xref: /openbmc/linux/fs/btrfs/relocation.c (revision 34bfaf15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2009 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
13 #include "ctree.h"
14 #include "disk-io.h"
15 #include "transaction.h"
16 #include "volumes.h"
17 #include "locking.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
21 #include "qgroup.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
25 #include "backref.h"
26 #include "misc.h"
27 #include "subpage.h"
28 #include "zoned.h"
29 #include "inode-item.h"
30 #include "space-info.h"
31 #include "fs.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
37 #include "super.h"
38 #include "tree-checker.h"
39 
40 /*
41  * Relocation overview
42  *
43  * [What does relocation do]
44  *
45  * The objective of relocation is to relocate all extents of the target block
46  * group to other block groups.
47  * This is utilized by resize (shrink only), profile converting, compacting
48  * space, or balance routine to spread chunks over devices.
49  *
50  * 		Before		|		After
51  * ------------------------------------------------------------------
52  *  BG A: 10 data extents	| BG A: deleted
53  *  BG B:  2 data extents	| BG B: 10 data extents (2 old + 8 relocated)
54  *  BG C:  1 extents		| BG C:  3 data extents (1 old + 2 relocated)
55  *
56  * [How does relocation work]
57  *
58  * 1.   Mark the target block group read-only
59  *      New extents won't be allocated from the target block group.
60  *
61  * 2.1  Record each extent in the target block group
62  *      To build a proper map of extents to be relocated.
63  *
64  * 2.2  Build data reloc tree and reloc trees
65  *      Data reloc tree will contain an inode, recording all newly relocated
66  *      data extents.
67  *      There will be only one data reloc tree for one data block group.
68  *
69  *      Reloc tree will be a special snapshot of its source tree, containing
70  *      relocated tree blocks.
71  *      Each tree referring to a tree block in target block group will get its
72  *      reloc tree built.
73  *
74  * 2.3  Swap source tree with its corresponding reloc tree
75  *      Each involved tree only refers to new extents after swap.
76  *
77  * 3.   Cleanup reloc trees and data reloc tree.
78  *      As old extents in the target block group are still referenced by reloc
79  *      trees, we need to clean them up before really freeing the target block
80  *      group.
81  *
82  * The main complexity is in steps 2.2 and 2.3.
83  *
84  * The entry point of relocation is relocate_block_group() function.
85  */
86 
87 #define RELOCATION_RESERVED_NODES	256
88 /*
89  * map address of tree root to tree
90  */
91 struct mapping_node {
92 	struct {
93 		struct rb_node rb_node;
94 		u64 bytenr;
95 	}; /* Use rb_simle_node for search/insert */
96 	void *data;
97 };
98 
99 struct mapping_tree {
100 	struct rb_root rb_root;
101 	spinlock_t lock;
102 };
103 
104 /*
105  * present a tree block to process
106  */
107 struct tree_block {
108 	struct {
109 		struct rb_node rb_node;
110 		u64 bytenr;
111 	}; /* Use rb_simple_node for search/insert */
112 	u64 owner;
113 	struct btrfs_key key;
114 	unsigned int level:8;
115 	unsigned int key_ready:1;
116 };
117 
118 #define MAX_EXTENTS 128
119 
120 struct file_extent_cluster {
121 	u64 start;
122 	u64 end;
123 	u64 boundary[MAX_EXTENTS];
124 	unsigned int nr;
125 };
126 
127 struct reloc_control {
128 	/* block group to relocate */
129 	struct btrfs_block_group *block_group;
130 	/* extent tree */
131 	struct btrfs_root *extent_root;
132 	/* inode for moving data */
133 	struct inode *data_inode;
134 
135 	struct btrfs_block_rsv *block_rsv;
136 
137 	struct btrfs_backref_cache backref_cache;
138 
139 	struct file_extent_cluster cluster;
140 	/* tree blocks have been processed */
141 	struct extent_io_tree processed_blocks;
142 	/* map start of tree root to corresponding reloc tree */
143 	struct mapping_tree reloc_root_tree;
144 	/* list of reloc trees */
145 	struct list_head reloc_roots;
146 	/* list of subvolume trees that get relocated */
147 	struct list_head dirty_subvol_roots;
148 	/* size of metadata reservation for merging reloc trees */
149 	u64 merging_rsv_size;
150 	/* size of relocated tree nodes */
151 	u64 nodes_relocated;
152 	/* reserved size for block group relocation*/
153 	u64 reserved_bytes;
154 
155 	u64 search_start;
156 	u64 extents_found;
157 
158 	unsigned int stage:8;
159 	unsigned int create_reloc_tree:1;
160 	unsigned int merge_reloc_tree:1;
161 	unsigned int found_file_extent:1;
162 };
163 
164 /* stages of data relocation */
165 #define MOVE_DATA_EXTENTS	0
166 #define UPDATE_DATA_PTRS	1
167 
168 static void mark_block_processed(struct reloc_control *rc,
169 				 struct btrfs_backref_node *node)
170 {
171 	u32 blocksize;
172 
173 	if (node->level == 0 ||
174 	    in_range(node->bytenr, rc->block_group->start,
175 		     rc->block_group->length)) {
176 		blocksize = rc->extent_root->fs_info->nodesize;
177 		set_extent_bit(&rc->processed_blocks, node->bytenr,
178 			       node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179 	}
180 	node->processed = 1;
181 }
182 
183 
184 static void mapping_tree_init(struct mapping_tree *tree)
185 {
186 	tree->rb_root = RB_ROOT;
187 	spin_lock_init(&tree->lock);
188 }
189 
190 /*
191  * walk up backref nodes until reach node presents tree root
192  */
193 static struct btrfs_backref_node *walk_up_backref(
194 		struct btrfs_backref_node *node,
195 		struct btrfs_backref_edge *edges[], int *index)
196 {
197 	struct btrfs_backref_edge *edge;
198 	int idx = *index;
199 
200 	while (!list_empty(&node->upper)) {
201 		edge = list_entry(node->upper.next,
202 				  struct btrfs_backref_edge, list[LOWER]);
203 		edges[idx++] = edge;
204 		node = edge->node[UPPER];
205 	}
206 	BUG_ON(node->detached);
207 	*index = idx;
208 	return node;
209 }
210 
211 /*
212  * walk down backref nodes to find start of next reference path
213  */
214 static struct btrfs_backref_node *walk_down_backref(
215 		struct btrfs_backref_edge *edges[], int *index)
216 {
217 	struct btrfs_backref_edge *edge;
218 	struct btrfs_backref_node *lower;
219 	int idx = *index;
220 
221 	while (idx > 0) {
222 		edge = edges[idx - 1];
223 		lower = edge->node[LOWER];
224 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225 			idx--;
226 			continue;
227 		}
228 		edge = list_entry(edge->list[LOWER].next,
229 				  struct btrfs_backref_edge, list[LOWER]);
230 		edges[idx - 1] = edge;
231 		*index = idx;
232 		return edge->node[UPPER];
233 	}
234 	*index = 0;
235 	return NULL;
236 }
237 
238 static void update_backref_node(struct btrfs_backref_cache *cache,
239 				struct btrfs_backref_node *node, u64 bytenr)
240 {
241 	struct rb_node *rb_node;
242 	rb_erase(&node->rb_node, &cache->rb_root);
243 	node->bytenr = bytenr;
244 	rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245 	if (rb_node)
246 		btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247 }
248 
249 /*
250  * update backref cache after a transaction commit
251  */
252 static int update_backref_cache(struct btrfs_trans_handle *trans,
253 				struct btrfs_backref_cache *cache)
254 {
255 	struct btrfs_backref_node *node;
256 	int level = 0;
257 
258 	if (cache->last_trans == 0) {
259 		cache->last_trans = trans->transid;
260 		return 0;
261 	}
262 
263 	if (cache->last_trans == trans->transid)
264 		return 0;
265 
266 	/*
267 	 * detached nodes are used to avoid unnecessary backref
268 	 * lookup. transaction commit changes the extent tree.
269 	 * so the detached nodes are no longer useful.
270 	 */
271 	while (!list_empty(&cache->detached)) {
272 		node = list_entry(cache->detached.next,
273 				  struct btrfs_backref_node, list);
274 		btrfs_backref_cleanup_node(cache, node);
275 	}
276 
277 	while (!list_empty(&cache->changed)) {
278 		node = list_entry(cache->changed.next,
279 				  struct btrfs_backref_node, list);
280 		list_del_init(&node->list);
281 		BUG_ON(node->pending);
282 		update_backref_node(cache, node, node->new_bytenr);
283 	}
284 
285 	/*
286 	 * some nodes can be left in the pending list if there were
287 	 * errors during processing the pending nodes.
288 	 */
289 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290 		list_for_each_entry(node, &cache->pending[level], list) {
291 			BUG_ON(!node->pending);
292 			if (node->bytenr == node->new_bytenr)
293 				continue;
294 			update_backref_node(cache, node, node->new_bytenr);
295 		}
296 	}
297 
298 	cache->last_trans = 0;
299 	return 1;
300 }
301 
302 static bool reloc_root_is_dead(struct btrfs_root *root)
303 {
304 	/*
305 	 * Pair with set_bit/clear_bit in clean_dirty_subvols and
306 	 * btrfs_update_reloc_root. We need to see the updated bit before
307 	 * trying to access reloc_root
308 	 */
309 	smp_rmb();
310 	if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311 		return true;
312 	return false;
313 }
314 
315 /*
316  * Check if this subvolume tree has valid reloc tree.
317  *
318  * Reloc tree after swap is considered dead, thus not considered as valid.
319  * This is enough for most callers, as they don't distinguish dead reloc root
320  * from no reloc root.  But btrfs_should_ignore_reloc_root() below is a
321  * special case.
322  */
323 static bool have_reloc_root(struct btrfs_root *root)
324 {
325 	if (reloc_root_is_dead(root))
326 		return false;
327 	if (!root->reloc_root)
328 		return false;
329 	return true;
330 }
331 
332 int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333 {
334 	struct btrfs_root *reloc_root;
335 
336 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337 		return 0;
338 
339 	/* This root has been merged with its reloc tree, we can ignore it */
340 	if (reloc_root_is_dead(root))
341 		return 1;
342 
343 	reloc_root = root->reloc_root;
344 	if (!reloc_root)
345 		return 0;
346 
347 	if (btrfs_header_generation(reloc_root->commit_root) ==
348 	    root->fs_info->running_transaction->transid)
349 		return 0;
350 	/*
351 	 * if there is reloc tree and it was created in previous
352 	 * transaction backref lookup can find the reloc tree,
353 	 * so backref node for the fs tree root is useless for
354 	 * relocation.
355 	 */
356 	return 1;
357 }
358 
359 /*
360  * find reloc tree by address of tree root
361  */
362 struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363 {
364 	struct reloc_control *rc = fs_info->reloc_ctl;
365 	struct rb_node *rb_node;
366 	struct mapping_node *node;
367 	struct btrfs_root *root = NULL;
368 
369 	ASSERT(rc);
370 	spin_lock(&rc->reloc_root_tree.lock);
371 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372 	if (rb_node) {
373 		node = rb_entry(rb_node, struct mapping_node, rb_node);
374 		root = node->data;
375 	}
376 	spin_unlock(&rc->reloc_root_tree.lock);
377 	return btrfs_grab_root(root);
378 }
379 
380 /*
381  * For useless nodes, do two major clean ups:
382  *
383  * - Cleanup the children edges and nodes
384  *   If child node is also orphan (no parent) during cleanup, then the child
385  *   node will also be cleaned up.
386  *
387  * - Freeing up leaves (level 0), keeps nodes detached
388  *   For nodes, the node is still cached as "detached"
389  *
390  * Return false if @node is not in the @useless_nodes list.
391  * Return true if @node is in the @useless_nodes list.
392  */
393 static bool handle_useless_nodes(struct reloc_control *rc,
394 				 struct btrfs_backref_node *node)
395 {
396 	struct btrfs_backref_cache *cache = &rc->backref_cache;
397 	struct list_head *useless_node = &cache->useless_node;
398 	bool ret = false;
399 
400 	while (!list_empty(useless_node)) {
401 		struct btrfs_backref_node *cur;
402 
403 		cur = list_first_entry(useless_node, struct btrfs_backref_node,
404 				 list);
405 		list_del_init(&cur->list);
406 
407 		/* Only tree root nodes can be added to @useless_nodes */
408 		ASSERT(list_empty(&cur->upper));
409 
410 		if (cur == node)
411 			ret = true;
412 
413 		/* The node is the lowest node */
414 		if (cur->lowest) {
415 			list_del_init(&cur->lower);
416 			cur->lowest = 0;
417 		}
418 
419 		/* Cleanup the lower edges */
420 		while (!list_empty(&cur->lower)) {
421 			struct btrfs_backref_edge *edge;
422 			struct btrfs_backref_node *lower;
423 
424 			edge = list_entry(cur->lower.next,
425 					struct btrfs_backref_edge, list[UPPER]);
426 			list_del(&edge->list[UPPER]);
427 			list_del(&edge->list[LOWER]);
428 			lower = edge->node[LOWER];
429 			btrfs_backref_free_edge(cache, edge);
430 
431 			/* Child node is also orphan, queue for cleanup */
432 			if (list_empty(&lower->upper))
433 				list_add(&lower->list, useless_node);
434 		}
435 		/* Mark this block processed for relocation */
436 		mark_block_processed(rc, cur);
437 
438 		/*
439 		 * Backref nodes for tree leaves are deleted from the cache.
440 		 * Backref nodes for upper level tree blocks are left in the
441 		 * cache to avoid unnecessary backref lookup.
442 		 */
443 		if (cur->level > 0) {
444 			list_add(&cur->list, &cache->detached);
445 			cur->detached = 1;
446 		} else {
447 			rb_erase(&cur->rb_node, &cache->rb_root);
448 			btrfs_backref_free_node(cache, cur);
449 		}
450 	}
451 	return ret;
452 }
453 
454 /*
455  * Build backref tree for a given tree block. Root of the backref tree
456  * corresponds the tree block, leaves of the backref tree correspond roots of
457  * b-trees that reference the tree block.
458  *
459  * The basic idea of this function is check backrefs of a given block to find
460  * upper level blocks that reference the block, and then check backrefs of
461  * these upper level blocks recursively. The recursion stops when tree root is
462  * reached or backrefs for the block is cached.
463  *
464  * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465  * all upper level blocks that directly/indirectly reference the block are also
466  * cached.
467  */
468 static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469 			struct reloc_control *rc, struct btrfs_key *node_key,
470 			int level, u64 bytenr)
471 {
472 	struct btrfs_backref_iter *iter;
473 	struct btrfs_backref_cache *cache = &rc->backref_cache;
474 	/* For searching parent of TREE_BLOCK_REF */
475 	struct btrfs_path *path;
476 	struct btrfs_backref_node *cur;
477 	struct btrfs_backref_node *node = NULL;
478 	struct btrfs_backref_edge *edge;
479 	int ret;
480 	int err = 0;
481 
482 	iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
483 	if (!iter)
484 		return ERR_PTR(-ENOMEM);
485 	path = btrfs_alloc_path();
486 	if (!path) {
487 		err = -ENOMEM;
488 		goto out;
489 	}
490 
491 	node = btrfs_backref_alloc_node(cache, bytenr, level);
492 	if (!node) {
493 		err = -ENOMEM;
494 		goto out;
495 	}
496 
497 	node->lowest = 1;
498 	cur = node;
499 
500 	/* Breadth-first search to build backref cache */
501 	do {
502 		ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
503 						  cur);
504 		if (ret < 0) {
505 			err = ret;
506 			goto out;
507 		}
508 		edge = list_first_entry_or_null(&cache->pending_edge,
509 				struct btrfs_backref_edge, list[UPPER]);
510 		/*
511 		 * The pending list isn't empty, take the first block to
512 		 * process
513 		 */
514 		if (edge) {
515 			list_del_init(&edge->list[UPPER]);
516 			cur = edge->node[UPPER];
517 		}
518 	} while (edge);
519 
520 	/* Finish the upper linkage of newly added edges/nodes */
521 	ret = btrfs_backref_finish_upper_links(cache, node);
522 	if (ret < 0) {
523 		err = ret;
524 		goto out;
525 	}
526 
527 	if (handle_useless_nodes(rc, node))
528 		node = NULL;
529 out:
530 	btrfs_backref_iter_free(iter);
531 	btrfs_free_path(path);
532 	if (err) {
533 		btrfs_backref_error_cleanup(cache, node);
534 		return ERR_PTR(err);
535 	}
536 	ASSERT(!node || !node->detached);
537 	ASSERT(list_empty(&cache->useless_node) &&
538 	       list_empty(&cache->pending_edge));
539 	return node;
540 }
541 
542 /*
543  * helper to add backref node for the newly created snapshot.
544  * the backref node is created by cloning backref node that
545  * corresponds to root of source tree
546  */
547 static int clone_backref_node(struct btrfs_trans_handle *trans,
548 			      struct reloc_control *rc,
549 			      struct btrfs_root *src,
550 			      struct btrfs_root *dest)
551 {
552 	struct btrfs_root *reloc_root = src->reloc_root;
553 	struct btrfs_backref_cache *cache = &rc->backref_cache;
554 	struct btrfs_backref_node *node = NULL;
555 	struct btrfs_backref_node *new_node;
556 	struct btrfs_backref_edge *edge;
557 	struct btrfs_backref_edge *new_edge;
558 	struct rb_node *rb_node;
559 
560 	if (cache->last_trans > 0)
561 		update_backref_cache(trans, cache);
562 
563 	rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
564 	if (rb_node) {
565 		node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
566 		if (node->detached)
567 			node = NULL;
568 		else
569 			BUG_ON(node->new_bytenr != reloc_root->node->start);
570 	}
571 
572 	if (!node) {
573 		rb_node = rb_simple_search(&cache->rb_root,
574 					   reloc_root->commit_root->start);
575 		if (rb_node) {
576 			node = rb_entry(rb_node, struct btrfs_backref_node,
577 					rb_node);
578 			BUG_ON(node->detached);
579 		}
580 	}
581 
582 	if (!node)
583 		return 0;
584 
585 	new_node = btrfs_backref_alloc_node(cache, dest->node->start,
586 					    node->level);
587 	if (!new_node)
588 		return -ENOMEM;
589 
590 	new_node->lowest = node->lowest;
591 	new_node->checked = 1;
592 	new_node->root = btrfs_grab_root(dest);
593 	ASSERT(new_node->root);
594 
595 	if (!node->lowest) {
596 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
597 			new_edge = btrfs_backref_alloc_edge(cache);
598 			if (!new_edge)
599 				goto fail;
600 
601 			btrfs_backref_link_edge(new_edge, edge->node[LOWER],
602 						new_node, LINK_UPPER);
603 		}
604 	} else {
605 		list_add_tail(&new_node->lower, &cache->leaves);
606 	}
607 
608 	rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
609 				   &new_node->rb_node);
610 	if (rb_node)
611 		btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
612 
613 	if (!new_node->lowest) {
614 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
615 			list_add_tail(&new_edge->list[LOWER],
616 				      &new_edge->node[LOWER]->upper);
617 		}
618 	}
619 	return 0;
620 fail:
621 	while (!list_empty(&new_node->lower)) {
622 		new_edge = list_entry(new_node->lower.next,
623 				      struct btrfs_backref_edge, list[UPPER]);
624 		list_del(&new_edge->list[UPPER]);
625 		btrfs_backref_free_edge(cache, new_edge);
626 	}
627 	btrfs_backref_free_node(cache, new_node);
628 	return -ENOMEM;
629 }
630 
631 /*
632  * helper to add 'address of tree root -> reloc tree' mapping
633  */
634 static int __must_check __add_reloc_root(struct btrfs_root *root)
635 {
636 	struct btrfs_fs_info *fs_info = root->fs_info;
637 	struct rb_node *rb_node;
638 	struct mapping_node *node;
639 	struct reloc_control *rc = fs_info->reloc_ctl;
640 
641 	node = kmalloc(sizeof(*node), GFP_NOFS);
642 	if (!node)
643 		return -ENOMEM;
644 
645 	node->bytenr = root->commit_root->start;
646 	node->data = root;
647 
648 	spin_lock(&rc->reloc_root_tree.lock);
649 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
650 				   node->bytenr, &node->rb_node);
651 	spin_unlock(&rc->reloc_root_tree.lock);
652 	if (rb_node) {
653 		btrfs_err(fs_info,
654 			    "Duplicate root found for start=%llu while inserting into relocation tree",
655 			    node->bytenr);
656 		return -EEXIST;
657 	}
658 
659 	list_add_tail(&root->root_list, &rc->reloc_roots);
660 	return 0;
661 }
662 
663 /*
664  * helper to delete the 'address of tree root -> reloc tree'
665  * mapping
666  */
667 static void __del_reloc_root(struct btrfs_root *root)
668 {
669 	struct btrfs_fs_info *fs_info = root->fs_info;
670 	struct rb_node *rb_node;
671 	struct mapping_node *node = NULL;
672 	struct reloc_control *rc = fs_info->reloc_ctl;
673 	bool put_ref = false;
674 
675 	if (rc && root->node) {
676 		spin_lock(&rc->reloc_root_tree.lock);
677 		rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
678 					   root->commit_root->start);
679 		if (rb_node) {
680 			node = rb_entry(rb_node, struct mapping_node, rb_node);
681 			rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
682 			RB_CLEAR_NODE(&node->rb_node);
683 		}
684 		spin_unlock(&rc->reloc_root_tree.lock);
685 		ASSERT(!node || (struct btrfs_root *)node->data == root);
686 	}
687 
688 	/*
689 	 * We only put the reloc root here if it's on the list.  There's a lot
690 	 * of places where the pattern is to splice the rc->reloc_roots, process
691 	 * the reloc roots, and then add the reloc root back onto
692 	 * rc->reloc_roots.  If we call __del_reloc_root while it's off of the
693 	 * list we don't want the reference being dropped, because the guy
694 	 * messing with the list is in charge of the reference.
695 	 */
696 	spin_lock(&fs_info->trans_lock);
697 	if (!list_empty(&root->root_list)) {
698 		put_ref = true;
699 		list_del_init(&root->root_list);
700 	}
701 	spin_unlock(&fs_info->trans_lock);
702 	if (put_ref)
703 		btrfs_put_root(root);
704 	kfree(node);
705 }
706 
707 /*
708  * helper to update the 'address of tree root -> reloc tree'
709  * mapping
710  */
711 static int __update_reloc_root(struct btrfs_root *root)
712 {
713 	struct btrfs_fs_info *fs_info = root->fs_info;
714 	struct rb_node *rb_node;
715 	struct mapping_node *node = NULL;
716 	struct reloc_control *rc = fs_info->reloc_ctl;
717 
718 	spin_lock(&rc->reloc_root_tree.lock);
719 	rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
720 				   root->commit_root->start);
721 	if (rb_node) {
722 		node = rb_entry(rb_node, struct mapping_node, rb_node);
723 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
724 	}
725 	spin_unlock(&rc->reloc_root_tree.lock);
726 
727 	if (!node)
728 		return 0;
729 	BUG_ON((struct btrfs_root *)node->data != root);
730 
731 	spin_lock(&rc->reloc_root_tree.lock);
732 	node->bytenr = root->node->start;
733 	rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
734 				   node->bytenr, &node->rb_node);
735 	spin_unlock(&rc->reloc_root_tree.lock);
736 	if (rb_node)
737 		btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
738 	return 0;
739 }
740 
741 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
742 					struct btrfs_root *root, u64 objectid)
743 {
744 	struct btrfs_fs_info *fs_info = root->fs_info;
745 	struct btrfs_root *reloc_root;
746 	struct extent_buffer *eb;
747 	struct btrfs_root_item *root_item;
748 	struct btrfs_key root_key;
749 	int ret = 0;
750 	bool must_abort = false;
751 
752 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
753 	if (!root_item)
754 		return ERR_PTR(-ENOMEM);
755 
756 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
757 	root_key.type = BTRFS_ROOT_ITEM_KEY;
758 	root_key.offset = objectid;
759 
760 	if (root->root_key.objectid == objectid) {
761 		u64 commit_root_gen;
762 
763 		/* called by btrfs_init_reloc_root */
764 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
765 				      BTRFS_TREE_RELOC_OBJECTID);
766 		if (ret)
767 			goto fail;
768 
769 		/*
770 		 * Set the last_snapshot field to the generation of the commit
771 		 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
772 		 * correctly (returns true) when the relocation root is created
773 		 * either inside the critical section of a transaction commit
774 		 * (through transaction.c:qgroup_account_snapshot()) and when
775 		 * it's created before the transaction commit is started.
776 		 */
777 		commit_root_gen = btrfs_header_generation(root->commit_root);
778 		btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
779 	} else {
780 		/*
781 		 * called by btrfs_reloc_post_snapshot_hook.
782 		 * the source tree is a reloc tree, all tree blocks
783 		 * modified after it was created have RELOC flag
784 		 * set in their headers. so it's OK to not update
785 		 * the 'last_snapshot'.
786 		 */
787 		ret = btrfs_copy_root(trans, root, root->node, &eb,
788 				      BTRFS_TREE_RELOC_OBJECTID);
789 		if (ret)
790 			goto fail;
791 	}
792 
793 	/*
794 	 * We have changed references at this point, we must abort the
795 	 * transaction if anything fails.
796 	 */
797 	must_abort = true;
798 
799 	memcpy(root_item, &root->root_item, sizeof(*root_item));
800 	btrfs_set_root_bytenr(root_item, eb->start);
801 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
802 	btrfs_set_root_generation(root_item, trans->transid);
803 
804 	if (root->root_key.objectid == objectid) {
805 		btrfs_set_root_refs(root_item, 0);
806 		memset(&root_item->drop_progress, 0,
807 		       sizeof(struct btrfs_disk_key));
808 		btrfs_set_root_drop_level(root_item, 0);
809 	}
810 
811 	btrfs_tree_unlock(eb);
812 	free_extent_buffer(eb);
813 
814 	ret = btrfs_insert_root(trans, fs_info->tree_root,
815 				&root_key, root_item);
816 	if (ret)
817 		goto fail;
818 
819 	kfree(root_item);
820 
821 	reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
822 	if (IS_ERR(reloc_root)) {
823 		ret = PTR_ERR(reloc_root);
824 		goto abort;
825 	}
826 	set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
827 	reloc_root->last_trans = trans->transid;
828 	return reloc_root;
829 fail:
830 	kfree(root_item);
831 abort:
832 	if (must_abort)
833 		btrfs_abort_transaction(trans, ret);
834 	return ERR_PTR(ret);
835 }
836 
837 /*
838  * create reloc tree for a given fs tree. reloc tree is just a
839  * snapshot of the fs tree with special root objectid.
840  *
841  * The reloc_root comes out of here with two references, one for
842  * root->reloc_root, and another for being on the rc->reloc_roots list.
843  */
844 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
845 			  struct btrfs_root *root)
846 {
847 	struct btrfs_fs_info *fs_info = root->fs_info;
848 	struct btrfs_root *reloc_root;
849 	struct reloc_control *rc = fs_info->reloc_ctl;
850 	struct btrfs_block_rsv *rsv;
851 	int clear_rsv = 0;
852 	int ret;
853 
854 	if (!rc)
855 		return 0;
856 
857 	/*
858 	 * The subvolume has reloc tree but the swap is finished, no need to
859 	 * create/update the dead reloc tree
860 	 */
861 	if (reloc_root_is_dead(root))
862 		return 0;
863 
864 	/*
865 	 * This is subtle but important.  We do not do
866 	 * record_root_in_transaction for reloc roots, instead we record their
867 	 * corresponding fs root, and then here we update the last trans for the
868 	 * reloc root.  This means that we have to do this for the entire life
869 	 * of the reloc root, regardless of which stage of the relocation we are
870 	 * in.
871 	 */
872 	if (root->reloc_root) {
873 		reloc_root = root->reloc_root;
874 		reloc_root->last_trans = trans->transid;
875 		return 0;
876 	}
877 
878 	/*
879 	 * We are merging reloc roots, we do not need new reloc trees.  Also
880 	 * reloc trees never need their own reloc tree.
881 	 */
882 	if (!rc->create_reloc_tree ||
883 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
884 		return 0;
885 
886 	if (!trans->reloc_reserved) {
887 		rsv = trans->block_rsv;
888 		trans->block_rsv = rc->block_rsv;
889 		clear_rsv = 1;
890 	}
891 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
892 	if (clear_rsv)
893 		trans->block_rsv = rsv;
894 	if (IS_ERR(reloc_root))
895 		return PTR_ERR(reloc_root);
896 
897 	ret = __add_reloc_root(reloc_root);
898 	ASSERT(ret != -EEXIST);
899 	if (ret) {
900 		/* Pairs with create_reloc_root */
901 		btrfs_put_root(reloc_root);
902 		return ret;
903 	}
904 	root->reloc_root = btrfs_grab_root(reloc_root);
905 	return 0;
906 }
907 
908 /*
909  * update root item of reloc tree
910  */
911 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
912 			    struct btrfs_root *root)
913 {
914 	struct btrfs_fs_info *fs_info = root->fs_info;
915 	struct btrfs_root *reloc_root;
916 	struct btrfs_root_item *root_item;
917 	int ret;
918 
919 	if (!have_reloc_root(root))
920 		return 0;
921 
922 	reloc_root = root->reloc_root;
923 	root_item = &reloc_root->root_item;
924 
925 	/*
926 	 * We are probably ok here, but __del_reloc_root() will drop its ref of
927 	 * the root.  We have the ref for root->reloc_root, but just in case
928 	 * hold it while we update the reloc root.
929 	 */
930 	btrfs_grab_root(reloc_root);
931 
932 	/* root->reloc_root will stay until current relocation finished */
933 	if (fs_info->reloc_ctl->merge_reloc_tree &&
934 	    btrfs_root_refs(root_item) == 0) {
935 		set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
936 		/*
937 		 * Mark the tree as dead before we change reloc_root so
938 		 * have_reloc_root will not touch it from now on.
939 		 */
940 		smp_wmb();
941 		__del_reloc_root(reloc_root);
942 	}
943 
944 	if (reloc_root->commit_root != reloc_root->node) {
945 		__update_reloc_root(reloc_root);
946 		btrfs_set_root_node(root_item, reloc_root->node);
947 		free_extent_buffer(reloc_root->commit_root);
948 		reloc_root->commit_root = btrfs_root_node(reloc_root);
949 	}
950 
951 	ret = btrfs_update_root(trans, fs_info->tree_root,
952 				&reloc_root->root_key, root_item);
953 	btrfs_put_root(reloc_root);
954 	return ret;
955 }
956 
957 /*
958  * helper to find first cached inode with inode number >= objectid
959  * in a subvolume
960  */
961 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
962 {
963 	struct rb_node *node;
964 	struct rb_node *prev;
965 	struct btrfs_inode *entry;
966 	struct inode *inode;
967 
968 	spin_lock(&root->inode_lock);
969 again:
970 	node = root->inode_tree.rb_node;
971 	prev = NULL;
972 	while (node) {
973 		prev = node;
974 		entry = rb_entry(node, struct btrfs_inode, rb_node);
975 
976 		if (objectid < btrfs_ino(entry))
977 			node = node->rb_left;
978 		else if (objectid > btrfs_ino(entry))
979 			node = node->rb_right;
980 		else
981 			break;
982 	}
983 	if (!node) {
984 		while (prev) {
985 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
986 			if (objectid <= btrfs_ino(entry)) {
987 				node = prev;
988 				break;
989 			}
990 			prev = rb_next(prev);
991 		}
992 	}
993 	while (node) {
994 		entry = rb_entry(node, struct btrfs_inode, rb_node);
995 		inode = igrab(&entry->vfs_inode);
996 		if (inode) {
997 			spin_unlock(&root->inode_lock);
998 			return inode;
999 		}
1000 
1001 		objectid = btrfs_ino(entry) + 1;
1002 		if (cond_resched_lock(&root->inode_lock))
1003 			goto again;
1004 
1005 		node = rb_next(node);
1006 	}
1007 	spin_unlock(&root->inode_lock);
1008 	return NULL;
1009 }
1010 
1011 /*
1012  * get new location of data
1013  */
1014 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015 			    u64 bytenr, u64 num_bytes)
1016 {
1017 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018 	struct btrfs_path *path;
1019 	struct btrfs_file_extent_item *fi;
1020 	struct extent_buffer *leaf;
1021 	int ret;
1022 
1023 	path = btrfs_alloc_path();
1024 	if (!path)
1025 		return -ENOMEM;
1026 
1027 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028 	ret = btrfs_lookup_file_extent(NULL, root, path,
1029 			btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030 	if (ret < 0)
1031 		goto out;
1032 	if (ret > 0) {
1033 		ret = -ENOENT;
1034 		goto out;
1035 	}
1036 
1037 	leaf = path->nodes[0];
1038 	fi = btrfs_item_ptr(leaf, path->slots[0],
1039 			    struct btrfs_file_extent_item);
1040 
1041 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042 	       btrfs_file_extent_compression(leaf, fi) ||
1043 	       btrfs_file_extent_encryption(leaf, fi) ||
1044 	       btrfs_file_extent_other_encoding(leaf, fi));
1045 
1046 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047 		ret = -EINVAL;
1048 		goto out;
1049 	}
1050 
1051 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052 	ret = 0;
1053 out:
1054 	btrfs_free_path(path);
1055 	return ret;
1056 }
1057 
1058 /*
1059  * update file extent items in the tree leaf to point to
1060  * the new locations.
1061  */
1062 static noinline_for_stack
1063 int replace_file_extents(struct btrfs_trans_handle *trans,
1064 			 struct reloc_control *rc,
1065 			 struct btrfs_root *root,
1066 			 struct extent_buffer *leaf)
1067 {
1068 	struct btrfs_fs_info *fs_info = root->fs_info;
1069 	struct btrfs_key key;
1070 	struct btrfs_file_extent_item *fi;
1071 	struct inode *inode = NULL;
1072 	u64 parent;
1073 	u64 bytenr;
1074 	u64 new_bytenr = 0;
1075 	u64 num_bytes;
1076 	u64 end;
1077 	u32 nritems;
1078 	u32 i;
1079 	int ret = 0;
1080 	int first = 1;
1081 	int dirty = 0;
1082 
1083 	if (rc->stage != UPDATE_DATA_PTRS)
1084 		return 0;
1085 
1086 	/* reloc trees always use full backref */
1087 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088 		parent = leaf->start;
1089 	else
1090 		parent = 0;
1091 
1092 	nritems = btrfs_header_nritems(leaf);
1093 	for (i = 0; i < nritems; i++) {
1094 		struct btrfs_ref ref = { 0 };
1095 
1096 		cond_resched();
1097 		btrfs_item_key_to_cpu(leaf, &key, i);
1098 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1099 			continue;
1100 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101 		if (btrfs_file_extent_type(leaf, fi) ==
1102 		    BTRFS_FILE_EXTENT_INLINE)
1103 			continue;
1104 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106 		if (bytenr == 0)
1107 			continue;
1108 		if (!in_range(bytenr, rc->block_group->start,
1109 			      rc->block_group->length))
1110 			continue;
1111 
1112 		/*
1113 		 * if we are modifying block in fs tree, wait for read_folio
1114 		 * to complete and drop the extent cache
1115 		 */
1116 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117 			if (first) {
1118 				inode = find_next_inode(root, key.objectid);
1119 				first = 0;
1120 			} else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121 				btrfs_add_delayed_iput(BTRFS_I(inode));
1122 				inode = find_next_inode(root, key.objectid);
1123 			}
1124 			if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125 				struct extent_state *cached_state = NULL;
1126 
1127 				end = key.offset +
1128 				      btrfs_file_extent_num_bytes(leaf, fi);
1129 				WARN_ON(!IS_ALIGNED(key.offset,
1130 						    fs_info->sectorsize));
1131 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132 				end--;
1133 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134 						      key.offset, end,
1135 						      &cached_state);
1136 				if (!ret)
1137 					continue;
1138 
1139 				btrfs_drop_extent_map_range(BTRFS_I(inode),
1140 							    key.offset, end, true);
1141 				unlock_extent(&BTRFS_I(inode)->io_tree,
1142 					      key.offset, end, &cached_state);
1143 			}
1144 		}
1145 
1146 		ret = get_new_location(rc->data_inode, &new_bytenr,
1147 				       bytenr, num_bytes);
1148 		if (ret) {
1149 			/*
1150 			 * Don't have to abort since we've not changed anything
1151 			 * in the file extent yet.
1152 			 */
1153 			break;
1154 		}
1155 
1156 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157 		dirty = 1;
1158 
1159 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1160 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161 				       num_bytes, parent);
1162 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163 				    key.objectid, key.offset,
1164 				    root->root_key.objectid, false);
1165 		ret = btrfs_inc_extent_ref(trans, &ref);
1166 		if (ret) {
1167 			btrfs_abort_transaction(trans, ret);
1168 			break;
1169 		}
1170 
1171 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172 				       num_bytes, parent);
1173 		btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174 				    key.objectid, key.offset,
1175 				    root->root_key.objectid, false);
1176 		ret = btrfs_free_extent(trans, &ref);
1177 		if (ret) {
1178 			btrfs_abort_transaction(trans, ret);
1179 			break;
1180 		}
1181 	}
1182 	if (dirty)
1183 		btrfs_mark_buffer_dirty(leaf);
1184 	if (inode)
1185 		btrfs_add_delayed_iput(BTRFS_I(inode));
1186 	return ret;
1187 }
1188 
1189 static noinline_for_stack
1190 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191 		     struct btrfs_path *path, int level)
1192 {
1193 	struct btrfs_disk_key key1;
1194 	struct btrfs_disk_key key2;
1195 	btrfs_node_key(eb, &key1, slot);
1196 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197 	return memcmp(&key1, &key2, sizeof(key1));
1198 }
1199 
1200 /*
1201  * try to replace tree blocks in fs tree with the new blocks
1202  * in reloc tree. tree blocks haven't been modified since the
1203  * reloc tree was create can be replaced.
1204  *
1205  * if a block was replaced, level of the block + 1 is returned.
1206  * if no block got replaced, 0 is returned. if there are other
1207  * errors, a negative error number is returned.
1208  */
1209 static noinline_for_stack
1210 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211 		 struct btrfs_root *dest, struct btrfs_root *src,
1212 		 struct btrfs_path *path, struct btrfs_key *next_key,
1213 		 int lowest_level, int max_level)
1214 {
1215 	struct btrfs_fs_info *fs_info = dest->fs_info;
1216 	struct extent_buffer *eb;
1217 	struct extent_buffer *parent;
1218 	struct btrfs_ref ref = { 0 };
1219 	struct btrfs_key key;
1220 	u64 old_bytenr;
1221 	u64 new_bytenr;
1222 	u64 old_ptr_gen;
1223 	u64 new_ptr_gen;
1224 	u64 last_snapshot;
1225 	u32 blocksize;
1226 	int cow = 0;
1227 	int level;
1228 	int ret;
1229 	int slot;
1230 
1231 	ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232 	ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233 
1234 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235 again:
1236 	slot = path->slots[lowest_level];
1237 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238 
1239 	eb = btrfs_lock_root_node(dest);
1240 	level = btrfs_header_level(eb);
1241 
1242 	if (level < lowest_level) {
1243 		btrfs_tree_unlock(eb);
1244 		free_extent_buffer(eb);
1245 		return 0;
1246 	}
1247 
1248 	if (cow) {
1249 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250 				      BTRFS_NESTING_COW);
1251 		if (ret) {
1252 			btrfs_tree_unlock(eb);
1253 			free_extent_buffer(eb);
1254 			return ret;
1255 		}
1256 	}
1257 
1258 	if (next_key) {
1259 		next_key->objectid = (u64)-1;
1260 		next_key->type = (u8)-1;
1261 		next_key->offset = (u64)-1;
1262 	}
1263 
1264 	parent = eb;
1265 	while (1) {
1266 		level = btrfs_header_level(parent);
1267 		ASSERT(level >= lowest_level);
1268 
1269 		ret = btrfs_bin_search(parent, 0, &key, &slot);
1270 		if (ret < 0)
1271 			break;
1272 		if (ret && slot > 0)
1273 			slot--;
1274 
1275 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277 
1278 		old_bytenr = btrfs_node_blockptr(parent, slot);
1279 		blocksize = fs_info->nodesize;
1280 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281 
1282 		if (level <= max_level) {
1283 			eb = path->nodes[level];
1284 			new_bytenr = btrfs_node_blockptr(eb,
1285 							path->slots[level]);
1286 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1287 							path->slots[level]);
1288 		} else {
1289 			new_bytenr = 0;
1290 			new_ptr_gen = 0;
1291 		}
1292 
1293 		if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1294 			ret = level;
1295 			break;
1296 		}
1297 
1298 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299 		    memcmp_node_keys(parent, slot, path, level)) {
1300 			if (level <= lowest_level) {
1301 				ret = 0;
1302 				break;
1303 			}
1304 
1305 			eb = btrfs_read_node_slot(parent, slot);
1306 			if (IS_ERR(eb)) {
1307 				ret = PTR_ERR(eb);
1308 				break;
1309 			}
1310 			btrfs_tree_lock(eb);
1311 			if (cow) {
1312 				ret = btrfs_cow_block(trans, dest, eb, parent,
1313 						      slot, &eb,
1314 						      BTRFS_NESTING_COW);
1315 				if (ret) {
1316 					btrfs_tree_unlock(eb);
1317 					free_extent_buffer(eb);
1318 					break;
1319 				}
1320 			}
1321 
1322 			btrfs_tree_unlock(parent);
1323 			free_extent_buffer(parent);
1324 
1325 			parent = eb;
1326 			continue;
1327 		}
1328 
1329 		if (!cow) {
1330 			btrfs_tree_unlock(parent);
1331 			free_extent_buffer(parent);
1332 			cow = 1;
1333 			goto again;
1334 		}
1335 
1336 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1337 				      path->slots[level]);
1338 		btrfs_release_path(path);
1339 
1340 		path->lowest_level = level;
1341 		set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343 		clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344 		path->lowest_level = 0;
1345 		if (ret) {
1346 			if (ret > 0)
1347 				ret = -ENOENT;
1348 			break;
1349 		}
1350 
1351 		/*
1352 		 * Info qgroup to trace both subtrees.
1353 		 *
1354 		 * We must trace both trees.
1355 		 * 1) Tree reloc subtree
1356 		 *    If not traced, we will leak data numbers
1357 		 * 2) Fs subtree
1358 		 *    If not traced, we will double count old data
1359 		 *
1360 		 * We don't scan the subtree right now, but only record
1361 		 * the swapped tree blocks.
1362 		 * The real subtree rescan is delayed until we have new
1363 		 * CoW on the subtree root node before transaction commit.
1364 		 */
1365 		ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366 				rc->block_group, parent, slot,
1367 				path->nodes[level], path->slots[level],
1368 				last_snapshot);
1369 		if (ret < 0)
1370 			break;
1371 		/*
1372 		 * swap blocks in fs tree and reloc tree.
1373 		 */
1374 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376 		btrfs_mark_buffer_dirty(parent);
1377 
1378 		btrfs_set_node_blockptr(path->nodes[level],
1379 					path->slots[level], old_bytenr);
1380 		btrfs_set_node_ptr_generation(path->nodes[level],
1381 					      path->slots[level], old_ptr_gen);
1382 		btrfs_mark_buffer_dirty(path->nodes[level]);
1383 
1384 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385 				       blocksize, path->nodes[level]->start);
1386 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387 				    0, true);
1388 		ret = btrfs_inc_extent_ref(trans, &ref);
1389 		if (ret) {
1390 			btrfs_abort_transaction(trans, ret);
1391 			break;
1392 		}
1393 		btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394 				       blocksize, 0);
1395 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396 				    true);
1397 		ret = btrfs_inc_extent_ref(trans, &ref);
1398 		if (ret) {
1399 			btrfs_abort_transaction(trans, ret);
1400 			break;
1401 		}
1402 
1403 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404 				       blocksize, path->nodes[level]->start);
1405 		btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406 				    0, true);
1407 		ret = btrfs_free_extent(trans, &ref);
1408 		if (ret) {
1409 			btrfs_abort_transaction(trans, ret);
1410 			break;
1411 		}
1412 
1413 		btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414 				       blocksize, 0);
1415 		btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416 				    0, true);
1417 		ret = btrfs_free_extent(trans, &ref);
1418 		if (ret) {
1419 			btrfs_abort_transaction(trans, ret);
1420 			break;
1421 		}
1422 
1423 		btrfs_unlock_up_safe(path, 0);
1424 
1425 		ret = level;
1426 		break;
1427 	}
1428 	btrfs_tree_unlock(parent);
1429 	free_extent_buffer(parent);
1430 	return ret;
1431 }
1432 
1433 /*
1434  * helper to find next relocated block in reloc tree
1435  */
1436 static noinline_for_stack
1437 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438 		       int *level)
1439 {
1440 	struct extent_buffer *eb;
1441 	int i;
1442 	u64 last_snapshot;
1443 	u32 nritems;
1444 
1445 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446 
1447 	for (i = 0; i < *level; i++) {
1448 		free_extent_buffer(path->nodes[i]);
1449 		path->nodes[i] = NULL;
1450 	}
1451 
1452 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453 		eb = path->nodes[i];
1454 		nritems = btrfs_header_nritems(eb);
1455 		while (path->slots[i] + 1 < nritems) {
1456 			path->slots[i]++;
1457 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458 			    last_snapshot)
1459 				continue;
1460 
1461 			*level = i;
1462 			return 0;
1463 		}
1464 		free_extent_buffer(path->nodes[i]);
1465 		path->nodes[i] = NULL;
1466 	}
1467 	return 1;
1468 }
1469 
1470 /*
1471  * walk down reloc tree to find relocated block of lowest level
1472  */
1473 static noinline_for_stack
1474 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475 			 int *level)
1476 {
1477 	struct extent_buffer *eb = NULL;
1478 	int i;
1479 	u64 ptr_gen = 0;
1480 	u64 last_snapshot;
1481 	u32 nritems;
1482 
1483 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484 
1485 	for (i = *level; i > 0; i--) {
1486 		eb = path->nodes[i];
1487 		nritems = btrfs_header_nritems(eb);
1488 		while (path->slots[i] < nritems) {
1489 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490 			if (ptr_gen > last_snapshot)
1491 				break;
1492 			path->slots[i]++;
1493 		}
1494 		if (path->slots[i] >= nritems) {
1495 			if (i == *level)
1496 				break;
1497 			*level = i + 1;
1498 			return 0;
1499 		}
1500 		if (i == 1) {
1501 			*level = i;
1502 			return 0;
1503 		}
1504 
1505 		eb = btrfs_read_node_slot(eb, path->slots[i]);
1506 		if (IS_ERR(eb))
1507 			return PTR_ERR(eb);
1508 		BUG_ON(btrfs_header_level(eb) != i - 1);
1509 		path->nodes[i - 1] = eb;
1510 		path->slots[i - 1] = 0;
1511 	}
1512 	return 1;
1513 }
1514 
1515 /*
1516  * invalidate extent cache for file extents whose key in range of
1517  * [min_key, max_key)
1518  */
1519 static int invalidate_extent_cache(struct btrfs_root *root,
1520 				   struct btrfs_key *min_key,
1521 				   struct btrfs_key *max_key)
1522 {
1523 	struct btrfs_fs_info *fs_info = root->fs_info;
1524 	struct inode *inode = NULL;
1525 	u64 objectid;
1526 	u64 start, end;
1527 	u64 ino;
1528 
1529 	objectid = min_key->objectid;
1530 	while (1) {
1531 		struct extent_state *cached_state = NULL;
1532 
1533 		cond_resched();
1534 		iput(inode);
1535 
1536 		if (objectid > max_key->objectid)
1537 			break;
1538 
1539 		inode = find_next_inode(root, objectid);
1540 		if (!inode)
1541 			break;
1542 		ino = btrfs_ino(BTRFS_I(inode));
1543 
1544 		if (ino > max_key->objectid) {
1545 			iput(inode);
1546 			break;
1547 		}
1548 
1549 		objectid = ino + 1;
1550 		if (!S_ISREG(inode->i_mode))
1551 			continue;
1552 
1553 		if (unlikely(min_key->objectid == ino)) {
1554 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555 				continue;
1556 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557 				start = 0;
1558 			else {
1559 				start = min_key->offset;
1560 				WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561 			}
1562 		} else {
1563 			start = 0;
1564 		}
1565 
1566 		if (unlikely(max_key->objectid == ino)) {
1567 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568 				continue;
1569 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570 				end = (u64)-1;
1571 			} else {
1572 				if (max_key->offset == 0)
1573 					continue;
1574 				end = max_key->offset;
1575 				WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576 				end--;
1577 			}
1578 		} else {
1579 			end = (u64)-1;
1580 		}
1581 
1582 		/* the lock_extent waits for read_folio to complete */
1583 		lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584 		btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586 	}
1587 	return 0;
1588 }
1589 
1590 static int find_next_key(struct btrfs_path *path, int level,
1591 			 struct btrfs_key *key)
1592 
1593 {
1594 	while (level < BTRFS_MAX_LEVEL) {
1595 		if (!path->nodes[level])
1596 			break;
1597 		if (path->slots[level] + 1 <
1598 		    btrfs_header_nritems(path->nodes[level])) {
1599 			btrfs_node_key_to_cpu(path->nodes[level], key,
1600 					      path->slots[level] + 1);
1601 			return 0;
1602 		}
1603 		level++;
1604 	}
1605 	return 1;
1606 }
1607 
1608 /*
1609  * Insert current subvolume into reloc_control::dirty_subvol_roots
1610  */
1611 static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612 			       struct reloc_control *rc,
1613 			       struct btrfs_root *root)
1614 {
1615 	struct btrfs_root *reloc_root = root->reloc_root;
1616 	struct btrfs_root_item *reloc_root_item;
1617 	int ret;
1618 
1619 	/* @root must be a subvolume tree root with a valid reloc tree */
1620 	ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621 	ASSERT(reloc_root);
1622 
1623 	reloc_root_item = &reloc_root->root_item;
1624 	memset(&reloc_root_item->drop_progress, 0,
1625 		sizeof(reloc_root_item->drop_progress));
1626 	btrfs_set_root_drop_level(reloc_root_item, 0);
1627 	btrfs_set_root_refs(reloc_root_item, 0);
1628 	ret = btrfs_update_reloc_root(trans, root);
1629 	if (ret)
1630 		return ret;
1631 
1632 	if (list_empty(&root->reloc_dirty_list)) {
1633 		btrfs_grab_root(root);
1634 		list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635 	}
1636 
1637 	return 0;
1638 }
1639 
1640 static int clean_dirty_subvols(struct reloc_control *rc)
1641 {
1642 	struct btrfs_root *root;
1643 	struct btrfs_root *next;
1644 	int ret = 0;
1645 	int ret2;
1646 
1647 	list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648 				 reloc_dirty_list) {
1649 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650 			/* Merged subvolume, cleanup its reloc root */
1651 			struct btrfs_root *reloc_root = root->reloc_root;
1652 
1653 			list_del_init(&root->reloc_dirty_list);
1654 			root->reloc_root = NULL;
1655 			/*
1656 			 * Need barrier to ensure clear_bit() only happens after
1657 			 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658 			 */
1659 			smp_wmb();
1660 			clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661 			if (reloc_root) {
1662 				/*
1663 				 * btrfs_drop_snapshot drops our ref we hold for
1664 				 * ->reloc_root.  If it fails however we must
1665 				 * drop the ref ourselves.
1666 				 */
1667 				ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668 				if (ret2 < 0) {
1669 					btrfs_put_root(reloc_root);
1670 					if (!ret)
1671 						ret = ret2;
1672 				}
1673 			}
1674 			btrfs_put_root(root);
1675 		} else {
1676 			/* Orphan reloc tree, just clean it up */
1677 			ret2 = btrfs_drop_snapshot(root, 0, 1);
1678 			if (ret2 < 0) {
1679 				btrfs_put_root(root);
1680 				if (!ret)
1681 					ret = ret2;
1682 			}
1683 		}
1684 	}
1685 	return ret;
1686 }
1687 
1688 /*
1689  * merge the relocated tree blocks in reloc tree with corresponding
1690  * fs tree.
1691  */
1692 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693 					       struct btrfs_root *root)
1694 {
1695 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696 	struct btrfs_key key;
1697 	struct btrfs_key next_key;
1698 	struct btrfs_trans_handle *trans = NULL;
1699 	struct btrfs_root *reloc_root;
1700 	struct btrfs_root_item *root_item;
1701 	struct btrfs_path *path;
1702 	struct extent_buffer *leaf;
1703 	int reserve_level;
1704 	int level;
1705 	int max_level;
1706 	int replaced = 0;
1707 	int ret = 0;
1708 	u32 min_reserved;
1709 
1710 	path = btrfs_alloc_path();
1711 	if (!path)
1712 		return -ENOMEM;
1713 	path->reada = READA_FORWARD;
1714 
1715 	reloc_root = root->reloc_root;
1716 	root_item = &reloc_root->root_item;
1717 
1718 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719 		level = btrfs_root_level(root_item);
1720 		atomic_inc(&reloc_root->node->refs);
1721 		path->nodes[level] = reloc_root->node;
1722 		path->slots[level] = 0;
1723 	} else {
1724 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725 
1726 		level = btrfs_root_drop_level(root_item);
1727 		BUG_ON(level == 0);
1728 		path->lowest_level = level;
1729 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730 		path->lowest_level = 0;
1731 		if (ret < 0) {
1732 			btrfs_free_path(path);
1733 			return ret;
1734 		}
1735 
1736 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737 				      path->slots[level]);
1738 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739 
1740 		btrfs_unlock_up_safe(path, 0);
1741 	}
1742 
1743 	/*
1744 	 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745 	 * tree blocks between reloc tree and subvolume tree.  Thus for tree
1746 	 * block COW, we COW at most from level 1 to root level for each tree.
1747 	 *
1748 	 * Thus the needed metadata size is at most root_level * nodesize,
1749 	 * and * 2 since we have two trees to COW.
1750 	 */
1751 	reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752 	min_reserved = fs_info->nodesize * reserve_level * 2;
1753 	memset(&next_key, 0, sizeof(next_key));
1754 
1755 	while (1) {
1756 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757 					     min_reserved,
1758 					     BTRFS_RESERVE_FLUSH_LIMIT);
1759 		if (ret)
1760 			goto out;
1761 		trans = btrfs_start_transaction(root, 0);
1762 		if (IS_ERR(trans)) {
1763 			ret = PTR_ERR(trans);
1764 			trans = NULL;
1765 			goto out;
1766 		}
1767 
1768 		/*
1769 		 * At this point we no longer have a reloc_control, so we can't
1770 		 * depend on btrfs_init_reloc_root to update our last_trans.
1771 		 *
1772 		 * But that's ok, we started the trans handle on our
1773 		 * corresponding fs_root, which means it's been added to the
1774 		 * dirty list.  At commit time we'll still call
1775 		 * btrfs_update_reloc_root() and update our root item
1776 		 * appropriately.
1777 		 */
1778 		reloc_root->last_trans = trans->transid;
1779 		trans->block_rsv = rc->block_rsv;
1780 
1781 		replaced = 0;
1782 		max_level = level;
1783 
1784 		ret = walk_down_reloc_tree(reloc_root, path, &level);
1785 		if (ret < 0)
1786 			goto out;
1787 		if (ret > 0)
1788 			break;
1789 
1790 		if (!find_next_key(path, level, &key) &&
1791 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792 			ret = 0;
1793 		} else {
1794 			ret = replace_path(trans, rc, root, reloc_root, path,
1795 					   &next_key, level, max_level);
1796 		}
1797 		if (ret < 0)
1798 			goto out;
1799 		if (ret > 0) {
1800 			level = ret;
1801 			btrfs_node_key_to_cpu(path->nodes[level], &key,
1802 					      path->slots[level]);
1803 			replaced = 1;
1804 		}
1805 
1806 		ret = walk_up_reloc_tree(reloc_root, path, &level);
1807 		if (ret > 0)
1808 			break;
1809 
1810 		BUG_ON(level == 0);
1811 		/*
1812 		 * save the merging progress in the drop_progress.
1813 		 * this is OK since root refs == 1 in this case.
1814 		 */
1815 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816 			       path->slots[level]);
1817 		btrfs_set_root_drop_level(root_item, level);
1818 
1819 		btrfs_end_transaction_throttle(trans);
1820 		trans = NULL;
1821 
1822 		btrfs_btree_balance_dirty(fs_info);
1823 
1824 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825 			invalidate_extent_cache(root, &key, &next_key);
1826 	}
1827 
1828 	/*
1829 	 * handle the case only one block in the fs tree need to be
1830 	 * relocated and the block is tree root.
1831 	 */
1832 	leaf = btrfs_lock_root_node(root);
1833 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834 			      BTRFS_NESTING_COW);
1835 	btrfs_tree_unlock(leaf);
1836 	free_extent_buffer(leaf);
1837 out:
1838 	btrfs_free_path(path);
1839 
1840 	if (ret == 0) {
1841 		ret = insert_dirty_subvol(trans, rc, root);
1842 		if (ret)
1843 			btrfs_abort_transaction(trans, ret);
1844 	}
1845 
1846 	if (trans)
1847 		btrfs_end_transaction_throttle(trans);
1848 
1849 	btrfs_btree_balance_dirty(fs_info);
1850 
1851 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852 		invalidate_extent_cache(root, &key, &next_key);
1853 
1854 	return ret;
1855 }
1856 
1857 static noinline_for_stack
1858 int prepare_to_merge(struct reloc_control *rc, int err)
1859 {
1860 	struct btrfs_root *root = rc->extent_root;
1861 	struct btrfs_fs_info *fs_info = root->fs_info;
1862 	struct btrfs_root *reloc_root;
1863 	struct btrfs_trans_handle *trans;
1864 	LIST_HEAD(reloc_roots);
1865 	u64 num_bytes = 0;
1866 	int ret;
1867 
1868 	mutex_lock(&fs_info->reloc_mutex);
1869 	rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870 	rc->merging_rsv_size += rc->nodes_relocated * 2;
1871 	mutex_unlock(&fs_info->reloc_mutex);
1872 
1873 again:
1874 	if (!err) {
1875 		num_bytes = rc->merging_rsv_size;
1876 		ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877 					  BTRFS_RESERVE_FLUSH_ALL);
1878 		if (ret)
1879 			err = ret;
1880 	}
1881 
1882 	trans = btrfs_join_transaction(rc->extent_root);
1883 	if (IS_ERR(trans)) {
1884 		if (!err)
1885 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886 						num_bytes, NULL);
1887 		return PTR_ERR(trans);
1888 	}
1889 
1890 	if (!err) {
1891 		if (num_bytes != rc->merging_rsv_size) {
1892 			btrfs_end_transaction(trans);
1893 			btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894 						num_bytes, NULL);
1895 			goto again;
1896 		}
1897 	}
1898 
1899 	rc->merge_reloc_tree = 1;
1900 
1901 	while (!list_empty(&rc->reloc_roots)) {
1902 		reloc_root = list_entry(rc->reloc_roots.next,
1903 					struct btrfs_root, root_list);
1904 		list_del_init(&reloc_root->root_list);
1905 
1906 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907 				false);
1908 		if (IS_ERR(root)) {
1909 			/*
1910 			 * Even if we have an error we need this reloc root
1911 			 * back on our list so we can clean up properly.
1912 			 */
1913 			list_add(&reloc_root->root_list, &reloc_roots);
1914 			btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915 			if (!err)
1916 				err = PTR_ERR(root);
1917 			break;
1918 		}
1919 		ASSERT(root->reloc_root == reloc_root);
1920 
1921 		/*
1922 		 * set reference count to 1, so btrfs_recover_relocation
1923 		 * knows it should resumes merging
1924 		 */
1925 		if (!err)
1926 			btrfs_set_root_refs(&reloc_root->root_item, 1);
1927 		ret = btrfs_update_reloc_root(trans, root);
1928 
1929 		/*
1930 		 * Even if we have an error we need this reloc root back on our
1931 		 * list so we can clean up properly.
1932 		 */
1933 		list_add(&reloc_root->root_list, &reloc_roots);
1934 		btrfs_put_root(root);
1935 
1936 		if (ret) {
1937 			btrfs_abort_transaction(trans, ret);
1938 			if (!err)
1939 				err = ret;
1940 			break;
1941 		}
1942 	}
1943 
1944 	list_splice(&reloc_roots, &rc->reloc_roots);
1945 
1946 	if (!err)
1947 		err = btrfs_commit_transaction(trans);
1948 	else
1949 		btrfs_end_transaction(trans);
1950 	return err;
1951 }
1952 
1953 static noinline_for_stack
1954 void free_reloc_roots(struct list_head *list)
1955 {
1956 	struct btrfs_root *reloc_root, *tmp;
1957 
1958 	list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1959 		__del_reloc_root(reloc_root);
1960 }
1961 
1962 static noinline_for_stack
1963 void merge_reloc_roots(struct reloc_control *rc)
1964 {
1965 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1966 	struct btrfs_root *root;
1967 	struct btrfs_root *reloc_root;
1968 	LIST_HEAD(reloc_roots);
1969 	int found = 0;
1970 	int ret = 0;
1971 again:
1972 	root = rc->extent_root;
1973 
1974 	/*
1975 	 * this serializes us with btrfs_record_root_in_transaction,
1976 	 * we have to make sure nobody is in the middle of
1977 	 * adding their roots to the list while we are
1978 	 * doing this splice
1979 	 */
1980 	mutex_lock(&fs_info->reloc_mutex);
1981 	list_splice_init(&rc->reloc_roots, &reloc_roots);
1982 	mutex_unlock(&fs_info->reloc_mutex);
1983 
1984 	while (!list_empty(&reloc_roots)) {
1985 		found = 1;
1986 		reloc_root = list_entry(reloc_roots.next,
1987 					struct btrfs_root, root_list);
1988 
1989 		root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1990 					 false);
1991 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
1992 			if (IS_ERR(root)) {
1993 				/*
1994 				 * For recovery we read the fs roots on mount,
1995 				 * and if we didn't find the root then we marked
1996 				 * the reloc root as a garbage root.  For normal
1997 				 * relocation obviously the root should exist in
1998 				 * memory.  However there's no reason we can't
1999 				 * handle the error properly here just in case.
2000 				 */
2001 				ASSERT(0);
2002 				ret = PTR_ERR(root);
2003 				goto out;
2004 			}
2005 			if (root->reloc_root != reloc_root) {
2006 				/*
2007 				 * This is actually impossible without something
2008 				 * going really wrong (like weird race condition
2009 				 * or cosmic rays).
2010 				 */
2011 				ASSERT(0);
2012 				ret = -EINVAL;
2013 				goto out;
2014 			}
2015 			ret = merge_reloc_root(rc, root);
2016 			btrfs_put_root(root);
2017 			if (ret) {
2018 				if (list_empty(&reloc_root->root_list))
2019 					list_add_tail(&reloc_root->root_list,
2020 						      &reloc_roots);
2021 				goto out;
2022 			}
2023 		} else {
2024 			if (!IS_ERR(root)) {
2025 				if (root->reloc_root == reloc_root) {
2026 					root->reloc_root = NULL;
2027 					btrfs_put_root(reloc_root);
2028 				}
2029 				clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2030 					  &root->state);
2031 				btrfs_put_root(root);
2032 			}
2033 
2034 			list_del_init(&reloc_root->root_list);
2035 			/* Don't forget to queue this reloc root for cleanup */
2036 			list_add_tail(&reloc_root->reloc_dirty_list,
2037 				      &rc->dirty_subvol_roots);
2038 		}
2039 	}
2040 
2041 	if (found) {
2042 		found = 0;
2043 		goto again;
2044 	}
2045 out:
2046 	if (ret) {
2047 		btrfs_handle_fs_error(fs_info, ret, NULL);
2048 		free_reloc_roots(&reloc_roots);
2049 
2050 		/* new reloc root may be added */
2051 		mutex_lock(&fs_info->reloc_mutex);
2052 		list_splice_init(&rc->reloc_roots, &reloc_roots);
2053 		mutex_unlock(&fs_info->reloc_mutex);
2054 		free_reloc_roots(&reloc_roots);
2055 	}
2056 
2057 	/*
2058 	 * We used to have
2059 	 *
2060 	 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2061 	 *
2062 	 * here, but it's wrong.  If we fail to start the transaction in
2063 	 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2064 	 * have actually been removed from the reloc_root_tree rb tree.  This is
2065 	 * fine because we're bailing here, and we hold a reference on the root
2066 	 * for the list that holds it, so these roots will be cleaned up when we
2067 	 * do the reloc_dirty_list afterwards.  Meanwhile the root->reloc_root
2068 	 * will be cleaned up on unmount.
2069 	 *
2070 	 * The remaining nodes will be cleaned up by free_reloc_control.
2071 	 */
2072 }
2073 
2074 static void free_block_list(struct rb_root *blocks)
2075 {
2076 	struct tree_block *block;
2077 	struct rb_node *rb_node;
2078 	while ((rb_node = rb_first(blocks))) {
2079 		block = rb_entry(rb_node, struct tree_block, rb_node);
2080 		rb_erase(rb_node, blocks);
2081 		kfree(block);
2082 	}
2083 }
2084 
2085 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2086 				      struct btrfs_root *reloc_root)
2087 {
2088 	struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2089 	struct btrfs_root *root;
2090 	int ret;
2091 
2092 	if (reloc_root->last_trans == trans->transid)
2093 		return 0;
2094 
2095 	root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2096 
2097 	/*
2098 	 * This should succeed, since we can't have a reloc root without having
2099 	 * already looked up the actual root and created the reloc root for this
2100 	 * root.
2101 	 *
2102 	 * However if there's some sort of corruption where we have a ref to a
2103 	 * reloc root without a corresponding root this could return ENOENT.
2104 	 */
2105 	if (IS_ERR(root)) {
2106 		ASSERT(0);
2107 		return PTR_ERR(root);
2108 	}
2109 	if (root->reloc_root != reloc_root) {
2110 		ASSERT(0);
2111 		btrfs_err(fs_info,
2112 			  "root %llu has two reloc roots associated with it",
2113 			  reloc_root->root_key.offset);
2114 		btrfs_put_root(root);
2115 		return -EUCLEAN;
2116 	}
2117 	ret = btrfs_record_root_in_trans(trans, root);
2118 	btrfs_put_root(root);
2119 
2120 	return ret;
2121 }
2122 
2123 static noinline_for_stack
2124 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2125 				     struct reloc_control *rc,
2126 				     struct btrfs_backref_node *node,
2127 				     struct btrfs_backref_edge *edges[])
2128 {
2129 	struct btrfs_backref_node *next;
2130 	struct btrfs_root *root;
2131 	int index = 0;
2132 	int ret;
2133 
2134 	next = node;
2135 	while (1) {
2136 		cond_resched();
2137 		next = walk_up_backref(next, edges, &index);
2138 		root = next->root;
2139 
2140 		/*
2141 		 * If there is no root, then our references for this block are
2142 		 * incomplete, as we should be able to walk all the way up to a
2143 		 * block that is owned by a root.
2144 		 *
2145 		 * This path is only for SHAREABLE roots, so if we come upon a
2146 		 * non-SHAREABLE root then we have backrefs that resolve
2147 		 * improperly.
2148 		 *
2149 		 * Both of these cases indicate file system corruption, or a bug
2150 		 * in the backref walking code.
2151 		 */
2152 		if (!root) {
2153 			ASSERT(0);
2154 			btrfs_err(trans->fs_info,
2155 		"bytenr %llu doesn't have a backref path ending in a root",
2156 				  node->bytenr);
2157 			return ERR_PTR(-EUCLEAN);
2158 		}
2159 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2160 			ASSERT(0);
2161 			btrfs_err(trans->fs_info,
2162 	"bytenr %llu has multiple refs with one ending in a non-shareable root",
2163 				  node->bytenr);
2164 			return ERR_PTR(-EUCLEAN);
2165 		}
2166 
2167 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2168 			ret = record_reloc_root_in_trans(trans, root);
2169 			if (ret)
2170 				return ERR_PTR(ret);
2171 			break;
2172 		}
2173 
2174 		ret = btrfs_record_root_in_trans(trans, root);
2175 		if (ret)
2176 			return ERR_PTR(ret);
2177 		root = root->reloc_root;
2178 
2179 		/*
2180 		 * We could have raced with another thread which failed, so
2181 		 * root->reloc_root may not be set, return ENOENT in this case.
2182 		 */
2183 		if (!root)
2184 			return ERR_PTR(-ENOENT);
2185 
2186 		if (next->new_bytenr != root->node->start) {
2187 			/*
2188 			 * We just created the reloc root, so we shouldn't have
2189 			 * ->new_bytenr set and this shouldn't be in the changed
2190 			 *  list.  If it is then we have multiple roots pointing
2191 			 *  at the same bytenr which indicates corruption, or
2192 			 *  we've made a mistake in the backref walking code.
2193 			 */
2194 			ASSERT(next->new_bytenr == 0);
2195 			ASSERT(list_empty(&next->list));
2196 			if (next->new_bytenr || !list_empty(&next->list)) {
2197 				btrfs_err(trans->fs_info,
2198 	"bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2199 					  node->bytenr, next->bytenr);
2200 				return ERR_PTR(-EUCLEAN);
2201 			}
2202 
2203 			next->new_bytenr = root->node->start;
2204 			btrfs_put_root(next->root);
2205 			next->root = btrfs_grab_root(root);
2206 			ASSERT(next->root);
2207 			list_add_tail(&next->list,
2208 				      &rc->backref_cache.changed);
2209 			mark_block_processed(rc, next);
2210 			break;
2211 		}
2212 
2213 		WARN_ON(1);
2214 		root = NULL;
2215 		next = walk_down_backref(edges, &index);
2216 		if (!next || next->level <= node->level)
2217 			break;
2218 	}
2219 	if (!root) {
2220 		/*
2221 		 * This can happen if there's fs corruption or if there's a bug
2222 		 * in the backref lookup code.
2223 		 */
2224 		ASSERT(0);
2225 		return ERR_PTR(-ENOENT);
2226 	}
2227 
2228 	next = node;
2229 	/* setup backref node path for btrfs_reloc_cow_block */
2230 	while (1) {
2231 		rc->backref_cache.path[next->level] = next;
2232 		if (--index < 0)
2233 			break;
2234 		next = edges[index]->node[UPPER];
2235 	}
2236 	return root;
2237 }
2238 
2239 /*
2240  * Select a tree root for relocation.
2241  *
2242  * Return NULL if the block is not shareable. We should use do_relocation() in
2243  * this case.
2244  *
2245  * Return a tree root pointer if the block is shareable.
2246  * Return -ENOENT if the block is root of reloc tree.
2247  */
2248 static noinline_for_stack
2249 struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2250 {
2251 	struct btrfs_backref_node *next;
2252 	struct btrfs_root *root;
2253 	struct btrfs_root *fs_root = NULL;
2254 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2255 	int index = 0;
2256 
2257 	next = node;
2258 	while (1) {
2259 		cond_resched();
2260 		next = walk_up_backref(next, edges, &index);
2261 		root = next->root;
2262 
2263 		/*
2264 		 * This can occur if we have incomplete extent refs leading all
2265 		 * the way up a particular path, in this case return -EUCLEAN.
2266 		 */
2267 		if (!root)
2268 			return ERR_PTR(-EUCLEAN);
2269 
2270 		/* No other choice for non-shareable tree */
2271 		if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2272 			return root;
2273 
2274 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2275 			fs_root = root;
2276 
2277 		if (next != node)
2278 			return NULL;
2279 
2280 		next = walk_down_backref(edges, &index);
2281 		if (!next || next->level <= node->level)
2282 			break;
2283 	}
2284 
2285 	if (!fs_root)
2286 		return ERR_PTR(-ENOENT);
2287 	return fs_root;
2288 }
2289 
2290 static noinline_for_stack
2291 u64 calcu_metadata_size(struct reloc_control *rc,
2292 			struct btrfs_backref_node *node, int reserve)
2293 {
2294 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2295 	struct btrfs_backref_node *next = node;
2296 	struct btrfs_backref_edge *edge;
2297 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2298 	u64 num_bytes = 0;
2299 	int index = 0;
2300 
2301 	BUG_ON(reserve && node->processed);
2302 
2303 	while (next) {
2304 		cond_resched();
2305 		while (1) {
2306 			if (next->processed && (reserve || next != node))
2307 				break;
2308 
2309 			num_bytes += fs_info->nodesize;
2310 
2311 			if (list_empty(&next->upper))
2312 				break;
2313 
2314 			edge = list_entry(next->upper.next,
2315 					struct btrfs_backref_edge, list[LOWER]);
2316 			edges[index++] = edge;
2317 			next = edge->node[UPPER];
2318 		}
2319 		next = walk_down_backref(edges, &index);
2320 	}
2321 	return num_bytes;
2322 }
2323 
2324 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2325 				  struct reloc_control *rc,
2326 				  struct btrfs_backref_node *node)
2327 {
2328 	struct btrfs_root *root = rc->extent_root;
2329 	struct btrfs_fs_info *fs_info = root->fs_info;
2330 	u64 num_bytes;
2331 	int ret;
2332 	u64 tmp;
2333 
2334 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2335 
2336 	trans->block_rsv = rc->block_rsv;
2337 	rc->reserved_bytes += num_bytes;
2338 
2339 	/*
2340 	 * We are under a transaction here so we can only do limited flushing.
2341 	 * If we get an enospc just kick back -EAGAIN so we know to drop the
2342 	 * transaction and try to refill when we can flush all the things.
2343 	 */
2344 	ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2345 				     BTRFS_RESERVE_FLUSH_LIMIT);
2346 	if (ret) {
2347 		tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2348 		while (tmp <= rc->reserved_bytes)
2349 			tmp <<= 1;
2350 		/*
2351 		 * only one thread can access block_rsv at this point,
2352 		 * so we don't need hold lock to protect block_rsv.
2353 		 * we expand more reservation size here to allow enough
2354 		 * space for relocation and we will return earlier in
2355 		 * enospc case.
2356 		 */
2357 		rc->block_rsv->size = tmp + fs_info->nodesize *
2358 				      RELOCATION_RESERVED_NODES;
2359 		return -EAGAIN;
2360 	}
2361 
2362 	return 0;
2363 }
2364 
2365 /*
2366  * relocate a block tree, and then update pointers in upper level
2367  * blocks that reference the block to point to the new location.
2368  *
2369  * if called by link_to_upper, the block has already been relocated.
2370  * in that case this function just updates pointers.
2371  */
2372 static int do_relocation(struct btrfs_trans_handle *trans,
2373 			 struct reloc_control *rc,
2374 			 struct btrfs_backref_node *node,
2375 			 struct btrfs_key *key,
2376 			 struct btrfs_path *path, int lowest)
2377 {
2378 	struct btrfs_backref_node *upper;
2379 	struct btrfs_backref_edge *edge;
2380 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2381 	struct btrfs_root *root;
2382 	struct extent_buffer *eb;
2383 	u32 blocksize;
2384 	u64 bytenr;
2385 	int slot;
2386 	int ret = 0;
2387 
2388 	/*
2389 	 * If we are lowest then this is the first time we're processing this
2390 	 * block, and thus shouldn't have an eb associated with it yet.
2391 	 */
2392 	ASSERT(!lowest || !node->eb);
2393 
2394 	path->lowest_level = node->level + 1;
2395 	rc->backref_cache.path[node->level] = node;
2396 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2397 		struct btrfs_ref ref = { 0 };
2398 
2399 		cond_resched();
2400 
2401 		upper = edge->node[UPPER];
2402 		root = select_reloc_root(trans, rc, upper, edges);
2403 		if (IS_ERR(root)) {
2404 			ret = PTR_ERR(root);
2405 			goto next;
2406 		}
2407 
2408 		if (upper->eb && !upper->locked) {
2409 			if (!lowest) {
2410 				ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2411 				if (ret < 0)
2412 					goto next;
2413 				BUG_ON(ret);
2414 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2415 				if (node->eb->start == bytenr)
2416 					goto next;
2417 			}
2418 			btrfs_backref_drop_node_buffer(upper);
2419 		}
2420 
2421 		if (!upper->eb) {
2422 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2423 			if (ret) {
2424 				if (ret > 0)
2425 					ret = -ENOENT;
2426 
2427 				btrfs_release_path(path);
2428 				break;
2429 			}
2430 
2431 			if (!upper->eb) {
2432 				upper->eb = path->nodes[upper->level];
2433 				path->nodes[upper->level] = NULL;
2434 			} else {
2435 				BUG_ON(upper->eb != path->nodes[upper->level]);
2436 			}
2437 
2438 			upper->locked = 1;
2439 			path->locks[upper->level] = 0;
2440 
2441 			slot = path->slots[upper->level];
2442 			btrfs_release_path(path);
2443 		} else {
2444 			ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2445 			if (ret < 0)
2446 				goto next;
2447 			BUG_ON(ret);
2448 		}
2449 
2450 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2451 		if (lowest) {
2452 			if (bytenr != node->bytenr) {
2453 				btrfs_err(root->fs_info,
2454 		"lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2455 					  bytenr, node->bytenr, slot,
2456 					  upper->eb->start);
2457 				ret = -EIO;
2458 				goto next;
2459 			}
2460 		} else {
2461 			if (node->eb->start == bytenr)
2462 				goto next;
2463 		}
2464 
2465 		blocksize = root->fs_info->nodesize;
2466 		eb = btrfs_read_node_slot(upper->eb, slot);
2467 		if (IS_ERR(eb)) {
2468 			ret = PTR_ERR(eb);
2469 			goto next;
2470 		}
2471 		btrfs_tree_lock(eb);
2472 
2473 		if (!node->eb) {
2474 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2475 					      slot, &eb, BTRFS_NESTING_COW);
2476 			btrfs_tree_unlock(eb);
2477 			free_extent_buffer(eb);
2478 			if (ret < 0)
2479 				goto next;
2480 			/*
2481 			 * We've just COWed this block, it should have updated
2482 			 * the correct backref node entry.
2483 			 */
2484 			ASSERT(node->eb == eb);
2485 		} else {
2486 			btrfs_set_node_blockptr(upper->eb, slot,
2487 						node->eb->start);
2488 			btrfs_set_node_ptr_generation(upper->eb, slot,
2489 						      trans->transid);
2490 			btrfs_mark_buffer_dirty(upper->eb);
2491 
2492 			btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2493 					       node->eb->start, blocksize,
2494 					       upper->eb->start);
2495 			btrfs_init_tree_ref(&ref, node->level,
2496 					    btrfs_header_owner(upper->eb),
2497 					    root->root_key.objectid, false);
2498 			ret = btrfs_inc_extent_ref(trans, &ref);
2499 			if (!ret)
2500 				ret = btrfs_drop_subtree(trans, root, eb,
2501 							 upper->eb);
2502 			if (ret)
2503 				btrfs_abort_transaction(trans, ret);
2504 		}
2505 next:
2506 		if (!upper->pending)
2507 			btrfs_backref_drop_node_buffer(upper);
2508 		else
2509 			btrfs_backref_unlock_node_buffer(upper);
2510 		if (ret)
2511 			break;
2512 	}
2513 
2514 	if (!ret && node->pending) {
2515 		btrfs_backref_drop_node_buffer(node);
2516 		list_move_tail(&node->list, &rc->backref_cache.changed);
2517 		node->pending = 0;
2518 	}
2519 
2520 	path->lowest_level = 0;
2521 
2522 	/*
2523 	 * We should have allocated all of our space in the block rsv and thus
2524 	 * shouldn't ENOSPC.
2525 	 */
2526 	ASSERT(ret != -ENOSPC);
2527 	return ret;
2528 }
2529 
2530 static int link_to_upper(struct btrfs_trans_handle *trans,
2531 			 struct reloc_control *rc,
2532 			 struct btrfs_backref_node *node,
2533 			 struct btrfs_path *path)
2534 {
2535 	struct btrfs_key key;
2536 
2537 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2538 	return do_relocation(trans, rc, node, &key, path, 0);
2539 }
2540 
2541 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2542 				struct reloc_control *rc,
2543 				struct btrfs_path *path, int err)
2544 {
2545 	LIST_HEAD(list);
2546 	struct btrfs_backref_cache *cache = &rc->backref_cache;
2547 	struct btrfs_backref_node *node;
2548 	int level;
2549 	int ret;
2550 
2551 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2552 		while (!list_empty(&cache->pending[level])) {
2553 			node = list_entry(cache->pending[level].next,
2554 					  struct btrfs_backref_node, list);
2555 			list_move_tail(&node->list, &list);
2556 			BUG_ON(!node->pending);
2557 
2558 			if (!err) {
2559 				ret = link_to_upper(trans, rc, node, path);
2560 				if (ret < 0)
2561 					err = ret;
2562 			}
2563 		}
2564 		list_splice_init(&list, &cache->pending[level]);
2565 	}
2566 	return err;
2567 }
2568 
2569 /*
2570  * mark a block and all blocks directly/indirectly reference the block
2571  * as processed.
2572  */
2573 static void update_processed_blocks(struct reloc_control *rc,
2574 				    struct btrfs_backref_node *node)
2575 {
2576 	struct btrfs_backref_node *next = node;
2577 	struct btrfs_backref_edge *edge;
2578 	struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2579 	int index = 0;
2580 
2581 	while (next) {
2582 		cond_resched();
2583 		while (1) {
2584 			if (next->processed)
2585 				break;
2586 
2587 			mark_block_processed(rc, next);
2588 
2589 			if (list_empty(&next->upper))
2590 				break;
2591 
2592 			edge = list_entry(next->upper.next,
2593 					struct btrfs_backref_edge, list[LOWER]);
2594 			edges[index++] = edge;
2595 			next = edge->node[UPPER];
2596 		}
2597 		next = walk_down_backref(edges, &index);
2598 	}
2599 }
2600 
2601 static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2602 {
2603 	u32 blocksize = rc->extent_root->fs_info->nodesize;
2604 
2605 	if (test_range_bit(&rc->processed_blocks, bytenr,
2606 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2607 		return 1;
2608 	return 0;
2609 }
2610 
2611 static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2612 			      struct tree_block *block)
2613 {
2614 	struct btrfs_tree_parent_check check = {
2615 		.level = block->level,
2616 		.owner_root = block->owner,
2617 		.transid = block->key.offset
2618 	};
2619 	struct extent_buffer *eb;
2620 
2621 	eb = read_tree_block(fs_info, block->bytenr, &check);
2622 	if (IS_ERR(eb))
2623 		return PTR_ERR(eb);
2624 	if (!extent_buffer_uptodate(eb)) {
2625 		free_extent_buffer(eb);
2626 		return -EIO;
2627 	}
2628 	if (block->level == 0)
2629 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2630 	else
2631 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2632 	free_extent_buffer(eb);
2633 	block->key_ready = 1;
2634 	return 0;
2635 }
2636 
2637 /*
2638  * helper function to relocate a tree block
2639  */
2640 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2641 				struct reloc_control *rc,
2642 				struct btrfs_backref_node *node,
2643 				struct btrfs_key *key,
2644 				struct btrfs_path *path)
2645 {
2646 	struct btrfs_root *root;
2647 	int ret = 0;
2648 
2649 	if (!node)
2650 		return 0;
2651 
2652 	/*
2653 	 * If we fail here we want to drop our backref_node because we are going
2654 	 * to start over and regenerate the tree for it.
2655 	 */
2656 	ret = reserve_metadata_space(trans, rc, node);
2657 	if (ret)
2658 		goto out;
2659 
2660 	BUG_ON(node->processed);
2661 	root = select_one_root(node);
2662 	if (IS_ERR(root)) {
2663 		ret = PTR_ERR(root);
2664 
2665 		/* See explanation in select_one_root for the -EUCLEAN case. */
2666 		ASSERT(ret == -ENOENT);
2667 		if (ret == -ENOENT) {
2668 			ret = 0;
2669 			update_processed_blocks(rc, node);
2670 		}
2671 		goto out;
2672 	}
2673 
2674 	if (root) {
2675 		if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2676 			/*
2677 			 * This block was the root block of a root, and this is
2678 			 * the first time we're processing the block and thus it
2679 			 * should not have had the ->new_bytenr modified and
2680 			 * should have not been included on the changed list.
2681 			 *
2682 			 * However in the case of corruption we could have
2683 			 * multiple refs pointing to the same block improperly,
2684 			 * and thus we would trip over these checks.  ASSERT()
2685 			 * for the developer case, because it could indicate a
2686 			 * bug in the backref code, however error out for a
2687 			 * normal user in the case of corruption.
2688 			 */
2689 			ASSERT(node->new_bytenr == 0);
2690 			ASSERT(list_empty(&node->list));
2691 			if (node->new_bytenr || !list_empty(&node->list)) {
2692 				btrfs_err(root->fs_info,
2693 				  "bytenr %llu has improper references to it",
2694 					  node->bytenr);
2695 				ret = -EUCLEAN;
2696 				goto out;
2697 			}
2698 			ret = btrfs_record_root_in_trans(trans, root);
2699 			if (ret)
2700 				goto out;
2701 			/*
2702 			 * Another thread could have failed, need to check if we
2703 			 * have reloc_root actually set.
2704 			 */
2705 			if (!root->reloc_root) {
2706 				ret = -ENOENT;
2707 				goto out;
2708 			}
2709 			root = root->reloc_root;
2710 			node->new_bytenr = root->node->start;
2711 			btrfs_put_root(node->root);
2712 			node->root = btrfs_grab_root(root);
2713 			ASSERT(node->root);
2714 			list_add_tail(&node->list, &rc->backref_cache.changed);
2715 		} else {
2716 			path->lowest_level = node->level;
2717 			if (root == root->fs_info->chunk_root)
2718 				btrfs_reserve_chunk_metadata(trans, false);
2719 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2720 			btrfs_release_path(path);
2721 			if (root == root->fs_info->chunk_root)
2722 				btrfs_trans_release_chunk_metadata(trans);
2723 			if (ret > 0)
2724 				ret = 0;
2725 		}
2726 		if (!ret)
2727 			update_processed_blocks(rc, node);
2728 	} else {
2729 		ret = do_relocation(trans, rc, node, key, path, 1);
2730 	}
2731 out:
2732 	if (ret || node->level == 0 || node->cowonly)
2733 		btrfs_backref_cleanup_node(&rc->backref_cache, node);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * relocate a list of blocks
2739  */
2740 static noinline_for_stack
2741 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2742 			 struct reloc_control *rc, struct rb_root *blocks)
2743 {
2744 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2745 	struct btrfs_backref_node *node;
2746 	struct btrfs_path *path;
2747 	struct tree_block *block;
2748 	struct tree_block *next;
2749 	int ret;
2750 	int err = 0;
2751 
2752 	path = btrfs_alloc_path();
2753 	if (!path) {
2754 		err = -ENOMEM;
2755 		goto out_free_blocks;
2756 	}
2757 
2758 	/* Kick in readahead for tree blocks with missing keys */
2759 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2760 		if (!block->key_ready)
2761 			btrfs_readahead_tree_block(fs_info, block->bytenr,
2762 						   block->owner, 0,
2763 						   block->level);
2764 	}
2765 
2766 	/* Get first keys */
2767 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2768 		if (!block->key_ready) {
2769 			err = get_tree_block_key(fs_info, block);
2770 			if (err)
2771 				goto out_free_path;
2772 		}
2773 	}
2774 
2775 	/* Do tree relocation */
2776 	rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2777 		node = build_backref_tree(rc, &block->key,
2778 					  block->level, block->bytenr);
2779 		if (IS_ERR(node)) {
2780 			err = PTR_ERR(node);
2781 			goto out;
2782 		}
2783 
2784 		ret = relocate_tree_block(trans, rc, node, &block->key,
2785 					  path);
2786 		if (ret < 0) {
2787 			err = ret;
2788 			break;
2789 		}
2790 	}
2791 out:
2792 	err = finish_pending_nodes(trans, rc, path, err);
2793 
2794 out_free_path:
2795 	btrfs_free_path(path);
2796 out_free_blocks:
2797 	free_block_list(blocks);
2798 	return err;
2799 }
2800 
2801 static noinline_for_stack int prealloc_file_extent_cluster(
2802 				struct btrfs_inode *inode,
2803 				struct file_extent_cluster *cluster)
2804 {
2805 	u64 alloc_hint = 0;
2806 	u64 start;
2807 	u64 end;
2808 	u64 offset = inode->index_cnt;
2809 	u64 num_bytes;
2810 	int nr;
2811 	int ret = 0;
2812 	u64 i_size = i_size_read(&inode->vfs_inode);
2813 	u64 prealloc_start = cluster->start - offset;
2814 	u64 prealloc_end = cluster->end - offset;
2815 	u64 cur_offset = prealloc_start;
2816 
2817 	/*
2818 	 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2819 	 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2820 	 * btrfs_do_readpage() call of previously relocated file cluster.
2821 	 *
2822 	 * If the current cluster starts in the above range, btrfs_do_readpage()
2823 	 * will skip the read, and relocate_one_page() will later writeback
2824 	 * the padding zeros as new data, causing data corruption.
2825 	 *
2826 	 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2827 	 */
2828 	if (!PAGE_ALIGNED(i_size)) {
2829 		struct address_space *mapping = inode->vfs_inode.i_mapping;
2830 		struct btrfs_fs_info *fs_info = inode->root->fs_info;
2831 		const u32 sectorsize = fs_info->sectorsize;
2832 		struct page *page;
2833 
2834 		ASSERT(sectorsize < PAGE_SIZE);
2835 		ASSERT(IS_ALIGNED(i_size, sectorsize));
2836 
2837 		/*
2838 		 * Subpage can't handle page with DIRTY but without UPTODATE
2839 		 * bit as it can lead to the following deadlock:
2840 		 *
2841 		 * btrfs_read_folio()
2842 		 * | Page already *locked*
2843 		 * |- btrfs_lock_and_flush_ordered_range()
2844 		 *    |- btrfs_start_ordered_extent()
2845 		 *       |- extent_write_cache_pages()
2846 		 *          |- lock_page()
2847 		 *             We try to lock the page we already hold.
2848 		 *
2849 		 * Here we just writeback the whole data reloc inode, so that
2850 		 * we will be ensured to have no dirty range in the page, and
2851 		 * are safe to clear the uptodate bits.
2852 		 *
2853 		 * This shouldn't cause too much overhead, as we need to write
2854 		 * the data back anyway.
2855 		 */
2856 		ret = filemap_write_and_wait(mapping);
2857 		if (ret < 0)
2858 			return ret;
2859 
2860 		clear_extent_bits(&inode->io_tree, i_size,
2861 				  round_up(i_size, PAGE_SIZE) - 1,
2862 				  EXTENT_UPTODATE);
2863 		page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2864 		/*
2865 		 * If page is freed we don't need to do anything then, as we
2866 		 * will re-read the whole page anyway.
2867 		 */
2868 		if (page) {
2869 			btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2870 					round_up(i_size, PAGE_SIZE) - i_size);
2871 			unlock_page(page);
2872 			put_page(page);
2873 		}
2874 	}
2875 
2876 	BUG_ON(cluster->start != cluster->boundary[0]);
2877 	ret = btrfs_alloc_data_chunk_ondemand(inode,
2878 					      prealloc_end + 1 - prealloc_start);
2879 	if (ret)
2880 		return ret;
2881 
2882 	btrfs_inode_lock(inode, 0);
2883 	for (nr = 0; nr < cluster->nr; nr++) {
2884 		struct extent_state *cached_state = NULL;
2885 
2886 		start = cluster->boundary[nr] - offset;
2887 		if (nr + 1 < cluster->nr)
2888 			end = cluster->boundary[nr + 1] - 1 - offset;
2889 		else
2890 			end = cluster->end - offset;
2891 
2892 		lock_extent(&inode->io_tree, start, end, &cached_state);
2893 		num_bytes = end + 1 - start;
2894 		ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2895 						num_bytes, num_bytes,
2896 						end + 1, &alloc_hint);
2897 		cur_offset = end + 1;
2898 		unlock_extent(&inode->io_tree, start, end, &cached_state);
2899 		if (ret)
2900 			break;
2901 	}
2902 	btrfs_inode_unlock(inode, 0);
2903 
2904 	if (cur_offset < prealloc_end)
2905 		btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2906 					       prealloc_end + 1 - cur_offset);
2907 	return ret;
2908 }
2909 
2910 static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2911 				u64 start, u64 end, u64 block_start)
2912 {
2913 	struct extent_map *em;
2914 	struct extent_state *cached_state = NULL;
2915 	int ret = 0;
2916 
2917 	em = alloc_extent_map();
2918 	if (!em)
2919 		return -ENOMEM;
2920 
2921 	em->start = start;
2922 	em->len = end + 1 - start;
2923 	em->block_len = em->len;
2924 	em->block_start = block_start;
2925 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
2926 
2927 	lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2928 	ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2929 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2930 	free_extent_map(em);
2931 
2932 	return ret;
2933 }
2934 
2935 /*
2936  * Allow error injection to test balance/relocation cancellation
2937  */
2938 noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2939 {
2940 	return atomic_read(&fs_info->balance_cancel_req) ||
2941 		atomic_read(&fs_info->reloc_cancel_req) ||
2942 		fatal_signal_pending(current);
2943 }
2944 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2945 
2946 static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2947 				    int cluster_nr)
2948 {
2949 	/* Last extent, use cluster end directly */
2950 	if (cluster_nr >= cluster->nr - 1)
2951 		return cluster->end;
2952 
2953 	/* Use next boundary start*/
2954 	return cluster->boundary[cluster_nr + 1] - 1;
2955 }
2956 
2957 static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2958 			     struct file_extent_cluster *cluster,
2959 			     int *cluster_nr, unsigned long page_index)
2960 {
2961 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2962 	u64 offset = BTRFS_I(inode)->index_cnt;
2963 	const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2964 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2965 	struct page *page;
2966 	u64 page_start;
2967 	u64 page_end;
2968 	u64 cur;
2969 	int ret;
2970 
2971 	ASSERT(page_index <= last_index);
2972 	page = find_lock_page(inode->i_mapping, page_index);
2973 	if (!page) {
2974 		page_cache_sync_readahead(inode->i_mapping, ra, NULL,
2975 				page_index, last_index + 1 - page_index);
2976 		page = find_or_create_page(inode->i_mapping, page_index, mask);
2977 		if (!page)
2978 			return -ENOMEM;
2979 	}
2980 	ret = set_page_extent_mapped(page);
2981 	if (ret < 0)
2982 		goto release_page;
2983 
2984 	if (PageReadahead(page))
2985 		page_cache_async_readahead(inode->i_mapping, ra, NULL,
2986 				page_folio(page), page_index,
2987 				last_index + 1 - page_index);
2988 
2989 	if (!PageUptodate(page)) {
2990 		btrfs_read_folio(NULL, page_folio(page));
2991 		lock_page(page);
2992 		if (!PageUptodate(page)) {
2993 			ret = -EIO;
2994 			goto release_page;
2995 		}
2996 	}
2997 
2998 	page_start = page_offset(page);
2999 	page_end = page_start + PAGE_SIZE - 1;
3000 
3001 	/*
3002 	 * Start from the cluster, as for subpage case, the cluster can start
3003 	 * inside the page.
3004 	 */
3005 	cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3006 	while (cur <= page_end) {
3007 		struct extent_state *cached_state = NULL;
3008 		u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3009 		u64 extent_end = get_cluster_boundary_end(cluster,
3010 						*cluster_nr) - offset;
3011 		u64 clamped_start = max(page_start, extent_start);
3012 		u64 clamped_end = min(page_end, extent_end);
3013 		u32 clamped_len = clamped_end + 1 - clamped_start;
3014 
3015 		/* Reserve metadata for this range */
3016 		ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3017 						      clamped_len, clamped_len,
3018 						      false);
3019 		if (ret)
3020 			goto release_page;
3021 
3022 		/* Mark the range delalloc and dirty for later writeback */
3023 		lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3024 			    &cached_state);
3025 		ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3026 						clamped_end, 0, &cached_state);
3027 		if (ret) {
3028 			clear_extent_bit(&BTRFS_I(inode)->io_tree,
3029 					 clamped_start, clamped_end,
3030 					 EXTENT_LOCKED | EXTENT_BOUNDARY,
3031 					 &cached_state);
3032 			btrfs_delalloc_release_metadata(BTRFS_I(inode),
3033 							clamped_len, true);
3034 			btrfs_delalloc_release_extents(BTRFS_I(inode),
3035 						       clamped_len);
3036 			goto release_page;
3037 		}
3038 		btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3039 
3040 		/*
3041 		 * Set the boundary if it's inside the page.
3042 		 * Data relocation requires the destination extents to have the
3043 		 * same size as the source.
3044 		 * EXTENT_BOUNDARY bit prevents current extent from being merged
3045 		 * with previous extent.
3046 		 */
3047 		if (in_range(cluster->boundary[*cluster_nr] - offset,
3048 			     page_start, PAGE_SIZE)) {
3049 			u64 boundary_start = cluster->boundary[*cluster_nr] -
3050 						offset;
3051 			u64 boundary_end = boundary_start +
3052 					   fs_info->sectorsize - 1;
3053 
3054 			set_extent_bit(&BTRFS_I(inode)->io_tree,
3055 				       boundary_start, boundary_end,
3056 				       EXTENT_BOUNDARY, NULL);
3057 		}
3058 		unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3059 			      &cached_state);
3060 		btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3061 		cur += clamped_len;
3062 
3063 		/* Crossed extent end, go to next extent */
3064 		if (cur >= extent_end) {
3065 			(*cluster_nr)++;
3066 			/* Just finished the last extent of the cluster, exit. */
3067 			if (*cluster_nr >= cluster->nr)
3068 				break;
3069 		}
3070 	}
3071 	unlock_page(page);
3072 	put_page(page);
3073 
3074 	balance_dirty_pages_ratelimited(inode->i_mapping);
3075 	btrfs_throttle(fs_info);
3076 	if (btrfs_should_cancel_balance(fs_info))
3077 		ret = -ECANCELED;
3078 	return ret;
3079 
3080 release_page:
3081 	unlock_page(page);
3082 	put_page(page);
3083 	return ret;
3084 }
3085 
3086 static int relocate_file_extent_cluster(struct inode *inode,
3087 					struct file_extent_cluster *cluster)
3088 {
3089 	u64 offset = BTRFS_I(inode)->index_cnt;
3090 	unsigned long index;
3091 	unsigned long last_index;
3092 	struct file_ra_state *ra;
3093 	int cluster_nr = 0;
3094 	int ret = 0;
3095 
3096 	if (!cluster->nr)
3097 		return 0;
3098 
3099 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3100 	if (!ra)
3101 		return -ENOMEM;
3102 
3103 	ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3104 	if (ret)
3105 		goto out;
3106 
3107 	file_ra_state_init(ra, inode->i_mapping);
3108 
3109 	ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3110 				   cluster->end - offset, cluster->start);
3111 	if (ret)
3112 		goto out;
3113 
3114 	last_index = (cluster->end - offset) >> PAGE_SHIFT;
3115 	for (index = (cluster->start - offset) >> PAGE_SHIFT;
3116 	     index <= last_index && !ret; index++)
3117 		ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3118 	if (ret == 0)
3119 		WARN_ON(cluster_nr != cluster->nr);
3120 out:
3121 	kfree(ra);
3122 	return ret;
3123 }
3124 
3125 static noinline_for_stack
3126 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3127 			 struct file_extent_cluster *cluster)
3128 {
3129 	int ret;
3130 
3131 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3132 		ret = relocate_file_extent_cluster(inode, cluster);
3133 		if (ret)
3134 			return ret;
3135 		cluster->nr = 0;
3136 	}
3137 
3138 	if (!cluster->nr)
3139 		cluster->start = extent_key->objectid;
3140 	else
3141 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3142 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3143 	cluster->boundary[cluster->nr] = extent_key->objectid;
3144 	cluster->nr++;
3145 
3146 	if (cluster->nr >= MAX_EXTENTS) {
3147 		ret = relocate_file_extent_cluster(inode, cluster);
3148 		if (ret)
3149 			return ret;
3150 		cluster->nr = 0;
3151 	}
3152 	return 0;
3153 }
3154 
3155 /*
3156  * helper to add a tree block to the list.
3157  * the major work is getting the generation and level of the block
3158  */
3159 static int add_tree_block(struct reloc_control *rc,
3160 			  struct btrfs_key *extent_key,
3161 			  struct btrfs_path *path,
3162 			  struct rb_root *blocks)
3163 {
3164 	struct extent_buffer *eb;
3165 	struct btrfs_extent_item *ei;
3166 	struct btrfs_tree_block_info *bi;
3167 	struct tree_block *block;
3168 	struct rb_node *rb_node;
3169 	u32 item_size;
3170 	int level = -1;
3171 	u64 generation;
3172 	u64 owner = 0;
3173 
3174 	eb =  path->nodes[0];
3175 	item_size = btrfs_item_size(eb, path->slots[0]);
3176 
3177 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3178 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3179 		unsigned long ptr = 0, end;
3180 
3181 		ei = btrfs_item_ptr(eb, path->slots[0],
3182 				struct btrfs_extent_item);
3183 		end = (unsigned long)ei + item_size;
3184 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3185 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3186 			level = btrfs_tree_block_level(eb, bi);
3187 			ptr = (unsigned long)(bi + 1);
3188 		} else {
3189 			level = (int)extent_key->offset;
3190 			ptr = (unsigned long)(ei + 1);
3191 		}
3192 		generation = btrfs_extent_generation(eb, ei);
3193 
3194 		/*
3195 		 * We're reading random blocks without knowing their owner ahead
3196 		 * of time.  This is ok most of the time, as all reloc roots and
3197 		 * fs roots have the same lock type.  However normal trees do
3198 		 * not, and the only way to know ahead of time is to read the
3199 		 * inline ref offset.  We know it's an fs root if
3200 		 *
3201 		 * 1. There's more than one ref.
3202 		 * 2. There's a SHARED_DATA_REF_KEY set.
3203 		 * 3. FULL_BACKREF is set on the flags.
3204 		 *
3205 		 * Otherwise it's safe to assume that the ref offset == the
3206 		 * owner of this block, so we can use that when calling
3207 		 * read_tree_block.
3208 		 */
3209 		if (btrfs_extent_refs(eb, ei) == 1 &&
3210 		    !(btrfs_extent_flags(eb, ei) &
3211 		      BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3212 		    ptr < end) {
3213 			struct btrfs_extent_inline_ref *iref;
3214 			int type;
3215 
3216 			iref = (struct btrfs_extent_inline_ref *)ptr;
3217 			type = btrfs_get_extent_inline_ref_type(eb, iref,
3218 							BTRFS_REF_TYPE_BLOCK);
3219 			if (type == BTRFS_REF_TYPE_INVALID)
3220 				return -EINVAL;
3221 			if (type == BTRFS_TREE_BLOCK_REF_KEY)
3222 				owner = btrfs_extent_inline_ref_offset(eb, iref);
3223 		}
3224 	} else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3225 		btrfs_print_v0_err(eb->fs_info);
3226 		btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3227 		return -EINVAL;
3228 	} else {
3229 		BUG();
3230 	}
3231 
3232 	btrfs_release_path(path);
3233 
3234 	BUG_ON(level == -1);
3235 
3236 	block = kmalloc(sizeof(*block), GFP_NOFS);
3237 	if (!block)
3238 		return -ENOMEM;
3239 
3240 	block->bytenr = extent_key->objectid;
3241 	block->key.objectid = rc->extent_root->fs_info->nodesize;
3242 	block->key.offset = generation;
3243 	block->level = level;
3244 	block->key_ready = 0;
3245 	block->owner = owner;
3246 
3247 	rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3248 	if (rb_node)
3249 		btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3250 				    -EEXIST);
3251 
3252 	return 0;
3253 }
3254 
3255 /*
3256  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3257  */
3258 static int __add_tree_block(struct reloc_control *rc,
3259 			    u64 bytenr, u32 blocksize,
3260 			    struct rb_root *blocks)
3261 {
3262 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3263 	struct btrfs_path *path;
3264 	struct btrfs_key key;
3265 	int ret;
3266 	bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3267 
3268 	if (tree_block_processed(bytenr, rc))
3269 		return 0;
3270 
3271 	if (rb_simple_search(blocks, bytenr))
3272 		return 0;
3273 
3274 	path = btrfs_alloc_path();
3275 	if (!path)
3276 		return -ENOMEM;
3277 again:
3278 	key.objectid = bytenr;
3279 	if (skinny) {
3280 		key.type = BTRFS_METADATA_ITEM_KEY;
3281 		key.offset = (u64)-1;
3282 	} else {
3283 		key.type = BTRFS_EXTENT_ITEM_KEY;
3284 		key.offset = blocksize;
3285 	}
3286 
3287 	path->search_commit_root = 1;
3288 	path->skip_locking = 1;
3289 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3290 	if (ret < 0)
3291 		goto out;
3292 
3293 	if (ret > 0 && skinny) {
3294 		if (path->slots[0]) {
3295 			path->slots[0]--;
3296 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3297 					      path->slots[0]);
3298 			if (key.objectid == bytenr &&
3299 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3300 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3301 			      key.offset == blocksize)))
3302 				ret = 0;
3303 		}
3304 
3305 		if (ret) {
3306 			skinny = false;
3307 			btrfs_release_path(path);
3308 			goto again;
3309 		}
3310 	}
3311 	if (ret) {
3312 		ASSERT(ret == 1);
3313 		btrfs_print_leaf(path->nodes[0]);
3314 		btrfs_err(fs_info,
3315 	     "tree block extent item (%llu) is not found in extent tree",
3316 		     bytenr);
3317 		WARN_ON(1);
3318 		ret = -EINVAL;
3319 		goto out;
3320 	}
3321 
3322 	ret = add_tree_block(rc, &key, path, blocks);
3323 out:
3324 	btrfs_free_path(path);
3325 	return ret;
3326 }
3327 
3328 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3329 				    struct btrfs_block_group *block_group,
3330 				    struct inode *inode,
3331 				    u64 ino)
3332 {
3333 	struct btrfs_root *root = fs_info->tree_root;
3334 	struct btrfs_trans_handle *trans;
3335 	int ret = 0;
3336 
3337 	if (inode)
3338 		goto truncate;
3339 
3340 	inode = btrfs_iget(fs_info->sb, ino, root);
3341 	if (IS_ERR(inode))
3342 		return -ENOENT;
3343 
3344 truncate:
3345 	ret = btrfs_check_trunc_cache_free_space(fs_info,
3346 						 &fs_info->global_block_rsv);
3347 	if (ret)
3348 		goto out;
3349 
3350 	trans = btrfs_join_transaction(root);
3351 	if (IS_ERR(trans)) {
3352 		ret = PTR_ERR(trans);
3353 		goto out;
3354 	}
3355 
3356 	ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3357 
3358 	btrfs_end_transaction(trans);
3359 	btrfs_btree_balance_dirty(fs_info);
3360 out:
3361 	iput(inode);
3362 	return ret;
3363 }
3364 
3365 /*
3366  * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3367  * cache inode, to avoid free space cache data extent blocking data relocation.
3368  */
3369 static int delete_v1_space_cache(struct extent_buffer *leaf,
3370 				 struct btrfs_block_group *block_group,
3371 				 u64 data_bytenr)
3372 {
3373 	u64 space_cache_ino;
3374 	struct btrfs_file_extent_item *ei;
3375 	struct btrfs_key key;
3376 	bool found = false;
3377 	int i;
3378 	int ret;
3379 
3380 	if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3381 		return 0;
3382 
3383 	for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3384 		u8 type;
3385 
3386 		btrfs_item_key_to_cpu(leaf, &key, i);
3387 		if (key.type != BTRFS_EXTENT_DATA_KEY)
3388 			continue;
3389 		ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3390 		type = btrfs_file_extent_type(leaf, ei);
3391 
3392 		if ((type == BTRFS_FILE_EXTENT_REG ||
3393 		     type == BTRFS_FILE_EXTENT_PREALLOC) &&
3394 		    btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3395 			found = true;
3396 			space_cache_ino = key.objectid;
3397 			break;
3398 		}
3399 	}
3400 	if (!found)
3401 		return -ENOENT;
3402 	ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3403 					space_cache_ino);
3404 	return ret;
3405 }
3406 
3407 /*
3408  * helper to find all tree blocks that reference a given data extent
3409  */
3410 static noinline_for_stack
3411 int add_data_references(struct reloc_control *rc,
3412 			struct btrfs_key *extent_key,
3413 			struct btrfs_path *path,
3414 			struct rb_root *blocks)
3415 {
3416 	struct btrfs_backref_walk_ctx ctx = { 0 };
3417 	struct ulist_iterator leaf_uiter;
3418 	struct ulist_node *ref_node = NULL;
3419 	const u32 blocksize = rc->extent_root->fs_info->nodesize;
3420 	int ret = 0;
3421 
3422 	btrfs_release_path(path);
3423 
3424 	ctx.bytenr = extent_key->objectid;
3425 	ctx.skip_inode_ref_list = true;
3426 	ctx.fs_info = rc->extent_root->fs_info;
3427 
3428 	ret = btrfs_find_all_leafs(&ctx);
3429 	if (ret < 0)
3430 		return ret;
3431 
3432 	ULIST_ITER_INIT(&leaf_uiter);
3433 	while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3434 		struct btrfs_tree_parent_check check = { 0 };
3435 		struct extent_buffer *eb;
3436 
3437 		eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3438 		if (IS_ERR(eb)) {
3439 			ret = PTR_ERR(eb);
3440 			break;
3441 		}
3442 		ret = delete_v1_space_cache(eb, rc->block_group,
3443 					    extent_key->objectid);
3444 		free_extent_buffer(eb);
3445 		if (ret < 0)
3446 			break;
3447 		ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3448 		if (ret < 0)
3449 			break;
3450 	}
3451 	if (ret < 0)
3452 		free_block_list(blocks);
3453 	ulist_free(ctx.refs);
3454 	return ret;
3455 }
3456 
3457 /*
3458  * helper to find next unprocessed extent
3459  */
3460 static noinline_for_stack
3461 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3462 		     struct btrfs_key *extent_key)
3463 {
3464 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3465 	struct btrfs_key key;
3466 	struct extent_buffer *leaf;
3467 	u64 start, end, last;
3468 	int ret;
3469 
3470 	last = rc->block_group->start + rc->block_group->length;
3471 	while (1) {
3472 		cond_resched();
3473 		if (rc->search_start >= last) {
3474 			ret = 1;
3475 			break;
3476 		}
3477 
3478 		key.objectid = rc->search_start;
3479 		key.type = BTRFS_EXTENT_ITEM_KEY;
3480 		key.offset = 0;
3481 
3482 		path->search_commit_root = 1;
3483 		path->skip_locking = 1;
3484 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3485 					0, 0);
3486 		if (ret < 0)
3487 			break;
3488 next:
3489 		leaf = path->nodes[0];
3490 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3491 			ret = btrfs_next_leaf(rc->extent_root, path);
3492 			if (ret != 0)
3493 				break;
3494 			leaf = path->nodes[0];
3495 		}
3496 
3497 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3498 		if (key.objectid >= last) {
3499 			ret = 1;
3500 			break;
3501 		}
3502 
3503 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3504 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3505 			path->slots[0]++;
3506 			goto next;
3507 		}
3508 
3509 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3510 		    key.objectid + key.offset <= rc->search_start) {
3511 			path->slots[0]++;
3512 			goto next;
3513 		}
3514 
3515 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3516 		    key.objectid + fs_info->nodesize <=
3517 		    rc->search_start) {
3518 			path->slots[0]++;
3519 			goto next;
3520 		}
3521 
3522 		ret = find_first_extent_bit(&rc->processed_blocks,
3523 					    key.objectid, &start, &end,
3524 					    EXTENT_DIRTY, NULL);
3525 
3526 		if (ret == 0 && start <= key.objectid) {
3527 			btrfs_release_path(path);
3528 			rc->search_start = end + 1;
3529 		} else {
3530 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3531 				rc->search_start = key.objectid + key.offset;
3532 			else
3533 				rc->search_start = key.objectid +
3534 					fs_info->nodesize;
3535 			memcpy(extent_key, &key, sizeof(key));
3536 			return 0;
3537 		}
3538 	}
3539 	btrfs_release_path(path);
3540 	return ret;
3541 }
3542 
3543 static void set_reloc_control(struct reloc_control *rc)
3544 {
3545 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3546 
3547 	mutex_lock(&fs_info->reloc_mutex);
3548 	fs_info->reloc_ctl = rc;
3549 	mutex_unlock(&fs_info->reloc_mutex);
3550 }
3551 
3552 static void unset_reloc_control(struct reloc_control *rc)
3553 {
3554 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3555 
3556 	mutex_lock(&fs_info->reloc_mutex);
3557 	fs_info->reloc_ctl = NULL;
3558 	mutex_unlock(&fs_info->reloc_mutex);
3559 }
3560 
3561 static noinline_for_stack
3562 int prepare_to_relocate(struct reloc_control *rc)
3563 {
3564 	struct btrfs_trans_handle *trans;
3565 	int ret;
3566 
3567 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3568 					      BTRFS_BLOCK_RSV_TEMP);
3569 	if (!rc->block_rsv)
3570 		return -ENOMEM;
3571 
3572 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3573 	rc->search_start = rc->block_group->start;
3574 	rc->extents_found = 0;
3575 	rc->nodes_relocated = 0;
3576 	rc->merging_rsv_size = 0;
3577 	rc->reserved_bytes = 0;
3578 	rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3579 			      RELOCATION_RESERVED_NODES;
3580 	ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3581 				     rc->block_rsv, rc->block_rsv->size,
3582 				     BTRFS_RESERVE_FLUSH_ALL);
3583 	if (ret)
3584 		return ret;
3585 
3586 	rc->create_reloc_tree = 1;
3587 	set_reloc_control(rc);
3588 
3589 	trans = btrfs_join_transaction(rc->extent_root);
3590 	if (IS_ERR(trans)) {
3591 		unset_reloc_control(rc);
3592 		/*
3593 		 * extent tree is not a ref_cow tree and has no reloc_root to
3594 		 * cleanup.  And callers are responsible to free the above
3595 		 * block rsv.
3596 		 */
3597 		return PTR_ERR(trans);
3598 	}
3599 
3600 	ret = btrfs_commit_transaction(trans);
3601 	if (ret)
3602 		unset_reloc_control(rc);
3603 
3604 	return ret;
3605 }
3606 
3607 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3608 {
3609 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3610 	struct rb_root blocks = RB_ROOT;
3611 	struct btrfs_key key;
3612 	struct btrfs_trans_handle *trans = NULL;
3613 	struct btrfs_path *path;
3614 	struct btrfs_extent_item *ei;
3615 	u64 flags;
3616 	int ret;
3617 	int err = 0;
3618 	int progress = 0;
3619 
3620 	path = btrfs_alloc_path();
3621 	if (!path)
3622 		return -ENOMEM;
3623 	path->reada = READA_FORWARD;
3624 
3625 	ret = prepare_to_relocate(rc);
3626 	if (ret) {
3627 		err = ret;
3628 		goto out_free;
3629 	}
3630 
3631 	while (1) {
3632 		rc->reserved_bytes = 0;
3633 		ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3634 					     rc->block_rsv->size,
3635 					     BTRFS_RESERVE_FLUSH_ALL);
3636 		if (ret) {
3637 			err = ret;
3638 			break;
3639 		}
3640 		progress++;
3641 		trans = btrfs_start_transaction(rc->extent_root, 0);
3642 		if (IS_ERR(trans)) {
3643 			err = PTR_ERR(trans);
3644 			trans = NULL;
3645 			break;
3646 		}
3647 restart:
3648 		if (update_backref_cache(trans, &rc->backref_cache)) {
3649 			btrfs_end_transaction(trans);
3650 			trans = NULL;
3651 			continue;
3652 		}
3653 
3654 		ret = find_next_extent(rc, path, &key);
3655 		if (ret < 0)
3656 			err = ret;
3657 		if (ret != 0)
3658 			break;
3659 
3660 		rc->extents_found++;
3661 
3662 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3663 				    struct btrfs_extent_item);
3664 		flags = btrfs_extent_flags(path->nodes[0], ei);
3665 
3666 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3667 			ret = add_tree_block(rc, &key, path, &blocks);
3668 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3669 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3670 			ret = add_data_references(rc, &key, path, &blocks);
3671 		} else {
3672 			btrfs_release_path(path);
3673 			ret = 0;
3674 		}
3675 		if (ret < 0) {
3676 			err = ret;
3677 			break;
3678 		}
3679 
3680 		if (!RB_EMPTY_ROOT(&blocks)) {
3681 			ret = relocate_tree_blocks(trans, rc, &blocks);
3682 			if (ret < 0) {
3683 				if (ret != -EAGAIN) {
3684 					err = ret;
3685 					break;
3686 				}
3687 				rc->extents_found--;
3688 				rc->search_start = key.objectid;
3689 			}
3690 		}
3691 
3692 		btrfs_end_transaction_throttle(trans);
3693 		btrfs_btree_balance_dirty(fs_info);
3694 		trans = NULL;
3695 
3696 		if (rc->stage == MOVE_DATA_EXTENTS &&
3697 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
3698 			rc->found_file_extent = 1;
3699 			ret = relocate_data_extent(rc->data_inode,
3700 						   &key, &rc->cluster);
3701 			if (ret < 0) {
3702 				err = ret;
3703 				break;
3704 			}
3705 		}
3706 		if (btrfs_should_cancel_balance(fs_info)) {
3707 			err = -ECANCELED;
3708 			break;
3709 		}
3710 	}
3711 	if (trans && progress && err == -ENOSPC) {
3712 		ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3713 		if (ret == 1) {
3714 			err = 0;
3715 			progress = 0;
3716 			goto restart;
3717 		}
3718 	}
3719 
3720 	btrfs_release_path(path);
3721 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3722 
3723 	if (trans) {
3724 		btrfs_end_transaction_throttle(trans);
3725 		btrfs_btree_balance_dirty(fs_info);
3726 	}
3727 
3728 	if (!err) {
3729 		ret = relocate_file_extent_cluster(rc->data_inode,
3730 						   &rc->cluster);
3731 		if (ret < 0)
3732 			err = ret;
3733 	}
3734 
3735 	rc->create_reloc_tree = 0;
3736 	set_reloc_control(rc);
3737 
3738 	btrfs_backref_release_cache(&rc->backref_cache);
3739 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3740 
3741 	/*
3742 	 * Even in the case when the relocation is cancelled, we should all go
3743 	 * through prepare_to_merge() and merge_reloc_roots().
3744 	 *
3745 	 * For error (including cancelled balance), prepare_to_merge() will
3746 	 * mark all reloc trees orphan, then queue them for cleanup in
3747 	 * merge_reloc_roots()
3748 	 */
3749 	err = prepare_to_merge(rc, err);
3750 
3751 	merge_reloc_roots(rc);
3752 
3753 	rc->merge_reloc_tree = 0;
3754 	unset_reloc_control(rc);
3755 	btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3756 
3757 	/* get rid of pinned extents */
3758 	trans = btrfs_join_transaction(rc->extent_root);
3759 	if (IS_ERR(trans)) {
3760 		err = PTR_ERR(trans);
3761 		goto out_free;
3762 	}
3763 	ret = btrfs_commit_transaction(trans);
3764 	if (ret && !err)
3765 		err = ret;
3766 out_free:
3767 	ret = clean_dirty_subvols(rc);
3768 	if (ret < 0 && !err)
3769 		err = ret;
3770 	btrfs_free_block_rsv(fs_info, rc->block_rsv);
3771 	btrfs_free_path(path);
3772 	return err;
3773 }
3774 
3775 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3776 				 struct btrfs_root *root, u64 objectid)
3777 {
3778 	struct btrfs_path *path;
3779 	struct btrfs_inode_item *item;
3780 	struct extent_buffer *leaf;
3781 	int ret;
3782 
3783 	path = btrfs_alloc_path();
3784 	if (!path)
3785 		return -ENOMEM;
3786 
3787 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3788 	if (ret)
3789 		goto out;
3790 
3791 	leaf = path->nodes[0];
3792 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3793 	memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3794 	btrfs_set_inode_generation(leaf, item, 1);
3795 	btrfs_set_inode_size(leaf, item, 0);
3796 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3797 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3798 					  BTRFS_INODE_PREALLOC);
3799 	btrfs_mark_buffer_dirty(leaf);
3800 out:
3801 	btrfs_free_path(path);
3802 	return ret;
3803 }
3804 
3805 static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3806 				struct btrfs_root *root, u64 objectid)
3807 {
3808 	struct btrfs_path *path;
3809 	struct btrfs_key key;
3810 	int ret = 0;
3811 
3812 	path = btrfs_alloc_path();
3813 	if (!path) {
3814 		ret = -ENOMEM;
3815 		goto out;
3816 	}
3817 
3818 	key.objectid = objectid;
3819 	key.type = BTRFS_INODE_ITEM_KEY;
3820 	key.offset = 0;
3821 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3822 	if (ret) {
3823 		if (ret > 0)
3824 			ret = -ENOENT;
3825 		goto out;
3826 	}
3827 	ret = btrfs_del_item(trans, root, path);
3828 out:
3829 	if (ret)
3830 		btrfs_abort_transaction(trans, ret);
3831 	btrfs_free_path(path);
3832 }
3833 
3834 /*
3835  * helper to create inode for data relocation.
3836  * the inode is in data relocation tree and its link count is 0
3837  */
3838 static noinline_for_stack
3839 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3840 				 struct btrfs_block_group *group)
3841 {
3842 	struct inode *inode = NULL;
3843 	struct btrfs_trans_handle *trans;
3844 	struct btrfs_root *root;
3845 	u64 objectid;
3846 	int err = 0;
3847 
3848 	root = btrfs_grab_root(fs_info->data_reloc_root);
3849 	trans = btrfs_start_transaction(root, 6);
3850 	if (IS_ERR(trans)) {
3851 		btrfs_put_root(root);
3852 		return ERR_CAST(trans);
3853 	}
3854 
3855 	err = btrfs_get_free_objectid(root, &objectid);
3856 	if (err)
3857 		goto out;
3858 
3859 	err = __insert_orphan_inode(trans, root, objectid);
3860 	if (err)
3861 		goto out;
3862 
3863 	inode = btrfs_iget(fs_info->sb, objectid, root);
3864 	if (IS_ERR(inode)) {
3865 		delete_orphan_inode(trans, root, objectid);
3866 		err = PTR_ERR(inode);
3867 		inode = NULL;
3868 		goto out;
3869 	}
3870 	BTRFS_I(inode)->index_cnt = group->start;
3871 
3872 	err = btrfs_orphan_add(trans, BTRFS_I(inode));
3873 out:
3874 	btrfs_put_root(root);
3875 	btrfs_end_transaction(trans);
3876 	btrfs_btree_balance_dirty(fs_info);
3877 	if (err) {
3878 		iput(inode);
3879 		inode = ERR_PTR(err);
3880 	}
3881 	return inode;
3882 }
3883 
3884 /*
3885  * Mark start of chunk relocation that is cancellable. Check if the cancellation
3886  * has been requested meanwhile and don't start in that case.
3887  *
3888  * Return:
3889  *   0             success
3890  *   -EINPROGRESS  operation is already in progress, that's probably a bug
3891  *   -ECANCELED    cancellation request was set before the operation started
3892  */
3893 static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3894 {
3895 	if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3896 		/* This should not happen */
3897 		btrfs_err(fs_info, "reloc already running, cannot start");
3898 		return -EINPROGRESS;
3899 	}
3900 
3901 	if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3902 		btrfs_info(fs_info, "chunk relocation canceled on start");
3903 		/*
3904 		 * On cancel, clear all requests but let the caller mark
3905 		 * the end after cleanup operations.
3906 		 */
3907 		atomic_set(&fs_info->reloc_cancel_req, 0);
3908 		return -ECANCELED;
3909 	}
3910 	return 0;
3911 }
3912 
3913 /*
3914  * Mark end of chunk relocation that is cancellable and wake any waiters.
3915  */
3916 static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3917 {
3918 	/* Requested after start, clear bit first so any waiters can continue */
3919 	if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3920 		btrfs_info(fs_info, "chunk relocation canceled during operation");
3921 	clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3922 	atomic_set(&fs_info->reloc_cancel_req, 0);
3923 }
3924 
3925 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3926 {
3927 	struct reloc_control *rc;
3928 
3929 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
3930 	if (!rc)
3931 		return NULL;
3932 
3933 	INIT_LIST_HEAD(&rc->reloc_roots);
3934 	INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3935 	btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3936 	mapping_tree_init(&rc->reloc_root_tree);
3937 	extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3938 	return rc;
3939 }
3940 
3941 static void free_reloc_control(struct reloc_control *rc)
3942 {
3943 	struct mapping_node *node, *tmp;
3944 
3945 	free_reloc_roots(&rc->reloc_roots);
3946 	rbtree_postorder_for_each_entry_safe(node, tmp,
3947 			&rc->reloc_root_tree.rb_root, rb_node)
3948 		kfree(node);
3949 
3950 	kfree(rc);
3951 }
3952 
3953 /*
3954  * Print the block group being relocated
3955  */
3956 static void describe_relocation(struct btrfs_fs_info *fs_info,
3957 				struct btrfs_block_group *block_group)
3958 {
3959 	char buf[128] = {'\0'};
3960 
3961 	btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3962 
3963 	btrfs_info(fs_info,
3964 		   "relocating block group %llu flags %s",
3965 		   block_group->start, buf);
3966 }
3967 
3968 static const char *stage_to_string(int stage)
3969 {
3970 	if (stage == MOVE_DATA_EXTENTS)
3971 		return "move data extents";
3972 	if (stage == UPDATE_DATA_PTRS)
3973 		return "update data pointers";
3974 	return "unknown";
3975 }
3976 
3977 /*
3978  * function to relocate all extents in a block group.
3979  */
3980 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
3981 {
3982 	struct btrfs_block_group *bg;
3983 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
3984 	struct reloc_control *rc;
3985 	struct inode *inode;
3986 	struct btrfs_path *path;
3987 	int ret;
3988 	int rw = 0;
3989 	int err = 0;
3990 
3991 	/*
3992 	 * This only gets set if we had a half-deleted snapshot on mount.  We
3993 	 * cannot allow relocation to start while we're still trying to clean up
3994 	 * these pending deletions.
3995 	 */
3996 	ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
3997 	if (ret)
3998 		return ret;
3999 
4000 	/* We may have been woken up by close_ctree, so bail if we're closing. */
4001 	if (btrfs_fs_closing(fs_info))
4002 		return -EINTR;
4003 
4004 	bg = btrfs_lookup_block_group(fs_info, group_start);
4005 	if (!bg)
4006 		return -ENOENT;
4007 
4008 	/*
4009 	 * Relocation of a data block group creates ordered extents.  Without
4010 	 * sb_start_write(), we can freeze the filesystem while unfinished
4011 	 * ordered extents are left. Such ordered extents can cause a deadlock
4012 	 * e.g. when syncfs() is waiting for their completion but they can't
4013 	 * finish because they block when joining a transaction, due to the
4014 	 * fact that the freeze locks are being held in write mode.
4015 	 */
4016 	if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4017 		ASSERT(sb_write_started(fs_info->sb));
4018 
4019 	if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4020 		btrfs_put_block_group(bg);
4021 		return -ETXTBSY;
4022 	}
4023 
4024 	rc = alloc_reloc_control(fs_info);
4025 	if (!rc) {
4026 		btrfs_put_block_group(bg);
4027 		return -ENOMEM;
4028 	}
4029 
4030 	ret = reloc_chunk_start(fs_info);
4031 	if (ret < 0) {
4032 		err = ret;
4033 		goto out_put_bg;
4034 	}
4035 
4036 	rc->extent_root = extent_root;
4037 	rc->block_group = bg;
4038 
4039 	ret = btrfs_inc_block_group_ro(rc->block_group, true);
4040 	if (ret) {
4041 		err = ret;
4042 		goto out;
4043 	}
4044 	rw = 1;
4045 
4046 	path = btrfs_alloc_path();
4047 	if (!path) {
4048 		err = -ENOMEM;
4049 		goto out;
4050 	}
4051 
4052 	inode = lookup_free_space_inode(rc->block_group, path);
4053 	btrfs_free_path(path);
4054 
4055 	if (!IS_ERR(inode))
4056 		ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4057 	else
4058 		ret = PTR_ERR(inode);
4059 
4060 	if (ret && ret != -ENOENT) {
4061 		err = ret;
4062 		goto out;
4063 	}
4064 
4065 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4066 	if (IS_ERR(rc->data_inode)) {
4067 		err = PTR_ERR(rc->data_inode);
4068 		rc->data_inode = NULL;
4069 		goto out;
4070 	}
4071 
4072 	describe_relocation(fs_info, rc->block_group);
4073 
4074 	btrfs_wait_block_group_reservations(rc->block_group);
4075 	btrfs_wait_nocow_writers(rc->block_group);
4076 	btrfs_wait_ordered_roots(fs_info, U64_MAX,
4077 				 rc->block_group->start,
4078 				 rc->block_group->length);
4079 
4080 	ret = btrfs_zone_finish(rc->block_group);
4081 	WARN_ON(ret && ret != -EAGAIN);
4082 
4083 	while (1) {
4084 		int finishes_stage;
4085 
4086 		mutex_lock(&fs_info->cleaner_mutex);
4087 		ret = relocate_block_group(rc);
4088 		mutex_unlock(&fs_info->cleaner_mutex);
4089 		if (ret < 0)
4090 			err = ret;
4091 
4092 		finishes_stage = rc->stage;
4093 		/*
4094 		 * We may have gotten ENOSPC after we already dirtied some
4095 		 * extents.  If writeout happens while we're relocating a
4096 		 * different block group we could end up hitting the
4097 		 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4098 		 * btrfs_reloc_cow_block.  Make sure we write everything out
4099 		 * properly so we don't trip over this problem, and then break
4100 		 * out of the loop if we hit an error.
4101 		 */
4102 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4103 			ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4104 						       (u64)-1);
4105 			if (ret)
4106 				err = ret;
4107 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4108 						 0, -1);
4109 			rc->stage = UPDATE_DATA_PTRS;
4110 		}
4111 
4112 		if (err < 0)
4113 			goto out;
4114 
4115 		if (rc->extents_found == 0)
4116 			break;
4117 
4118 		btrfs_info(fs_info, "found %llu extents, stage: %s",
4119 			   rc->extents_found, stage_to_string(finishes_stage));
4120 	}
4121 
4122 	WARN_ON(rc->block_group->pinned > 0);
4123 	WARN_ON(rc->block_group->reserved > 0);
4124 	WARN_ON(rc->block_group->used > 0);
4125 out:
4126 	if (err && rw)
4127 		btrfs_dec_block_group_ro(rc->block_group);
4128 	iput(rc->data_inode);
4129 out_put_bg:
4130 	btrfs_put_block_group(bg);
4131 	reloc_chunk_end(fs_info);
4132 	free_reloc_control(rc);
4133 	return err;
4134 }
4135 
4136 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4137 {
4138 	struct btrfs_fs_info *fs_info = root->fs_info;
4139 	struct btrfs_trans_handle *trans;
4140 	int ret, err;
4141 
4142 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
4143 	if (IS_ERR(trans))
4144 		return PTR_ERR(trans);
4145 
4146 	memset(&root->root_item.drop_progress, 0,
4147 		sizeof(root->root_item.drop_progress));
4148 	btrfs_set_root_drop_level(&root->root_item, 0);
4149 	btrfs_set_root_refs(&root->root_item, 0);
4150 	ret = btrfs_update_root(trans, fs_info->tree_root,
4151 				&root->root_key, &root->root_item);
4152 
4153 	err = btrfs_end_transaction(trans);
4154 	if (err)
4155 		return err;
4156 	return ret;
4157 }
4158 
4159 /*
4160  * recover relocation interrupted by system crash.
4161  *
4162  * this function resumes merging reloc trees with corresponding fs trees.
4163  * this is important for keeping the sharing of tree blocks
4164  */
4165 int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4166 {
4167 	LIST_HEAD(reloc_roots);
4168 	struct btrfs_key key;
4169 	struct btrfs_root *fs_root;
4170 	struct btrfs_root *reloc_root;
4171 	struct btrfs_path *path;
4172 	struct extent_buffer *leaf;
4173 	struct reloc_control *rc = NULL;
4174 	struct btrfs_trans_handle *trans;
4175 	int ret;
4176 	int err = 0;
4177 
4178 	path = btrfs_alloc_path();
4179 	if (!path)
4180 		return -ENOMEM;
4181 	path->reada = READA_BACK;
4182 
4183 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4184 	key.type = BTRFS_ROOT_ITEM_KEY;
4185 	key.offset = (u64)-1;
4186 
4187 	while (1) {
4188 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4189 					path, 0, 0);
4190 		if (ret < 0) {
4191 			err = ret;
4192 			goto out;
4193 		}
4194 		if (ret > 0) {
4195 			if (path->slots[0] == 0)
4196 				break;
4197 			path->slots[0]--;
4198 		}
4199 		leaf = path->nodes[0];
4200 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4201 		btrfs_release_path(path);
4202 
4203 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4204 		    key.type != BTRFS_ROOT_ITEM_KEY)
4205 			break;
4206 
4207 		reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4208 		if (IS_ERR(reloc_root)) {
4209 			err = PTR_ERR(reloc_root);
4210 			goto out;
4211 		}
4212 
4213 		set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4214 		list_add(&reloc_root->root_list, &reloc_roots);
4215 
4216 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4217 			fs_root = btrfs_get_fs_root(fs_info,
4218 					reloc_root->root_key.offset, false);
4219 			if (IS_ERR(fs_root)) {
4220 				ret = PTR_ERR(fs_root);
4221 				if (ret != -ENOENT) {
4222 					err = ret;
4223 					goto out;
4224 				}
4225 				ret = mark_garbage_root(reloc_root);
4226 				if (ret < 0) {
4227 					err = ret;
4228 					goto out;
4229 				}
4230 			} else {
4231 				btrfs_put_root(fs_root);
4232 			}
4233 		}
4234 
4235 		if (key.offset == 0)
4236 			break;
4237 
4238 		key.offset--;
4239 	}
4240 	btrfs_release_path(path);
4241 
4242 	if (list_empty(&reloc_roots))
4243 		goto out;
4244 
4245 	rc = alloc_reloc_control(fs_info);
4246 	if (!rc) {
4247 		err = -ENOMEM;
4248 		goto out;
4249 	}
4250 
4251 	ret = reloc_chunk_start(fs_info);
4252 	if (ret < 0) {
4253 		err = ret;
4254 		goto out_end;
4255 	}
4256 
4257 	rc->extent_root = btrfs_extent_root(fs_info, 0);
4258 
4259 	set_reloc_control(rc);
4260 
4261 	trans = btrfs_join_transaction(rc->extent_root);
4262 	if (IS_ERR(trans)) {
4263 		err = PTR_ERR(trans);
4264 		goto out_unset;
4265 	}
4266 
4267 	rc->merge_reloc_tree = 1;
4268 
4269 	while (!list_empty(&reloc_roots)) {
4270 		reloc_root = list_entry(reloc_roots.next,
4271 					struct btrfs_root, root_list);
4272 		list_del(&reloc_root->root_list);
4273 
4274 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4275 			list_add_tail(&reloc_root->root_list,
4276 				      &rc->reloc_roots);
4277 			continue;
4278 		}
4279 
4280 		fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4281 					    false);
4282 		if (IS_ERR(fs_root)) {
4283 			err = PTR_ERR(fs_root);
4284 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4285 			btrfs_end_transaction(trans);
4286 			goto out_unset;
4287 		}
4288 
4289 		err = __add_reloc_root(reloc_root);
4290 		ASSERT(err != -EEXIST);
4291 		if (err) {
4292 			list_add_tail(&reloc_root->root_list, &reloc_roots);
4293 			btrfs_put_root(fs_root);
4294 			btrfs_end_transaction(trans);
4295 			goto out_unset;
4296 		}
4297 		fs_root->reloc_root = btrfs_grab_root(reloc_root);
4298 		btrfs_put_root(fs_root);
4299 	}
4300 
4301 	err = btrfs_commit_transaction(trans);
4302 	if (err)
4303 		goto out_unset;
4304 
4305 	merge_reloc_roots(rc);
4306 
4307 	unset_reloc_control(rc);
4308 
4309 	trans = btrfs_join_transaction(rc->extent_root);
4310 	if (IS_ERR(trans)) {
4311 		err = PTR_ERR(trans);
4312 		goto out_clean;
4313 	}
4314 	err = btrfs_commit_transaction(trans);
4315 out_clean:
4316 	ret = clean_dirty_subvols(rc);
4317 	if (ret < 0 && !err)
4318 		err = ret;
4319 out_unset:
4320 	unset_reloc_control(rc);
4321 out_end:
4322 	reloc_chunk_end(fs_info);
4323 	free_reloc_control(rc);
4324 out:
4325 	free_reloc_roots(&reloc_roots);
4326 
4327 	btrfs_free_path(path);
4328 
4329 	if (err == 0) {
4330 		/* cleanup orphan inode in data relocation tree */
4331 		fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4332 		ASSERT(fs_root);
4333 		err = btrfs_orphan_cleanup(fs_root);
4334 		btrfs_put_root(fs_root);
4335 	}
4336 	return err;
4337 }
4338 
4339 /*
4340  * helper to add ordered checksum for data relocation.
4341  *
4342  * cloning checksum properly handles the nodatasum extents.
4343  * it also saves CPU time to re-calculate the checksum.
4344  */
4345 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4346 {
4347 	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4348 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
4349 	u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4350 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4351 	LIST_HEAD(list);
4352 	int ret;
4353 
4354 	ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4355 				      disk_bytenr + ordered->num_bytes - 1,
4356 				      &list, 0, false);
4357 	if (ret)
4358 		return ret;
4359 
4360 	while (!list_empty(&list)) {
4361 		struct btrfs_ordered_sum *sums =
4362 			list_entry(list.next, struct btrfs_ordered_sum, list);
4363 
4364 		list_del_init(&sums->list);
4365 
4366 		/*
4367 		 * We need to offset the new_bytenr based on where the csum is.
4368 		 * We need to do this because we will read in entire prealloc
4369 		 * extents but we may have written to say the middle of the
4370 		 * prealloc extent, so we need to make sure the csum goes with
4371 		 * the right disk offset.
4372 		 *
4373 		 * We can do this because the data reloc inode refers strictly
4374 		 * to the on disk bytes, so we don't have to worry about
4375 		 * disk_len vs real len like with real inodes since it's all
4376 		 * disk length.
4377 		 */
4378 		sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4379 		btrfs_add_ordered_sum(ordered, sums);
4380 	}
4381 
4382 	return 0;
4383 }
4384 
4385 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4386 			  struct btrfs_root *root, struct extent_buffer *buf,
4387 			  struct extent_buffer *cow)
4388 {
4389 	struct btrfs_fs_info *fs_info = root->fs_info;
4390 	struct reloc_control *rc;
4391 	struct btrfs_backref_node *node;
4392 	int first_cow = 0;
4393 	int level;
4394 	int ret = 0;
4395 
4396 	rc = fs_info->reloc_ctl;
4397 	if (!rc)
4398 		return 0;
4399 
4400 	BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4401 
4402 	level = btrfs_header_level(buf);
4403 	if (btrfs_header_generation(buf) <=
4404 	    btrfs_root_last_snapshot(&root->root_item))
4405 		first_cow = 1;
4406 
4407 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4408 	    rc->create_reloc_tree) {
4409 		WARN_ON(!first_cow && level == 0);
4410 
4411 		node = rc->backref_cache.path[level];
4412 		BUG_ON(node->bytenr != buf->start &&
4413 		       node->new_bytenr != buf->start);
4414 
4415 		btrfs_backref_drop_node_buffer(node);
4416 		atomic_inc(&cow->refs);
4417 		node->eb = cow;
4418 		node->new_bytenr = cow->start;
4419 
4420 		if (!node->pending) {
4421 			list_move_tail(&node->list,
4422 				       &rc->backref_cache.pending[level]);
4423 			node->pending = 1;
4424 		}
4425 
4426 		if (first_cow)
4427 			mark_block_processed(rc, node);
4428 
4429 		if (first_cow && level > 0)
4430 			rc->nodes_relocated += buf->len;
4431 	}
4432 
4433 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4434 		ret = replace_file_extents(trans, rc, root, cow);
4435 	return ret;
4436 }
4437 
4438 /*
4439  * called before creating snapshot. it calculates metadata reservation
4440  * required for relocating tree blocks in the snapshot
4441  */
4442 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4443 			      u64 *bytes_to_reserve)
4444 {
4445 	struct btrfs_root *root = pending->root;
4446 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4447 
4448 	if (!rc || !have_reloc_root(root))
4449 		return;
4450 
4451 	if (!rc->merge_reloc_tree)
4452 		return;
4453 
4454 	root = root->reloc_root;
4455 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4456 	/*
4457 	 * relocation is in the stage of merging trees. the space
4458 	 * used by merging a reloc tree is twice the size of
4459 	 * relocated tree nodes in the worst case. half for cowing
4460 	 * the reloc tree, half for cowing the fs tree. the space
4461 	 * used by cowing the reloc tree will be freed after the
4462 	 * tree is dropped. if we create snapshot, cowing the fs
4463 	 * tree may use more space than it frees. so we need
4464 	 * reserve extra space.
4465 	 */
4466 	*bytes_to_reserve += rc->nodes_relocated;
4467 }
4468 
4469 /*
4470  * called after snapshot is created. migrate block reservation
4471  * and create reloc root for the newly created snapshot
4472  *
4473  * This is similar to btrfs_init_reloc_root(), we come out of here with two
4474  * references held on the reloc_root, one for root->reloc_root and one for
4475  * rc->reloc_roots.
4476  */
4477 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4478 			       struct btrfs_pending_snapshot *pending)
4479 {
4480 	struct btrfs_root *root = pending->root;
4481 	struct btrfs_root *reloc_root;
4482 	struct btrfs_root *new_root;
4483 	struct reloc_control *rc = root->fs_info->reloc_ctl;
4484 	int ret;
4485 
4486 	if (!rc || !have_reloc_root(root))
4487 		return 0;
4488 
4489 	rc = root->fs_info->reloc_ctl;
4490 	rc->merging_rsv_size += rc->nodes_relocated;
4491 
4492 	if (rc->merge_reloc_tree) {
4493 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4494 					      rc->block_rsv,
4495 					      rc->nodes_relocated, true);
4496 		if (ret)
4497 			return ret;
4498 	}
4499 
4500 	new_root = pending->snap;
4501 	reloc_root = create_reloc_root(trans, root->reloc_root,
4502 				       new_root->root_key.objectid);
4503 	if (IS_ERR(reloc_root))
4504 		return PTR_ERR(reloc_root);
4505 
4506 	ret = __add_reloc_root(reloc_root);
4507 	ASSERT(ret != -EEXIST);
4508 	if (ret) {
4509 		/* Pairs with create_reloc_root */
4510 		btrfs_put_root(reloc_root);
4511 		return ret;
4512 	}
4513 	new_root->reloc_root = btrfs_grab_root(reloc_root);
4514 
4515 	if (rc->create_reloc_tree)
4516 		ret = clone_backref_node(trans, rc, root, reloc_root);
4517 	return ret;
4518 }
4519 
4520 /*
4521  * Get the current bytenr for the block group which is being relocated.
4522  *
4523  * Return U64_MAX if no running relocation.
4524  */
4525 u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4526 {
4527 	u64 logical = U64_MAX;
4528 
4529 	lockdep_assert_held(&fs_info->reloc_mutex);
4530 
4531 	if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4532 		logical = fs_info->reloc_ctl->block_group->start;
4533 	return logical;
4534 }
4535