637 4638 if (!root->reloc_root) 4639 return 0; 4640 4641 rc = root->fs_info->reloc_ctl; 4642 rc->merging_rsv_size += rc->nodes_relocated; 4643 4644 if (rc->merge_reloc_tree) { 4645 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4646 rc->block_rsv, 4647 rc->nodes_relocated); 4648 if (ret) 4649 return ret; 4650 } 4651 4652 new_root = pending->snap; 4653 reloc_root = create_reloc_root(trans, root->reloc_root, 4654 new_root->root_key.objectid); 4655 if (IS_ERR(reloc_root)) 4656 return PTR_ERR(reloc_root); 4657 4658 ret = __add_reloc_root(reloc_root); 4659 BUG_ON(ret < 0); 4660 new_root->reloc_root = reloc_root; 4661 4662 if (rc->create_reloc_tree) 4663 ret = clone_backref_node(trans, rc, root, reloc_root); 4664 return ret; 4665 } 4666