1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "qgroup.h" 22 #include "print-tree.h" 23 #include "delalloc-space.h" 24 #include "block-group.h" 25 #include "backref.h" 26 #include "misc.h" 27 28 /* 29 * Relocation overview 30 * 31 * [What does relocation do] 32 * 33 * The objective of relocation is to relocate all extents of the target block 34 * group to other block groups. 35 * This is utilized by resize (shrink only), profile converting, compacting 36 * space, or balance routine to spread chunks over devices. 37 * 38 * Before | After 39 * ------------------------------------------------------------------ 40 * BG A: 10 data extents | BG A: deleted 41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 43 * 44 * [How does relocation work] 45 * 46 * 1. Mark the target block group read-only 47 * New extents won't be allocated from the target block group. 48 * 49 * 2.1 Record each extent in the target block group 50 * To build a proper map of extents to be relocated. 51 * 52 * 2.2 Build data reloc tree and reloc trees 53 * Data reloc tree will contain an inode, recording all newly relocated 54 * data extents. 55 * There will be only one data reloc tree for one data block group. 56 * 57 * Reloc tree will be a special snapshot of its source tree, containing 58 * relocated tree blocks. 59 * Each tree referring to a tree block in target block group will get its 60 * reloc tree built. 61 * 62 * 2.3 Swap source tree with its corresponding reloc tree 63 * Each involved tree only refers to new extents after swap. 64 * 65 * 3. Cleanup reloc trees and data reloc tree. 66 * As old extents in the target block group are still referenced by reloc 67 * trees, we need to clean them up before really freeing the target block 68 * group. 69 * 70 * The main complexity is in steps 2.2 and 2.3. 71 * 72 * The entry point of relocation is relocate_block_group() function. 73 */ 74 75 #define RELOCATION_RESERVED_NODES 256 76 /* 77 * map address of tree root to tree 78 */ 79 struct mapping_node { 80 struct { 81 struct rb_node rb_node; 82 u64 bytenr; 83 }; /* Use rb_simle_node for search/insert */ 84 void *data; 85 }; 86 87 struct mapping_tree { 88 struct rb_root rb_root; 89 spinlock_t lock; 90 }; 91 92 /* 93 * present a tree block to process 94 */ 95 struct tree_block { 96 struct { 97 struct rb_node rb_node; 98 u64 bytenr; 99 }; /* Use rb_simple_node for search/insert */ 100 struct btrfs_key key; 101 unsigned int level:8; 102 unsigned int key_ready:1; 103 }; 104 105 #define MAX_EXTENTS 128 106 107 struct file_extent_cluster { 108 u64 start; 109 u64 end; 110 u64 boundary[MAX_EXTENTS]; 111 unsigned int nr; 112 }; 113 114 struct reloc_control { 115 /* block group to relocate */ 116 struct btrfs_block_group *block_group; 117 /* extent tree */ 118 struct btrfs_root *extent_root; 119 /* inode for moving data */ 120 struct inode *data_inode; 121 122 struct btrfs_block_rsv *block_rsv; 123 124 struct btrfs_backref_cache backref_cache; 125 126 struct file_extent_cluster cluster; 127 /* tree blocks have been processed */ 128 struct extent_io_tree processed_blocks; 129 /* map start of tree root to corresponding reloc tree */ 130 struct mapping_tree reloc_root_tree; 131 /* list of reloc trees */ 132 struct list_head reloc_roots; 133 /* list of subvolume trees that get relocated */ 134 struct list_head dirty_subvol_roots; 135 /* size of metadata reservation for merging reloc trees */ 136 u64 merging_rsv_size; 137 /* size of relocated tree nodes */ 138 u64 nodes_relocated; 139 /* reserved size for block group relocation*/ 140 u64 reserved_bytes; 141 142 u64 search_start; 143 u64 extents_found; 144 145 unsigned int stage:8; 146 unsigned int create_reloc_tree:1; 147 unsigned int merge_reloc_tree:1; 148 unsigned int found_file_extent:1; 149 }; 150 151 /* stages of data relocation */ 152 #define MOVE_DATA_EXTENTS 0 153 #define UPDATE_DATA_PTRS 1 154 155 static void mark_block_processed(struct reloc_control *rc, 156 struct btrfs_backref_node *node) 157 { 158 u32 blocksize; 159 160 if (node->level == 0 || 161 in_range(node->bytenr, rc->block_group->start, 162 rc->block_group->length)) { 163 blocksize = rc->extent_root->fs_info->nodesize; 164 set_extent_bits(&rc->processed_blocks, node->bytenr, 165 node->bytenr + blocksize - 1, EXTENT_DIRTY); 166 } 167 node->processed = 1; 168 } 169 170 171 static void mapping_tree_init(struct mapping_tree *tree) 172 { 173 tree->rb_root = RB_ROOT; 174 spin_lock_init(&tree->lock); 175 } 176 177 /* 178 * walk up backref nodes until reach node presents tree root 179 */ 180 static struct btrfs_backref_node *walk_up_backref( 181 struct btrfs_backref_node *node, 182 struct btrfs_backref_edge *edges[], int *index) 183 { 184 struct btrfs_backref_edge *edge; 185 int idx = *index; 186 187 while (!list_empty(&node->upper)) { 188 edge = list_entry(node->upper.next, 189 struct btrfs_backref_edge, list[LOWER]); 190 edges[idx++] = edge; 191 node = edge->node[UPPER]; 192 } 193 BUG_ON(node->detached); 194 *index = idx; 195 return node; 196 } 197 198 /* 199 * walk down backref nodes to find start of next reference path 200 */ 201 static struct btrfs_backref_node *walk_down_backref( 202 struct btrfs_backref_edge *edges[], int *index) 203 { 204 struct btrfs_backref_edge *edge; 205 struct btrfs_backref_node *lower; 206 int idx = *index; 207 208 while (idx > 0) { 209 edge = edges[idx - 1]; 210 lower = edge->node[LOWER]; 211 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 212 idx--; 213 continue; 214 } 215 edge = list_entry(edge->list[LOWER].next, 216 struct btrfs_backref_edge, list[LOWER]); 217 edges[idx - 1] = edge; 218 *index = idx; 219 return edge->node[UPPER]; 220 } 221 *index = 0; 222 return NULL; 223 } 224 225 static void update_backref_node(struct btrfs_backref_cache *cache, 226 struct btrfs_backref_node *node, u64 bytenr) 227 { 228 struct rb_node *rb_node; 229 rb_erase(&node->rb_node, &cache->rb_root); 230 node->bytenr = bytenr; 231 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node); 232 if (rb_node) 233 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST); 234 } 235 236 /* 237 * update backref cache after a transaction commit 238 */ 239 static int update_backref_cache(struct btrfs_trans_handle *trans, 240 struct btrfs_backref_cache *cache) 241 { 242 struct btrfs_backref_node *node; 243 int level = 0; 244 245 if (cache->last_trans == 0) { 246 cache->last_trans = trans->transid; 247 return 0; 248 } 249 250 if (cache->last_trans == trans->transid) 251 return 0; 252 253 /* 254 * detached nodes are used to avoid unnecessary backref 255 * lookup. transaction commit changes the extent tree. 256 * so the detached nodes are no longer useful. 257 */ 258 while (!list_empty(&cache->detached)) { 259 node = list_entry(cache->detached.next, 260 struct btrfs_backref_node, list); 261 btrfs_backref_cleanup_node(cache, node); 262 } 263 264 while (!list_empty(&cache->changed)) { 265 node = list_entry(cache->changed.next, 266 struct btrfs_backref_node, list); 267 list_del_init(&node->list); 268 BUG_ON(node->pending); 269 update_backref_node(cache, node, node->new_bytenr); 270 } 271 272 /* 273 * some nodes can be left in the pending list if there were 274 * errors during processing the pending nodes. 275 */ 276 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 277 list_for_each_entry(node, &cache->pending[level], list) { 278 BUG_ON(!node->pending); 279 if (node->bytenr == node->new_bytenr) 280 continue; 281 update_backref_node(cache, node, node->new_bytenr); 282 } 283 } 284 285 cache->last_trans = 0; 286 return 1; 287 } 288 289 static bool reloc_root_is_dead(struct btrfs_root *root) 290 { 291 /* 292 * Pair with set_bit/clear_bit in clean_dirty_subvols and 293 * btrfs_update_reloc_root. We need to see the updated bit before 294 * trying to access reloc_root 295 */ 296 smp_rmb(); 297 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 298 return true; 299 return false; 300 } 301 302 /* 303 * Check if this subvolume tree has valid reloc tree. 304 * 305 * Reloc tree after swap is considered dead, thus not considered as valid. 306 * This is enough for most callers, as they don't distinguish dead reloc root 307 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a 308 * special case. 309 */ 310 static bool have_reloc_root(struct btrfs_root *root) 311 { 312 if (reloc_root_is_dead(root)) 313 return false; 314 if (!root->reloc_root) 315 return false; 316 return true; 317 } 318 319 int btrfs_should_ignore_reloc_root(struct btrfs_root *root) 320 { 321 struct btrfs_root *reloc_root; 322 323 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 324 return 0; 325 326 /* This root has been merged with its reloc tree, we can ignore it */ 327 if (reloc_root_is_dead(root)) 328 return 1; 329 330 reloc_root = root->reloc_root; 331 if (!reloc_root) 332 return 0; 333 334 if (btrfs_header_generation(reloc_root->commit_root) == 335 root->fs_info->running_transaction->transid) 336 return 0; 337 /* 338 * if there is reloc tree and it was created in previous 339 * transaction backref lookup can find the reloc tree, 340 * so backref node for the fs tree root is useless for 341 * relocation. 342 */ 343 return 1; 344 } 345 346 /* 347 * find reloc tree by address of tree root 348 */ 349 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr) 350 { 351 struct reloc_control *rc = fs_info->reloc_ctl; 352 struct rb_node *rb_node; 353 struct mapping_node *node; 354 struct btrfs_root *root = NULL; 355 356 ASSERT(rc); 357 spin_lock(&rc->reloc_root_tree.lock); 358 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr); 359 if (rb_node) { 360 node = rb_entry(rb_node, struct mapping_node, rb_node); 361 root = (struct btrfs_root *)node->data; 362 } 363 spin_unlock(&rc->reloc_root_tree.lock); 364 return btrfs_grab_root(root); 365 } 366 367 /* 368 * For useless nodes, do two major clean ups: 369 * 370 * - Cleanup the children edges and nodes 371 * If child node is also orphan (no parent) during cleanup, then the child 372 * node will also be cleaned up. 373 * 374 * - Freeing up leaves (level 0), keeps nodes detached 375 * For nodes, the node is still cached as "detached" 376 * 377 * Return false if @node is not in the @useless_nodes list. 378 * Return true if @node is in the @useless_nodes list. 379 */ 380 static bool handle_useless_nodes(struct reloc_control *rc, 381 struct btrfs_backref_node *node) 382 { 383 struct btrfs_backref_cache *cache = &rc->backref_cache; 384 struct list_head *useless_node = &cache->useless_node; 385 bool ret = false; 386 387 while (!list_empty(useless_node)) { 388 struct btrfs_backref_node *cur; 389 390 cur = list_first_entry(useless_node, struct btrfs_backref_node, 391 list); 392 list_del_init(&cur->list); 393 394 /* Only tree root nodes can be added to @useless_nodes */ 395 ASSERT(list_empty(&cur->upper)); 396 397 if (cur == node) 398 ret = true; 399 400 /* The node is the lowest node */ 401 if (cur->lowest) { 402 list_del_init(&cur->lower); 403 cur->lowest = 0; 404 } 405 406 /* Cleanup the lower edges */ 407 while (!list_empty(&cur->lower)) { 408 struct btrfs_backref_edge *edge; 409 struct btrfs_backref_node *lower; 410 411 edge = list_entry(cur->lower.next, 412 struct btrfs_backref_edge, list[UPPER]); 413 list_del(&edge->list[UPPER]); 414 list_del(&edge->list[LOWER]); 415 lower = edge->node[LOWER]; 416 btrfs_backref_free_edge(cache, edge); 417 418 /* Child node is also orphan, queue for cleanup */ 419 if (list_empty(&lower->upper)) 420 list_add(&lower->list, useless_node); 421 } 422 /* Mark this block processed for relocation */ 423 mark_block_processed(rc, cur); 424 425 /* 426 * Backref nodes for tree leaves are deleted from the cache. 427 * Backref nodes for upper level tree blocks are left in the 428 * cache to avoid unnecessary backref lookup. 429 */ 430 if (cur->level > 0) { 431 list_add(&cur->list, &cache->detached); 432 cur->detached = 1; 433 } else { 434 rb_erase(&cur->rb_node, &cache->rb_root); 435 btrfs_backref_free_node(cache, cur); 436 } 437 } 438 return ret; 439 } 440 441 /* 442 * Build backref tree for a given tree block. Root of the backref tree 443 * corresponds the tree block, leaves of the backref tree correspond roots of 444 * b-trees that reference the tree block. 445 * 446 * The basic idea of this function is check backrefs of a given block to find 447 * upper level blocks that reference the block, and then check backrefs of 448 * these upper level blocks recursively. The recursion stops when tree root is 449 * reached or backrefs for the block is cached. 450 * 451 * NOTE: if we find that backrefs for a block are cached, we know backrefs for 452 * all upper level blocks that directly/indirectly reference the block are also 453 * cached. 454 */ 455 static noinline_for_stack struct btrfs_backref_node *build_backref_tree( 456 struct reloc_control *rc, struct btrfs_key *node_key, 457 int level, u64 bytenr) 458 { 459 struct btrfs_backref_iter *iter; 460 struct btrfs_backref_cache *cache = &rc->backref_cache; 461 /* For searching parent of TREE_BLOCK_REF */ 462 struct btrfs_path *path; 463 struct btrfs_backref_node *cur; 464 struct btrfs_backref_node *node = NULL; 465 struct btrfs_backref_edge *edge; 466 int ret; 467 int err = 0; 468 469 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info, GFP_NOFS); 470 if (!iter) 471 return ERR_PTR(-ENOMEM); 472 path = btrfs_alloc_path(); 473 if (!path) { 474 err = -ENOMEM; 475 goto out; 476 } 477 478 node = btrfs_backref_alloc_node(cache, bytenr, level); 479 if (!node) { 480 err = -ENOMEM; 481 goto out; 482 } 483 484 node->lowest = 1; 485 cur = node; 486 487 /* Breadth-first search to build backref cache */ 488 do { 489 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key, 490 cur); 491 if (ret < 0) { 492 err = ret; 493 goto out; 494 } 495 edge = list_first_entry_or_null(&cache->pending_edge, 496 struct btrfs_backref_edge, list[UPPER]); 497 /* 498 * The pending list isn't empty, take the first block to 499 * process 500 */ 501 if (edge) { 502 list_del_init(&edge->list[UPPER]); 503 cur = edge->node[UPPER]; 504 } 505 } while (edge); 506 507 /* Finish the upper linkage of newly added edges/nodes */ 508 ret = btrfs_backref_finish_upper_links(cache, node); 509 if (ret < 0) { 510 err = ret; 511 goto out; 512 } 513 514 if (handle_useless_nodes(rc, node)) 515 node = NULL; 516 out: 517 btrfs_backref_iter_free(iter); 518 btrfs_free_path(path); 519 if (err) { 520 btrfs_backref_error_cleanup(cache, node); 521 return ERR_PTR(err); 522 } 523 ASSERT(!node || !node->detached); 524 ASSERT(list_empty(&cache->useless_node) && 525 list_empty(&cache->pending_edge)); 526 return node; 527 } 528 529 /* 530 * helper to add backref node for the newly created snapshot. 531 * the backref node is created by cloning backref node that 532 * corresponds to root of source tree 533 */ 534 static int clone_backref_node(struct btrfs_trans_handle *trans, 535 struct reloc_control *rc, 536 struct btrfs_root *src, 537 struct btrfs_root *dest) 538 { 539 struct btrfs_root *reloc_root = src->reloc_root; 540 struct btrfs_backref_cache *cache = &rc->backref_cache; 541 struct btrfs_backref_node *node = NULL; 542 struct btrfs_backref_node *new_node; 543 struct btrfs_backref_edge *edge; 544 struct btrfs_backref_edge *new_edge; 545 struct rb_node *rb_node; 546 547 if (cache->last_trans > 0) 548 update_backref_cache(trans, cache); 549 550 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start); 551 if (rb_node) { 552 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node); 553 if (node->detached) 554 node = NULL; 555 else 556 BUG_ON(node->new_bytenr != reloc_root->node->start); 557 } 558 559 if (!node) { 560 rb_node = rb_simple_search(&cache->rb_root, 561 reloc_root->commit_root->start); 562 if (rb_node) { 563 node = rb_entry(rb_node, struct btrfs_backref_node, 564 rb_node); 565 BUG_ON(node->detached); 566 } 567 } 568 569 if (!node) 570 return 0; 571 572 new_node = btrfs_backref_alloc_node(cache, dest->node->start, 573 node->level); 574 if (!new_node) 575 return -ENOMEM; 576 577 new_node->lowest = node->lowest; 578 new_node->checked = 1; 579 new_node->root = btrfs_grab_root(dest); 580 ASSERT(new_node->root); 581 582 if (!node->lowest) { 583 list_for_each_entry(edge, &node->lower, list[UPPER]) { 584 new_edge = btrfs_backref_alloc_edge(cache); 585 if (!new_edge) 586 goto fail; 587 588 btrfs_backref_link_edge(new_edge, edge->node[LOWER], 589 new_node, LINK_UPPER); 590 } 591 } else { 592 list_add_tail(&new_node->lower, &cache->leaves); 593 } 594 595 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr, 596 &new_node->rb_node); 597 if (rb_node) 598 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST); 599 600 if (!new_node->lowest) { 601 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 602 list_add_tail(&new_edge->list[LOWER], 603 &new_edge->node[LOWER]->upper); 604 } 605 } 606 return 0; 607 fail: 608 while (!list_empty(&new_node->lower)) { 609 new_edge = list_entry(new_node->lower.next, 610 struct btrfs_backref_edge, list[UPPER]); 611 list_del(&new_edge->list[UPPER]); 612 btrfs_backref_free_edge(cache, new_edge); 613 } 614 btrfs_backref_free_node(cache, new_node); 615 return -ENOMEM; 616 } 617 618 /* 619 * helper to add 'address of tree root -> reloc tree' mapping 620 */ 621 static int __must_check __add_reloc_root(struct btrfs_root *root) 622 { 623 struct btrfs_fs_info *fs_info = root->fs_info; 624 struct rb_node *rb_node; 625 struct mapping_node *node; 626 struct reloc_control *rc = fs_info->reloc_ctl; 627 628 node = kmalloc(sizeof(*node), GFP_NOFS); 629 if (!node) 630 return -ENOMEM; 631 632 node->bytenr = root->commit_root->start; 633 node->data = root; 634 635 spin_lock(&rc->reloc_root_tree.lock); 636 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 637 node->bytenr, &node->rb_node); 638 spin_unlock(&rc->reloc_root_tree.lock); 639 if (rb_node) { 640 btrfs_panic(fs_info, -EEXIST, 641 "Duplicate root found for start=%llu while inserting into relocation tree", 642 node->bytenr); 643 } 644 645 list_add_tail(&root->root_list, &rc->reloc_roots); 646 return 0; 647 } 648 649 /* 650 * helper to delete the 'address of tree root -> reloc tree' 651 * mapping 652 */ 653 static void __del_reloc_root(struct btrfs_root *root) 654 { 655 struct btrfs_fs_info *fs_info = root->fs_info; 656 struct rb_node *rb_node; 657 struct mapping_node *node = NULL; 658 struct reloc_control *rc = fs_info->reloc_ctl; 659 bool put_ref = false; 660 661 if (rc && root->node) { 662 spin_lock(&rc->reloc_root_tree.lock); 663 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 664 root->commit_root->start); 665 if (rb_node) { 666 node = rb_entry(rb_node, struct mapping_node, rb_node); 667 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 668 RB_CLEAR_NODE(&node->rb_node); 669 } 670 spin_unlock(&rc->reloc_root_tree.lock); 671 if (!node) 672 return; 673 BUG_ON((struct btrfs_root *)node->data != root); 674 } 675 676 /* 677 * We only put the reloc root here if it's on the list. There's a lot 678 * of places where the pattern is to splice the rc->reloc_roots, process 679 * the reloc roots, and then add the reloc root back onto 680 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 681 * list we don't want the reference being dropped, because the guy 682 * messing with the list is in charge of the reference. 683 */ 684 spin_lock(&fs_info->trans_lock); 685 if (!list_empty(&root->root_list)) { 686 put_ref = true; 687 list_del_init(&root->root_list); 688 } 689 spin_unlock(&fs_info->trans_lock); 690 if (put_ref) 691 btrfs_put_root(root); 692 kfree(node); 693 } 694 695 /* 696 * helper to update the 'address of tree root -> reloc tree' 697 * mapping 698 */ 699 static int __update_reloc_root(struct btrfs_root *root) 700 { 701 struct btrfs_fs_info *fs_info = root->fs_info; 702 struct rb_node *rb_node; 703 struct mapping_node *node = NULL; 704 struct reloc_control *rc = fs_info->reloc_ctl; 705 706 spin_lock(&rc->reloc_root_tree.lock); 707 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, 708 root->commit_root->start); 709 if (rb_node) { 710 node = rb_entry(rb_node, struct mapping_node, rb_node); 711 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 712 } 713 spin_unlock(&rc->reloc_root_tree.lock); 714 715 if (!node) 716 return 0; 717 BUG_ON((struct btrfs_root *)node->data != root); 718 719 spin_lock(&rc->reloc_root_tree.lock); 720 node->bytenr = root->node->start; 721 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root, 722 node->bytenr, &node->rb_node); 723 spin_unlock(&rc->reloc_root_tree.lock); 724 if (rb_node) 725 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST); 726 return 0; 727 } 728 729 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 730 struct btrfs_root *root, u64 objectid) 731 { 732 struct btrfs_fs_info *fs_info = root->fs_info; 733 struct btrfs_root *reloc_root; 734 struct extent_buffer *eb; 735 struct btrfs_root_item *root_item; 736 struct btrfs_key root_key; 737 int ret; 738 739 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 740 BUG_ON(!root_item); 741 742 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 743 root_key.type = BTRFS_ROOT_ITEM_KEY; 744 root_key.offset = objectid; 745 746 if (root->root_key.objectid == objectid) { 747 u64 commit_root_gen; 748 749 /* called by btrfs_init_reloc_root */ 750 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 751 BTRFS_TREE_RELOC_OBJECTID); 752 BUG_ON(ret); 753 /* 754 * Set the last_snapshot field to the generation of the commit 755 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 756 * correctly (returns true) when the relocation root is created 757 * either inside the critical section of a transaction commit 758 * (through transaction.c:qgroup_account_snapshot()) and when 759 * it's created before the transaction commit is started. 760 */ 761 commit_root_gen = btrfs_header_generation(root->commit_root); 762 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 763 } else { 764 /* 765 * called by btrfs_reloc_post_snapshot_hook. 766 * the source tree is a reloc tree, all tree blocks 767 * modified after it was created have RELOC flag 768 * set in their headers. so it's OK to not update 769 * the 'last_snapshot'. 770 */ 771 ret = btrfs_copy_root(trans, root, root->node, &eb, 772 BTRFS_TREE_RELOC_OBJECTID); 773 BUG_ON(ret); 774 } 775 776 memcpy(root_item, &root->root_item, sizeof(*root_item)); 777 btrfs_set_root_bytenr(root_item, eb->start); 778 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 779 btrfs_set_root_generation(root_item, trans->transid); 780 781 if (root->root_key.objectid == objectid) { 782 btrfs_set_root_refs(root_item, 0); 783 memset(&root_item->drop_progress, 0, 784 sizeof(struct btrfs_disk_key)); 785 btrfs_set_root_drop_level(root_item, 0); 786 } 787 788 btrfs_tree_unlock(eb); 789 free_extent_buffer(eb); 790 791 ret = btrfs_insert_root(trans, fs_info->tree_root, 792 &root_key, root_item); 793 BUG_ON(ret); 794 kfree(root_item); 795 796 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 797 BUG_ON(IS_ERR(reloc_root)); 798 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 799 reloc_root->last_trans = trans->transid; 800 return reloc_root; 801 } 802 803 /* 804 * create reloc tree for a given fs tree. reloc tree is just a 805 * snapshot of the fs tree with special root objectid. 806 * 807 * The reloc_root comes out of here with two references, one for 808 * root->reloc_root, and another for being on the rc->reloc_roots list. 809 */ 810 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 811 struct btrfs_root *root) 812 { 813 struct btrfs_fs_info *fs_info = root->fs_info; 814 struct btrfs_root *reloc_root; 815 struct reloc_control *rc = fs_info->reloc_ctl; 816 struct btrfs_block_rsv *rsv; 817 int clear_rsv = 0; 818 int ret; 819 820 if (!rc) 821 return 0; 822 823 /* 824 * The subvolume has reloc tree but the swap is finished, no need to 825 * create/update the dead reloc tree 826 */ 827 if (reloc_root_is_dead(root)) 828 return 0; 829 830 /* 831 * This is subtle but important. We do not do 832 * record_root_in_transaction for reloc roots, instead we record their 833 * corresponding fs root, and then here we update the last trans for the 834 * reloc root. This means that we have to do this for the entire life 835 * of the reloc root, regardless of which stage of the relocation we are 836 * in. 837 */ 838 if (root->reloc_root) { 839 reloc_root = root->reloc_root; 840 reloc_root->last_trans = trans->transid; 841 return 0; 842 } 843 844 /* 845 * We are merging reloc roots, we do not need new reloc trees. Also 846 * reloc trees never need their own reloc tree. 847 */ 848 if (!rc->create_reloc_tree || 849 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 850 return 0; 851 852 if (!trans->reloc_reserved) { 853 rsv = trans->block_rsv; 854 trans->block_rsv = rc->block_rsv; 855 clear_rsv = 1; 856 } 857 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 858 if (clear_rsv) 859 trans->block_rsv = rsv; 860 861 ret = __add_reloc_root(reloc_root); 862 BUG_ON(ret < 0); 863 root->reloc_root = btrfs_grab_root(reloc_root); 864 return 0; 865 } 866 867 /* 868 * update root item of reloc tree 869 */ 870 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 871 struct btrfs_root *root) 872 { 873 struct btrfs_fs_info *fs_info = root->fs_info; 874 struct btrfs_root *reloc_root; 875 struct btrfs_root_item *root_item; 876 int ret; 877 878 if (!have_reloc_root(root)) 879 goto out; 880 881 reloc_root = root->reloc_root; 882 root_item = &reloc_root->root_item; 883 884 /* 885 * We are probably ok here, but __del_reloc_root() will drop its ref of 886 * the root. We have the ref for root->reloc_root, but just in case 887 * hold it while we update the reloc root. 888 */ 889 btrfs_grab_root(reloc_root); 890 891 /* root->reloc_root will stay until current relocation finished */ 892 if (fs_info->reloc_ctl->merge_reloc_tree && 893 btrfs_root_refs(root_item) == 0) { 894 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 895 /* 896 * Mark the tree as dead before we change reloc_root so 897 * have_reloc_root will not touch it from now on. 898 */ 899 smp_wmb(); 900 __del_reloc_root(reloc_root); 901 } 902 903 if (reloc_root->commit_root != reloc_root->node) { 904 __update_reloc_root(reloc_root); 905 btrfs_set_root_node(root_item, reloc_root->node); 906 free_extent_buffer(reloc_root->commit_root); 907 reloc_root->commit_root = btrfs_root_node(reloc_root); 908 } 909 910 ret = btrfs_update_root(trans, fs_info->tree_root, 911 &reloc_root->root_key, root_item); 912 BUG_ON(ret); 913 btrfs_put_root(reloc_root); 914 out: 915 return 0; 916 } 917 918 /* 919 * helper to find first cached inode with inode number >= objectid 920 * in a subvolume 921 */ 922 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 923 { 924 struct rb_node *node; 925 struct rb_node *prev; 926 struct btrfs_inode *entry; 927 struct inode *inode; 928 929 spin_lock(&root->inode_lock); 930 again: 931 node = root->inode_tree.rb_node; 932 prev = NULL; 933 while (node) { 934 prev = node; 935 entry = rb_entry(node, struct btrfs_inode, rb_node); 936 937 if (objectid < btrfs_ino(entry)) 938 node = node->rb_left; 939 else if (objectid > btrfs_ino(entry)) 940 node = node->rb_right; 941 else 942 break; 943 } 944 if (!node) { 945 while (prev) { 946 entry = rb_entry(prev, struct btrfs_inode, rb_node); 947 if (objectid <= btrfs_ino(entry)) { 948 node = prev; 949 break; 950 } 951 prev = rb_next(prev); 952 } 953 } 954 while (node) { 955 entry = rb_entry(node, struct btrfs_inode, rb_node); 956 inode = igrab(&entry->vfs_inode); 957 if (inode) { 958 spin_unlock(&root->inode_lock); 959 return inode; 960 } 961 962 objectid = btrfs_ino(entry) + 1; 963 if (cond_resched_lock(&root->inode_lock)) 964 goto again; 965 966 node = rb_next(node); 967 } 968 spin_unlock(&root->inode_lock); 969 return NULL; 970 } 971 972 /* 973 * get new location of data 974 */ 975 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 976 u64 bytenr, u64 num_bytes) 977 { 978 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 979 struct btrfs_path *path; 980 struct btrfs_file_extent_item *fi; 981 struct extent_buffer *leaf; 982 int ret; 983 984 path = btrfs_alloc_path(); 985 if (!path) 986 return -ENOMEM; 987 988 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 989 ret = btrfs_lookup_file_extent(NULL, root, path, 990 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 991 if (ret < 0) 992 goto out; 993 if (ret > 0) { 994 ret = -ENOENT; 995 goto out; 996 } 997 998 leaf = path->nodes[0]; 999 fi = btrfs_item_ptr(leaf, path->slots[0], 1000 struct btrfs_file_extent_item); 1001 1002 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1003 btrfs_file_extent_compression(leaf, fi) || 1004 btrfs_file_extent_encryption(leaf, fi) || 1005 btrfs_file_extent_other_encoding(leaf, fi)); 1006 1007 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1008 ret = -EINVAL; 1009 goto out; 1010 } 1011 1012 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1013 ret = 0; 1014 out: 1015 btrfs_free_path(path); 1016 return ret; 1017 } 1018 1019 /* 1020 * update file extent items in the tree leaf to point to 1021 * the new locations. 1022 */ 1023 static noinline_for_stack 1024 int replace_file_extents(struct btrfs_trans_handle *trans, 1025 struct reloc_control *rc, 1026 struct btrfs_root *root, 1027 struct extent_buffer *leaf) 1028 { 1029 struct btrfs_fs_info *fs_info = root->fs_info; 1030 struct btrfs_key key; 1031 struct btrfs_file_extent_item *fi; 1032 struct inode *inode = NULL; 1033 u64 parent; 1034 u64 bytenr; 1035 u64 new_bytenr = 0; 1036 u64 num_bytes; 1037 u64 end; 1038 u32 nritems; 1039 u32 i; 1040 int ret = 0; 1041 int first = 1; 1042 int dirty = 0; 1043 1044 if (rc->stage != UPDATE_DATA_PTRS) 1045 return 0; 1046 1047 /* reloc trees always use full backref */ 1048 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1049 parent = leaf->start; 1050 else 1051 parent = 0; 1052 1053 nritems = btrfs_header_nritems(leaf); 1054 for (i = 0; i < nritems; i++) { 1055 struct btrfs_ref ref = { 0 }; 1056 1057 cond_resched(); 1058 btrfs_item_key_to_cpu(leaf, &key, i); 1059 if (key.type != BTRFS_EXTENT_DATA_KEY) 1060 continue; 1061 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1062 if (btrfs_file_extent_type(leaf, fi) == 1063 BTRFS_FILE_EXTENT_INLINE) 1064 continue; 1065 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1066 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1067 if (bytenr == 0) 1068 continue; 1069 if (!in_range(bytenr, rc->block_group->start, 1070 rc->block_group->length)) 1071 continue; 1072 1073 /* 1074 * if we are modifying block in fs tree, wait for readpage 1075 * to complete and drop the extent cache 1076 */ 1077 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1078 if (first) { 1079 inode = find_next_inode(root, key.objectid); 1080 first = 0; 1081 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1082 btrfs_add_delayed_iput(inode); 1083 inode = find_next_inode(root, key.objectid); 1084 } 1085 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1086 end = key.offset + 1087 btrfs_file_extent_num_bytes(leaf, fi); 1088 WARN_ON(!IS_ALIGNED(key.offset, 1089 fs_info->sectorsize)); 1090 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1091 end--; 1092 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1093 key.offset, end); 1094 if (!ret) 1095 continue; 1096 1097 btrfs_drop_extent_cache(BTRFS_I(inode), 1098 key.offset, end, 1); 1099 unlock_extent(&BTRFS_I(inode)->io_tree, 1100 key.offset, end); 1101 } 1102 } 1103 1104 ret = get_new_location(rc->data_inode, &new_bytenr, 1105 bytenr, num_bytes); 1106 if (ret) { 1107 /* 1108 * Don't have to abort since we've not changed anything 1109 * in the file extent yet. 1110 */ 1111 break; 1112 } 1113 1114 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1115 dirty = 1; 1116 1117 key.offset -= btrfs_file_extent_offset(leaf, fi); 1118 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1119 num_bytes, parent); 1120 ref.real_root = root->root_key.objectid; 1121 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1122 key.objectid, key.offset); 1123 ret = btrfs_inc_extent_ref(trans, &ref); 1124 if (ret) { 1125 btrfs_abort_transaction(trans, ret); 1126 break; 1127 } 1128 1129 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1130 num_bytes, parent); 1131 ref.real_root = root->root_key.objectid; 1132 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1133 key.objectid, key.offset); 1134 ret = btrfs_free_extent(trans, &ref); 1135 if (ret) { 1136 btrfs_abort_transaction(trans, ret); 1137 break; 1138 } 1139 } 1140 if (dirty) 1141 btrfs_mark_buffer_dirty(leaf); 1142 if (inode) 1143 btrfs_add_delayed_iput(inode); 1144 return ret; 1145 } 1146 1147 static noinline_for_stack 1148 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1149 struct btrfs_path *path, int level) 1150 { 1151 struct btrfs_disk_key key1; 1152 struct btrfs_disk_key key2; 1153 btrfs_node_key(eb, &key1, slot); 1154 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1155 return memcmp(&key1, &key2, sizeof(key1)); 1156 } 1157 1158 /* 1159 * try to replace tree blocks in fs tree with the new blocks 1160 * in reloc tree. tree blocks haven't been modified since the 1161 * reloc tree was create can be replaced. 1162 * 1163 * if a block was replaced, level of the block + 1 is returned. 1164 * if no block got replaced, 0 is returned. if there are other 1165 * errors, a negative error number is returned. 1166 */ 1167 static noinline_for_stack 1168 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1169 struct btrfs_root *dest, struct btrfs_root *src, 1170 struct btrfs_path *path, struct btrfs_key *next_key, 1171 int lowest_level, int max_level) 1172 { 1173 struct btrfs_fs_info *fs_info = dest->fs_info; 1174 struct extent_buffer *eb; 1175 struct extent_buffer *parent; 1176 struct btrfs_ref ref = { 0 }; 1177 struct btrfs_key key; 1178 u64 old_bytenr; 1179 u64 new_bytenr; 1180 u64 old_ptr_gen; 1181 u64 new_ptr_gen; 1182 u64 last_snapshot; 1183 u32 blocksize; 1184 int cow = 0; 1185 int level; 1186 int ret; 1187 int slot; 1188 1189 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1190 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1191 1192 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1193 again: 1194 slot = path->slots[lowest_level]; 1195 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1196 1197 eb = btrfs_lock_root_node(dest); 1198 level = btrfs_header_level(eb); 1199 1200 if (level < lowest_level) { 1201 btrfs_tree_unlock(eb); 1202 free_extent_buffer(eb); 1203 return 0; 1204 } 1205 1206 if (cow) { 1207 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb, 1208 BTRFS_NESTING_COW); 1209 BUG_ON(ret); 1210 } 1211 1212 if (next_key) { 1213 next_key->objectid = (u64)-1; 1214 next_key->type = (u8)-1; 1215 next_key->offset = (u64)-1; 1216 } 1217 1218 parent = eb; 1219 while (1) { 1220 level = btrfs_header_level(parent); 1221 BUG_ON(level < lowest_level); 1222 1223 ret = btrfs_bin_search(parent, &key, &slot); 1224 if (ret < 0) 1225 break; 1226 if (ret && slot > 0) 1227 slot--; 1228 1229 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1230 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1231 1232 old_bytenr = btrfs_node_blockptr(parent, slot); 1233 blocksize = fs_info->nodesize; 1234 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1235 1236 if (level <= max_level) { 1237 eb = path->nodes[level]; 1238 new_bytenr = btrfs_node_blockptr(eb, 1239 path->slots[level]); 1240 new_ptr_gen = btrfs_node_ptr_generation(eb, 1241 path->slots[level]); 1242 } else { 1243 new_bytenr = 0; 1244 new_ptr_gen = 0; 1245 } 1246 1247 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1248 ret = level; 1249 break; 1250 } 1251 1252 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1253 memcmp_node_keys(parent, slot, path, level)) { 1254 if (level <= lowest_level) { 1255 ret = 0; 1256 break; 1257 } 1258 1259 eb = btrfs_read_node_slot(parent, slot); 1260 if (IS_ERR(eb)) { 1261 ret = PTR_ERR(eb); 1262 break; 1263 } 1264 btrfs_tree_lock(eb); 1265 if (cow) { 1266 ret = btrfs_cow_block(trans, dest, eb, parent, 1267 slot, &eb, 1268 BTRFS_NESTING_COW); 1269 BUG_ON(ret); 1270 } 1271 1272 btrfs_tree_unlock(parent); 1273 free_extent_buffer(parent); 1274 1275 parent = eb; 1276 continue; 1277 } 1278 1279 if (!cow) { 1280 btrfs_tree_unlock(parent); 1281 free_extent_buffer(parent); 1282 cow = 1; 1283 goto again; 1284 } 1285 1286 btrfs_node_key_to_cpu(path->nodes[level], &key, 1287 path->slots[level]); 1288 btrfs_release_path(path); 1289 1290 path->lowest_level = level; 1291 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1292 path->lowest_level = 0; 1293 BUG_ON(ret); 1294 1295 /* 1296 * Info qgroup to trace both subtrees. 1297 * 1298 * We must trace both trees. 1299 * 1) Tree reloc subtree 1300 * If not traced, we will leak data numbers 1301 * 2) Fs subtree 1302 * If not traced, we will double count old data 1303 * 1304 * We don't scan the subtree right now, but only record 1305 * the swapped tree blocks. 1306 * The real subtree rescan is delayed until we have new 1307 * CoW on the subtree root node before transaction commit. 1308 */ 1309 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 1310 rc->block_group, parent, slot, 1311 path->nodes[level], path->slots[level], 1312 last_snapshot); 1313 if (ret < 0) 1314 break; 1315 /* 1316 * swap blocks in fs tree and reloc tree. 1317 */ 1318 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1319 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1320 btrfs_mark_buffer_dirty(parent); 1321 1322 btrfs_set_node_blockptr(path->nodes[level], 1323 path->slots[level], old_bytenr); 1324 btrfs_set_node_ptr_generation(path->nodes[level], 1325 path->slots[level], old_ptr_gen); 1326 btrfs_mark_buffer_dirty(path->nodes[level]); 1327 1328 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 1329 blocksize, path->nodes[level]->start); 1330 ref.skip_qgroup = true; 1331 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1332 ret = btrfs_inc_extent_ref(trans, &ref); 1333 BUG_ON(ret); 1334 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1335 blocksize, 0); 1336 ref.skip_qgroup = true; 1337 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1338 ret = btrfs_inc_extent_ref(trans, &ref); 1339 BUG_ON(ret); 1340 1341 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 1342 blocksize, path->nodes[level]->start); 1343 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 1344 ref.skip_qgroup = true; 1345 ret = btrfs_free_extent(trans, &ref); 1346 BUG_ON(ret); 1347 1348 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 1349 blocksize, 0); 1350 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 1351 ref.skip_qgroup = true; 1352 ret = btrfs_free_extent(trans, &ref); 1353 BUG_ON(ret); 1354 1355 btrfs_unlock_up_safe(path, 0); 1356 1357 ret = level; 1358 break; 1359 } 1360 btrfs_tree_unlock(parent); 1361 free_extent_buffer(parent); 1362 return ret; 1363 } 1364 1365 /* 1366 * helper to find next relocated block in reloc tree 1367 */ 1368 static noinline_for_stack 1369 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1370 int *level) 1371 { 1372 struct extent_buffer *eb; 1373 int i; 1374 u64 last_snapshot; 1375 u32 nritems; 1376 1377 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1378 1379 for (i = 0; i < *level; i++) { 1380 free_extent_buffer(path->nodes[i]); 1381 path->nodes[i] = NULL; 1382 } 1383 1384 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1385 eb = path->nodes[i]; 1386 nritems = btrfs_header_nritems(eb); 1387 while (path->slots[i] + 1 < nritems) { 1388 path->slots[i]++; 1389 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1390 last_snapshot) 1391 continue; 1392 1393 *level = i; 1394 return 0; 1395 } 1396 free_extent_buffer(path->nodes[i]); 1397 path->nodes[i] = NULL; 1398 } 1399 return 1; 1400 } 1401 1402 /* 1403 * walk down reloc tree to find relocated block of lowest level 1404 */ 1405 static noinline_for_stack 1406 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1407 int *level) 1408 { 1409 struct extent_buffer *eb = NULL; 1410 int i; 1411 u64 ptr_gen = 0; 1412 u64 last_snapshot; 1413 u32 nritems; 1414 1415 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1416 1417 for (i = *level; i > 0; i--) { 1418 eb = path->nodes[i]; 1419 nritems = btrfs_header_nritems(eb); 1420 while (path->slots[i] < nritems) { 1421 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1422 if (ptr_gen > last_snapshot) 1423 break; 1424 path->slots[i]++; 1425 } 1426 if (path->slots[i] >= nritems) { 1427 if (i == *level) 1428 break; 1429 *level = i + 1; 1430 return 0; 1431 } 1432 if (i == 1) { 1433 *level = i; 1434 return 0; 1435 } 1436 1437 eb = btrfs_read_node_slot(eb, path->slots[i]); 1438 if (IS_ERR(eb)) 1439 return PTR_ERR(eb); 1440 BUG_ON(btrfs_header_level(eb) != i - 1); 1441 path->nodes[i - 1] = eb; 1442 path->slots[i - 1] = 0; 1443 } 1444 return 1; 1445 } 1446 1447 /* 1448 * invalidate extent cache for file extents whose key in range of 1449 * [min_key, max_key) 1450 */ 1451 static int invalidate_extent_cache(struct btrfs_root *root, 1452 struct btrfs_key *min_key, 1453 struct btrfs_key *max_key) 1454 { 1455 struct btrfs_fs_info *fs_info = root->fs_info; 1456 struct inode *inode = NULL; 1457 u64 objectid; 1458 u64 start, end; 1459 u64 ino; 1460 1461 objectid = min_key->objectid; 1462 while (1) { 1463 cond_resched(); 1464 iput(inode); 1465 1466 if (objectid > max_key->objectid) 1467 break; 1468 1469 inode = find_next_inode(root, objectid); 1470 if (!inode) 1471 break; 1472 ino = btrfs_ino(BTRFS_I(inode)); 1473 1474 if (ino > max_key->objectid) { 1475 iput(inode); 1476 break; 1477 } 1478 1479 objectid = ino + 1; 1480 if (!S_ISREG(inode->i_mode)) 1481 continue; 1482 1483 if (unlikely(min_key->objectid == ino)) { 1484 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1485 continue; 1486 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1487 start = 0; 1488 else { 1489 start = min_key->offset; 1490 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 1491 } 1492 } else { 1493 start = 0; 1494 } 1495 1496 if (unlikely(max_key->objectid == ino)) { 1497 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1498 continue; 1499 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1500 end = (u64)-1; 1501 } else { 1502 if (max_key->offset == 0) 1503 continue; 1504 end = max_key->offset; 1505 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1506 end--; 1507 } 1508 } else { 1509 end = (u64)-1; 1510 } 1511 1512 /* the lock_extent waits for readpage to complete */ 1513 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 1514 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 1515 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 1516 } 1517 return 0; 1518 } 1519 1520 static int find_next_key(struct btrfs_path *path, int level, 1521 struct btrfs_key *key) 1522 1523 { 1524 while (level < BTRFS_MAX_LEVEL) { 1525 if (!path->nodes[level]) 1526 break; 1527 if (path->slots[level] + 1 < 1528 btrfs_header_nritems(path->nodes[level])) { 1529 btrfs_node_key_to_cpu(path->nodes[level], key, 1530 path->slots[level] + 1); 1531 return 0; 1532 } 1533 level++; 1534 } 1535 return 1; 1536 } 1537 1538 /* 1539 * Insert current subvolume into reloc_control::dirty_subvol_roots 1540 */ 1541 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 1542 struct reloc_control *rc, 1543 struct btrfs_root *root) 1544 { 1545 struct btrfs_root *reloc_root = root->reloc_root; 1546 struct btrfs_root_item *reloc_root_item; 1547 1548 /* @root must be a subvolume tree root with a valid reloc tree */ 1549 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1550 ASSERT(reloc_root); 1551 1552 reloc_root_item = &reloc_root->root_item; 1553 memset(&reloc_root_item->drop_progress, 0, 1554 sizeof(reloc_root_item->drop_progress)); 1555 btrfs_set_root_drop_level(reloc_root_item, 0); 1556 btrfs_set_root_refs(reloc_root_item, 0); 1557 btrfs_update_reloc_root(trans, root); 1558 1559 if (list_empty(&root->reloc_dirty_list)) { 1560 btrfs_grab_root(root); 1561 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 1562 } 1563 } 1564 1565 static int clean_dirty_subvols(struct reloc_control *rc) 1566 { 1567 struct btrfs_root *root; 1568 struct btrfs_root *next; 1569 int ret = 0; 1570 int ret2; 1571 1572 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 1573 reloc_dirty_list) { 1574 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1575 /* Merged subvolume, cleanup its reloc root */ 1576 struct btrfs_root *reloc_root = root->reloc_root; 1577 1578 list_del_init(&root->reloc_dirty_list); 1579 root->reloc_root = NULL; 1580 /* 1581 * Need barrier to ensure clear_bit() only happens after 1582 * root->reloc_root = NULL. Pairs with have_reloc_root. 1583 */ 1584 smp_wmb(); 1585 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1586 if (reloc_root) { 1587 /* 1588 * btrfs_drop_snapshot drops our ref we hold for 1589 * ->reloc_root. If it fails however we must 1590 * drop the ref ourselves. 1591 */ 1592 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 1593 if (ret2 < 0) { 1594 btrfs_put_root(reloc_root); 1595 if (!ret) 1596 ret = ret2; 1597 } 1598 } 1599 btrfs_put_root(root); 1600 } else { 1601 /* Orphan reloc tree, just clean it up */ 1602 ret2 = btrfs_drop_snapshot(root, 0, 1); 1603 if (ret2 < 0) { 1604 btrfs_put_root(root); 1605 if (!ret) 1606 ret = ret2; 1607 } 1608 } 1609 } 1610 return ret; 1611 } 1612 1613 /* 1614 * merge the relocated tree blocks in reloc tree with corresponding 1615 * fs tree. 1616 */ 1617 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1618 struct btrfs_root *root) 1619 { 1620 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1621 struct btrfs_key key; 1622 struct btrfs_key next_key; 1623 struct btrfs_trans_handle *trans = NULL; 1624 struct btrfs_root *reloc_root; 1625 struct btrfs_root_item *root_item; 1626 struct btrfs_path *path; 1627 struct extent_buffer *leaf; 1628 int reserve_level; 1629 int level; 1630 int max_level; 1631 int replaced = 0; 1632 int ret = 0; 1633 u32 min_reserved; 1634 1635 path = btrfs_alloc_path(); 1636 if (!path) 1637 return -ENOMEM; 1638 path->reada = READA_FORWARD; 1639 1640 reloc_root = root->reloc_root; 1641 root_item = &reloc_root->root_item; 1642 1643 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 1644 level = btrfs_root_level(root_item); 1645 atomic_inc(&reloc_root->node->refs); 1646 path->nodes[level] = reloc_root->node; 1647 path->slots[level] = 0; 1648 } else { 1649 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 1650 1651 level = btrfs_root_drop_level(root_item); 1652 BUG_ON(level == 0); 1653 path->lowest_level = level; 1654 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 1655 path->lowest_level = 0; 1656 if (ret < 0) { 1657 btrfs_free_path(path); 1658 return ret; 1659 } 1660 1661 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 1662 path->slots[level]); 1663 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 1664 1665 btrfs_unlock_up_safe(path, 0); 1666 } 1667 1668 /* 1669 * In merge_reloc_root(), we modify the upper level pointer to swap the 1670 * tree blocks between reloc tree and subvolume tree. Thus for tree 1671 * block COW, we COW at most from level 1 to root level for each tree. 1672 * 1673 * Thus the needed metadata size is at most root_level * nodesize, 1674 * and * 2 since we have two trees to COW. 1675 */ 1676 reserve_level = max_t(int, 1, btrfs_root_level(root_item)); 1677 min_reserved = fs_info->nodesize * reserve_level * 2; 1678 memset(&next_key, 0, sizeof(next_key)); 1679 1680 while (1) { 1681 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 1682 BTRFS_RESERVE_FLUSH_LIMIT); 1683 if (ret) 1684 goto out; 1685 trans = btrfs_start_transaction(root, 0); 1686 if (IS_ERR(trans)) { 1687 ret = PTR_ERR(trans); 1688 trans = NULL; 1689 goto out; 1690 } 1691 1692 /* 1693 * At this point we no longer have a reloc_control, so we can't 1694 * depend on btrfs_init_reloc_root to update our last_trans. 1695 * 1696 * But that's ok, we started the trans handle on our 1697 * corresponding fs_root, which means it's been added to the 1698 * dirty list. At commit time we'll still call 1699 * btrfs_update_reloc_root() and update our root item 1700 * appropriately. 1701 */ 1702 reloc_root->last_trans = trans->transid; 1703 trans->block_rsv = rc->block_rsv; 1704 1705 replaced = 0; 1706 max_level = level; 1707 1708 ret = walk_down_reloc_tree(reloc_root, path, &level); 1709 if (ret < 0) 1710 goto out; 1711 if (ret > 0) 1712 break; 1713 1714 if (!find_next_key(path, level, &key) && 1715 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 1716 ret = 0; 1717 } else { 1718 ret = replace_path(trans, rc, root, reloc_root, path, 1719 &next_key, level, max_level); 1720 } 1721 if (ret < 0) 1722 goto out; 1723 if (ret > 0) { 1724 level = ret; 1725 btrfs_node_key_to_cpu(path->nodes[level], &key, 1726 path->slots[level]); 1727 replaced = 1; 1728 } 1729 1730 ret = walk_up_reloc_tree(reloc_root, path, &level); 1731 if (ret > 0) 1732 break; 1733 1734 BUG_ON(level == 0); 1735 /* 1736 * save the merging progress in the drop_progress. 1737 * this is OK since root refs == 1 in this case. 1738 */ 1739 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 1740 path->slots[level]); 1741 btrfs_set_root_drop_level(root_item, level); 1742 1743 btrfs_end_transaction_throttle(trans); 1744 trans = NULL; 1745 1746 btrfs_btree_balance_dirty(fs_info); 1747 1748 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1749 invalidate_extent_cache(root, &key, &next_key); 1750 } 1751 1752 /* 1753 * handle the case only one block in the fs tree need to be 1754 * relocated and the block is tree root. 1755 */ 1756 leaf = btrfs_lock_root_node(root); 1757 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf, 1758 BTRFS_NESTING_COW); 1759 btrfs_tree_unlock(leaf); 1760 free_extent_buffer(leaf); 1761 out: 1762 btrfs_free_path(path); 1763 1764 if (ret == 0) 1765 insert_dirty_subvol(trans, rc, root); 1766 1767 if (trans) 1768 btrfs_end_transaction_throttle(trans); 1769 1770 btrfs_btree_balance_dirty(fs_info); 1771 1772 if (replaced && rc->stage == UPDATE_DATA_PTRS) 1773 invalidate_extent_cache(root, &key, &next_key); 1774 1775 return ret; 1776 } 1777 1778 static noinline_for_stack 1779 int prepare_to_merge(struct reloc_control *rc, int err) 1780 { 1781 struct btrfs_root *root = rc->extent_root; 1782 struct btrfs_fs_info *fs_info = root->fs_info; 1783 struct btrfs_root *reloc_root; 1784 struct btrfs_trans_handle *trans; 1785 LIST_HEAD(reloc_roots); 1786 u64 num_bytes = 0; 1787 int ret; 1788 1789 mutex_lock(&fs_info->reloc_mutex); 1790 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 1791 rc->merging_rsv_size += rc->nodes_relocated * 2; 1792 mutex_unlock(&fs_info->reloc_mutex); 1793 1794 again: 1795 if (!err) { 1796 num_bytes = rc->merging_rsv_size; 1797 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 1798 BTRFS_RESERVE_FLUSH_ALL); 1799 if (ret) 1800 err = ret; 1801 } 1802 1803 trans = btrfs_join_transaction(rc->extent_root); 1804 if (IS_ERR(trans)) { 1805 if (!err) 1806 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1807 num_bytes, NULL); 1808 return PTR_ERR(trans); 1809 } 1810 1811 if (!err) { 1812 if (num_bytes != rc->merging_rsv_size) { 1813 btrfs_end_transaction(trans); 1814 btrfs_block_rsv_release(fs_info, rc->block_rsv, 1815 num_bytes, NULL); 1816 goto again; 1817 } 1818 } 1819 1820 rc->merge_reloc_tree = 1; 1821 1822 while (!list_empty(&rc->reloc_roots)) { 1823 reloc_root = list_entry(rc->reloc_roots.next, 1824 struct btrfs_root, root_list); 1825 list_del_init(&reloc_root->root_list); 1826 1827 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1828 false); 1829 BUG_ON(IS_ERR(root)); 1830 BUG_ON(root->reloc_root != reloc_root); 1831 1832 /* 1833 * set reference count to 1, so btrfs_recover_relocation 1834 * knows it should resumes merging 1835 */ 1836 if (!err) 1837 btrfs_set_root_refs(&reloc_root->root_item, 1); 1838 btrfs_update_reloc_root(trans, root); 1839 1840 list_add(&reloc_root->root_list, &reloc_roots); 1841 btrfs_put_root(root); 1842 } 1843 1844 list_splice(&reloc_roots, &rc->reloc_roots); 1845 1846 if (!err) 1847 btrfs_commit_transaction(trans); 1848 else 1849 btrfs_end_transaction(trans); 1850 return err; 1851 } 1852 1853 static noinline_for_stack 1854 void free_reloc_roots(struct list_head *list) 1855 { 1856 struct btrfs_root *reloc_root, *tmp; 1857 1858 list_for_each_entry_safe(reloc_root, tmp, list, root_list) 1859 __del_reloc_root(reloc_root); 1860 } 1861 1862 static noinline_for_stack 1863 void merge_reloc_roots(struct reloc_control *rc) 1864 { 1865 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 1866 struct btrfs_root *root; 1867 struct btrfs_root *reloc_root; 1868 LIST_HEAD(reloc_roots); 1869 int found = 0; 1870 int ret = 0; 1871 again: 1872 root = rc->extent_root; 1873 1874 /* 1875 * this serializes us with btrfs_record_root_in_transaction, 1876 * we have to make sure nobody is in the middle of 1877 * adding their roots to the list while we are 1878 * doing this splice 1879 */ 1880 mutex_lock(&fs_info->reloc_mutex); 1881 list_splice_init(&rc->reloc_roots, &reloc_roots); 1882 mutex_unlock(&fs_info->reloc_mutex); 1883 1884 while (!list_empty(&reloc_roots)) { 1885 found = 1; 1886 reloc_root = list_entry(reloc_roots.next, 1887 struct btrfs_root, root_list); 1888 1889 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 1890 false); 1891 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 1892 BUG_ON(IS_ERR(root)); 1893 BUG_ON(root->reloc_root != reloc_root); 1894 ret = merge_reloc_root(rc, root); 1895 btrfs_put_root(root); 1896 if (ret) { 1897 if (list_empty(&reloc_root->root_list)) 1898 list_add_tail(&reloc_root->root_list, 1899 &reloc_roots); 1900 goto out; 1901 } 1902 } else { 1903 if (!IS_ERR(root)) { 1904 if (root->reloc_root == reloc_root) { 1905 root->reloc_root = NULL; 1906 btrfs_put_root(reloc_root); 1907 } 1908 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, 1909 &root->state); 1910 btrfs_put_root(root); 1911 } 1912 1913 list_del_init(&reloc_root->root_list); 1914 /* Don't forget to queue this reloc root for cleanup */ 1915 list_add_tail(&reloc_root->reloc_dirty_list, 1916 &rc->dirty_subvol_roots); 1917 } 1918 } 1919 1920 if (found) { 1921 found = 0; 1922 goto again; 1923 } 1924 out: 1925 if (ret) { 1926 btrfs_handle_fs_error(fs_info, ret, NULL); 1927 free_reloc_roots(&reloc_roots); 1928 1929 /* new reloc root may be added */ 1930 mutex_lock(&fs_info->reloc_mutex); 1931 list_splice_init(&rc->reloc_roots, &reloc_roots); 1932 mutex_unlock(&fs_info->reloc_mutex); 1933 free_reloc_roots(&reloc_roots); 1934 } 1935 1936 /* 1937 * We used to have 1938 * 1939 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 1940 * 1941 * here, but it's wrong. If we fail to start the transaction in 1942 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 1943 * have actually been removed from the reloc_root_tree rb tree. This is 1944 * fine because we're bailing here, and we hold a reference on the root 1945 * for the list that holds it, so these roots will be cleaned up when we 1946 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 1947 * will be cleaned up on unmount. 1948 * 1949 * The remaining nodes will be cleaned up by free_reloc_control. 1950 */ 1951 } 1952 1953 static void free_block_list(struct rb_root *blocks) 1954 { 1955 struct tree_block *block; 1956 struct rb_node *rb_node; 1957 while ((rb_node = rb_first(blocks))) { 1958 block = rb_entry(rb_node, struct tree_block, rb_node); 1959 rb_erase(rb_node, blocks); 1960 kfree(block); 1961 } 1962 } 1963 1964 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 1965 struct btrfs_root *reloc_root) 1966 { 1967 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 1968 struct btrfs_root *root; 1969 int ret; 1970 1971 if (reloc_root->last_trans == trans->transid) 1972 return 0; 1973 1974 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false); 1975 BUG_ON(IS_ERR(root)); 1976 BUG_ON(root->reloc_root != reloc_root); 1977 ret = btrfs_record_root_in_trans(trans, root); 1978 btrfs_put_root(root); 1979 1980 return ret; 1981 } 1982 1983 static noinline_for_stack 1984 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 1985 struct reloc_control *rc, 1986 struct btrfs_backref_node *node, 1987 struct btrfs_backref_edge *edges[]) 1988 { 1989 struct btrfs_backref_node *next; 1990 struct btrfs_root *root; 1991 int index = 0; 1992 1993 next = node; 1994 while (1) { 1995 cond_resched(); 1996 next = walk_up_backref(next, edges, &index); 1997 root = next->root; 1998 BUG_ON(!root); 1999 BUG_ON(!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)); 2000 2001 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2002 record_reloc_root_in_trans(trans, root); 2003 break; 2004 } 2005 2006 btrfs_record_root_in_trans(trans, root); 2007 root = root->reloc_root; 2008 2009 if (next->new_bytenr != root->node->start) { 2010 BUG_ON(next->new_bytenr); 2011 BUG_ON(!list_empty(&next->list)); 2012 next->new_bytenr = root->node->start; 2013 btrfs_put_root(next->root); 2014 next->root = btrfs_grab_root(root); 2015 ASSERT(next->root); 2016 list_add_tail(&next->list, 2017 &rc->backref_cache.changed); 2018 mark_block_processed(rc, next); 2019 break; 2020 } 2021 2022 WARN_ON(1); 2023 root = NULL; 2024 next = walk_down_backref(edges, &index); 2025 if (!next || next->level <= node->level) 2026 break; 2027 } 2028 if (!root) 2029 return NULL; 2030 2031 next = node; 2032 /* setup backref node path for btrfs_reloc_cow_block */ 2033 while (1) { 2034 rc->backref_cache.path[next->level] = next; 2035 if (--index < 0) 2036 break; 2037 next = edges[index]->node[UPPER]; 2038 } 2039 return root; 2040 } 2041 2042 /* 2043 * Select a tree root for relocation. 2044 * 2045 * Return NULL if the block is not shareable. We should use do_relocation() in 2046 * this case. 2047 * 2048 * Return a tree root pointer if the block is shareable. 2049 * Return -ENOENT if the block is root of reloc tree. 2050 */ 2051 static noinline_for_stack 2052 struct btrfs_root *select_one_root(struct btrfs_backref_node *node) 2053 { 2054 struct btrfs_backref_node *next; 2055 struct btrfs_root *root; 2056 struct btrfs_root *fs_root = NULL; 2057 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2058 int index = 0; 2059 2060 next = node; 2061 while (1) { 2062 cond_resched(); 2063 next = walk_up_backref(next, edges, &index); 2064 root = next->root; 2065 BUG_ON(!root); 2066 2067 /* No other choice for non-shareable tree */ 2068 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 2069 return root; 2070 2071 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2072 fs_root = root; 2073 2074 if (next != node) 2075 return NULL; 2076 2077 next = walk_down_backref(edges, &index); 2078 if (!next || next->level <= node->level) 2079 break; 2080 } 2081 2082 if (!fs_root) 2083 return ERR_PTR(-ENOENT); 2084 return fs_root; 2085 } 2086 2087 static noinline_for_stack 2088 u64 calcu_metadata_size(struct reloc_control *rc, 2089 struct btrfs_backref_node *node, int reserve) 2090 { 2091 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2092 struct btrfs_backref_node *next = node; 2093 struct btrfs_backref_edge *edge; 2094 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2095 u64 num_bytes = 0; 2096 int index = 0; 2097 2098 BUG_ON(reserve && node->processed); 2099 2100 while (next) { 2101 cond_resched(); 2102 while (1) { 2103 if (next->processed && (reserve || next != node)) 2104 break; 2105 2106 num_bytes += fs_info->nodesize; 2107 2108 if (list_empty(&next->upper)) 2109 break; 2110 2111 edge = list_entry(next->upper.next, 2112 struct btrfs_backref_edge, list[LOWER]); 2113 edges[index++] = edge; 2114 next = edge->node[UPPER]; 2115 } 2116 next = walk_down_backref(edges, &index); 2117 } 2118 return num_bytes; 2119 } 2120 2121 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2122 struct reloc_control *rc, 2123 struct btrfs_backref_node *node) 2124 { 2125 struct btrfs_root *root = rc->extent_root; 2126 struct btrfs_fs_info *fs_info = root->fs_info; 2127 u64 num_bytes; 2128 int ret; 2129 u64 tmp; 2130 2131 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2132 2133 trans->block_rsv = rc->block_rsv; 2134 rc->reserved_bytes += num_bytes; 2135 2136 /* 2137 * We are under a transaction here so we can only do limited flushing. 2138 * If we get an enospc just kick back -EAGAIN so we know to drop the 2139 * transaction and try to refill when we can flush all the things. 2140 */ 2141 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2142 BTRFS_RESERVE_FLUSH_LIMIT); 2143 if (ret) { 2144 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2145 while (tmp <= rc->reserved_bytes) 2146 tmp <<= 1; 2147 /* 2148 * only one thread can access block_rsv at this point, 2149 * so we don't need hold lock to protect block_rsv. 2150 * we expand more reservation size here to allow enough 2151 * space for relocation and we will return earlier in 2152 * enospc case. 2153 */ 2154 rc->block_rsv->size = tmp + fs_info->nodesize * 2155 RELOCATION_RESERVED_NODES; 2156 return -EAGAIN; 2157 } 2158 2159 return 0; 2160 } 2161 2162 /* 2163 * relocate a block tree, and then update pointers in upper level 2164 * blocks that reference the block to point to the new location. 2165 * 2166 * if called by link_to_upper, the block has already been relocated. 2167 * in that case this function just updates pointers. 2168 */ 2169 static int do_relocation(struct btrfs_trans_handle *trans, 2170 struct reloc_control *rc, 2171 struct btrfs_backref_node *node, 2172 struct btrfs_key *key, 2173 struct btrfs_path *path, int lowest) 2174 { 2175 struct btrfs_backref_node *upper; 2176 struct btrfs_backref_edge *edge; 2177 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2178 struct btrfs_root *root; 2179 struct extent_buffer *eb; 2180 u32 blocksize; 2181 u64 bytenr; 2182 int slot; 2183 int ret = 0; 2184 2185 BUG_ON(lowest && node->eb); 2186 2187 path->lowest_level = node->level + 1; 2188 rc->backref_cache.path[node->level] = node; 2189 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2190 struct btrfs_ref ref = { 0 }; 2191 2192 cond_resched(); 2193 2194 upper = edge->node[UPPER]; 2195 root = select_reloc_root(trans, rc, upper, edges); 2196 BUG_ON(!root); 2197 2198 if (upper->eb && !upper->locked) { 2199 if (!lowest) { 2200 ret = btrfs_bin_search(upper->eb, key, &slot); 2201 if (ret < 0) 2202 goto next; 2203 BUG_ON(ret); 2204 bytenr = btrfs_node_blockptr(upper->eb, slot); 2205 if (node->eb->start == bytenr) 2206 goto next; 2207 } 2208 btrfs_backref_drop_node_buffer(upper); 2209 } 2210 2211 if (!upper->eb) { 2212 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2213 if (ret) { 2214 if (ret > 0) 2215 ret = -ENOENT; 2216 2217 btrfs_release_path(path); 2218 break; 2219 } 2220 2221 if (!upper->eb) { 2222 upper->eb = path->nodes[upper->level]; 2223 path->nodes[upper->level] = NULL; 2224 } else { 2225 BUG_ON(upper->eb != path->nodes[upper->level]); 2226 } 2227 2228 upper->locked = 1; 2229 path->locks[upper->level] = 0; 2230 2231 slot = path->slots[upper->level]; 2232 btrfs_release_path(path); 2233 } else { 2234 ret = btrfs_bin_search(upper->eb, key, &slot); 2235 if (ret < 0) 2236 goto next; 2237 BUG_ON(ret); 2238 } 2239 2240 bytenr = btrfs_node_blockptr(upper->eb, slot); 2241 if (lowest) { 2242 if (bytenr != node->bytenr) { 2243 btrfs_err(root->fs_info, 2244 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2245 bytenr, node->bytenr, slot, 2246 upper->eb->start); 2247 ret = -EIO; 2248 goto next; 2249 } 2250 } else { 2251 if (node->eb->start == bytenr) 2252 goto next; 2253 } 2254 2255 blocksize = root->fs_info->nodesize; 2256 eb = btrfs_read_node_slot(upper->eb, slot); 2257 if (IS_ERR(eb)) { 2258 ret = PTR_ERR(eb); 2259 goto next; 2260 } 2261 btrfs_tree_lock(eb); 2262 2263 if (!node->eb) { 2264 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2265 slot, &eb, BTRFS_NESTING_COW); 2266 btrfs_tree_unlock(eb); 2267 free_extent_buffer(eb); 2268 if (ret < 0) 2269 goto next; 2270 BUG_ON(node->eb != eb); 2271 } else { 2272 btrfs_set_node_blockptr(upper->eb, slot, 2273 node->eb->start); 2274 btrfs_set_node_ptr_generation(upper->eb, slot, 2275 trans->transid); 2276 btrfs_mark_buffer_dirty(upper->eb); 2277 2278 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 2279 node->eb->start, blocksize, 2280 upper->eb->start); 2281 ref.real_root = root->root_key.objectid; 2282 btrfs_init_tree_ref(&ref, node->level, 2283 btrfs_header_owner(upper->eb)); 2284 ret = btrfs_inc_extent_ref(trans, &ref); 2285 BUG_ON(ret); 2286 2287 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2288 BUG_ON(ret); 2289 } 2290 next: 2291 if (!upper->pending) 2292 btrfs_backref_drop_node_buffer(upper); 2293 else 2294 btrfs_backref_unlock_node_buffer(upper); 2295 if (ret) 2296 break; 2297 } 2298 2299 if (!ret && node->pending) { 2300 btrfs_backref_drop_node_buffer(node); 2301 list_move_tail(&node->list, &rc->backref_cache.changed); 2302 node->pending = 0; 2303 } 2304 2305 path->lowest_level = 0; 2306 BUG_ON(ret == -ENOSPC); 2307 return ret; 2308 } 2309 2310 static int link_to_upper(struct btrfs_trans_handle *trans, 2311 struct reloc_control *rc, 2312 struct btrfs_backref_node *node, 2313 struct btrfs_path *path) 2314 { 2315 struct btrfs_key key; 2316 2317 btrfs_node_key_to_cpu(node->eb, &key, 0); 2318 return do_relocation(trans, rc, node, &key, path, 0); 2319 } 2320 2321 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2322 struct reloc_control *rc, 2323 struct btrfs_path *path, int err) 2324 { 2325 LIST_HEAD(list); 2326 struct btrfs_backref_cache *cache = &rc->backref_cache; 2327 struct btrfs_backref_node *node; 2328 int level; 2329 int ret; 2330 2331 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2332 while (!list_empty(&cache->pending[level])) { 2333 node = list_entry(cache->pending[level].next, 2334 struct btrfs_backref_node, list); 2335 list_move_tail(&node->list, &list); 2336 BUG_ON(!node->pending); 2337 2338 if (!err) { 2339 ret = link_to_upper(trans, rc, node, path); 2340 if (ret < 0) 2341 err = ret; 2342 } 2343 } 2344 list_splice_init(&list, &cache->pending[level]); 2345 } 2346 return err; 2347 } 2348 2349 /* 2350 * mark a block and all blocks directly/indirectly reference the block 2351 * as processed. 2352 */ 2353 static void update_processed_blocks(struct reloc_control *rc, 2354 struct btrfs_backref_node *node) 2355 { 2356 struct btrfs_backref_node *next = node; 2357 struct btrfs_backref_edge *edge; 2358 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2359 int index = 0; 2360 2361 while (next) { 2362 cond_resched(); 2363 while (1) { 2364 if (next->processed) 2365 break; 2366 2367 mark_block_processed(rc, next); 2368 2369 if (list_empty(&next->upper)) 2370 break; 2371 2372 edge = list_entry(next->upper.next, 2373 struct btrfs_backref_edge, list[LOWER]); 2374 edges[index++] = edge; 2375 next = edge->node[UPPER]; 2376 } 2377 next = walk_down_backref(edges, &index); 2378 } 2379 } 2380 2381 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 2382 { 2383 u32 blocksize = rc->extent_root->fs_info->nodesize; 2384 2385 if (test_range_bit(&rc->processed_blocks, bytenr, 2386 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2387 return 1; 2388 return 0; 2389 } 2390 2391 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 2392 struct tree_block *block) 2393 { 2394 struct extent_buffer *eb; 2395 2396 eb = read_tree_block(fs_info, block->bytenr, 0, block->key.offset, 2397 block->level, NULL); 2398 if (IS_ERR(eb)) { 2399 return PTR_ERR(eb); 2400 } else if (!extent_buffer_uptodate(eb)) { 2401 free_extent_buffer(eb); 2402 return -EIO; 2403 } 2404 if (block->level == 0) 2405 btrfs_item_key_to_cpu(eb, &block->key, 0); 2406 else 2407 btrfs_node_key_to_cpu(eb, &block->key, 0); 2408 free_extent_buffer(eb); 2409 block->key_ready = 1; 2410 return 0; 2411 } 2412 2413 /* 2414 * helper function to relocate a tree block 2415 */ 2416 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2417 struct reloc_control *rc, 2418 struct btrfs_backref_node *node, 2419 struct btrfs_key *key, 2420 struct btrfs_path *path) 2421 { 2422 struct btrfs_root *root; 2423 int ret = 0; 2424 2425 if (!node) 2426 return 0; 2427 2428 /* 2429 * If we fail here we want to drop our backref_node because we are going 2430 * to start over and regenerate the tree for it. 2431 */ 2432 ret = reserve_metadata_space(trans, rc, node); 2433 if (ret) 2434 goto out; 2435 2436 BUG_ON(node->processed); 2437 root = select_one_root(node); 2438 if (root == ERR_PTR(-ENOENT)) { 2439 update_processed_blocks(rc, node); 2440 goto out; 2441 } 2442 2443 if (root) { 2444 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 2445 BUG_ON(node->new_bytenr); 2446 BUG_ON(!list_empty(&node->list)); 2447 btrfs_record_root_in_trans(trans, root); 2448 root = root->reloc_root; 2449 node->new_bytenr = root->node->start; 2450 btrfs_put_root(node->root); 2451 node->root = btrfs_grab_root(root); 2452 ASSERT(node->root); 2453 list_add_tail(&node->list, &rc->backref_cache.changed); 2454 } else { 2455 path->lowest_level = node->level; 2456 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2457 btrfs_release_path(path); 2458 if (ret > 0) 2459 ret = 0; 2460 } 2461 if (!ret) 2462 update_processed_blocks(rc, node); 2463 } else { 2464 ret = do_relocation(trans, rc, node, key, path, 1); 2465 } 2466 out: 2467 if (ret || node->level == 0 || node->cowonly) 2468 btrfs_backref_cleanup_node(&rc->backref_cache, node); 2469 return ret; 2470 } 2471 2472 /* 2473 * relocate a list of blocks 2474 */ 2475 static noinline_for_stack 2476 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2477 struct reloc_control *rc, struct rb_root *blocks) 2478 { 2479 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2480 struct btrfs_backref_node *node; 2481 struct btrfs_path *path; 2482 struct tree_block *block; 2483 struct tree_block *next; 2484 int ret; 2485 int err = 0; 2486 2487 path = btrfs_alloc_path(); 2488 if (!path) { 2489 err = -ENOMEM; 2490 goto out_free_blocks; 2491 } 2492 2493 /* Kick in readahead for tree blocks with missing keys */ 2494 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2495 if (!block->key_ready) 2496 btrfs_readahead_tree_block(fs_info, block->bytenr, 0, 0, 2497 block->level); 2498 } 2499 2500 /* Get first keys */ 2501 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2502 if (!block->key_ready) { 2503 err = get_tree_block_key(fs_info, block); 2504 if (err) 2505 goto out_free_path; 2506 } 2507 } 2508 2509 /* Do tree relocation */ 2510 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 2511 node = build_backref_tree(rc, &block->key, 2512 block->level, block->bytenr); 2513 if (IS_ERR(node)) { 2514 err = PTR_ERR(node); 2515 goto out; 2516 } 2517 2518 ret = relocate_tree_block(trans, rc, node, &block->key, 2519 path); 2520 if (ret < 0) { 2521 err = ret; 2522 break; 2523 } 2524 } 2525 out: 2526 err = finish_pending_nodes(trans, rc, path, err); 2527 2528 out_free_path: 2529 btrfs_free_path(path); 2530 out_free_blocks: 2531 free_block_list(blocks); 2532 return err; 2533 } 2534 2535 static noinline_for_stack int prealloc_file_extent_cluster( 2536 struct btrfs_inode *inode, 2537 struct file_extent_cluster *cluster) 2538 { 2539 u64 alloc_hint = 0; 2540 u64 start; 2541 u64 end; 2542 u64 offset = inode->index_cnt; 2543 u64 num_bytes; 2544 int nr; 2545 int ret = 0; 2546 u64 prealloc_start = cluster->start - offset; 2547 u64 prealloc_end = cluster->end - offset; 2548 u64 cur_offset = prealloc_start; 2549 2550 BUG_ON(cluster->start != cluster->boundary[0]); 2551 ret = btrfs_alloc_data_chunk_ondemand(inode, 2552 prealloc_end + 1 - prealloc_start); 2553 if (ret) 2554 return ret; 2555 2556 inode_lock(&inode->vfs_inode); 2557 for (nr = 0; nr < cluster->nr; nr++) { 2558 start = cluster->boundary[nr] - offset; 2559 if (nr + 1 < cluster->nr) 2560 end = cluster->boundary[nr + 1] - 1 - offset; 2561 else 2562 end = cluster->end - offset; 2563 2564 lock_extent(&inode->io_tree, start, end); 2565 num_bytes = end + 1 - start; 2566 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start, 2567 num_bytes, num_bytes, 2568 end + 1, &alloc_hint); 2569 cur_offset = end + 1; 2570 unlock_extent(&inode->io_tree, start, end); 2571 if (ret) 2572 break; 2573 } 2574 inode_unlock(&inode->vfs_inode); 2575 2576 if (cur_offset < prealloc_end) 2577 btrfs_free_reserved_data_space_noquota(inode->root->fs_info, 2578 prealloc_end + 1 - cur_offset); 2579 return ret; 2580 } 2581 2582 static noinline_for_stack 2583 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2584 u64 block_start) 2585 { 2586 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2587 struct extent_map *em; 2588 int ret = 0; 2589 2590 em = alloc_extent_map(); 2591 if (!em) 2592 return -ENOMEM; 2593 2594 em->start = start; 2595 em->len = end + 1 - start; 2596 em->block_len = em->len; 2597 em->block_start = block_start; 2598 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2599 2600 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2601 while (1) { 2602 write_lock(&em_tree->lock); 2603 ret = add_extent_mapping(em_tree, em, 0); 2604 write_unlock(&em_tree->lock); 2605 if (ret != -EEXIST) { 2606 free_extent_map(em); 2607 break; 2608 } 2609 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 2610 } 2611 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2612 return ret; 2613 } 2614 2615 /* 2616 * Allow error injection to test balance cancellation 2617 */ 2618 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 2619 { 2620 return atomic_read(&fs_info->balance_cancel_req) || 2621 fatal_signal_pending(current); 2622 } 2623 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 2624 2625 static int relocate_file_extent_cluster(struct inode *inode, 2626 struct file_extent_cluster *cluster) 2627 { 2628 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2629 u64 page_start; 2630 u64 page_end; 2631 u64 offset = BTRFS_I(inode)->index_cnt; 2632 unsigned long index; 2633 unsigned long last_index; 2634 struct page *page; 2635 struct file_ra_state *ra; 2636 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2637 int nr = 0; 2638 int ret = 0; 2639 2640 if (!cluster->nr) 2641 return 0; 2642 2643 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2644 if (!ra) 2645 return -ENOMEM; 2646 2647 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster); 2648 if (ret) 2649 goto out; 2650 2651 file_ra_state_init(ra, inode->i_mapping); 2652 2653 ret = setup_extent_mapping(inode, cluster->start - offset, 2654 cluster->end - offset, cluster->start); 2655 if (ret) 2656 goto out; 2657 2658 index = (cluster->start - offset) >> PAGE_SHIFT; 2659 last_index = (cluster->end - offset) >> PAGE_SHIFT; 2660 while (index <= last_index) { 2661 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 2662 PAGE_SIZE); 2663 if (ret) 2664 goto out; 2665 2666 page = find_lock_page(inode->i_mapping, index); 2667 if (!page) { 2668 page_cache_sync_readahead(inode->i_mapping, 2669 ra, NULL, index, 2670 last_index + 1 - index); 2671 page = find_or_create_page(inode->i_mapping, index, 2672 mask); 2673 if (!page) { 2674 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2675 PAGE_SIZE, true); 2676 btrfs_delalloc_release_extents(BTRFS_I(inode), 2677 PAGE_SIZE); 2678 ret = -ENOMEM; 2679 goto out; 2680 } 2681 } 2682 2683 if (PageReadahead(page)) { 2684 page_cache_async_readahead(inode->i_mapping, 2685 ra, NULL, page, index, 2686 last_index + 1 - index); 2687 } 2688 2689 if (!PageUptodate(page)) { 2690 btrfs_readpage(NULL, page); 2691 lock_page(page); 2692 if (!PageUptodate(page)) { 2693 unlock_page(page); 2694 put_page(page); 2695 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2696 PAGE_SIZE, true); 2697 btrfs_delalloc_release_extents(BTRFS_I(inode), 2698 PAGE_SIZE); 2699 ret = -EIO; 2700 goto out; 2701 } 2702 } 2703 2704 page_start = page_offset(page); 2705 page_end = page_start + PAGE_SIZE - 1; 2706 2707 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 2708 2709 set_page_extent_mapped(page); 2710 2711 if (nr < cluster->nr && 2712 page_start + offset == cluster->boundary[nr]) { 2713 set_extent_bits(&BTRFS_I(inode)->io_tree, 2714 page_start, page_end, 2715 EXTENT_BOUNDARY); 2716 nr++; 2717 } 2718 2719 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, 2720 page_end, 0, NULL); 2721 if (ret) { 2722 unlock_page(page); 2723 put_page(page); 2724 btrfs_delalloc_release_metadata(BTRFS_I(inode), 2725 PAGE_SIZE, true); 2726 btrfs_delalloc_release_extents(BTRFS_I(inode), 2727 PAGE_SIZE); 2728 2729 clear_extent_bits(&BTRFS_I(inode)->io_tree, 2730 page_start, page_end, 2731 EXTENT_LOCKED | EXTENT_BOUNDARY); 2732 goto out; 2733 2734 } 2735 set_page_dirty(page); 2736 2737 unlock_extent(&BTRFS_I(inode)->io_tree, 2738 page_start, page_end); 2739 unlock_page(page); 2740 put_page(page); 2741 2742 index++; 2743 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 2744 balance_dirty_pages_ratelimited(inode->i_mapping); 2745 btrfs_throttle(fs_info); 2746 if (btrfs_should_cancel_balance(fs_info)) { 2747 ret = -ECANCELED; 2748 goto out; 2749 } 2750 } 2751 WARN_ON(nr != cluster->nr); 2752 out: 2753 kfree(ra); 2754 return ret; 2755 } 2756 2757 static noinline_for_stack 2758 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 2759 struct file_extent_cluster *cluster) 2760 { 2761 int ret; 2762 2763 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 2764 ret = relocate_file_extent_cluster(inode, cluster); 2765 if (ret) 2766 return ret; 2767 cluster->nr = 0; 2768 } 2769 2770 if (!cluster->nr) 2771 cluster->start = extent_key->objectid; 2772 else 2773 BUG_ON(cluster->nr >= MAX_EXTENTS); 2774 cluster->end = extent_key->objectid + extent_key->offset - 1; 2775 cluster->boundary[cluster->nr] = extent_key->objectid; 2776 cluster->nr++; 2777 2778 if (cluster->nr >= MAX_EXTENTS) { 2779 ret = relocate_file_extent_cluster(inode, cluster); 2780 if (ret) 2781 return ret; 2782 cluster->nr = 0; 2783 } 2784 return 0; 2785 } 2786 2787 /* 2788 * helper to add a tree block to the list. 2789 * the major work is getting the generation and level of the block 2790 */ 2791 static int add_tree_block(struct reloc_control *rc, 2792 struct btrfs_key *extent_key, 2793 struct btrfs_path *path, 2794 struct rb_root *blocks) 2795 { 2796 struct extent_buffer *eb; 2797 struct btrfs_extent_item *ei; 2798 struct btrfs_tree_block_info *bi; 2799 struct tree_block *block; 2800 struct rb_node *rb_node; 2801 u32 item_size; 2802 int level = -1; 2803 u64 generation; 2804 2805 eb = path->nodes[0]; 2806 item_size = btrfs_item_size_nr(eb, path->slots[0]); 2807 2808 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 2809 item_size >= sizeof(*ei) + sizeof(*bi)) { 2810 ei = btrfs_item_ptr(eb, path->slots[0], 2811 struct btrfs_extent_item); 2812 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 2813 bi = (struct btrfs_tree_block_info *)(ei + 1); 2814 level = btrfs_tree_block_level(eb, bi); 2815 } else { 2816 level = (int)extent_key->offset; 2817 } 2818 generation = btrfs_extent_generation(eb, ei); 2819 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 2820 btrfs_print_v0_err(eb->fs_info); 2821 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 2822 return -EINVAL; 2823 } else { 2824 BUG(); 2825 } 2826 2827 btrfs_release_path(path); 2828 2829 BUG_ON(level == -1); 2830 2831 block = kmalloc(sizeof(*block), GFP_NOFS); 2832 if (!block) 2833 return -ENOMEM; 2834 2835 block->bytenr = extent_key->objectid; 2836 block->key.objectid = rc->extent_root->fs_info->nodesize; 2837 block->key.offset = generation; 2838 block->level = level; 2839 block->key_ready = 0; 2840 2841 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node); 2842 if (rb_node) 2843 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr, 2844 -EEXIST); 2845 2846 return 0; 2847 } 2848 2849 /* 2850 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 2851 */ 2852 static int __add_tree_block(struct reloc_control *rc, 2853 u64 bytenr, u32 blocksize, 2854 struct rb_root *blocks) 2855 { 2856 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2857 struct btrfs_path *path; 2858 struct btrfs_key key; 2859 int ret; 2860 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 2861 2862 if (tree_block_processed(bytenr, rc)) 2863 return 0; 2864 2865 if (rb_simple_search(blocks, bytenr)) 2866 return 0; 2867 2868 path = btrfs_alloc_path(); 2869 if (!path) 2870 return -ENOMEM; 2871 again: 2872 key.objectid = bytenr; 2873 if (skinny) { 2874 key.type = BTRFS_METADATA_ITEM_KEY; 2875 key.offset = (u64)-1; 2876 } else { 2877 key.type = BTRFS_EXTENT_ITEM_KEY; 2878 key.offset = blocksize; 2879 } 2880 2881 path->search_commit_root = 1; 2882 path->skip_locking = 1; 2883 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 2884 if (ret < 0) 2885 goto out; 2886 2887 if (ret > 0 && skinny) { 2888 if (path->slots[0]) { 2889 path->slots[0]--; 2890 btrfs_item_key_to_cpu(path->nodes[0], &key, 2891 path->slots[0]); 2892 if (key.objectid == bytenr && 2893 (key.type == BTRFS_METADATA_ITEM_KEY || 2894 (key.type == BTRFS_EXTENT_ITEM_KEY && 2895 key.offset == blocksize))) 2896 ret = 0; 2897 } 2898 2899 if (ret) { 2900 skinny = false; 2901 btrfs_release_path(path); 2902 goto again; 2903 } 2904 } 2905 if (ret) { 2906 ASSERT(ret == 1); 2907 btrfs_print_leaf(path->nodes[0]); 2908 btrfs_err(fs_info, 2909 "tree block extent item (%llu) is not found in extent tree", 2910 bytenr); 2911 WARN_ON(1); 2912 ret = -EINVAL; 2913 goto out; 2914 } 2915 2916 ret = add_tree_block(rc, &key, path, blocks); 2917 out: 2918 btrfs_free_path(path); 2919 return ret; 2920 } 2921 2922 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 2923 struct btrfs_block_group *block_group, 2924 struct inode *inode, 2925 u64 ino) 2926 { 2927 struct btrfs_root *root = fs_info->tree_root; 2928 struct btrfs_trans_handle *trans; 2929 int ret = 0; 2930 2931 if (inode) 2932 goto truncate; 2933 2934 inode = btrfs_iget(fs_info->sb, ino, root); 2935 if (IS_ERR(inode)) 2936 return -ENOENT; 2937 2938 truncate: 2939 ret = btrfs_check_trunc_cache_free_space(fs_info, 2940 &fs_info->global_block_rsv); 2941 if (ret) 2942 goto out; 2943 2944 trans = btrfs_join_transaction(root); 2945 if (IS_ERR(trans)) { 2946 ret = PTR_ERR(trans); 2947 goto out; 2948 } 2949 2950 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 2951 2952 btrfs_end_transaction(trans); 2953 btrfs_btree_balance_dirty(fs_info); 2954 out: 2955 iput(inode); 2956 return ret; 2957 } 2958 2959 /* 2960 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 2961 * cache inode, to avoid free space cache data extent blocking data relocation. 2962 */ 2963 static int delete_v1_space_cache(struct extent_buffer *leaf, 2964 struct btrfs_block_group *block_group, 2965 u64 data_bytenr) 2966 { 2967 u64 space_cache_ino; 2968 struct btrfs_file_extent_item *ei; 2969 struct btrfs_key key; 2970 bool found = false; 2971 int i; 2972 int ret; 2973 2974 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 2975 return 0; 2976 2977 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 2978 btrfs_item_key_to_cpu(leaf, &key, i); 2979 if (key.type != BTRFS_EXTENT_DATA_KEY) 2980 continue; 2981 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 2982 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG && 2983 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 2984 found = true; 2985 space_cache_ino = key.objectid; 2986 break; 2987 } 2988 } 2989 if (!found) 2990 return -ENOENT; 2991 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 2992 space_cache_ino); 2993 return ret; 2994 } 2995 2996 /* 2997 * helper to find all tree blocks that reference a given data extent 2998 */ 2999 static noinline_for_stack 3000 int add_data_references(struct reloc_control *rc, 3001 struct btrfs_key *extent_key, 3002 struct btrfs_path *path, 3003 struct rb_root *blocks) 3004 { 3005 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3006 struct ulist *leaves = NULL; 3007 struct ulist_iterator leaf_uiter; 3008 struct ulist_node *ref_node = NULL; 3009 const u32 blocksize = fs_info->nodesize; 3010 int ret = 0; 3011 3012 btrfs_release_path(path); 3013 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3014 0, &leaves, NULL, true); 3015 if (ret < 0) 3016 return ret; 3017 3018 ULIST_ITER_INIT(&leaf_uiter); 3019 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3020 struct extent_buffer *eb; 3021 3022 eb = read_tree_block(fs_info, ref_node->val, 0, 0, 0, NULL); 3023 if (IS_ERR(eb)) { 3024 ret = PTR_ERR(eb); 3025 break; 3026 } 3027 ret = delete_v1_space_cache(eb, rc->block_group, 3028 extent_key->objectid); 3029 free_extent_buffer(eb); 3030 if (ret < 0) 3031 break; 3032 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3033 if (ret < 0) 3034 break; 3035 } 3036 if (ret < 0) 3037 free_block_list(blocks); 3038 ulist_free(leaves); 3039 return ret; 3040 } 3041 3042 /* 3043 * helper to find next unprocessed extent 3044 */ 3045 static noinline_for_stack 3046 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3047 struct btrfs_key *extent_key) 3048 { 3049 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3050 struct btrfs_key key; 3051 struct extent_buffer *leaf; 3052 u64 start, end, last; 3053 int ret; 3054 3055 last = rc->block_group->start + rc->block_group->length; 3056 while (1) { 3057 cond_resched(); 3058 if (rc->search_start >= last) { 3059 ret = 1; 3060 break; 3061 } 3062 3063 key.objectid = rc->search_start; 3064 key.type = BTRFS_EXTENT_ITEM_KEY; 3065 key.offset = 0; 3066 3067 path->search_commit_root = 1; 3068 path->skip_locking = 1; 3069 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3070 0, 0); 3071 if (ret < 0) 3072 break; 3073 next: 3074 leaf = path->nodes[0]; 3075 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3076 ret = btrfs_next_leaf(rc->extent_root, path); 3077 if (ret != 0) 3078 break; 3079 leaf = path->nodes[0]; 3080 } 3081 3082 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3083 if (key.objectid >= last) { 3084 ret = 1; 3085 break; 3086 } 3087 3088 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3089 key.type != BTRFS_METADATA_ITEM_KEY) { 3090 path->slots[0]++; 3091 goto next; 3092 } 3093 3094 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3095 key.objectid + key.offset <= rc->search_start) { 3096 path->slots[0]++; 3097 goto next; 3098 } 3099 3100 if (key.type == BTRFS_METADATA_ITEM_KEY && 3101 key.objectid + fs_info->nodesize <= 3102 rc->search_start) { 3103 path->slots[0]++; 3104 goto next; 3105 } 3106 3107 ret = find_first_extent_bit(&rc->processed_blocks, 3108 key.objectid, &start, &end, 3109 EXTENT_DIRTY, NULL); 3110 3111 if (ret == 0 && start <= key.objectid) { 3112 btrfs_release_path(path); 3113 rc->search_start = end + 1; 3114 } else { 3115 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3116 rc->search_start = key.objectid + key.offset; 3117 else 3118 rc->search_start = key.objectid + 3119 fs_info->nodesize; 3120 memcpy(extent_key, &key, sizeof(key)); 3121 return 0; 3122 } 3123 } 3124 btrfs_release_path(path); 3125 return ret; 3126 } 3127 3128 static void set_reloc_control(struct reloc_control *rc) 3129 { 3130 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3131 3132 mutex_lock(&fs_info->reloc_mutex); 3133 fs_info->reloc_ctl = rc; 3134 mutex_unlock(&fs_info->reloc_mutex); 3135 } 3136 3137 static void unset_reloc_control(struct reloc_control *rc) 3138 { 3139 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3140 3141 mutex_lock(&fs_info->reloc_mutex); 3142 fs_info->reloc_ctl = NULL; 3143 mutex_unlock(&fs_info->reloc_mutex); 3144 } 3145 3146 static int check_extent_flags(u64 flags) 3147 { 3148 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3149 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3150 return 1; 3151 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3152 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3153 return 1; 3154 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3155 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3156 return 1; 3157 return 0; 3158 } 3159 3160 static noinline_for_stack 3161 int prepare_to_relocate(struct reloc_control *rc) 3162 { 3163 struct btrfs_trans_handle *trans; 3164 int ret; 3165 3166 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3167 BTRFS_BLOCK_RSV_TEMP); 3168 if (!rc->block_rsv) 3169 return -ENOMEM; 3170 3171 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3172 rc->search_start = rc->block_group->start; 3173 rc->extents_found = 0; 3174 rc->nodes_relocated = 0; 3175 rc->merging_rsv_size = 0; 3176 rc->reserved_bytes = 0; 3177 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3178 RELOCATION_RESERVED_NODES; 3179 ret = btrfs_block_rsv_refill(rc->extent_root, 3180 rc->block_rsv, rc->block_rsv->size, 3181 BTRFS_RESERVE_FLUSH_ALL); 3182 if (ret) 3183 return ret; 3184 3185 rc->create_reloc_tree = 1; 3186 set_reloc_control(rc); 3187 3188 trans = btrfs_join_transaction(rc->extent_root); 3189 if (IS_ERR(trans)) { 3190 unset_reloc_control(rc); 3191 /* 3192 * extent tree is not a ref_cow tree and has no reloc_root to 3193 * cleanup. And callers are responsible to free the above 3194 * block rsv. 3195 */ 3196 return PTR_ERR(trans); 3197 } 3198 btrfs_commit_transaction(trans); 3199 return 0; 3200 } 3201 3202 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3203 { 3204 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3205 struct rb_root blocks = RB_ROOT; 3206 struct btrfs_key key; 3207 struct btrfs_trans_handle *trans = NULL; 3208 struct btrfs_path *path; 3209 struct btrfs_extent_item *ei; 3210 u64 flags; 3211 u32 item_size; 3212 int ret; 3213 int err = 0; 3214 int progress = 0; 3215 3216 path = btrfs_alloc_path(); 3217 if (!path) 3218 return -ENOMEM; 3219 path->reada = READA_FORWARD; 3220 3221 ret = prepare_to_relocate(rc); 3222 if (ret) { 3223 err = ret; 3224 goto out_free; 3225 } 3226 3227 while (1) { 3228 rc->reserved_bytes = 0; 3229 ret = btrfs_block_rsv_refill(rc->extent_root, 3230 rc->block_rsv, rc->block_rsv->size, 3231 BTRFS_RESERVE_FLUSH_ALL); 3232 if (ret) { 3233 err = ret; 3234 break; 3235 } 3236 progress++; 3237 trans = btrfs_start_transaction(rc->extent_root, 0); 3238 if (IS_ERR(trans)) { 3239 err = PTR_ERR(trans); 3240 trans = NULL; 3241 break; 3242 } 3243 restart: 3244 if (update_backref_cache(trans, &rc->backref_cache)) { 3245 btrfs_end_transaction(trans); 3246 trans = NULL; 3247 continue; 3248 } 3249 3250 ret = find_next_extent(rc, path, &key); 3251 if (ret < 0) 3252 err = ret; 3253 if (ret != 0) 3254 break; 3255 3256 rc->extents_found++; 3257 3258 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3259 struct btrfs_extent_item); 3260 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3261 if (item_size >= sizeof(*ei)) { 3262 flags = btrfs_extent_flags(path->nodes[0], ei); 3263 ret = check_extent_flags(flags); 3264 BUG_ON(ret); 3265 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3266 err = -EINVAL; 3267 btrfs_print_v0_err(trans->fs_info); 3268 btrfs_abort_transaction(trans, err); 3269 break; 3270 } else { 3271 BUG(); 3272 } 3273 3274 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3275 ret = add_tree_block(rc, &key, path, &blocks); 3276 } else if (rc->stage == UPDATE_DATA_PTRS && 3277 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3278 ret = add_data_references(rc, &key, path, &blocks); 3279 } else { 3280 btrfs_release_path(path); 3281 ret = 0; 3282 } 3283 if (ret < 0) { 3284 err = ret; 3285 break; 3286 } 3287 3288 if (!RB_EMPTY_ROOT(&blocks)) { 3289 ret = relocate_tree_blocks(trans, rc, &blocks); 3290 if (ret < 0) { 3291 if (ret != -EAGAIN) { 3292 err = ret; 3293 break; 3294 } 3295 rc->extents_found--; 3296 rc->search_start = key.objectid; 3297 } 3298 } 3299 3300 btrfs_end_transaction_throttle(trans); 3301 btrfs_btree_balance_dirty(fs_info); 3302 trans = NULL; 3303 3304 if (rc->stage == MOVE_DATA_EXTENTS && 3305 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3306 rc->found_file_extent = 1; 3307 ret = relocate_data_extent(rc->data_inode, 3308 &key, &rc->cluster); 3309 if (ret < 0) { 3310 err = ret; 3311 break; 3312 } 3313 } 3314 if (btrfs_should_cancel_balance(fs_info)) { 3315 err = -ECANCELED; 3316 break; 3317 } 3318 } 3319 if (trans && progress && err == -ENOSPC) { 3320 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 3321 if (ret == 1) { 3322 err = 0; 3323 progress = 0; 3324 goto restart; 3325 } 3326 } 3327 3328 btrfs_release_path(path); 3329 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 3330 3331 if (trans) { 3332 btrfs_end_transaction_throttle(trans); 3333 btrfs_btree_balance_dirty(fs_info); 3334 } 3335 3336 if (!err) { 3337 ret = relocate_file_extent_cluster(rc->data_inode, 3338 &rc->cluster); 3339 if (ret < 0) 3340 err = ret; 3341 } 3342 3343 rc->create_reloc_tree = 0; 3344 set_reloc_control(rc); 3345 3346 btrfs_backref_release_cache(&rc->backref_cache); 3347 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3348 3349 /* 3350 * Even in the case when the relocation is cancelled, we should all go 3351 * through prepare_to_merge() and merge_reloc_roots(). 3352 * 3353 * For error (including cancelled balance), prepare_to_merge() will 3354 * mark all reloc trees orphan, then queue them for cleanup in 3355 * merge_reloc_roots() 3356 */ 3357 err = prepare_to_merge(rc, err); 3358 3359 merge_reloc_roots(rc); 3360 3361 rc->merge_reloc_tree = 0; 3362 unset_reloc_control(rc); 3363 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 3364 3365 /* get rid of pinned extents */ 3366 trans = btrfs_join_transaction(rc->extent_root); 3367 if (IS_ERR(trans)) { 3368 err = PTR_ERR(trans); 3369 goto out_free; 3370 } 3371 btrfs_commit_transaction(trans); 3372 out_free: 3373 ret = clean_dirty_subvols(rc); 3374 if (ret < 0 && !err) 3375 err = ret; 3376 btrfs_free_block_rsv(fs_info, rc->block_rsv); 3377 btrfs_free_path(path); 3378 return err; 3379 } 3380 3381 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3382 struct btrfs_root *root, u64 objectid) 3383 { 3384 struct btrfs_path *path; 3385 struct btrfs_inode_item *item; 3386 struct extent_buffer *leaf; 3387 int ret; 3388 3389 path = btrfs_alloc_path(); 3390 if (!path) 3391 return -ENOMEM; 3392 3393 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3394 if (ret) 3395 goto out; 3396 3397 leaf = path->nodes[0]; 3398 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3399 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3400 btrfs_set_inode_generation(leaf, item, 1); 3401 btrfs_set_inode_size(leaf, item, 0); 3402 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3403 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3404 BTRFS_INODE_PREALLOC); 3405 btrfs_mark_buffer_dirty(leaf); 3406 out: 3407 btrfs_free_path(path); 3408 return ret; 3409 } 3410 3411 /* 3412 * helper to create inode for data relocation. 3413 * the inode is in data relocation tree and its link count is 0 3414 */ 3415 static noinline_for_stack 3416 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3417 struct btrfs_block_group *group) 3418 { 3419 struct inode *inode = NULL; 3420 struct btrfs_trans_handle *trans; 3421 struct btrfs_root *root; 3422 u64 objectid; 3423 int err = 0; 3424 3425 root = btrfs_grab_root(fs_info->data_reloc_root); 3426 trans = btrfs_start_transaction(root, 6); 3427 if (IS_ERR(trans)) { 3428 btrfs_put_root(root); 3429 return ERR_CAST(trans); 3430 } 3431 3432 err = btrfs_find_free_objectid(root, &objectid); 3433 if (err) 3434 goto out; 3435 3436 err = __insert_orphan_inode(trans, root, objectid); 3437 BUG_ON(err); 3438 3439 inode = btrfs_iget(fs_info->sb, objectid, root); 3440 BUG_ON(IS_ERR(inode)); 3441 BTRFS_I(inode)->index_cnt = group->start; 3442 3443 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 3444 out: 3445 btrfs_put_root(root); 3446 btrfs_end_transaction(trans); 3447 btrfs_btree_balance_dirty(fs_info); 3448 if (err) { 3449 if (inode) 3450 iput(inode); 3451 inode = ERR_PTR(err); 3452 } 3453 return inode; 3454 } 3455 3456 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 3457 { 3458 struct reloc_control *rc; 3459 3460 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3461 if (!rc) 3462 return NULL; 3463 3464 INIT_LIST_HEAD(&rc->reloc_roots); 3465 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 3466 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1); 3467 mapping_tree_init(&rc->reloc_root_tree); 3468 extent_io_tree_init(fs_info, &rc->processed_blocks, 3469 IO_TREE_RELOC_BLOCKS, NULL); 3470 return rc; 3471 } 3472 3473 static void free_reloc_control(struct reloc_control *rc) 3474 { 3475 struct mapping_node *node, *tmp; 3476 3477 free_reloc_roots(&rc->reloc_roots); 3478 rbtree_postorder_for_each_entry_safe(node, tmp, 3479 &rc->reloc_root_tree.rb_root, rb_node) 3480 kfree(node); 3481 3482 kfree(rc); 3483 } 3484 3485 /* 3486 * Print the block group being relocated 3487 */ 3488 static void describe_relocation(struct btrfs_fs_info *fs_info, 3489 struct btrfs_block_group *block_group) 3490 { 3491 char buf[128] = {'\0'}; 3492 3493 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 3494 3495 btrfs_info(fs_info, 3496 "relocating block group %llu flags %s", 3497 block_group->start, buf); 3498 } 3499 3500 static const char *stage_to_string(int stage) 3501 { 3502 if (stage == MOVE_DATA_EXTENTS) 3503 return "move data extents"; 3504 if (stage == UPDATE_DATA_PTRS) 3505 return "update data pointers"; 3506 return "unknown"; 3507 } 3508 3509 /* 3510 * function to relocate all extents in a block group. 3511 */ 3512 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 3513 { 3514 struct btrfs_block_group *bg; 3515 struct btrfs_root *extent_root = fs_info->extent_root; 3516 struct reloc_control *rc; 3517 struct inode *inode; 3518 struct btrfs_path *path; 3519 int ret; 3520 int rw = 0; 3521 int err = 0; 3522 3523 bg = btrfs_lookup_block_group(fs_info, group_start); 3524 if (!bg) 3525 return -ENOENT; 3526 3527 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 3528 btrfs_put_block_group(bg); 3529 return -ETXTBSY; 3530 } 3531 3532 rc = alloc_reloc_control(fs_info); 3533 if (!rc) { 3534 btrfs_put_block_group(bg); 3535 return -ENOMEM; 3536 } 3537 3538 rc->extent_root = extent_root; 3539 rc->block_group = bg; 3540 3541 ret = btrfs_inc_block_group_ro(rc->block_group, true); 3542 if (ret) { 3543 err = ret; 3544 goto out; 3545 } 3546 rw = 1; 3547 3548 path = btrfs_alloc_path(); 3549 if (!path) { 3550 err = -ENOMEM; 3551 goto out; 3552 } 3553 3554 inode = lookup_free_space_inode(rc->block_group, path); 3555 btrfs_free_path(path); 3556 3557 if (!IS_ERR(inode)) 3558 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 3559 else 3560 ret = PTR_ERR(inode); 3561 3562 if (ret && ret != -ENOENT) { 3563 err = ret; 3564 goto out; 3565 } 3566 3567 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 3568 if (IS_ERR(rc->data_inode)) { 3569 err = PTR_ERR(rc->data_inode); 3570 rc->data_inode = NULL; 3571 goto out; 3572 } 3573 3574 describe_relocation(fs_info, rc->block_group); 3575 3576 btrfs_wait_block_group_reservations(rc->block_group); 3577 btrfs_wait_nocow_writers(rc->block_group); 3578 btrfs_wait_ordered_roots(fs_info, U64_MAX, 3579 rc->block_group->start, 3580 rc->block_group->length); 3581 3582 while (1) { 3583 int finishes_stage; 3584 3585 mutex_lock(&fs_info->cleaner_mutex); 3586 ret = relocate_block_group(rc); 3587 mutex_unlock(&fs_info->cleaner_mutex); 3588 if (ret < 0) 3589 err = ret; 3590 3591 finishes_stage = rc->stage; 3592 /* 3593 * We may have gotten ENOSPC after we already dirtied some 3594 * extents. If writeout happens while we're relocating a 3595 * different block group we could end up hitting the 3596 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 3597 * btrfs_reloc_cow_block. Make sure we write everything out 3598 * properly so we don't trip over this problem, and then break 3599 * out of the loop if we hit an error. 3600 */ 3601 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 3602 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 3603 (u64)-1); 3604 if (ret) 3605 err = ret; 3606 invalidate_mapping_pages(rc->data_inode->i_mapping, 3607 0, -1); 3608 rc->stage = UPDATE_DATA_PTRS; 3609 } 3610 3611 if (err < 0) 3612 goto out; 3613 3614 if (rc->extents_found == 0) 3615 break; 3616 3617 btrfs_info(fs_info, "found %llu extents, stage: %s", 3618 rc->extents_found, stage_to_string(finishes_stage)); 3619 } 3620 3621 WARN_ON(rc->block_group->pinned > 0); 3622 WARN_ON(rc->block_group->reserved > 0); 3623 WARN_ON(rc->block_group->used > 0); 3624 out: 3625 if (err && rw) 3626 btrfs_dec_block_group_ro(rc->block_group); 3627 iput(rc->data_inode); 3628 btrfs_put_block_group(rc->block_group); 3629 free_reloc_control(rc); 3630 return err; 3631 } 3632 3633 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 3634 { 3635 struct btrfs_fs_info *fs_info = root->fs_info; 3636 struct btrfs_trans_handle *trans; 3637 int ret, err; 3638 3639 trans = btrfs_start_transaction(fs_info->tree_root, 0); 3640 if (IS_ERR(trans)) 3641 return PTR_ERR(trans); 3642 3643 memset(&root->root_item.drop_progress, 0, 3644 sizeof(root->root_item.drop_progress)); 3645 btrfs_set_root_drop_level(&root->root_item, 0); 3646 btrfs_set_root_refs(&root->root_item, 0); 3647 ret = btrfs_update_root(trans, fs_info->tree_root, 3648 &root->root_key, &root->root_item); 3649 3650 err = btrfs_end_transaction(trans); 3651 if (err) 3652 return err; 3653 return ret; 3654 } 3655 3656 /* 3657 * recover relocation interrupted by system crash. 3658 * 3659 * this function resumes merging reloc trees with corresponding fs trees. 3660 * this is important for keeping the sharing of tree blocks 3661 */ 3662 int btrfs_recover_relocation(struct btrfs_root *root) 3663 { 3664 struct btrfs_fs_info *fs_info = root->fs_info; 3665 LIST_HEAD(reloc_roots); 3666 struct btrfs_key key; 3667 struct btrfs_root *fs_root; 3668 struct btrfs_root *reloc_root; 3669 struct btrfs_path *path; 3670 struct extent_buffer *leaf; 3671 struct reloc_control *rc = NULL; 3672 struct btrfs_trans_handle *trans; 3673 int ret; 3674 int err = 0; 3675 3676 path = btrfs_alloc_path(); 3677 if (!path) 3678 return -ENOMEM; 3679 path->reada = READA_BACK; 3680 3681 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 3682 key.type = BTRFS_ROOT_ITEM_KEY; 3683 key.offset = (u64)-1; 3684 3685 while (1) { 3686 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 3687 path, 0, 0); 3688 if (ret < 0) { 3689 err = ret; 3690 goto out; 3691 } 3692 if (ret > 0) { 3693 if (path->slots[0] == 0) 3694 break; 3695 path->slots[0]--; 3696 } 3697 leaf = path->nodes[0]; 3698 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3699 btrfs_release_path(path); 3700 3701 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 3702 key.type != BTRFS_ROOT_ITEM_KEY) 3703 break; 3704 3705 reloc_root = btrfs_read_tree_root(root, &key); 3706 if (IS_ERR(reloc_root)) { 3707 err = PTR_ERR(reloc_root); 3708 goto out; 3709 } 3710 3711 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state); 3712 list_add(&reloc_root->root_list, &reloc_roots); 3713 3714 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 3715 fs_root = btrfs_get_fs_root(fs_info, 3716 reloc_root->root_key.offset, false); 3717 if (IS_ERR(fs_root)) { 3718 ret = PTR_ERR(fs_root); 3719 if (ret != -ENOENT) { 3720 err = ret; 3721 goto out; 3722 } 3723 ret = mark_garbage_root(reloc_root); 3724 if (ret < 0) { 3725 err = ret; 3726 goto out; 3727 } 3728 } else { 3729 btrfs_put_root(fs_root); 3730 } 3731 } 3732 3733 if (key.offset == 0) 3734 break; 3735 3736 key.offset--; 3737 } 3738 btrfs_release_path(path); 3739 3740 if (list_empty(&reloc_roots)) 3741 goto out; 3742 3743 rc = alloc_reloc_control(fs_info); 3744 if (!rc) { 3745 err = -ENOMEM; 3746 goto out; 3747 } 3748 3749 rc->extent_root = fs_info->extent_root; 3750 3751 set_reloc_control(rc); 3752 3753 trans = btrfs_join_transaction(rc->extent_root); 3754 if (IS_ERR(trans)) { 3755 err = PTR_ERR(trans); 3756 goto out_unset; 3757 } 3758 3759 rc->merge_reloc_tree = 1; 3760 3761 while (!list_empty(&reloc_roots)) { 3762 reloc_root = list_entry(reloc_roots.next, 3763 struct btrfs_root, root_list); 3764 list_del(&reloc_root->root_list); 3765 3766 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 3767 list_add_tail(&reloc_root->root_list, 3768 &rc->reloc_roots); 3769 continue; 3770 } 3771 3772 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, 3773 false); 3774 if (IS_ERR(fs_root)) { 3775 err = PTR_ERR(fs_root); 3776 list_add_tail(&reloc_root->root_list, &reloc_roots); 3777 btrfs_end_transaction(trans); 3778 goto out_unset; 3779 } 3780 3781 err = __add_reloc_root(reloc_root); 3782 BUG_ON(err < 0); /* -ENOMEM or logic error */ 3783 fs_root->reloc_root = btrfs_grab_root(reloc_root); 3784 btrfs_put_root(fs_root); 3785 } 3786 3787 err = btrfs_commit_transaction(trans); 3788 if (err) 3789 goto out_unset; 3790 3791 merge_reloc_roots(rc); 3792 3793 unset_reloc_control(rc); 3794 3795 trans = btrfs_join_transaction(rc->extent_root); 3796 if (IS_ERR(trans)) { 3797 err = PTR_ERR(trans); 3798 goto out_clean; 3799 } 3800 err = btrfs_commit_transaction(trans); 3801 out_clean: 3802 ret = clean_dirty_subvols(rc); 3803 if (ret < 0 && !err) 3804 err = ret; 3805 out_unset: 3806 unset_reloc_control(rc); 3807 free_reloc_control(rc); 3808 out: 3809 free_reloc_roots(&reloc_roots); 3810 3811 btrfs_free_path(path); 3812 3813 if (err == 0) { 3814 /* cleanup orphan inode in data relocation tree */ 3815 fs_root = btrfs_grab_root(fs_info->data_reloc_root); 3816 ASSERT(fs_root); 3817 err = btrfs_orphan_cleanup(fs_root); 3818 btrfs_put_root(fs_root); 3819 } 3820 return err; 3821 } 3822 3823 /* 3824 * helper to add ordered checksum for data relocation. 3825 * 3826 * cloning checksum properly handles the nodatasum extents. 3827 * it also saves CPU time to re-calculate the checksum. 3828 */ 3829 int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len) 3830 { 3831 struct btrfs_fs_info *fs_info = inode->root->fs_info; 3832 struct btrfs_ordered_sum *sums; 3833 struct btrfs_ordered_extent *ordered; 3834 int ret; 3835 u64 disk_bytenr; 3836 u64 new_bytenr; 3837 LIST_HEAD(list); 3838 3839 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 3840 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 3841 3842 disk_bytenr = file_pos + inode->index_cnt; 3843 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 3844 disk_bytenr + len - 1, &list, 0); 3845 if (ret) 3846 goto out; 3847 3848 while (!list_empty(&list)) { 3849 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 3850 list_del_init(&sums->list); 3851 3852 /* 3853 * We need to offset the new_bytenr based on where the csum is. 3854 * We need to do this because we will read in entire prealloc 3855 * extents but we may have written to say the middle of the 3856 * prealloc extent, so we need to make sure the csum goes with 3857 * the right disk offset. 3858 * 3859 * We can do this because the data reloc inode refers strictly 3860 * to the on disk bytes, so we don't have to worry about 3861 * disk_len vs real len like with real inodes since it's all 3862 * disk length. 3863 */ 3864 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 3865 sums->bytenr = new_bytenr; 3866 3867 btrfs_add_ordered_sum(ordered, sums); 3868 } 3869 out: 3870 btrfs_put_ordered_extent(ordered); 3871 return ret; 3872 } 3873 3874 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 3875 struct btrfs_root *root, struct extent_buffer *buf, 3876 struct extent_buffer *cow) 3877 { 3878 struct btrfs_fs_info *fs_info = root->fs_info; 3879 struct reloc_control *rc; 3880 struct btrfs_backref_node *node; 3881 int first_cow = 0; 3882 int level; 3883 int ret = 0; 3884 3885 rc = fs_info->reloc_ctl; 3886 if (!rc) 3887 return 0; 3888 3889 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 3890 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 3891 3892 level = btrfs_header_level(buf); 3893 if (btrfs_header_generation(buf) <= 3894 btrfs_root_last_snapshot(&root->root_item)) 3895 first_cow = 1; 3896 3897 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 3898 rc->create_reloc_tree) { 3899 WARN_ON(!first_cow && level == 0); 3900 3901 node = rc->backref_cache.path[level]; 3902 BUG_ON(node->bytenr != buf->start && 3903 node->new_bytenr != buf->start); 3904 3905 btrfs_backref_drop_node_buffer(node); 3906 atomic_inc(&cow->refs); 3907 node->eb = cow; 3908 node->new_bytenr = cow->start; 3909 3910 if (!node->pending) { 3911 list_move_tail(&node->list, 3912 &rc->backref_cache.pending[level]); 3913 node->pending = 1; 3914 } 3915 3916 if (first_cow) 3917 mark_block_processed(rc, node); 3918 3919 if (first_cow && level > 0) 3920 rc->nodes_relocated += buf->len; 3921 } 3922 3923 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 3924 ret = replace_file_extents(trans, rc, root, cow); 3925 return ret; 3926 } 3927 3928 /* 3929 * called before creating snapshot. it calculates metadata reservation 3930 * required for relocating tree blocks in the snapshot 3931 */ 3932 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 3933 u64 *bytes_to_reserve) 3934 { 3935 struct btrfs_root *root = pending->root; 3936 struct reloc_control *rc = root->fs_info->reloc_ctl; 3937 3938 if (!rc || !have_reloc_root(root)) 3939 return; 3940 3941 if (!rc->merge_reloc_tree) 3942 return; 3943 3944 root = root->reloc_root; 3945 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 3946 /* 3947 * relocation is in the stage of merging trees. the space 3948 * used by merging a reloc tree is twice the size of 3949 * relocated tree nodes in the worst case. half for cowing 3950 * the reloc tree, half for cowing the fs tree. the space 3951 * used by cowing the reloc tree will be freed after the 3952 * tree is dropped. if we create snapshot, cowing the fs 3953 * tree may use more space than it frees. so we need 3954 * reserve extra space. 3955 */ 3956 *bytes_to_reserve += rc->nodes_relocated; 3957 } 3958 3959 /* 3960 * called after snapshot is created. migrate block reservation 3961 * and create reloc root for the newly created snapshot 3962 * 3963 * This is similar to btrfs_init_reloc_root(), we come out of here with two 3964 * references held on the reloc_root, one for root->reloc_root and one for 3965 * rc->reloc_roots. 3966 */ 3967 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 3968 struct btrfs_pending_snapshot *pending) 3969 { 3970 struct btrfs_root *root = pending->root; 3971 struct btrfs_root *reloc_root; 3972 struct btrfs_root *new_root; 3973 struct reloc_control *rc = root->fs_info->reloc_ctl; 3974 int ret; 3975 3976 if (!rc || !have_reloc_root(root)) 3977 return 0; 3978 3979 rc = root->fs_info->reloc_ctl; 3980 rc->merging_rsv_size += rc->nodes_relocated; 3981 3982 if (rc->merge_reloc_tree) { 3983 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 3984 rc->block_rsv, 3985 rc->nodes_relocated, true); 3986 if (ret) 3987 return ret; 3988 } 3989 3990 new_root = pending->snap; 3991 reloc_root = create_reloc_root(trans, root->reloc_root, 3992 new_root->root_key.objectid); 3993 if (IS_ERR(reloc_root)) 3994 return PTR_ERR(reloc_root); 3995 3996 ret = __add_reloc_root(reloc_root); 3997 BUG_ON(ret < 0); 3998 new_root->reloc_root = btrfs_grab_root(reloc_root); 3999 4000 if (rc->create_reloc_tree) 4001 ret = clone_backref_node(trans, rc, root, reloc_root); 4002 return ret; 4003 } 4004