xref: /openbmc/linux/fs/btrfs/relocation.c (revision 3e26a691)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		BUG_ON(!list_empty(&cache->pending[i]));
239 	BUG_ON(!list_empty(&cache->changed));
240 	BUG_ON(!list_empty(&cache->detached));
241 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
242 	BUG_ON(cache->nr_nodes);
243 	BUG_ON(cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
579 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
580 		return 1;
581 	return 0;
582 }
583 
584 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
585 					u64 root_objectid)
586 {
587 	struct btrfs_key key;
588 
589 	key.objectid = root_objectid;
590 	key.type = BTRFS_ROOT_ITEM_KEY;
591 	if (is_cowonly_root(root_objectid))
592 		key.offset = 0;
593 	else
594 		key.offset = (u64)-1;
595 
596 	return btrfs_get_fs_root(fs_info, &key, false);
597 }
598 
599 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
600 static noinline_for_stack
601 struct btrfs_root *find_tree_root(struct reloc_control *rc,
602 				  struct extent_buffer *leaf,
603 				  struct btrfs_extent_ref_v0 *ref0)
604 {
605 	struct btrfs_root *root;
606 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
607 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
608 
609 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
610 
611 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
612 	BUG_ON(IS_ERR(root));
613 
614 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
615 	    generation != btrfs_root_generation(&root->root_item))
616 		return NULL;
617 
618 	return root;
619 }
620 #endif
621 
622 static noinline_for_stack
623 int find_inline_backref(struct extent_buffer *leaf, int slot,
624 			unsigned long *ptr, unsigned long *end)
625 {
626 	struct btrfs_key key;
627 	struct btrfs_extent_item *ei;
628 	struct btrfs_tree_block_info *bi;
629 	u32 item_size;
630 
631 	btrfs_item_key_to_cpu(leaf, &key, slot);
632 
633 	item_size = btrfs_item_size_nr(leaf, slot);
634 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
635 	if (item_size < sizeof(*ei)) {
636 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
637 		return 1;
638 	}
639 #endif
640 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
641 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
642 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
643 
644 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
645 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
646 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
647 		return 1;
648 	}
649 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
650 	    item_size <= sizeof(*ei)) {
651 		WARN_ON(item_size < sizeof(*ei));
652 		return 1;
653 	}
654 
655 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
656 		bi = (struct btrfs_tree_block_info *)(ei + 1);
657 		*ptr = (unsigned long)(bi + 1);
658 	} else {
659 		*ptr = (unsigned long)(ei + 1);
660 	}
661 	*end = (unsigned long)ei + item_size;
662 	return 0;
663 }
664 
665 /*
666  * build backref tree for a given tree block. root of the backref tree
667  * corresponds the tree block, leaves of the backref tree correspond
668  * roots of b-trees that reference the tree block.
669  *
670  * the basic idea of this function is check backrefs of a given block
671  * to find upper level blocks that refernece the block, and then check
672  * bakcrefs of these upper level blocks recursively. the recursion stop
673  * when tree root is reached or backrefs for the block is cached.
674  *
675  * NOTE: if we find backrefs for a block are cached, we know backrefs
676  * for all upper level blocks that directly/indirectly reference the
677  * block are also cached.
678  */
679 static noinline_for_stack
680 struct backref_node *build_backref_tree(struct reloc_control *rc,
681 					struct btrfs_key *node_key,
682 					int level, u64 bytenr)
683 {
684 	struct backref_cache *cache = &rc->backref_cache;
685 	struct btrfs_path *path1;
686 	struct btrfs_path *path2;
687 	struct extent_buffer *eb;
688 	struct btrfs_root *root;
689 	struct backref_node *cur;
690 	struct backref_node *upper;
691 	struct backref_node *lower;
692 	struct backref_node *node = NULL;
693 	struct backref_node *exist = NULL;
694 	struct backref_edge *edge;
695 	struct rb_node *rb_node;
696 	struct btrfs_key key;
697 	unsigned long end;
698 	unsigned long ptr;
699 	LIST_HEAD(list);
700 	LIST_HEAD(useless);
701 	int cowonly;
702 	int ret;
703 	int err = 0;
704 	bool need_check = true;
705 
706 	path1 = btrfs_alloc_path();
707 	path2 = btrfs_alloc_path();
708 	if (!path1 || !path2) {
709 		err = -ENOMEM;
710 		goto out;
711 	}
712 	path1->reada = READA_FORWARD;
713 	path2->reada = READA_FORWARD;
714 
715 	node = alloc_backref_node(cache);
716 	if (!node) {
717 		err = -ENOMEM;
718 		goto out;
719 	}
720 
721 	node->bytenr = bytenr;
722 	node->level = level;
723 	node->lowest = 1;
724 	cur = node;
725 again:
726 	end = 0;
727 	ptr = 0;
728 	key.objectid = cur->bytenr;
729 	key.type = BTRFS_METADATA_ITEM_KEY;
730 	key.offset = (u64)-1;
731 
732 	path1->search_commit_root = 1;
733 	path1->skip_locking = 1;
734 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
735 				0, 0);
736 	if (ret < 0) {
737 		err = ret;
738 		goto out;
739 	}
740 	ASSERT(ret);
741 	ASSERT(path1->slots[0]);
742 
743 	path1->slots[0]--;
744 
745 	WARN_ON(cur->checked);
746 	if (!list_empty(&cur->upper)) {
747 		/*
748 		 * the backref was added previously when processing
749 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
750 		 */
751 		ASSERT(list_is_singular(&cur->upper));
752 		edge = list_entry(cur->upper.next, struct backref_edge,
753 				  list[LOWER]);
754 		ASSERT(list_empty(&edge->list[UPPER]));
755 		exist = edge->node[UPPER];
756 		/*
757 		 * add the upper level block to pending list if we need
758 		 * check its backrefs
759 		 */
760 		if (!exist->checked)
761 			list_add_tail(&edge->list[UPPER], &list);
762 	} else {
763 		exist = NULL;
764 	}
765 
766 	while (1) {
767 		cond_resched();
768 		eb = path1->nodes[0];
769 
770 		if (ptr >= end) {
771 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
772 				ret = btrfs_next_leaf(rc->extent_root, path1);
773 				if (ret < 0) {
774 					err = ret;
775 					goto out;
776 				}
777 				if (ret > 0)
778 					break;
779 				eb = path1->nodes[0];
780 			}
781 
782 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
783 			if (key.objectid != cur->bytenr) {
784 				WARN_ON(exist);
785 				break;
786 			}
787 
788 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
789 			    key.type == BTRFS_METADATA_ITEM_KEY) {
790 				ret = find_inline_backref(eb, path1->slots[0],
791 							  &ptr, &end);
792 				if (ret)
793 					goto next;
794 			}
795 		}
796 
797 		if (ptr < end) {
798 			/* update key for inline back ref */
799 			struct btrfs_extent_inline_ref *iref;
800 			iref = (struct btrfs_extent_inline_ref *)ptr;
801 			key.type = btrfs_extent_inline_ref_type(eb, iref);
802 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
803 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
804 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
805 		}
806 
807 		if (exist &&
808 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
809 		      exist->owner == key.offset) ||
810 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
811 		      exist->bytenr == key.offset))) {
812 			exist = NULL;
813 			goto next;
814 		}
815 
816 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
817 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
818 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
820 				struct btrfs_extent_ref_v0 *ref0;
821 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
822 						struct btrfs_extent_ref_v0);
823 				if (key.objectid == key.offset) {
824 					root = find_tree_root(rc, eb, ref0);
825 					if (root && !should_ignore_root(root))
826 						cur->root = root;
827 					else
828 						list_add(&cur->list, &useless);
829 					break;
830 				}
831 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
832 								      ref0)))
833 					cur->cowonly = 1;
834 			}
835 #else
836 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
837 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
838 #endif
839 			if (key.objectid == key.offset) {
840 				/*
841 				 * only root blocks of reloc trees use
842 				 * backref of this type.
843 				 */
844 				root = find_reloc_root(rc, cur->bytenr);
845 				ASSERT(root);
846 				cur->root = root;
847 				break;
848 			}
849 
850 			edge = alloc_backref_edge(cache);
851 			if (!edge) {
852 				err = -ENOMEM;
853 				goto out;
854 			}
855 			rb_node = tree_search(&cache->rb_root, key.offset);
856 			if (!rb_node) {
857 				upper = alloc_backref_node(cache);
858 				if (!upper) {
859 					free_backref_edge(cache, edge);
860 					err = -ENOMEM;
861 					goto out;
862 				}
863 				upper->bytenr = key.offset;
864 				upper->level = cur->level + 1;
865 				/*
866 				 *  backrefs for the upper level block isn't
867 				 *  cached, add the block to pending list
868 				 */
869 				list_add_tail(&edge->list[UPPER], &list);
870 			} else {
871 				upper = rb_entry(rb_node, struct backref_node,
872 						 rb_node);
873 				ASSERT(upper->checked);
874 				INIT_LIST_HEAD(&edge->list[UPPER]);
875 			}
876 			list_add_tail(&edge->list[LOWER], &cur->upper);
877 			edge->node[LOWER] = cur;
878 			edge->node[UPPER] = upper;
879 
880 			goto next;
881 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
882 			goto next;
883 		}
884 
885 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
886 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
887 		if (IS_ERR(root)) {
888 			err = PTR_ERR(root);
889 			goto out;
890 		}
891 
892 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
893 			cur->cowonly = 1;
894 
895 		if (btrfs_root_level(&root->root_item) == cur->level) {
896 			/* tree root */
897 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 			       cur->bytenr);
899 			if (should_ignore_root(root))
900 				list_add(&cur->list, &useless);
901 			else
902 				cur->root = root;
903 			break;
904 		}
905 
906 		level = cur->level + 1;
907 
908 		/*
909 		 * searching the tree to find upper level blocks
910 		 * reference the block.
911 		 */
912 		path2->search_commit_root = 1;
913 		path2->skip_locking = 1;
914 		path2->lowest_level = level;
915 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
916 		path2->lowest_level = 0;
917 		if (ret < 0) {
918 			err = ret;
919 			goto out;
920 		}
921 		if (ret > 0 && path2->slots[level] > 0)
922 			path2->slots[level]--;
923 
924 		eb = path2->nodes[level];
925 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
926 			cur->bytenr);
927 
928 		lower = cur;
929 		need_check = true;
930 		for (; level < BTRFS_MAX_LEVEL; level++) {
931 			if (!path2->nodes[level]) {
932 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
933 				       lower->bytenr);
934 				if (should_ignore_root(root))
935 					list_add(&lower->list, &useless);
936 				else
937 					lower->root = root;
938 				break;
939 			}
940 
941 			edge = alloc_backref_edge(cache);
942 			if (!edge) {
943 				err = -ENOMEM;
944 				goto out;
945 			}
946 
947 			eb = path2->nodes[level];
948 			rb_node = tree_search(&cache->rb_root, eb->start);
949 			if (!rb_node) {
950 				upper = alloc_backref_node(cache);
951 				if (!upper) {
952 					free_backref_edge(cache, edge);
953 					err = -ENOMEM;
954 					goto out;
955 				}
956 				upper->bytenr = eb->start;
957 				upper->owner = btrfs_header_owner(eb);
958 				upper->level = lower->level + 1;
959 				if (!test_bit(BTRFS_ROOT_REF_COWS,
960 					      &root->state))
961 					upper->cowonly = 1;
962 
963 				/*
964 				 * if we know the block isn't shared
965 				 * we can void checking its backrefs.
966 				 */
967 				if (btrfs_block_can_be_shared(root, eb))
968 					upper->checked = 0;
969 				else
970 					upper->checked = 1;
971 
972 				/*
973 				 * add the block to pending list if we
974 				 * need check its backrefs, we only do this once
975 				 * while walking up a tree as we will catch
976 				 * anything else later on.
977 				 */
978 				if (!upper->checked && need_check) {
979 					need_check = false;
980 					list_add_tail(&edge->list[UPPER],
981 						      &list);
982 				} else {
983 					if (upper->checked)
984 						need_check = true;
985 					INIT_LIST_HEAD(&edge->list[UPPER]);
986 				}
987 			} else {
988 				upper = rb_entry(rb_node, struct backref_node,
989 						 rb_node);
990 				ASSERT(upper->checked);
991 				INIT_LIST_HEAD(&edge->list[UPPER]);
992 				if (!upper->owner)
993 					upper->owner = btrfs_header_owner(eb);
994 			}
995 			list_add_tail(&edge->list[LOWER], &lower->upper);
996 			edge->node[LOWER] = lower;
997 			edge->node[UPPER] = upper;
998 
999 			if (rb_node)
1000 				break;
1001 			lower = upper;
1002 			upper = NULL;
1003 		}
1004 		btrfs_release_path(path2);
1005 next:
1006 		if (ptr < end) {
1007 			ptr += btrfs_extent_inline_ref_size(key.type);
1008 			if (ptr >= end) {
1009 				WARN_ON(ptr > end);
1010 				ptr = 0;
1011 				end = 0;
1012 			}
1013 		}
1014 		if (ptr >= end)
1015 			path1->slots[0]++;
1016 	}
1017 	btrfs_release_path(path1);
1018 
1019 	cur->checked = 1;
1020 	WARN_ON(exist);
1021 
1022 	/* the pending list isn't empty, take the first block to process */
1023 	if (!list_empty(&list)) {
1024 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 		list_del_init(&edge->list[UPPER]);
1026 		cur = edge->node[UPPER];
1027 		goto again;
1028 	}
1029 
1030 	/*
1031 	 * everything goes well, connect backref nodes and insert backref nodes
1032 	 * into the cache.
1033 	 */
1034 	ASSERT(node->checked);
1035 	cowonly = node->cowonly;
1036 	if (!cowonly) {
1037 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1038 				      &node->rb_node);
1039 		if (rb_node)
1040 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1041 		list_add_tail(&node->lower, &cache->leaves);
1042 	}
1043 
1044 	list_for_each_entry(edge, &node->upper, list[LOWER])
1045 		list_add_tail(&edge->list[UPPER], &list);
1046 
1047 	while (!list_empty(&list)) {
1048 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1049 		list_del_init(&edge->list[UPPER]);
1050 		upper = edge->node[UPPER];
1051 		if (upper->detached) {
1052 			list_del(&edge->list[LOWER]);
1053 			lower = edge->node[LOWER];
1054 			free_backref_edge(cache, edge);
1055 			if (list_empty(&lower->upper))
1056 				list_add(&lower->list, &useless);
1057 			continue;
1058 		}
1059 
1060 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1061 			if (upper->lowest) {
1062 				list_del_init(&upper->lower);
1063 				upper->lowest = 0;
1064 			}
1065 
1066 			list_add_tail(&edge->list[UPPER], &upper->lower);
1067 			continue;
1068 		}
1069 
1070 		if (!upper->checked) {
1071 			/*
1072 			 * Still want to blow up for developers since this is a
1073 			 * logic bug.
1074 			 */
1075 			ASSERT(0);
1076 			err = -EINVAL;
1077 			goto out;
1078 		}
1079 		if (cowonly != upper->cowonly) {
1080 			ASSERT(0);
1081 			err = -EINVAL;
1082 			goto out;
1083 		}
1084 
1085 		if (!cowonly) {
1086 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1087 					      &upper->rb_node);
1088 			if (rb_node)
1089 				backref_tree_panic(rb_node, -EEXIST,
1090 						   upper->bytenr);
1091 		}
1092 
1093 		list_add_tail(&edge->list[UPPER], &upper->lower);
1094 
1095 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1096 			list_add_tail(&edge->list[UPPER], &list);
1097 	}
1098 	/*
1099 	 * process useless backref nodes. backref nodes for tree leaves
1100 	 * are deleted from the cache. backref nodes for upper level
1101 	 * tree blocks are left in the cache to avoid unnecessary backref
1102 	 * lookup.
1103 	 */
1104 	while (!list_empty(&useless)) {
1105 		upper = list_entry(useless.next, struct backref_node, list);
1106 		list_del_init(&upper->list);
1107 		ASSERT(list_empty(&upper->upper));
1108 		if (upper == node)
1109 			node = NULL;
1110 		if (upper->lowest) {
1111 			list_del_init(&upper->lower);
1112 			upper->lowest = 0;
1113 		}
1114 		while (!list_empty(&upper->lower)) {
1115 			edge = list_entry(upper->lower.next,
1116 					  struct backref_edge, list[UPPER]);
1117 			list_del(&edge->list[UPPER]);
1118 			list_del(&edge->list[LOWER]);
1119 			lower = edge->node[LOWER];
1120 			free_backref_edge(cache, edge);
1121 
1122 			if (list_empty(&lower->upper))
1123 				list_add(&lower->list, &useless);
1124 		}
1125 		__mark_block_processed(rc, upper);
1126 		if (upper->level > 0) {
1127 			list_add(&upper->list, &cache->detached);
1128 			upper->detached = 1;
1129 		} else {
1130 			rb_erase(&upper->rb_node, &cache->rb_root);
1131 			free_backref_node(cache, upper);
1132 		}
1133 	}
1134 out:
1135 	btrfs_free_path(path1);
1136 	btrfs_free_path(path2);
1137 	if (err) {
1138 		while (!list_empty(&useless)) {
1139 			lower = list_entry(useless.next,
1140 					   struct backref_node, list);
1141 			list_del_init(&lower->list);
1142 		}
1143 		while (!list_empty(&list)) {
1144 			edge = list_first_entry(&list, struct backref_edge,
1145 						list[UPPER]);
1146 			list_del(&edge->list[UPPER]);
1147 			list_del(&edge->list[LOWER]);
1148 			lower = edge->node[LOWER];
1149 			upper = edge->node[UPPER];
1150 			free_backref_edge(cache, edge);
1151 
1152 			/*
1153 			 * Lower is no longer linked to any upper backref nodes
1154 			 * and isn't in the cache, we can free it ourselves.
1155 			 */
1156 			if (list_empty(&lower->upper) &&
1157 			    RB_EMPTY_NODE(&lower->rb_node))
1158 				list_add(&lower->list, &useless);
1159 
1160 			if (!RB_EMPTY_NODE(&upper->rb_node))
1161 				continue;
1162 
1163 			/* Add this guy's upper edges to the list to proces */
1164 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1165 				list_add_tail(&edge->list[UPPER], &list);
1166 			if (list_empty(&upper->upper))
1167 				list_add(&upper->list, &useless);
1168 		}
1169 
1170 		while (!list_empty(&useless)) {
1171 			lower = list_entry(useless.next,
1172 					   struct backref_node, list);
1173 			list_del_init(&lower->list);
1174 			free_backref_node(cache, lower);
1175 		}
1176 		return ERR_PTR(err);
1177 	}
1178 	ASSERT(!node || !node->detached);
1179 	return node;
1180 }
1181 
1182 /*
1183  * helper to add backref node for the newly created snapshot.
1184  * the backref node is created by cloning backref node that
1185  * corresponds to root of source tree
1186  */
1187 static int clone_backref_node(struct btrfs_trans_handle *trans,
1188 			      struct reloc_control *rc,
1189 			      struct btrfs_root *src,
1190 			      struct btrfs_root *dest)
1191 {
1192 	struct btrfs_root *reloc_root = src->reloc_root;
1193 	struct backref_cache *cache = &rc->backref_cache;
1194 	struct backref_node *node = NULL;
1195 	struct backref_node *new_node;
1196 	struct backref_edge *edge;
1197 	struct backref_edge *new_edge;
1198 	struct rb_node *rb_node;
1199 
1200 	if (cache->last_trans > 0)
1201 		update_backref_cache(trans, cache);
1202 
1203 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1204 	if (rb_node) {
1205 		node = rb_entry(rb_node, struct backref_node, rb_node);
1206 		if (node->detached)
1207 			node = NULL;
1208 		else
1209 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1210 	}
1211 
1212 	if (!node) {
1213 		rb_node = tree_search(&cache->rb_root,
1214 				      reloc_root->commit_root->start);
1215 		if (rb_node) {
1216 			node = rb_entry(rb_node, struct backref_node,
1217 					rb_node);
1218 			BUG_ON(node->detached);
1219 		}
1220 	}
1221 
1222 	if (!node)
1223 		return 0;
1224 
1225 	new_node = alloc_backref_node(cache);
1226 	if (!new_node)
1227 		return -ENOMEM;
1228 
1229 	new_node->bytenr = dest->node->start;
1230 	new_node->level = node->level;
1231 	new_node->lowest = node->lowest;
1232 	new_node->checked = 1;
1233 	new_node->root = dest;
1234 
1235 	if (!node->lowest) {
1236 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1237 			new_edge = alloc_backref_edge(cache);
1238 			if (!new_edge)
1239 				goto fail;
1240 
1241 			new_edge->node[UPPER] = new_node;
1242 			new_edge->node[LOWER] = edge->node[LOWER];
1243 			list_add_tail(&new_edge->list[UPPER],
1244 				      &new_node->lower);
1245 		}
1246 	} else {
1247 		list_add_tail(&new_node->lower, &cache->leaves);
1248 	}
1249 
1250 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1251 			      &new_node->rb_node);
1252 	if (rb_node)
1253 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1254 
1255 	if (!new_node->lowest) {
1256 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1257 			list_add_tail(&new_edge->list[LOWER],
1258 				      &new_edge->node[LOWER]->upper);
1259 		}
1260 	}
1261 	return 0;
1262 fail:
1263 	while (!list_empty(&new_node->lower)) {
1264 		new_edge = list_entry(new_node->lower.next,
1265 				      struct backref_edge, list[UPPER]);
1266 		list_del(&new_edge->list[UPPER]);
1267 		free_backref_edge(cache, new_edge);
1268 	}
1269 	free_backref_node(cache, new_node);
1270 	return -ENOMEM;
1271 }
1272 
1273 /*
1274  * helper to add 'address of tree root -> reloc tree' mapping
1275  */
1276 static int __must_check __add_reloc_root(struct btrfs_root *root)
1277 {
1278 	struct rb_node *rb_node;
1279 	struct mapping_node *node;
1280 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1281 
1282 	node = kmalloc(sizeof(*node), GFP_NOFS);
1283 	if (!node)
1284 		return -ENOMEM;
1285 
1286 	node->bytenr = root->node->start;
1287 	node->data = root;
1288 
1289 	spin_lock(&rc->reloc_root_tree.lock);
1290 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1291 			      node->bytenr, &node->rb_node);
1292 	spin_unlock(&rc->reloc_root_tree.lock);
1293 	if (rb_node) {
1294 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1295 			    "for start=%llu while inserting into relocation "
1296 			    "tree", node->bytenr);
1297 		kfree(node);
1298 		return -EEXIST;
1299 	}
1300 
1301 	list_add_tail(&root->root_list, &rc->reloc_roots);
1302 	return 0;
1303 }
1304 
1305 /*
1306  * helper to delete the 'address of tree root -> reloc tree'
1307  * mapping
1308  */
1309 static void __del_reloc_root(struct btrfs_root *root)
1310 {
1311 	struct rb_node *rb_node;
1312 	struct mapping_node *node = NULL;
1313 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1314 
1315 	spin_lock(&rc->reloc_root_tree.lock);
1316 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1317 			      root->node->start);
1318 	if (rb_node) {
1319 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1320 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1321 	}
1322 	spin_unlock(&rc->reloc_root_tree.lock);
1323 
1324 	if (!node)
1325 		return;
1326 	BUG_ON((struct btrfs_root *)node->data != root);
1327 
1328 	spin_lock(&root->fs_info->trans_lock);
1329 	list_del_init(&root->root_list);
1330 	spin_unlock(&root->fs_info->trans_lock);
1331 	kfree(node);
1332 }
1333 
1334 /*
1335  * helper to update the 'address of tree root -> reloc tree'
1336  * mapping
1337  */
1338 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1339 {
1340 	struct rb_node *rb_node;
1341 	struct mapping_node *node = NULL;
1342 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1343 
1344 	spin_lock(&rc->reloc_root_tree.lock);
1345 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1346 			      root->node->start);
1347 	if (rb_node) {
1348 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1349 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1350 	}
1351 	spin_unlock(&rc->reloc_root_tree.lock);
1352 
1353 	if (!node)
1354 		return 0;
1355 	BUG_ON((struct btrfs_root *)node->data != root);
1356 
1357 	spin_lock(&rc->reloc_root_tree.lock);
1358 	node->bytenr = new_bytenr;
1359 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1360 			      node->bytenr, &node->rb_node);
1361 	spin_unlock(&rc->reloc_root_tree.lock);
1362 	if (rb_node)
1363 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1364 	return 0;
1365 }
1366 
1367 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1368 					struct btrfs_root *root, u64 objectid)
1369 {
1370 	struct btrfs_root *reloc_root;
1371 	struct extent_buffer *eb;
1372 	struct btrfs_root_item *root_item;
1373 	struct btrfs_key root_key;
1374 	u64 last_snap = 0;
1375 	int ret;
1376 
1377 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1378 	BUG_ON(!root_item);
1379 
1380 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1381 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1382 	root_key.offset = objectid;
1383 
1384 	if (root->root_key.objectid == objectid) {
1385 		/* called by btrfs_init_reloc_root */
1386 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1387 				      BTRFS_TREE_RELOC_OBJECTID);
1388 		BUG_ON(ret);
1389 
1390 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1391 		btrfs_set_root_last_snapshot(&root->root_item,
1392 					     trans->transid - 1);
1393 	} else {
1394 		/*
1395 		 * called by btrfs_reloc_post_snapshot_hook.
1396 		 * the source tree is a reloc tree, all tree blocks
1397 		 * modified after it was created have RELOC flag
1398 		 * set in their headers. so it's OK to not update
1399 		 * the 'last_snapshot'.
1400 		 */
1401 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1402 				      BTRFS_TREE_RELOC_OBJECTID);
1403 		BUG_ON(ret);
1404 	}
1405 
1406 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1407 	btrfs_set_root_bytenr(root_item, eb->start);
1408 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1409 	btrfs_set_root_generation(root_item, trans->transid);
1410 
1411 	if (root->root_key.objectid == objectid) {
1412 		btrfs_set_root_refs(root_item, 0);
1413 		memset(&root_item->drop_progress, 0,
1414 		       sizeof(struct btrfs_disk_key));
1415 		root_item->drop_level = 0;
1416 		/*
1417 		 * abuse rtransid, it is safe because it is impossible to
1418 		 * receive data into a relocation tree.
1419 		 */
1420 		btrfs_set_root_rtransid(root_item, last_snap);
1421 		btrfs_set_root_otransid(root_item, trans->transid);
1422 	}
1423 
1424 	btrfs_tree_unlock(eb);
1425 	free_extent_buffer(eb);
1426 
1427 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1428 				&root_key, root_item);
1429 	BUG_ON(ret);
1430 	kfree(root_item);
1431 
1432 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1433 	BUG_ON(IS_ERR(reloc_root));
1434 	reloc_root->last_trans = trans->transid;
1435 	return reloc_root;
1436 }
1437 
1438 /*
1439  * create reloc tree for a given fs tree. reloc tree is just a
1440  * snapshot of the fs tree with special root objectid.
1441  */
1442 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1443 			  struct btrfs_root *root)
1444 {
1445 	struct btrfs_root *reloc_root;
1446 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1447 	struct btrfs_block_rsv *rsv;
1448 	int clear_rsv = 0;
1449 	int ret;
1450 
1451 	if (root->reloc_root) {
1452 		reloc_root = root->reloc_root;
1453 		reloc_root->last_trans = trans->transid;
1454 		return 0;
1455 	}
1456 
1457 	if (!rc || !rc->create_reloc_tree ||
1458 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1459 		return 0;
1460 
1461 	if (!trans->reloc_reserved) {
1462 		rsv = trans->block_rsv;
1463 		trans->block_rsv = rc->block_rsv;
1464 		clear_rsv = 1;
1465 	}
1466 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1467 	if (clear_rsv)
1468 		trans->block_rsv = rsv;
1469 
1470 	ret = __add_reloc_root(reloc_root);
1471 	BUG_ON(ret < 0);
1472 	root->reloc_root = reloc_root;
1473 	return 0;
1474 }
1475 
1476 /*
1477  * update root item of reloc tree
1478  */
1479 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1480 			    struct btrfs_root *root)
1481 {
1482 	struct btrfs_root *reloc_root;
1483 	struct btrfs_root_item *root_item;
1484 	int ret;
1485 
1486 	if (!root->reloc_root)
1487 		goto out;
1488 
1489 	reloc_root = root->reloc_root;
1490 	root_item = &reloc_root->root_item;
1491 
1492 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1493 	    btrfs_root_refs(root_item) == 0) {
1494 		root->reloc_root = NULL;
1495 		__del_reloc_root(reloc_root);
1496 	}
1497 
1498 	if (reloc_root->commit_root != reloc_root->node) {
1499 		btrfs_set_root_node(root_item, reloc_root->node);
1500 		free_extent_buffer(reloc_root->commit_root);
1501 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1502 	}
1503 
1504 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1505 				&reloc_root->root_key, root_item);
1506 	BUG_ON(ret);
1507 
1508 out:
1509 	return 0;
1510 }
1511 
1512 /*
1513  * helper to find first cached inode with inode number >= objectid
1514  * in a subvolume
1515  */
1516 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1517 {
1518 	struct rb_node *node;
1519 	struct rb_node *prev;
1520 	struct btrfs_inode *entry;
1521 	struct inode *inode;
1522 
1523 	spin_lock(&root->inode_lock);
1524 again:
1525 	node = root->inode_tree.rb_node;
1526 	prev = NULL;
1527 	while (node) {
1528 		prev = node;
1529 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1530 
1531 		if (objectid < btrfs_ino(&entry->vfs_inode))
1532 			node = node->rb_left;
1533 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1534 			node = node->rb_right;
1535 		else
1536 			break;
1537 	}
1538 	if (!node) {
1539 		while (prev) {
1540 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1541 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1542 				node = prev;
1543 				break;
1544 			}
1545 			prev = rb_next(prev);
1546 		}
1547 	}
1548 	while (node) {
1549 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1550 		inode = igrab(&entry->vfs_inode);
1551 		if (inode) {
1552 			spin_unlock(&root->inode_lock);
1553 			return inode;
1554 		}
1555 
1556 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1557 		if (cond_resched_lock(&root->inode_lock))
1558 			goto again;
1559 
1560 		node = rb_next(node);
1561 	}
1562 	spin_unlock(&root->inode_lock);
1563 	return NULL;
1564 }
1565 
1566 static int in_block_group(u64 bytenr,
1567 			  struct btrfs_block_group_cache *block_group)
1568 {
1569 	if (bytenr >= block_group->key.objectid &&
1570 	    bytenr < block_group->key.objectid + block_group->key.offset)
1571 		return 1;
1572 	return 0;
1573 }
1574 
1575 /*
1576  * get new location of data
1577  */
1578 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1579 			    u64 bytenr, u64 num_bytes)
1580 {
1581 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1582 	struct btrfs_path *path;
1583 	struct btrfs_file_extent_item *fi;
1584 	struct extent_buffer *leaf;
1585 	int ret;
1586 
1587 	path = btrfs_alloc_path();
1588 	if (!path)
1589 		return -ENOMEM;
1590 
1591 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1592 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1593 				       bytenr, 0);
1594 	if (ret < 0)
1595 		goto out;
1596 	if (ret > 0) {
1597 		ret = -ENOENT;
1598 		goto out;
1599 	}
1600 
1601 	leaf = path->nodes[0];
1602 	fi = btrfs_item_ptr(leaf, path->slots[0],
1603 			    struct btrfs_file_extent_item);
1604 
1605 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1606 	       btrfs_file_extent_compression(leaf, fi) ||
1607 	       btrfs_file_extent_encryption(leaf, fi) ||
1608 	       btrfs_file_extent_other_encoding(leaf, fi));
1609 
1610 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1611 		ret = -EINVAL;
1612 		goto out;
1613 	}
1614 
1615 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1616 	ret = 0;
1617 out:
1618 	btrfs_free_path(path);
1619 	return ret;
1620 }
1621 
1622 /*
1623  * update file extent items in the tree leaf to point to
1624  * the new locations.
1625  */
1626 static noinline_for_stack
1627 int replace_file_extents(struct btrfs_trans_handle *trans,
1628 			 struct reloc_control *rc,
1629 			 struct btrfs_root *root,
1630 			 struct extent_buffer *leaf)
1631 {
1632 	struct btrfs_key key;
1633 	struct btrfs_file_extent_item *fi;
1634 	struct inode *inode = NULL;
1635 	u64 parent;
1636 	u64 bytenr;
1637 	u64 new_bytenr = 0;
1638 	u64 num_bytes;
1639 	u64 end;
1640 	u32 nritems;
1641 	u32 i;
1642 	int ret = 0;
1643 	int first = 1;
1644 	int dirty = 0;
1645 
1646 	if (rc->stage != UPDATE_DATA_PTRS)
1647 		return 0;
1648 
1649 	/* reloc trees always use full backref */
1650 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1651 		parent = leaf->start;
1652 	else
1653 		parent = 0;
1654 
1655 	nritems = btrfs_header_nritems(leaf);
1656 	for (i = 0; i < nritems; i++) {
1657 		cond_resched();
1658 		btrfs_item_key_to_cpu(leaf, &key, i);
1659 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1660 			continue;
1661 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1662 		if (btrfs_file_extent_type(leaf, fi) ==
1663 		    BTRFS_FILE_EXTENT_INLINE)
1664 			continue;
1665 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1666 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1667 		if (bytenr == 0)
1668 			continue;
1669 		if (!in_block_group(bytenr, rc->block_group))
1670 			continue;
1671 
1672 		/*
1673 		 * if we are modifying block in fs tree, wait for readpage
1674 		 * to complete and drop the extent cache
1675 		 */
1676 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1677 			if (first) {
1678 				inode = find_next_inode(root, key.objectid);
1679 				first = 0;
1680 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1681 				btrfs_add_delayed_iput(inode);
1682 				inode = find_next_inode(root, key.objectid);
1683 			}
1684 			if (inode && btrfs_ino(inode) == key.objectid) {
1685 				end = key.offset +
1686 				      btrfs_file_extent_num_bytes(leaf, fi);
1687 				WARN_ON(!IS_ALIGNED(key.offset,
1688 						    root->sectorsize));
1689 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1690 				end--;
1691 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1692 						      key.offset, end);
1693 				if (!ret)
1694 					continue;
1695 
1696 				btrfs_drop_extent_cache(inode, key.offset, end,
1697 							1);
1698 				unlock_extent(&BTRFS_I(inode)->io_tree,
1699 					      key.offset, end);
1700 			}
1701 		}
1702 
1703 		ret = get_new_location(rc->data_inode, &new_bytenr,
1704 				       bytenr, num_bytes);
1705 		if (ret) {
1706 			/*
1707 			 * Don't have to abort since we've not changed anything
1708 			 * in the file extent yet.
1709 			 */
1710 			break;
1711 		}
1712 
1713 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1714 		dirty = 1;
1715 
1716 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1717 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1718 					   num_bytes, parent,
1719 					   btrfs_header_owner(leaf),
1720 					   key.objectid, key.offset);
1721 		if (ret) {
1722 			btrfs_abort_transaction(trans, root, ret);
1723 			break;
1724 		}
1725 
1726 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1727 					parent, btrfs_header_owner(leaf),
1728 					key.objectid, key.offset);
1729 		if (ret) {
1730 			btrfs_abort_transaction(trans, root, ret);
1731 			break;
1732 		}
1733 	}
1734 	if (dirty)
1735 		btrfs_mark_buffer_dirty(leaf);
1736 	if (inode)
1737 		btrfs_add_delayed_iput(inode);
1738 	return ret;
1739 }
1740 
1741 static noinline_for_stack
1742 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1743 		     struct btrfs_path *path, int level)
1744 {
1745 	struct btrfs_disk_key key1;
1746 	struct btrfs_disk_key key2;
1747 	btrfs_node_key(eb, &key1, slot);
1748 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1749 	return memcmp(&key1, &key2, sizeof(key1));
1750 }
1751 
1752 /*
1753  * try to replace tree blocks in fs tree with the new blocks
1754  * in reloc tree. tree blocks haven't been modified since the
1755  * reloc tree was create can be replaced.
1756  *
1757  * if a block was replaced, level of the block + 1 is returned.
1758  * if no block got replaced, 0 is returned. if there are other
1759  * errors, a negative error number is returned.
1760  */
1761 static noinline_for_stack
1762 int replace_path(struct btrfs_trans_handle *trans,
1763 		 struct btrfs_root *dest, struct btrfs_root *src,
1764 		 struct btrfs_path *path, struct btrfs_key *next_key,
1765 		 int lowest_level, int max_level)
1766 {
1767 	struct extent_buffer *eb;
1768 	struct extent_buffer *parent;
1769 	struct btrfs_key key;
1770 	u64 old_bytenr;
1771 	u64 new_bytenr;
1772 	u64 old_ptr_gen;
1773 	u64 new_ptr_gen;
1774 	u64 last_snapshot;
1775 	u32 blocksize;
1776 	int cow = 0;
1777 	int level;
1778 	int ret;
1779 	int slot;
1780 
1781 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1782 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1783 
1784 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1785 again:
1786 	slot = path->slots[lowest_level];
1787 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1788 
1789 	eb = btrfs_lock_root_node(dest);
1790 	btrfs_set_lock_blocking(eb);
1791 	level = btrfs_header_level(eb);
1792 
1793 	if (level < lowest_level) {
1794 		btrfs_tree_unlock(eb);
1795 		free_extent_buffer(eb);
1796 		return 0;
1797 	}
1798 
1799 	if (cow) {
1800 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1801 		BUG_ON(ret);
1802 	}
1803 	btrfs_set_lock_blocking(eb);
1804 
1805 	if (next_key) {
1806 		next_key->objectid = (u64)-1;
1807 		next_key->type = (u8)-1;
1808 		next_key->offset = (u64)-1;
1809 	}
1810 
1811 	parent = eb;
1812 	while (1) {
1813 		level = btrfs_header_level(parent);
1814 		BUG_ON(level < lowest_level);
1815 
1816 		ret = btrfs_bin_search(parent, &key, level, &slot);
1817 		if (ret && slot > 0)
1818 			slot--;
1819 
1820 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1821 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1822 
1823 		old_bytenr = btrfs_node_blockptr(parent, slot);
1824 		blocksize = dest->nodesize;
1825 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1826 
1827 		if (level <= max_level) {
1828 			eb = path->nodes[level];
1829 			new_bytenr = btrfs_node_blockptr(eb,
1830 							path->slots[level]);
1831 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1832 							path->slots[level]);
1833 		} else {
1834 			new_bytenr = 0;
1835 			new_ptr_gen = 0;
1836 		}
1837 
1838 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1839 			ret = level;
1840 			break;
1841 		}
1842 
1843 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1844 		    memcmp_node_keys(parent, slot, path, level)) {
1845 			if (level <= lowest_level) {
1846 				ret = 0;
1847 				break;
1848 			}
1849 
1850 			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1851 			if (IS_ERR(eb)) {
1852 				ret = PTR_ERR(eb);
1853 			} else if (!extent_buffer_uptodate(eb)) {
1854 				ret = -EIO;
1855 				free_extent_buffer(eb);
1856 				break;
1857 			}
1858 			btrfs_tree_lock(eb);
1859 			if (cow) {
1860 				ret = btrfs_cow_block(trans, dest, eb, parent,
1861 						      slot, &eb);
1862 				BUG_ON(ret);
1863 			}
1864 			btrfs_set_lock_blocking(eb);
1865 
1866 			btrfs_tree_unlock(parent);
1867 			free_extent_buffer(parent);
1868 
1869 			parent = eb;
1870 			continue;
1871 		}
1872 
1873 		if (!cow) {
1874 			btrfs_tree_unlock(parent);
1875 			free_extent_buffer(parent);
1876 			cow = 1;
1877 			goto again;
1878 		}
1879 
1880 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1881 				      path->slots[level]);
1882 		btrfs_release_path(path);
1883 
1884 		path->lowest_level = level;
1885 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1886 		path->lowest_level = 0;
1887 		BUG_ON(ret);
1888 
1889 		/*
1890 		 * swap blocks in fs tree and reloc tree.
1891 		 */
1892 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1893 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1894 		btrfs_mark_buffer_dirty(parent);
1895 
1896 		btrfs_set_node_blockptr(path->nodes[level],
1897 					path->slots[level], old_bytenr);
1898 		btrfs_set_node_ptr_generation(path->nodes[level],
1899 					      path->slots[level], old_ptr_gen);
1900 		btrfs_mark_buffer_dirty(path->nodes[level]);
1901 
1902 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1903 					path->nodes[level]->start,
1904 					src->root_key.objectid, level - 1, 0);
1905 		BUG_ON(ret);
1906 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1907 					0, dest->root_key.objectid, level - 1,
1908 					0);
1909 		BUG_ON(ret);
1910 
1911 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1912 					path->nodes[level]->start,
1913 					src->root_key.objectid, level - 1, 0);
1914 		BUG_ON(ret);
1915 
1916 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1917 					0, dest->root_key.objectid, level - 1,
1918 					0);
1919 		BUG_ON(ret);
1920 
1921 		btrfs_unlock_up_safe(path, 0);
1922 
1923 		ret = level;
1924 		break;
1925 	}
1926 	btrfs_tree_unlock(parent);
1927 	free_extent_buffer(parent);
1928 	return ret;
1929 }
1930 
1931 /*
1932  * helper to find next relocated block in reloc tree
1933  */
1934 static noinline_for_stack
1935 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1936 		       int *level)
1937 {
1938 	struct extent_buffer *eb;
1939 	int i;
1940 	u64 last_snapshot;
1941 	u32 nritems;
1942 
1943 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1944 
1945 	for (i = 0; i < *level; i++) {
1946 		free_extent_buffer(path->nodes[i]);
1947 		path->nodes[i] = NULL;
1948 	}
1949 
1950 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1951 		eb = path->nodes[i];
1952 		nritems = btrfs_header_nritems(eb);
1953 		while (path->slots[i] + 1 < nritems) {
1954 			path->slots[i]++;
1955 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1956 			    last_snapshot)
1957 				continue;
1958 
1959 			*level = i;
1960 			return 0;
1961 		}
1962 		free_extent_buffer(path->nodes[i]);
1963 		path->nodes[i] = NULL;
1964 	}
1965 	return 1;
1966 }
1967 
1968 /*
1969  * walk down reloc tree to find relocated block of lowest level
1970  */
1971 static noinline_for_stack
1972 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1973 			 int *level)
1974 {
1975 	struct extent_buffer *eb = NULL;
1976 	int i;
1977 	u64 bytenr;
1978 	u64 ptr_gen = 0;
1979 	u64 last_snapshot;
1980 	u32 nritems;
1981 
1982 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1983 
1984 	for (i = *level; i > 0; i--) {
1985 		eb = path->nodes[i];
1986 		nritems = btrfs_header_nritems(eb);
1987 		while (path->slots[i] < nritems) {
1988 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1989 			if (ptr_gen > last_snapshot)
1990 				break;
1991 			path->slots[i]++;
1992 		}
1993 		if (path->slots[i] >= nritems) {
1994 			if (i == *level)
1995 				break;
1996 			*level = i + 1;
1997 			return 0;
1998 		}
1999 		if (i == 1) {
2000 			*level = i;
2001 			return 0;
2002 		}
2003 
2004 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2005 		eb = read_tree_block(root, bytenr, ptr_gen);
2006 		if (IS_ERR(eb)) {
2007 			return PTR_ERR(eb);
2008 		} else if (!extent_buffer_uptodate(eb)) {
2009 			free_extent_buffer(eb);
2010 			return -EIO;
2011 		}
2012 		BUG_ON(btrfs_header_level(eb) != i - 1);
2013 		path->nodes[i - 1] = eb;
2014 		path->slots[i - 1] = 0;
2015 	}
2016 	return 1;
2017 }
2018 
2019 /*
2020  * invalidate extent cache for file extents whose key in range of
2021  * [min_key, max_key)
2022  */
2023 static int invalidate_extent_cache(struct btrfs_root *root,
2024 				   struct btrfs_key *min_key,
2025 				   struct btrfs_key *max_key)
2026 {
2027 	struct inode *inode = NULL;
2028 	u64 objectid;
2029 	u64 start, end;
2030 	u64 ino;
2031 
2032 	objectid = min_key->objectid;
2033 	while (1) {
2034 		cond_resched();
2035 		iput(inode);
2036 
2037 		if (objectid > max_key->objectid)
2038 			break;
2039 
2040 		inode = find_next_inode(root, objectid);
2041 		if (!inode)
2042 			break;
2043 		ino = btrfs_ino(inode);
2044 
2045 		if (ino > max_key->objectid) {
2046 			iput(inode);
2047 			break;
2048 		}
2049 
2050 		objectid = ino + 1;
2051 		if (!S_ISREG(inode->i_mode))
2052 			continue;
2053 
2054 		if (unlikely(min_key->objectid == ino)) {
2055 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2056 				continue;
2057 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2058 				start = 0;
2059 			else {
2060 				start = min_key->offset;
2061 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2062 			}
2063 		} else {
2064 			start = 0;
2065 		}
2066 
2067 		if (unlikely(max_key->objectid == ino)) {
2068 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2069 				continue;
2070 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2071 				end = (u64)-1;
2072 			} else {
2073 				if (max_key->offset == 0)
2074 					continue;
2075 				end = max_key->offset;
2076 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2077 				end--;
2078 			}
2079 		} else {
2080 			end = (u64)-1;
2081 		}
2082 
2083 		/* the lock_extent waits for readpage to complete */
2084 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2085 		btrfs_drop_extent_cache(inode, start, end, 1);
2086 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2087 	}
2088 	return 0;
2089 }
2090 
2091 static int find_next_key(struct btrfs_path *path, int level,
2092 			 struct btrfs_key *key)
2093 
2094 {
2095 	while (level < BTRFS_MAX_LEVEL) {
2096 		if (!path->nodes[level])
2097 			break;
2098 		if (path->slots[level] + 1 <
2099 		    btrfs_header_nritems(path->nodes[level])) {
2100 			btrfs_node_key_to_cpu(path->nodes[level], key,
2101 					      path->slots[level] + 1);
2102 			return 0;
2103 		}
2104 		level++;
2105 	}
2106 	return 1;
2107 }
2108 
2109 /*
2110  * merge the relocated tree blocks in reloc tree with corresponding
2111  * fs tree.
2112  */
2113 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2114 					       struct btrfs_root *root)
2115 {
2116 	LIST_HEAD(inode_list);
2117 	struct btrfs_key key;
2118 	struct btrfs_key next_key;
2119 	struct btrfs_trans_handle *trans = NULL;
2120 	struct btrfs_root *reloc_root;
2121 	struct btrfs_root_item *root_item;
2122 	struct btrfs_path *path;
2123 	struct extent_buffer *leaf;
2124 	int level;
2125 	int max_level;
2126 	int replaced = 0;
2127 	int ret;
2128 	int err = 0;
2129 	u32 min_reserved;
2130 
2131 	path = btrfs_alloc_path();
2132 	if (!path)
2133 		return -ENOMEM;
2134 	path->reada = READA_FORWARD;
2135 
2136 	reloc_root = root->reloc_root;
2137 	root_item = &reloc_root->root_item;
2138 
2139 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2140 		level = btrfs_root_level(root_item);
2141 		extent_buffer_get(reloc_root->node);
2142 		path->nodes[level] = reloc_root->node;
2143 		path->slots[level] = 0;
2144 	} else {
2145 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2146 
2147 		level = root_item->drop_level;
2148 		BUG_ON(level == 0);
2149 		path->lowest_level = level;
2150 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2151 		path->lowest_level = 0;
2152 		if (ret < 0) {
2153 			btrfs_free_path(path);
2154 			return ret;
2155 		}
2156 
2157 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2158 				      path->slots[level]);
2159 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2160 
2161 		btrfs_unlock_up_safe(path, 0);
2162 	}
2163 
2164 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2165 	memset(&next_key, 0, sizeof(next_key));
2166 
2167 	while (1) {
2168 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2169 					     BTRFS_RESERVE_FLUSH_ALL);
2170 		if (ret) {
2171 			err = ret;
2172 			goto out;
2173 		}
2174 		trans = btrfs_start_transaction(root, 0);
2175 		if (IS_ERR(trans)) {
2176 			err = PTR_ERR(trans);
2177 			trans = NULL;
2178 			goto out;
2179 		}
2180 		trans->block_rsv = rc->block_rsv;
2181 
2182 		replaced = 0;
2183 		max_level = level;
2184 
2185 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2186 		if (ret < 0) {
2187 			err = ret;
2188 			goto out;
2189 		}
2190 		if (ret > 0)
2191 			break;
2192 
2193 		if (!find_next_key(path, level, &key) &&
2194 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2195 			ret = 0;
2196 		} else {
2197 			ret = replace_path(trans, root, reloc_root, path,
2198 					   &next_key, level, max_level);
2199 		}
2200 		if (ret < 0) {
2201 			err = ret;
2202 			goto out;
2203 		}
2204 
2205 		if (ret > 0) {
2206 			level = ret;
2207 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2208 					      path->slots[level]);
2209 			replaced = 1;
2210 		}
2211 
2212 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2213 		if (ret > 0)
2214 			break;
2215 
2216 		BUG_ON(level == 0);
2217 		/*
2218 		 * save the merging progress in the drop_progress.
2219 		 * this is OK since root refs == 1 in this case.
2220 		 */
2221 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2222 			       path->slots[level]);
2223 		root_item->drop_level = level;
2224 
2225 		btrfs_end_transaction_throttle(trans, root);
2226 		trans = NULL;
2227 
2228 		btrfs_btree_balance_dirty(root);
2229 
2230 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2231 			invalidate_extent_cache(root, &key, &next_key);
2232 	}
2233 
2234 	/*
2235 	 * handle the case only one block in the fs tree need to be
2236 	 * relocated and the block is tree root.
2237 	 */
2238 	leaf = btrfs_lock_root_node(root);
2239 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2240 	btrfs_tree_unlock(leaf);
2241 	free_extent_buffer(leaf);
2242 	if (ret < 0)
2243 		err = ret;
2244 out:
2245 	btrfs_free_path(path);
2246 
2247 	if (err == 0) {
2248 		memset(&root_item->drop_progress, 0,
2249 		       sizeof(root_item->drop_progress));
2250 		root_item->drop_level = 0;
2251 		btrfs_set_root_refs(root_item, 0);
2252 		btrfs_update_reloc_root(trans, root);
2253 	}
2254 
2255 	if (trans)
2256 		btrfs_end_transaction_throttle(trans, root);
2257 
2258 	btrfs_btree_balance_dirty(root);
2259 
2260 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2261 		invalidate_extent_cache(root, &key, &next_key);
2262 
2263 	return err;
2264 }
2265 
2266 static noinline_for_stack
2267 int prepare_to_merge(struct reloc_control *rc, int err)
2268 {
2269 	struct btrfs_root *root = rc->extent_root;
2270 	struct btrfs_root *reloc_root;
2271 	struct btrfs_trans_handle *trans;
2272 	LIST_HEAD(reloc_roots);
2273 	u64 num_bytes = 0;
2274 	int ret;
2275 
2276 	mutex_lock(&root->fs_info->reloc_mutex);
2277 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2278 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2279 	mutex_unlock(&root->fs_info->reloc_mutex);
2280 
2281 again:
2282 	if (!err) {
2283 		num_bytes = rc->merging_rsv_size;
2284 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2285 					  BTRFS_RESERVE_FLUSH_ALL);
2286 		if (ret)
2287 			err = ret;
2288 	}
2289 
2290 	trans = btrfs_join_transaction(rc->extent_root);
2291 	if (IS_ERR(trans)) {
2292 		if (!err)
2293 			btrfs_block_rsv_release(rc->extent_root,
2294 						rc->block_rsv, num_bytes);
2295 		return PTR_ERR(trans);
2296 	}
2297 
2298 	if (!err) {
2299 		if (num_bytes != rc->merging_rsv_size) {
2300 			btrfs_end_transaction(trans, rc->extent_root);
2301 			btrfs_block_rsv_release(rc->extent_root,
2302 						rc->block_rsv, num_bytes);
2303 			goto again;
2304 		}
2305 	}
2306 
2307 	rc->merge_reloc_tree = 1;
2308 
2309 	while (!list_empty(&rc->reloc_roots)) {
2310 		reloc_root = list_entry(rc->reloc_roots.next,
2311 					struct btrfs_root, root_list);
2312 		list_del_init(&reloc_root->root_list);
2313 
2314 		root = read_fs_root(reloc_root->fs_info,
2315 				    reloc_root->root_key.offset);
2316 		BUG_ON(IS_ERR(root));
2317 		BUG_ON(root->reloc_root != reloc_root);
2318 
2319 		/*
2320 		 * set reference count to 1, so btrfs_recover_relocation
2321 		 * knows it should resumes merging
2322 		 */
2323 		if (!err)
2324 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2325 		btrfs_update_reloc_root(trans, root);
2326 
2327 		list_add(&reloc_root->root_list, &reloc_roots);
2328 	}
2329 
2330 	list_splice(&reloc_roots, &rc->reloc_roots);
2331 
2332 	if (!err)
2333 		btrfs_commit_transaction(trans, rc->extent_root);
2334 	else
2335 		btrfs_end_transaction(trans, rc->extent_root);
2336 	return err;
2337 }
2338 
2339 static noinline_for_stack
2340 void free_reloc_roots(struct list_head *list)
2341 {
2342 	struct btrfs_root *reloc_root;
2343 
2344 	while (!list_empty(list)) {
2345 		reloc_root = list_entry(list->next, struct btrfs_root,
2346 					root_list);
2347 		__del_reloc_root(reloc_root);
2348 	}
2349 }
2350 
2351 static noinline_for_stack
2352 void merge_reloc_roots(struct reloc_control *rc)
2353 {
2354 	struct btrfs_root *root;
2355 	struct btrfs_root *reloc_root;
2356 	u64 last_snap;
2357 	u64 otransid;
2358 	u64 objectid;
2359 	LIST_HEAD(reloc_roots);
2360 	int found = 0;
2361 	int ret = 0;
2362 again:
2363 	root = rc->extent_root;
2364 
2365 	/*
2366 	 * this serializes us with btrfs_record_root_in_transaction,
2367 	 * we have to make sure nobody is in the middle of
2368 	 * adding their roots to the list while we are
2369 	 * doing this splice
2370 	 */
2371 	mutex_lock(&root->fs_info->reloc_mutex);
2372 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2373 	mutex_unlock(&root->fs_info->reloc_mutex);
2374 
2375 	while (!list_empty(&reloc_roots)) {
2376 		found = 1;
2377 		reloc_root = list_entry(reloc_roots.next,
2378 					struct btrfs_root, root_list);
2379 
2380 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2381 			root = read_fs_root(reloc_root->fs_info,
2382 					    reloc_root->root_key.offset);
2383 			BUG_ON(IS_ERR(root));
2384 			BUG_ON(root->reloc_root != reloc_root);
2385 
2386 			ret = merge_reloc_root(rc, root);
2387 			if (ret) {
2388 				if (list_empty(&reloc_root->root_list))
2389 					list_add_tail(&reloc_root->root_list,
2390 						      &reloc_roots);
2391 				goto out;
2392 			}
2393 		} else {
2394 			list_del_init(&reloc_root->root_list);
2395 		}
2396 
2397 		/*
2398 		 * we keep the old last snapshod transid in rtranid when we
2399 		 * created the relocation tree.
2400 		 */
2401 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2402 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2403 		objectid = reloc_root->root_key.offset;
2404 
2405 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2406 		if (ret < 0) {
2407 			if (list_empty(&reloc_root->root_list))
2408 				list_add_tail(&reloc_root->root_list,
2409 					      &reloc_roots);
2410 			goto out;
2411 		}
2412 	}
2413 
2414 	if (found) {
2415 		found = 0;
2416 		goto again;
2417 	}
2418 out:
2419 	if (ret) {
2420 		btrfs_std_error(root->fs_info, ret, NULL);
2421 		if (!list_empty(&reloc_roots))
2422 			free_reloc_roots(&reloc_roots);
2423 
2424 		/* new reloc root may be added */
2425 		mutex_lock(&root->fs_info->reloc_mutex);
2426 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2427 		mutex_unlock(&root->fs_info->reloc_mutex);
2428 		if (!list_empty(&reloc_roots))
2429 			free_reloc_roots(&reloc_roots);
2430 	}
2431 
2432 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2433 }
2434 
2435 static void free_block_list(struct rb_root *blocks)
2436 {
2437 	struct tree_block *block;
2438 	struct rb_node *rb_node;
2439 	while ((rb_node = rb_first(blocks))) {
2440 		block = rb_entry(rb_node, struct tree_block, rb_node);
2441 		rb_erase(rb_node, blocks);
2442 		kfree(block);
2443 	}
2444 }
2445 
2446 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2447 				      struct btrfs_root *reloc_root)
2448 {
2449 	struct btrfs_root *root;
2450 
2451 	if (reloc_root->last_trans == trans->transid)
2452 		return 0;
2453 
2454 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2455 	BUG_ON(IS_ERR(root));
2456 	BUG_ON(root->reloc_root != reloc_root);
2457 
2458 	return btrfs_record_root_in_trans(trans, root);
2459 }
2460 
2461 static noinline_for_stack
2462 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2463 				     struct reloc_control *rc,
2464 				     struct backref_node *node,
2465 				     struct backref_edge *edges[])
2466 {
2467 	struct backref_node *next;
2468 	struct btrfs_root *root;
2469 	int index = 0;
2470 
2471 	next = node;
2472 	while (1) {
2473 		cond_resched();
2474 		next = walk_up_backref(next, edges, &index);
2475 		root = next->root;
2476 		BUG_ON(!root);
2477 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2478 
2479 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2480 			record_reloc_root_in_trans(trans, root);
2481 			break;
2482 		}
2483 
2484 		btrfs_record_root_in_trans(trans, root);
2485 		root = root->reloc_root;
2486 
2487 		if (next->new_bytenr != root->node->start) {
2488 			BUG_ON(next->new_bytenr);
2489 			BUG_ON(!list_empty(&next->list));
2490 			next->new_bytenr = root->node->start;
2491 			next->root = root;
2492 			list_add_tail(&next->list,
2493 				      &rc->backref_cache.changed);
2494 			__mark_block_processed(rc, next);
2495 			break;
2496 		}
2497 
2498 		WARN_ON(1);
2499 		root = NULL;
2500 		next = walk_down_backref(edges, &index);
2501 		if (!next || next->level <= node->level)
2502 			break;
2503 	}
2504 	if (!root)
2505 		return NULL;
2506 
2507 	next = node;
2508 	/* setup backref node path for btrfs_reloc_cow_block */
2509 	while (1) {
2510 		rc->backref_cache.path[next->level] = next;
2511 		if (--index < 0)
2512 			break;
2513 		next = edges[index]->node[UPPER];
2514 	}
2515 	return root;
2516 }
2517 
2518 /*
2519  * select a tree root for relocation. return NULL if the block
2520  * is reference counted. we should use do_relocation() in this
2521  * case. return a tree root pointer if the block isn't reference
2522  * counted. return -ENOENT if the block is root of reloc tree.
2523  */
2524 static noinline_for_stack
2525 struct btrfs_root *select_one_root(struct backref_node *node)
2526 {
2527 	struct backref_node *next;
2528 	struct btrfs_root *root;
2529 	struct btrfs_root *fs_root = NULL;
2530 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2531 	int index = 0;
2532 
2533 	next = node;
2534 	while (1) {
2535 		cond_resched();
2536 		next = walk_up_backref(next, edges, &index);
2537 		root = next->root;
2538 		BUG_ON(!root);
2539 
2540 		/* no other choice for non-references counted tree */
2541 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2542 			return root;
2543 
2544 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2545 			fs_root = root;
2546 
2547 		if (next != node)
2548 			return NULL;
2549 
2550 		next = walk_down_backref(edges, &index);
2551 		if (!next || next->level <= node->level)
2552 			break;
2553 	}
2554 
2555 	if (!fs_root)
2556 		return ERR_PTR(-ENOENT);
2557 	return fs_root;
2558 }
2559 
2560 static noinline_for_stack
2561 u64 calcu_metadata_size(struct reloc_control *rc,
2562 			struct backref_node *node, int reserve)
2563 {
2564 	struct backref_node *next = node;
2565 	struct backref_edge *edge;
2566 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2567 	u64 num_bytes = 0;
2568 	int index = 0;
2569 
2570 	BUG_ON(reserve && node->processed);
2571 
2572 	while (next) {
2573 		cond_resched();
2574 		while (1) {
2575 			if (next->processed && (reserve || next != node))
2576 				break;
2577 
2578 			num_bytes += rc->extent_root->nodesize;
2579 
2580 			if (list_empty(&next->upper))
2581 				break;
2582 
2583 			edge = list_entry(next->upper.next,
2584 					  struct backref_edge, list[LOWER]);
2585 			edges[index++] = edge;
2586 			next = edge->node[UPPER];
2587 		}
2588 		next = walk_down_backref(edges, &index);
2589 	}
2590 	return num_bytes;
2591 }
2592 
2593 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2594 				  struct reloc_control *rc,
2595 				  struct backref_node *node)
2596 {
2597 	struct btrfs_root *root = rc->extent_root;
2598 	u64 num_bytes;
2599 	int ret;
2600 	u64 tmp;
2601 
2602 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2603 
2604 	trans->block_rsv = rc->block_rsv;
2605 	rc->reserved_bytes += num_bytes;
2606 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2607 				BTRFS_RESERVE_FLUSH_ALL);
2608 	if (ret) {
2609 		if (ret == -EAGAIN) {
2610 			tmp = rc->extent_root->nodesize *
2611 				RELOCATION_RESERVED_NODES;
2612 			while (tmp <= rc->reserved_bytes)
2613 				tmp <<= 1;
2614 			/*
2615 			 * only one thread can access block_rsv at this point,
2616 			 * so we don't need hold lock to protect block_rsv.
2617 			 * we expand more reservation size here to allow enough
2618 			 * space for relocation and we will return eailer in
2619 			 * enospc case.
2620 			 */
2621 			rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2622 					      RELOCATION_RESERVED_NODES;
2623 		}
2624 		return ret;
2625 	}
2626 
2627 	return 0;
2628 }
2629 
2630 /*
2631  * relocate a block tree, and then update pointers in upper level
2632  * blocks that reference the block to point to the new location.
2633  *
2634  * if called by link_to_upper, the block has already been relocated.
2635  * in that case this function just updates pointers.
2636  */
2637 static int do_relocation(struct btrfs_trans_handle *trans,
2638 			 struct reloc_control *rc,
2639 			 struct backref_node *node,
2640 			 struct btrfs_key *key,
2641 			 struct btrfs_path *path, int lowest)
2642 {
2643 	struct backref_node *upper;
2644 	struct backref_edge *edge;
2645 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2646 	struct btrfs_root *root;
2647 	struct extent_buffer *eb;
2648 	u32 blocksize;
2649 	u64 bytenr;
2650 	u64 generation;
2651 	int slot;
2652 	int ret;
2653 	int err = 0;
2654 
2655 	BUG_ON(lowest && node->eb);
2656 
2657 	path->lowest_level = node->level + 1;
2658 	rc->backref_cache.path[node->level] = node;
2659 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2660 		cond_resched();
2661 
2662 		upper = edge->node[UPPER];
2663 		root = select_reloc_root(trans, rc, upper, edges);
2664 		BUG_ON(!root);
2665 
2666 		if (upper->eb && !upper->locked) {
2667 			if (!lowest) {
2668 				ret = btrfs_bin_search(upper->eb, key,
2669 						       upper->level, &slot);
2670 				BUG_ON(ret);
2671 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2672 				if (node->eb->start == bytenr)
2673 					goto next;
2674 			}
2675 			drop_node_buffer(upper);
2676 		}
2677 
2678 		if (!upper->eb) {
2679 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2680 			if (ret < 0) {
2681 				err = ret;
2682 				break;
2683 			}
2684 			BUG_ON(ret > 0);
2685 
2686 			if (!upper->eb) {
2687 				upper->eb = path->nodes[upper->level];
2688 				path->nodes[upper->level] = NULL;
2689 			} else {
2690 				BUG_ON(upper->eb != path->nodes[upper->level]);
2691 			}
2692 
2693 			upper->locked = 1;
2694 			path->locks[upper->level] = 0;
2695 
2696 			slot = path->slots[upper->level];
2697 			btrfs_release_path(path);
2698 		} else {
2699 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2700 					       &slot);
2701 			BUG_ON(ret);
2702 		}
2703 
2704 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2705 		if (lowest) {
2706 			BUG_ON(bytenr != node->bytenr);
2707 		} else {
2708 			if (node->eb->start == bytenr)
2709 				goto next;
2710 		}
2711 
2712 		blocksize = root->nodesize;
2713 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2714 		eb = read_tree_block(root, bytenr, generation);
2715 		if (IS_ERR(eb)) {
2716 			err = PTR_ERR(eb);
2717 			goto next;
2718 		} else if (!extent_buffer_uptodate(eb)) {
2719 			free_extent_buffer(eb);
2720 			err = -EIO;
2721 			goto next;
2722 		}
2723 		btrfs_tree_lock(eb);
2724 		btrfs_set_lock_blocking(eb);
2725 
2726 		if (!node->eb) {
2727 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2728 					      slot, &eb);
2729 			btrfs_tree_unlock(eb);
2730 			free_extent_buffer(eb);
2731 			if (ret < 0) {
2732 				err = ret;
2733 				goto next;
2734 			}
2735 			BUG_ON(node->eb != eb);
2736 		} else {
2737 			btrfs_set_node_blockptr(upper->eb, slot,
2738 						node->eb->start);
2739 			btrfs_set_node_ptr_generation(upper->eb, slot,
2740 						      trans->transid);
2741 			btrfs_mark_buffer_dirty(upper->eb);
2742 
2743 			ret = btrfs_inc_extent_ref(trans, root,
2744 						node->eb->start, blocksize,
2745 						upper->eb->start,
2746 						btrfs_header_owner(upper->eb),
2747 						node->level, 0);
2748 			BUG_ON(ret);
2749 
2750 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2751 			BUG_ON(ret);
2752 		}
2753 next:
2754 		if (!upper->pending)
2755 			drop_node_buffer(upper);
2756 		else
2757 			unlock_node_buffer(upper);
2758 		if (err)
2759 			break;
2760 	}
2761 
2762 	if (!err && node->pending) {
2763 		drop_node_buffer(node);
2764 		list_move_tail(&node->list, &rc->backref_cache.changed);
2765 		node->pending = 0;
2766 	}
2767 
2768 	path->lowest_level = 0;
2769 	BUG_ON(err == -ENOSPC);
2770 	return err;
2771 }
2772 
2773 static int link_to_upper(struct btrfs_trans_handle *trans,
2774 			 struct reloc_control *rc,
2775 			 struct backref_node *node,
2776 			 struct btrfs_path *path)
2777 {
2778 	struct btrfs_key key;
2779 
2780 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2781 	return do_relocation(trans, rc, node, &key, path, 0);
2782 }
2783 
2784 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2785 				struct reloc_control *rc,
2786 				struct btrfs_path *path, int err)
2787 {
2788 	LIST_HEAD(list);
2789 	struct backref_cache *cache = &rc->backref_cache;
2790 	struct backref_node *node;
2791 	int level;
2792 	int ret;
2793 
2794 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2795 		while (!list_empty(&cache->pending[level])) {
2796 			node = list_entry(cache->pending[level].next,
2797 					  struct backref_node, list);
2798 			list_move_tail(&node->list, &list);
2799 			BUG_ON(!node->pending);
2800 
2801 			if (!err) {
2802 				ret = link_to_upper(trans, rc, node, path);
2803 				if (ret < 0)
2804 					err = ret;
2805 			}
2806 		}
2807 		list_splice_init(&list, &cache->pending[level]);
2808 	}
2809 	return err;
2810 }
2811 
2812 static void mark_block_processed(struct reloc_control *rc,
2813 				 u64 bytenr, u32 blocksize)
2814 {
2815 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2816 			EXTENT_DIRTY, GFP_NOFS);
2817 }
2818 
2819 static void __mark_block_processed(struct reloc_control *rc,
2820 				   struct backref_node *node)
2821 {
2822 	u32 blocksize;
2823 	if (node->level == 0 ||
2824 	    in_block_group(node->bytenr, rc->block_group)) {
2825 		blocksize = rc->extent_root->nodesize;
2826 		mark_block_processed(rc, node->bytenr, blocksize);
2827 	}
2828 	node->processed = 1;
2829 }
2830 
2831 /*
2832  * mark a block and all blocks directly/indirectly reference the block
2833  * as processed.
2834  */
2835 static void update_processed_blocks(struct reloc_control *rc,
2836 				    struct backref_node *node)
2837 {
2838 	struct backref_node *next = node;
2839 	struct backref_edge *edge;
2840 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2841 	int index = 0;
2842 
2843 	while (next) {
2844 		cond_resched();
2845 		while (1) {
2846 			if (next->processed)
2847 				break;
2848 
2849 			__mark_block_processed(rc, next);
2850 
2851 			if (list_empty(&next->upper))
2852 				break;
2853 
2854 			edge = list_entry(next->upper.next,
2855 					  struct backref_edge, list[LOWER]);
2856 			edges[index++] = edge;
2857 			next = edge->node[UPPER];
2858 		}
2859 		next = walk_down_backref(edges, &index);
2860 	}
2861 }
2862 
2863 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2864 {
2865 	u32 blocksize = rc->extent_root->nodesize;
2866 
2867 	if (test_range_bit(&rc->processed_blocks, bytenr,
2868 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2869 		return 1;
2870 	return 0;
2871 }
2872 
2873 static int get_tree_block_key(struct reloc_control *rc,
2874 			      struct tree_block *block)
2875 {
2876 	struct extent_buffer *eb;
2877 
2878 	BUG_ON(block->key_ready);
2879 	eb = read_tree_block(rc->extent_root, block->bytenr,
2880 			     block->key.offset);
2881 	if (IS_ERR(eb)) {
2882 		return PTR_ERR(eb);
2883 	} else if (!extent_buffer_uptodate(eb)) {
2884 		free_extent_buffer(eb);
2885 		return -EIO;
2886 	}
2887 	WARN_ON(btrfs_header_level(eb) != block->level);
2888 	if (block->level == 0)
2889 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2890 	else
2891 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2892 	free_extent_buffer(eb);
2893 	block->key_ready = 1;
2894 	return 0;
2895 }
2896 
2897 /*
2898  * helper function to relocate a tree block
2899  */
2900 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2901 				struct reloc_control *rc,
2902 				struct backref_node *node,
2903 				struct btrfs_key *key,
2904 				struct btrfs_path *path)
2905 {
2906 	struct btrfs_root *root;
2907 	int ret = 0;
2908 
2909 	if (!node)
2910 		return 0;
2911 
2912 	BUG_ON(node->processed);
2913 	root = select_one_root(node);
2914 	if (root == ERR_PTR(-ENOENT)) {
2915 		update_processed_blocks(rc, node);
2916 		goto out;
2917 	}
2918 
2919 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2920 		ret = reserve_metadata_space(trans, rc, node);
2921 		if (ret)
2922 			goto out;
2923 	}
2924 
2925 	if (root) {
2926 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2927 			BUG_ON(node->new_bytenr);
2928 			BUG_ON(!list_empty(&node->list));
2929 			btrfs_record_root_in_trans(trans, root);
2930 			root = root->reloc_root;
2931 			node->new_bytenr = root->node->start;
2932 			node->root = root;
2933 			list_add_tail(&node->list, &rc->backref_cache.changed);
2934 		} else {
2935 			path->lowest_level = node->level;
2936 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2937 			btrfs_release_path(path);
2938 			if (ret > 0)
2939 				ret = 0;
2940 		}
2941 		if (!ret)
2942 			update_processed_blocks(rc, node);
2943 	} else {
2944 		ret = do_relocation(trans, rc, node, key, path, 1);
2945 	}
2946 out:
2947 	if (ret || node->level == 0 || node->cowonly)
2948 		remove_backref_node(&rc->backref_cache, node);
2949 	return ret;
2950 }
2951 
2952 /*
2953  * relocate a list of blocks
2954  */
2955 static noinline_for_stack
2956 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2957 			 struct reloc_control *rc, struct rb_root *blocks)
2958 {
2959 	struct backref_node *node;
2960 	struct btrfs_path *path;
2961 	struct tree_block *block;
2962 	struct rb_node *rb_node;
2963 	int ret;
2964 	int err = 0;
2965 
2966 	path = btrfs_alloc_path();
2967 	if (!path) {
2968 		err = -ENOMEM;
2969 		goto out_free_blocks;
2970 	}
2971 
2972 	rb_node = rb_first(blocks);
2973 	while (rb_node) {
2974 		block = rb_entry(rb_node, struct tree_block, rb_node);
2975 		if (!block->key_ready)
2976 			readahead_tree_block(rc->extent_root, block->bytenr);
2977 		rb_node = rb_next(rb_node);
2978 	}
2979 
2980 	rb_node = rb_first(blocks);
2981 	while (rb_node) {
2982 		block = rb_entry(rb_node, struct tree_block, rb_node);
2983 		if (!block->key_ready) {
2984 			err = get_tree_block_key(rc, block);
2985 			if (err)
2986 				goto out_free_path;
2987 		}
2988 		rb_node = rb_next(rb_node);
2989 	}
2990 
2991 	rb_node = rb_first(blocks);
2992 	while (rb_node) {
2993 		block = rb_entry(rb_node, struct tree_block, rb_node);
2994 
2995 		node = build_backref_tree(rc, &block->key,
2996 					  block->level, block->bytenr);
2997 		if (IS_ERR(node)) {
2998 			err = PTR_ERR(node);
2999 			goto out;
3000 		}
3001 
3002 		ret = relocate_tree_block(trans, rc, node, &block->key,
3003 					  path);
3004 		if (ret < 0) {
3005 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3006 				err = ret;
3007 			goto out;
3008 		}
3009 		rb_node = rb_next(rb_node);
3010 	}
3011 out:
3012 	err = finish_pending_nodes(trans, rc, path, err);
3013 
3014 out_free_path:
3015 	btrfs_free_path(path);
3016 out_free_blocks:
3017 	free_block_list(blocks);
3018 	return err;
3019 }
3020 
3021 static noinline_for_stack
3022 int prealloc_file_extent_cluster(struct inode *inode,
3023 				 struct file_extent_cluster *cluster)
3024 {
3025 	u64 alloc_hint = 0;
3026 	u64 start;
3027 	u64 end;
3028 	u64 offset = BTRFS_I(inode)->index_cnt;
3029 	u64 num_bytes;
3030 	int nr = 0;
3031 	int ret = 0;
3032 
3033 	BUG_ON(cluster->start != cluster->boundary[0]);
3034 	inode_lock(inode);
3035 
3036 	ret = btrfs_check_data_free_space(inode, cluster->start,
3037 					  cluster->end + 1 - cluster->start);
3038 	if (ret)
3039 		goto out;
3040 
3041 	while (nr < cluster->nr) {
3042 		start = cluster->boundary[nr] - offset;
3043 		if (nr + 1 < cluster->nr)
3044 			end = cluster->boundary[nr + 1] - 1 - offset;
3045 		else
3046 			end = cluster->end - offset;
3047 
3048 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3049 		num_bytes = end + 1 - start;
3050 		ret = btrfs_prealloc_file_range(inode, 0, start,
3051 						num_bytes, num_bytes,
3052 						end + 1, &alloc_hint);
3053 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3054 		if (ret)
3055 			break;
3056 		nr++;
3057 	}
3058 	btrfs_free_reserved_data_space(inode, cluster->start,
3059 				       cluster->end + 1 - cluster->start);
3060 out:
3061 	inode_unlock(inode);
3062 	return ret;
3063 }
3064 
3065 static noinline_for_stack
3066 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3067 			 u64 block_start)
3068 {
3069 	struct btrfs_root *root = BTRFS_I(inode)->root;
3070 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3071 	struct extent_map *em;
3072 	int ret = 0;
3073 
3074 	em = alloc_extent_map();
3075 	if (!em)
3076 		return -ENOMEM;
3077 
3078 	em->start = start;
3079 	em->len = end + 1 - start;
3080 	em->block_len = em->len;
3081 	em->block_start = block_start;
3082 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3083 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3084 
3085 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3086 	while (1) {
3087 		write_lock(&em_tree->lock);
3088 		ret = add_extent_mapping(em_tree, em, 0);
3089 		write_unlock(&em_tree->lock);
3090 		if (ret != -EEXIST) {
3091 			free_extent_map(em);
3092 			break;
3093 		}
3094 		btrfs_drop_extent_cache(inode, start, end, 0);
3095 	}
3096 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3097 	return ret;
3098 }
3099 
3100 static int relocate_file_extent_cluster(struct inode *inode,
3101 					struct file_extent_cluster *cluster)
3102 {
3103 	u64 page_start;
3104 	u64 page_end;
3105 	u64 offset = BTRFS_I(inode)->index_cnt;
3106 	unsigned long index;
3107 	unsigned long last_index;
3108 	struct page *page;
3109 	struct file_ra_state *ra;
3110 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3111 	int nr = 0;
3112 	int ret = 0;
3113 
3114 	if (!cluster->nr)
3115 		return 0;
3116 
3117 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3118 	if (!ra)
3119 		return -ENOMEM;
3120 
3121 	ret = prealloc_file_extent_cluster(inode, cluster);
3122 	if (ret)
3123 		goto out;
3124 
3125 	file_ra_state_init(ra, inode->i_mapping);
3126 
3127 	ret = setup_extent_mapping(inode, cluster->start - offset,
3128 				   cluster->end - offset, cluster->start);
3129 	if (ret)
3130 		goto out;
3131 
3132 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3133 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3134 	while (index <= last_index) {
3135 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3136 		if (ret)
3137 			goto out;
3138 
3139 		page = find_lock_page(inode->i_mapping, index);
3140 		if (!page) {
3141 			page_cache_sync_readahead(inode->i_mapping,
3142 						  ra, NULL, index,
3143 						  last_index + 1 - index);
3144 			page = find_or_create_page(inode->i_mapping, index,
3145 						   mask);
3146 			if (!page) {
3147 				btrfs_delalloc_release_metadata(inode,
3148 							PAGE_CACHE_SIZE);
3149 				ret = -ENOMEM;
3150 				goto out;
3151 			}
3152 		}
3153 
3154 		if (PageReadahead(page)) {
3155 			page_cache_async_readahead(inode->i_mapping,
3156 						   ra, NULL, page, index,
3157 						   last_index + 1 - index);
3158 		}
3159 
3160 		if (!PageUptodate(page)) {
3161 			btrfs_readpage(NULL, page);
3162 			lock_page(page);
3163 			if (!PageUptodate(page)) {
3164 				unlock_page(page);
3165 				page_cache_release(page);
3166 				btrfs_delalloc_release_metadata(inode,
3167 							PAGE_CACHE_SIZE);
3168 				ret = -EIO;
3169 				goto out;
3170 			}
3171 		}
3172 
3173 		page_start = page_offset(page);
3174 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3175 
3176 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3177 
3178 		set_page_extent_mapped(page);
3179 
3180 		if (nr < cluster->nr &&
3181 		    page_start + offset == cluster->boundary[nr]) {
3182 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3183 					page_start, page_end,
3184 					EXTENT_BOUNDARY, GFP_NOFS);
3185 			nr++;
3186 		}
3187 
3188 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3189 		set_page_dirty(page);
3190 
3191 		unlock_extent(&BTRFS_I(inode)->io_tree,
3192 			      page_start, page_end);
3193 		unlock_page(page);
3194 		page_cache_release(page);
3195 
3196 		index++;
3197 		balance_dirty_pages_ratelimited(inode->i_mapping);
3198 		btrfs_throttle(BTRFS_I(inode)->root);
3199 	}
3200 	WARN_ON(nr != cluster->nr);
3201 out:
3202 	kfree(ra);
3203 	return ret;
3204 }
3205 
3206 static noinline_for_stack
3207 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3208 			 struct file_extent_cluster *cluster)
3209 {
3210 	int ret;
3211 
3212 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3213 		ret = relocate_file_extent_cluster(inode, cluster);
3214 		if (ret)
3215 			return ret;
3216 		cluster->nr = 0;
3217 	}
3218 
3219 	if (!cluster->nr)
3220 		cluster->start = extent_key->objectid;
3221 	else
3222 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3223 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3224 	cluster->boundary[cluster->nr] = extent_key->objectid;
3225 	cluster->nr++;
3226 
3227 	if (cluster->nr >= MAX_EXTENTS) {
3228 		ret = relocate_file_extent_cluster(inode, cluster);
3229 		if (ret)
3230 			return ret;
3231 		cluster->nr = 0;
3232 	}
3233 	return 0;
3234 }
3235 
3236 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3237 static int get_ref_objectid_v0(struct reloc_control *rc,
3238 			       struct btrfs_path *path,
3239 			       struct btrfs_key *extent_key,
3240 			       u64 *ref_objectid, int *path_change)
3241 {
3242 	struct btrfs_key key;
3243 	struct extent_buffer *leaf;
3244 	struct btrfs_extent_ref_v0 *ref0;
3245 	int ret;
3246 	int slot;
3247 
3248 	leaf = path->nodes[0];
3249 	slot = path->slots[0];
3250 	while (1) {
3251 		if (slot >= btrfs_header_nritems(leaf)) {
3252 			ret = btrfs_next_leaf(rc->extent_root, path);
3253 			if (ret < 0)
3254 				return ret;
3255 			BUG_ON(ret > 0);
3256 			leaf = path->nodes[0];
3257 			slot = path->slots[0];
3258 			if (path_change)
3259 				*path_change = 1;
3260 		}
3261 		btrfs_item_key_to_cpu(leaf, &key, slot);
3262 		if (key.objectid != extent_key->objectid)
3263 			return -ENOENT;
3264 
3265 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3266 			slot++;
3267 			continue;
3268 		}
3269 		ref0 = btrfs_item_ptr(leaf, slot,
3270 				struct btrfs_extent_ref_v0);
3271 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3272 		break;
3273 	}
3274 	return 0;
3275 }
3276 #endif
3277 
3278 /*
3279  * helper to add a tree block to the list.
3280  * the major work is getting the generation and level of the block
3281  */
3282 static int add_tree_block(struct reloc_control *rc,
3283 			  struct btrfs_key *extent_key,
3284 			  struct btrfs_path *path,
3285 			  struct rb_root *blocks)
3286 {
3287 	struct extent_buffer *eb;
3288 	struct btrfs_extent_item *ei;
3289 	struct btrfs_tree_block_info *bi;
3290 	struct tree_block *block;
3291 	struct rb_node *rb_node;
3292 	u32 item_size;
3293 	int level = -1;
3294 	u64 generation;
3295 
3296 	eb =  path->nodes[0];
3297 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3298 
3299 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3300 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3301 		ei = btrfs_item_ptr(eb, path->slots[0],
3302 				struct btrfs_extent_item);
3303 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3304 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3305 			level = btrfs_tree_block_level(eb, bi);
3306 		} else {
3307 			level = (int)extent_key->offset;
3308 		}
3309 		generation = btrfs_extent_generation(eb, ei);
3310 	} else {
3311 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3312 		u64 ref_owner;
3313 		int ret;
3314 
3315 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3316 		ret = get_ref_objectid_v0(rc, path, extent_key,
3317 					  &ref_owner, NULL);
3318 		if (ret < 0)
3319 			return ret;
3320 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3321 		level = (int)ref_owner;
3322 		/* FIXME: get real generation */
3323 		generation = 0;
3324 #else
3325 		BUG();
3326 #endif
3327 	}
3328 
3329 	btrfs_release_path(path);
3330 
3331 	BUG_ON(level == -1);
3332 
3333 	block = kmalloc(sizeof(*block), GFP_NOFS);
3334 	if (!block)
3335 		return -ENOMEM;
3336 
3337 	block->bytenr = extent_key->objectid;
3338 	block->key.objectid = rc->extent_root->nodesize;
3339 	block->key.offset = generation;
3340 	block->level = level;
3341 	block->key_ready = 0;
3342 
3343 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3344 	if (rb_node)
3345 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3346 
3347 	return 0;
3348 }
3349 
3350 /*
3351  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3352  */
3353 static int __add_tree_block(struct reloc_control *rc,
3354 			    u64 bytenr, u32 blocksize,
3355 			    struct rb_root *blocks)
3356 {
3357 	struct btrfs_path *path;
3358 	struct btrfs_key key;
3359 	int ret;
3360 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3361 					SKINNY_METADATA);
3362 
3363 	if (tree_block_processed(bytenr, rc))
3364 		return 0;
3365 
3366 	if (tree_search(blocks, bytenr))
3367 		return 0;
3368 
3369 	path = btrfs_alloc_path();
3370 	if (!path)
3371 		return -ENOMEM;
3372 again:
3373 	key.objectid = bytenr;
3374 	if (skinny) {
3375 		key.type = BTRFS_METADATA_ITEM_KEY;
3376 		key.offset = (u64)-1;
3377 	} else {
3378 		key.type = BTRFS_EXTENT_ITEM_KEY;
3379 		key.offset = blocksize;
3380 	}
3381 
3382 	path->search_commit_root = 1;
3383 	path->skip_locking = 1;
3384 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3385 	if (ret < 0)
3386 		goto out;
3387 
3388 	if (ret > 0 && skinny) {
3389 		if (path->slots[0]) {
3390 			path->slots[0]--;
3391 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3392 					      path->slots[0]);
3393 			if (key.objectid == bytenr &&
3394 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3395 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3396 			      key.offset == blocksize)))
3397 				ret = 0;
3398 		}
3399 
3400 		if (ret) {
3401 			skinny = false;
3402 			btrfs_release_path(path);
3403 			goto again;
3404 		}
3405 	}
3406 	BUG_ON(ret);
3407 
3408 	ret = add_tree_block(rc, &key, path, blocks);
3409 out:
3410 	btrfs_free_path(path);
3411 	return ret;
3412 }
3413 
3414 /*
3415  * helper to check if the block use full backrefs for pointers in it
3416  */
3417 static int block_use_full_backref(struct reloc_control *rc,
3418 				  struct extent_buffer *eb)
3419 {
3420 	u64 flags;
3421 	int ret;
3422 
3423 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3424 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3425 		return 1;
3426 
3427 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3428 				       eb->start, btrfs_header_level(eb), 1,
3429 				       NULL, &flags);
3430 	BUG_ON(ret);
3431 
3432 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3433 		ret = 1;
3434 	else
3435 		ret = 0;
3436 	return ret;
3437 }
3438 
3439 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3440 				    struct btrfs_block_group_cache *block_group,
3441 				    struct inode *inode,
3442 				    u64 ino)
3443 {
3444 	struct btrfs_key key;
3445 	struct btrfs_root *root = fs_info->tree_root;
3446 	struct btrfs_trans_handle *trans;
3447 	int ret = 0;
3448 
3449 	if (inode)
3450 		goto truncate;
3451 
3452 	key.objectid = ino;
3453 	key.type = BTRFS_INODE_ITEM_KEY;
3454 	key.offset = 0;
3455 
3456 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3457 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3458 		if (!IS_ERR(inode))
3459 			iput(inode);
3460 		return -ENOENT;
3461 	}
3462 
3463 truncate:
3464 	ret = btrfs_check_trunc_cache_free_space(root,
3465 						 &fs_info->global_block_rsv);
3466 	if (ret)
3467 		goto out;
3468 
3469 	trans = btrfs_join_transaction(root);
3470 	if (IS_ERR(trans)) {
3471 		ret = PTR_ERR(trans);
3472 		goto out;
3473 	}
3474 
3475 	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3476 
3477 	btrfs_end_transaction(trans, root);
3478 	btrfs_btree_balance_dirty(root);
3479 out:
3480 	iput(inode);
3481 	return ret;
3482 }
3483 
3484 /*
3485  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3486  * this function scans fs tree to find blocks reference the data extent
3487  */
3488 static int find_data_references(struct reloc_control *rc,
3489 				struct btrfs_key *extent_key,
3490 				struct extent_buffer *leaf,
3491 				struct btrfs_extent_data_ref *ref,
3492 				struct rb_root *blocks)
3493 {
3494 	struct btrfs_path *path;
3495 	struct tree_block *block;
3496 	struct btrfs_root *root;
3497 	struct btrfs_file_extent_item *fi;
3498 	struct rb_node *rb_node;
3499 	struct btrfs_key key;
3500 	u64 ref_root;
3501 	u64 ref_objectid;
3502 	u64 ref_offset;
3503 	u32 ref_count;
3504 	u32 nritems;
3505 	int err = 0;
3506 	int added = 0;
3507 	int counted;
3508 	int ret;
3509 
3510 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3511 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3512 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3513 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3514 
3515 	/*
3516 	 * This is an extent belonging to the free space cache, lets just delete
3517 	 * it and redo the search.
3518 	 */
3519 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3520 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3521 					       rc->block_group,
3522 					       NULL, ref_objectid);
3523 		if (ret != -ENOENT)
3524 			return ret;
3525 		ret = 0;
3526 	}
3527 
3528 	path = btrfs_alloc_path();
3529 	if (!path)
3530 		return -ENOMEM;
3531 	path->reada = READA_FORWARD;
3532 
3533 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3534 	if (IS_ERR(root)) {
3535 		err = PTR_ERR(root);
3536 		goto out;
3537 	}
3538 
3539 	key.objectid = ref_objectid;
3540 	key.type = BTRFS_EXTENT_DATA_KEY;
3541 	if (ref_offset > ((u64)-1 << 32))
3542 		key.offset = 0;
3543 	else
3544 		key.offset = ref_offset;
3545 
3546 	path->search_commit_root = 1;
3547 	path->skip_locking = 1;
3548 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3549 	if (ret < 0) {
3550 		err = ret;
3551 		goto out;
3552 	}
3553 
3554 	leaf = path->nodes[0];
3555 	nritems = btrfs_header_nritems(leaf);
3556 	/*
3557 	 * the references in tree blocks that use full backrefs
3558 	 * are not counted in
3559 	 */
3560 	if (block_use_full_backref(rc, leaf))
3561 		counted = 0;
3562 	else
3563 		counted = 1;
3564 	rb_node = tree_search(blocks, leaf->start);
3565 	if (rb_node) {
3566 		if (counted)
3567 			added = 1;
3568 		else
3569 			path->slots[0] = nritems;
3570 	}
3571 
3572 	while (ref_count > 0) {
3573 		while (path->slots[0] >= nritems) {
3574 			ret = btrfs_next_leaf(root, path);
3575 			if (ret < 0) {
3576 				err = ret;
3577 				goto out;
3578 			}
3579 			if (WARN_ON(ret > 0))
3580 				goto out;
3581 
3582 			leaf = path->nodes[0];
3583 			nritems = btrfs_header_nritems(leaf);
3584 			added = 0;
3585 
3586 			if (block_use_full_backref(rc, leaf))
3587 				counted = 0;
3588 			else
3589 				counted = 1;
3590 			rb_node = tree_search(blocks, leaf->start);
3591 			if (rb_node) {
3592 				if (counted)
3593 					added = 1;
3594 				else
3595 					path->slots[0] = nritems;
3596 			}
3597 		}
3598 
3599 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3600 		if (WARN_ON(key.objectid != ref_objectid ||
3601 		    key.type != BTRFS_EXTENT_DATA_KEY))
3602 			break;
3603 
3604 		fi = btrfs_item_ptr(leaf, path->slots[0],
3605 				    struct btrfs_file_extent_item);
3606 
3607 		if (btrfs_file_extent_type(leaf, fi) ==
3608 		    BTRFS_FILE_EXTENT_INLINE)
3609 			goto next;
3610 
3611 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3612 		    extent_key->objectid)
3613 			goto next;
3614 
3615 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3616 		if (key.offset != ref_offset)
3617 			goto next;
3618 
3619 		if (counted)
3620 			ref_count--;
3621 		if (added)
3622 			goto next;
3623 
3624 		if (!tree_block_processed(leaf->start, rc)) {
3625 			block = kmalloc(sizeof(*block), GFP_NOFS);
3626 			if (!block) {
3627 				err = -ENOMEM;
3628 				break;
3629 			}
3630 			block->bytenr = leaf->start;
3631 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3632 			block->level = 0;
3633 			block->key_ready = 1;
3634 			rb_node = tree_insert(blocks, block->bytenr,
3635 					      &block->rb_node);
3636 			if (rb_node)
3637 				backref_tree_panic(rb_node, -EEXIST,
3638 						   block->bytenr);
3639 		}
3640 		if (counted)
3641 			added = 1;
3642 		else
3643 			path->slots[0] = nritems;
3644 next:
3645 		path->slots[0]++;
3646 
3647 	}
3648 out:
3649 	btrfs_free_path(path);
3650 	return err;
3651 }
3652 
3653 /*
3654  * helper to find all tree blocks that reference a given data extent
3655  */
3656 static noinline_for_stack
3657 int add_data_references(struct reloc_control *rc,
3658 			struct btrfs_key *extent_key,
3659 			struct btrfs_path *path,
3660 			struct rb_root *blocks)
3661 {
3662 	struct btrfs_key key;
3663 	struct extent_buffer *eb;
3664 	struct btrfs_extent_data_ref *dref;
3665 	struct btrfs_extent_inline_ref *iref;
3666 	unsigned long ptr;
3667 	unsigned long end;
3668 	u32 blocksize = rc->extent_root->nodesize;
3669 	int ret = 0;
3670 	int err = 0;
3671 
3672 	eb = path->nodes[0];
3673 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3674 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3675 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3676 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3677 		ptr = end;
3678 	else
3679 #endif
3680 		ptr += sizeof(struct btrfs_extent_item);
3681 
3682 	while (ptr < end) {
3683 		iref = (struct btrfs_extent_inline_ref *)ptr;
3684 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3685 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3686 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3687 			ret = __add_tree_block(rc, key.offset, blocksize,
3688 					       blocks);
3689 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3690 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3691 			ret = find_data_references(rc, extent_key,
3692 						   eb, dref, blocks);
3693 		} else {
3694 			BUG();
3695 		}
3696 		if (ret) {
3697 			err = ret;
3698 			goto out;
3699 		}
3700 		ptr += btrfs_extent_inline_ref_size(key.type);
3701 	}
3702 	WARN_ON(ptr > end);
3703 
3704 	while (1) {
3705 		cond_resched();
3706 		eb = path->nodes[0];
3707 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3708 			ret = btrfs_next_leaf(rc->extent_root, path);
3709 			if (ret < 0) {
3710 				err = ret;
3711 				break;
3712 			}
3713 			if (ret > 0)
3714 				break;
3715 			eb = path->nodes[0];
3716 		}
3717 
3718 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3719 		if (key.objectid != extent_key->objectid)
3720 			break;
3721 
3722 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3723 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3724 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3725 #else
3726 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3727 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3728 #endif
3729 			ret = __add_tree_block(rc, key.offset, blocksize,
3730 					       blocks);
3731 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3732 			dref = btrfs_item_ptr(eb, path->slots[0],
3733 					      struct btrfs_extent_data_ref);
3734 			ret = find_data_references(rc, extent_key,
3735 						   eb, dref, blocks);
3736 		} else {
3737 			ret = 0;
3738 		}
3739 		if (ret) {
3740 			err = ret;
3741 			break;
3742 		}
3743 		path->slots[0]++;
3744 	}
3745 out:
3746 	btrfs_release_path(path);
3747 	if (err)
3748 		free_block_list(blocks);
3749 	return err;
3750 }
3751 
3752 /*
3753  * helper to find next unprocessed extent
3754  */
3755 static noinline_for_stack
3756 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3757 		     struct btrfs_key *extent_key)
3758 {
3759 	struct btrfs_key key;
3760 	struct extent_buffer *leaf;
3761 	u64 start, end, last;
3762 	int ret;
3763 
3764 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3765 	while (1) {
3766 		cond_resched();
3767 		if (rc->search_start >= last) {
3768 			ret = 1;
3769 			break;
3770 		}
3771 
3772 		key.objectid = rc->search_start;
3773 		key.type = BTRFS_EXTENT_ITEM_KEY;
3774 		key.offset = 0;
3775 
3776 		path->search_commit_root = 1;
3777 		path->skip_locking = 1;
3778 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3779 					0, 0);
3780 		if (ret < 0)
3781 			break;
3782 next:
3783 		leaf = path->nodes[0];
3784 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3785 			ret = btrfs_next_leaf(rc->extent_root, path);
3786 			if (ret != 0)
3787 				break;
3788 			leaf = path->nodes[0];
3789 		}
3790 
3791 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3792 		if (key.objectid >= last) {
3793 			ret = 1;
3794 			break;
3795 		}
3796 
3797 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3798 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3799 			path->slots[0]++;
3800 			goto next;
3801 		}
3802 
3803 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3804 		    key.objectid + key.offset <= rc->search_start) {
3805 			path->slots[0]++;
3806 			goto next;
3807 		}
3808 
3809 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3810 		    key.objectid + rc->extent_root->nodesize <=
3811 		    rc->search_start) {
3812 			path->slots[0]++;
3813 			goto next;
3814 		}
3815 
3816 		ret = find_first_extent_bit(&rc->processed_blocks,
3817 					    key.objectid, &start, &end,
3818 					    EXTENT_DIRTY, NULL);
3819 
3820 		if (ret == 0 && start <= key.objectid) {
3821 			btrfs_release_path(path);
3822 			rc->search_start = end + 1;
3823 		} else {
3824 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3825 				rc->search_start = key.objectid + key.offset;
3826 			else
3827 				rc->search_start = key.objectid +
3828 					rc->extent_root->nodesize;
3829 			memcpy(extent_key, &key, sizeof(key));
3830 			return 0;
3831 		}
3832 	}
3833 	btrfs_release_path(path);
3834 	return ret;
3835 }
3836 
3837 static void set_reloc_control(struct reloc_control *rc)
3838 {
3839 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3840 
3841 	mutex_lock(&fs_info->reloc_mutex);
3842 	fs_info->reloc_ctl = rc;
3843 	mutex_unlock(&fs_info->reloc_mutex);
3844 }
3845 
3846 static void unset_reloc_control(struct reloc_control *rc)
3847 {
3848 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3849 
3850 	mutex_lock(&fs_info->reloc_mutex);
3851 	fs_info->reloc_ctl = NULL;
3852 	mutex_unlock(&fs_info->reloc_mutex);
3853 }
3854 
3855 static int check_extent_flags(u64 flags)
3856 {
3857 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3858 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3859 		return 1;
3860 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3861 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3862 		return 1;
3863 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3864 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3865 		return 1;
3866 	return 0;
3867 }
3868 
3869 static noinline_for_stack
3870 int prepare_to_relocate(struct reloc_control *rc)
3871 {
3872 	struct btrfs_trans_handle *trans;
3873 
3874 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3875 					      BTRFS_BLOCK_RSV_TEMP);
3876 	if (!rc->block_rsv)
3877 		return -ENOMEM;
3878 
3879 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3880 	rc->search_start = rc->block_group->key.objectid;
3881 	rc->extents_found = 0;
3882 	rc->nodes_relocated = 0;
3883 	rc->merging_rsv_size = 0;
3884 	rc->reserved_bytes = 0;
3885 	rc->block_rsv->size = rc->extent_root->nodesize *
3886 			      RELOCATION_RESERVED_NODES;
3887 
3888 	rc->create_reloc_tree = 1;
3889 	set_reloc_control(rc);
3890 
3891 	trans = btrfs_join_transaction(rc->extent_root);
3892 	if (IS_ERR(trans)) {
3893 		unset_reloc_control(rc);
3894 		/*
3895 		 * extent tree is not a ref_cow tree and has no reloc_root to
3896 		 * cleanup.  And callers are responsible to free the above
3897 		 * block rsv.
3898 		 */
3899 		return PTR_ERR(trans);
3900 	}
3901 	btrfs_commit_transaction(trans, rc->extent_root);
3902 	return 0;
3903 }
3904 
3905 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3906 {
3907 	struct rb_root blocks = RB_ROOT;
3908 	struct btrfs_key key;
3909 	struct btrfs_trans_handle *trans = NULL;
3910 	struct btrfs_path *path;
3911 	struct btrfs_extent_item *ei;
3912 	u64 flags;
3913 	u32 item_size;
3914 	int ret;
3915 	int err = 0;
3916 	int progress = 0;
3917 
3918 	path = btrfs_alloc_path();
3919 	if (!path)
3920 		return -ENOMEM;
3921 	path->reada = READA_FORWARD;
3922 
3923 	ret = prepare_to_relocate(rc);
3924 	if (ret) {
3925 		err = ret;
3926 		goto out_free;
3927 	}
3928 
3929 	while (1) {
3930 		rc->reserved_bytes = 0;
3931 		ret = btrfs_block_rsv_refill(rc->extent_root,
3932 					rc->block_rsv, rc->block_rsv->size,
3933 					BTRFS_RESERVE_FLUSH_ALL);
3934 		if (ret) {
3935 			err = ret;
3936 			break;
3937 		}
3938 		progress++;
3939 		trans = btrfs_start_transaction(rc->extent_root, 0);
3940 		if (IS_ERR(trans)) {
3941 			err = PTR_ERR(trans);
3942 			trans = NULL;
3943 			break;
3944 		}
3945 restart:
3946 		if (update_backref_cache(trans, &rc->backref_cache)) {
3947 			btrfs_end_transaction(trans, rc->extent_root);
3948 			continue;
3949 		}
3950 
3951 		ret = find_next_extent(rc, path, &key);
3952 		if (ret < 0)
3953 			err = ret;
3954 		if (ret != 0)
3955 			break;
3956 
3957 		rc->extents_found++;
3958 
3959 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3960 				    struct btrfs_extent_item);
3961 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3962 		if (item_size >= sizeof(*ei)) {
3963 			flags = btrfs_extent_flags(path->nodes[0], ei);
3964 			ret = check_extent_flags(flags);
3965 			BUG_ON(ret);
3966 
3967 		} else {
3968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3969 			u64 ref_owner;
3970 			int path_change = 0;
3971 
3972 			BUG_ON(item_size !=
3973 			       sizeof(struct btrfs_extent_item_v0));
3974 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3975 						  &path_change);
3976 			if (ret < 0) {
3977 				err = ret;
3978 				break;
3979 			}
3980 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3981 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3982 			else
3983 				flags = BTRFS_EXTENT_FLAG_DATA;
3984 
3985 			if (path_change) {
3986 				btrfs_release_path(path);
3987 
3988 				path->search_commit_root = 1;
3989 				path->skip_locking = 1;
3990 				ret = btrfs_search_slot(NULL, rc->extent_root,
3991 							&key, path, 0, 0);
3992 				if (ret < 0) {
3993 					err = ret;
3994 					break;
3995 				}
3996 				BUG_ON(ret > 0);
3997 			}
3998 #else
3999 			BUG();
4000 #endif
4001 		}
4002 
4003 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4004 			ret = add_tree_block(rc, &key, path, &blocks);
4005 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4006 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4007 			ret = add_data_references(rc, &key, path, &blocks);
4008 		} else {
4009 			btrfs_release_path(path);
4010 			ret = 0;
4011 		}
4012 		if (ret < 0) {
4013 			err = ret;
4014 			break;
4015 		}
4016 
4017 		if (!RB_EMPTY_ROOT(&blocks)) {
4018 			ret = relocate_tree_blocks(trans, rc, &blocks);
4019 			if (ret < 0) {
4020 				/*
4021 				 * if we fail to relocate tree blocks, force to update
4022 				 * backref cache when committing transaction.
4023 				 */
4024 				rc->backref_cache.last_trans = trans->transid - 1;
4025 
4026 				if (ret != -EAGAIN) {
4027 					err = ret;
4028 					break;
4029 				}
4030 				rc->extents_found--;
4031 				rc->search_start = key.objectid;
4032 			}
4033 		}
4034 
4035 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4036 		btrfs_btree_balance_dirty(rc->extent_root);
4037 		trans = NULL;
4038 
4039 		if (rc->stage == MOVE_DATA_EXTENTS &&
4040 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4041 			rc->found_file_extent = 1;
4042 			ret = relocate_data_extent(rc->data_inode,
4043 						   &key, &rc->cluster);
4044 			if (ret < 0) {
4045 				err = ret;
4046 				break;
4047 			}
4048 		}
4049 	}
4050 	if (trans && progress && err == -ENOSPC) {
4051 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4052 					      rc->block_group->flags);
4053 		if (ret == 1) {
4054 			err = 0;
4055 			progress = 0;
4056 			goto restart;
4057 		}
4058 	}
4059 
4060 	btrfs_release_path(path);
4061 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4062 			  GFP_NOFS);
4063 
4064 	if (trans) {
4065 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4066 		btrfs_btree_balance_dirty(rc->extent_root);
4067 	}
4068 
4069 	if (!err) {
4070 		ret = relocate_file_extent_cluster(rc->data_inode,
4071 						   &rc->cluster);
4072 		if (ret < 0)
4073 			err = ret;
4074 	}
4075 
4076 	rc->create_reloc_tree = 0;
4077 	set_reloc_control(rc);
4078 
4079 	backref_cache_cleanup(&rc->backref_cache);
4080 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4081 
4082 	err = prepare_to_merge(rc, err);
4083 
4084 	merge_reloc_roots(rc);
4085 
4086 	rc->merge_reloc_tree = 0;
4087 	unset_reloc_control(rc);
4088 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4089 
4090 	/* get rid of pinned extents */
4091 	trans = btrfs_join_transaction(rc->extent_root);
4092 	if (IS_ERR(trans))
4093 		err = PTR_ERR(trans);
4094 	else
4095 		btrfs_commit_transaction(trans, rc->extent_root);
4096 out_free:
4097 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4098 	btrfs_free_path(path);
4099 	return err;
4100 }
4101 
4102 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4103 				 struct btrfs_root *root, u64 objectid)
4104 {
4105 	struct btrfs_path *path;
4106 	struct btrfs_inode_item *item;
4107 	struct extent_buffer *leaf;
4108 	int ret;
4109 
4110 	path = btrfs_alloc_path();
4111 	if (!path)
4112 		return -ENOMEM;
4113 
4114 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4115 	if (ret)
4116 		goto out;
4117 
4118 	leaf = path->nodes[0];
4119 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4120 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4121 	btrfs_set_inode_generation(leaf, item, 1);
4122 	btrfs_set_inode_size(leaf, item, 0);
4123 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4124 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4125 					  BTRFS_INODE_PREALLOC);
4126 	btrfs_mark_buffer_dirty(leaf);
4127 out:
4128 	btrfs_free_path(path);
4129 	return ret;
4130 }
4131 
4132 /*
4133  * helper to create inode for data relocation.
4134  * the inode is in data relocation tree and its link count is 0
4135  */
4136 static noinline_for_stack
4137 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4138 				 struct btrfs_block_group_cache *group)
4139 {
4140 	struct inode *inode = NULL;
4141 	struct btrfs_trans_handle *trans;
4142 	struct btrfs_root *root;
4143 	struct btrfs_key key;
4144 	u64 objectid;
4145 	int err = 0;
4146 
4147 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4148 	if (IS_ERR(root))
4149 		return ERR_CAST(root);
4150 
4151 	trans = btrfs_start_transaction(root, 6);
4152 	if (IS_ERR(trans))
4153 		return ERR_CAST(trans);
4154 
4155 	err = btrfs_find_free_objectid(root, &objectid);
4156 	if (err)
4157 		goto out;
4158 
4159 	err = __insert_orphan_inode(trans, root, objectid);
4160 	BUG_ON(err);
4161 
4162 	key.objectid = objectid;
4163 	key.type = BTRFS_INODE_ITEM_KEY;
4164 	key.offset = 0;
4165 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4166 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4167 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4168 
4169 	err = btrfs_orphan_add(trans, inode);
4170 out:
4171 	btrfs_end_transaction(trans, root);
4172 	btrfs_btree_balance_dirty(root);
4173 	if (err) {
4174 		if (inode)
4175 			iput(inode);
4176 		inode = ERR_PTR(err);
4177 	}
4178 	return inode;
4179 }
4180 
4181 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4182 {
4183 	struct reloc_control *rc;
4184 
4185 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4186 	if (!rc)
4187 		return NULL;
4188 
4189 	INIT_LIST_HEAD(&rc->reloc_roots);
4190 	backref_cache_init(&rc->backref_cache);
4191 	mapping_tree_init(&rc->reloc_root_tree);
4192 	extent_io_tree_init(&rc->processed_blocks,
4193 			    fs_info->btree_inode->i_mapping);
4194 	return rc;
4195 }
4196 
4197 /*
4198  * function to relocate all extents in a block group.
4199  */
4200 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4201 {
4202 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4203 	struct reloc_control *rc;
4204 	struct inode *inode;
4205 	struct btrfs_path *path;
4206 	int ret;
4207 	int rw = 0;
4208 	int err = 0;
4209 
4210 	rc = alloc_reloc_control(fs_info);
4211 	if (!rc)
4212 		return -ENOMEM;
4213 
4214 	rc->extent_root = extent_root;
4215 
4216 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4217 	BUG_ON(!rc->block_group);
4218 
4219 	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4220 	if (ret) {
4221 		err = ret;
4222 		goto out;
4223 	}
4224 	rw = 1;
4225 
4226 	path = btrfs_alloc_path();
4227 	if (!path) {
4228 		err = -ENOMEM;
4229 		goto out;
4230 	}
4231 
4232 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4233 					path);
4234 	btrfs_free_path(path);
4235 
4236 	if (!IS_ERR(inode))
4237 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4238 	else
4239 		ret = PTR_ERR(inode);
4240 
4241 	if (ret && ret != -ENOENT) {
4242 		err = ret;
4243 		goto out;
4244 	}
4245 
4246 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4247 	if (IS_ERR(rc->data_inode)) {
4248 		err = PTR_ERR(rc->data_inode);
4249 		rc->data_inode = NULL;
4250 		goto out;
4251 	}
4252 
4253 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4254 	       rc->block_group->key.objectid, rc->block_group->flags);
4255 
4256 	ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
4257 	if (ret < 0) {
4258 		err = ret;
4259 		goto out;
4260 	}
4261 	btrfs_wait_ordered_roots(fs_info, -1);
4262 
4263 	while (1) {
4264 		mutex_lock(&fs_info->cleaner_mutex);
4265 		ret = relocate_block_group(rc);
4266 		mutex_unlock(&fs_info->cleaner_mutex);
4267 		if (ret < 0) {
4268 			err = ret;
4269 			goto out;
4270 		}
4271 
4272 		if (rc->extents_found == 0)
4273 			break;
4274 
4275 		btrfs_info(extent_root->fs_info, "found %llu extents",
4276 			rc->extents_found);
4277 
4278 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4279 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4280 						       (u64)-1);
4281 			if (ret) {
4282 				err = ret;
4283 				goto out;
4284 			}
4285 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4286 						 0, -1);
4287 			rc->stage = UPDATE_DATA_PTRS;
4288 		}
4289 	}
4290 
4291 	WARN_ON(rc->block_group->pinned > 0);
4292 	WARN_ON(rc->block_group->reserved > 0);
4293 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4294 out:
4295 	if (err && rw)
4296 		btrfs_dec_block_group_ro(extent_root, rc->block_group);
4297 	iput(rc->data_inode);
4298 	btrfs_put_block_group(rc->block_group);
4299 	kfree(rc);
4300 	return err;
4301 }
4302 
4303 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4304 {
4305 	struct btrfs_trans_handle *trans;
4306 	int ret, err;
4307 
4308 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4309 	if (IS_ERR(trans))
4310 		return PTR_ERR(trans);
4311 
4312 	memset(&root->root_item.drop_progress, 0,
4313 		sizeof(root->root_item.drop_progress));
4314 	root->root_item.drop_level = 0;
4315 	btrfs_set_root_refs(&root->root_item, 0);
4316 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4317 				&root->root_key, &root->root_item);
4318 
4319 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4320 	if (err)
4321 		return err;
4322 	return ret;
4323 }
4324 
4325 /*
4326  * recover relocation interrupted by system crash.
4327  *
4328  * this function resumes merging reloc trees with corresponding fs trees.
4329  * this is important for keeping the sharing of tree blocks
4330  */
4331 int btrfs_recover_relocation(struct btrfs_root *root)
4332 {
4333 	LIST_HEAD(reloc_roots);
4334 	struct btrfs_key key;
4335 	struct btrfs_root *fs_root;
4336 	struct btrfs_root *reloc_root;
4337 	struct btrfs_path *path;
4338 	struct extent_buffer *leaf;
4339 	struct reloc_control *rc = NULL;
4340 	struct btrfs_trans_handle *trans;
4341 	int ret;
4342 	int err = 0;
4343 
4344 	path = btrfs_alloc_path();
4345 	if (!path)
4346 		return -ENOMEM;
4347 	path->reada = READA_BACK;
4348 
4349 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4350 	key.type = BTRFS_ROOT_ITEM_KEY;
4351 	key.offset = (u64)-1;
4352 
4353 	while (1) {
4354 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4355 					path, 0, 0);
4356 		if (ret < 0) {
4357 			err = ret;
4358 			goto out;
4359 		}
4360 		if (ret > 0) {
4361 			if (path->slots[0] == 0)
4362 				break;
4363 			path->slots[0]--;
4364 		}
4365 		leaf = path->nodes[0];
4366 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4367 		btrfs_release_path(path);
4368 
4369 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4370 		    key.type != BTRFS_ROOT_ITEM_KEY)
4371 			break;
4372 
4373 		reloc_root = btrfs_read_fs_root(root, &key);
4374 		if (IS_ERR(reloc_root)) {
4375 			err = PTR_ERR(reloc_root);
4376 			goto out;
4377 		}
4378 
4379 		list_add(&reloc_root->root_list, &reloc_roots);
4380 
4381 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4382 			fs_root = read_fs_root(root->fs_info,
4383 					       reloc_root->root_key.offset);
4384 			if (IS_ERR(fs_root)) {
4385 				ret = PTR_ERR(fs_root);
4386 				if (ret != -ENOENT) {
4387 					err = ret;
4388 					goto out;
4389 				}
4390 				ret = mark_garbage_root(reloc_root);
4391 				if (ret < 0) {
4392 					err = ret;
4393 					goto out;
4394 				}
4395 			}
4396 		}
4397 
4398 		if (key.offset == 0)
4399 			break;
4400 
4401 		key.offset--;
4402 	}
4403 	btrfs_release_path(path);
4404 
4405 	if (list_empty(&reloc_roots))
4406 		goto out;
4407 
4408 	rc = alloc_reloc_control(root->fs_info);
4409 	if (!rc) {
4410 		err = -ENOMEM;
4411 		goto out;
4412 	}
4413 
4414 	rc->extent_root = root->fs_info->extent_root;
4415 
4416 	set_reloc_control(rc);
4417 
4418 	trans = btrfs_join_transaction(rc->extent_root);
4419 	if (IS_ERR(trans)) {
4420 		unset_reloc_control(rc);
4421 		err = PTR_ERR(trans);
4422 		goto out_free;
4423 	}
4424 
4425 	rc->merge_reloc_tree = 1;
4426 
4427 	while (!list_empty(&reloc_roots)) {
4428 		reloc_root = list_entry(reloc_roots.next,
4429 					struct btrfs_root, root_list);
4430 		list_del(&reloc_root->root_list);
4431 
4432 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4433 			list_add_tail(&reloc_root->root_list,
4434 				      &rc->reloc_roots);
4435 			continue;
4436 		}
4437 
4438 		fs_root = read_fs_root(root->fs_info,
4439 				       reloc_root->root_key.offset);
4440 		if (IS_ERR(fs_root)) {
4441 			err = PTR_ERR(fs_root);
4442 			goto out_free;
4443 		}
4444 
4445 		err = __add_reloc_root(reloc_root);
4446 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4447 		fs_root->reloc_root = reloc_root;
4448 	}
4449 
4450 	err = btrfs_commit_transaction(trans, rc->extent_root);
4451 	if (err)
4452 		goto out_free;
4453 
4454 	merge_reloc_roots(rc);
4455 
4456 	unset_reloc_control(rc);
4457 
4458 	trans = btrfs_join_transaction(rc->extent_root);
4459 	if (IS_ERR(trans))
4460 		err = PTR_ERR(trans);
4461 	else
4462 		err = btrfs_commit_transaction(trans, rc->extent_root);
4463 out_free:
4464 	kfree(rc);
4465 out:
4466 	if (!list_empty(&reloc_roots))
4467 		free_reloc_roots(&reloc_roots);
4468 
4469 	btrfs_free_path(path);
4470 
4471 	if (err == 0) {
4472 		/* cleanup orphan inode in data relocation tree */
4473 		fs_root = read_fs_root(root->fs_info,
4474 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4475 		if (IS_ERR(fs_root))
4476 			err = PTR_ERR(fs_root);
4477 		else
4478 			err = btrfs_orphan_cleanup(fs_root);
4479 	}
4480 	return err;
4481 }
4482 
4483 /*
4484  * helper to add ordered checksum for data relocation.
4485  *
4486  * cloning checksum properly handles the nodatasum extents.
4487  * it also saves CPU time to re-calculate the checksum.
4488  */
4489 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4490 {
4491 	struct btrfs_ordered_sum *sums;
4492 	struct btrfs_ordered_extent *ordered;
4493 	struct btrfs_root *root = BTRFS_I(inode)->root;
4494 	int ret;
4495 	u64 disk_bytenr;
4496 	u64 new_bytenr;
4497 	LIST_HEAD(list);
4498 
4499 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4500 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4501 
4502 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4503 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4504 				       disk_bytenr + len - 1, &list, 0);
4505 	if (ret)
4506 		goto out;
4507 
4508 	while (!list_empty(&list)) {
4509 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4510 		list_del_init(&sums->list);
4511 
4512 		/*
4513 		 * We need to offset the new_bytenr based on where the csum is.
4514 		 * We need to do this because we will read in entire prealloc
4515 		 * extents but we may have written to say the middle of the
4516 		 * prealloc extent, so we need to make sure the csum goes with
4517 		 * the right disk offset.
4518 		 *
4519 		 * We can do this because the data reloc inode refers strictly
4520 		 * to the on disk bytes, so we don't have to worry about
4521 		 * disk_len vs real len like with real inodes since it's all
4522 		 * disk length.
4523 		 */
4524 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4525 		sums->bytenr = new_bytenr;
4526 
4527 		btrfs_add_ordered_sum(inode, ordered, sums);
4528 	}
4529 out:
4530 	btrfs_put_ordered_extent(ordered);
4531 	return ret;
4532 }
4533 
4534 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4535 			  struct btrfs_root *root, struct extent_buffer *buf,
4536 			  struct extent_buffer *cow)
4537 {
4538 	struct reloc_control *rc;
4539 	struct backref_node *node;
4540 	int first_cow = 0;
4541 	int level;
4542 	int ret = 0;
4543 
4544 	rc = root->fs_info->reloc_ctl;
4545 	if (!rc)
4546 		return 0;
4547 
4548 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4549 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4550 
4551 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4552 		if (buf == root->node)
4553 			__update_reloc_root(root, cow->start);
4554 	}
4555 
4556 	level = btrfs_header_level(buf);
4557 	if (btrfs_header_generation(buf) <=
4558 	    btrfs_root_last_snapshot(&root->root_item))
4559 		first_cow = 1;
4560 
4561 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4562 	    rc->create_reloc_tree) {
4563 		WARN_ON(!first_cow && level == 0);
4564 
4565 		node = rc->backref_cache.path[level];
4566 		BUG_ON(node->bytenr != buf->start &&
4567 		       node->new_bytenr != buf->start);
4568 
4569 		drop_node_buffer(node);
4570 		extent_buffer_get(cow);
4571 		node->eb = cow;
4572 		node->new_bytenr = cow->start;
4573 
4574 		if (!node->pending) {
4575 			list_move_tail(&node->list,
4576 				       &rc->backref_cache.pending[level]);
4577 			node->pending = 1;
4578 		}
4579 
4580 		if (first_cow)
4581 			__mark_block_processed(rc, node);
4582 
4583 		if (first_cow && level > 0)
4584 			rc->nodes_relocated += buf->len;
4585 	}
4586 
4587 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4588 		ret = replace_file_extents(trans, rc, root, cow);
4589 	return ret;
4590 }
4591 
4592 /*
4593  * called before creating snapshot. it calculates metadata reservation
4594  * requried for relocating tree blocks in the snapshot
4595  */
4596 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4597 			      u64 *bytes_to_reserve)
4598 {
4599 	struct btrfs_root *root;
4600 	struct reloc_control *rc;
4601 
4602 	root = pending->root;
4603 	if (!root->reloc_root)
4604 		return;
4605 
4606 	rc = root->fs_info->reloc_ctl;
4607 	if (!rc->merge_reloc_tree)
4608 		return;
4609 
4610 	root = root->reloc_root;
4611 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4612 	/*
4613 	 * relocation is in the stage of merging trees. the space
4614 	 * used by merging a reloc tree is twice the size of
4615 	 * relocated tree nodes in the worst case. half for cowing
4616 	 * the reloc tree, half for cowing the fs tree. the space
4617 	 * used by cowing the reloc tree will be freed after the
4618 	 * tree is dropped. if we create snapshot, cowing the fs
4619 	 * tree may use more space than it frees. so we need
4620 	 * reserve extra space.
4621 	 */
4622 	*bytes_to_reserve += rc->nodes_relocated;
4623 }
4624 
4625 /*
4626  * called after snapshot is created. migrate block reservation
4627  * and create reloc root for the newly created snapshot
4628  */
4629 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4630 			       struct btrfs_pending_snapshot *pending)
4631 {
4632 	struct btrfs_root *root = pending->root;
4633 	struct btrfs_root *reloc_root;
4634 	struct btrfs_root *new_root;
4635 	struct reloc_control *rc;
4636 	int ret;
4637 
4638 	if (!root->reloc_root)
4639 		return 0;
4640 
4641 	rc = root->fs_info->reloc_ctl;
4642 	rc->merging_rsv_size += rc->nodes_relocated;
4643 
4644 	if (rc->merge_reloc_tree) {
4645 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4646 					      rc->block_rsv,
4647 					      rc->nodes_relocated);
4648 		if (ret)
4649 			return ret;
4650 	}
4651 
4652 	new_root = pending->snap;
4653 	reloc_root = create_reloc_root(trans, root->reloc_root,
4654 				       new_root->root_key.objectid);
4655 	if (IS_ERR(reloc_root))
4656 		return PTR_ERR(reloc_root);
4657 
4658 	ret = __add_reloc_root(reloc_root);
4659 	BUG_ON(ret < 0);
4660 	new_root->reloc_root = reloc_root;
4661 
4662 	if (rc->create_reloc_tree)
4663 		ret = clone_backref_node(trans, rc, root, reloc_root);
4664 	return ret;
4665 }
4666