xref: /openbmc/linux/fs/btrfs/relocation.c (revision 3ca9760fdfa411f7e5db54b3437fbb858d2ec825)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 #define RELOCATION_RESERVED_NODES	256
98 
99 struct backref_cache {
100 	/* red black tree of all backref nodes in the cache */
101 	struct rb_root rb_root;
102 	/* for passing backref nodes to btrfs_reloc_cow_block */
103 	struct backref_node *path[BTRFS_MAX_LEVEL];
104 	/*
105 	 * list of blocks that have been cowed but some block
106 	 * pointers in upper level blocks may not reflect the
107 	 * new location
108 	 */
109 	struct list_head pending[BTRFS_MAX_LEVEL];
110 	/* list of backref nodes with no child node */
111 	struct list_head leaves;
112 	/* list of blocks that have been cowed in current transaction */
113 	struct list_head changed;
114 	/* list of detached backref node. */
115 	struct list_head detached;
116 
117 	u64 last_trans;
118 
119 	int nr_nodes;
120 	int nr_edges;
121 };
122 
123 /*
124  * map address of tree root to tree
125  */
126 struct mapping_node {
127 	struct rb_node rb_node;
128 	u64 bytenr;
129 	void *data;
130 };
131 
132 struct mapping_tree {
133 	struct rb_root rb_root;
134 	spinlock_t lock;
135 };
136 
137 /*
138  * present a tree block to process
139  */
140 struct tree_block {
141 	struct rb_node rb_node;
142 	u64 bytenr;
143 	struct btrfs_key key;
144 	unsigned int level:8;
145 	unsigned int key_ready:1;
146 };
147 
148 #define MAX_EXTENTS 128
149 
150 struct file_extent_cluster {
151 	u64 start;
152 	u64 end;
153 	u64 boundary[MAX_EXTENTS];
154 	unsigned int nr;
155 };
156 
157 struct reloc_control {
158 	/* block group to relocate */
159 	struct btrfs_block_group_cache *block_group;
160 	/* extent tree */
161 	struct btrfs_root *extent_root;
162 	/* inode for moving data */
163 	struct inode *data_inode;
164 
165 	struct btrfs_block_rsv *block_rsv;
166 
167 	struct backref_cache backref_cache;
168 
169 	struct file_extent_cluster cluster;
170 	/* tree blocks have been processed */
171 	struct extent_io_tree processed_blocks;
172 	/* map start of tree root to corresponding reloc tree */
173 	struct mapping_tree reloc_root_tree;
174 	/* list of reloc trees */
175 	struct list_head reloc_roots;
176 	/* size of metadata reservation for merging reloc trees */
177 	u64 merging_rsv_size;
178 	/* size of relocated tree nodes */
179 	u64 nodes_relocated;
180 	/* reserved size for block group relocation*/
181 	u64 reserved_bytes;
182 
183 	u64 search_start;
184 	u64 extents_found;
185 
186 	unsigned int stage:8;
187 	unsigned int create_reloc_tree:1;
188 	unsigned int merge_reloc_tree:1;
189 	unsigned int found_file_extent:1;
190 };
191 
192 /* stages of data relocation */
193 #define MOVE_DATA_EXTENTS	0
194 #define UPDATE_DATA_PTRS	1
195 
196 static void remove_backref_node(struct backref_cache *cache,
197 				struct backref_node *node);
198 static void __mark_block_processed(struct reloc_control *rc,
199 				   struct backref_node *node);
200 
201 static void mapping_tree_init(struct mapping_tree *tree)
202 {
203 	tree->rb_root = RB_ROOT;
204 	spin_lock_init(&tree->lock);
205 }
206 
207 static void backref_cache_init(struct backref_cache *cache)
208 {
209 	int i;
210 	cache->rb_root = RB_ROOT;
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
212 		INIT_LIST_HEAD(&cache->pending[i]);
213 	INIT_LIST_HEAD(&cache->changed);
214 	INIT_LIST_HEAD(&cache->detached);
215 	INIT_LIST_HEAD(&cache->leaves);
216 }
217 
218 static void backref_cache_cleanup(struct backref_cache *cache)
219 {
220 	struct backref_node *node;
221 	int i;
222 
223 	while (!list_empty(&cache->detached)) {
224 		node = list_entry(cache->detached.next,
225 				  struct backref_node, list);
226 		remove_backref_node(cache, node);
227 	}
228 
229 	while (!list_empty(&cache->leaves)) {
230 		node = list_entry(cache->leaves.next,
231 				  struct backref_node, lower);
232 		remove_backref_node(cache, node);
233 	}
234 
235 	cache->last_trans = 0;
236 
237 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
238 		ASSERT(list_empty(&cache->pending[i]));
239 	ASSERT(list_empty(&cache->changed));
240 	ASSERT(list_empty(&cache->detached));
241 	ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
242 	ASSERT(!cache->nr_nodes);
243 	ASSERT(!cache->nr_edges);
244 }
245 
246 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
247 {
248 	struct backref_node *node;
249 
250 	node = kzalloc(sizeof(*node), GFP_NOFS);
251 	if (node) {
252 		INIT_LIST_HEAD(&node->list);
253 		INIT_LIST_HEAD(&node->upper);
254 		INIT_LIST_HEAD(&node->lower);
255 		RB_CLEAR_NODE(&node->rb_node);
256 		cache->nr_nodes++;
257 	}
258 	return node;
259 }
260 
261 static void free_backref_node(struct backref_cache *cache,
262 			      struct backref_node *node)
263 {
264 	if (node) {
265 		cache->nr_nodes--;
266 		kfree(node);
267 	}
268 }
269 
270 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
271 {
272 	struct backref_edge *edge;
273 
274 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
275 	if (edge)
276 		cache->nr_edges++;
277 	return edge;
278 }
279 
280 static void free_backref_edge(struct backref_cache *cache,
281 			      struct backref_edge *edge)
282 {
283 	if (edge) {
284 		cache->nr_edges--;
285 		kfree(edge);
286 	}
287 }
288 
289 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
290 				   struct rb_node *node)
291 {
292 	struct rb_node **p = &root->rb_node;
293 	struct rb_node *parent = NULL;
294 	struct tree_entry *entry;
295 
296 	while (*p) {
297 		parent = *p;
298 		entry = rb_entry(parent, struct tree_entry, rb_node);
299 
300 		if (bytenr < entry->bytenr)
301 			p = &(*p)->rb_left;
302 		else if (bytenr > entry->bytenr)
303 			p = &(*p)->rb_right;
304 		else
305 			return parent;
306 	}
307 
308 	rb_link_node(node, parent, p);
309 	rb_insert_color(node, root);
310 	return NULL;
311 }
312 
313 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
314 {
315 	struct rb_node *n = root->rb_node;
316 	struct tree_entry *entry;
317 
318 	while (n) {
319 		entry = rb_entry(n, struct tree_entry, rb_node);
320 
321 		if (bytenr < entry->bytenr)
322 			n = n->rb_left;
323 		else if (bytenr > entry->bytenr)
324 			n = n->rb_right;
325 		else
326 			return n;
327 	}
328 	return NULL;
329 }
330 
331 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
332 {
333 
334 	struct btrfs_fs_info *fs_info = NULL;
335 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
336 					      rb_node);
337 	if (bnode->root)
338 		fs_info = bnode->root->fs_info;
339 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
340 		    "found at offset %llu", bytenr);
341 }
342 
343 /*
344  * walk up backref nodes until reach node presents tree root
345  */
346 static struct backref_node *walk_up_backref(struct backref_node *node,
347 					    struct backref_edge *edges[],
348 					    int *index)
349 {
350 	struct backref_edge *edge;
351 	int idx = *index;
352 
353 	while (!list_empty(&node->upper)) {
354 		edge = list_entry(node->upper.next,
355 				  struct backref_edge, list[LOWER]);
356 		edges[idx++] = edge;
357 		node = edge->node[UPPER];
358 	}
359 	BUG_ON(node->detached);
360 	*index = idx;
361 	return node;
362 }
363 
364 /*
365  * walk down backref nodes to find start of next reference path
366  */
367 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
368 					      int *index)
369 {
370 	struct backref_edge *edge;
371 	struct backref_node *lower;
372 	int idx = *index;
373 
374 	while (idx > 0) {
375 		edge = edges[idx - 1];
376 		lower = edge->node[LOWER];
377 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
378 			idx--;
379 			continue;
380 		}
381 		edge = list_entry(edge->list[LOWER].next,
382 				  struct backref_edge, list[LOWER]);
383 		edges[idx - 1] = edge;
384 		*index = idx;
385 		return edge->node[UPPER];
386 	}
387 	*index = 0;
388 	return NULL;
389 }
390 
391 static void unlock_node_buffer(struct backref_node *node)
392 {
393 	if (node->locked) {
394 		btrfs_tree_unlock(node->eb);
395 		node->locked = 0;
396 	}
397 }
398 
399 static void drop_node_buffer(struct backref_node *node)
400 {
401 	if (node->eb) {
402 		unlock_node_buffer(node);
403 		free_extent_buffer(node->eb);
404 		node->eb = NULL;
405 	}
406 }
407 
408 static void drop_backref_node(struct backref_cache *tree,
409 			      struct backref_node *node)
410 {
411 	BUG_ON(!list_empty(&node->upper));
412 
413 	drop_node_buffer(node);
414 	list_del(&node->list);
415 	list_del(&node->lower);
416 	if (!RB_EMPTY_NODE(&node->rb_node))
417 		rb_erase(&node->rb_node, &tree->rb_root);
418 	free_backref_node(tree, node);
419 }
420 
421 /*
422  * remove a backref node from the backref cache
423  */
424 static void remove_backref_node(struct backref_cache *cache,
425 				struct backref_node *node)
426 {
427 	struct backref_node *upper;
428 	struct backref_edge *edge;
429 
430 	if (!node)
431 		return;
432 
433 	BUG_ON(!node->lowest && !node->detached);
434 	while (!list_empty(&node->upper)) {
435 		edge = list_entry(node->upper.next, struct backref_edge,
436 				  list[LOWER]);
437 		upper = edge->node[UPPER];
438 		list_del(&edge->list[LOWER]);
439 		list_del(&edge->list[UPPER]);
440 		free_backref_edge(cache, edge);
441 
442 		if (RB_EMPTY_NODE(&upper->rb_node)) {
443 			BUG_ON(!list_empty(&node->upper));
444 			drop_backref_node(cache, node);
445 			node = upper;
446 			node->lowest = 1;
447 			continue;
448 		}
449 		/*
450 		 * add the node to leaf node list if no other
451 		 * child block cached.
452 		 */
453 		if (list_empty(&upper->lower)) {
454 			list_add_tail(&upper->lower, &cache->leaves);
455 			upper->lowest = 1;
456 		}
457 	}
458 
459 	drop_backref_node(cache, node);
460 }
461 
462 static void update_backref_node(struct backref_cache *cache,
463 				struct backref_node *node, u64 bytenr)
464 {
465 	struct rb_node *rb_node;
466 	rb_erase(&node->rb_node, &cache->rb_root);
467 	node->bytenr = bytenr;
468 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
469 	if (rb_node)
470 		backref_tree_panic(rb_node, -EEXIST, bytenr);
471 }
472 
473 /*
474  * update backref cache after a transaction commit
475  */
476 static int update_backref_cache(struct btrfs_trans_handle *trans,
477 				struct backref_cache *cache)
478 {
479 	struct backref_node *node;
480 	int level = 0;
481 
482 	if (cache->last_trans == 0) {
483 		cache->last_trans = trans->transid;
484 		return 0;
485 	}
486 
487 	if (cache->last_trans == trans->transid)
488 		return 0;
489 
490 	/*
491 	 * detached nodes are used to avoid unnecessary backref
492 	 * lookup. transaction commit changes the extent tree.
493 	 * so the detached nodes are no longer useful.
494 	 */
495 	while (!list_empty(&cache->detached)) {
496 		node = list_entry(cache->detached.next,
497 				  struct backref_node, list);
498 		remove_backref_node(cache, node);
499 	}
500 
501 	while (!list_empty(&cache->changed)) {
502 		node = list_entry(cache->changed.next,
503 				  struct backref_node, list);
504 		list_del_init(&node->list);
505 		BUG_ON(node->pending);
506 		update_backref_node(cache, node, node->new_bytenr);
507 	}
508 
509 	/*
510 	 * some nodes can be left in the pending list if there were
511 	 * errors during processing the pending nodes.
512 	 */
513 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
514 		list_for_each_entry(node, &cache->pending[level], list) {
515 			BUG_ON(!node->pending);
516 			if (node->bytenr == node->new_bytenr)
517 				continue;
518 			update_backref_node(cache, node, node->new_bytenr);
519 		}
520 	}
521 
522 	cache->last_trans = 0;
523 	return 1;
524 }
525 
526 
527 static int should_ignore_root(struct btrfs_root *root)
528 {
529 	struct btrfs_root *reloc_root;
530 
531 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
532 		return 0;
533 
534 	reloc_root = root->reloc_root;
535 	if (!reloc_root)
536 		return 0;
537 
538 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
539 	    root->fs_info->running_transaction->transid - 1)
540 		return 0;
541 	/*
542 	 * if there is reloc tree and it was created in previous
543 	 * transaction backref lookup can find the reloc tree,
544 	 * so backref node for the fs tree root is useless for
545 	 * relocation.
546 	 */
547 	return 1;
548 }
549 /*
550  * find reloc tree by address of tree root
551  */
552 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
553 					  u64 bytenr)
554 {
555 	struct rb_node *rb_node;
556 	struct mapping_node *node;
557 	struct btrfs_root *root = NULL;
558 
559 	spin_lock(&rc->reloc_root_tree.lock);
560 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
561 	if (rb_node) {
562 		node = rb_entry(rb_node, struct mapping_node, rb_node);
563 		root = (struct btrfs_root *)node->data;
564 	}
565 	spin_unlock(&rc->reloc_root_tree.lock);
566 	return root;
567 }
568 
569 static int is_cowonly_root(u64 root_objectid)
570 {
571 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
574 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
575 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
576 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID ||
577 	    root_objectid == BTRFS_UUID_TREE_OBJECTID ||
578 	    root_objectid == BTRFS_QUOTA_TREE_OBJECTID ||
579 	    root_objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
580 		return 1;
581 	return 0;
582 }
583 
584 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
585 					u64 root_objectid)
586 {
587 	struct btrfs_key key;
588 
589 	key.objectid = root_objectid;
590 	key.type = BTRFS_ROOT_ITEM_KEY;
591 	if (is_cowonly_root(root_objectid))
592 		key.offset = 0;
593 	else
594 		key.offset = (u64)-1;
595 
596 	return btrfs_get_fs_root(fs_info, &key, false);
597 }
598 
599 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
600 static noinline_for_stack
601 struct btrfs_root *find_tree_root(struct reloc_control *rc,
602 				  struct extent_buffer *leaf,
603 				  struct btrfs_extent_ref_v0 *ref0)
604 {
605 	struct btrfs_root *root;
606 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
607 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
608 
609 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
610 
611 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
612 	BUG_ON(IS_ERR(root));
613 
614 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
615 	    generation != btrfs_root_generation(&root->root_item))
616 		return NULL;
617 
618 	return root;
619 }
620 #endif
621 
622 static noinline_for_stack
623 int find_inline_backref(struct extent_buffer *leaf, int slot,
624 			unsigned long *ptr, unsigned long *end)
625 {
626 	struct btrfs_key key;
627 	struct btrfs_extent_item *ei;
628 	struct btrfs_tree_block_info *bi;
629 	u32 item_size;
630 
631 	btrfs_item_key_to_cpu(leaf, &key, slot);
632 
633 	item_size = btrfs_item_size_nr(leaf, slot);
634 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
635 	if (item_size < sizeof(*ei)) {
636 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
637 		return 1;
638 	}
639 #endif
640 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
641 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
642 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
643 
644 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
645 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
646 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
647 		return 1;
648 	}
649 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
650 	    item_size <= sizeof(*ei)) {
651 		WARN_ON(item_size < sizeof(*ei));
652 		return 1;
653 	}
654 
655 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
656 		bi = (struct btrfs_tree_block_info *)(ei + 1);
657 		*ptr = (unsigned long)(bi + 1);
658 	} else {
659 		*ptr = (unsigned long)(ei + 1);
660 	}
661 	*end = (unsigned long)ei + item_size;
662 	return 0;
663 }
664 
665 /*
666  * build backref tree for a given tree block. root of the backref tree
667  * corresponds the tree block, leaves of the backref tree correspond
668  * roots of b-trees that reference the tree block.
669  *
670  * the basic idea of this function is check backrefs of a given block
671  * to find upper level blocks that reference the block, and then check
672  * backrefs of these upper level blocks recursively. the recursion stop
673  * when tree root is reached or backrefs for the block is cached.
674  *
675  * NOTE: if we find backrefs for a block are cached, we know backrefs
676  * for all upper level blocks that directly/indirectly reference the
677  * block are also cached.
678  */
679 static noinline_for_stack
680 struct backref_node *build_backref_tree(struct reloc_control *rc,
681 					struct btrfs_key *node_key,
682 					int level, u64 bytenr)
683 {
684 	struct backref_cache *cache = &rc->backref_cache;
685 	struct btrfs_path *path1;
686 	struct btrfs_path *path2;
687 	struct extent_buffer *eb;
688 	struct btrfs_root *root;
689 	struct backref_node *cur;
690 	struct backref_node *upper;
691 	struct backref_node *lower;
692 	struct backref_node *node = NULL;
693 	struct backref_node *exist = NULL;
694 	struct backref_edge *edge;
695 	struct rb_node *rb_node;
696 	struct btrfs_key key;
697 	unsigned long end;
698 	unsigned long ptr;
699 	LIST_HEAD(list);
700 	LIST_HEAD(useless);
701 	int cowonly;
702 	int ret;
703 	int err = 0;
704 	bool need_check = true;
705 
706 	path1 = btrfs_alloc_path();
707 	path2 = btrfs_alloc_path();
708 	if (!path1 || !path2) {
709 		err = -ENOMEM;
710 		goto out;
711 	}
712 	path1->reada = READA_FORWARD;
713 	path2->reada = READA_FORWARD;
714 
715 	node = alloc_backref_node(cache);
716 	if (!node) {
717 		err = -ENOMEM;
718 		goto out;
719 	}
720 
721 	node->bytenr = bytenr;
722 	node->level = level;
723 	node->lowest = 1;
724 	cur = node;
725 again:
726 	end = 0;
727 	ptr = 0;
728 	key.objectid = cur->bytenr;
729 	key.type = BTRFS_METADATA_ITEM_KEY;
730 	key.offset = (u64)-1;
731 
732 	path1->search_commit_root = 1;
733 	path1->skip_locking = 1;
734 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
735 				0, 0);
736 	if (ret < 0) {
737 		err = ret;
738 		goto out;
739 	}
740 	ASSERT(ret);
741 	ASSERT(path1->slots[0]);
742 
743 	path1->slots[0]--;
744 
745 	WARN_ON(cur->checked);
746 	if (!list_empty(&cur->upper)) {
747 		/*
748 		 * the backref was added previously when processing
749 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
750 		 */
751 		ASSERT(list_is_singular(&cur->upper));
752 		edge = list_entry(cur->upper.next, struct backref_edge,
753 				  list[LOWER]);
754 		ASSERT(list_empty(&edge->list[UPPER]));
755 		exist = edge->node[UPPER];
756 		/*
757 		 * add the upper level block to pending list if we need
758 		 * check its backrefs
759 		 */
760 		if (!exist->checked)
761 			list_add_tail(&edge->list[UPPER], &list);
762 	} else {
763 		exist = NULL;
764 	}
765 
766 	while (1) {
767 		cond_resched();
768 		eb = path1->nodes[0];
769 
770 		if (ptr >= end) {
771 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
772 				ret = btrfs_next_leaf(rc->extent_root, path1);
773 				if (ret < 0) {
774 					err = ret;
775 					goto out;
776 				}
777 				if (ret > 0)
778 					break;
779 				eb = path1->nodes[0];
780 			}
781 
782 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
783 			if (key.objectid != cur->bytenr) {
784 				WARN_ON(exist);
785 				break;
786 			}
787 
788 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
789 			    key.type == BTRFS_METADATA_ITEM_KEY) {
790 				ret = find_inline_backref(eb, path1->slots[0],
791 							  &ptr, &end);
792 				if (ret)
793 					goto next;
794 			}
795 		}
796 
797 		if (ptr < end) {
798 			/* update key for inline back ref */
799 			struct btrfs_extent_inline_ref *iref;
800 			iref = (struct btrfs_extent_inline_ref *)ptr;
801 			key.type = btrfs_extent_inline_ref_type(eb, iref);
802 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
803 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
804 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
805 		}
806 
807 		if (exist &&
808 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
809 		      exist->owner == key.offset) ||
810 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
811 		      exist->bytenr == key.offset))) {
812 			exist = NULL;
813 			goto next;
814 		}
815 
816 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
817 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
818 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
819 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
820 				struct btrfs_extent_ref_v0 *ref0;
821 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
822 						struct btrfs_extent_ref_v0);
823 				if (key.objectid == key.offset) {
824 					root = find_tree_root(rc, eb, ref0);
825 					if (root && !should_ignore_root(root))
826 						cur->root = root;
827 					else
828 						list_add(&cur->list, &useless);
829 					break;
830 				}
831 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
832 								      ref0)))
833 					cur->cowonly = 1;
834 			}
835 #else
836 		ASSERT(key.type != BTRFS_EXTENT_REF_V0_KEY);
837 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
838 #endif
839 			if (key.objectid == key.offset) {
840 				/*
841 				 * only root blocks of reloc trees use
842 				 * backref of this type.
843 				 */
844 				root = find_reloc_root(rc, cur->bytenr);
845 				ASSERT(root);
846 				cur->root = root;
847 				break;
848 			}
849 
850 			edge = alloc_backref_edge(cache);
851 			if (!edge) {
852 				err = -ENOMEM;
853 				goto out;
854 			}
855 			rb_node = tree_search(&cache->rb_root, key.offset);
856 			if (!rb_node) {
857 				upper = alloc_backref_node(cache);
858 				if (!upper) {
859 					free_backref_edge(cache, edge);
860 					err = -ENOMEM;
861 					goto out;
862 				}
863 				upper->bytenr = key.offset;
864 				upper->level = cur->level + 1;
865 				/*
866 				 *  backrefs for the upper level block isn't
867 				 *  cached, add the block to pending list
868 				 */
869 				list_add_tail(&edge->list[UPPER], &list);
870 			} else {
871 				upper = rb_entry(rb_node, struct backref_node,
872 						 rb_node);
873 				ASSERT(upper->checked);
874 				INIT_LIST_HEAD(&edge->list[UPPER]);
875 			}
876 			list_add_tail(&edge->list[LOWER], &cur->upper);
877 			edge->node[LOWER] = cur;
878 			edge->node[UPPER] = upper;
879 
880 			goto next;
881 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
882 			goto next;
883 		}
884 
885 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
886 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
887 		if (IS_ERR(root)) {
888 			err = PTR_ERR(root);
889 			goto out;
890 		}
891 
892 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
893 			cur->cowonly = 1;
894 
895 		if (btrfs_root_level(&root->root_item) == cur->level) {
896 			/* tree root */
897 			ASSERT(btrfs_root_bytenr(&root->root_item) ==
898 			       cur->bytenr);
899 			if (should_ignore_root(root))
900 				list_add(&cur->list, &useless);
901 			else
902 				cur->root = root;
903 			break;
904 		}
905 
906 		level = cur->level + 1;
907 
908 		/*
909 		 * searching the tree to find upper level blocks
910 		 * reference the block.
911 		 */
912 		path2->search_commit_root = 1;
913 		path2->skip_locking = 1;
914 		path2->lowest_level = level;
915 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
916 		path2->lowest_level = 0;
917 		if (ret < 0) {
918 			err = ret;
919 			goto out;
920 		}
921 		if (ret > 0 && path2->slots[level] > 0)
922 			path2->slots[level]--;
923 
924 		eb = path2->nodes[level];
925 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
926 			cur->bytenr);
927 
928 		lower = cur;
929 		need_check = true;
930 		for (; level < BTRFS_MAX_LEVEL; level++) {
931 			if (!path2->nodes[level]) {
932 				ASSERT(btrfs_root_bytenr(&root->root_item) ==
933 				       lower->bytenr);
934 				if (should_ignore_root(root))
935 					list_add(&lower->list, &useless);
936 				else
937 					lower->root = root;
938 				break;
939 			}
940 
941 			edge = alloc_backref_edge(cache);
942 			if (!edge) {
943 				err = -ENOMEM;
944 				goto out;
945 			}
946 
947 			eb = path2->nodes[level];
948 			rb_node = tree_search(&cache->rb_root, eb->start);
949 			if (!rb_node) {
950 				upper = alloc_backref_node(cache);
951 				if (!upper) {
952 					free_backref_edge(cache, edge);
953 					err = -ENOMEM;
954 					goto out;
955 				}
956 				upper->bytenr = eb->start;
957 				upper->owner = btrfs_header_owner(eb);
958 				upper->level = lower->level + 1;
959 				if (!test_bit(BTRFS_ROOT_REF_COWS,
960 					      &root->state))
961 					upper->cowonly = 1;
962 
963 				/*
964 				 * if we know the block isn't shared
965 				 * we can void checking its backrefs.
966 				 */
967 				if (btrfs_block_can_be_shared(root, eb))
968 					upper->checked = 0;
969 				else
970 					upper->checked = 1;
971 
972 				/*
973 				 * add the block to pending list if we
974 				 * need check its backrefs, we only do this once
975 				 * while walking up a tree as we will catch
976 				 * anything else later on.
977 				 */
978 				if (!upper->checked && need_check) {
979 					need_check = false;
980 					list_add_tail(&edge->list[UPPER],
981 						      &list);
982 				} else {
983 					if (upper->checked)
984 						need_check = true;
985 					INIT_LIST_HEAD(&edge->list[UPPER]);
986 				}
987 			} else {
988 				upper = rb_entry(rb_node, struct backref_node,
989 						 rb_node);
990 				ASSERT(upper->checked);
991 				INIT_LIST_HEAD(&edge->list[UPPER]);
992 				if (!upper->owner)
993 					upper->owner = btrfs_header_owner(eb);
994 			}
995 			list_add_tail(&edge->list[LOWER], &lower->upper);
996 			edge->node[LOWER] = lower;
997 			edge->node[UPPER] = upper;
998 
999 			if (rb_node)
1000 				break;
1001 			lower = upper;
1002 			upper = NULL;
1003 		}
1004 		btrfs_release_path(path2);
1005 next:
1006 		if (ptr < end) {
1007 			ptr += btrfs_extent_inline_ref_size(key.type);
1008 			if (ptr >= end) {
1009 				WARN_ON(ptr > end);
1010 				ptr = 0;
1011 				end = 0;
1012 			}
1013 		}
1014 		if (ptr >= end)
1015 			path1->slots[0]++;
1016 	}
1017 	btrfs_release_path(path1);
1018 
1019 	cur->checked = 1;
1020 	WARN_ON(exist);
1021 
1022 	/* the pending list isn't empty, take the first block to process */
1023 	if (!list_empty(&list)) {
1024 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1025 		list_del_init(&edge->list[UPPER]);
1026 		cur = edge->node[UPPER];
1027 		goto again;
1028 	}
1029 
1030 	/*
1031 	 * everything goes well, connect backref nodes and insert backref nodes
1032 	 * into the cache.
1033 	 */
1034 	ASSERT(node->checked);
1035 	cowonly = node->cowonly;
1036 	if (!cowonly) {
1037 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1038 				      &node->rb_node);
1039 		if (rb_node)
1040 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1041 		list_add_tail(&node->lower, &cache->leaves);
1042 	}
1043 
1044 	list_for_each_entry(edge, &node->upper, list[LOWER])
1045 		list_add_tail(&edge->list[UPPER], &list);
1046 
1047 	while (!list_empty(&list)) {
1048 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1049 		list_del_init(&edge->list[UPPER]);
1050 		upper = edge->node[UPPER];
1051 		if (upper->detached) {
1052 			list_del(&edge->list[LOWER]);
1053 			lower = edge->node[LOWER];
1054 			free_backref_edge(cache, edge);
1055 			if (list_empty(&lower->upper))
1056 				list_add(&lower->list, &useless);
1057 			continue;
1058 		}
1059 
1060 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1061 			if (upper->lowest) {
1062 				list_del_init(&upper->lower);
1063 				upper->lowest = 0;
1064 			}
1065 
1066 			list_add_tail(&edge->list[UPPER], &upper->lower);
1067 			continue;
1068 		}
1069 
1070 		if (!upper->checked) {
1071 			/*
1072 			 * Still want to blow up for developers since this is a
1073 			 * logic bug.
1074 			 */
1075 			ASSERT(0);
1076 			err = -EINVAL;
1077 			goto out;
1078 		}
1079 		if (cowonly != upper->cowonly) {
1080 			ASSERT(0);
1081 			err = -EINVAL;
1082 			goto out;
1083 		}
1084 
1085 		if (!cowonly) {
1086 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1087 					      &upper->rb_node);
1088 			if (rb_node)
1089 				backref_tree_panic(rb_node, -EEXIST,
1090 						   upper->bytenr);
1091 		}
1092 
1093 		list_add_tail(&edge->list[UPPER], &upper->lower);
1094 
1095 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1096 			list_add_tail(&edge->list[UPPER], &list);
1097 	}
1098 	/*
1099 	 * process useless backref nodes. backref nodes for tree leaves
1100 	 * are deleted from the cache. backref nodes for upper level
1101 	 * tree blocks are left in the cache to avoid unnecessary backref
1102 	 * lookup.
1103 	 */
1104 	while (!list_empty(&useless)) {
1105 		upper = list_entry(useless.next, struct backref_node, list);
1106 		list_del_init(&upper->list);
1107 		ASSERT(list_empty(&upper->upper));
1108 		if (upper == node)
1109 			node = NULL;
1110 		if (upper->lowest) {
1111 			list_del_init(&upper->lower);
1112 			upper->lowest = 0;
1113 		}
1114 		while (!list_empty(&upper->lower)) {
1115 			edge = list_entry(upper->lower.next,
1116 					  struct backref_edge, list[UPPER]);
1117 			list_del(&edge->list[UPPER]);
1118 			list_del(&edge->list[LOWER]);
1119 			lower = edge->node[LOWER];
1120 			free_backref_edge(cache, edge);
1121 
1122 			if (list_empty(&lower->upper))
1123 				list_add(&lower->list, &useless);
1124 		}
1125 		__mark_block_processed(rc, upper);
1126 		if (upper->level > 0) {
1127 			list_add(&upper->list, &cache->detached);
1128 			upper->detached = 1;
1129 		} else {
1130 			rb_erase(&upper->rb_node, &cache->rb_root);
1131 			free_backref_node(cache, upper);
1132 		}
1133 	}
1134 out:
1135 	btrfs_free_path(path1);
1136 	btrfs_free_path(path2);
1137 	if (err) {
1138 		while (!list_empty(&useless)) {
1139 			lower = list_entry(useless.next,
1140 					   struct backref_node, list);
1141 			list_del_init(&lower->list);
1142 		}
1143 		while (!list_empty(&list)) {
1144 			edge = list_first_entry(&list, struct backref_edge,
1145 						list[UPPER]);
1146 			list_del(&edge->list[UPPER]);
1147 			list_del(&edge->list[LOWER]);
1148 			lower = edge->node[LOWER];
1149 			upper = edge->node[UPPER];
1150 			free_backref_edge(cache, edge);
1151 
1152 			/*
1153 			 * Lower is no longer linked to any upper backref nodes
1154 			 * and isn't in the cache, we can free it ourselves.
1155 			 */
1156 			if (list_empty(&lower->upper) &&
1157 			    RB_EMPTY_NODE(&lower->rb_node))
1158 				list_add(&lower->list, &useless);
1159 
1160 			if (!RB_EMPTY_NODE(&upper->rb_node))
1161 				continue;
1162 
1163 			/* Add this guy's upper edges to the list to process */
1164 			list_for_each_entry(edge, &upper->upper, list[LOWER])
1165 				list_add_tail(&edge->list[UPPER], &list);
1166 			if (list_empty(&upper->upper))
1167 				list_add(&upper->list, &useless);
1168 		}
1169 
1170 		while (!list_empty(&useless)) {
1171 			lower = list_entry(useless.next,
1172 					   struct backref_node, list);
1173 			list_del_init(&lower->list);
1174 			if (lower == node)
1175 				node = NULL;
1176 			free_backref_node(cache, lower);
1177 		}
1178 
1179 		free_backref_node(cache, node);
1180 		return ERR_PTR(err);
1181 	}
1182 	ASSERT(!node || !node->detached);
1183 	return node;
1184 }
1185 
1186 /*
1187  * helper to add backref node for the newly created snapshot.
1188  * the backref node is created by cloning backref node that
1189  * corresponds to root of source tree
1190  */
1191 static int clone_backref_node(struct btrfs_trans_handle *trans,
1192 			      struct reloc_control *rc,
1193 			      struct btrfs_root *src,
1194 			      struct btrfs_root *dest)
1195 {
1196 	struct btrfs_root *reloc_root = src->reloc_root;
1197 	struct backref_cache *cache = &rc->backref_cache;
1198 	struct backref_node *node = NULL;
1199 	struct backref_node *new_node;
1200 	struct backref_edge *edge;
1201 	struct backref_edge *new_edge;
1202 	struct rb_node *rb_node;
1203 
1204 	if (cache->last_trans > 0)
1205 		update_backref_cache(trans, cache);
1206 
1207 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1208 	if (rb_node) {
1209 		node = rb_entry(rb_node, struct backref_node, rb_node);
1210 		if (node->detached)
1211 			node = NULL;
1212 		else
1213 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1214 	}
1215 
1216 	if (!node) {
1217 		rb_node = tree_search(&cache->rb_root,
1218 				      reloc_root->commit_root->start);
1219 		if (rb_node) {
1220 			node = rb_entry(rb_node, struct backref_node,
1221 					rb_node);
1222 			BUG_ON(node->detached);
1223 		}
1224 	}
1225 
1226 	if (!node)
1227 		return 0;
1228 
1229 	new_node = alloc_backref_node(cache);
1230 	if (!new_node)
1231 		return -ENOMEM;
1232 
1233 	new_node->bytenr = dest->node->start;
1234 	new_node->level = node->level;
1235 	new_node->lowest = node->lowest;
1236 	new_node->checked = 1;
1237 	new_node->root = dest;
1238 
1239 	if (!node->lowest) {
1240 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1241 			new_edge = alloc_backref_edge(cache);
1242 			if (!new_edge)
1243 				goto fail;
1244 
1245 			new_edge->node[UPPER] = new_node;
1246 			new_edge->node[LOWER] = edge->node[LOWER];
1247 			list_add_tail(&new_edge->list[UPPER],
1248 				      &new_node->lower);
1249 		}
1250 	} else {
1251 		list_add_tail(&new_node->lower, &cache->leaves);
1252 	}
1253 
1254 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1255 			      &new_node->rb_node);
1256 	if (rb_node)
1257 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1258 
1259 	if (!new_node->lowest) {
1260 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1261 			list_add_tail(&new_edge->list[LOWER],
1262 				      &new_edge->node[LOWER]->upper);
1263 		}
1264 	}
1265 	return 0;
1266 fail:
1267 	while (!list_empty(&new_node->lower)) {
1268 		new_edge = list_entry(new_node->lower.next,
1269 				      struct backref_edge, list[UPPER]);
1270 		list_del(&new_edge->list[UPPER]);
1271 		free_backref_edge(cache, new_edge);
1272 	}
1273 	free_backref_node(cache, new_node);
1274 	return -ENOMEM;
1275 }
1276 
1277 /*
1278  * helper to add 'address of tree root -> reloc tree' mapping
1279  */
1280 static int __must_check __add_reloc_root(struct btrfs_root *root)
1281 {
1282 	struct rb_node *rb_node;
1283 	struct mapping_node *node;
1284 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1285 
1286 	node = kmalloc(sizeof(*node), GFP_NOFS);
1287 	if (!node)
1288 		return -ENOMEM;
1289 
1290 	node->bytenr = root->node->start;
1291 	node->data = root;
1292 
1293 	spin_lock(&rc->reloc_root_tree.lock);
1294 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1295 			      node->bytenr, &node->rb_node);
1296 	spin_unlock(&rc->reloc_root_tree.lock);
1297 	if (rb_node) {
1298 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1299 			    "for start=%llu while inserting into relocation "
1300 			    "tree", node->bytenr);
1301 		kfree(node);
1302 		return -EEXIST;
1303 	}
1304 
1305 	list_add_tail(&root->root_list, &rc->reloc_roots);
1306 	return 0;
1307 }
1308 
1309 /*
1310  * helper to delete the 'address of tree root -> reloc tree'
1311  * mapping
1312  */
1313 static void __del_reloc_root(struct btrfs_root *root)
1314 {
1315 	struct rb_node *rb_node;
1316 	struct mapping_node *node = NULL;
1317 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1318 
1319 	spin_lock(&rc->reloc_root_tree.lock);
1320 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1321 			      root->node->start);
1322 	if (rb_node) {
1323 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1324 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1325 	}
1326 	spin_unlock(&rc->reloc_root_tree.lock);
1327 
1328 	if (!node)
1329 		return;
1330 	BUG_ON((struct btrfs_root *)node->data != root);
1331 
1332 	spin_lock(&root->fs_info->trans_lock);
1333 	list_del_init(&root->root_list);
1334 	spin_unlock(&root->fs_info->trans_lock);
1335 	kfree(node);
1336 }
1337 
1338 /*
1339  * helper to update the 'address of tree root -> reloc tree'
1340  * mapping
1341  */
1342 static int __update_reloc_root(struct btrfs_root *root, u64 new_bytenr)
1343 {
1344 	struct rb_node *rb_node;
1345 	struct mapping_node *node = NULL;
1346 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1347 
1348 	spin_lock(&rc->reloc_root_tree.lock);
1349 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1350 			      root->node->start);
1351 	if (rb_node) {
1352 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1353 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1354 	}
1355 	spin_unlock(&rc->reloc_root_tree.lock);
1356 
1357 	if (!node)
1358 		return 0;
1359 	BUG_ON((struct btrfs_root *)node->data != root);
1360 
1361 	spin_lock(&rc->reloc_root_tree.lock);
1362 	node->bytenr = new_bytenr;
1363 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1364 			      node->bytenr, &node->rb_node);
1365 	spin_unlock(&rc->reloc_root_tree.lock);
1366 	if (rb_node)
1367 		backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1368 	return 0;
1369 }
1370 
1371 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1372 					struct btrfs_root *root, u64 objectid)
1373 {
1374 	struct btrfs_root *reloc_root;
1375 	struct extent_buffer *eb;
1376 	struct btrfs_root_item *root_item;
1377 	struct btrfs_key root_key;
1378 	u64 last_snap = 0;
1379 	int ret;
1380 
1381 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1382 	BUG_ON(!root_item);
1383 
1384 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1385 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1386 	root_key.offset = objectid;
1387 
1388 	if (root->root_key.objectid == objectid) {
1389 		/* called by btrfs_init_reloc_root */
1390 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1391 				      BTRFS_TREE_RELOC_OBJECTID);
1392 		BUG_ON(ret);
1393 
1394 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1395 		btrfs_set_root_last_snapshot(&root->root_item,
1396 					     trans->transid - 1);
1397 	} else {
1398 		/*
1399 		 * called by btrfs_reloc_post_snapshot_hook.
1400 		 * the source tree is a reloc tree, all tree blocks
1401 		 * modified after it was created have RELOC flag
1402 		 * set in their headers. so it's OK to not update
1403 		 * the 'last_snapshot'.
1404 		 */
1405 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1406 				      BTRFS_TREE_RELOC_OBJECTID);
1407 		BUG_ON(ret);
1408 	}
1409 
1410 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1411 	btrfs_set_root_bytenr(root_item, eb->start);
1412 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1413 	btrfs_set_root_generation(root_item, trans->transid);
1414 
1415 	if (root->root_key.objectid == objectid) {
1416 		btrfs_set_root_refs(root_item, 0);
1417 		memset(&root_item->drop_progress, 0,
1418 		       sizeof(struct btrfs_disk_key));
1419 		root_item->drop_level = 0;
1420 		/*
1421 		 * abuse rtransid, it is safe because it is impossible to
1422 		 * receive data into a relocation tree.
1423 		 */
1424 		btrfs_set_root_rtransid(root_item, last_snap);
1425 		btrfs_set_root_otransid(root_item, trans->transid);
1426 	}
1427 
1428 	btrfs_tree_unlock(eb);
1429 	free_extent_buffer(eb);
1430 
1431 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1432 				&root_key, root_item);
1433 	BUG_ON(ret);
1434 	kfree(root_item);
1435 
1436 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1437 	BUG_ON(IS_ERR(reloc_root));
1438 	reloc_root->last_trans = trans->transid;
1439 	return reloc_root;
1440 }
1441 
1442 /*
1443  * create reloc tree for a given fs tree. reloc tree is just a
1444  * snapshot of the fs tree with special root objectid.
1445  */
1446 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1447 			  struct btrfs_root *root)
1448 {
1449 	struct btrfs_root *reloc_root;
1450 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1451 	struct btrfs_block_rsv *rsv;
1452 	int clear_rsv = 0;
1453 	int ret;
1454 
1455 	if (root->reloc_root) {
1456 		reloc_root = root->reloc_root;
1457 		reloc_root->last_trans = trans->transid;
1458 		return 0;
1459 	}
1460 
1461 	if (!rc || !rc->create_reloc_tree ||
1462 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1463 		return 0;
1464 
1465 	if (!trans->reloc_reserved) {
1466 		rsv = trans->block_rsv;
1467 		trans->block_rsv = rc->block_rsv;
1468 		clear_rsv = 1;
1469 	}
1470 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1471 	if (clear_rsv)
1472 		trans->block_rsv = rsv;
1473 
1474 	ret = __add_reloc_root(reloc_root);
1475 	BUG_ON(ret < 0);
1476 	root->reloc_root = reloc_root;
1477 	return 0;
1478 }
1479 
1480 /*
1481  * update root item of reloc tree
1482  */
1483 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1484 			    struct btrfs_root *root)
1485 {
1486 	struct btrfs_root *reloc_root;
1487 	struct btrfs_root_item *root_item;
1488 	int ret;
1489 
1490 	if (!root->reloc_root)
1491 		goto out;
1492 
1493 	reloc_root = root->reloc_root;
1494 	root_item = &reloc_root->root_item;
1495 
1496 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1497 	    btrfs_root_refs(root_item) == 0) {
1498 		root->reloc_root = NULL;
1499 		__del_reloc_root(reloc_root);
1500 	}
1501 
1502 	if (reloc_root->commit_root != reloc_root->node) {
1503 		btrfs_set_root_node(root_item, reloc_root->node);
1504 		free_extent_buffer(reloc_root->commit_root);
1505 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1506 	}
1507 
1508 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1509 				&reloc_root->root_key, root_item);
1510 	BUG_ON(ret);
1511 
1512 out:
1513 	return 0;
1514 }
1515 
1516 /*
1517  * helper to find first cached inode with inode number >= objectid
1518  * in a subvolume
1519  */
1520 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1521 {
1522 	struct rb_node *node;
1523 	struct rb_node *prev;
1524 	struct btrfs_inode *entry;
1525 	struct inode *inode;
1526 
1527 	spin_lock(&root->inode_lock);
1528 again:
1529 	node = root->inode_tree.rb_node;
1530 	prev = NULL;
1531 	while (node) {
1532 		prev = node;
1533 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1534 
1535 		if (objectid < btrfs_ino(&entry->vfs_inode))
1536 			node = node->rb_left;
1537 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1538 			node = node->rb_right;
1539 		else
1540 			break;
1541 	}
1542 	if (!node) {
1543 		while (prev) {
1544 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1545 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1546 				node = prev;
1547 				break;
1548 			}
1549 			prev = rb_next(prev);
1550 		}
1551 	}
1552 	while (node) {
1553 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1554 		inode = igrab(&entry->vfs_inode);
1555 		if (inode) {
1556 			spin_unlock(&root->inode_lock);
1557 			return inode;
1558 		}
1559 
1560 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1561 		if (cond_resched_lock(&root->inode_lock))
1562 			goto again;
1563 
1564 		node = rb_next(node);
1565 	}
1566 	spin_unlock(&root->inode_lock);
1567 	return NULL;
1568 }
1569 
1570 static int in_block_group(u64 bytenr,
1571 			  struct btrfs_block_group_cache *block_group)
1572 {
1573 	if (bytenr >= block_group->key.objectid &&
1574 	    bytenr < block_group->key.objectid + block_group->key.offset)
1575 		return 1;
1576 	return 0;
1577 }
1578 
1579 /*
1580  * get new location of data
1581  */
1582 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1583 			    u64 bytenr, u64 num_bytes)
1584 {
1585 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1586 	struct btrfs_path *path;
1587 	struct btrfs_file_extent_item *fi;
1588 	struct extent_buffer *leaf;
1589 	int ret;
1590 
1591 	path = btrfs_alloc_path();
1592 	if (!path)
1593 		return -ENOMEM;
1594 
1595 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1596 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1597 				       bytenr, 0);
1598 	if (ret < 0)
1599 		goto out;
1600 	if (ret > 0) {
1601 		ret = -ENOENT;
1602 		goto out;
1603 	}
1604 
1605 	leaf = path->nodes[0];
1606 	fi = btrfs_item_ptr(leaf, path->slots[0],
1607 			    struct btrfs_file_extent_item);
1608 
1609 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1610 	       btrfs_file_extent_compression(leaf, fi) ||
1611 	       btrfs_file_extent_encryption(leaf, fi) ||
1612 	       btrfs_file_extent_other_encoding(leaf, fi));
1613 
1614 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1615 		ret = -EINVAL;
1616 		goto out;
1617 	}
1618 
1619 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1620 	ret = 0;
1621 out:
1622 	btrfs_free_path(path);
1623 	return ret;
1624 }
1625 
1626 /*
1627  * update file extent items in the tree leaf to point to
1628  * the new locations.
1629  */
1630 static noinline_for_stack
1631 int replace_file_extents(struct btrfs_trans_handle *trans,
1632 			 struct reloc_control *rc,
1633 			 struct btrfs_root *root,
1634 			 struct extent_buffer *leaf)
1635 {
1636 	struct btrfs_key key;
1637 	struct btrfs_file_extent_item *fi;
1638 	struct inode *inode = NULL;
1639 	u64 parent;
1640 	u64 bytenr;
1641 	u64 new_bytenr = 0;
1642 	u64 num_bytes;
1643 	u64 end;
1644 	u32 nritems;
1645 	u32 i;
1646 	int ret = 0;
1647 	int first = 1;
1648 	int dirty = 0;
1649 
1650 	if (rc->stage != UPDATE_DATA_PTRS)
1651 		return 0;
1652 
1653 	/* reloc trees always use full backref */
1654 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1655 		parent = leaf->start;
1656 	else
1657 		parent = 0;
1658 
1659 	nritems = btrfs_header_nritems(leaf);
1660 	for (i = 0; i < nritems; i++) {
1661 		cond_resched();
1662 		btrfs_item_key_to_cpu(leaf, &key, i);
1663 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1664 			continue;
1665 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1666 		if (btrfs_file_extent_type(leaf, fi) ==
1667 		    BTRFS_FILE_EXTENT_INLINE)
1668 			continue;
1669 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1670 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1671 		if (bytenr == 0)
1672 			continue;
1673 		if (!in_block_group(bytenr, rc->block_group))
1674 			continue;
1675 
1676 		/*
1677 		 * if we are modifying block in fs tree, wait for readpage
1678 		 * to complete and drop the extent cache
1679 		 */
1680 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1681 			if (first) {
1682 				inode = find_next_inode(root, key.objectid);
1683 				first = 0;
1684 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1685 				btrfs_add_delayed_iput(inode);
1686 				inode = find_next_inode(root, key.objectid);
1687 			}
1688 			if (inode && btrfs_ino(inode) == key.objectid) {
1689 				end = key.offset +
1690 				      btrfs_file_extent_num_bytes(leaf, fi);
1691 				WARN_ON(!IS_ALIGNED(key.offset,
1692 						    root->sectorsize));
1693 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1694 				end--;
1695 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1696 						      key.offset, end);
1697 				if (!ret)
1698 					continue;
1699 
1700 				btrfs_drop_extent_cache(inode, key.offset, end,
1701 							1);
1702 				unlock_extent(&BTRFS_I(inode)->io_tree,
1703 					      key.offset, end);
1704 			}
1705 		}
1706 
1707 		ret = get_new_location(rc->data_inode, &new_bytenr,
1708 				       bytenr, num_bytes);
1709 		if (ret) {
1710 			/*
1711 			 * Don't have to abort since we've not changed anything
1712 			 * in the file extent yet.
1713 			 */
1714 			break;
1715 		}
1716 
1717 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1718 		dirty = 1;
1719 
1720 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1721 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1722 					   num_bytes, parent,
1723 					   btrfs_header_owner(leaf),
1724 					   key.objectid, key.offset);
1725 		if (ret) {
1726 			btrfs_abort_transaction(trans, ret);
1727 			break;
1728 		}
1729 
1730 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1731 					parent, btrfs_header_owner(leaf),
1732 					key.objectid, key.offset);
1733 		if (ret) {
1734 			btrfs_abort_transaction(trans, ret);
1735 			break;
1736 		}
1737 	}
1738 	if (dirty)
1739 		btrfs_mark_buffer_dirty(leaf);
1740 	if (inode)
1741 		btrfs_add_delayed_iput(inode);
1742 	return ret;
1743 }
1744 
1745 static noinline_for_stack
1746 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1747 		     struct btrfs_path *path, int level)
1748 {
1749 	struct btrfs_disk_key key1;
1750 	struct btrfs_disk_key key2;
1751 	btrfs_node_key(eb, &key1, slot);
1752 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1753 	return memcmp(&key1, &key2, sizeof(key1));
1754 }
1755 
1756 /*
1757  * try to replace tree blocks in fs tree with the new blocks
1758  * in reloc tree. tree blocks haven't been modified since the
1759  * reloc tree was create can be replaced.
1760  *
1761  * if a block was replaced, level of the block + 1 is returned.
1762  * if no block got replaced, 0 is returned. if there are other
1763  * errors, a negative error number is returned.
1764  */
1765 static noinline_for_stack
1766 int replace_path(struct btrfs_trans_handle *trans,
1767 		 struct btrfs_root *dest, struct btrfs_root *src,
1768 		 struct btrfs_path *path, struct btrfs_key *next_key,
1769 		 int lowest_level, int max_level)
1770 {
1771 	struct extent_buffer *eb;
1772 	struct extent_buffer *parent;
1773 	struct btrfs_key key;
1774 	u64 old_bytenr;
1775 	u64 new_bytenr;
1776 	u64 old_ptr_gen;
1777 	u64 new_ptr_gen;
1778 	u64 last_snapshot;
1779 	u32 blocksize;
1780 	int cow = 0;
1781 	int level;
1782 	int ret;
1783 	int slot;
1784 
1785 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1786 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1787 
1788 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1789 again:
1790 	slot = path->slots[lowest_level];
1791 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1792 
1793 	eb = btrfs_lock_root_node(dest);
1794 	btrfs_set_lock_blocking(eb);
1795 	level = btrfs_header_level(eb);
1796 
1797 	if (level < lowest_level) {
1798 		btrfs_tree_unlock(eb);
1799 		free_extent_buffer(eb);
1800 		return 0;
1801 	}
1802 
1803 	if (cow) {
1804 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1805 		BUG_ON(ret);
1806 	}
1807 	btrfs_set_lock_blocking(eb);
1808 
1809 	if (next_key) {
1810 		next_key->objectid = (u64)-1;
1811 		next_key->type = (u8)-1;
1812 		next_key->offset = (u64)-1;
1813 	}
1814 
1815 	parent = eb;
1816 	while (1) {
1817 		level = btrfs_header_level(parent);
1818 		BUG_ON(level < lowest_level);
1819 
1820 		ret = btrfs_bin_search(parent, &key, level, &slot);
1821 		if (ret && slot > 0)
1822 			slot--;
1823 
1824 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1825 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1826 
1827 		old_bytenr = btrfs_node_blockptr(parent, slot);
1828 		blocksize = dest->nodesize;
1829 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1830 
1831 		if (level <= max_level) {
1832 			eb = path->nodes[level];
1833 			new_bytenr = btrfs_node_blockptr(eb,
1834 							path->slots[level]);
1835 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1836 							path->slots[level]);
1837 		} else {
1838 			new_bytenr = 0;
1839 			new_ptr_gen = 0;
1840 		}
1841 
1842 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1843 			ret = level;
1844 			break;
1845 		}
1846 
1847 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1848 		    memcmp_node_keys(parent, slot, path, level)) {
1849 			if (level <= lowest_level) {
1850 				ret = 0;
1851 				break;
1852 			}
1853 
1854 			eb = read_tree_block(dest, old_bytenr, old_ptr_gen);
1855 			if (IS_ERR(eb)) {
1856 				ret = PTR_ERR(eb);
1857 				break;
1858 			} else if (!extent_buffer_uptodate(eb)) {
1859 				ret = -EIO;
1860 				free_extent_buffer(eb);
1861 				break;
1862 			}
1863 			btrfs_tree_lock(eb);
1864 			if (cow) {
1865 				ret = btrfs_cow_block(trans, dest, eb, parent,
1866 						      slot, &eb);
1867 				BUG_ON(ret);
1868 			}
1869 			btrfs_set_lock_blocking(eb);
1870 
1871 			btrfs_tree_unlock(parent);
1872 			free_extent_buffer(parent);
1873 
1874 			parent = eb;
1875 			continue;
1876 		}
1877 
1878 		if (!cow) {
1879 			btrfs_tree_unlock(parent);
1880 			free_extent_buffer(parent);
1881 			cow = 1;
1882 			goto again;
1883 		}
1884 
1885 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1886 				      path->slots[level]);
1887 		btrfs_release_path(path);
1888 
1889 		path->lowest_level = level;
1890 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1891 		path->lowest_level = 0;
1892 		BUG_ON(ret);
1893 
1894 		/*
1895 		 * swap blocks in fs tree and reloc tree.
1896 		 */
1897 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1898 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1899 		btrfs_mark_buffer_dirty(parent);
1900 
1901 		btrfs_set_node_blockptr(path->nodes[level],
1902 					path->slots[level], old_bytenr);
1903 		btrfs_set_node_ptr_generation(path->nodes[level],
1904 					      path->slots[level], old_ptr_gen);
1905 		btrfs_mark_buffer_dirty(path->nodes[level]);
1906 
1907 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1908 					path->nodes[level]->start,
1909 					src->root_key.objectid, level - 1, 0);
1910 		BUG_ON(ret);
1911 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1912 					0, dest->root_key.objectid, level - 1,
1913 					0);
1914 		BUG_ON(ret);
1915 
1916 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1917 					path->nodes[level]->start,
1918 					src->root_key.objectid, level - 1, 0);
1919 		BUG_ON(ret);
1920 
1921 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1922 					0, dest->root_key.objectid, level - 1,
1923 					0);
1924 		BUG_ON(ret);
1925 
1926 		btrfs_unlock_up_safe(path, 0);
1927 
1928 		ret = level;
1929 		break;
1930 	}
1931 	btrfs_tree_unlock(parent);
1932 	free_extent_buffer(parent);
1933 	return ret;
1934 }
1935 
1936 /*
1937  * helper to find next relocated block in reloc tree
1938  */
1939 static noinline_for_stack
1940 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1941 		       int *level)
1942 {
1943 	struct extent_buffer *eb;
1944 	int i;
1945 	u64 last_snapshot;
1946 	u32 nritems;
1947 
1948 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1949 
1950 	for (i = 0; i < *level; i++) {
1951 		free_extent_buffer(path->nodes[i]);
1952 		path->nodes[i] = NULL;
1953 	}
1954 
1955 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1956 		eb = path->nodes[i];
1957 		nritems = btrfs_header_nritems(eb);
1958 		while (path->slots[i] + 1 < nritems) {
1959 			path->slots[i]++;
1960 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1961 			    last_snapshot)
1962 				continue;
1963 
1964 			*level = i;
1965 			return 0;
1966 		}
1967 		free_extent_buffer(path->nodes[i]);
1968 		path->nodes[i] = NULL;
1969 	}
1970 	return 1;
1971 }
1972 
1973 /*
1974  * walk down reloc tree to find relocated block of lowest level
1975  */
1976 static noinline_for_stack
1977 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1978 			 int *level)
1979 {
1980 	struct extent_buffer *eb = NULL;
1981 	int i;
1982 	u64 bytenr;
1983 	u64 ptr_gen = 0;
1984 	u64 last_snapshot;
1985 	u32 nritems;
1986 
1987 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1988 
1989 	for (i = *level; i > 0; i--) {
1990 		eb = path->nodes[i];
1991 		nritems = btrfs_header_nritems(eb);
1992 		while (path->slots[i] < nritems) {
1993 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1994 			if (ptr_gen > last_snapshot)
1995 				break;
1996 			path->slots[i]++;
1997 		}
1998 		if (path->slots[i] >= nritems) {
1999 			if (i == *level)
2000 				break;
2001 			*level = i + 1;
2002 			return 0;
2003 		}
2004 		if (i == 1) {
2005 			*level = i;
2006 			return 0;
2007 		}
2008 
2009 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
2010 		eb = read_tree_block(root, bytenr, ptr_gen);
2011 		if (IS_ERR(eb)) {
2012 			return PTR_ERR(eb);
2013 		} else if (!extent_buffer_uptodate(eb)) {
2014 			free_extent_buffer(eb);
2015 			return -EIO;
2016 		}
2017 		BUG_ON(btrfs_header_level(eb) != i - 1);
2018 		path->nodes[i - 1] = eb;
2019 		path->slots[i - 1] = 0;
2020 	}
2021 	return 1;
2022 }
2023 
2024 /*
2025  * invalidate extent cache for file extents whose key in range of
2026  * [min_key, max_key)
2027  */
2028 static int invalidate_extent_cache(struct btrfs_root *root,
2029 				   struct btrfs_key *min_key,
2030 				   struct btrfs_key *max_key)
2031 {
2032 	struct inode *inode = NULL;
2033 	u64 objectid;
2034 	u64 start, end;
2035 	u64 ino;
2036 
2037 	objectid = min_key->objectid;
2038 	while (1) {
2039 		cond_resched();
2040 		iput(inode);
2041 
2042 		if (objectid > max_key->objectid)
2043 			break;
2044 
2045 		inode = find_next_inode(root, objectid);
2046 		if (!inode)
2047 			break;
2048 		ino = btrfs_ino(inode);
2049 
2050 		if (ino > max_key->objectid) {
2051 			iput(inode);
2052 			break;
2053 		}
2054 
2055 		objectid = ino + 1;
2056 		if (!S_ISREG(inode->i_mode))
2057 			continue;
2058 
2059 		if (unlikely(min_key->objectid == ino)) {
2060 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
2061 				continue;
2062 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
2063 				start = 0;
2064 			else {
2065 				start = min_key->offset;
2066 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
2067 			}
2068 		} else {
2069 			start = 0;
2070 		}
2071 
2072 		if (unlikely(max_key->objectid == ino)) {
2073 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2074 				continue;
2075 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2076 				end = (u64)-1;
2077 			} else {
2078 				if (max_key->offset == 0)
2079 					continue;
2080 				end = max_key->offset;
2081 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2082 				end--;
2083 			}
2084 		} else {
2085 			end = (u64)-1;
2086 		}
2087 
2088 		/* the lock_extent waits for readpage to complete */
2089 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2090 		btrfs_drop_extent_cache(inode, start, end, 1);
2091 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2092 	}
2093 	return 0;
2094 }
2095 
2096 static int find_next_key(struct btrfs_path *path, int level,
2097 			 struct btrfs_key *key)
2098 
2099 {
2100 	while (level < BTRFS_MAX_LEVEL) {
2101 		if (!path->nodes[level])
2102 			break;
2103 		if (path->slots[level] + 1 <
2104 		    btrfs_header_nritems(path->nodes[level])) {
2105 			btrfs_node_key_to_cpu(path->nodes[level], key,
2106 					      path->slots[level] + 1);
2107 			return 0;
2108 		}
2109 		level++;
2110 	}
2111 	return 1;
2112 }
2113 
2114 /*
2115  * merge the relocated tree blocks in reloc tree with corresponding
2116  * fs tree.
2117  */
2118 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2119 					       struct btrfs_root *root)
2120 {
2121 	LIST_HEAD(inode_list);
2122 	struct btrfs_key key;
2123 	struct btrfs_key next_key;
2124 	struct btrfs_trans_handle *trans = NULL;
2125 	struct btrfs_root *reloc_root;
2126 	struct btrfs_root_item *root_item;
2127 	struct btrfs_path *path;
2128 	struct extent_buffer *leaf;
2129 	int level;
2130 	int max_level;
2131 	int replaced = 0;
2132 	int ret;
2133 	int err = 0;
2134 	u32 min_reserved;
2135 
2136 	path = btrfs_alloc_path();
2137 	if (!path)
2138 		return -ENOMEM;
2139 	path->reada = READA_FORWARD;
2140 
2141 	reloc_root = root->reloc_root;
2142 	root_item = &reloc_root->root_item;
2143 
2144 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2145 		level = btrfs_root_level(root_item);
2146 		extent_buffer_get(reloc_root->node);
2147 		path->nodes[level] = reloc_root->node;
2148 		path->slots[level] = 0;
2149 	} else {
2150 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2151 
2152 		level = root_item->drop_level;
2153 		BUG_ON(level == 0);
2154 		path->lowest_level = level;
2155 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2156 		path->lowest_level = 0;
2157 		if (ret < 0) {
2158 			btrfs_free_path(path);
2159 			return ret;
2160 		}
2161 
2162 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2163 				      path->slots[level]);
2164 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2165 
2166 		btrfs_unlock_up_safe(path, 0);
2167 	}
2168 
2169 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2170 	memset(&next_key, 0, sizeof(next_key));
2171 
2172 	while (1) {
2173 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2174 					     BTRFS_RESERVE_FLUSH_ALL);
2175 		if (ret) {
2176 			err = ret;
2177 			goto out;
2178 		}
2179 		trans = btrfs_start_transaction(root, 0);
2180 		if (IS_ERR(trans)) {
2181 			err = PTR_ERR(trans);
2182 			trans = NULL;
2183 			goto out;
2184 		}
2185 		trans->block_rsv = rc->block_rsv;
2186 
2187 		replaced = 0;
2188 		max_level = level;
2189 
2190 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2191 		if (ret < 0) {
2192 			err = ret;
2193 			goto out;
2194 		}
2195 		if (ret > 0)
2196 			break;
2197 
2198 		if (!find_next_key(path, level, &key) &&
2199 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2200 			ret = 0;
2201 		} else {
2202 			ret = replace_path(trans, root, reloc_root, path,
2203 					   &next_key, level, max_level);
2204 		}
2205 		if (ret < 0) {
2206 			err = ret;
2207 			goto out;
2208 		}
2209 
2210 		if (ret > 0) {
2211 			level = ret;
2212 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2213 					      path->slots[level]);
2214 			replaced = 1;
2215 		}
2216 
2217 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2218 		if (ret > 0)
2219 			break;
2220 
2221 		BUG_ON(level == 0);
2222 		/*
2223 		 * save the merging progress in the drop_progress.
2224 		 * this is OK since root refs == 1 in this case.
2225 		 */
2226 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2227 			       path->slots[level]);
2228 		root_item->drop_level = level;
2229 
2230 		btrfs_end_transaction_throttle(trans, root);
2231 		trans = NULL;
2232 
2233 		btrfs_btree_balance_dirty(root);
2234 
2235 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2236 			invalidate_extent_cache(root, &key, &next_key);
2237 	}
2238 
2239 	/*
2240 	 * handle the case only one block in the fs tree need to be
2241 	 * relocated and the block is tree root.
2242 	 */
2243 	leaf = btrfs_lock_root_node(root);
2244 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2245 	btrfs_tree_unlock(leaf);
2246 	free_extent_buffer(leaf);
2247 	if (ret < 0)
2248 		err = ret;
2249 out:
2250 	btrfs_free_path(path);
2251 
2252 	if (err == 0) {
2253 		memset(&root_item->drop_progress, 0,
2254 		       sizeof(root_item->drop_progress));
2255 		root_item->drop_level = 0;
2256 		btrfs_set_root_refs(root_item, 0);
2257 		btrfs_update_reloc_root(trans, root);
2258 	}
2259 
2260 	if (trans)
2261 		btrfs_end_transaction_throttle(trans, root);
2262 
2263 	btrfs_btree_balance_dirty(root);
2264 
2265 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2266 		invalidate_extent_cache(root, &key, &next_key);
2267 
2268 	return err;
2269 }
2270 
2271 static noinline_for_stack
2272 int prepare_to_merge(struct reloc_control *rc, int err)
2273 {
2274 	struct btrfs_root *root = rc->extent_root;
2275 	struct btrfs_root *reloc_root;
2276 	struct btrfs_trans_handle *trans;
2277 	LIST_HEAD(reloc_roots);
2278 	u64 num_bytes = 0;
2279 	int ret;
2280 
2281 	mutex_lock(&root->fs_info->reloc_mutex);
2282 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2283 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2284 	mutex_unlock(&root->fs_info->reloc_mutex);
2285 
2286 again:
2287 	if (!err) {
2288 		num_bytes = rc->merging_rsv_size;
2289 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2290 					  BTRFS_RESERVE_FLUSH_ALL);
2291 		if (ret)
2292 			err = ret;
2293 	}
2294 
2295 	trans = btrfs_join_transaction(rc->extent_root);
2296 	if (IS_ERR(trans)) {
2297 		if (!err)
2298 			btrfs_block_rsv_release(rc->extent_root,
2299 						rc->block_rsv, num_bytes);
2300 		return PTR_ERR(trans);
2301 	}
2302 
2303 	if (!err) {
2304 		if (num_bytes != rc->merging_rsv_size) {
2305 			btrfs_end_transaction(trans, rc->extent_root);
2306 			btrfs_block_rsv_release(rc->extent_root,
2307 						rc->block_rsv, num_bytes);
2308 			goto again;
2309 		}
2310 	}
2311 
2312 	rc->merge_reloc_tree = 1;
2313 
2314 	while (!list_empty(&rc->reloc_roots)) {
2315 		reloc_root = list_entry(rc->reloc_roots.next,
2316 					struct btrfs_root, root_list);
2317 		list_del_init(&reloc_root->root_list);
2318 
2319 		root = read_fs_root(reloc_root->fs_info,
2320 				    reloc_root->root_key.offset);
2321 		BUG_ON(IS_ERR(root));
2322 		BUG_ON(root->reloc_root != reloc_root);
2323 
2324 		/*
2325 		 * set reference count to 1, so btrfs_recover_relocation
2326 		 * knows it should resumes merging
2327 		 */
2328 		if (!err)
2329 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2330 		btrfs_update_reloc_root(trans, root);
2331 
2332 		list_add(&reloc_root->root_list, &reloc_roots);
2333 	}
2334 
2335 	list_splice(&reloc_roots, &rc->reloc_roots);
2336 
2337 	if (!err)
2338 		btrfs_commit_transaction(trans, rc->extent_root);
2339 	else
2340 		btrfs_end_transaction(trans, rc->extent_root);
2341 	return err;
2342 }
2343 
2344 static noinline_for_stack
2345 void free_reloc_roots(struct list_head *list)
2346 {
2347 	struct btrfs_root *reloc_root;
2348 
2349 	while (!list_empty(list)) {
2350 		reloc_root = list_entry(list->next, struct btrfs_root,
2351 					root_list);
2352 		__del_reloc_root(reloc_root);
2353 	}
2354 }
2355 
2356 static noinline_for_stack
2357 void merge_reloc_roots(struct reloc_control *rc)
2358 {
2359 	struct btrfs_root *root;
2360 	struct btrfs_root *reloc_root;
2361 	u64 last_snap;
2362 	u64 otransid;
2363 	u64 objectid;
2364 	LIST_HEAD(reloc_roots);
2365 	int found = 0;
2366 	int ret = 0;
2367 again:
2368 	root = rc->extent_root;
2369 
2370 	/*
2371 	 * this serializes us with btrfs_record_root_in_transaction,
2372 	 * we have to make sure nobody is in the middle of
2373 	 * adding their roots to the list while we are
2374 	 * doing this splice
2375 	 */
2376 	mutex_lock(&root->fs_info->reloc_mutex);
2377 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2378 	mutex_unlock(&root->fs_info->reloc_mutex);
2379 
2380 	while (!list_empty(&reloc_roots)) {
2381 		found = 1;
2382 		reloc_root = list_entry(reloc_roots.next,
2383 					struct btrfs_root, root_list);
2384 
2385 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2386 			root = read_fs_root(reloc_root->fs_info,
2387 					    reloc_root->root_key.offset);
2388 			BUG_ON(IS_ERR(root));
2389 			BUG_ON(root->reloc_root != reloc_root);
2390 
2391 			ret = merge_reloc_root(rc, root);
2392 			if (ret) {
2393 				if (list_empty(&reloc_root->root_list))
2394 					list_add_tail(&reloc_root->root_list,
2395 						      &reloc_roots);
2396 				goto out;
2397 			}
2398 		} else {
2399 			list_del_init(&reloc_root->root_list);
2400 		}
2401 
2402 		/*
2403 		 * we keep the old last snapshot transid in rtranid when we
2404 		 * created the relocation tree.
2405 		 */
2406 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2407 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2408 		objectid = reloc_root->root_key.offset;
2409 
2410 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2411 		if (ret < 0) {
2412 			if (list_empty(&reloc_root->root_list))
2413 				list_add_tail(&reloc_root->root_list,
2414 					      &reloc_roots);
2415 			goto out;
2416 		}
2417 	}
2418 
2419 	if (found) {
2420 		found = 0;
2421 		goto again;
2422 	}
2423 out:
2424 	if (ret) {
2425 		btrfs_handle_fs_error(root->fs_info, ret, NULL);
2426 		if (!list_empty(&reloc_roots))
2427 			free_reloc_roots(&reloc_roots);
2428 
2429 		/* new reloc root may be added */
2430 		mutex_lock(&root->fs_info->reloc_mutex);
2431 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2432 		mutex_unlock(&root->fs_info->reloc_mutex);
2433 		if (!list_empty(&reloc_roots))
2434 			free_reloc_roots(&reloc_roots);
2435 	}
2436 
2437 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2438 }
2439 
2440 static void free_block_list(struct rb_root *blocks)
2441 {
2442 	struct tree_block *block;
2443 	struct rb_node *rb_node;
2444 	while ((rb_node = rb_first(blocks))) {
2445 		block = rb_entry(rb_node, struct tree_block, rb_node);
2446 		rb_erase(rb_node, blocks);
2447 		kfree(block);
2448 	}
2449 }
2450 
2451 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2452 				      struct btrfs_root *reloc_root)
2453 {
2454 	struct btrfs_root *root;
2455 
2456 	if (reloc_root->last_trans == trans->transid)
2457 		return 0;
2458 
2459 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2460 	BUG_ON(IS_ERR(root));
2461 	BUG_ON(root->reloc_root != reloc_root);
2462 
2463 	return btrfs_record_root_in_trans(trans, root);
2464 }
2465 
2466 static noinline_for_stack
2467 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2468 				     struct reloc_control *rc,
2469 				     struct backref_node *node,
2470 				     struct backref_edge *edges[])
2471 {
2472 	struct backref_node *next;
2473 	struct btrfs_root *root;
2474 	int index = 0;
2475 
2476 	next = node;
2477 	while (1) {
2478 		cond_resched();
2479 		next = walk_up_backref(next, edges, &index);
2480 		root = next->root;
2481 		BUG_ON(!root);
2482 		BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state));
2483 
2484 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2485 			record_reloc_root_in_trans(trans, root);
2486 			break;
2487 		}
2488 
2489 		btrfs_record_root_in_trans(trans, root);
2490 		root = root->reloc_root;
2491 
2492 		if (next->new_bytenr != root->node->start) {
2493 			BUG_ON(next->new_bytenr);
2494 			BUG_ON(!list_empty(&next->list));
2495 			next->new_bytenr = root->node->start;
2496 			next->root = root;
2497 			list_add_tail(&next->list,
2498 				      &rc->backref_cache.changed);
2499 			__mark_block_processed(rc, next);
2500 			break;
2501 		}
2502 
2503 		WARN_ON(1);
2504 		root = NULL;
2505 		next = walk_down_backref(edges, &index);
2506 		if (!next || next->level <= node->level)
2507 			break;
2508 	}
2509 	if (!root)
2510 		return NULL;
2511 
2512 	next = node;
2513 	/* setup backref node path for btrfs_reloc_cow_block */
2514 	while (1) {
2515 		rc->backref_cache.path[next->level] = next;
2516 		if (--index < 0)
2517 			break;
2518 		next = edges[index]->node[UPPER];
2519 	}
2520 	return root;
2521 }
2522 
2523 /*
2524  * select a tree root for relocation. return NULL if the block
2525  * is reference counted. we should use do_relocation() in this
2526  * case. return a tree root pointer if the block isn't reference
2527  * counted. return -ENOENT if the block is root of reloc tree.
2528  */
2529 static noinline_for_stack
2530 struct btrfs_root *select_one_root(struct backref_node *node)
2531 {
2532 	struct backref_node *next;
2533 	struct btrfs_root *root;
2534 	struct btrfs_root *fs_root = NULL;
2535 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2536 	int index = 0;
2537 
2538 	next = node;
2539 	while (1) {
2540 		cond_resched();
2541 		next = walk_up_backref(next, edges, &index);
2542 		root = next->root;
2543 		BUG_ON(!root);
2544 
2545 		/* no other choice for non-references counted tree */
2546 		if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
2547 			return root;
2548 
2549 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2550 			fs_root = root;
2551 
2552 		if (next != node)
2553 			return NULL;
2554 
2555 		next = walk_down_backref(edges, &index);
2556 		if (!next || next->level <= node->level)
2557 			break;
2558 	}
2559 
2560 	if (!fs_root)
2561 		return ERR_PTR(-ENOENT);
2562 	return fs_root;
2563 }
2564 
2565 static noinline_for_stack
2566 u64 calcu_metadata_size(struct reloc_control *rc,
2567 			struct backref_node *node, int reserve)
2568 {
2569 	struct backref_node *next = node;
2570 	struct backref_edge *edge;
2571 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2572 	u64 num_bytes = 0;
2573 	int index = 0;
2574 
2575 	BUG_ON(reserve && node->processed);
2576 
2577 	while (next) {
2578 		cond_resched();
2579 		while (1) {
2580 			if (next->processed && (reserve || next != node))
2581 				break;
2582 
2583 			num_bytes += rc->extent_root->nodesize;
2584 
2585 			if (list_empty(&next->upper))
2586 				break;
2587 
2588 			edge = list_entry(next->upper.next,
2589 					  struct backref_edge, list[LOWER]);
2590 			edges[index++] = edge;
2591 			next = edge->node[UPPER];
2592 		}
2593 		next = walk_down_backref(edges, &index);
2594 	}
2595 	return num_bytes;
2596 }
2597 
2598 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2599 				  struct reloc_control *rc,
2600 				  struct backref_node *node)
2601 {
2602 	struct btrfs_root *root = rc->extent_root;
2603 	u64 num_bytes;
2604 	int ret;
2605 	u64 tmp;
2606 
2607 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2608 
2609 	trans->block_rsv = rc->block_rsv;
2610 	rc->reserved_bytes += num_bytes;
2611 
2612 	/*
2613 	 * We are under a transaction here so we can only do limited flushing.
2614 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2615 	 * transaction and try to refill when we can flush all the things.
2616 	 */
2617 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2618 				BTRFS_RESERVE_FLUSH_LIMIT);
2619 	if (ret) {
2620 		tmp = rc->extent_root->nodesize * RELOCATION_RESERVED_NODES;
2621 		while (tmp <= rc->reserved_bytes)
2622 			tmp <<= 1;
2623 		/*
2624 		 * only one thread can access block_rsv at this point,
2625 		 * so we don't need hold lock to protect block_rsv.
2626 		 * we expand more reservation size here to allow enough
2627 		 * space for relocation and we will return eailer in
2628 		 * enospc case.
2629 		 */
2630 		rc->block_rsv->size = tmp + rc->extent_root->nodesize *
2631 			RELOCATION_RESERVED_NODES;
2632 		return -EAGAIN;
2633 	}
2634 
2635 	return 0;
2636 }
2637 
2638 /*
2639  * relocate a block tree, and then update pointers in upper level
2640  * blocks that reference the block to point to the new location.
2641  *
2642  * if called by link_to_upper, the block has already been relocated.
2643  * in that case this function just updates pointers.
2644  */
2645 static int do_relocation(struct btrfs_trans_handle *trans,
2646 			 struct reloc_control *rc,
2647 			 struct backref_node *node,
2648 			 struct btrfs_key *key,
2649 			 struct btrfs_path *path, int lowest)
2650 {
2651 	struct backref_node *upper;
2652 	struct backref_edge *edge;
2653 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2654 	struct btrfs_root *root;
2655 	struct extent_buffer *eb;
2656 	u32 blocksize;
2657 	u64 bytenr;
2658 	u64 generation;
2659 	int slot;
2660 	int ret;
2661 	int err = 0;
2662 
2663 	BUG_ON(lowest && node->eb);
2664 
2665 	path->lowest_level = node->level + 1;
2666 	rc->backref_cache.path[node->level] = node;
2667 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2668 		cond_resched();
2669 
2670 		upper = edge->node[UPPER];
2671 		root = select_reloc_root(trans, rc, upper, edges);
2672 		BUG_ON(!root);
2673 
2674 		if (upper->eb && !upper->locked) {
2675 			if (!lowest) {
2676 				ret = btrfs_bin_search(upper->eb, key,
2677 						       upper->level, &slot);
2678 				BUG_ON(ret);
2679 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2680 				if (node->eb->start == bytenr)
2681 					goto next;
2682 			}
2683 			drop_node_buffer(upper);
2684 		}
2685 
2686 		if (!upper->eb) {
2687 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2688 			if (ret < 0) {
2689 				err = ret;
2690 				break;
2691 			}
2692 			BUG_ON(ret > 0);
2693 
2694 			if (!upper->eb) {
2695 				upper->eb = path->nodes[upper->level];
2696 				path->nodes[upper->level] = NULL;
2697 			} else {
2698 				BUG_ON(upper->eb != path->nodes[upper->level]);
2699 			}
2700 
2701 			upper->locked = 1;
2702 			path->locks[upper->level] = 0;
2703 
2704 			slot = path->slots[upper->level];
2705 			btrfs_release_path(path);
2706 		} else {
2707 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2708 					       &slot);
2709 			BUG_ON(ret);
2710 		}
2711 
2712 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2713 		if (lowest) {
2714 			BUG_ON(bytenr != node->bytenr);
2715 		} else {
2716 			if (node->eb->start == bytenr)
2717 				goto next;
2718 		}
2719 
2720 		blocksize = root->nodesize;
2721 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2722 		eb = read_tree_block(root, bytenr, generation);
2723 		if (IS_ERR(eb)) {
2724 			err = PTR_ERR(eb);
2725 			goto next;
2726 		} else if (!extent_buffer_uptodate(eb)) {
2727 			free_extent_buffer(eb);
2728 			err = -EIO;
2729 			goto next;
2730 		}
2731 		btrfs_tree_lock(eb);
2732 		btrfs_set_lock_blocking(eb);
2733 
2734 		if (!node->eb) {
2735 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2736 					      slot, &eb);
2737 			btrfs_tree_unlock(eb);
2738 			free_extent_buffer(eb);
2739 			if (ret < 0) {
2740 				err = ret;
2741 				goto next;
2742 			}
2743 			BUG_ON(node->eb != eb);
2744 		} else {
2745 			btrfs_set_node_blockptr(upper->eb, slot,
2746 						node->eb->start);
2747 			btrfs_set_node_ptr_generation(upper->eb, slot,
2748 						      trans->transid);
2749 			btrfs_mark_buffer_dirty(upper->eb);
2750 
2751 			ret = btrfs_inc_extent_ref(trans, root,
2752 						node->eb->start, blocksize,
2753 						upper->eb->start,
2754 						btrfs_header_owner(upper->eb),
2755 						node->level, 0);
2756 			BUG_ON(ret);
2757 
2758 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2759 			BUG_ON(ret);
2760 		}
2761 next:
2762 		if (!upper->pending)
2763 			drop_node_buffer(upper);
2764 		else
2765 			unlock_node_buffer(upper);
2766 		if (err)
2767 			break;
2768 	}
2769 
2770 	if (!err && node->pending) {
2771 		drop_node_buffer(node);
2772 		list_move_tail(&node->list, &rc->backref_cache.changed);
2773 		node->pending = 0;
2774 	}
2775 
2776 	path->lowest_level = 0;
2777 	BUG_ON(err == -ENOSPC);
2778 	return err;
2779 }
2780 
2781 static int link_to_upper(struct btrfs_trans_handle *trans,
2782 			 struct reloc_control *rc,
2783 			 struct backref_node *node,
2784 			 struct btrfs_path *path)
2785 {
2786 	struct btrfs_key key;
2787 
2788 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2789 	return do_relocation(trans, rc, node, &key, path, 0);
2790 }
2791 
2792 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2793 				struct reloc_control *rc,
2794 				struct btrfs_path *path, int err)
2795 {
2796 	LIST_HEAD(list);
2797 	struct backref_cache *cache = &rc->backref_cache;
2798 	struct backref_node *node;
2799 	int level;
2800 	int ret;
2801 
2802 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2803 		while (!list_empty(&cache->pending[level])) {
2804 			node = list_entry(cache->pending[level].next,
2805 					  struct backref_node, list);
2806 			list_move_tail(&node->list, &list);
2807 			BUG_ON(!node->pending);
2808 
2809 			if (!err) {
2810 				ret = link_to_upper(trans, rc, node, path);
2811 				if (ret < 0)
2812 					err = ret;
2813 			}
2814 		}
2815 		list_splice_init(&list, &cache->pending[level]);
2816 	}
2817 	return err;
2818 }
2819 
2820 static void mark_block_processed(struct reloc_control *rc,
2821 				 u64 bytenr, u32 blocksize)
2822 {
2823 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2824 			EXTENT_DIRTY);
2825 }
2826 
2827 static void __mark_block_processed(struct reloc_control *rc,
2828 				   struct backref_node *node)
2829 {
2830 	u32 blocksize;
2831 	if (node->level == 0 ||
2832 	    in_block_group(node->bytenr, rc->block_group)) {
2833 		blocksize = rc->extent_root->nodesize;
2834 		mark_block_processed(rc, node->bytenr, blocksize);
2835 	}
2836 	node->processed = 1;
2837 }
2838 
2839 /*
2840  * mark a block and all blocks directly/indirectly reference the block
2841  * as processed.
2842  */
2843 static void update_processed_blocks(struct reloc_control *rc,
2844 				    struct backref_node *node)
2845 {
2846 	struct backref_node *next = node;
2847 	struct backref_edge *edge;
2848 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2849 	int index = 0;
2850 
2851 	while (next) {
2852 		cond_resched();
2853 		while (1) {
2854 			if (next->processed)
2855 				break;
2856 
2857 			__mark_block_processed(rc, next);
2858 
2859 			if (list_empty(&next->upper))
2860 				break;
2861 
2862 			edge = list_entry(next->upper.next,
2863 					  struct backref_edge, list[LOWER]);
2864 			edges[index++] = edge;
2865 			next = edge->node[UPPER];
2866 		}
2867 		next = walk_down_backref(edges, &index);
2868 	}
2869 }
2870 
2871 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2872 {
2873 	u32 blocksize = rc->extent_root->nodesize;
2874 
2875 	if (test_range_bit(&rc->processed_blocks, bytenr,
2876 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2877 		return 1;
2878 	return 0;
2879 }
2880 
2881 static int get_tree_block_key(struct reloc_control *rc,
2882 			      struct tree_block *block)
2883 {
2884 	struct extent_buffer *eb;
2885 
2886 	BUG_ON(block->key_ready);
2887 	eb = read_tree_block(rc->extent_root, block->bytenr,
2888 			     block->key.offset);
2889 	if (IS_ERR(eb)) {
2890 		return PTR_ERR(eb);
2891 	} else if (!extent_buffer_uptodate(eb)) {
2892 		free_extent_buffer(eb);
2893 		return -EIO;
2894 	}
2895 	WARN_ON(btrfs_header_level(eb) != block->level);
2896 	if (block->level == 0)
2897 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2898 	else
2899 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2900 	free_extent_buffer(eb);
2901 	block->key_ready = 1;
2902 	return 0;
2903 }
2904 
2905 /*
2906  * helper function to relocate a tree block
2907  */
2908 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2909 				struct reloc_control *rc,
2910 				struct backref_node *node,
2911 				struct btrfs_key *key,
2912 				struct btrfs_path *path)
2913 {
2914 	struct btrfs_root *root;
2915 	int ret = 0;
2916 
2917 	if (!node)
2918 		return 0;
2919 
2920 	BUG_ON(node->processed);
2921 	root = select_one_root(node);
2922 	if (root == ERR_PTR(-ENOENT)) {
2923 		update_processed_blocks(rc, node);
2924 		goto out;
2925 	}
2926 
2927 	if (!root || test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2928 		ret = reserve_metadata_space(trans, rc, node);
2929 		if (ret)
2930 			goto out;
2931 	}
2932 
2933 	if (root) {
2934 		if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
2935 			BUG_ON(node->new_bytenr);
2936 			BUG_ON(!list_empty(&node->list));
2937 			btrfs_record_root_in_trans(trans, root);
2938 			root = root->reloc_root;
2939 			node->new_bytenr = root->node->start;
2940 			node->root = root;
2941 			list_add_tail(&node->list, &rc->backref_cache.changed);
2942 		} else {
2943 			path->lowest_level = node->level;
2944 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2945 			btrfs_release_path(path);
2946 			if (ret > 0)
2947 				ret = 0;
2948 		}
2949 		if (!ret)
2950 			update_processed_blocks(rc, node);
2951 	} else {
2952 		ret = do_relocation(trans, rc, node, key, path, 1);
2953 	}
2954 out:
2955 	if (ret || node->level == 0 || node->cowonly)
2956 		remove_backref_node(&rc->backref_cache, node);
2957 	return ret;
2958 }
2959 
2960 /*
2961  * relocate a list of blocks
2962  */
2963 static noinline_for_stack
2964 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2965 			 struct reloc_control *rc, struct rb_root *blocks)
2966 {
2967 	struct backref_node *node;
2968 	struct btrfs_path *path;
2969 	struct tree_block *block;
2970 	struct rb_node *rb_node;
2971 	int ret;
2972 	int err = 0;
2973 
2974 	path = btrfs_alloc_path();
2975 	if (!path) {
2976 		err = -ENOMEM;
2977 		goto out_free_blocks;
2978 	}
2979 
2980 	rb_node = rb_first(blocks);
2981 	while (rb_node) {
2982 		block = rb_entry(rb_node, struct tree_block, rb_node);
2983 		if (!block->key_ready)
2984 			readahead_tree_block(rc->extent_root, block->bytenr);
2985 		rb_node = rb_next(rb_node);
2986 	}
2987 
2988 	rb_node = rb_first(blocks);
2989 	while (rb_node) {
2990 		block = rb_entry(rb_node, struct tree_block, rb_node);
2991 		if (!block->key_ready) {
2992 			err = get_tree_block_key(rc, block);
2993 			if (err)
2994 				goto out_free_path;
2995 		}
2996 		rb_node = rb_next(rb_node);
2997 	}
2998 
2999 	rb_node = rb_first(blocks);
3000 	while (rb_node) {
3001 		block = rb_entry(rb_node, struct tree_block, rb_node);
3002 
3003 		node = build_backref_tree(rc, &block->key,
3004 					  block->level, block->bytenr);
3005 		if (IS_ERR(node)) {
3006 			err = PTR_ERR(node);
3007 			goto out;
3008 		}
3009 
3010 		ret = relocate_tree_block(trans, rc, node, &block->key,
3011 					  path);
3012 		if (ret < 0) {
3013 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
3014 				err = ret;
3015 			goto out;
3016 		}
3017 		rb_node = rb_next(rb_node);
3018 	}
3019 out:
3020 	err = finish_pending_nodes(trans, rc, path, err);
3021 
3022 out_free_path:
3023 	btrfs_free_path(path);
3024 out_free_blocks:
3025 	free_block_list(blocks);
3026 	return err;
3027 }
3028 
3029 static noinline_for_stack
3030 int prealloc_file_extent_cluster(struct inode *inode,
3031 				 struct file_extent_cluster *cluster)
3032 {
3033 	u64 alloc_hint = 0;
3034 	u64 start;
3035 	u64 end;
3036 	u64 offset = BTRFS_I(inode)->index_cnt;
3037 	u64 num_bytes;
3038 	int nr = 0;
3039 	int ret = 0;
3040 
3041 	BUG_ON(cluster->start != cluster->boundary[0]);
3042 	inode_lock(inode);
3043 
3044 	ret = btrfs_check_data_free_space(inode, cluster->start,
3045 					  cluster->end + 1 - cluster->start);
3046 	if (ret)
3047 		goto out;
3048 
3049 	while (nr < cluster->nr) {
3050 		start = cluster->boundary[nr] - offset;
3051 		if (nr + 1 < cluster->nr)
3052 			end = cluster->boundary[nr + 1] - 1 - offset;
3053 		else
3054 			end = cluster->end - offset;
3055 
3056 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3057 		num_bytes = end + 1 - start;
3058 		ret = btrfs_prealloc_file_range(inode, 0, start,
3059 						num_bytes, num_bytes,
3060 						end + 1, &alloc_hint);
3061 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3062 		if (ret)
3063 			break;
3064 		nr++;
3065 	}
3066 	btrfs_free_reserved_data_space(inode, cluster->start,
3067 				       cluster->end + 1 - cluster->start);
3068 out:
3069 	inode_unlock(inode);
3070 	return ret;
3071 }
3072 
3073 static noinline_for_stack
3074 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3075 			 u64 block_start)
3076 {
3077 	struct btrfs_root *root = BTRFS_I(inode)->root;
3078 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3079 	struct extent_map *em;
3080 	int ret = 0;
3081 
3082 	em = alloc_extent_map();
3083 	if (!em)
3084 		return -ENOMEM;
3085 
3086 	em->start = start;
3087 	em->len = end + 1 - start;
3088 	em->block_len = em->len;
3089 	em->block_start = block_start;
3090 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3091 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3092 
3093 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3094 	while (1) {
3095 		write_lock(&em_tree->lock);
3096 		ret = add_extent_mapping(em_tree, em, 0);
3097 		write_unlock(&em_tree->lock);
3098 		if (ret != -EEXIST) {
3099 			free_extent_map(em);
3100 			break;
3101 		}
3102 		btrfs_drop_extent_cache(inode, start, end, 0);
3103 	}
3104 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3105 	return ret;
3106 }
3107 
3108 static int relocate_file_extent_cluster(struct inode *inode,
3109 					struct file_extent_cluster *cluster)
3110 {
3111 	u64 page_start;
3112 	u64 page_end;
3113 	u64 offset = BTRFS_I(inode)->index_cnt;
3114 	unsigned long index;
3115 	unsigned long last_index;
3116 	struct page *page;
3117 	struct file_ra_state *ra;
3118 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3119 	int nr = 0;
3120 	int ret = 0;
3121 
3122 	if (!cluster->nr)
3123 		return 0;
3124 
3125 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3126 	if (!ra)
3127 		return -ENOMEM;
3128 
3129 	ret = prealloc_file_extent_cluster(inode, cluster);
3130 	if (ret)
3131 		goto out;
3132 
3133 	file_ra_state_init(ra, inode->i_mapping);
3134 
3135 	ret = setup_extent_mapping(inode, cluster->start - offset,
3136 				   cluster->end - offset, cluster->start);
3137 	if (ret)
3138 		goto out;
3139 
3140 	index = (cluster->start - offset) >> PAGE_SHIFT;
3141 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3142 	while (index <= last_index) {
3143 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_SIZE);
3144 		if (ret)
3145 			goto out;
3146 
3147 		page = find_lock_page(inode->i_mapping, index);
3148 		if (!page) {
3149 			page_cache_sync_readahead(inode->i_mapping,
3150 						  ra, NULL, index,
3151 						  last_index + 1 - index);
3152 			page = find_or_create_page(inode->i_mapping, index,
3153 						   mask);
3154 			if (!page) {
3155 				btrfs_delalloc_release_metadata(inode,
3156 							PAGE_SIZE);
3157 				ret = -ENOMEM;
3158 				goto out;
3159 			}
3160 		}
3161 
3162 		if (PageReadahead(page)) {
3163 			page_cache_async_readahead(inode->i_mapping,
3164 						   ra, NULL, page, index,
3165 						   last_index + 1 - index);
3166 		}
3167 
3168 		if (!PageUptodate(page)) {
3169 			btrfs_readpage(NULL, page);
3170 			lock_page(page);
3171 			if (!PageUptodate(page)) {
3172 				unlock_page(page);
3173 				put_page(page);
3174 				btrfs_delalloc_release_metadata(inode,
3175 							PAGE_SIZE);
3176 				ret = -EIO;
3177 				goto out;
3178 			}
3179 		}
3180 
3181 		page_start = page_offset(page);
3182 		page_end = page_start + PAGE_SIZE - 1;
3183 
3184 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3185 
3186 		set_page_extent_mapped(page);
3187 
3188 		if (nr < cluster->nr &&
3189 		    page_start + offset == cluster->boundary[nr]) {
3190 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3191 					page_start, page_end,
3192 					EXTENT_BOUNDARY);
3193 			nr++;
3194 		}
3195 
3196 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3197 		set_page_dirty(page);
3198 
3199 		unlock_extent(&BTRFS_I(inode)->io_tree,
3200 			      page_start, page_end);
3201 		unlock_page(page);
3202 		put_page(page);
3203 
3204 		index++;
3205 		balance_dirty_pages_ratelimited(inode->i_mapping);
3206 		btrfs_throttle(BTRFS_I(inode)->root);
3207 	}
3208 	WARN_ON(nr != cluster->nr);
3209 out:
3210 	kfree(ra);
3211 	return ret;
3212 }
3213 
3214 static noinline_for_stack
3215 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3216 			 struct file_extent_cluster *cluster)
3217 {
3218 	int ret;
3219 
3220 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3221 		ret = relocate_file_extent_cluster(inode, cluster);
3222 		if (ret)
3223 			return ret;
3224 		cluster->nr = 0;
3225 	}
3226 
3227 	if (!cluster->nr)
3228 		cluster->start = extent_key->objectid;
3229 	else
3230 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3231 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3232 	cluster->boundary[cluster->nr] = extent_key->objectid;
3233 	cluster->nr++;
3234 
3235 	if (cluster->nr >= MAX_EXTENTS) {
3236 		ret = relocate_file_extent_cluster(inode, cluster);
3237 		if (ret)
3238 			return ret;
3239 		cluster->nr = 0;
3240 	}
3241 	return 0;
3242 }
3243 
3244 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3245 static int get_ref_objectid_v0(struct reloc_control *rc,
3246 			       struct btrfs_path *path,
3247 			       struct btrfs_key *extent_key,
3248 			       u64 *ref_objectid, int *path_change)
3249 {
3250 	struct btrfs_key key;
3251 	struct extent_buffer *leaf;
3252 	struct btrfs_extent_ref_v0 *ref0;
3253 	int ret;
3254 	int slot;
3255 
3256 	leaf = path->nodes[0];
3257 	slot = path->slots[0];
3258 	while (1) {
3259 		if (slot >= btrfs_header_nritems(leaf)) {
3260 			ret = btrfs_next_leaf(rc->extent_root, path);
3261 			if (ret < 0)
3262 				return ret;
3263 			BUG_ON(ret > 0);
3264 			leaf = path->nodes[0];
3265 			slot = path->slots[0];
3266 			if (path_change)
3267 				*path_change = 1;
3268 		}
3269 		btrfs_item_key_to_cpu(leaf, &key, slot);
3270 		if (key.objectid != extent_key->objectid)
3271 			return -ENOENT;
3272 
3273 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3274 			slot++;
3275 			continue;
3276 		}
3277 		ref0 = btrfs_item_ptr(leaf, slot,
3278 				struct btrfs_extent_ref_v0);
3279 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3280 		break;
3281 	}
3282 	return 0;
3283 }
3284 #endif
3285 
3286 /*
3287  * helper to add a tree block to the list.
3288  * the major work is getting the generation and level of the block
3289  */
3290 static int add_tree_block(struct reloc_control *rc,
3291 			  struct btrfs_key *extent_key,
3292 			  struct btrfs_path *path,
3293 			  struct rb_root *blocks)
3294 {
3295 	struct extent_buffer *eb;
3296 	struct btrfs_extent_item *ei;
3297 	struct btrfs_tree_block_info *bi;
3298 	struct tree_block *block;
3299 	struct rb_node *rb_node;
3300 	u32 item_size;
3301 	int level = -1;
3302 	u64 generation;
3303 
3304 	eb =  path->nodes[0];
3305 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3306 
3307 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3308 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3309 		ei = btrfs_item_ptr(eb, path->slots[0],
3310 				struct btrfs_extent_item);
3311 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3312 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3313 			level = btrfs_tree_block_level(eb, bi);
3314 		} else {
3315 			level = (int)extent_key->offset;
3316 		}
3317 		generation = btrfs_extent_generation(eb, ei);
3318 	} else {
3319 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3320 		u64 ref_owner;
3321 		int ret;
3322 
3323 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3324 		ret = get_ref_objectid_v0(rc, path, extent_key,
3325 					  &ref_owner, NULL);
3326 		if (ret < 0)
3327 			return ret;
3328 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3329 		level = (int)ref_owner;
3330 		/* FIXME: get real generation */
3331 		generation = 0;
3332 #else
3333 		BUG();
3334 #endif
3335 	}
3336 
3337 	btrfs_release_path(path);
3338 
3339 	BUG_ON(level == -1);
3340 
3341 	block = kmalloc(sizeof(*block), GFP_NOFS);
3342 	if (!block)
3343 		return -ENOMEM;
3344 
3345 	block->bytenr = extent_key->objectid;
3346 	block->key.objectid = rc->extent_root->nodesize;
3347 	block->key.offset = generation;
3348 	block->level = level;
3349 	block->key_ready = 0;
3350 
3351 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3352 	if (rb_node)
3353 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3354 
3355 	return 0;
3356 }
3357 
3358 /*
3359  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3360  */
3361 static int __add_tree_block(struct reloc_control *rc,
3362 			    u64 bytenr, u32 blocksize,
3363 			    struct rb_root *blocks)
3364 {
3365 	struct btrfs_path *path;
3366 	struct btrfs_key key;
3367 	int ret;
3368 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3369 					SKINNY_METADATA);
3370 
3371 	if (tree_block_processed(bytenr, rc))
3372 		return 0;
3373 
3374 	if (tree_search(blocks, bytenr))
3375 		return 0;
3376 
3377 	path = btrfs_alloc_path();
3378 	if (!path)
3379 		return -ENOMEM;
3380 again:
3381 	key.objectid = bytenr;
3382 	if (skinny) {
3383 		key.type = BTRFS_METADATA_ITEM_KEY;
3384 		key.offset = (u64)-1;
3385 	} else {
3386 		key.type = BTRFS_EXTENT_ITEM_KEY;
3387 		key.offset = blocksize;
3388 	}
3389 
3390 	path->search_commit_root = 1;
3391 	path->skip_locking = 1;
3392 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3393 	if (ret < 0)
3394 		goto out;
3395 
3396 	if (ret > 0 && skinny) {
3397 		if (path->slots[0]) {
3398 			path->slots[0]--;
3399 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3400 					      path->slots[0]);
3401 			if (key.objectid == bytenr &&
3402 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3403 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3404 			      key.offset == blocksize)))
3405 				ret = 0;
3406 		}
3407 
3408 		if (ret) {
3409 			skinny = false;
3410 			btrfs_release_path(path);
3411 			goto again;
3412 		}
3413 	}
3414 	BUG_ON(ret);
3415 
3416 	ret = add_tree_block(rc, &key, path, blocks);
3417 out:
3418 	btrfs_free_path(path);
3419 	return ret;
3420 }
3421 
3422 /*
3423  * helper to check if the block use full backrefs for pointers in it
3424  */
3425 static int block_use_full_backref(struct reloc_control *rc,
3426 				  struct extent_buffer *eb)
3427 {
3428 	u64 flags;
3429 	int ret;
3430 
3431 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3432 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3433 		return 1;
3434 
3435 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3436 				       eb->start, btrfs_header_level(eb), 1,
3437 				       NULL, &flags);
3438 	BUG_ON(ret);
3439 
3440 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3441 		ret = 1;
3442 	else
3443 		ret = 0;
3444 	return ret;
3445 }
3446 
3447 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3448 				    struct btrfs_block_group_cache *block_group,
3449 				    struct inode *inode,
3450 				    u64 ino)
3451 {
3452 	struct btrfs_key key;
3453 	struct btrfs_root *root = fs_info->tree_root;
3454 	struct btrfs_trans_handle *trans;
3455 	int ret = 0;
3456 
3457 	if (inode)
3458 		goto truncate;
3459 
3460 	key.objectid = ino;
3461 	key.type = BTRFS_INODE_ITEM_KEY;
3462 	key.offset = 0;
3463 
3464 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3465 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3466 		if (!IS_ERR(inode))
3467 			iput(inode);
3468 		return -ENOENT;
3469 	}
3470 
3471 truncate:
3472 	ret = btrfs_check_trunc_cache_free_space(root,
3473 						 &fs_info->global_block_rsv);
3474 	if (ret)
3475 		goto out;
3476 
3477 	trans = btrfs_join_transaction(root);
3478 	if (IS_ERR(trans)) {
3479 		ret = PTR_ERR(trans);
3480 		goto out;
3481 	}
3482 
3483 	ret = btrfs_truncate_free_space_cache(root, trans, block_group, inode);
3484 
3485 	btrfs_end_transaction(trans, root);
3486 	btrfs_btree_balance_dirty(root);
3487 out:
3488 	iput(inode);
3489 	return ret;
3490 }
3491 
3492 /*
3493  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3494  * this function scans fs tree to find blocks reference the data extent
3495  */
3496 static int find_data_references(struct reloc_control *rc,
3497 				struct btrfs_key *extent_key,
3498 				struct extent_buffer *leaf,
3499 				struct btrfs_extent_data_ref *ref,
3500 				struct rb_root *blocks)
3501 {
3502 	struct btrfs_path *path;
3503 	struct tree_block *block;
3504 	struct btrfs_root *root;
3505 	struct btrfs_file_extent_item *fi;
3506 	struct rb_node *rb_node;
3507 	struct btrfs_key key;
3508 	u64 ref_root;
3509 	u64 ref_objectid;
3510 	u64 ref_offset;
3511 	u32 ref_count;
3512 	u32 nritems;
3513 	int err = 0;
3514 	int added = 0;
3515 	int counted;
3516 	int ret;
3517 
3518 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3519 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3520 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3521 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3522 
3523 	/*
3524 	 * This is an extent belonging to the free space cache, lets just delete
3525 	 * it and redo the search.
3526 	 */
3527 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3528 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3529 					       rc->block_group,
3530 					       NULL, ref_objectid);
3531 		if (ret != -ENOENT)
3532 			return ret;
3533 		ret = 0;
3534 	}
3535 
3536 	path = btrfs_alloc_path();
3537 	if (!path)
3538 		return -ENOMEM;
3539 	path->reada = READA_FORWARD;
3540 
3541 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3542 	if (IS_ERR(root)) {
3543 		err = PTR_ERR(root);
3544 		goto out;
3545 	}
3546 
3547 	key.objectid = ref_objectid;
3548 	key.type = BTRFS_EXTENT_DATA_KEY;
3549 	if (ref_offset > ((u64)-1 << 32))
3550 		key.offset = 0;
3551 	else
3552 		key.offset = ref_offset;
3553 
3554 	path->search_commit_root = 1;
3555 	path->skip_locking = 1;
3556 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3557 	if (ret < 0) {
3558 		err = ret;
3559 		goto out;
3560 	}
3561 
3562 	leaf = path->nodes[0];
3563 	nritems = btrfs_header_nritems(leaf);
3564 	/*
3565 	 * the references in tree blocks that use full backrefs
3566 	 * are not counted in
3567 	 */
3568 	if (block_use_full_backref(rc, leaf))
3569 		counted = 0;
3570 	else
3571 		counted = 1;
3572 	rb_node = tree_search(blocks, leaf->start);
3573 	if (rb_node) {
3574 		if (counted)
3575 			added = 1;
3576 		else
3577 			path->slots[0] = nritems;
3578 	}
3579 
3580 	while (ref_count > 0) {
3581 		while (path->slots[0] >= nritems) {
3582 			ret = btrfs_next_leaf(root, path);
3583 			if (ret < 0) {
3584 				err = ret;
3585 				goto out;
3586 			}
3587 			if (WARN_ON(ret > 0))
3588 				goto out;
3589 
3590 			leaf = path->nodes[0];
3591 			nritems = btrfs_header_nritems(leaf);
3592 			added = 0;
3593 
3594 			if (block_use_full_backref(rc, leaf))
3595 				counted = 0;
3596 			else
3597 				counted = 1;
3598 			rb_node = tree_search(blocks, leaf->start);
3599 			if (rb_node) {
3600 				if (counted)
3601 					added = 1;
3602 				else
3603 					path->slots[0] = nritems;
3604 			}
3605 		}
3606 
3607 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3608 		if (WARN_ON(key.objectid != ref_objectid ||
3609 		    key.type != BTRFS_EXTENT_DATA_KEY))
3610 			break;
3611 
3612 		fi = btrfs_item_ptr(leaf, path->slots[0],
3613 				    struct btrfs_file_extent_item);
3614 
3615 		if (btrfs_file_extent_type(leaf, fi) ==
3616 		    BTRFS_FILE_EXTENT_INLINE)
3617 			goto next;
3618 
3619 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3620 		    extent_key->objectid)
3621 			goto next;
3622 
3623 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3624 		if (key.offset != ref_offset)
3625 			goto next;
3626 
3627 		if (counted)
3628 			ref_count--;
3629 		if (added)
3630 			goto next;
3631 
3632 		if (!tree_block_processed(leaf->start, rc)) {
3633 			block = kmalloc(sizeof(*block), GFP_NOFS);
3634 			if (!block) {
3635 				err = -ENOMEM;
3636 				break;
3637 			}
3638 			block->bytenr = leaf->start;
3639 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3640 			block->level = 0;
3641 			block->key_ready = 1;
3642 			rb_node = tree_insert(blocks, block->bytenr,
3643 					      &block->rb_node);
3644 			if (rb_node)
3645 				backref_tree_panic(rb_node, -EEXIST,
3646 						   block->bytenr);
3647 		}
3648 		if (counted)
3649 			added = 1;
3650 		else
3651 			path->slots[0] = nritems;
3652 next:
3653 		path->slots[0]++;
3654 
3655 	}
3656 out:
3657 	btrfs_free_path(path);
3658 	return err;
3659 }
3660 
3661 /*
3662  * helper to find all tree blocks that reference a given data extent
3663  */
3664 static noinline_for_stack
3665 int add_data_references(struct reloc_control *rc,
3666 			struct btrfs_key *extent_key,
3667 			struct btrfs_path *path,
3668 			struct rb_root *blocks)
3669 {
3670 	struct btrfs_key key;
3671 	struct extent_buffer *eb;
3672 	struct btrfs_extent_data_ref *dref;
3673 	struct btrfs_extent_inline_ref *iref;
3674 	unsigned long ptr;
3675 	unsigned long end;
3676 	u32 blocksize = rc->extent_root->nodesize;
3677 	int ret = 0;
3678 	int err = 0;
3679 
3680 	eb = path->nodes[0];
3681 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3682 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3683 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3684 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3685 		ptr = end;
3686 	else
3687 #endif
3688 		ptr += sizeof(struct btrfs_extent_item);
3689 
3690 	while (ptr < end) {
3691 		iref = (struct btrfs_extent_inline_ref *)ptr;
3692 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3693 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3694 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3695 			ret = __add_tree_block(rc, key.offset, blocksize,
3696 					       blocks);
3697 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3698 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3699 			ret = find_data_references(rc, extent_key,
3700 						   eb, dref, blocks);
3701 		} else {
3702 			BUG();
3703 		}
3704 		if (ret) {
3705 			err = ret;
3706 			goto out;
3707 		}
3708 		ptr += btrfs_extent_inline_ref_size(key.type);
3709 	}
3710 	WARN_ON(ptr > end);
3711 
3712 	while (1) {
3713 		cond_resched();
3714 		eb = path->nodes[0];
3715 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3716 			ret = btrfs_next_leaf(rc->extent_root, path);
3717 			if (ret < 0) {
3718 				err = ret;
3719 				break;
3720 			}
3721 			if (ret > 0)
3722 				break;
3723 			eb = path->nodes[0];
3724 		}
3725 
3726 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3727 		if (key.objectid != extent_key->objectid)
3728 			break;
3729 
3730 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3731 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3732 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3733 #else
3734 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3735 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3736 #endif
3737 			ret = __add_tree_block(rc, key.offset, blocksize,
3738 					       blocks);
3739 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3740 			dref = btrfs_item_ptr(eb, path->slots[0],
3741 					      struct btrfs_extent_data_ref);
3742 			ret = find_data_references(rc, extent_key,
3743 						   eb, dref, blocks);
3744 		} else {
3745 			ret = 0;
3746 		}
3747 		if (ret) {
3748 			err = ret;
3749 			break;
3750 		}
3751 		path->slots[0]++;
3752 	}
3753 out:
3754 	btrfs_release_path(path);
3755 	if (err)
3756 		free_block_list(blocks);
3757 	return err;
3758 }
3759 
3760 /*
3761  * helper to find next unprocessed extent
3762  */
3763 static noinline_for_stack
3764 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3765 		     struct btrfs_key *extent_key)
3766 {
3767 	struct btrfs_key key;
3768 	struct extent_buffer *leaf;
3769 	u64 start, end, last;
3770 	int ret;
3771 
3772 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3773 	while (1) {
3774 		cond_resched();
3775 		if (rc->search_start >= last) {
3776 			ret = 1;
3777 			break;
3778 		}
3779 
3780 		key.objectid = rc->search_start;
3781 		key.type = BTRFS_EXTENT_ITEM_KEY;
3782 		key.offset = 0;
3783 
3784 		path->search_commit_root = 1;
3785 		path->skip_locking = 1;
3786 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3787 					0, 0);
3788 		if (ret < 0)
3789 			break;
3790 next:
3791 		leaf = path->nodes[0];
3792 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3793 			ret = btrfs_next_leaf(rc->extent_root, path);
3794 			if (ret != 0)
3795 				break;
3796 			leaf = path->nodes[0];
3797 		}
3798 
3799 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3800 		if (key.objectid >= last) {
3801 			ret = 1;
3802 			break;
3803 		}
3804 
3805 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3806 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3807 			path->slots[0]++;
3808 			goto next;
3809 		}
3810 
3811 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3812 		    key.objectid + key.offset <= rc->search_start) {
3813 			path->slots[0]++;
3814 			goto next;
3815 		}
3816 
3817 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3818 		    key.objectid + rc->extent_root->nodesize <=
3819 		    rc->search_start) {
3820 			path->slots[0]++;
3821 			goto next;
3822 		}
3823 
3824 		ret = find_first_extent_bit(&rc->processed_blocks,
3825 					    key.objectid, &start, &end,
3826 					    EXTENT_DIRTY, NULL);
3827 
3828 		if (ret == 0 && start <= key.objectid) {
3829 			btrfs_release_path(path);
3830 			rc->search_start = end + 1;
3831 		} else {
3832 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3833 				rc->search_start = key.objectid + key.offset;
3834 			else
3835 				rc->search_start = key.objectid +
3836 					rc->extent_root->nodesize;
3837 			memcpy(extent_key, &key, sizeof(key));
3838 			return 0;
3839 		}
3840 	}
3841 	btrfs_release_path(path);
3842 	return ret;
3843 }
3844 
3845 static void set_reloc_control(struct reloc_control *rc)
3846 {
3847 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3848 
3849 	mutex_lock(&fs_info->reloc_mutex);
3850 	fs_info->reloc_ctl = rc;
3851 	mutex_unlock(&fs_info->reloc_mutex);
3852 }
3853 
3854 static void unset_reloc_control(struct reloc_control *rc)
3855 {
3856 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3857 
3858 	mutex_lock(&fs_info->reloc_mutex);
3859 	fs_info->reloc_ctl = NULL;
3860 	mutex_unlock(&fs_info->reloc_mutex);
3861 }
3862 
3863 static int check_extent_flags(u64 flags)
3864 {
3865 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3866 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3867 		return 1;
3868 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3869 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3870 		return 1;
3871 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3872 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3873 		return 1;
3874 	return 0;
3875 }
3876 
3877 static noinline_for_stack
3878 int prepare_to_relocate(struct reloc_control *rc)
3879 {
3880 	struct btrfs_trans_handle *trans;
3881 	int ret;
3882 
3883 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3884 					      BTRFS_BLOCK_RSV_TEMP);
3885 	if (!rc->block_rsv)
3886 		return -ENOMEM;
3887 
3888 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3889 	rc->search_start = rc->block_group->key.objectid;
3890 	rc->extents_found = 0;
3891 	rc->nodes_relocated = 0;
3892 	rc->merging_rsv_size = 0;
3893 	rc->reserved_bytes = 0;
3894 	rc->block_rsv->size = rc->extent_root->nodesize *
3895 			      RELOCATION_RESERVED_NODES;
3896 	ret = btrfs_block_rsv_refill(rc->extent_root,
3897 				     rc->block_rsv, rc->block_rsv->size,
3898 				     BTRFS_RESERVE_FLUSH_ALL);
3899 	if (ret)
3900 		return ret;
3901 
3902 	rc->create_reloc_tree = 1;
3903 	set_reloc_control(rc);
3904 
3905 	trans = btrfs_join_transaction(rc->extent_root);
3906 	if (IS_ERR(trans)) {
3907 		unset_reloc_control(rc);
3908 		/*
3909 		 * extent tree is not a ref_cow tree and has no reloc_root to
3910 		 * cleanup.  And callers are responsible to free the above
3911 		 * block rsv.
3912 		 */
3913 		return PTR_ERR(trans);
3914 	}
3915 	btrfs_commit_transaction(trans, rc->extent_root);
3916 	return 0;
3917 }
3918 
3919 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3920 {
3921 	struct rb_root blocks = RB_ROOT;
3922 	struct btrfs_key key;
3923 	struct btrfs_trans_handle *trans = NULL;
3924 	struct btrfs_path *path;
3925 	struct btrfs_extent_item *ei;
3926 	u64 flags;
3927 	u32 item_size;
3928 	int ret;
3929 	int err = 0;
3930 	int progress = 0;
3931 
3932 	path = btrfs_alloc_path();
3933 	if (!path)
3934 		return -ENOMEM;
3935 	path->reada = READA_FORWARD;
3936 
3937 	ret = prepare_to_relocate(rc);
3938 	if (ret) {
3939 		err = ret;
3940 		goto out_free;
3941 	}
3942 
3943 	while (1) {
3944 		rc->reserved_bytes = 0;
3945 		ret = btrfs_block_rsv_refill(rc->extent_root,
3946 					rc->block_rsv, rc->block_rsv->size,
3947 					BTRFS_RESERVE_FLUSH_ALL);
3948 		if (ret) {
3949 			err = ret;
3950 			break;
3951 		}
3952 		progress++;
3953 		trans = btrfs_start_transaction(rc->extent_root, 0);
3954 		if (IS_ERR(trans)) {
3955 			err = PTR_ERR(trans);
3956 			trans = NULL;
3957 			break;
3958 		}
3959 restart:
3960 		if (update_backref_cache(trans, &rc->backref_cache)) {
3961 			btrfs_end_transaction(trans, rc->extent_root);
3962 			continue;
3963 		}
3964 
3965 		ret = find_next_extent(rc, path, &key);
3966 		if (ret < 0)
3967 			err = ret;
3968 		if (ret != 0)
3969 			break;
3970 
3971 		rc->extents_found++;
3972 
3973 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3974 				    struct btrfs_extent_item);
3975 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3976 		if (item_size >= sizeof(*ei)) {
3977 			flags = btrfs_extent_flags(path->nodes[0], ei);
3978 			ret = check_extent_flags(flags);
3979 			BUG_ON(ret);
3980 
3981 		} else {
3982 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3983 			u64 ref_owner;
3984 			int path_change = 0;
3985 
3986 			BUG_ON(item_size !=
3987 			       sizeof(struct btrfs_extent_item_v0));
3988 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3989 						  &path_change);
3990 			if (ret < 0) {
3991 				err = ret;
3992 				break;
3993 			}
3994 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3995 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3996 			else
3997 				flags = BTRFS_EXTENT_FLAG_DATA;
3998 
3999 			if (path_change) {
4000 				btrfs_release_path(path);
4001 
4002 				path->search_commit_root = 1;
4003 				path->skip_locking = 1;
4004 				ret = btrfs_search_slot(NULL, rc->extent_root,
4005 							&key, path, 0, 0);
4006 				if (ret < 0) {
4007 					err = ret;
4008 					break;
4009 				}
4010 				BUG_ON(ret > 0);
4011 			}
4012 #else
4013 			BUG();
4014 #endif
4015 		}
4016 
4017 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
4018 			ret = add_tree_block(rc, &key, path, &blocks);
4019 		} else if (rc->stage == UPDATE_DATA_PTRS &&
4020 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
4021 			ret = add_data_references(rc, &key, path, &blocks);
4022 		} else {
4023 			btrfs_release_path(path);
4024 			ret = 0;
4025 		}
4026 		if (ret < 0) {
4027 			err = ret;
4028 			break;
4029 		}
4030 
4031 		if (!RB_EMPTY_ROOT(&blocks)) {
4032 			ret = relocate_tree_blocks(trans, rc, &blocks);
4033 			if (ret < 0) {
4034 				/*
4035 				 * if we fail to relocate tree blocks, force to update
4036 				 * backref cache when committing transaction.
4037 				 */
4038 				rc->backref_cache.last_trans = trans->transid - 1;
4039 
4040 				if (ret != -EAGAIN) {
4041 					err = ret;
4042 					break;
4043 				}
4044 				rc->extents_found--;
4045 				rc->search_start = key.objectid;
4046 			}
4047 		}
4048 
4049 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4050 		btrfs_btree_balance_dirty(rc->extent_root);
4051 		trans = NULL;
4052 
4053 		if (rc->stage == MOVE_DATA_EXTENTS &&
4054 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4055 			rc->found_file_extent = 1;
4056 			ret = relocate_data_extent(rc->data_inode,
4057 						   &key, &rc->cluster);
4058 			if (ret < 0) {
4059 				err = ret;
4060 				break;
4061 			}
4062 		}
4063 	}
4064 	if (trans && progress && err == -ENOSPC) {
4065 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4066 					      rc->block_group->flags);
4067 		if (ret == 1) {
4068 			err = 0;
4069 			progress = 0;
4070 			goto restart;
4071 		}
4072 	}
4073 
4074 	btrfs_release_path(path);
4075 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
4076 
4077 	if (trans) {
4078 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4079 		btrfs_btree_balance_dirty(rc->extent_root);
4080 	}
4081 
4082 	if (!err) {
4083 		ret = relocate_file_extent_cluster(rc->data_inode,
4084 						   &rc->cluster);
4085 		if (ret < 0)
4086 			err = ret;
4087 	}
4088 
4089 	rc->create_reloc_tree = 0;
4090 	set_reloc_control(rc);
4091 
4092 	backref_cache_cleanup(&rc->backref_cache);
4093 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4094 
4095 	err = prepare_to_merge(rc, err);
4096 
4097 	merge_reloc_roots(rc);
4098 
4099 	rc->merge_reloc_tree = 0;
4100 	unset_reloc_control(rc);
4101 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4102 
4103 	/* get rid of pinned extents */
4104 	trans = btrfs_join_transaction(rc->extent_root);
4105 	if (IS_ERR(trans))
4106 		err = PTR_ERR(trans);
4107 	else
4108 		btrfs_commit_transaction(trans, rc->extent_root);
4109 out_free:
4110 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4111 	btrfs_free_path(path);
4112 	return err;
4113 }
4114 
4115 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4116 				 struct btrfs_root *root, u64 objectid)
4117 {
4118 	struct btrfs_path *path;
4119 	struct btrfs_inode_item *item;
4120 	struct extent_buffer *leaf;
4121 	int ret;
4122 
4123 	path = btrfs_alloc_path();
4124 	if (!path)
4125 		return -ENOMEM;
4126 
4127 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4128 	if (ret)
4129 		goto out;
4130 
4131 	leaf = path->nodes[0];
4132 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4133 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4134 	btrfs_set_inode_generation(leaf, item, 1);
4135 	btrfs_set_inode_size(leaf, item, 0);
4136 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4137 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4138 					  BTRFS_INODE_PREALLOC);
4139 	btrfs_mark_buffer_dirty(leaf);
4140 out:
4141 	btrfs_free_path(path);
4142 	return ret;
4143 }
4144 
4145 /*
4146  * helper to create inode for data relocation.
4147  * the inode is in data relocation tree and its link count is 0
4148  */
4149 static noinline_for_stack
4150 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4151 				 struct btrfs_block_group_cache *group)
4152 {
4153 	struct inode *inode = NULL;
4154 	struct btrfs_trans_handle *trans;
4155 	struct btrfs_root *root;
4156 	struct btrfs_key key;
4157 	u64 objectid;
4158 	int err = 0;
4159 
4160 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4161 	if (IS_ERR(root))
4162 		return ERR_CAST(root);
4163 
4164 	trans = btrfs_start_transaction(root, 6);
4165 	if (IS_ERR(trans))
4166 		return ERR_CAST(trans);
4167 
4168 	err = btrfs_find_free_objectid(root, &objectid);
4169 	if (err)
4170 		goto out;
4171 
4172 	err = __insert_orphan_inode(trans, root, objectid);
4173 	BUG_ON(err);
4174 
4175 	key.objectid = objectid;
4176 	key.type = BTRFS_INODE_ITEM_KEY;
4177 	key.offset = 0;
4178 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4179 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4180 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4181 
4182 	err = btrfs_orphan_add(trans, inode);
4183 out:
4184 	btrfs_end_transaction(trans, root);
4185 	btrfs_btree_balance_dirty(root);
4186 	if (err) {
4187 		if (inode)
4188 			iput(inode);
4189 		inode = ERR_PTR(err);
4190 	}
4191 	return inode;
4192 }
4193 
4194 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4195 {
4196 	struct reloc_control *rc;
4197 
4198 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4199 	if (!rc)
4200 		return NULL;
4201 
4202 	INIT_LIST_HEAD(&rc->reloc_roots);
4203 	backref_cache_init(&rc->backref_cache);
4204 	mapping_tree_init(&rc->reloc_root_tree);
4205 	extent_io_tree_init(&rc->processed_blocks,
4206 			    fs_info->btree_inode->i_mapping);
4207 	return rc;
4208 }
4209 
4210 /*
4211  * function to relocate all extents in a block group.
4212  */
4213 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4214 {
4215 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4216 	struct reloc_control *rc;
4217 	struct inode *inode;
4218 	struct btrfs_path *path;
4219 	int ret;
4220 	int rw = 0;
4221 	int err = 0;
4222 
4223 	rc = alloc_reloc_control(fs_info);
4224 	if (!rc)
4225 		return -ENOMEM;
4226 
4227 	rc->extent_root = extent_root;
4228 
4229 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4230 	BUG_ON(!rc->block_group);
4231 
4232 	ret = btrfs_inc_block_group_ro(extent_root, rc->block_group);
4233 	if (ret) {
4234 		err = ret;
4235 		goto out;
4236 	}
4237 	rw = 1;
4238 
4239 	path = btrfs_alloc_path();
4240 	if (!path) {
4241 		err = -ENOMEM;
4242 		goto out;
4243 	}
4244 
4245 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4246 					path);
4247 	btrfs_free_path(path);
4248 
4249 	if (!IS_ERR(inode))
4250 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4251 	else
4252 		ret = PTR_ERR(inode);
4253 
4254 	if (ret && ret != -ENOENT) {
4255 		err = ret;
4256 		goto out;
4257 	}
4258 
4259 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4260 	if (IS_ERR(rc->data_inode)) {
4261 		err = PTR_ERR(rc->data_inode);
4262 		rc->data_inode = NULL;
4263 		goto out;
4264 	}
4265 
4266 	btrfs_info(extent_root->fs_info, "relocating block group %llu flags %llu",
4267 	       rc->block_group->key.objectid, rc->block_group->flags);
4268 
4269 	btrfs_wait_block_group_reservations(rc->block_group);
4270 	btrfs_wait_nocow_writers(rc->block_group);
4271 	btrfs_wait_ordered_roots(fs_info, -1,
4272 				 rc->block_group->key.objectid,
4273 				 rc->block_group->key.offset);
4274 
4275 	while (1) {
4276 		mutex_lock(&fs_info->cleaner_mutex);
4277 		ret = relocate_block_group(rc);
4278 		mutex_unlock(&fs_info->cleaner_mutex);
4279 		if (ret < 0) {
4280 			err = ret;
4281 			goto out;
4282 		}
4283 
4284 		if (rc->extents_found == 0)
4285 			break;
4286 
4287 		btrfs_info(extent_root->fs_info, "found %llu extents",
4288 			rc->extents_found);
4289 
4290 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4291 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4292 						       (u64)-1);
4293 			if (ret) {
4294 				err = ret;
4295 				goto out;
4296 			}
4297 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4298 						 0, -1);
4299 			rc->stage = UPDATE_DATA_PTRS;
4300 		}
4301 	}
4302 
4303 	WARN_ON(rc->block_group->pinned > 0);
4304 	WARN_ON(rc->block_group->reserved > 0);
4305 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4306 out:
4307 	if (err && rw)
4308 		btrfs_dec_block_group_ro(extent_root, rc->block_group);
4309 	iput(rc->data_inode);
4310 	btrfs_put_block_group(rc->block_group);
4311 	kfree(rc);
4312 	return err;
4313 }
4314 
4315 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4316 {
4317 	struct btrfs_trans_handle *trans;
4318 	int ret, err;
4319 
4320 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4321 	if (IS_ERR(trans))
4322 		return PTR_ERR(trans);
4323 
4324 	memset(&root->root_item.drop_progress, 0,
4325 		sizeof(root->root_item.drop_progress));
4326 	root->root_item.drop_level = 0;
4327 	btrfs_set_root_refs(&root->root_item, 0);
4328 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4329 				&root->root_key, &root->root_item);
4330 
4331 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4332 	if (err)
4333 		return err;
4334 	return ret;
4335 }
4336 
4337 /*
4338  * recover relocation interrupted by system crash.
4339  *
4340  * this function resumes merging reloc trees with corresponding fs trees.
4341  * this is important for keeping the sharing of tree blocks
4342  */
4343 int btrfs_recover_relocation(struct btrfs_root *root)
4344 {
4345 	LIST_HEAD(reloc_roots);
4346 	struct btrfs_key key;
4347 	struct btrfs_root *fs_root;
4348 	struct btrfs_root *reloc_root;
4349 	struct btrfs_path *path;
4350 	struct extent_buffer *leaf;
4351 	struct reloc_control *rc = NULL;
4352 	struct btrfs_trans_handle *trans;
4353 	int ret;
4354 	int err = 0;
4355 
4356 	path = btrfs_alloc_path();
4357 	if (!path)
4358 		return -ENOMEM;
4359 	path->reada = READA_BACK;
4360 
4361 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4362 	key.type = BTRFS_ROOT_ITEM_KEY;
4363 	key.offset = (u64)-1;
4364 
4365 	while (1) {
4366 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4367 					path, 0, 0);
4368 		if (ret < 0) {
4369 			err = ret;
4370 			goto out;
4371 		}
4372 		if (ret > 0) {
4373 			if (path->slots[0] == 0)
4374 				break;
4375 			path->slots[0]--;
4376 		}
4377 		leaf = path->nodes[0];
4378 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4379 		btrfs_release_path(path);
4380 
4381 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4382 		    key.type != BTRFS_ROOT_ITEM_KEY)
4383 			break;
4384 
4385 		reloc_root = btrfs_read_fs_root(root, &key);
4386 		if (IS_ERR(reloc_root)) {
4387 			err = PTR_ERR(reloc_root);
4388 			goto out;
4389 		}
4390 
4391 		list_add(&reloc_root->root_list, &reloc_roots);
4392 
4393 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4394 			fs_root = read_fs_root(root->fs_info,
4395 					       reloc_root->root_key.offset);
4396 			if (IS_ERR(fs_root)) {
4397 				ret = PTR_ERR(fs_root);
4398 				if (ret != -ENOENT) {
4399 					err = ret;
4400 					goto out;
4401 				}
4402 				ret = mark_garbage_root(reloc_root);
4403 				if (ret < 0) {
4404 					err = ret;
4405 					goto out;
4406 				}
4407 			}
4408 		}
4409 
4410 		if (key.offset == 0)
4411 			break;
4412 
4413 		key.offset--;
4414 	}
4415 	btrfs_release_path(path);
4416 
4417 	if (list_empty(&reloc_roots))
4418 		goto out;
4419 
4420 	rc = alloc_reloc_control(root->fs_info);
4421 	if (!rc) {
4422 		err = -ENOMEM;
4423 		goto out;
4424 	}
4425 
4426 	rc->extent_root = root->fs_info->extent_root;
4427 
4428 	set_reloc_control(rc);
4429 
4430 	trans = btrfs_join_transaction(rc->extent_root);
4431 	if (IS_ERR(trans)) {
4432 		unset_reloc_control(rc);
4433 		err = PTR_ERR(trans);
4434 		goto out_free;
4435 	}
4436 
4437 	rc->merge_reloc_tree = 1;
4438 
4439 	while (!list_empty(&reloc_roots)) {
4440 		reloc_root = list_entry(reloc_roots.next,
4441 					struct btrfs_root, root_list);
4442 		list_del(&reloc_root->root_list);
4443 
4444 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4445 			list_add_tail(&reloc_root->root_list,
4446 				      &rc->reloc_roots);
4447 			continue;
4448 		}
4449 
4450 		fs_root = read_fs_root(root->fs_info,
4451 				       reloc_root->root_key.offset);
4452 		if (IS_ERR(fs_root)) {
4453 			err = PTR_ERR(fs_root);
4454 			goto out_free;
4455 		}
4456 
4457 		err = __add_reloc_root(reloc_root);
4458 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4459 		fs_root->reloc_root = reloc_root;
4460 	}
4461 
4462 	err = btrfs_commit_transaction(trans, rc->extent_root);
4463 	if (err)
4464 		goto out_free;
4465 
4466 	merge_reloc_roots(rc);
4467 
4468 	unset_reloc_control(rc);
4469 
4470 	trans = btrfs_join_transaction(rc->extent_root);
4471 	if (IS_ERR(trans))
4472 		err = PTR_ERR(trans);
4473 	else
4474 		err = btrfs_commit_transaction(trans, rc->extent_root);
4475 out_free:
4476 	kfree(rc);
4477 out:
4478 	if (!list_empty(&reloc_roots))
4479 		free_reloc_roots(&reloc_roots);
4480 
4481 	btrfs_free_path(path);
4482 
4483 	if (err == 0) {
4484 		/* cleanup orphan inode in data relocation tree */
4485 		fs_root = read_fs_root(root->fs_info,
4486 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4487 		if (IS_ERR(fs_root))
4488 			err = PTR_ERR(fs_root);
4489 		else
4490 			err = btrfs_orphan_cleanup(fs_root);
4491 	}
4492 	return err;
4493 }
4494 
4495 /*
4496  * helper to add ordered checksum for data relocation.
4497  *
4498  * cloning checksum properly handles the nodatasum extents.
4499  * it also saves CPU time to re-calculate the checksum.
4500  */
4501 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4502 {
4503 	struct btrfs_ordered_sum *sums;
4504 	struct btrfs_ordered_extent *ordered;
4505 	struct btrfs_root *root = BTRFS_I(inode)->root;
4506 	int ret;
4507 	u64 disk_bytenr;
4508 	u64 new_bytenr;
4509 	LIST_HEAD(list);
4510 
4511 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4512 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4513 
4514 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4515 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4516 				       disk_bytenr + len - 1, &list, 0);
4517 	if (ret)
4518 		goto out;
4519 
4520 	while (!list_empty(&list)) {
4521 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4522 		list_del_init(&sums->list);
4523 
4524 		/*
4525 		 * We need to offset the new_bytenr based on where the csum is.
4526 		 * We need to do this because we will read in entire prealloc
4527 		 * extents but we may have written to say the middle of the
4528 		 * prealloc extent, so we need to make sure the csum goes with
4529 		 * the right disk offset.
4530 		 *
4531 		 * We can do this because the data reloc inode refers strictly
4532 		 * to the on disk bytes, so we don't have to worry about
4533 		 * disk_len vs real len like with real inodes since it's all
4534 		 * disk length.
4535 		 */
4536 		new_bytenr = ordered->start + (sums->bytenr - disk_bytenr);
4537 		sums->bytenr = new_bytenr;
4538 
4539 		btrfs_add_ordered_sum(inode, ordered, sums);
4540 	}
4541 out:
4542 	btrfs_put_ordered_extent(ordered);
4543 	return ret;
4544 }
4545 
4546 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4547 			  struct btrfs_root *root, struct extent_buffer *buf,
4548 			  struct extent_buffer *cow)
4549 {
4550 	struct reloc_control *rc;
4551 	struct backref_node *node;
4552 	int first_cow = 0;
4553 	int level;
4554 	int ret = 0;
4555 
4556 	rc = root->fs_info->reloc_ctl;
4557 	if (!rc)
4558 		return 0;
4559 
4560 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4561 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4562 
4563 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
4564 		if (buf == root->node)
4565 			__update_reloc_root(root, cow->start);
4566 	}
4567 
4568 	level = btrfs_header_level(buf);
4569 	if (btrfs_header_generation(buf) <=
4570 	    btrfs_root_last_snapshot(&root->root_item))
4571 		first_cow = 1;
4572 
4573 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4574 	    rc->create_reloc_tree) {
4575 		WARN_ON(!first_cow && level == 0);
4576 
4577 		node = rc->backref_cache.path[level];
4578 		BUG_ON(node->bytenr != buf->start &&
4579 		       node->new_bytenr != buf->start);
4580 
4581 		drop_node_buffer(node);
4582 		extent_buffer_get(cow);
4583 		node->eb = cow;
4584 		node->new_bytenr = cow->start;
4585 
4586 		if (!node->pending) {
4587 			list_move_tail(&node->list,
4588 				       &rc->backref_cache.pending[level]);
4589 			node->pending = 1;
4590 		}
4591 
4592 		if (first_cow)
4593 			__mark_block_processed(rc, node);
4594 
4595 		if (first_cow && level > 0)
4596 			rc->nodes_relocated += buf->len;
4597 	}
4598 
4599 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4600 		ret = replace_file_extents(trans, rc, root, cow);
4601 	return ret;
4602 }
4603 
4604 /*
4605  * called before creating snapshot. it calculates metadata reservation
4606  * required for relocating tree blocks in the snapshot
4607  */
4608 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4609 			      u64 *bytes_to_reserve)
4610 {
4611 	struct btrfs_root *root;
4612 	struct reloc_control *rc;
4613 
4614 	root = pending->root;
4615 	if (!root->reloc_root)
4616 		return;
4617 
4618 	rc = root->fs_info->reloc_ctl;
4619 	if (!rc->merge_reloc_tree)
4620 		return;
4621 
4622 	root = root->reloc_root;
4623 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4624 	/*
4625 	 * relocation is in the stage of merging trees. the space
4626 	 * used by merging a reloc tree is twice the size of
4627 	 * relocated tree nodes in the worst case. half for cowing
4628 	 * the reloc tree, half for cowing the fs tree. the space
4629 	 * used by cowing the reloc tree will be freed after the
4630 	 * tree is dropped. if we create snapshot, cowing the fs
4631 	 * tree may use more space than it frees. so we need
4632 	 * reserve extra space.
4633 	 */
4634 	*bytes_to_reserve += rc->nodes_relocated;
4635 }
4636 
4637 /*
4638  * called after snapshot is created. migrate block reservation
4639  * and create reloc root for the newly created snapshot
4640  */
4641 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4642 			       struct btrfs_pending_snapshot *pending)
4643 {
4644 	struct btrfs_root *root = pending->root;
4645 	struct btrfs_root *reloc_root;
4646 	struct btrfs_root *new_root;
4647 	struct reloc_control *rc;
4648 	int ret;
4649 
4650 	if (!root->reloc_root)
4651 		return 0;
4652 
4653 	rc = root->fs_info->reloc_ctl;
4654 	rc->merging_rsv_size += rc->nodes_relocated;
4655 
4656 	if (rc->merge_reloc_tree) {
4657 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4658 					      rc->block_rsv,
4659 					      rc->nodes_relocated, 1);
4660 		if (ret)
4661 			return ret;
4662 	}
4663 
4664 	new_root = pending->snap;
4665 	reloc_root = create_reloc_root(trans, root->reloc_root,
4666 				       new_root->root_key.objectid);
4667 	if (IS_ERR(reloc_root))
4668 		return PTR_ERR(reloc_root);
4669 
4670 	ret = __add_reloc_root(reloc_root);
4671 	BUG_ON(ret < 0);
4672 	new_root->reloc_root = reloc_root;
4673 
4674 	if (rc->create_reloc_tree)
4675 		ret = clone_backref_node(trans, rc, root, reloc_root);
4676 	return ret;
4677 }
4678