xref: /openbmc/linux/fs/btrfs/relocation.c (revision 36fe4655)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 
28 /*
29  * Relocation overview
30  *
31  * [What does relocation do]
32  *
33  * The objective of relocation is to relocate all extents of the target block
34  * group to other block groups.
35  * This is utilized by resize (shrink only), profile converting, compacting
36  * space, or balance routine to spread chunks over devices.
37  *
38  * 		Before		|		After
39  * ------------------------------------------------------------------
40  *  BG A: 10 data extents	| BG A: deleted
41  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
42  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
43  *
44  * [How does relocation work]
45  *
46  * 1.   Mark the target block group read-only
47  *      New extents won't be allocated from the target block group.
48  *
49  * 2.1  Record each extent in the target block group
50  *      To build a proper map of extents to be relocated.
51  *
52  * 2.2  Build data reloc tree and reloc trees
53  *      Data reloc tree will contain an inode, recording all newly relocated
54  *      data extents.
55  *      There will be only one data reloc tree for one data block group.
56  *
57  *      Reloc tree will be a special snapshot of its source tree, containing
58  *      relocated tree blocks.
59  *      Each tree referring to a tree block in target block group will get its
60  *      reloc tree built.
61  *
62  * 2.3  Swap source tree with its corresponding reloc tree
63  *      Each involved tree only refers to new extents after swap.
64  *
65  * 3.   Cleanup reloc trees and data reloc tree.
66  *      As old extents in the target block group are still referenced by reloc
67  *      trees, we need to clean them up before really freeing the target block
68  *      group.
69  *
70  * The main complexity is in steps 2.2 and 2.3.
71  *
72  * The entry point of relocation is relocate_block_group() function.
73  */
74 
75 #define RELOCATION_RESERVED_NODES	256
76 /*
77  * map address of tree root to tree
78  */
79 struct mapping_node {
80 	struct {
81 		struct rb_node rb_node;
82 		u64 bytenr;
83 	}; /* Use rb_simle_node for search/insert */
84 	void *data;
85 };
86 
87 struct mapping_tree {
88 	struct rb_root rb_root;
89 	spinlock_t lock;
90 };
91 
92 /*
93  * present a tree block to process
94  */
95 struct tree_block {
96 	struct {
97 		struct rb_node rb_node;
98 		u64 bytenr;
99 	}; /* Use rb_simple_node for search/insert */
100 	struct btrfs_key key;
101 	unsigned int level:8;
102 	unsigned int key_ready:1;
103 };
104 
105 #define MAX_EXTENTS 128
106 
107 struct file_extent_cluster {
108 	u64 start;
109 	u64 end;
110 	u64 boundary[MAX_EXTENTS];
111 	unsigned int nr;
112 };
113 
114 struct reloc_control {
115 	/* block group to relocate */
116 	struct btrfs_block_group *block_group;
117 	/* extent tree */
118 	struct btrfs_root *extent_root;
119 	/* inode for moving data */
120 	struct inode *data_inode;
121 
122 	struct btrfs_block_rsv *block_rsv;
123 
124 	struct btrfs_backref_cache backref_cache;
125 
126 	struct file_extent_cluster cluster;
127 	/* tree blocks have been processed */
128 	struct extent_io_tree processed_blocks;
129 	/* map start of tree root to corresponding reloc tree */
130 	struct mapping_tree reloc_root_tree;
131 	/* list of reloc trees */
132 	struct list_head reloc_roots;
133 	/* list of subvolume trees that get relocated */
134 	struct list_head dirty_subvol_roots;
135 	/* size of metadata reservation for merging reloc trees */
136 	u64 merging_rsv_size;
137 	/* size of relocated tree nodes */
138 	u64 nodes_relocated;
139 	/* reserved size for block group relocation*/
140 	u64 reserved_bytes;
141 
142 	u64 search_start;
143 	u64 extents_found;
144 
145 	unsigned int stage:8;
146 	unsigned int create_reloc_tree:1;
147 	unsigned int merge_reloc_tree:1;
148 	unsigned int found_file_extent:1;
149 };
150 
151 /* stages of data relocation */
152 #define MOVE_DATA_EXTENTS	0
153 #define UPDATE_DATA_PTRS	1
154 
155 static void mark_block_processed(struct reloc_control *rc,
156 				 struct btrfs_backref_node *node)
157 {
158 	u32 blocksize;
159 
160 	if (node->level == 0 ||
161 	    in_range(node->bytenr, rc->block_group->start,
162 		     rc->block_group->length)) {
163 		blocksize = rc->extent_root->fs_info->nodesize;
164 		set_extent_bits(&rc->processed_blocks, node->bytenr,
165 				node->bytenr + blocksize - 1, EXTENT_DIRTY);
166 	}
167 	node->processed = 1;
168 }
169 
170 
171 static void mapping_tree_init(struct mapping_tree *tree)
172 {
173 	tree->rb_root = RB_ROOT;
174 	spin_lock_init(&tree->lock);
175 }
176 
177 /*
178  * walk up backref nodes until reach node presents tree root
179  */
180 static struct btrfs_backref_node *walk_up_backref(
181 		struct btrfs_backref_node *node,
182 		struct btrfs_backref_edge *edges[], int *index)
183 {
184 	struct btrfs_backref_edge *edge;
185 	int idx = *index;
186 
187 	while (!list_empty(&node->upper)) {
188 		edge = list_entry(node->upper.next,
189 				  struct btrfs_backref_edge, list[LOWER]);
190 		edges[idx++] = edge;
191 		node = edge->node[UPPER];
192 	}
193 	BUG_ON(node->detached);
194 	*index = idx;
195 	return node;
196 }
197 
198 /*
199  * walk down backref nodes to find start of next reference path
200  */
201 static struct btrfs_backref_node *walk_down_backref(
202 		struct btrfs_backref_edge *edges[], int *index)
203 {
204 	struct btrfs_backref_edge *edge;
205 	struct btrfs_backref_node *lower;
206 	int idx = *index;
207 
208 	while (idx > 0) {
209 		edge = edges[idx - 1];
210 		lower = edge->node[LOWER];
211 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
212 			idx--;
213 			continue;
214 		}
215 		edge = list_entry(edge->list[LOWER].next,
216 				  struct btrfs_backref_edge, list[LOWER]);
217 		edges[idx - 1] = edge;
218 		*index = idx;
219 		return edge->node[UPPER];
220 	}
221 	*index = 0;
222 	return NULL;
223 }
224 
225 static void update_backref_node(struct btrfs_backref_cache *cache,
226 				struct btrfs_backref_node *node, u64 bytenr)
227 {
228 	struct rb_node *rb_node;
229 	rb_erase(&node->rb_node, &cache->rb_root);
230 	node->bytenr = bytenr;
231 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
232 	if (rb_node)
233 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
234 }
235 
236 /*
237  * update backref cache after a transaction commit
238  */
239 static int update_backref_cache(struct btrfs_trans_handle *trans,
240 				struct btrfs_backref_cache *cache)
241 {
242 	struct btrfs_backref_node *node;
243 	int level = 0;
244 
245 	if (cache->last_trans == 0) {
246 		cache->last_trans = trans->transid;
247 		return 0;
248 	}
249 
250 	if (cache->last_trans == trans->transid)
251 		return 0;
252 
253 	/*
254 	 * detached nodes are used to avoid unnecessary backref
255 	 * lookup. transaction commit changes the extent tree.
256 	 * so the detached nodes are no longer useful.
257 	 */
258 	while (!list_empty(&cache->detached)) {
259 		node = list_entry(cache->detached.next,
260 				  struct btrfs_backref_node, list);
261 		btrfs_backref_cleanup_node(cache, node);
262 	}
263 
264 	while (!list_empty(&cache->changed)) {
265 		node = list_entry(cache->changed.next,
266 				  struct btrfs_backref_node, list);
267 		list_del_init(&node->list);
268 		BUG_ON(node->pending);
269 		update_backref_node(cache, node, node->new_bytenr);
270 	}
271 
272 	/*
273 	 * some nodes can be left in the pending list if there were
274 	 * errors during processing the pending nodes.
275 	 */
276 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
277 		list_for_each_entry(node, &cache->pending[level], list) {
278 			BUG_ON(!node->pending);
279 			if (node->bytenr == node->new_bytenr)
280 				continue;
281 			update_backref_node(cache, node, node->new_bytenr);
282 		}
283 	}
284 
285 	cache->last_trans = 0;
286 	return 1;
287 }
288 
289 static bool reloc_root_is_dead(struct btrfs_root *root)
290 {
291 	/*
292 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
293 	 * btrfs_update_reloc_root. We need to see the updated bit before
294 	 * trying to access reloc_root
295 	 */
296 	smp_rmb();
297 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
298 		return true;
299 	return false;
300 }
301 
302 /*
303  * Check if this subvolume tree has valid reloc tree.
304  *
305  * Reloc tree after swap is considered dead, thus not considered as valid.
306  * This is enough for most callers, as they don't distinguish dead reloc root
307  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
308  * special case.
309  */
310 static bool have_reloc_root(struct btrfs_root *root)
311 {
312 	if (reloc_root_is_dead(root))
313 		return false;
314 	if (!root->reloc_root)
315 		return false;
316 	return true;
317 }
318 
319 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
320 {
321 	struct btrfs_root *reloc_root;
322 
323 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
324 		return 0;
325 
326 	/* This root has been merged with its reloc tree, we can ignore it */
327 	if (reloc_root_is_dead(root))
328 		return 1;
329 
330 	reloc_root = root->reloc_root;
331 	if (!reloc_root)
332 		return 0;
333 
334 	if (btrfs_header_generation(reloc_root->commit_root) ==
335 	    root->fs_info->running_transaction->transid)
336 		return 0;
337 	/*
338 	 * if there is reloc tree and it was created in previous
339 	 * transaction backref lookup can find the reloc tree,
340 	 * so backref node for the fs tree root is useless for
341 	 * relocation.
342 	 */
343 	return 1;
344 }
345 
346 /*
347  * find reloc tree by address of tree root
348  */
349 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
350 {
351 	struct reloc_control *rc = fs_info->reloc_ctl;
352 	struct rb_node *rb_node;
353 	struct mapping_node *node;
354 	struct btrfs_root *root = NULL;
355 
356 	ASSERT(rc);
357 	spin_lock(&rc->reloc_root_tree.lock);
358 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
359 	if (rb_node) {
360 		node = rb_entry(rb_node, struct mapping_node, rb_node);
361 		root = (struct btrfs_root *)node->data;
362 	}
363 	spin_unlock(&rc->reloc_root_tree.lock);
364 	return btrfs_grab_root(root);
365 }
366 
367 /*
368  * For useless nodes, do two major clean ups:
369  *
370  * - Cleanup the children edges and nodes
371  *   If child node is also orphan (no parent) during cleanup, then the child
372  *   node will also be cleaned up.
373  *
374  * - Freeing up leaves (level 0), keeps nodes detached
375  *   For nodes, the node is still cached as "detached"
376  *
377  * Return false if @node is not in the @useless_nodes list.
378  * Return true if @node is in the @useless_nodes list.
379  */
380 static bool handle_useless_nodes(struct reloc_control *rc,
381 				 struct btrfs_backref_node *node)
382 {
383 	struct btrfs_backref_cache *cache = &rc->backref_cache;
384 	struct list_head *useless_node = &cache->useless_node;
385 	bool ret = false;
386 
387 	while (!list_empty(useless_node)) {
388 		struct btrfs_backref_node *cur;
389 
390 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
391 				 list);
392 		list_del_init(&cur->list);
393 
394 		/* Only tree root nodes can be added to @useless_nodes */
395 		ASSERT(list_empty(&cur->upper));
396 
397 		if (cur == node)
398 			ret = true;
399 
400 		/* The node is the lowest node */
401 		if (cur->lowest) {
402 			list_del_init(&cur->lower);
403 			cur->lowest = 0;
404 		}
405 
406 		/* Cleanup the lower edges */
407 		while (!list_empty(&cur->lower)) {
408 			struct btrfs_backref_edge *edge;
409 			struct btrfs_backref_node *lower;
410 
411 			edge = list_entry(cur->lower.next,
412 					struct btrfs_backref_edge, list[UPPER]);
413 			list_del(&edge->list[UPPER]);
414 			list_del(&edge->list[LOWER]);
415 			lower = edge->node[LOWER];
416 			btrfs_backref_free_edge(cache, edge);
417 
418 			/* Child node is also orphan, queue for cleanup */
419 			if (list_empty(&lower->upper))
420 				list_add(&lower->list, useless_node);
421 		}
422 		/* Mark this block processed for relocation */
423 		mark_block_processed(rc, cur);
424 
425 		/*
426 		 * Backref nodes for tree leaves are deleted from the cache.
427 		 * Backref nodes for upper level tree blocks are left in the
428 		 * cache to avoid unnecessary backref lookup.
429 		 */
430 		if (cur->level > 0) {
431 			list_add(&cur->list, &cache->detached);
432 			cur->detached = 1;
433 		} else {
434 			rb_erase(&cur->rb_node, &cache->rb_root);
435 			btrfs_backref_free_node(cache, cur);
436 		}
437 	}
438 	return ret;
439 }
440 
441 /*
442  * Build backref tree for a given tree block. Root of the backref tree
443  * corresponds the tree block, leaves of the backref tree correspond roots of
444  * b-trees that reference the tree block.
445  *
446  * The basic idea of this function is check backrefs of a given block to find
447  * upper level blocks that reference the block, and then check backrefs of
448  * these upper level blocks recursively. The recursion stops when tree root is
449  * reached or backrefs for the block is cached.
450  *
451  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
452  * all upper level blocks that directly/indirectly reference the block are also
453  * cached.
454  */
455 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
456 			struct reloc_control *rc, struct btrfs_key *node_key,
457 			int level, u64 bytenr)
458 {
459 	struct btrfs_backref_iter *iter;
460 	struct btrfs_backref_cache *cache = &rc->backref_cache;
461 	/* For searching parent of TREE_BLOCK_REF */
462 	struct btrfs_path *path;
463 	struct btrfs_backref_node *cur;
464 	struct btrfs_backref_node *node = NULL;
465 	struct btrfs_backref_edge *edge;
466 	int ret;
467 	int err = 0;
468 
469 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS);
470 	if (!iter)
471 		return ERR_PTR(-ENOMEM);
472 	path = btrfs_alloc_path();
473 	if (!path) {
474 		err = -ENOMEM;
475 		goto out;
476 	}
477 
478 	node = btrfs_backref_alloc_node(cache, bytenr, level);
479 	if (!node) {
480 		err = -ENOMEM;
481 		goto out;
482 	}
483 
484 	node->lowest = 1;
485 	cur = node;
486 
487 	/* Breadth-first search to build backref cache */
488 	do {
489 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
490 						  cur);
491 		if (ret < 0) {
492 			err = ret;
493 			goto out;
494 		}
495 		edge = list_first_entry_or_null(&cache->pending_edge,
496 				struct btrfs_backref_edge, list[UPPER]);
497 		/*
498 		 * The pending list isn't empty, take the first block to
499 		 * process
500 		 */
501 		if (edge) {
502 			list_del_init(&edge->list[UPPER]);
503 			cur = edge->node[UPPER];
504 		}
505 	} while (edge);
506 
507 	/* Finish the upper linkage of newly added edges/nodes */
508 	ret = btrfs_backref_finish_upper_links(cache, node);
509 	if (ret < 0) {
510 		err = ret;
511 		goto out;
512 	}
513 
514 	if (handle_useless_nodes(rc, node))
515 		node = NULL;
516 out:
517 	btrfs_backref_iter_free(iter);
518 	btrfs_free_path(path);
519 	if (err) {
520 		btrfs_backref_error_cleanup(cache, node);
521 		return ERR_PTR(err);
522 	}
523 	ASSERT(!node || !node->detached);
524 	ASSERT(list_empty(&cache->useless_node) &&
525 	       list_empty(&cache->pending_edge));
526 	return node;
527 }
528 
529 /*
530  * helper to add backref node for the newly created snapshot.
531  * the backref node is created by cloning backref node that
532  * corresponds to root of source tree
533  */
534 static int clone_backref_node(struct btrfs_trans_handle *trans,
535 			      struct reloc_control *rc,
536 			      struct btrfs_root *src,
537 			      struct btrfs_root *dest)
538 {
539 	struct btrfs_root *reloc_root = src->reloc_root;
540 	struct btrfs_backref_cache *cache = &rc->backref_cache;
541 	struct btrfs_backref_node *node = NULL;
542 	struct btrfs_backref_node *new_node;
543 	struct btrfs_backref_edge *edge;
544 	struct btrfs_backref_edge *new_edge;
545 	struct rb_node *rb_node;
546 
547 	if (cache->last_trans > 0)
548 		update_backref_cache(trans, cache);
549 
550 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
551 	if (rb_node) {
552 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
553 		if (node->detached)
554 			node = NULL;
555 		else
556 			BUG_ON(node->new_bytenr != reloc_root->node->start);
557 	}
558 
559 	if (!node) {
560 		rb_node = rb_simple_search(&cache->rb_root,
561 					   reloc_root->commit_root->start);
562 		if (rb_node) {
563 			node = rb_entry(rb_node, struct btrfs_backref_node,
564 					rb_node);
565 			BUG_ON(node->detached);
566 		}
567 	}
568 
569 	if (!node)
570 		return 0;
571 
572 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
573 					    node->level);
574 	if (!new_node)
575 		return -ENOMEM;
576 
577 	new_node->lowest = node->lowest;
578 	new_node->checked = 1;
579 	new_node->root = btrfs_grab_root(dest);
580 	ASSERT(new_node->root);
581 
582 	if (!node->lowest) {
583 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
584 			new_edge = btrfs_backref_alloc_edge(cache);
585 			if (!new_edge)
586 				goto fail;
587 
588 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
589 						new_node, LINK_UPPER);
590 		}
591 	} else {
592 		list_add_tail(&new_node->lower, &cache->leaves);
593 	}
594 
595 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
596 				   &new_node->rb_node);
597 	if (rb_node)
598 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
599 
600 	if (!new_node->lowest) {
601 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
602 			list_add_tail(&new_edge->list[LOWER],
603 				      &new_edge->node[LOWER]->upper);
604 		}
605 	}
606 	return 0;
607 fail:
608 	while (!list_empty(&new_node->lower)) {
609 		new_edge = list_entry(new_node->lower.next,
610 				      struct btrfs_backref_edge, list[UPPER]);
611 		list_del(&new_edge->list[UPPER]);
612 		btrfs_backref_free_edge(cache, new_edge);
613 	}
614 	btrfs_backref_free_node(cache, new_node);
615 	return -ENOMEM;
616 }
617 
618 /*
619  * helper to add 'address of tree root -> reloc tree' mapping
620  */
621 static int __must_check __add_reloc_root(struct btrfs_root *root)
622 {
623 	struct btrfs_fs_info *fs_info = root->fs_info;
624 	struct rb_node *rb_node;
625 	struct mapping_node *node;
626 	struct reloc_control *rc = fs_info->reloc_ctl;
627 
628 	node = kmalloc(sizeof(*node), GFP_NOFS);
629 	if (!node)
630 		return -ENOMEM;
631 
632 	node->bytenr = root->commit_root->start;
633 	node->data = root;
634 
635 	spin_lock(&rc->reloc_root_tree.lock);
636 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
637 				   node->bytenr, &node->rb_node);
638 	spin_unlock(&rc->reloc_root_tree.lock);
639 	if (rb_node) {
640 		btrfs_panic(fs_info, -EEXIST,
641 			    "Duplicate root found for start=%llu while inserting into relocation tree",
642 			    node->bytenr);
643 	}
644 
645 	list_add_tail(&root->root_list, &rc->reloc_roots);
646 	return 0;
647 }
648 
649 /*
650  * helper to delete the 'address of tree root -> reloc tree'
651  * mapping
652  */
653 static void __del_reloc_root(struct btrfs_root *root)
654 {
655 	struct btrfs_fs_info *fs_info = root->fs_info;
656 	struct rb_node *rb_node;
657 	struct mapping_node *node = NULL;
658 	struct reloc_control *rc = fs_info->reloc_ctl;
659 	bool put_ref = false;
660 
661 	if (rc && root->node) {
662 		spin_lock(&rc->reloc_root_tree.lock);
663 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
664 					   root->commit_root->start);
665 		if (rb_node) {
666 			node = rb_entry(rb_node, struct mapping_node, rb_node);
667 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
668 			RB_CLEAR_NODE(&node->rb_node);
669 		}
670 		spin_unlock(&rc->reloc_root_tree.lock);
671 		if (!node)
672 			return;
673 		BUG_ON((struct btrfs_root *)node->data != root);
674 	}
675 
676 	/*
677 	 * We only put the reloc root here if it's on the list.  There's a lot
678 	 * of places where the pattern is to splice the rc->reloc_roots, process
679 	 * the reloc roots, and then add the reloc root back onto
680 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
681 	 * list we don't want the reference being dropped, because the guy
682 	 * messing with the list is in charge of the reference.
683 	 */
684 	spin_lock(&fs_info->trans_lock);
685 	if (!list_empty(&root->root_list)) {
686 		put_ref = true;
687 		list_del_init(&root->root_list);
688 	}
689 	spin_unlock(&fs_info->trans_lock);
690 	if (put_ref)
691 		btrfs_put_root(root);
692 	kfree(node);
693 }
694 
695 /*
696  * helper to update the 'address of tree root -> reloc tree'
697  * mapping
698  */
699 static int __update_reloc_root(struct btrfs_root *root)
700 {
701 	struct btrfs_fs_info *fs_info = root->fs_info;
702 	struct rb_node *rb_node;
703 	struct mapping_node *node = NULL;
704 	struct reloc_control *rc = fs_info->reloc_ctl;
705 
706 	spin_lock(&rc->reloc_root_tree.lock);
707 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
708 				   root->commit_root->start);
709 	if (rb_node) {
710 		node = rb_entry(rb_node, struct mapping_node, rb_node);
711 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
712 	}
713 	spin_unlock(&rc->reloc_root_tree.lock);
714 
715 	if (!node)
716 		return 0;
717 	BUG_ON((struct btrfs_root *)node->data != root);
718 
719 	spin_lock(&rc->reloc_root_tree.lock);
720 	node->bytenr = root->node->start;
721 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
722 				   node->bytenr, &node->rb_node);
723 	spin_unlock(&rc->reloc_root_tree.lock);
724 	if (rb_node)
725 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
726 	return 0;
727 }
728 
729 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
730 					struct btrfs_root *root, u64 objectid)
731 {
732 	struct btrfs_fs_info *fs_info = root->fs_info;
733 	struct btrfs_root *reloc_root;
734 	struct extent_buffer *eb;
735 	struct btrfs_root_item *root_item;
736 	struct btrfs_key root_key;
737 	int ret;
738 
739 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
740 	BUG_ON(!root_item);
741 
742 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
743 	root_key.type = BTRFS_ROOT_ITEM_KEY;
744 	root_key.offset = objectid;
745 
746 	if (root->root_key.objectid == objectid) {
747 		u64 commit_root_gen;
748 
749 		/* called by btrfs_init_reloc_root */
750 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
751 				      BTRFS_TREE_RELOC_OBJECTID);
752 		BUG_ON(ret);
753 		/*
754 		 * Set the last_snapshot field to the generation of the commit
755 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
756 		 * correctly (returns true) when the relocation root is created
757 		 * either inside the critical section of a transaction commit
758 		 * (through transaction.c:qgroup_account_snapshot()) and when
759 		 * it's created before the transaction commit is started.
760 		 */
761 		commit_root_gen = btrfs_header_generation(root->commit_root);
762 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
763 	} else {
764 		/*
765 		 * called by btrfs_reloc_post_snapshot_hook.
766 		 * the source tree is a reloc tree, all tree blocks
767 		 * modified after it was created have RELOC flag
768 		 * set in their headers. so it's OK to not update
769 		 * the 'last_snapshot'.
770 		 */
771 		ret = btrfs_copy_root(trans, root, root->node, &eb,
772 				      BTRFS_TREE_RELOC_OBJECTID);
773 		BUG_ON(ret);
774 	}
775 
776 	memcpy(root_item, &root->root_item, sizeof(*root_item));
777 	btrfs_set_root_bytenr(root_item, eb->start);
778 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
779 	btrfs_set_root_generation(root_item, trans->transid);
780 
781 	if (root->root_key.objectid == objectid) {
782 		btrfs_set_root_refs(root_item, 0);
783 		memset(&root_item->drop_progress, 0,
784 		       sizeof(struct btrfs_disk_key));
785 		btrfs_set_root_drop_level(root_item, 0);
786 	}
787 
788 	btrfs_tree_unlock(eb);
789 	free_extent_buffer(eb);
790 
791 	ret = btrfs_insert_root(trans, fs_info->tree_root,
792 				&root_key, root_item);
793 	BUG_ON(ret);
794 	kfree(root_item);
795 
796 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
797 	BUG_ON(IS_ERR(reloc_root));
798 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
799 	reloc_root->last_trans = trans->transid;
800 	return reloc_root;
801 }
802 
803 /*
804  * create reloc tree for a given fs tree. reloc tree is just a
805  * snapshot of the fs tree with special root objectid.
806  *
807  * The reloc_root comes out of here with two references, one for
808  * root->reloc_root, and another for being on the rc->reloc_roots list.
809  */
810 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
811 			  struct btrfs_root *root)
812 {
813 	struct btrfs_fs_info *fs_info = root->fs_info;
814 	struct btrfs_root *reloc_root;
815 	struct reloc_control *rc = fs_info->reloc_ctl;
816 	struct btrfs_block_rsv *rsv;
817 	int clear_rsv = 0;
818 	int ret;
819 
820 	if (!rc)
821 		return 0;
822 
823 	/*
824 	 * The subvolume has reloc tree but the swap is finished, no need to
825 	 * create/update the dead reloc tree
826 	 */
827 	if (reloc_root_is_dead(root))
828 		return 0;
829 
830 	/*
831 	 * This is subtle but important.  We do not do
832 	 * record_root_in_transaction for reloc roots, instead we record their
833 	 * corresponding fs root, and then here we update the last trans for the
834 	 * reloc root.  This means that we have to do this for the entire life
835 	 * of the reloc root, regardless of which stage of the relocation we are
836 	 * in.
837 	 */
838 	if (root->reloc_root) {
839 		reloc_root = root->reloc_root;
840 		reloc_root->last_trans = trans->transid;
841 		return 0;
842 	}
843 
844 	/*
845 	 * We are merging reloc roots, we do not need new reloc trees.  Also
846 	 * reloc trees never need their own reloc tree.
847 	 */
848 	if (!rc->create_reloc_tree ||
849 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
850 		return 0;
851 
852 	if (!trans->reloc_reserved) {
853 		rsv = trans->block_rsv;
854 		trans->block_rsv = rc->block_rsv;
855 		clear_rsv = 1;
856 	}
857 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
858 	if (clear_rsv)
859 		trans->block_rsv = rsv;
860 
861 	ret = __add_reloc_root(reloc_root);
862 	BUG_ON(ret < 0);
863 	root->reloc_root = btrfs_grab_root(reloc_root);
864 	return 0;
865 }
866 
867 /*
868  * update root item of reloc tree
869  */
870 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
871 			    struct btrfs_root *root)
872 {
873 	struct btrfs_fs_info *fs_info = root->fs_info;
874 	struct btrfs_root *reloc_root;
875 	struct btrfs_root_item *root_item;
876 	int ret;
877 
878 	if (!have_reloc_root(root))
879 		goto out;
880 
881 	reloc_root = root->reloc_root;
882 	root_item = &reloc_root->root_item;
883 
884 	/*
885 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
886 	 * the root.  We have the ref for root->reloc_root, but just in case
887 	 * hold it while we update the reloc root.
888 	 */
889 	btrfs_grab_root(reloc_root);
890 
891 	/* root->reloc_root will stay until current relocation finished */
892 	if (fs_info->reloc_ctl->merge_reloc_tree &&
893 	    btrfs_root_refs(root_item) == 0) {
894 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
895 		/*
896 		 * Mark the tree as dead before we change reloc_root so
897 		 * have_reloc_root will not touch it from now on.
898 		 */
899 		smp_wmb();
900 		__del_reloc_root(reloc_root);
901 	}
902 
903 	if (reloc_root->commit_root != reloc_root->node) {
904 		__update_reloc_root(reloc_root);
905 		btrfs_set_root_node(root_item, reloc_root->node);
906 		free_extent_buffer(reloc_root->commit_root);
907 		reloc_root->commit_root = btrfs_root_node(reloc_root);
908 	}
909 
910 	ret = btrfs_update_root(trans, fs_info->tree_root,
911 				&reloc_root->root_key, root_item);
912 	BUG_ON(ret);
913 	btrfs_put_root(reloc_root);
914 out:
915 	return 0;
916 }
917 
918 /*
919  * helper to find first cached inode with inode number >= objectid
920  * in a subvolume
921  */
922 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
923 {
924 	struct rb_node *node;
925 	struct rb_node *prev;
926 	struct btrfs_inode *entry;
927 	struct inode *inode;
928 
929 	spin_lock(&root->inode_lock);
930 again:
931 	node = root->inode_tree.rb_node;
932 	prev = NULL;
933 	while (node) {
934 		prev = node;
935 		entry = rb_entry(node, struct btrfs_inode, rb_node);
936 
937 		if (objectid < btrfs_ino(entry))
938 			node = node->rb_left;
939 		else if (objectid > btrfs_ino(entry))
940 			node = node->rb_right;
941 		else
942 			break;
943 	}
944 	if (!node) {
945 		while (prev) {
946 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
947 			if (objectid <= btrfs_ino(entry)) {
948 				node = prev;
949 				break;
950 			}
951 			prev = rb_next(prev);
952 		}
953 	}
954 	while (node) {
955 		entry = rb_entry(node, struct btrfs_inode, rb_node);
956 		inode = igrab(&entry->vfs_inode);
957 		if (inode) {
958 			spin_unlock(&root->inode_lock);
959 			return inode;
960 		}
961 
962 		objectid = btrfs_ino(entry) + 1;
963 		if (cond_resched_lock(&root->inode_lock))
964 			goto again;
965 
966 		node = rb_next(node);
967 	}
968 	spin_unlock(&root->inode_lock);
969 	return NULL;
970 }
971 
972 /*
973  * get new location of data
974  */
975 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
976 			    u64 bytenr, u64 num_bytes)
977 {
978 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
979 	struct btrfs_path *path;
980 	struct btrfs_file_extent_item *fi;
981 	struct extent_buffer *leaf;
982 	int ret;
983 
984 	path = btrfs_alloc_path();
985 	if (!path)
986 		return -ENOMEM;
987 
988 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
989 	ret = btrfs_lookup_file_extent(NULL, root, path,
990 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
991 	if (ret < 0)
992 		goto out;
993 	if (ret > 0) {
994 		ret = -ENOENT;
995 		goto out;
996 	}
997 
998 	leaf = path->nodes[0];
999 	fi = btrfs_item_ptr(leaf, path->slots[0],
1000 			    struct btrfs_file_extent_item);
1001 
1002 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1003 	       btrfs_file_extent_compression(leaf, fi) ||
1004 	       btrfs_file_extent_encryption(leaf, fi) ||
1005 	       btrfs_file_extent_other_encoding(leaf, fi));
1006 
1007 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1008 		ret = -EINVAL;
1009 		goto out;
1010 	}
1011 
1012 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1013 	ret = 0;
1014 out:
1015 	btrfs_free_path(path);
1016 	return ret;
1017 }
1018 
1019 /*
1020  * update file extent items in the tree leaf to point to
1021  * the new locations.
1022  */
1023 static noinline_for_stack
1024 int replace_file_extents(struct btrfs_trans_handle *trans,
1025 			 struct reloc_control *rc,
1026 			 struct btrfs_root *root,
1027 			 struct extent_buffer *leaf)
1028 {
1029 	struct btrfs_fs_info *fs_info = root->fs_info;
1030 	struct btrfs_key key;
1031 	struct btrfs_file_extent_item *fi;
1032 	struct inode *inode = NULL;
1033 	u64 parent;
1034 	u64 bytenr;
1035 	u64 new_bytenr = 0;
1036 	u64 num_bytes;
1037 	u64 end;
1038 	u32 nritems;
1039 	u32 i;
1040 	int ret = 0;
1041 	int first = 1;
1042 	int dirty = 0;
1043 
1044 	if (rc->stage != UPDATE_DATA_PTRS)
1045 		return 0;
1046 
1047 	/* reloc trees always use full backref */
1048 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1049 		parent = leaf->start;
1050 	else
1051 		parent = 0;
1052 
1053 	nritems = btrfs_header_nritems(leaf);
1054 	for (i = 0; i < nritems; i++) {
1055 		struct btrfs_ref ref = { 0 };
1056 
1057 		cond_resched();
1058 		btrfs_item_key_to_cpu(leaf, &key, i);
1059 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1060 			continue;
1061 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1062 		if (btrfs_file_extent_type(leaf, fi) ==
1063 		    BTRFS_FILE_EXTENT_INLINE)
1064 			continue;
1065 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1066 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1067 		if (bytenr == 0)
1068 			continue;
1069 		if (!in_range(bytenr, rc->block_group->start,
1070 			      rc->block_group->length))
1071 			continue;
1072 
1073 		/*
1074 		 * if we are modifying block in fs tree, wait for readpage
1075 		 * to complete and drop the extent cache
1076 		 */
1077 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1078 			if (first) {
1079 				inode = find_next_inode(root, key.objectid);
1080 				first = 0;
1081 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1082 				btrfs_add_delayed_iput(inode);
1083 				inode = find_next_inode(root, key.objectid);
1084 			}
1085 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1086 				end = key.offset +
1087 				      btrfs_file_extent_num_bytes(leaf, fi);
1088 				WARN_ON(!IS_ALIGNED(key.offset,
1089 						    fs_info->sectorsize));
1090 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1091 				end--;
1092 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1093 						      key.offset, end);
1094 				if (!ret)
1095 					continue;
1096 
1097 				btrfs_drop_extent_cache(BTRFS_I(inode),
1098 						key.offset,	end, 1);
1099 				unlock_extent(&BTRFS_I(inode)->io_tree,
1100 					      key.offset, end);
1101 			}
1102 		}
1103 
1104 		ret = get_new_location(rc->data_inode, &new_bytenr,
1105 				       bytenr, num_bytes);
1106 		if (ret) {
1107 			/*
1108 			 * Don't have to abort since we've not changed anything
1109 			 * in the file extent yet.
1110 			 */
1111 			break;
1112 		}
1113 
1114 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1115 		dirty = 1;
1116 
1117 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1118 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1119 				       num_bytes, parent);
1120 		ref.real_root = root->root_key.objectid;
1121 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1122 				    key.objectid, key.offset);
1123 		ret = btrfs_inc_extent_ref(trans, &ref);
1124 		if (ret) {
1125 			btrfs_abort_transaction(trans, ret);
1126 			break;
1127 		}
1128 
1129 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1130 				       num_bytes, parent);
1131 		ref.real_root = root->root_key.objectid;
1132 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1133 				    key.objectid, key.offset);
1134 		ret = btrfs_free_extent(trans, &ref);
1135 		if (ret) {
1136 			btrfs_abort_transaction(trans, ret);
1137 			break;
1138 		}
1139 	}
1140 	if (dirty)
1141 		btrfs_mark_buffer_dirty(leaf);
1142 	if (inode)
1143 		btrfs_add_delayed_iput(inode);
1144 	return ret;
1145 }
1146 
1147 static noinline_for_stack
1148 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1149 		     struct btrfs_path *path, int level)
1150 {
1151 	struct btrfs_disk_key key1;
1152 	struct btrfs_disk_key key2;
1153 	btrfs_node_key(eb, &key1, slot);
1154 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1155 	return memcmp(&key1, &key2, sizeof(key1));
1156 }
1157 
1158 /*
1159  * try to replace tree blocks in fs tree with the new blocks
1160  * in reloc tree. tree blocks haven't been modified since the
1161  * reloc tree was create can be replaced.
1162  *
1163  * if a block was replaced, level of the block + 1 is returned.
1164  * if no block got replaced, 0 is returned. if there are other
1165  * errors, a negative error number is returned.
1166  */
1167 static noinline_for_stack
1168 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1169 		 struct btrfs_root *dest, struct btrfs_root *src,
1170 		 struct btrfs_path *path, struct btrfs_key *next_key,
1171 		 int lowest_level, int max_level)
1172 {
1173 	struct btrfs_fs_info *fs_info = dest->fs_info;
1174 	struct extent_buffer *eb;
1175 	struct extent_buffer *parent;
1176 	struct btrfs_ref ref = { 0 };
1177 	struct btrfs_key key;
1178 	u64 old_bytenr;
1179 	u64 new_bytenr;
1180 	u64 old_ptr_gen;
1181 	u64 new_ptr_gen;
1182 	u64 last_snapshot;
1183 	u32 blocksize;
1184 	int cow = 0;
1185 	int level;
1186 	int ret;
1187 	int slot;
1188 
1189 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1190 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1191 
1192 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1193 again:
1194 	slot = path->slots[lowest_level];
1195 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1196 
1197 	eb = btrfs_lock_root_node(dest);
1198 	level = btrfs_header_level(eb);
1199 
1200 	if (level < lowest_level) {
1201 		btrfs_tree_unlock(eb);
1202 		free_extent_buffer(eb);
1203 		return 0;
1204 	}
1205 
1206 	if (cow) {
1207 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1208 				      BTRFS_NESTING_COW);
1209 		BUG_ON(ret);
1210 	}
1211 
1212 	if (next_key) {
1213 		next_key->objectid = (u64)-1;
1214 		next_key->type = (u8)-1;
1215 		next_key->offset = (u64)-1;
1216 	}
1217 
1218 	parent = eb;
1219 	while (1) {
1220 		level = btrfs_header_level(parent);
1221 		BUG_ON(level < lowest_level);
1222 
1223 		ret = btrfs_bin_search(parent, &key, &slot);
1224 		if (ret < 0)
1225 			break;
1226 		if (ret && slot > 0)
1227 			slot--;
1228 
1229 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1230 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1231 
1232 		old_bytenr = btrfs_node_blockptr(parent, slot);
1233 		blocksize = fs_info->nodesize;
1234 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1235 
1236 		if (level <= max_level) {
1237 			eb = path->nodes[level];
1238 			new_bytenr = btrfs_node_blockptr(eb,
1239 							path->slots[level]);
1240 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1241 							path->slots[level]);
1242 		} else {
1243 			new_bytenr = 0;
1244 			new_ptr_gen = 0;
1245 		}
1246 
1247 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1248 			ret = level;
1249 			break;
1250 		}
1251 
1252 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1253 		    memcmp_node_keys(parent, slot, path, level)) {
1254 			if (level <= lowest_level) {
1255 				ret = 0;
1256 				break;
1257 			}
1258 
1259 			eb = btrfs_read_node_slot(parent, slot);
1260 			if (IS_ERR(eb)) {
1261 				ret = PTR_ERR(eb);
1262 				break;
1263 			}
1264 			btrfs_tree_lock(eb);
1265 			if (cow) {
1266 				ret = btrfs_cow_block(trans, dest, eb, parent,
1267 						      slot, &eb,
1268 						      BTRFS_NESTING_COW);
1269 				BUG_ON(ret);
1270 			}
1271 
1272 			btrfs_tree_unlock(parent);
1273 			free_extent_buffer(parent);
1274 
1275 			parent = eb;
1276 			continue;
1277 		}
1278 
1279 		if (!cow) {
1280 			btrfs_tree_unlock(parent);
1281 			free_extent_buffer(parent);
1282 			cow = 1;
1283 			goto again;
1284 		}
1285 
1286 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1287 				      path->slots[level]);
1288 		btrfs_release_path(path);
1289 
1290 		path->lowest_level = level;
1291 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1292 		path->lowest_level = 0;
1293 		BUG_ON(ret);
1294 
1295 		/*
1296 		 * Info qgroup to trace both subtrees.
1297 		 *
1298 		 * We must trace both trees.
1299 		 * 1) Tree reloc subtree
1300 		 *    If not traced, we will leak data numbers
1301 		 * 2) Fs subtree
1302 		 *    If not traced, we will double count old data
1303 		 *
1304 		 * We don't scan the subtree right now, but only record
1305 		 * the swapped tree blocks.
1306 		 * The real subtree rescan is delayed until we have new
1307 		 * CoW on the subtree root node before transaction commit.
1308 		 */
1309 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1310 				rc->block_group, parent, slot,
1311 				path->nodes[level], path->slots[level],
1312 				last_snapshot);
1313 		if (ret < 0)
1314 			break;
1315 		/*
1316 		 * swap blocks in fs tree and reloc tree.
1317 		 */
1318 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1319 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1320 		btrfs_mark_buffer_dirty(parent);
1321 
1322 		btrfs_set_node_blockptr(path->nodes[level],
1323 					path->slots[level], old_bytenr);
1324 		btrfs_set_node_ptr_generation(path->nodes[level],
1325 					      path->slots[level], old_ptr_gen);
1326 		btrfs_mark_buffer_dirty(path->nodes[level]);
1327 
1328 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1329 				       blocksize, path->nodes[level]->start);
1330 		ref.skip_qgroup = true;
1331 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1332 		ret = btrfs_inc_extent_ref(trans, &ref);
1333 		BUG_ON(ret);
1334 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1335 				       blocksize, 0);
1336 		ref.skip_qgroup = true;
1337 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1338 		ret = btrfs_inc_extent_ref(trans, &ref);
1339 		BUG_ON(ret);
1340 
1341 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1342 				       blocksize, path->nodes[level]->start);
1343 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid);
1344 		ref.skip_qgroup = true;
1345 		ret = btrfs_free_extent(trans, &ref);
1346 		BUG_ON(ret);
1347 
1348 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1349 				       blocksize, 0);
1350 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid);
1351 		ref.skip_qgroup = true;
1352 		ret = btrfs_free_extent(trans, &ref);
1353 		BUG_ON(ret);
1354 
1355 		btrfs_unlock_up_safe(path, 0);
1356 
1357 		ret = level;
1358 		break;
1359 	}
1360 	btrfs_tree_unlock(parent);
1361 	free_extent_buffer(parent);
1362 	return ret;
1363 }
1364 
1365 /*
1366  * helper to find next relocated block in reloc tree
1367  */
1368 static noinline_for_stack
1369 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1370 		       int *level)
1371 {
1372 	struct extent_buffer *eb;
1373 	int i;
1374 	u64 last_snapshot;
1375 	u32 nritems;
1376 
1377 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1378 
1379 	for (i = 0; i < *level; i++) {
1380 		free_extent_buffer(path->nodes[i]);
1381 		path->nodes[i] = NULL;
1382 	}
1383 
1384 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1385 		eb = path->nodes[i];
1386 		nritems = btrfs_header_nritems(eb);
1387 		while (path->slots[i] + 1 < nritems) {
1388 			path->slots[i]++;
1389 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1390 			    last_snapshot)
1391 				continue;
1392 
1393 			*level = i;
1394 			return 0;
1395 		}
1396 		free_extent_buffer(path->nodes[i]);
1397 		path->nodes[i] = NULL;
1398 	}
1399 	return 1;
1400 }
1401 
1402 /*
1403  * walk down reloc tree to find relocated block of lowest level
1404  */
1405 static noinline_for_stack
1406 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1407 			 int *level)
1408 {
1409 	struct extent_buffer *eb = NULL;
1410 	int i;
1411 	u64 ptr_gen = 0;
1412 	u64 last_snapshot;
1413 	u32 nritems;
1414 
1415 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1416 
1417 	for (i = *level; i > 0; i--) {
1418 		eb = path->nodes[i];
1419 		nritems = btrfs_header_nritems(eb);
1420 		while (path->slots[i] < nritems) {
1421 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1422 			if (ptr_gen > last_snapshot)
1423 				break;
1424 			path->slots[i]++;
1425 		}
1426 		if (path->slots[i] >= nritems) {
1427 			if (i == *level)
1428 				break;
1429 			*level = i + 1;
1430 			return 0;
1431 		}
1432 		if (i == 1) {
1433 			*level = i;
1434 			return 0;
1435 		}
1436 
1437 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1438 		if (IS_ERR(eb))
1439 			return PTR_ERR(eb);
1440 		BUG_ON(btrfs_header_level(eb) != i - 1);
1441 		path->nodes[i - 1] = eb;
1442 		path->slots[i - 1] = 0;
1443 	}
1444 	return 1;
1445 }
1446 
1447 /*
1448  * invalidate extent cache for file extents whose key in range of
1449  * [min_key, max_key)
1450  */
1451 static int invalidate_extent_cache(struct btrfs_root *root,
1452 				   struct btrfs_key *min_key,
1453 				   struct btrfs_key *max_key)
1454 {
1455 	struct btrfs_fs_info *fs_info = root->fs_info;
1456 	struct inode *inode = NULL;
1457 	u64 objectid;
1458 	u64 start, end;
1459 	u64 ino;
1460 
1461 	objectid = min_key->objectid;
1462 	while (1) {
1463 		cond_resched();
1464 		iput(inode);
1465 
1466 		if (objectid > max_key->objectid)
1467 			break;
1468 
1469 		inode = find_next_inode(root, objectid);
1470 		if (!inode)
1471 			break;
1472 		ino = btrfs_ino(BTRFS_I(inode));
1473 
1474 		if (ino > max_key->objectid) {
1475 			iput(inode);
1476 			break;
1477 		}
1478 
1479 		objectid = ino + 1;
1480 		if (!S_ISREG(inode->i_mode))
1481 			continue;
1482 
1483 		if (unlikely(min_key->objectid == ino)) {
1484 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1485 				continue;
1486 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1487 				start = 0;
1488 			else {
1489 				start = min_key->offset;
1490 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1491 			}
1492 		} else {
1493 			start = 0;
1494 		}
1495 
1496 		if (unlikely(max_key->objectid == ino)) {
1497 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1498 				continue;
1499 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1500 				end = (u64)-1;
1501 			} else {
1502 				if (max_key->offset == 0)
1503 					continue;
1504 				end = max_key->offset;
1505 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1506 				end--;
1507 			}
1508 		} else {
1509 			end = (u64)-1;
1510 		}
1511 
1512 		/* the lock_extent waits for readpage to complete */
1513 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
1514 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1);
1515 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
1516 	}
1517 	return 0;
1518 }
1519 
1520 static int find_next_key(struct btrfs_path *path, int level,
1521 			 struct btrfs_key *key)
1522 
1523 {
1524 	while (level < BTRFS_MAX_LEVEL) {
1525 		if (!path->nodes[level])
1526 			break;
1527 		if (path->slots[level] + 1 <
1528 		    btrfs_header_nritems(path->nodes[level])) {
1529 			btrfs_node_key_to_cpu(path->nodes[level], key,
1530 					      path->slots[level] + 1);
1531 			return 0;
1532 		}
1533 		level++;
1534 	}
1535 	return 1;
1536 }
1537 
1538 /*
1539  * Insert current subvolume into reloc_control::dirty_subvol_roots
1540  */
1541 static void insert_dirty_subvol(struct btrfs_trans_handle *trans,
1542 				struct reloc_control *rc,
1543 				struct btrfs_root *root)
1544 {
1545 	struct btrfs_root *reloc_root = root->reloc_root;
1546 	struct btrfs_root_item *reloc_root_item;
1547 
1548 	/* @root must be a subvolume tree root with a valid reloc tree */
1549 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1550 	ASSERT(reloc_root);
1551 
1552 	reloc_root_item = &reloc_root->root_item;
1553 	memset(&reloc_root_item->drop_progress, 0,
1554 		sizeof(reloc_root_item->drop_progress));
1555 	btrfs_set_root_drop_level(reloc_root_item, 0);
1556 	btrfs_set_root_refs(reloc_root_item, 0);
1557 	btrfs_update_reloc_root(trans, root);
1558 
1559 	if (list_empty(&root->reloc_dirty_list)) {
1560 		btrfs_grab_root(root);
1561 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1562 	}
1563 }
1564 
1565 static int clean_dirty_subvols(struct reloc_control *rc)
1566 {
1567 	struct btrfs_root *root;
1568 	struct btrfs_root *next;
1569 	int ret = 0;
1570 	int ret2;
1571 
1572 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1573 				 reloc_dirty_list) {
1574 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1575 			/* Merged subvolume, cleanup its reloc root */
1576 			struct btrfs_root *reloc_root = root->reloc_root;
1577 
1578 			list_del_init(&root->reloc_dirty_list);
1579 			root->reloc_root = NULL;
1580 			/*
1581 			 * Need barrier to ensure clear_bit() only happens after
1582 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1583 			 */
1584 			smp_wmb();
1585 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1586 			if (reloc_root) {
1587 				/*
1588 				 * btrfs_drop_snapshot drops our ref we hold for
1589 				 * ->reloc_root.  If it fails however we must
1590 				 * drop the ref ourselves.
1591 				 */
1592 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1593 				if (ret2 < 0) {
1594 					btrfs_put_root(reloc_root);
1595 					if (!ret)
1596 						ret = ret2;
1597 				}
1598 			}
1599 			btrfs_put_root(root);
1600 		} else {
1601 			/* Orphan reloc tree, just clean it up */
1602 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1603 			if (ret2 < 0) {
1604 				btrfs_put_root(root);
1605 				if (!ret)
1606 					ret = ret2;
1607 			}
1608 		}
1609 	}
1610 	return ret;
1611 }
1612 
1613 /*
1614  * merge the relocated tree blocks in reloc tree with corresponding
1615  * fs tree.
1616  */
1617 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1618 					       struct btrfs_root *root)
1619 {
1620 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1621 	struct btrfs_key key;
1622 	struct btrfs_key next_key;
1623 	struct btrfs_trans_handle *trans = NULL;
1624 	struct btrfs_root *reloc_root;
1625 	struct btrfs_root_item *root_item;
1626 	struct btrfs_path *path;
1627 	struct extent_buffer *leaf;
1628 	int reserve_level;
1629 	int level;
1630 	int max_level;
1631 	int replaced = 0;
1632 	int ret = 0;
1633 	u32 min_reserved;
1634 
1635 	path = btrfs_alloc_path();
1636 	if (!path)
1637 		return -ENOMEM;
1638 	path->reada = READA_FORWARD;
1639 
1640 	reloc_root = root->reloc_root;
1641 	root_item = &reloc_root->root_item;
1642 
1643 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1644 		level = btrfs_root_level(root_item);
1645 		atomic_inc(&reloc_root->node->refs);
1646 		path->nodes[level] = reloc_root->node;
1647 		path->slots[level] = 0;
1648 	} else {
1649 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1650 
1651 		level = btrfs_root_drop_level(root_item);
1652 		BUG_ON(level == 0);
1653 		path->lowest_level = level;
1654 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1655 		path->lowest_level = 0;
1656 		if (ret < 0) {
1657 			btrfs_free_path(path);
1658 			return ret;
1659 		}
1660 
1661 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1662 				      path->slots[level]);
1663 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1664 
1665 		btrfs_unlock_up_safe(path, 0);
1666 	}
1667 
1668 	/*
1669 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1670 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1671 	 * block COW, we COW at most from level 1 to root level for each tree.
1672 	 *
1673 	 * Thus the needed metadata size is at most root_level * nodesize,
1674 	 * and * 2 since we have two trees to COW.
1675 	 */
1676 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1677 	min_reserved = fs_info->nodesize * reserve_level * 2;
1678 	memset(&next_key, 0, sizeof(next_key));
1679 
1680 	while (1) {
1681 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
1682 					     BTRFS_RESERVE_FLUSH_LIMIT);
1683 		if (ret)
1684 			goto out;
1685 		trans = btrfs_start_transaction(root, 0);
1686 		if (IS_ERR(trans)) {
1687 			ret = PTR_ERR(trans);
1688 			trans = NULL;
1689 			goto out;
1690 		}
1691 
1692 		/*
1693 		 * At this point we no longer have a reloc_control, so we can't
1694 		 * depend on btrfs_init_reloc_root to update our last_trans.
1695 		 *
1696 		 * But that's ok, we started the trans handle on our
1697 		 * corresponding fs_root, which means it's been added to the
1698 		 * dirty list.  At commit time we'll still call
1699 		 * btrfs_update_reloc_root() and update our root item
1700 		 * appropriately.
1701 		 */
1702 		reloc_root->last_trans = trans->transid;
1703 		trans->block_rsv = rc->block_rsv;
1704 
1705 		replaced = 0;
1706 		max_level = level;
1707 
1708 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1709 		if (ret < 0)
1710 			goto out;
1711 		if (ret > 0)
1712 			break;
1713 
1714 		if (!find_next_key(path, level, &key) &&
1715 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1716 			ret = 0;
1717 		} else {
1718 			ret = replace_path(trans, rc, root, reloc_root, path,
1719 					   &next_key, level, max_level);
1720 		}
1721 		if (ret < 0)
1722 			goto out;
1723 		if (ret > 0) {
1724 			level = ret;
1725 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1726 					      path->slots[level]);
1727 			replaced = 1;
1728 		}
1729 
1730 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1731 		if (ret > 0)
1732 			break;
1733 
1734 		BUG_ON(level == 0);
1735 		/*
1736 		 * save the merging progress in the drop_progress.
1737 		 * this is OK since root refs == 1 in this case.
1738 		 */
1739 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1740 			       path->slots[level]);
1741 		btrfs_set_root_drop_level(root_item, level);
1742 
1743 		btrfs_end_transaction_throttle(trans);
1744 		trans = NULL;
1745 
1746 		btrfs_btree_balance_dirty(fs_info);
1747 
1748 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1749 			invalidate_extent_cache(root, &key, &next_key);
1750 	}
1751 
1752 	/*
1753 	 * handle the case only one block in the fs tree need to be
1754 	 * relocated and the block is tree root.
1755 	 */
1756 	leaf = btrfs_lock_root_node(root);
1757 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1758 			      BTRFS_NESTING_COW);
1759 	btrfs_tree_unlock(leaf);
1760 	free_extent_buffer(leaf);
1761 out:
1762 	btrfs_free_path(path);
1763 
1764 	if (ret == 0)
1765 		insert_dirty_subvol(trans, rc, root);
1766 
1767 	if (trans)
1768 		btrfs_end_transaction_throttle(trans);
1769 
1770 	btrfs_btree_balance_dirty(fs_info);
1771 
1772 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1773 		invalidate_extent_cache(root, &key, &next_key);
1774 
1775 	return ret;
1776 }
1777 
1778 static noinline_for_stack
1779 int prepare_to_merge(struct reloc_control *rc, int err)
1780 {
1781 	struct btrfs_root *root = rc->extent_root;
1782 	struct btrfs_fs_info *fs_info = root->fs_info;
1783 	struct btrfs_root *reloc_root;
1784 	struct btrfs_trans_handle *trans;
1785 	LIST_HEAD(reloc_roots);
1786 	u64 num_bytes = 0;
1787 	int ret;
1788 
1789 	mutex_lock(&fs_info->reloc_mutex);
1790 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1791 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1792 	mutex_unlock(&fs_info->reloc_mutex);
1793 
1794 again:
1795 	if (!err) {
1796 		num_bytes = rc->merging_rsv_size;
1797 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
1798 					  BTRFS_RESERVE_FLUSH_ALL);
1799 		if (ret)
1800 			err = ret;
1801 	}
1802 
1803 	trans = btrfs_join_transaction(rc->extent_root);
1804 	if (IS_ERR(trans)) {
1805 		if (!err)
1806 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1807 						num_bytes, NULL);
1808 		return PTR_ERR(trans);
1809 	}
1810 
1811 	if (!err) {
1812 		if (num_bytes != rc->merging_rsv_size) {
1813 			btrfs_end_transaction(trans);
1814 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1815 						num_bytes, NULL);
1816 			goto again;
1817 		}
1818 	}
1819 
1820 	rc->merge_reloc_tree = 1;
1821 
1822 	while (!list_empty(&rc->reloc_roots)) {
1823 		reloc_root = list_entry(rc->reloc_roots.next,
1824 					struct btrfs_root, root_list);
1825 		list_del_init(&reloc_root->root_list);
1826 
1827 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1828 				false);
1829 		BUG_ON(IS_ERR(root));
1830 		BUG_ON(root->reloc_root != reloc_root);
1831 
1832 		/*
1833 		 * set reference count to 1, so btrfs_recover_relocation
1834 		 * knows it should resumes merging
1835 		 */
1836 		if (!err)
1837 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1838 		btrfs_update_reloc_root(trans, root);
1839 
1840 		list_add(&reloc_root->root_list, &reloc_roots);
1841 		btrfs_put_root(root);
1842 	}
1843 
1844 	list_splice(&reloc_roots, &rc->reloc_roots);
1845 
1846 	if (!err)
1847 		btrfs_commit_transaction(trans);
1848 	else
1849 		btrfs_end_transaction(trans);
1850 	return err;
1851 }
1852 
1853 static noinline_for_stack
1854 void free_reloc_roots(struct list_head *list)
1855 {
1856 	struct btrfs_root *reloc_root, *tmp;
1857 
1858 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1859 		__del_reloc_root(reloc_root);
1860 }
1861 
1862 static noinline_for_stack
1863 void merge_reloc_roots(struct reloc_control *rc)
1864 {
1865 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1866 	struct btrfs_root *root;
1867 	struct btrfs_root *reloc_root;
1868 	LIST_HEAD(reloc_roots);
1869 	int found = 0;
1870 	int ret = 0;
1871 again:
1872 	root = rc->extent_root;
1873 
1874 	/*
1875 	 * this serializes us with btrfs_record_root_in_transaction,
1876 	 * we have to make sure nobody is in the middle of
1877 	 * adding their roots to the list while we are
1878 	 * doing this splice
1879 	 */
1880 	mutex_lock(&fs_info->reloc_mutex);
1881 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1882 	mutex_unlock(&fs_info->reloc_mutex);
1883 
1884 	while (!list_empty(&reloc_roots)) {
1885 		found = 1;
1886 		reloc_root = list_entry(reloc_roots.next,
1887 					struct btrfs_root, root_list);
1888 
1889 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1890 					 false);
1891 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1892 			BUG_ON(IS_ERR(root));
1893 			BUG_ON(root->reloc_root != reloc_root);
1894 			ret = merge_reloc_root(rc, root);
1895 			btrfs_put_root(root);
1896 			if (ret) {
1897 				if (list_empty(&reloc_root->root_list))
1898 					list_add_tail(&reloc_root->root_list,
1899 						      &reloc_roots);
1900 				goto out;
1901 			}
1902 		} else {
1903 			if (!IS_ERR(root)) {
1904 				if (root->reloc_root == reloc_root) {
1905 					root->reloc_root = NULL;
1906 					btrfs_put_root(reloc_root);
1907 				}
1908 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
1909 					  &root->state);
1910 				btrfs_put_root(root);
1911 			}
1912 
1913 			list_del_init(&reloc_root->root_list);
1914 			/* Don't forget to queue this reloc root for cleanup */
1915 			list_add_tail(&reloc_root->reloc_dirty_list,
1916 				      &rc->dirty_subvol_roots);
1917 		}
1918 	}
1919 
1920 	if (found) {
1921 		found = 0;
1922 		goto again;
1923 	}
1924 out:
1925 	if (ret) {
1926 		btrfs_handle_fs_error(fs_info, ret, NULL);
1927 		free_reloc_roots(&reloc_roots);
1928 
1929 		/* new reloc root may be added */
1930 		mutex_lock(&fs_info->reloc_mutex);
1931 		list_splice_init(&rc->reloc_roots, &reloc_roots);
1932 		mutex_unlock(&fs_info->reloc_mutex);
1933 		free_reloc_roots(&reloc_roots);
1934 	}
1935 
1936 	/*
1937 	 * We used to have
1938 	 *
1939 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1940 	 *
1941 	 * here, but it's wrong.  If we fail to start the transaction in
1942 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1943 	 * have actually been removed from the reloc_root_tree rb tree.  This is
1944 	 * fine because we're bailing here, and we hold a reference on the root
1945 	 * for the list that holds it, so these roots will be cleaned up when we
1946 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
1947 	 * will be cleaned up on unmount.
1948 	 *
1949 	 * The remaining nodes will be cleaned up by free_reloc_control.
1950 	 */
1951 }
1952 
1953 static void free_block_list(struct rb_root *blocks)
1954 {
1955 	struct tree_block *block;
1956 	struct rb_node *rb_node;
1957 	while ((rb_node = rb_first(blocks))) {
1958 		block = rb_entry(rb_node, struct tree_block, rb_node);
1959 		rb_erase(rb_node, blocks);
1960 		kfree(block);
1961 	}
1962 }
1963 
1964 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
1965 				      struct btrfs_root *reloc_root)
1966 {
1967 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
1968 	struct btrfs_root *root;
1969 	int ret;
1970 
1971 	if (reloc_root->last_trans == trans->transid)
1972 		return 0;
1973 
1974 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
1975 	BUG_ON(IS_ERR(root));
1976 	BUG_ON(root->reloc_root != reloc_root);
1977 	ret = btrfs_record_root_in_trans(trans, root);
1978 	btrfs_put_root(root);
1979 
1980 	return ret;
1981 }
1982 
1983 static noinline_for_stack
1984 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
1985 				     struct reloc_control *rc,
1986 				     struct btrfs_backref_node *node,
1987 				     struct btrfs_backref_edge *edges[])
1988 {
1989 	struct btrfs_backref_node *next;
1990 	struct btrfs_root *root;
1991 	int index = 0;
1992 
1993 	next = node;
1994 	while (1) {
1995 		cond_resched();
1996 		next = walk_up_backref(next, edges, &index);
1997 		root = next->root;
1998 		BUG_ON(!root);
1999 		BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state));
2000 
2001 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2002 			record_reloc_root_in_trans(trans, root);
2003 			break;
2004 		}
2005 
2006 		btrfs_record_root_in_trans(trans, root);
2007 		root = root->reloc_root;
2008 
2009 		if (next->new_bytenr != root->node->start) {
2010 			BUG_ON(next->new_bytenr);
2011 			BUG_ON(!list_empty(&next->list));
2012 			next->new_bytenr = root->node->start;
2013 			btrfs_put_root(next->root);
2014 			next->root = btrfs_grab_root(root);
2015 			ASSERT(next->root);
2016 			list_add_tail(&next->list,
2017 				      &rc->backref_cache.changed);
2018 			mark_block_processed(rc, next);
2019 			break;
2020 		}
2021 
2022 		WARN_ON(1);
2023 		root = NULL;
2024 		next = walk_down_backref(edges, &index);
2025 		if (!next || next->level <= node->level)
2026 			break;
2027 	}
2028 	if (!root)
2029 		return NULL;
2030 
2031 	next = node;
2032 	/* setup backref node path for btrfs_reloc_cow_block */
2033 	while (1) {
2034 		rc->backref_cache.path[next->level] = next;
2035 		if (--index < 0)
2036 			break;
2037 		next = edges[index]->node[UPPER];
2038 	}
2039 	return root;
2040 }
2041 
2042 /*
2043  * Select a tree root for relocation.
2044  *
2045  * Return NULL if the block is not shareable. We should use do_relocation() in
2046  * this case.
2047  *
2048  * Return a tree root pointer if the block is shareable.
2049  * Return -ENOENT if the block is root of reloc tree.
2050  */
2051 static noinline_for_stack
2052 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2053 {
2054 	struct btrfs_backref_node *next;
2055 	struct btrfs_root *root;
2056 	struct btrfs_root *fs_root = NULL;
2057 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2058 	int index = 0;
2059 
2060 	next = node;
2061 	while (1) {
2062 		cond_resched();
2063 		next = walk_up_backref(next, edges, &index);
2064 		root = next->root;
2065 		BUG_ON(!root);
2066 
2067 		/* No other choice for non-shareable tree */
2068 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2069 			return root;
2070 
2071 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2072 			fs_root = root;
2073 
2074 		if (next != node)
2075 			return NULL;
2076 
2077 		next = walk_down_backref(edges, &index);
2078 		if (!next || next->level <= node->level)
2079 			break;
2080 	}
2081 
2082 	if (!fs_root)
2083 		return ERR_PTR(-ENOENT);
2084 	return fs_root;
2085 }
2086 
2087 static noinline_for_stack
2088 u64 calcu_metadata_size(struct reloc_control *rc,
2089 			struct btrfs_backref_node *node, int reserve)
2090 {
2091 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2092 	struct btrfs_backref_node *next = node;
2093 	struct btrfs_backref_edge *edge;
2094 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2095 	u64 num_bytes = 0;
2096 	int index = 0;
2097 
2098 	BUG_ON(reserve && node->processed);
2099 
2100 	while (next) {
2101 		cond_resched();
2102 		while (1) {
2103 			if (next->processed && (reserve || next != node))
2104 				break;
2105 
2106 			num_bytes += fs_info->nodesize;
2107 
2108 			if (list_empty(&next->upper))
2109 				break;
2110 
2111 			edge = list_entry(next->upper.next,
2112 					struct btrfs_backref_edge, list[LOWER]);
2113 			edges[index++] = edge;
2114 			next = edge->node[UPPER];
2115 		}
2116 		next = walk_down_backref(edges, &index);
2117 	}
2118 	return num_bytes;
2119 }
2120 
2121 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2122 				  struct reloc_control *rc,
2123 				  struct btrfs_backref_node *node)
2124 {
2125 	struct btrfs_root *root = rc->extent_root;
2126 	struct btrfs_fs_info *fs_info = root->fs_info;
2127 	u64 num_bytes;
2128 	int ret;
2129 	u64 tmp;
2130 
2131 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2132 
2133 	trans->block_rsv = rc->block_rsv;
2134 	rc->reserved_bytes += num_bytes;
2135 
2136 	/*
2137 	 * We are under a transaction here so we can only do limited flushing.
2138 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2139 	 * transaction and try to refill when we can flush all the things.
2140 	 */
2141 	ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes,
2142 				BTRFS_RESERVE_FLUSH_LIMIT);
2143 	if (ret) {
2144 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2145 		while (tmp <= rc->reserved_bytes)
2146 			tmp <<= 1;
2147 		/*
2148 		 * only one thread can access block_rsv at this point,
2149 		 * so we don't need hold lock to protect block_rsv.
2150 		 * we expand more reservation size here to allow enough
2151 		 * space for relocation and we will return earlier in
2152 		 * enospc case.
2153 		 */
2154 		rc->block_rsv->size = tmp + fs_info->nodesize *
2155 				      RELOCATION_RESERVED_NODES;
2156 		return -EAGAIN;
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 /*
2163  * relocate a block tree, and then update pointers in upper level
2164  * blocks that reference the block to point to the new location.
2165  *
2166  * if called by link_to_upper, the block has already been relocated.
2167  * in that case this function just updates pointers.
2168  */
2169 static int do_relocation(struct btrfs_trans_handle *trans,
2170 			 struct reloc_control *rc,
2171 			 struct btrfs_backref_node *node,
2172 			 struct btrfs_key *key,
2173 			 struct btrfs_path *path, int lowest)
2174 {
2175 	struct btrfs_backref_node *upper;
2176 	struct btrfs_backref_edge *edge;
2177 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2178 	struct btrfs_root *root;
2179 	struct extent_buffer *eb;
2180 	u32 blocksize;
2181 	u64 bytenr;
2182 	int slot;
2183 	int ret = 0;
2184 
2185 	BUG_ON(lowest && node->eb);
2186 
2187 	path->lowest_level = node->level + 1;
2188 	rc->backref_cache.path[node->level] = node;
2189 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2190 		struct btrfs_ref ref = { 0 };
2191 
2192 		cond_resched();
2193 
2194 		upper = edge->node[UPPER];
2195 		root = select_reloc_root(trans, rc, upper, edges);
2196 		BUG_ON(!root);
2197 
2198 		if (upper->eb && !upper->locked) {
2199 			if (!lowest) {
2200 				ret = btrfs_bin_search(upper->eb, key, &slot);
2201 				if (ret < 0)
2202 					goto next;
2203 				BUG_ON(ret);
2204 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2205 				if (node->eb->start == bytenr)
2206 					goto next;
2207 			}
2208 			btrfs_backref_drop_node_buffer(upper);
2209 		}
2210 
2211 		if (!upper->eb) {
2212 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2213 			if (ret) {
2214 				if (ret > 0)
2215 					ret = -ENOENT;
2216 
2217 				btrfs_release_path(path);
2218 				break;
2219 			}
2220 
2221 			if (!upper->eb) {
2222 				upper->eb = path->nodes[upper->level];
2223 				path->nodes[upper->level] = NULL;
2224 			} else {
2225 				BUG_ON(upper->eb != path->nodes[upper->level]);
2226 			}
2227 
2228 			upper->locked = 1;
2229 			path->locks[upper->level] = 0;
2230 
2231 			slot = path->slots[upper->level];
2232 			btrfs_release_path(path);
2233 		} else {
2234 			ret = btrfs_bin_search(upper->eb, key, &slot);
2235 			if (ret < 0)
2236 				goto next;
2237 			BUG_ON(ret);
2238 		}
2239 
2240 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2241 		if (lowest) {
2242 			if (bytenr != node->bytenr) {
2243 				btrfs_err(root->fs_info,
2244 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2245 					  bytenr, node->bytenr, slot,
2246 					  upper->eb->start);
2247 				ret = -EIO;
2248 				goto next;
2249 			}
2250 		} else {
2251 			if (node->eb->start == bytenr)
2252 				goto next;
2253 		}
2254 
2255 		blocksize = root->fs_info->nodesize;
2256 		eb = btrfs_read_node_slot(upper->eb, slot);
2257 		if (IS_ERR(eb)) {
2258 			ret = PTR_ERR(eb);
2259 			goto next;
2260 		}
2261 		btrfs_tree_lock(eb);
2262 
2263 		if (!node->eb) {
2264 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2265 					      slot, &eb, BTRFS_NESTING_COW);
2266 			btrfs_tree_unlock(eb);
2267 			free_extent_buffer(eb);
2268 			if (ret < 0)
2269 				goto next;
2270 			BUG_ON(node->eb != eb);
2271 		} else {
2272 			btrfs_set_node_blockptr(upper->eb, slot,
2273 						node->eb->start);
2274 			btrfs_set_node_ptr_generation(upper->eb, slot,
2275 						      trans->transid);
2276 			btrfs_mark_buffer_dirty(upper->eb);
2277 
2278 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2279 					       node->eb->start, blocksize,
2280 					       upper->eb->start);
2281 			ref.real_root = root->root_key.objectid;
2282 			btrfs_init_tree_ref(&ref, node->level,
2283 					    btrfs_header_owner(upper->eb));
2284 			ret = btrfs_inc_extent_ref(trans, &ref);
2285 			BUG_ON(ret);
2286 
2287 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2288 			BUG_ON(ret);
2289 		}
2290 next:
2291 		if (!upper->pending)
2292 			btrfs_backref_drop_node_buffer(upper);
2293 		else
2294 			btrfs_backref_unlock_node_buffer(upper);
2295 		if (ret)
2296 			break;
2297 	}
2298 
2299 	if (!ret && node->pending) {
2300 		btrfs_backref_drop_node_buffer(node);
2301 		list_move_tail(&node->list, &rc->backref_cache.changed);
2302 		node->pending = 0;
2303 	}
2304 
2305 	path->lowest_level = 0;
2306 	BUG_ON(ret == -ENOSPC);
2307 	return ret;
2308 }
2309 
2310 static int link_to_upper(struct btrfs_trans_handle *trans,
2311 			 struct reloc_control *rc,
2312 			 struct btrfs_backref_node *node,
2313 			 struct btrfs_path *path)
2314 {
2315 	struct btrfs_key key;
2316 
2317 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2318 	return do_relocation(trans, rc, node, &key, path, 0);
2319 }
2320 
2321 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2322 				struct reloc_control *rc,
2323 				struct btrfs_path *path, int err)
2324 {
2325 	LIST_HEAD(list);
2326 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2327 	struct btrfs_backref_node *node;
2328 	int level;
2329 	int ret;
2330 
2331 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2332 		while (!list_empty(&cache->pending[level])) {
2333 			node = list_entry(cache->pending[level].next,
2334 					  struct btrfs_backref_node, list);
2335 			list_move_tail(&node->list, &list);
2336 			BUG_ON(!node->pending);
2337 
2338 			if (!err) {
2339 				ret = link_to_upper(trans, rc, node, path);
2340 				if (ret < 0)
2341 					err = ret;
2342 			}
2343 		}
2344 		list_splice_init(&list, &cache->pending[level]);
2345 	}
2346 	return err;
2347 }
2348 
2349 /*
2350  * mark a block and all blocks directly/indirectly reference the block
2351  * as processed.
2352  */
2353 static void update_processed_blocks(struct reloc_control *rc,
2354 				    struct btrfs_backref_node *node)
2355 {
2356 	struct btrfs_backref_node *next = node;
2357 	struct btrfs_backref_edge *edge;
2358 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2359 	int index = 0;
2360 
2361 	while (next) {
2362 		cond_resched();
2363 		while (1) {
2364 			if (next->processed)
2365 				break;
2366 
2367 			mark_block_processed(rc, next);
2368 
2369 			if (list_empty(&next->upper))
2370 				break;
2371 
2372 			edge = list_entry(next->upper.next,
2373 					struct btrfs_backref_edge, list[LOWER]);
2374 			edges[index++] = edge;
2375 			next = edge->node[UPPER];
2376 		}
2377 		next = walk_down_backref(edges, &index);
2378 	}
2379 }
2380 
2381 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2382 {
2383 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2384 
2385 	if (test_range_bit(&rc->processed_blocks, bytenr,
2386 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2387 		return 1;
2388 	return 0;
2389 }
2390 
2391 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2392 			      struct tree_block *block)
2393 {
2394 	struct extent_buffer *eb;
2395 
2396 	eb = read_tree_block(fs_info, block->bytenr, 0, block->key.offset,
2397 			     block->level, NULL);
2398 	if (IS_ERR(eb)) {
2399 		return PTR_ERR(eb);
2400 	} else if (!extent_buffer_uptodate(eb)) {
2401 		free_extent_buffer(eb);
2402 		return -EIO;
2403 	}
2404 	if (block->level == 0)
2405 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2406 	else
2407 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2408 	free_extent_buffer(eb);
2409 	block->key_ready = 1;
2410 	return 0;
2411 }
2412 
2413 /*
2414  * helper function to relocate a tree block
2415  */
2416 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2417 				struct reloc_control *rc,
2418 				struct btrfs_backref_node *node,
2419 				struct btrfs_key *key,
2420 				struct btrfs_path *path)
2421 {
2422 	struct btrfs_root *root;
2423 	int ret = 0;
2424 
2425 	if (!node)
2426 		return 0;
2427 
2428 	/*
2429 	 * If we fail here we want to drop our backref_node because we are going
2430 	 * to start over and regenerate the tree for it.
2431 	 */
2432 	ret = reserve_metadata_space(trans, rc, node);
2433 	if (ret)
2434 		goto out;
2435 
2436 	BUG_ON(node->processed);
2437 	root = select_one_root(node);
2438 	if (root == ERR_PTR(-ENOENT)) {
2439 		update_processed_blocks(rc, node);
2440 		goto out;
2441 	}
2442 
2443 	if (root) {
2444 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2445 			BUG_ON(node->new_bytenr);
2446 			BUG_ON(!list_empty(&node->list));
2447 			btrfs_record_root_in_trans(trans, root);
2448 			root = root->reloc_root;
2449 			node->new_bytenr = root->node->start;
2450 			btrfs_put_root(node->root);
2451 			node->root = btrfs_grab_root(root);
2452 			ASSERT(node->root);
2453 			list_add_tail(&node->list, &rc->backref_cache.changed);
2454 		} else {
2455 			path->lowest_level = node->level;
2456 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2457 			btrfs_release_path(path);
2458 			if (ret > 0)
2459 				ret = 0;
2460 		}
2461 		if (!ret)
2462 			update_processed_blocks(rc, node);
2463 	} else {
2464 		ret = do_relocation(trans, rc, node, key, path, 1);
2465 	}
2466 out:
2467 	if (ret || node->level == 0 || node->cowonly)
2468 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2469 	return ret;
2470 }
2471 
2472 /*
2473  * relocate a list of blocks
2474  */
2475 static noinline_for_stack
2476 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2477 			 struct reloc_control *rc, struct rb_root *blocks)
2478 {
2479 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2480 	struct btrfs_backref_node *node;
2481 	struct btrfs_path *path;
2482 	struct tree_block *block;
2483 	struct tree_block *next;
2484 	int ret;
2485 	int err = 0;
2486 
2487 	path = btrfs_alloc_path();
2488 	if (!path) {
2489 		err = -ENOMEM;
2490 		goto out_free_blocks;
2491 	}
2492 
2493 	/* Kick in readahead for tree blocks with missing keys */
2494 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2495 		if (!block->key_ready)
2496 			btrfs_readahead_tree_block(fs_info, block->bytenr, 0, 0,
2497 						   block->level);
2498 	}
2499 
2500 	/* Get first keys */
2501 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2502 		if (!block->key_ready) {
2503 			err = get_tree_block_key(fs_info, block);
2504 			if (err)
2505 				goto out_free_path;
2506 		}
2507 	}
2508 
2509 	/* Do tree relocation */
2510 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2511 		node = build_backref_tree(rc, &block->key,
2512 					  block->level, block->bytenr);
2513 		if (IS_ERR(node)) {
2514 			err = PTR_ERR(node);
2515 			goto out;
2516 		}
2517 
2518 		ret = relocate_tree_block(trans, rc, node, &block->key,
2519 					  path);
2520 		if (ret < 0) {
2521 			err = ret;
2522 			break;
2523 		}
2524 	}
2525 out:
2526 	err = finish_pending_nodes(trans, rc, path, err);
2527 
2528 out_free_path:
2529 	btrfs_free_path(path);
2530 out_free_blocks:
2531 	free_block_list(blocks);
2532 	return err;
2533 }
2534 
2535 static noinline_for_stack int prealloc_file_extent_cluster(
2536 				struct btrfs_inode *inode,
2537 				struct file_extent_cluster *cluster)
2538 {
2539 	u64 alloc_hint = 0;
2540 	u64 start;
2541 	u64 end;
2542 	u64 offset = inode->index_cnt;
2543 	u64 num_bytes;
2544 	int nr;
2545 	int ret = 0;
2546 	u64 prealloc_start = cluster->start - offset;
2547 	u64 prealloc_end = cluster->end - offset;
2548 	u64 cur_offset = prealloc_start;
2549 
2550 	BUG_ON(cluster->start != cluster->boundary[0]);
2551 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2552 					      prealloc_end + 1 - prealloc_start);
2553 	if (ret)
2554 		return ret;
2555 
2556 	inode_lock(&inode->vfs_inode);
2557 	for (nr = 0; nr < cluster->nr; nr++) {
2558 		start = cluster->boundary[nr] - offset;
2559 		if (nr + 1 < cluster->nr)
2560 			end = cluster->boundary[nr + 1] - 1 - offset;
2561 		else
2562 			end = cluster->end - offset;
2563 
2564 		lock_extent(&inode->io_tree, start, end);
2565 		num_bytes = end + 1 - start;
2566 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2567 						num_bytes, num_bytes,
2568 						end + 1, &alloc_hint);
2569 		cur_offset = end + 1;
2570 		unlock_extent(&inode->io_tree, start, end);
2571 		if (ret)
2572 			break;
2573 	}
2574 	inode_unlock(&inode->vfs_inode);
2575 
2576 	if (cur_offset < prealloc_end)
2577 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2578 					       prealloc_end + 1 - cur_offset);
2579 	return ret;
2580 }
2581 
2582 static noinline_for_stack
2583 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
2584 			 u64 block_start)
2585 {
2586 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2587 	struct extent_map *em;
2588 	int ret = 0;
2589 
2590 	em = alloc_extent_map();
2591 	if (!em)
2592 		return -ENOMEM;
2593 
2594 	em->start = start;
2595 	em->len = end + 1 - start;
2596 	em->block_len = em->len;
2597 	em->block_start = block_start;
2598 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2599 
2600 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2601 	while (1) {
2602 		write_lock(&em_tree->lock);
2603 		ret = add_extent_mapping(em_tree, em, 0);
2604 		write_unlock(&em_tree->lock);
2605 		if (ret != -EEXIST) {
2606 			free_extent_map(em);
2607 			break;
2608 		}
2609 		btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
2610 	}
2611 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2612 	return ret;
2613 }
2614 
2615 /*
2616  * Allow error injection to test balance cancellation
2617  */
2618 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2619 {
2620 	return atomic_read(&fs_info->balance_cancel_req) ||
2621 		fatal_signal_pending(current);
2622 }
2623 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2624 
2625 static int relocate_file_extent_cluster(struct inode *inode,
2626 					struct file_extent_cluster *cluster)
2627 {
2628 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2629 	u64 page_start;
2630 	u64 page_end;
2631 	u64 offset = BTRFS_I(inode)->index_cnt;
2632 	unsigned long index;
2633 	unsigned long last_index;
2634 	struct page *page;
2635 	struct file_ra_state *ra;
2636 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2637 	int nr = 0;
2638 	int ret = 0;
2639 
2640 	if (!cluster->nr)
2641 		return 0;
2642 
2643 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
2644 	if (!ra)
2645 		return -ENOMEM;
2646 
2647 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
2648 	if (ret)
2649 		goto out;
2650 
2651 	file_ra_state_init(ra, inode->i_mapping);
2652 
2653 	ret = setup_extent_mapping(inode, cluster->start - offset,
2654 				   cluster->end - offset, cluster->start);
2655 	if (ret)
2656 		goto out;
2657 
2658 	index = (cluster->start - offset) >> PAGE_SHIFT;
2659 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
2660 	while (index <= last_index) {
2661 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
2662 				PAGE_SIZE);
2663 		if (ret)
2664 			goto out;
2665 
2666 		page = find_lock_page(inode->i_mapping, index);
2667 		if (!page) {
2668 			page_cache_sync_readahead(inode->i_mapping,
2669 						  ra, NULL, index,
2670 						  last_index + 1 - index);
2671 			page = find_or_create_page(inode->i_mapping, index,
2672 						   mask);
2673 			if (!page) {
2674 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2675 							PAGE_SIZE, true);
2676 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2677 							PAGE_SIZE);
2678 				ret = -ENOMEM;
2679 				goto out;
2680 			}
2681 		}
2682 
2683 		if (PageReadahead(page)) {
2684 			page_cache_async_readahead(inode->i_mapping,
2685 						   ra, NULL, page, index,
2686 						   last_index + 1 - index);
2687 		}
2688 
2689 		if (!PageUptodate(page)) {
2690 			btrfs_readpage(NULL, page);
2691 			lock_page(page);
2692 			if (!PageUptodate(page)) {
2693 				unlock_page(page);
2694 				put_page(page);
2695 				btrfs_delalloc_release_metadata(BTRFS_I(inode),
2696 							PAGE_SIZE, true);
2697 				btrfs_delalloc_release_extents(BTRFS_I(inode),
2698 							       PAGE_SIZE);
2699 				ret = -EIO;
2700 				goto out;
2701 			}
2702 		}
2703 
2704 		page_start = page_offset(page);
2705 		page_end = page_start + PAGE_SIZE - 1;
2706 
2707 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
2708 
2709 		set_page_extent_mapped(page);
2710 
2711 		if (nr < cluster->nr &&
2712 		    page_start + offset == cluster->boundary[nr]) {
2713 			set_extent_bits(&BTRFS_I(inode)->io_tree,
2714 					page_start, page_end,
2715 					EXTENT_BOUNDARY);
2716 			nr++;
2717 		}
2718 
2719 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start,
2720 						page_end, 0, NULL);
2721 		if (ret) {
2722 			unlock_page(page);
2723 			put_page(page);
2724 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
2725 							 PAGE_SIZE, true);
2726 			btrfs_delalloc_release_extents(BTRFS_I(inode),
2727 			                               PAGE_SIZE);
2728 
2729 			clear_extent_bits(&BTRFS_I(inode)->io_tree,
2730 					  page_start, page_end,
2731 					  EXTENT_LOCKED | EXTENT_BOUNDARY);
2732 			goto out;
2733 
2734 		}
2735 		set_page_dirty(page);
2736 
2737 		unlock_extent(&BTRFS_I(inode)->io_tree,
2738 			      page_start, page_end);
2739 		unlock_page(page);
2740 		put_page(page);
2741 
2742 		index++;
2743 		btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
2744 		balance_dirty_pages_ratelimited(inode->i_mapping);
2745 		btrfs_throttle(fs_info);
2746 		if (btrfs_should_cancel_balance(fs_info)) {
2747 			ret = -ECANCELED;
2748 			goto out;
2749 		}
2750 	}
2751 	WARN_ON(nr != cluster->nr);
2752 out:
2753 	kfree(ra);
2754 	return ret;
2755 }
2756 
2757 static noinline_for_stack
2758 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
2759 			 struct file_extent_cluster *cluster)
2760 {
2761 	int ret;
2762 
2763 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
2764 		ret = relocate_file_extent_cluster(inode, cluster);
2765 		if (ret)
2766 			return ret;
2767 		cluster->nr = 0;
2768 	}
2769 
2770 	if (!cluster->nr)
2771 		cluster->start = extent_key->objectid;
2772 	else
2773 		BUG_ON(cluster->nr >= MAX_EXTENTS);
2774 	cluster->end = extent_key->objectid + extent_key->offset - 1;
2775 	cluster->boundary[cluster->nr] = extent_key->objectid;
2776 	cluster->nr++;
2777 
2778 	if (cluster->nr >= MAX_EXTENTS) {
2779 		ret = relocate_file_extent_cluster(inode, cluster);
2780 		if (ret)
2781 			return ret;
2782 		cluster->nr = 0;
2783 	}
2784 	return 0;
2785 }
2786 
2787 /*
2788  * helper to add a tree block to the list.
2789  * the major work is getting the generation and level of the block
2790  */
2791 static int add_tree_block(struct reloc_control *rc,
2792 			  struct btrfs_key *extent_key,
2793 			  struct btrfs_path *path,
2794 			  struct rb_root *blocks)
2795 {
2796 	struct extent_buffer *eb;
2797 	struct btrfs_extent_item *ei;
2798 	struct btrfs_tree_block_info *bi;
2799 	struct tree_block *block;
2800 	struct rb_node *rb_node;
2801 	u32 item_size;
2802 	int level = -1;
2803 	u64 generation;
2804 
2805 	eb =  path->nodes[0];
2806 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
2807 
2808 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
2809 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
2810 		ei = btrfs_item_ptr(eb, path->slots[0],
2811 				struct btrfs_extent_item);
2812 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
2813 			bi = (struct btrfs_tree_block_info *)(ei + 1);
2814 			level = btrfs_tree_block_level(eb, bi);
2815 		} else {
2816 			level = (int)extent_key->offset;
2817 		}
2818 		generation = btrfs_extent_generation(eb, ei);
2819 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
2820 		btrfs_print_v0_err(eb->fs_info);
2821 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
2822 		return -EINVAL;
2823 	} else {
2824 		BUG();
2825 	}
2826 
2827 	btrfs_release_path(path);
2828 
2829 	BUG_ON(level == -1);
2830 
2831 	block = kmalloc(sizeof(*block), GFP_NOFS);
2832 	if (!block)
2833 		return -ENOMEM;
2834 
2835 	block->bytenr = extent_key->objectid;
2836 	block->key.objectid = rc->extent_root->fs_info->nodesize;
2837 	block->key.offset = generation;
2838 	block->level = level;
2839 	block->key_ready = 0;
2840 
2841 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
2842 	if (rb_node)
2843 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
2844 				    -EEXIST);
2845 
2846 	return 0;
2847 }
2848 
2849 /*
2850  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
2851  */
2852 static int __add_tree_block(struct reloc_control *rc,
2853 			    u64 bytenr, u32 blocksize,
2854 			    struct rb_root *blocks)
2855 {
2856 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2857 	struct btrfs_path *path;
2858 	struct btrfs_key key;
2859 	int ret;
2860 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2861 
2862 	if (tree_block_processed(bytenr, rc))
2863 		return 0;
2864 
2865 	if (rb_simple_search(blocks, bytenr))
2866 		return 0;
2867 
2868 	path = btrfs_alloc_path();
2869 	if (!path)
2870 		return -ENOMEM;
2871 again:
2872 	key.objectid = bytenr;
2873 	if (skinny) {
2874 		key.type = BTRFS_METADATA_ITEM_KEY;
2875 		key.offset = (u64)-1;
2876 	} else {
2877 		key.type = BTRFS_EXTENT_ITEM_KEY;
2878 		key.offset = blocksize;
2879 	}
2880 
2881 	path->search_commit_root = 1;
2882 	path->skip_locking = 1;
2883 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
2884 	if (ret < 0)
2885 		goto out;
2886 
2887 	if (ret > 0 && skinny) {
2888 		if (path->slots[0]) {
2889 			path->slots[0]--;
2890 			btrfs_item_key_to_cpu(path->nodes[0], &key,
2891 					      path->slots[0]);
2892 			if (key.objectid == bytenr &&
2893 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
2894 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
2895 			      key.offset == blocksize)))
2896 				ret = 0;
2897 		}
2898 
2899 		if (ret) {
2900 			skinny = false;
2901 			btrfs_release_path(path);
2902 			goto again;
2903 		}
2904 	}
2905 	if (ret) {
2906 		ASSERT(ret == 1);
2907 		btrfs_print_leaf(path->nodes[0]);
2908 		btrfs_err(fs_info,
2909 	     "tree block extent item (%llu) is not found in extent tree",
2910 		     bytenr);
2911 		WARN_ON(1);
2912 		ret = -EINVAL;
2913 		goto out;
2914 	}
2915 
2916 	ret = add_tree_block(rc, &key, path, blocks);
2917 out:
2918 	btrfs_free_path(path);
2919 	return ret;
2920 }
2921 
2922 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
2923 				    struct btrfs_block_group *block_group,
2924 				    struct inode *inode,
2925 				    u64 ino)
2926 {
2927 	struct btrfs_root *root = fs_info->tree_root;
2928 	struct btrfs_trans_handle *trans;
2929 	int ret = 0;
2930 
2931 	if (inode)
2932 		goto truncate;
2933 
2934 	inode = btrfs_iget(fs_info->sb, ino, root);
2935 	if (IS_ERR(inode))
2936 		return -ENOENT;
2937 
2938 truncate:
2939 	ret = btrfs_check_trunc_cache_free_space(fs_info,
2940 						 &fs_info->global_block_rsv);
2941 	if (ret)
2942 		goto out;
2943 
2944 	trans = btrfs_join_transaction(root);
2945 	if (IS_ERR(trans)) {
2946 		ret = PTR_ERR(trans);
2947 		goto out;
2948 	}
2949 
2950 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
2951 
2952 	btrfs_end_transaction(trans);
2953 	btrfs_btree_balance_dirty(fs_info);
2954 out:
2955 	iput(inode);
2956 	return ret;
2957 }
2958 
2959 /*
2960  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
2961  * cache inode, to avoid free space cache data extent blocking data relocation.
2962  */
2963 static int delete_v1_space_cache(struct extent_buffer *leaf,
2964 				 struct btrfs_block_group *block_group,
2965 				 u64 data_bytenr)
2966 {
2967 	u64 space_cache_ino;
2968 	struct btrfs_file_extent_item *ei;
2969 	struct btrfs_key key;
2970 	bool found = false;
2971 	int i;
2972 	int ret;
2973 
2974 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
2975 		return 0;
2976 
2977 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
2978 		btrfs_item_key_to_cpu(leaf, &key, i);
2979 		if (key.type != BTRFS_EXTENT_DATA_KEY)
2980 			continue;
2981 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
2982 		if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG &&
2983 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
2984 			found = true;
2985 			space_cache_ino = key.objectid;
2986 			break;
2987 		}
2988 	}
2989 	if (!found)
2990 		return -ENOENT;
2991 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
2992 					space_cache_ino);
2993 	return ret;
2994 }
2995 
2996 /*
2997  * helper to find all tree blocks that reference a given data extent
2998  */
2999 static noinline_for_stack
3000 int add_data_references(struct reloc_control *rc,
3001 			struct btrfs_key *extent_key,
3002 			struct btrfs_path *path,
3003 			struct rb_root *blocks)
3004 {
3005 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3006 	struct ulist *leaves = NULL;
3007 	struct ulist_iterator leaf_uiter;
3008 	struct ulist_node *ref_node = NULL;
3009 	const u32 blocksize = fs_info->nodesize;
3010 	int ret = 0;
3011 
3012 	btrfs_release_path(path);
3013 	ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid,
3014 				   0, &leaves, NULL, true);
3015 	if (ret < 0)
3016 		return ret;
3017 
3018 	ULIST_ITER_INIT(&leaf_uiter);
3019 	while ((ref_node = ulist_next(leaves, &leaf_uiter))) {
3020 		struct extent_buffer *eb;
3021 
3022 		eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL);
3023 		if (IS_ERR(eb)) {
3024 			ret = PTR_ERR(eb);
3025 			break;
3026 		}
3027 		ret = delete_v1_space_cache(eb, rc->block_group,
3028 					    extent_key->objectid);
3029 		free_extent_buffer(eb);
3030 		if (ret < 0)
3031 			break;
3032 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3033 		if (ret < 0)
3034 			break;
3035 	}
3036 	if (ret < 0)
3037 		free_block_list(blocks);
3038 	ulist_free(leaves);
3039 	return ret;
3040 }
3041 
3042 /*
3043  * helper to find next unprocessed extent
3044  */
3045 static noinline_for_stack
3046 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3047 		     struct btrfs_key *extent_key)
3048 {
3049 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3050 	struct btrfs_key key;
3051 	struct extent_buffer *leaf;
3052 	u64 start, end, last;
3053 	int ret;
3054 
3055 	last = rc->block_group->start + rc->block_group->length;
3056 	while (1) {
3057 		cond_resched();
3058 		if (rc->search_start >= last) {
3059 			ret = 1;
3060 			break;
3061 		}
3062 
3063 		key.objectid = rc->search_start;
3064 		key.type = BTRFS_EXTENT_ITEM_KEY;
3065 		key.offset = 0;
3066 
3067 		path->search_commit_root = 1;
3068 		path->skip_locking = 1;
3069 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3070 					0, 0);
3071 		if (ret < 0)
3072 			break;
3073 next:
3074 		leaf = path->nodes[0];
3075 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3076 			ret = btrfs_next_leaf(rc->extent_root, path);
3077 			if (ret != 0)
3078 				break;
3079 			leaf = path->nodes[0];
3080 		}
3081 
3082 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3083 		if (key.objectid >= last) {
3084 			ret = 1;
3085 			break;
3086 		}
3087 
3088 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3089 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3090 			path->slots[0]++;
3091 			goto next;
3092 		}
3093 
3094 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3095 		    key.objectid + key.offset <= rc->search_start) {
3096 			path->slots[0]++;
3097 			goto next;
3098 		}
3099 
3100 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3101 		    key.objectid + fs_info->nodesize <=
3102 		    rc->search_start) {
3103 			path->slots[0]++;
3104 			goto next;
3105 		}
3106 
3107 		ret = find_first_extent_bit(&rc->processed_blocks,
3108 					    key.objectid, &start, &end,
3109 					    EXTENT_DIRTY, NULL);
3110 
3111 		if (ret == 0 && start <= key.objectid) {
3112 			btrfs_release_path(path);
3113 			rc->search_start = end + 1;
3114 		} else {
3115 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3116 				rc->search_start = key.objectid + key.offset;
3117 			else
3118 				rc->search_start = key.objectid +
3119 					fs_info->nodesize;
3120 			memcpy(extent_key, &key, sizeof(key));
3121 			return 0;
3122 		}
3123 	}
3124 	btrfs_release_path(path);
3125 	return ret;
3126 }
3127 
3128 static void set_reloc_control(struct reloc_control *rc)
3129 {
3130 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3131 
3132 	mutex_lock(&fs_info->reloc_mutex);
3133 	fs_info->reloc_ctl = rc;
3134 	mutex_unlock(&fs_info->reloc_mutex);
3135 }
3136 
3137 static void unset_reloc_control(struct reloc_control *rc)
3138 {
3139 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3140 
3141 	mutex_lock(&fs_info->reloc_mutex);
3142 	fs_info->reloc_ctl = NULL;
3143 	mutex_unlock(&fs_info->reloc_mutex);
3144 }
3145 
3146 static int check_extent_flags(u64 flags)
3147 {
3148 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3149 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3150 		return 1;
3151 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3152 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3153 		return 1;
3154 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3155 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3156 		return 1;
3157 	return 0;
3158 }
3159 
3160 static noinline_for_stack
3161 int prepare_to_relocate(struct reloc_control *rc)
3162 {
3163 	struct btrfs_trans_handle *trans;
3164 	int ret;
3165 
3166 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3167 					      BTRFS_BLOCK_RSV_TEMP);
3168 	if (!rc->block_rsv)
3169 		return -ENOMEM;
3170 
3171 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3172 	rc->search_start = rc->block_group->start;
3173 	rc->extents_found = 0;
3174 	rc->nodes_relocated = 0;
3175 	rc->merging_rsv_size = 0;
3176 	rc->reserved_bytes = 0;
3177 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3178 			      RELOCATION_RESERVED_NODES;
3179 	ret = btrfs_block_rsv_refill(rc->extent_root,
3180 				     rc->block_rsv, rc->block_rsv->size,
3181 				     BTRFS_RESERVE_FLUSH_ALL);
3182 	if (ret)
3183 		return ret;
3184 
3185 	rc->create_reloc_tree = 1;
3186 	set_reloc_control(rc);
3187 
3188 	trans = btrfs_join_transaction(rc->extent_root);
3189 	if (IS_ERR(trans)) {
3190 		unset_reloc_control(rc);
3191 		/*
3192 		 * extent tree is not a ref_cow tree and has no reloc_root to
3193 		 * cleanup.  And callers are responsible to free the above
3194 		 * block rsv.
3195 		 */
3196 		return PTR_ERR(trans);
3197 	}
3198 	btrfs_commit_transaction(trans);
3199 	return 0;
3200 }
3201 
3202 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3203 {
3204 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3205 	struct rb_root blocks = RB_ROOT;
3206 	struct btrfs_key key;
3207 	struct btrfs_trans_handle *trans = NULL;
3208 	struct btrfs_path *path;
3209 	struct btrfs_extent_item *ei;
3210 	u64 flags;
3211 	u32 item_size;
3212 	int ret;
3213 	int err = 0;
3214 	int progress = 0;
3215 
3216 	path = btrfs_alloc_path();
3217 	if (!path)
3218 		return -ENOMEM;
3219 	path->reada = READA_FORWARD;
3220 
3221 	ret = prepare_to_relocate(rc);
3222 	if (ret) {
3223 		err = ret;
3224 		goto out_free;
3225 	}
3226 
3227 	while (1) {
3228 		rc->reserved_bytes = 0;
3229 		ret = btrfs_block_rsv_refill(rc->extent_root,
3230 					rc->block_rsv, rc->block_rsv->size,
3231 					BTRFS_RESERVE_FLUSH_ALL);
3232 		if (ret) {
3233 			err = ret;
3234 			break;
3235 		}
3236 		progress++;
3237 		trans = btrfs_start_transaction(rc->extent_root, 0);
3238 		if (IS_ERR(trans)) {
3239 			err = PTR_ERR(trans);
3240 			trans = NULL;
3241 			break;
3242 		}
3243 restart:
3244 		if (update_backref_cache(trans, &rc->backref_cache)) {
3245 			btrfs_end_transaction(trans);
3246 			trans = NULL;
3247 			continue;
3248 		}
3249 
3250 		ret = find_next_extent(rc, path, &key);
3251 		if (ret < 0)
3252 			err = ret;
3253 		if (ret != 0)
3254 			break;
3255 
3256 		rc->extents_found++;
3257 
3258 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3259 				    struct btrfs_extent_item);
3260 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3261 		if (item_size >= sizeof(*ei)) {
3262 			flags = btrfs_extent_flags(path->nodes[0], ei);
3263 			ret = check_extent_flags(flags);
3264 			BUG_ON(ret);
3265 		} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3266 			err = -EINVAL;
3267 			btrfs_print_v0_err(trans->fs_info);
3268 			btrfs_abort_transaction(trans, err);
3269 			break;
3270 		} else {
3271 			BUG();
3272 		}
3273 
3274 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3275 			ret = add_tree_block(rc, &key, path, &blocks);
3276 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3277 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3278 			ret = add_data_references(rc, &key, path, &blocks);
3279 		} else {
3280 			btrfs_release_path(path);
3281 			ret = 0;
3282 		}
3283 		if (ret < 0) {
3284 			err = ret;
3285 			break;
3286 		}
3287 
3288 		if (!RB_EMPTY_ROOT(&blocks)) {
3289 			ret = relocate_tree_blocks(trans, rc, &blocks);
3290 			if (ret < 0) {
3291 				if (ret != -EAGAIN) {
3292 					err = ret;
3293 					break;
3294 				}
3295 				rc->extents_found--;
3296 				rc->search_start = key.objectid;
3297 			}
3298 		}
3299 
3300 		btrfs_end_transaction_throttle(trans);
3301 		btrfs_btree_balance_dirty(fs_info);
3302 		trans = NULL;
3303 
3304 		if (rc->stage == MOVE_DATA_EXTENTS &&
3305 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3306 			rc->found_file_extent = 1;
3307 			ret = relocate_data_extent(rc->data_inode,
3308 						   &key, &rc->cluster);
3309 			if (ret < 0) {
3310 				err = ret;
3311 				break;
3312 			}
3313 		}
3314 		if (btrfs_should_cancel_balance(fs_info)) {
3315 			err = -ECANCELED;
3316 			break;
3317 		}
3318 	}
3319 	if (trans && progress && err == -ENOSPC) {
3320 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3321 		if (ret == 1) {
3322 			err = 0;
3323 			progress = 0;
3324 			goto restart;
3325 		}
3326 	}
3327 
3328 	btrfs_release_path(path);
3329 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3330 
3331 	if (trans) {
3332 		btrfs_end_transaction_throttle(trans);
3333 		btrfs_btree_balance_dirty(fs_info);
3334 	}
3335 
3336 	if (!err) {
3337 		ret = relocate_file_extent_cluster(rc->data_inode,
3338 						   &rc->cluster);
3339 		if (ret < 0)
3340 			err = ret;
3341 	}
3342 
3343 	rc->create_reloc_tree = 0;
3344 	set_reloc_control(rc);
3345 
3346 	btrfs_backref_release_cache(&rc->backref_cache);
3347 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3348 
3349 	/*
3350 	 * Even in the case when the relocation is cancelled, we should all go
3351 	 * through prepare_to_merge() and merge_reloc_roots().
3352 	 *
3353 	 * For error (including cancelled balance), prepare_to_merge() will
3354 	 * mark all reloc trees orphan, then queue them for cleanup in
3355 	 * merge_reloc_roots()
3356 	 */
3357 	err = prepare_to_merge(rc, err);
3358 
3359 	merge_reloc_roots(rc);
3360 
3361 	rc->merge_reloc_tree = 0;
3362 	unset_reloc_control(rc);
3363 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3364 
3365 	/* get rid of pinned extents */
3366 	trans = btrfs_join_transaction(rc->extent_root);
3367 	if (IS_ERR(trans)) {
3368 		err = PTR_ERR(trans);
3369 		goto out_free;
3370 	}
3371 	btrfs_commit_transaction(trans);
3372 out_free:
3373 	ret = clean_dirty_subvols(rc);
3374 	if (ret < 0 && !err)
3375 		err = ret;
3376 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3377 	btrfs_free_path(path);
3378 	return err;
3379 }
3380 
3381 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3382 				 struct btrfs_root *root, u64 objectid)
3383 {
3384 	struct btrfs_path *path;
3385 	struct btrfs_inode_item *item;
3386 	struct extent_buffer *leaf;
3387 	int ret;
3388 
3389 	path = btrfs_alloc_path();
3390 	if (!path)
3391 		return -ENOMEM;
3392 
3393 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3394 	if (ret)
3395 		goto out;
3396 
3397 	leaf = path->nodes[0];
3398 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3399 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3400 	btrfs_set_inode_generation(leaf, item, 1);
3401 	btrfs_set_inode_size(leaf, item, 0);
3402 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3403 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3404 					  BTRFS_INODE_PREALLOC);
3405 	btrfs_mark_buffer_dirty(leaf);
3406 out:
3407 	btrfs_free_path(path);
3408 	return ret;
3409 }
3410 
3411 /*
3412  * helper to create inode for data relocation.
3413  * the inode is in data relocation tree and its link count is 0
3414  */
3415 static noinline_for_stack
3416 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3417 				 struct btrfs_block_group *group)
3418 {
3419 	struct inode *inode = NULL;
3420 	struct btrfs_trans_handle *trans;
3421 	struct btrfs_root *root;
3422 	u64 objectid;
3423 	int err = 0;
3424 
3425 	root = btrfs_grab_root(fs_info->data_reloc_root);
3426 	trans = btrfs_start_transaction(root, 6);
3427 	if (IS_ERR(trans)) {
3428 		btrfs_put_root(root);
3429 		return ERR_CAST(trans);
3430 	}
3431 
3432 	err = btrfs_find_free_objectid(root, &objectid);
3433 	if (err)
3434 		goto out;
3435 
3436 	err = __insert_orphan_inode(trans, root, objectid);
3437 	BUG_ON(err);
3438 
3439 	inode = btrfs_iget(fs_info->sb, objectid, root);
3440 	BUG_ON(IS_ERR(inode));
3441 	BTRFS_I(inode)->index_cnt = group->start;
3442 
3443 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3444 out:
3445 	btrfs_put_root(root);
3446 	btrfs_end_transaction(trans);
3447 	btrfs_btree_balance_dirty(fs_info);
3448 	if (err) {
3449 		if (inode)
3450 			iput(inode);
3451 		inode = ERR_PTR(err);
3452 	}
3453 	return inode;
3454 }
3455 
3456 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3457 {
3458 	struct reloc_control *rc;
3459 
3460 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3461 	if (!rc)
3462 		return NULL;
3463 
3464 	INIT_LIST_HEAD(&rc->reloc_roots);
3465 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3466 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3467 	mapping_tree_init(&rc->reloc_root_tree);
3468 	extent_io_tree_init(fs_info, &rc->processed_blocks,
3469 			    IO_TREE_RELOC_BLOCKS, NULL);
3470 	return rc;
3471 }
3472 
3473 static void free_reloc_control(struct reloc_control *rc)
3474 {
3475 	struct mapping_node *node, *tmp;
3476 
3477 	free_reloc_roots(&rc->reloc_roots);
3478 	rbtree_postorder_for_each_entry_safe(node, tmp,
3479 			&rc->reloc_root_tree.rb_root, rb_node)
3480 		kfree(node);
3481 
3482 	kfree(rc);
3483 }
3484 
3485 /*
3486  * Print the block group being relocated
3487  */
3488 static void describe_relocation(struct btrfs_fs_info *fs_info,
3489 				struct btrfs_block_group *block_group)
3490 {
3491 	char buf[128] = {'\0'};
3492 
3493 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3494 
3495 	btrfs_info(fs_info,
3496 		   "relocating block group %llu flags %s",
3497 		   block_group->start, buf);
3498 }
3499 
3500 static const char *stage_to_string(int stage)
3501 {
3502 	if (stage == MOVE_DATA_EXTENTS)
3503 		return "move data extents";
3504 	if (stage == UPDATE_DATA_PTRS)
3505 		return "update data pointers";
3506 	return "unknown";
3507 }
3508 
3509 /*
3510  * function to relocate all extents in a block group.
3511  */
3512 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3513 {
3514 	struct btrfs_block_group *bg;
3515 	struct btrfs_root *extent_root = fs_info->extent_root;
3516 	struct reloc_control *rc;
3517 	struct inode *inode;
3518 	struct btrfs_path *path;
3519 	int ret;
3520 	int rw = 0;
3521 	int err = 0;
3522 
3523 	bg = btrfs_lookup_block_group(fs_info, group_start);
3524 	if (!bg)
3525 		return -ENOENT;
3526 
3527 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
3528 		btrfs_put_block_group(bg);
3529 		return -ETXTBSY;
3530 	}
3531 
3532 	rc = alloc_reloc_control(fs_info);
3533 	if (!rc) {
3534 		btrfs_put_block_group(bg);
3535 		return -ENOMEM;
3536 	}
3537 
3538 	rc->extent_root = extent_root;
3539 	rc->block_group = bg;
3540 
3541 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
3542 	if (ret) {
3543 		err = ret;
3544 		goto out;
3545 	}
3546 	rw = 1;
3547 
3548 	path = btrfs_alloc_path();
3549 	if (!path) {
3550 		err = -ENOMEM;
3551 		goto out;
3552 	}
3553 
3554 	inode = lookup_free_space_inode(rc->block_group, path);
3555 	btrfs_free_path(path);
3556 
3557 	if (!IS_ERR(inode))
3558 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
3559 	else
3560 		ret = PTR_ERR(inode);
3561 
3562 	if (ret && ret != -ENOENT) {
3563 		err = ret;
3564 		goto out;
3565 	}
3566 
3567 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
3568 	if (IS_ERR(rc->data_inode)) {
3569 		err = PTR_ERR(rc->data_inode);
3570 		rc->data_inode = NULL;
3571 		goto out;
3572 	}
3573 
3574 	describe_relocation(fs_info, rc->block_group);
3575 
3576 	btrfs_wait_block_group_reservations(rc->block_group);
3577 	btrfs_wait_nocow_writers(rc->block_group);
3578 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
3579 				 rc->block_group->start,
3580 				 rc->block_group->length);
3581 
3582 	while (1) {
3583 		int finishes_stage;
3584 
3585 		mutex_lock(&fs_info->cleaner_mutex);
3586 		ret = relocate_block_group(rc);
3587 		mutex_unlock(&fs_info->cleaner_mutex);
3588 		if (ret < 0)
3589 			err = ret;
3590 
3591 		finishes_stage = rc->stage;
3592 		/*
3593 		 * We may have gotten ENOSPC after we already dirtied some
3594 		 * extents.  If writeout happens while we're relocating a
3595 		 * different block group we could end up hitting the
3596 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
3597 		 * btrfs_reloc_cow_block.  Make sure we write everything out
3598 		 * properly so we don't trip over this problem, and then break
3599 		 * out of the loop if we hit an error.
3600 		 */
3601 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
3602 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
3603 						       (u64)-1);
3604 			if (ret)
3605 				err = ret;
3606 			invalidate_mapping_pages(rc->data_inode->i_mapping,
3607 						 0, -1);
3608 			rc->stage = UPDATE_DATA_PTRS;
3609 		}
3610 
3611 		if (err < 0)
3612 			goto out;
3613 
3614 		if (rc->extents_found == 0)
3615 			break;
3616 
3617 		btrfs_info(fs_info, "found %llu extents, stage: %s",
3618 			   rc->extents_found, stage_to_string(finishes_stage));
3619 	}
3620 
3621 	WARN_ON(rc->block_group->pinned > 0);
3622 	WARN_ON(rc->block_group->reserved > 0);
3623 	WARN_ON(rc->block_group->used > 0);
3624 out:
3625 	if (err && rw)
3626 		btrfs_dec_block_group_ro(rc->block_group);
3627 	iput(rc->data_inode);
3628 	btrfs_put_block_group(rc->block_group);
3629 	free_reloc_control(rc);
3630 	return err;
3631 }
3632 
3633 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
3634 {
3635 	struct btrfs_fs_info *fs_info = root->fs_info;
3636 	struct btrfs_trans_handle *trans;
3637 	int ret, err;
3638 
3639 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3640 	if (IS_ERR(trans))
3641 		return PTR_ERR(trans);
3642 
3643 	memset(&root->root_item.drop_progress, 0,
3644 		sizeof(root->root_item.drop_progress));
3645 	btrfs_set_root_drop_level(&root->root_item, 0);
3646 	btrfs_set_root_refs(&root->root_item, 0);
3647 	ret = btrfs_update_root(trans, fs_info->tree_root,
3648 				&root->root_key, &root->root_item);
3649 
3650 	err = btrfs_end_transaction(trans);
3651 	if (err)
3652 		return err;
3653 	return ret;
3654 }
3655 
3656 /*
3657  * recover relocation interrupted by system crash.
3658  *
3659  * this function resumes merging reloc trees with corresponding fs trees.
3660  * this is important for keeping the sharing of tree blocks
3661  */
3662 int btrfs_recover_relocation(struct btrfs_root *root)
3663 {
3664 	struct btrfs_fs_info *fs_info = root->fs_info;
3665 	LIST_HEAD(reloc_roots);
3666 	struct btrfs_key key;
3667 	struct btrfs_root *fs_root;
3668 	struct btrfs_root *reloc_root;
3669 	struct btrfs_path *path;
3670 	struct extent_buffer *leaf;
3671 	struct reloc_control *rc = NULL;
3672 	struct btrfs_trans_handle *trans;
3673 	int ret;
3674 	int err = 0;
3675 
3676 	path = btrfs_alloc_path();
3677 	if (!path)
3678 		return -ENOMEM;
3679 	path->reada = READA_BACK;
3680 
3681 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
3682 	key.type = BTRFS_ROOT_ITEM_KEY;
3683 	key.offset = (u64)-1;
3684 
3685 	while (1) {
3686 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
3687 					path, 0, 0);
3688 		if (ret < 0) {
3689 			err = ret;
3690 			goto out;
3691 		}
3692 		if (ret > 0) {
3693 			if (path->slots[0] == 0)
3694 				break;
3695 			path->slots[0]--;
3696 		}
3697 		leaf = path->nodes[0];
3698 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3699 		btrfs_release_path(path);
3700 
3701 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
3702 		    key.type != BTRFS_ROOT_ITEM_KEY)
3703 			break;
3704 
3705 		reloc_root = btrfs_read_tree_root(root, &key);
3706 		if (IS_ERR(reloc_root)) {
3707 			err = PTR_ERR(reloc_root);
3708 			goto out;
3709 		}
3710 
3711 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
3712 		list_add(&reloc_root->root_list, &reloc_roots);
3713 
3714 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
3715 			fs_root = btrfs_get_fs_root(fs_info,
3716 					reloc_root->root_key.offset, false);
3717 			if (IS_ERR(fs_root)) {
3718 				ret = PTR_ERR(fs_root);
3719 				if (ret != -ENOENT) {
3720 					err = ret;
3721 					goto out;
3722 				}
3723 				ret = mark_garbage_root(reloc_root);
3724 				if (ret < 0) {
3725 					err = ret;
3726 					goto out;
3727 				}
3728 			} else {
3729 				btrfs_put_root(fs_root);
3730 			}
3731 		}
3732 
3733 		if (key.offset == 0)
3734 			break;
3735 
3736 		key.offset--;
3737 	}
3738 	btrfs_release_path(path);
3739 
3740 	if (list_empty(&reloc_roots))
3741 		goto out;
3742 
3743 	rc = alloc_reloc_control(fs_info);
3744 	if (!rc) {
3745 		err = -ENOMEM;
3746 		goto out;
3747 	}
3748 
3749 	rc->extent_root = fs_info->extent_root;
3750 
3751 	set_reloc_control(rc);
3752 
3753 	trans = btrfs_join_transaction(rc->extent_root);
3754 	if (IS_ERR(trans)) {
3755 		err = PTR_ERR(trans);
3756 		goto out_unset;
3757 	}
3758 
3759 	rc->merge_reloc_tree = 1;
3760 
3761 	while (!list_empty(&reloc_roots)) {
3762 		reloc_root = list_entry(reloc_roots.next,
3763 					struct btrfs_root, root_list);
3764 		list_del(&reloc_root->root_list);
3765 
3766 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
3767 			list_add_tail(&reloc_root->root_list,
3768 				      &rc->reloc_roots);
3769 			continue;
3770 		}
3771 
3772 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
3773 					    false);
3774 		if (IS_ERR(fs_root)) {
3775 			err = PTR_ERR(fs_root);
3776 			list_add_tail(&reloc_root->root_list, &reloc_roots);
3777 			btrfs_end_transaction(trans);
3778 			goto out_unset;
3779 		}
3780 
3781 		err = __add_reloc_root(reloc_root);
3782 		BUG_ON(err < 0); /* -ENOMEM or logic error */
3783 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
3784 		btrfs_put_root(fs_root);
3785 	}
3786 
3787 	err = btrfs_commit_transaction(trans);
3788 	if (err)
3789 		goto out_unset;
3790 
3791 	merge_reloc_roots(rc);
3792 
3793 	unset_reloc_control(rc);
3794 
3795 	trans = btrfs_join_transaction(rc->extent_root);
3796 	if (IS_ERR(trans)) {
3797 		err = PTR_ERR(trans);
3798 		goto out_clean;
3799 	}
3800 	err = btrfs_commit_transaction(trans);
3801 out_clean:
3802 	ret = clean_dirty_subvols(rc);
3803 	if (ret < 0 && !err)
3804 		err = ret;
3805 out_unset:
3806 	unset_reloc_control(rc);
3807 	free_reloc_control(rc);
3808 out:
3809 	free_reloc_roots(&reloc_roots);
3810 
3811 	btrfs_free_path(path);
3812 
3813 	if (err == 0) {
3814 		/* cleanup orphan inode in data relocation tree */
3815 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
3816 		ASSERT(fs_root);
3817 		err = btrfs_orphan_cleanup(fs_root);
3818 		btrfs_put_root(fs_root);
3819 	}
3820 	return err;
3821 }
3822 
3823 /*
3824  * helper to add ordered checksum for data relocation.
3825  *
3826  * cloning checksum properly handles the nodatasum extents.
3827  * it also saves CPU time to re-calculate the checksum.
3828  */
3829 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len)
3830 {
3831 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832 	struct btrfs_ordered_sum *sums;
3833 	struct btrfs_ordered_extent *ordered;
3834 	int ret;
3835 	u64 disk_bytenr;
3836 	u64 new_bytenr;
3837 	LIST_HEAD(list);
3838 
3839 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
3840 	BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len);
3841 
3842 	disk_bytenr = file_pos + inode->index_cnt;
3843 	ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr,
3844 				       disk_bytenr + len - 1, &list, 0);
3845 	if (ret)
3846 		goto out;
3847 
3848 	while (!list_empty(&list)) {
3849 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
3850 		list_del_init(&sums->list);
3851 
3852 		/*
3853 		 * We need to offset the new_bytenr based on where the csum is.
3854 		 * We need to do this because we will read in entire prealloc
3855 		 * extents but we may have written to say the middle of the
3856 		 * prealloc extent, so we need to make sure the csum goes with
3857 		 * the right disk offset.
3858 		 *
3859 		 * We can do this because the data reloc inode refers strictly
3860 		 * to the on disk bytes, so we don't have to worry about
3861 		 * disk_len vs real len like with real inodes since it's all
3862 		 * disk length.
3863 		 */
3864 		new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr;
3865 		sums->bytenr = new_bytenr;
3866 
3867 		btrfs_add_ordered_sum(ordered, sums);
3868 	}
3869 out:
3870 	btrfs_put_ordered_extent(ordered);
3871 	return ret;
3872 }
3873 
3874 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3875 			  struct btrfs_root *root, struct extent_buffer *buf,
3876 			  struct extent_buffer *cow)
3877 {
3878 	struct btrfs_fs_info *fs_info = root->fs_info;
3879 	struct reloc_control *rc;
3880 	struct btrfs_backref_node *node;
3881 	int first_cow = 0;
3882 	int level;
3883 	int ret = 0;
3884 
3885 	rc = fs_info->reloc_ctl;
3886 	if (!rc)
3887 		return 0;
3888 
3889 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
3890 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
3891 
3892 	level = btrfs_header_level(buf);
3893 	if (btrfs_header_generation(buf) <=
3894 	    btrfs_root_last_snapshot(&root->root_item))
3895 		first_cow = 1;
3896 
3897 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
3898 	    rc->create_reloc_tree) {
3899 		WARN_ON(!first_cow && level == 0);
3900 
3901 		node = rc->backref_cache.path[level];
3902 		BUG_ON(node->bytenr != buf->start &&
3903 		       node->new_bytenr != buf->start);
3904 
3905 		btrfs_backref_drop_node_buffer(node);
3906 		atomic_inc(&cow->refs);
3907 		node->eb = cow;
3908 		node->new_bytenr = cow->start;
3909 
3910 		if (!node->pending) {
3911 			list_move_tail(&node->list,
3912 				       &rc->backref_cache.pending[level]);
3913 			node->pending = 1;
3914 		}
3915 
3916 		if (first_cow)
3917 			mark_block_processed(rc, node);
3918 
3919 		if (first_cow && level > 0)
3920 			rc->nodes_relocated += buf->len;
3921 	}
3922 
3923 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
3924 		ret = replace_file_extents(trans, rc, root, cow);
3925 	return ret;
3926 }
3927 
3928 /*
3929  * called before creating snapshot. it calculates metadata reservation
3930  * required for relocating tree blocks in the snapshot
3931  */
3932 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3933 			      u64 *bytes_to_reserve)
3934 {
3935 	struct btrfs_root *root = pending->root;
3936 	struct reloc_control *rc = root->fs_info->reloc_ctl;
3937 
3938 	if (!rc || !have_reloc_root(root))
3939 		return;
3940 
3941 	if (!rc->merge_reloc_tree)
3942 		return;
3943 
3944 	root = root->reloc_root;
3945 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
3946 	/*
3947 	 * relocation is in the stage of merging trees. the space
3948 	 * used by merging a reloc tree is twice the size of
3949 	 * relocated tree nodes in the worst case. half for cowing
3950 	 * the reloc tree, half for cowing the fs tree. the space
3951 	 * used by cowing the reloc tree will be freed after the
3952 	 * tree is dropped. if we create snapshot, cowing the fs
3953 	 * tree may use more space than it frees. so we need
3954 	 * reserve extra space.
3955 	 */
3956 	*bytes_to_reserve += rc->nodes_relocated;
3957 }
3958 
3959 /*
3960  * called after snapshot is created. migrate block reservation
3961  * and create reloc root for the newly created snapshot
3962  *
3963  * This is similar to btrfs_init_reloc_root(), we come out of here with two
3964  * references held on the reloc_root, one for root->reloc_root and one for
3965  * rc->reloc_roots.
3966  */
3967 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3968 			       struct btrfs_pending_snapshot *pending)
3969 {
3970 	struct btrfs_root *root = pending->root;
3971 	struct btrfs_root *reloc_root;
3972 	struct btrfs_root *new_root;
3973 	struct reloc_control *rc = root->fs_info->reloc_ctl;
3974 	int ret;
3975 
3976 	if (!rc || !have_reloc_root(root))
3977 		return 0;
3978 
3979 	rc = root->fs_info->reloc_ctl;
3980 	rc->merging_rsv_size += rc->nodes_relocated;
3981 
3982 	if (rc->merge_reloc_tree) {
3983 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
3984 					      rc->block_rsv,
3985 					      rc->nodes_relocated, true);
3986 		if (ret)
3987 			return ret;
3988 	}
3989 
3990 	new_root = pending->snap;
3991 	reloc_root = create_reloc_root(trans, root->reloc_root,
3992 				       new_root->root_key.objectid);
3993 	if (IS_ERR(reloc_root))
3994 		return PTR_ERR(reloc_root);
3995 
3996 	ret = __add_reloc_root(reloc_root);
3997 	BUG_ON(ret < 0);
3998 	new_root->reloc_root = btrfs_grab_root(reloc_root);
3999 
4000 	if (rc->create_reloc_tree)
4001 		ret = clone_backref_node(trans, rc, root, reloc_root);
4002 	return ret;
4003 }
4004