1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 330 { 331 332 struct btrfs_fs_info *fs_info = NULL; 333 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 334 rb_node); 335 if (bnode->root) 336 fs_info = bnode->root->fs_info; 337 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 338 "found at offset %llu\n", bytenr); 339 } 340 341 /* 342 * walk up backref nodes until reach node presents tree root 343 */ 344 static struct backref_node *walk_up_backref(struct backref_node *node, 345 struct backref_edge *edges[], 346 int *index) 347 { 348 struct backref_edge *edge; 349 int idx = *index; 350 351 while (!list_empty(&node->upper)) { 352 edge = list_entry(node->upper.next, 353 struct backref_edge, list[LOWER]); 354 edges[idx++] = edge; 355 node = edge->node[UPPER]; 356 } 357 BUG_ON(node->detached); 358 *index = idx; 359 return node; 360 } 361 362 /* 363 * walk down backref nodes to find start of next reference path 364 */ 365 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 366 int *index) 367 { 368 struct backref_edge *edge; 369 struct backref_node *lower; 370 int idx = *index; 371 372 while (idx > 0) { 373 edge = edges[idx - 1]; 374 lower = edge->node[LOWER]; 375 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 376 idx--; 377 continue; 378 } 379 edge = list_entry(edge->list[LOWER].next, 380 struct backref_edge, list[LOWER]); 381 edges[idx - 1] = edge; 382 *index = idx; 383 return edge->node[UPPER]; 384 } 385 *index = 0; 386 return NULL; 387 } 388 389 static void unlock_node_buffer(struct backref_node *node) 390 { 391 if (node->locked) { 392 btrfs_tree_unlock(node->eb); 393 node->locked = 0; 394 } 395 } 396 397 static void drop_node_buffer(struct backref_node *node) 398 { 399 if (node->eb) { 400 unlock_node_buffer(node); 401 free_extent_buffer(node->eb); 402 node->eb = NULL; 403 } 404 } 405 406 static void drop_backref_node(struct backref_cache *tree, 407 struct backref_node *node) 408 { 409 BUG_ON(!list_empty(&node->upper)); 410 411 drop_node_buffer(node); 412 list_del(&node->list); 413 list_del(&node->lower); 414 if (!RB_EMPTY_NODE(&node->rb_node)) 415 rb_erase(&node->rb_node, &tree->rb_root); 416 free_backref_node(tree, node); 417 } 418 419 /* 420 * remove a backref node from the backref cache 421 */ 422 static void remove_backref_node(struct backref_cache *cache, 423 struct backref_node *node) 424 { 425 struct backref_node *upper; 426 struct backref_edge *edge; 427 428 if (!node) 429 return; 430 431 BUG_ON(!node->lowest && !node->detached); 432 while (!list_empty(&node->upper)) { 433 edge = list_entry(node->upper.next, struct backref_edge, 434 list[LOWER]); 435 upper = edge->node[UPPER]; 436 list_del(&edge->list[LOWER]); 437 list_del(&edge->list[UPPER]); 438 free_backref_edge(cache, edge); 439 440 if (RB_EMPTY_NODE(&upper->rb_node)) { 441 BUG_ON(!list_empty(&node->upper)); 442 drop_backref_node(cache, node); 443 node = upper; 444 node->lowest = 1; 445 continue; 446 } 447 /* 448 * add the node to leaf node list if no other 449 * child block cached. 450 */ 451 if (list_empty(&upper->lower)) { 452 list_add_tail(&upper->lower, &cache->leaves); 453 upper->lowest = 1; 454 } 455 } 456 457 drop_backref_node(cache, node); 458 } 459 460 static void update_backref_node(struct backref_cache *cache, 461 struct backref_node *node, u64 bytenr) 462 { 463 struct rb_node *rb_node; 464 rb_erase(&node->rb_node, &cache->rb_root); 465 node->bytenr = bytenr; 466 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 467 if (rb_node) 468 backref_tree_panic(rb_node, -EEXIST, bytenr); 469 } 470 471 /* 472 * update backref cache after a transaction commit 473 */ 474 static int update_backref_cache(struct btrfs_trans_handle *trans, 475 struct backref_cache *cache) 476 { 477 struct backref_node *node; 478 int level = 0; 479 480 if (cache->last_trans == 0) { 481 cache->last_trans = trans->transid; 482 return 0; 483 } 484 485 if (cache->last_trans == trans->transid) 486 return 0; 487 488 /* 489 * detached nodes are used to avoid unnecessary backref 490 * lookup. transaction commit changes the extent tree. 491 * so the detached nodes are no longer useful. 492 */ 493 while (!list_empty(&cache->detached)) { 494 node = list_entry(cache->detached.next, 495 struct backref_node, list); 496 remove_backref_node(cache, node); 497 } 498 499 while (!list_empty(&cache->changed)) { 500 node = list_entry(cache->changed.next, 501 struct backref_node, list); 502 list_del_init(&node->list); 503 BUG_ON(node->pending); 504 update_backref_node(cache, node, node->new_bytenr); 505 } 506 507 /* 508 * some nodes can be left in the pending list if there were 509 * errors during processing the pending nodes. 510 */ 511 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 512 list_for_each_entry(node, &cache->pending[level], list) { 513 BUG_ON(!node->pending); 514 if (node->bytenr == node->new_bytenr) 515 continue; 516 update_backref_node(cache, node, node->new_bytenr); 517 } 518 } 519 520 cache->last_trans = 0; 521 return 1; 522 } 523 524 525 static int should_ignore_root(struct btrfs_root *root) 526 { 527 struct btrfs_root *reloc_root; 528 529 if (!root->ref_cows) 530 return 0; 531 532 reloc_root = root->reloc_root; 533 if (!reloc_root) 534 return 0; 535 536 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 537 root->fs_info->running_transaction->transid - 1) 538 return 0; 539 /* 540 * if there is reloc tree and it was created in previous 541 * transaction backref lookup can find the reloc tree, 542 * so backref node for the fs tree root is useless for 543 * relocation. 544 */ 545 return 1; 546 } 547 /* 548 * find reloc tree by address of tree root 549 */ 550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 551 u64 bytenr) 552 { 553 struct rb_node *rb_node; 554 struct mapping_node *node; 555 struct btrfs_root *root = NULL; 556 557 spin_lock(&rc->reloc_root_tree.lock); 558 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 559 if (rb_node) { 560 node = rb_entry(rb_node, struct mapping_node, rb_node); 561 root = (struct btrfs_root *)node->data; 562 } 563 spin_unlock(&rc->reloc_root_tree.lock); 564 return root; 565 } 566 567 static int is_cowonly_root(u64 root_objectid) 568 { 569 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 570 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 571 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 572 root_objectid == BTRFS_DEV_TREE_OBJECTID || 573 root_objectid == BTRFS_TREE_LOG_OBJECTID || 574 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 575 return 1; 576 return 0; 577 } 578 579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 580 u64 root_objectid) 581 { 582 struct btrfs_key key; 583 584 key.objectid = root_objectid; 585 key.type = BTRFS_ROOT_ITEM_KEY; 586 if (is_cowonly_root(root_objectid)) 587 key.offset = 0; 588 else 589 key.offset = (u64)-1; 590 591 return btrfs_read_fs_root_no_name(fs_info, &key); 592 } 593 594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 595 static noinline_for_stack 596 struct btrfs_root *find_tree_root(struct reloc_control *rc, 597 struct extent_buffer *leaf, 598 struct btrfs_extent_ref_v0 *ref0) 599 { 600 struct btrfs_root *root; 601 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 602 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 603 604 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 605 606 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 607 BUG_ON(IS_ERR(root)); 608 609 if (root->ref_cows && 610 generation != btrfs_root_generation(&root->root_item)) 611 return NULL; 612 613 return root; 614 } 615 #endif 616 617 static noinline_for_stack 618 int find_inline_backref(struct extent_buffer *leaf, int slot, 619 unsigned long *ptr, unsigned long *end) 620 { 621 struct btrfs_key key; 622 struct btrfs_extent_item *ei; 623 struct btrfs_tree_block_info *bi; 624 u32 item_size; 625 626 btrfs_item_key_to_cpu(leaf, &key, slot); 627 628 item_size = btrfs_item_size_nr(leaf, slot); 629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 630 if (item_size < sizeof(*ei)) { 631 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 632 return 1; 633 } 634 #endif 635 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 636 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 637 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 638 639 if (key.type == BTRFS_EXTENT_ITEM_KEY && 640 item_size <= sizeof(*ei) + sizeof(*bi)) { 641 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 642 return 1; 643 } 644 if (key.type == BTRFS_METADATA_ITEM_KEY && 645 item_size <= sizeof(*ei)) { 646 WARN_ON(item_size < sizeof(*ei)); 647 return 1; 648 } 649 650 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 651 bi = (struct btrfs_tree_block_info *)(ei + 1); 652 *ptr = (unsigned long)(bi + 1); 653 } else { 654 *ptr = (unsigned long)(ei + 1); 655 } 656 *end = (unsigned long)ei + item_size; 657 return 0; 658 } 659 660 /* 661 * build backref tree for a given tree block. root of the backref tree 662 * corresponds the tree block, leaves of the backref tree correspond 663 * roots of b-trees that reference the tree block. 664 * 665 * the basic idea of this function is check backrefs of a given block 666 * to find upper level blocks that refernece the block, and then check 667 * bakcrefs of these upper level blocks recursively. the recursion stop 668 * when tree root is reached or backrefs for the block is cached. 669 * 670 * NOTE: if we find backrefs for a block are cached, we know backrefs 671 * for all upper level blocks that directly/indirectly reference the 672 * block are also cached. 673 */ 674 static noinline_for_stack 675 struct backref_node *build_backref_tree(struct reloc_control *rc, 676 struct btrfs_key *node_key, 677 int level, u64 bytenr) 678 { 679 struct backref_cache *cache = &rc->backref_cache; 680 struct btrfs_path *path1; 681 struct btrfs_path *path2; 682 struct extent_buffer *eb; 683 struct btrfs_root *root; 684 struct backref_node *cur; 685 struct backref_node *upper; 686 struct backref_node *lower; 687 struct backref_node *node = NULL; 688 struct backref_node *exist = NULL; 689 struct backref_edge *edge; 690 struct rb_node *rb_node; 691 struct btrfs_key key; 692 unsigned long end; 693 unsigned long ptr; 694 LIST_HEAD(list); 695 LIST_HEAD(useless); 696 int cowonly; 697 int ret; 698 int err = 0; 699 bool need_check = true; 700 701 path1 = btrfs_alloc_path(); 702 path2 = btrfs_alloc_path(); 703 if (!path1 || !path2) { 704 err = -ENOMEM; 705 goto out; 706 } 707 path1->reada = 1; 708 path2->reada = 2; 709 710 node = alloc_backref_node(cache); 711 if (!node) { 712 err = -ENOMEM; 713 goto out; 714 } 715 716 node->bytenr = bytenr; 717 node->level = level; 718 node->lowest = 1; 719 cur = node; 720 again: 721 end = 0; 722 ptr = 0; 723 key.objectid = cur->bytenr; 724 key.type = BTRFS_METADATA_ITEM_KEY; 725 key.offset = (u64)-1; 726 727 path1->search_commit_root = 1; 728 path1->skip_locking = 1; 729 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 730 0, 0); 731 if (ret < 0) { 732 err = ret; 733 goto out; 734 } 735 BUG_ON(!ret || !path1->slots[0]); 736 737 path1->slots[0]--; 738 739 WARN_ON(cur->checked); 740 if (!list_empty(&cur->upper)) { 741 /* 742 * the backref was added previously when processing 743 * backref of type BTRFS_TREE_BLOCK_REF_KEY 744 */ 745 BUG_ON(!list_is_singular(&cur->upper)); 746 edge = list_entry(cur->upper.next, struct backref_edge, 747 list[LOWER]); 748 BUG_ON(!list_empty(&edge->list[UPPER])); 749 exist = edge->node[UPPER]; 750 /* 751 * add the upper level block to pending list if we need 752 * check its backrefs 753 */ 754 if (!exist->checked) 755 list_add_tail(&edge->list[UPPER], &list); 756 } else { 757 exist = NULL; 758 } 759 760 while (1) { 761 cond_resched(); 762 eb = path1->nodes[0]; 763 764 if (ptr >= end) { 765 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 766 ret = btrfs_next_leaf(rc->extent_root, path1); 767 if (ret < 0) { 768 err = ret; 769 goto out; 770 } 771 if (ret > 0) 772 break; 773 eb = path1->nodes[0]; 774 } 775 776 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 777 if (key.objectid != cur->bytenr) { 778 WARN_ON(exist); 779 break; 780 } 781 782 if (key.type == BTRFS_EXTENT_ITEM_KEY || 783 key.type == BTRFS_METADATA_ITEM_KEY) { 784 ret = find_inline_backref(eb, path1->slots[0], 785 &ptr, &end); 786 if (ret) 787 goto next; 788 } 789 } 790 791 if (ptr < end) { 792 /* update key for inline back ref */ 793 struct btrfs_extent_inline_ref *iref; 794 iref = (struct btrfs_extent_inline_ref *)ptr; 795 key.type = btrfs_extent_inline_ref_type(eb, iref); 796 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 797 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 798 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 799 } 800 801 if (exist && 802 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 803 exist->owner == key.offset) || 804 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 805 exist->bytenr == key.offset))) { 806 exist = NULL; 807 goto next; 808 } 809 810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 812 key.type == BTRFS_EXTENT_REF_V0_KEY) { 813 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 814 struct btrfs_extent_ref_v0 *ref0; 815 ref0 = btrfs_item_ptr(eb, path1->slots[0], 816 struct btrfs_extent_ref_v0); 817 if (key.objectid == key.offset) { 818 root = find_tree_root(rc, eb, ref0); 819 if (root && !should_ignore_root(root)) 820 cur->root = root; 821 else 822 list_add(&cur->list, &useless); 823 break; 824 } 825 if (is_cowonly_root(btrfs_ref_root_v0(eb, 826 ref0))) 827 cur->cowonly = 1; 828 } 829 #else 830 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 831 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 832 #endif 833 if (key.objectid == key.offset) { 834 /* 835 * only root blocks of reloc trees use 836 * backref of this type. 837 */ 838 root = find_reloc_root(rc, cur->bytenr); 839 BUG_ON(!root); 840 cur->root = root; 841 break; 842 } 843 844 edge = alloc_backref_edge(cache); 845 if (!edge) { 846 err = -ENOMEM; 847 goto out; 848 } 849 rb_node = tree_search(&cache->rb_root, key.offset); 850 if (!rb_node) { 851 upper = alloc_backref_node(cache); 852 if (!upper) { 853 free_backref_edge(cache, edge); 854 err = -ENOMEM; 855 goto out; 856 } 857 upper->bytenr = key.offset; 858 upper->level = cur->level + 1; 859 /* 860 * backrefs for the upper level block isn't 861 * cached, add the block to pending list 862 */ 863 list_add_tail(&edge->list[UPPER], &list); 864 } else { 865 upper = rb_entry(rb_node, struct backref_node, 866 rb_node); 867 BUG_ON(!upper->checked); 868 INIT_LIST_HEAD(&edge->list[UPPER]); 869 } 870 list_add_tail(&edge->list[LOWER], &cur->upper); 871 edge->node[LOWER] = cur; 872 edge->node[UPPER] = upper; 873 874 goto next; 875 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 876 goto next; 877 } 878 879 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 880 root = read_fs_root(rc->extent_root->fs_info, key.offset); 881 if (IS_ERR(root)) { 882 err = PTR_ERR(root); 883 goto out; 884 } 885 886 if (!root->ref_cows) 887 cur->cowonly = 1; 888 889 if (btrfs_root_level(&root->root_item) == cur->level) { 890 /* tree root */ 891 BUG_ON(btrfs_root_bytenr(&root->root_item) != 892 cur->bytenr); 893 if (should_ignore_root(root)) 894 list_add(&cur->list, &useless); 895 else 896 cur->root = root; 897 break; 898 } 899 900 level = cur->level + 1; 901 902 /* 903 * searching the tree to find upper level blocks 904 * reference the block. 905 */ 906 path2->search_commit_root = 1; 907 path2->skip_locking = 1; 908 path2->lowest_level = level; 909 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 910 path2->lowest_level = 0; 911 if (ret < 0) { 912 err = ret; 913 goto out; 914 } 915 if (ret > 0 && path2->slots[level] > 0) 916 path2->slots[level]--; 917 918 eb = path2->nodes[level]; 919 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 920 cur->bytenr); 921 922 lower = cur; 923 need_check = true; 924 for (; level < BTRFS_MAX_LEVEL; level++) { 925 if (!path2->nodes[level]) { 926 BUG_ON(btrfs_root_bytenr(&root->root_item) != 927 lower->bytenr); 928 if (should_ignore_root(root)) 929 list_add(&lower->list, &useless); 930 else 931 lower->root = root; 932 break; 933 } 934 935 edge = alloc_backref_edge(cache); 936 if (!edge) { 937 err = -ENOMEM; 938 goto out; 939 } 940 941 eb = path2->nodes[level]; 942 rb_node = tree_search(&cache->rb_root, eb->start); 943 if (!rb_node) { 944 upper = alloc_backref_node(cache); 945 if (!upper) { 946 free_backref_edge(cache, edge); 947 err = -ENOMEM; 948 goto out; 949 } 950 upper->bytenr = eb->start; 951 upper->owner = btrfs_header_owner(eb); 952 upper->level = lower->level + 1; 953 if (!root->ref_cows) 954 upper->cowonly = 1; 955 956 /* 957 * if we know the block isn't shared 958 * we can void checking its backrefs. 959 */ 960 if (btrfs_block_can_be_shared(root, eb)) 961 upper->checked = 0; 962 else 963 upper->checked = 1; 964 965 /* 966 * add the block to pending list if we 967 * need check its backrefs, we only do this once 968 * while walking up a tree as we will catch 969 * anything else later on. 970 */ 971 if (!upper->checked && need_check) { 972 need_check = false; 973 list_add_tail(&edge->list[UPPER], 974 &list); 975 } else 976 INIT_LIST_HEAD(&edge->list[UPPER]); 977 } else { 978 upper = rb_entry(rb_node, struct backref_node, 979 rb_node); 980 BUG_ON(!upper->checked); 981 INIT_LIST_HEAD(&edge->list[UPPER]); 982 if (!upper->owner) 983 upper->owner = btrfs_header_owner(eb); 984 } 985 list_add_tail(&edge->list[LOWER], &lower->upper); 986 edge->node[LOWER] = lower; 987 edge->node[UPPER] = upper; 988 989 if (rb_node) 990 break; 991 lower = upper; 992 upper = NULL; 993 } 994 btrfs_release_path(path2); 995 next: 996 if (ptr < end) { 997 ptr += btrfs_extent_inline_ref_size(key.type); 998 if (ptr >= end) { 999 WARN_ON(ptr > end); 1000 ptr = 0; 1001 end = 0; 1002 } 1003 } 1004 if (ptr >= end) 1005 path1->slots[0]++; 1006 } 1007 btrfs_release_path(path1); 1008 1009 cur->checked = 1; 1010 WARN_ON(exist); 1011 1012 /* the pending list isn't empty, take the first block to process */ 1013 if (!list_empty(&list)) { 1014 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1015 list_del_init(&edge->list[UPPER]); 1016 cur = edge->node[UPPER]; 1017 goto again; 1018 } 1019 1020 /* 1021 * everything goes well, connect backref nodes and insert backref nodes 1022 * into the cache. 1023 */ 1024 BUG_ON(!node->checked); 1025 cowonly = node->cowonly; 1026 if (!cowonly) { 1027 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1028 &node->rb_node); 1029 if (rb_node) 1030 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1031 list_add_tail(&node->lower, &cache->leaves); 1032 } 1033 1034 list_for_each_entry(edge, &node->upper, list[LOWER]) 1035 list_add_tail(&edge->list[UPPER], &list); 1036 1037 while (!list_empty(&list)) { 1038 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1039 list_del_init(&edge->list[UPPER]); 1040 upper = edge->node[UPPER]; 1041 if (upper->detached) { 1042 list_del(&edge->list[LOWER]); 1043 lower = edge->node[LOWER]; 1044 free_backref_edge(cache, edge); 1045 if (list_empty(&lower->upper)) 1046 list_add(&lower->list, &useless); 1047 continue; 1048 } 1049 1050 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1051 if (upper->lowest) { 1052 list_del_init(&upper->lower); 1053 upper->lowest = 0; 1054 } 1055 1056 list_add_tail(&edge->list[UPPER], &upper->lower); 1057 continue; 1058 } 1059 1060 BUG_ON(!upper->checked); 1061 BUG_ON(cowonly != upper->cowonly); 1062 if (!cowonly) { 1063 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1064 &upper->rb_node); 1065 if (rb_node) 1066 backref_tree_panic(rb_node, -EEXIST, 1067 upper->bytenr); 1068 } 1069 1070 list_add_tail(&edge->list[UPPER], &upper->lower); 1071 1072 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1073 list_add_tail(&edge->list[UPPER], &list); 1074 } 1075 /* 1076 * process useless backref nodes. backref nodes for tree leaves 1077 * are deleted from the cache. backref nodes for upper level 1078 * tree blocks are left in the cache to avoid unnecessary backref 1079 * lookup. 1080 */ 1081 while (!list_empty(&useless)) { 1082 upper = list_entry(useless.next, struct backref_node, list); 1083 list_del_init(&upper->list); 1084 BUG_ON(!list_empty(&upper->upper)); 1085 if (upper == node) 1086 node = NULL; 1087 if (upper->lowest) { 1088 list_del_init(&upper->lower); 1089 upper->lowest = 0; 1090 } 1091 while (!list_empty(&upper->lower)) { 1092 edge = list_entry(upper->lower.next, 1093 struct backref_edge, list[UPPER]); 1094 list_del(&edge->list[UPPER]); 1095 list_del(&edge->list[LOWER]); 1096 lower = edge->node[LOWER]; 1097 free_backref_edge(cache, edge); 1098 1099 if (list_empty(&lower->upper)) 1100 list_add(&lower->list, &useless); 1101 } 1102 __mark_block_processed(rc, upper); 1103 if (upper->level > 0) { 1104 list_add(&upper->list, &cache->detached); 1105 upper->detached = 1; 1106 } else { 1107 rb_erase(&upper->rb_node, &cache->rb_root); 1108 free_backref_node(cache, upper); 1109 } 1110 } 1111 out: 1112 btrfs_free_path(path1); 1113 btrfs_free_path(path2); 1114 if (err) { 1115 while (!list_empty(&useless)) { 1116 lower = list_entry(useless.next, 1117 struct backref_node, upper); 1118 list_del_init(&lower->upper); 1119 } 1120 upper = node; 1121 INIT_LIST_HEAD(&list); 1122 while (upper) { 1123 if (RB_EMPTY_NODE(&upper->rb_node)) { 1124 list_splice_tail(&upper->upper, &list); 1125 free_backref_node(cache, upper); 1126 } 1127 1128 if (list_empty(&list)) 1129 break; 1130 1131 edge = list_entry(list.next, struct backref_edge, 1132 list[LOWER]); 1133 list_del(&edge->list[LOWER]); 1134 upper = edge->node[UPPER]; 1135 free_backref_edge(cache, edge); 1136 } 1137 return ERR_PTR(err); 1138 } 1139 BUG_ON(node && node->detached); 1140 return node; 1141 } 1142 1143 /* 1144 * helper to add backref node for the newly created snapshot. 1145 * the backref node is created by cloning backref node that 1146 * corresponds to root of source tree 1147 */ 1148 static int clone_backref_node(struct btrfs_trans_handle *trans, 1149 struct reloc_control *rc, 1150 struct btrfs_root *src, 1151 struct btrfs_root *dest) 1152 { 1153 struct btrfs_root *reloc_root = src->reloc_root; 1154 struct backref_cache *cache = &rc->backref_cache; 1155 struct backref_node *node = NULL; 1156 struct backref_node *new_node; 1157 struct backref_edge *edge; 1158 struct backref_edge *new_edge; 1159 struct rb_node *rb_node; 1160 1161 if (cache->last_trans > 0) 1162 update_backref_cache(trans, cache); 1163 1164 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1165 if (rb_node) { 1166 node = rb_entry(rb_node, struct backref_node, rb_node); 1167 if (node->detached) 1168 node = NULL; 1169 else 1170 BUG_ON(node->new_bytenr != reloc_root->node->start); 1171 } 1172 1173 if (!node) { 1174 rb_node = tree_search(&cache->rb_root, 1175 reloc_root->commit_root->start); 1176 if (rb_node) { 1177 node = rb_entry(rb_node, struct backref_node, 1178 rb_node); 1179 BUG_ON(node->detached); 1180 } 1181 } 1182 1183 if (!node) 1184 return 0; 1185 1186 new_node = alloc_backref_node(cache); 1187 if (!new_node) 1188 return -ENOMEM; 1189 1190 new_node->bytenr = dest->node->start; 1191 new_node->level = node->level; 1192 new_node->lowest = node->lowest; 1193 new_node->checked = 1; 1194 new_node->root = dest; 1195 1196 if (!node->lowest) { 1197 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1198 new_edge = alloc_backref_edge(cache); 1199 if (!new_edge) 1200 goto fail; 1201 1202 new_edge->node[UPPER] = new_node; 1203 new_edge->node[LOWER] = edge->node[LOWER]; 1204 list_add_tail(&new_edge->list[UPPER], 1205 &new_node->lower); 1206 } 1207 } else { 1208 list_add_tail(&new_node->lower, &cache->leaves); 1209 } 1210 1211 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1212 &new_node->rb_node); 1213 if (rb_node) 1214 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1215 1216 if (!new_node->lowest) { 1217 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1218 list_add_tail(&new_edge->list[LOWER], 1219 &new_edge->node[LOWER]->upper); 1220 } 1221 } 1222 return 0; 1223 fail: 1224 while (!list_empty(&new_node->lower)) { 1225 new_edge = list_entry(new_node->lower.next, 1226 struct backref_edge, list[UPPER]); 1227 list_del(&new_edge->list[UPPER]); 1228 free_backref_edge(cache, new_edge); 1229 } 1230 free_backref_node(cache, new_node); 1231 return -ENOMEM; 1232 } 1233 1234 /* 1235 * helper to add 'address of tree root -> reloc tree' mapping 1236 */ 1237 static int __must_check __add_reloc_root(struct btrfs_root *root) 1238 { 1239 struct rb_node *rb_node; 1240 struct mapping_node *node; 1241 struct reloc_control *rc = root->fs_info->reloc_ctl; 1242 1243 node = kmalloc(sizeof(*node), GFP_NOFS); 1244 if (!node) 1245 return -ENOMEM; 1246 1247 node->bytenr = root->node->start; 1248 node->data = root; 1249 1250 spin_lock(&rc->reloc_root_tree.lock); 1251 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1252 node->bytenr, &node->rb_node); 1253 spin_unlock(&rc->reloc_root_tree.lock); 1254 if (rb_node) { 1255 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1256 "for start=%llu while inserting into relocation " 1257 "tree\n", node->bytenr); 1258 kfree(node); 1259 return -EEXIST; 1260 } 1261 1262 list_add_tail(&root->root_list, &rc->reloc_roots); 1263 return 0; 1264 } 1265 1266 /* 1267 * helper to update/delete the 'address of tree root -> reloc tree' 1268 * mapping 1269 */ 1270 static int __update_reloc_root(struct btrfs_root *root, int del) 1271 { 1272 struct rb_node *rb_node; 1273 struct mapping_node *node = NULL; 1274 struct reloc_control *rc = root->fs_info->reloc_ctl; 1275 1276 spin_lock(&rc->reloc_root_tree.lock); 1277 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1278 root->commit_root->start); 1279 if (rb_node) { 1280 node = rb_entry(rb_node, struct mapping_node, rb_node); 1281 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1282 } 1283 spin_unlock(&rc->reloc_root_tree.lock); 1284 1285 if (!node) 1286 return 0; 1287 BUG_ON((struct btrfs_root *)node->data != root); 1288 1289 if (!del) { 1290 spin_lock(&rc->reloc_root_tree.lock); 1291 node->bytenr = root->node->start; 1292 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1293 node->bytenr, &node->rb_node); 1294 spin_unlock(&rc->reloc_root_tree.lock); 1295 if (rb_node) 1296 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1297 } else { 1298 spin_lock(&root->fs_info->trans_lock); 1299 list_del_init(&root->root_list); 1300 spin_unlock(&root->fs_info->trans_lock); 1301 kfree(node); 1302 } 1303 return 0; 1304 } 1305 1306 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1307 struct btrfs_root *root, u64 objectid) 1308 { 1309 struct btrfs_root *reloc_root; 1310 struct extent_buffer *eb; 1311 struct btrfs_root_item *root_item; 1312 struct btrfs_key root_key; 1313 u64 last_snap = 0; 1314 int ret; 1315 1316 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1317 BUG_ON(!root_item); 1318 1319 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1320 root_key.type = BTRFS_ROOT_ITEM_KEY; 1321 root_key.offset = objectid; 1322 1323 if (root->root_key.objectid == objectid) { 1324 /* called by btrfs_init_reloc_root */ 1325 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1326 BTRFS_TREE_RELOC_OBJECTID); 1327 BUG_ON(ret); 1328 1329 last_snap = btrfs_root_last_snapshot(&root->root_item); 1330 btrfs_set_root_last_snapshot(&root->root_item, 1331 trans->transid - 1); 1332 } else { 1333 /* 1334 * called by btrfs_reloc_post_snapshot_hook. 1335 * the source tree is a reloc tree, all tree blocks 1336 * modified after it was created have RELOC flag 1337 * set in their headers. so it's OK to not update 1338 * the 'last_snapshot'. 1339 */ 1340 ret = btrfs_copy_root(trans, root, root->node, &eb, 1341 BTRFS_TREE_RELOC_OBJECTID); 1342 BUG_ON(ret); 1343 } 1344 1345 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1346 btrfs_set_root_bytenr(root_item, eb->start); 1347 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1348 btrfs_set_root_generation(root_item, trans->transid); 1349 1350 if (root->root_key.objectid == objectid) { 1351 btrfs_set_root_refs(root_item, 0); 1352 memset(&root_item->drop_progress, 0, 1353 sizeof(struct btrfs_disk_key)); 1354 root_item->drop_level = 0; 1355 /* 1356 * abuse rtransid, it is safe because it is impossible to 1357 * receive data into a relocation tree. 1358 */ 1359 btrfs_set_root_rtransid(root_item, last_snap); 1360 btrfs_set_root_otransid(root_item, trans->transid); 1361 } 1362 1363 btrfs_tree_unlock(eb); 1364 free_extent_buffer(eb); 1365 1366 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1367 &root_key, root_item); 1368 BUG_ON(ret); 1369 kfree(root_item); 1370 1371 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1372 BUG_ON(IS_ERR(reloc_root)); 1373 reloc_root->last_trans = trans->transid; 1374 return reloc_root; 1375 } 1376 1377 /* 1378 * create reloc tree for a given fs tree. reloc tree is just a 1379 * snapshot of the fs tree with special root objectid. 1380 */ 1381 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1382 struct btrfs_root *root) 1383 { 1384 struct btrfs_root *reloc_root; 1385 struct reloc_control *rc = root->fs_info->reloc_ctl; 1386 int clear_rsv = 0; 1387 int ret; 1388 1389 if (root->reloc_root) { 1390 reloc_root = root->reloc_root; 1391 reloc_root->last_trans = trans->transid; 1392 return 0; 1393 } 1394 1395 if (!rc || !rc->create_reloc_tree || 1396 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1397 return 0; 1398 1399 if (!trans->block_rsv) { 1400 trans->block_rsv = rc->block_rsv; 1401 clear_rsv = 1; 1402 } 1403 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1404 if (clear_rsv) 1405 trans->block_rsv = NULL; 1406 1407 ret = __add_reloc_root(reloc_root); 1408 BUG_ON(ret < 0); 1409 root->reloc_root = reloc_root; 1410 return 0; 1411 } 1412 1413 /* 1414 * update root item of reloc tree 1415 */ 1416 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1417 struct btrfs_root *root) 1418 { 1419 struct btrfs_root *reloc_root; 1420 struct btrfs_root_item *root_item; 1421 int del = 0; 1422 int ret; 1423 1424 if (!root->reloc_root) 1425 goto out; 1426 1427 reloc_root = root->reloc_root; 1428 root_item = &reloc_root->root_item; 1429 1430 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1431 btrfs_root_refs(root_item) == 0) { 1432 root->reloc_root = NULL; 1433 del = 1; 1434 } 1435 1436 __update_reloc_root(reloc_root, del); 1437 1438 if (reloc_root->commit_root != reloc_root->node) { 1439 btrfs_set_root_node(root_item, reloc_root->node); 1440 free_extent_buffer(reloc_root->commit_root); 1441 reloc_root->commit_root = btrfs_root_node(reloc_root); 1442 } 1443 1444 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1445 &reloc_root->root_key, root_item); 1446 BUG_ON(ret); 1447 1448 out: 1449 return 0; 1450 } 1451 1452 /* 1453 * helper to find first cached inode with inode number >= objectid 1454 * in a subvolume 1455 */ 1456 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1457 { 1458 struct rb_node *node; 1459 struct rb_node *prev; 1460 struct btrfs_inode *entry; 1461 struct inode *inode; 1462 1463 spin_lock(&root->inode_lock); 1464 again: 1465 node = root->inode_tree.rb_node; 1466 prev = NULL; 1467 while (node) { 1468 prev = node; 1469 entry = rb_entry(node, struct btrfs_inode, rb_node); 1470 1471 if (objectid < btrfs_ino(&entry->vfs_inode)) 1472 node = node->rb_left; 1473 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1474 node = node->rb_right; 1475 else 1476 break; 1477 } 1478 if (!node) { 1479 while (prev) { 1480 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1481 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1482 node = prev; 1483 break; 1484 } 1485 prev = rb_next(prev); 1486 } 1487 } 1488 while (node) { 1489 entry = rb_entry(node, struct btrfs_inode, rb_node); 1490 inode = igrab(&entry->vfs_inode); 1491 if (inode) { 1492 spin_unlock(&root->inode_lock); 1493 return inode; 1494 } 1495 1496 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1497 if (cond_resched_lock(&root->inode_lock)) 1498 goto again; 1499 1500 node = rb_next(node); 1501 } 1502 spin_unlock(&root->inode_lock); 1503 return NULL; 1504 } 1505 1506 static int in_block_group(u64 bytenr, 1507 struct btrfs_block_group_cache *block_group) 1508 { 1509 if (bytenr >= block_group->key.objectid && 1510 bytenr < block_group->key.objectid + block_group->key.offset) 1511 return 1; 1512 return 0; 1513 } 1514 1515 /* 1516 * get new location of data 1517 */ 1518 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1519 u64 bytenr, u64 num_bytes) 1520 { 1521 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1522 struct btrfs_path *path; 1523 struct btrfs_file_extent_item *fi; 1524 struct extent_buffer *leaf; 1525 int ret; 1526 1527 path = btrfs_alloc_path(); 1528 if (!path) 1529 return -ENOMEM; 1530 1531 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1532 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1533 bytenr, 0); 1534 if (ret < 0) 1535 goto out; 1536 if (ret > 0) { 1537 ret = -ENOENT; 1538 goto out; 1539 } 1540 1541 leaf = path->nodes[0]; 1542 fi = btrfs_item_ptr(leaf, path->slots[0], 1543 struct btrfs_file_extent_item); 1544 1545 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1546 btrfs_file_extent_compression(leaf, fi) || 1547 btrfs_file_extent_encryption(leaf, fi) || 1548 btrfs_file_extent_other_encoding(leaf, fi)); 1549 1550 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1551 ret = -EINVAL; 1552 goto out; 1553 } 1554 1555 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1556 ret = 0; 1557 out: 1558 btrfs_free_path(path); 1559 return ret; 1560 } 1561 1562 /* 1563 * update file extent items in the tree leaf to point to 1564 * the new locations. 1565 */ 1566 static noinline_for_stack 1567 int replace_file_extents(struct btrfs_trans_handle *trans, 1568 struct reloc_control *rc, 1569 struct btrfs_root *root, 1570 struct extent_buffer *leaf) 1571 { 1572 struct btrfs_key key; 1573 struct btrfs_file_extent_item *fi; 1574 struct inode *inode = NULL; 1575 u64 parent; 1576 u64 bytenr; 1577 u64 new_bytenr = 0; 1578 u64 num_bytes; 1579 u64 end; 1580 u32 nritems; 1581 u32 i; 1582 int ret = 0; 1583 int first = 1; 1584 int dirty = 0; 1585 1586 if (rc->stage != UPDATE_DATA_PTRS) 1587 return 0; 1588 1589 /* reloc trees always use full backref */ 1590 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1591 parent = leaf->start; 1592 else 1593 parent = 0; 1594 1595 nritems = btrfs_header_nritems(leaf); 1596 for (i = 0; i < nritems; i++) { 1597 cond_resched(); 1598 btrfs_item_key_to_cpu(leaf, &key, i); 1599 if (key.type != BTRFS_EXTENT_DATA_KEY) 1600 continue; 1601 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1602 if (btrfs_file_extent_type(leaf, fi) == 1603 BTRFS_FILE_EXTENT_INLINE) 1604 continue; 1605 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1606 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1607 if (bytenr == 0) 1608 continue; 1609 if (!in_block_group(bytenr, rc->block_group)) 1610 continue; 1611 1612 /* 1613 * if we are modifying block in fs tree, wait for readpage 1614 * to complete and drop the extent cache 1615 */ 1616 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1617 if (first) { 1618 inode = find_next_inode(root, key.objectid); 1619 first = 0; 1620 } else if (inode && btrfs_ino(inode) < key.objectid) { 1621 btrfs_add_delayed_iput(inode); 1622 inode = find_next_inode(root, key.objectid); 1623 } 1624 if (inode && btrfs_ino(inode) == key.objectid) { 1625 end = key.offset + 1626 btrfs_file_extent_num_bytes(leaf, fi); 1627 WARN_ON(!IS_ALIGNED(key.offset, 1628 root->sectorsize)); 1629 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1630 end--; 1631 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1632 key.offset, end); 1633 if (!ret) 1634 continue; 1635 1636 btrfs_drop_extent_cache(inode, key.offset, end, 1637 1); 1638 unlock_extent(&BTRFS_I(inode)->io_tree, 1639 key.offset, end); 1640 } 1641 } 1642 1643 ret = get_new_location(rc->data_inode, &new_bytenr, 1644 bytenr, num_bytes); 1645 if (ret) { 1646 /* 1647 * Don't have to abort since we've not changed anything 1648 * in the file extent yet. 1649 */ 1650 break; 1651 } 1652 1653 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1654 dirty = 1; 1655 1656 key.offset -= btrfs_file_extent_offset(leaf, fi); 1657 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1658 num_bytes, parent, 1659 btrfs_header_owner(leaf), 1660 key.objectid, key.offset, 1); 1661 if (ret) { 1662 btrfs_abort_transaction(trans, root, ret); 1663 break; 1664 } 1665 1666 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1667 parent, btrfs_header_owner(leaf), 1668 key.objectid, key.offset, 1); 1669 if (ret) { 1670 btrfs_abort_transaction(trans, root, ret); 1671 break; 1672 } 1673 } 1674 if (dirty) 1675 btrfs_mark_buffer_dirty(leaf); 1676 if (inode) 1677 btrfs_add_delayed_iput(inode); 1678 return ret; 1679 } 1680 1681 static noinline_for_stack 1682 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1683 struct btrfs_path *path, int level) 1684 { 1685 struct btrfs_disk_key key1; 1686 struct btrfs_disk_key key2; 1687 btrfs_node_key(eb, &key1, slot); 1688 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1689 return memcmp(&key1, &key2, sizeof(key1)); 1690 } 1691 1692 /* 1693 * try to replace tree blocks in fs tree with the new blocks 1694 * in reloc tree. tree blocks haven't been modified since the 1695 * reloc tree was create can be replaced. 1696 * 1697 * if a block was replaced, level of the block + 1 is returned. 1698 * if no block got replaced, 0 is returned. if there are other 1699 * errors, a negative error number is returned. 1700 */ 1701 static noinline_for_stack 1702 int replace_path(struct btrfs_trans_handle *trans, 1703 struct btrfs_root *dest, struct btrfs_root *src, 1704 struct btrfs_path *path, struct btrfs_key *next_key, 1705 int lowest_level, int max_level) 1706 { 1707 struct extent_buffer *eb; 1708 struct extent_buffer *parent; 1709 struct btrfs_key key; 1710 u64 old_bytenr; 1711 u64 new_bytenr; 1712 u64 old_ptr_gen; 1713 u64 new_ptr_gen; 1714 u64 last_snapshot; 1715 u32 blocksize; 1716 int cow = 0; 1717 int level; 1718 int ret; 1719 int slot; 1720 1721 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1722 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1723 1724 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1725 again: 1726 slot = path->slots[lowest_level]; 1727 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1728 1729 eb = btrfs_lock_root_node(dest); 1730 btrfs_set_lock_blocking(eb); 1731 level = btrfs_header_level(eb); 1732 1733 if (level < lowest_level) { 1734 btrfs_tree_unlock(eb); 1735 free_extent_buffer(eb); 1736 return 0; 1737 } 1738 1739 if (cow) { 1740 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1741 BUG_ON(ret); 1742 } 1743 btrfs_set_lock_blocking(eb); 1744 1745 if (next_key) { 1746 next_key->objectid = (u64)-1; 1747 next_key->type = (u8)-1; 1748 next_key->offset = (u64)-1; 1749 } 1750 1751 parent = eb; 1752 while (1) { 1753 level = btrfs_header_level(parent); 1754 BUG_ON(level < lowest_level); 1755 1756 ret = btrfs_bin_search(parent, &key, level, &slot); 1757 if (ret && slot > 0) 1758 slot--; 1759 1760 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1761 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1762 1763 old_bytenr = btrfs_node_blockptr(parent, slot); 1764 blocksize = btrfs_level_size(dest, level - 1); 1765 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1766 1767 if (level <= max_level) { 1768 eb = path->nodes[level]; 1769 new_bytenr = btrfs_node_blockptr(eb, 1770 path->slots[level]); 1771 new_ptr_gen = btrfs_node_ptr_generation(eb, 1772 path->slots[level]); 1773 } else { 1774 new_bytenr = 0; 1775 new_ptr_gen = 0; 1776 } 1777 1778 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1779 WARN_ON(1); 1780 ret = level; 1781 break; 1782 } 1783 1784 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1785 memcmp_node_keys(parent, slot, path, level)) { 1786 if (level <= lowest_level) { 1787 ret = 0; 1788 break; 1789 } 1790 1791 eb = read_tree_block(dest, old_bytenr, blocksize, 1792 old_ptr_gen); 1793 if (!eb || !extent_buffer_uptodate(eb)) { 1794 ret = (!eb) ? -ENOMEM : -EIO; 1795 free_extent_buffer(eb); 1796 break; 1797 } 1798 btrfs_tree_lock(eb); 1799 if (cow) { 1800 ret = btrfs_cow_block(trans, dest, eb, parent, 1801 slot, &eb); 1802 BUG_ON(ret); 1803 } 1804 btrfs_set_lock_blocking(eb); 1805 1806 btrfs_tree_unlock(parent); 1807 free_extent_buffer(parent); 1808 1809 parent = eb; 1810 continue; 1811 } 1812 1813 if (!cow) { 1814 btrfs_tree_unlock(parent); 1815 free_extent_buffer(parent); 1816 cow = 1; 1817 goto again; 1818 } 1819 1820 btrfs_node_key_to_cpu(path->nodes[level], &key, 1821 path->slots[level]); 1822 btrfs_release_path(path); 1823 1824 path->lowest_level = level; 1825 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1826 path->lowest_level = 0; 1827 BUG_ON(ret); 1828 1829 /* 1830 * swap blocks in fs tree and reloc tree. 1831 */ 1832 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1833 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1834 btrfs_mark_buffer_dirty(parent); 1835 1836 btrfs_set_node_blockptr(path->nodes[level], 1837 path->slots[level], old_bytenr); 1838 btrfs_set_node_ptr_generation(path->nodes[level], 1839 path->slots[level], old_ptr_gen); 1840 btrfs_mark_buffer_dirty(path->nodes[level]); 1841 1842 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1843 path->nodes[level]->start, 1844 src->root_key.objectid, level - 1, 0, 1845 1); 1846 BUG_ON(ret); 1847 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1848 0, dest->root_key.objectid, level - 1, 1849 0, 1); 1850 BUG_ON(ret); 1851 1852 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1853 path->nodes[level]->start, 1854 src->root_key.objectid, level - 1, 0, 1855 1); 1856 BUG_ON(ret); 1857 1858 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1859 0, dest->root_key.objectid, level - 1, 1860 0, 1); 1861 BUG_ON(ret); 1862 1863 btrfs_unlock_up_safe(path, 0); 1864 1865 ret = level; 1866 break; 1867 } 1868 btrfs_tree_unlock(parent); 1869 free_extent_buffer(parent); 1870 return ret; 1871 } 1872 1873 /* 1874 * helper to find next relocated block in reloc tree 1875 */ 1876 static noinline_for_stack 1877 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1878 int *level) 1879 { 1880 struct extent_buffer *eb; 1881 int i; 1882 u64 last_snapshot; 1883 u32 nritems; 1884 1885 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1886 1887 for (i = 0; i < *level; i++) { 1888 free_extent_buffer(path->nodes[i]); 1889 path->nodes[i] = NULL; 1890 } 1891 1892 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1893 eb = path->nodes[i]; 1894 nritems = btrfs_header_nritems(eb); 1895 while (path->slots[i] + 1 < nritems) { 1896 path->slots[i]++; 1897 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1898 last_snapshot) 1899 continue; 1900 1901 *level = i; 1902 return 0; 1903 } 1904 free_extent_buffer(path->nodes[i]); 1905 path->nodes[i] = NULL; 1906 } 1907 return 1; 1908 } 1909 1910 /* 1911 * walk down reloc tree to find relocated block of lowest level 1912 */ 1913 static noinline_for_stack 1914 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1915 int *level) 1916 { 1917 struct extent_buffer *eb = NULL; 1918 int i; 1919 u64 bytenr; 1920 u64 ptr_gen = 0; 1921 u64 last_snapshot; 1922 u32 blocksize; 1923 u32 nritems; 1924 1925 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1926 1927 for (i = *level; i > 0; i--) { 1928 eb = path->nodes[i]; 1929 nritems = btrfs_header_nritems(eb); 1930 while (path->slots[i] < nritems) { 1931 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1932 if (ptr_gen > last_snapshot) 1933 break; 1934 path->slots[i]++; 1935 } 1936 if (path->slots[i] >= nritems) { 1937 if (i == *level) 1938 break; 1939 *level = i + 1; 1940 return 0; 1941 } 1942 if (i == 1) { 1943 *level = i; 1944 return 0; 1945 } 1946 1947 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1948 blocksize = btrfs_level_size(root, i - 1); 1949 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1950 if (!eb || !extent_buffer_uptodate(eb)) { 1951 free_extent_buffer(eb); 1952 return -EIO; 1953 } 1954 BUG_ON(btrfs_header_level(eb) != i - 1); 1955 path->nodes[i - 1] = eb; 1956 path->slots[i - 1] = 0; 1957 } 1958 return 1; 1959 } 1960 1961 /* 1962 * invalidate extent cache for file extents whose key in range of 1963 * [min_key, max_key) 1964 */ 1965 static int invalidate_extent_cache(struct btrfs_root *root, 1966 struct btrfs_key *min_key, 1967 struct btrfs_key *max_key) 1968 { 1969 struct inode *inode = NULL; 1970 u64 objectid; 1971 u64 start, end; 1972 u64 ino; 1973 1974 objectid = min_key->objectid; 1975 while (1) { 1976 cond_resched(); 1977 iput(inode); 1978 1979 if (objectid > max_key->objectid) 1980 break; 1981 1982 inode = find_next_inode(root, objectid); 1983 if (!inode) 1984 break; 1985 ino = btrfs_ino(inode); 1986 1987 if (ino > max_key->objectid) { 1988 iput(inode); 1989 break; 1990 } 1991 1992 objectid = ino + 1; 1993 if (!S_ISREG(inode->i_mode)) 1994 continue; 1995 1996 if (unlikely(min_key->objectid == ino)) { 1997 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1998 continue; 1999 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2000 start = 0; 2001 else { 2002 start = min_key->offset; 2003 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 2004 } 2005 } else { 2006 start = 0; 2007 } 2008 2009 if (unlikely(max_key->objectid == ino)) { 2010 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2011 continue; 2012 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2013 end = (u64)-1; 2014 } else { 2015 if (max_key->offset == 0) 2016 continue; 2017 end = max_key->offset; 2018 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2019 end--; 2020 } 2021 } else { 2022 end = (u64)-1; 2023 } 2024 2025 /* the lock_extent waits for readpage to complete */ 2026 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2027 btrfs_drop_extent_cache(inode, start, end, 1); 2028 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2029 } 2030 return 0; 2031 } 2032 2033 static int find_next_key(struct btrfs_path *path, int level, 2034 struct btrfs_key *key) 2035 2036 { 2037 while (level < BTRFS_MAX_LEVEL) { 2038 if (!path->nodes[level]) 2039 break; 2040 if (path->slots[level] + 1 < 2041 btrfs_header_nritems(path->nodes[level])) { 2042 btrfs_node_key_to_cpu(path->nodes[level], key, 2043 path->slots[level] + 1); 2044 return 0; 2045 } 2046 level++; 2047 } 2048 return 1; 2049 } 2050 2051 /* 2052 * merge the relocated tree blocks in reloc tree with corresponding 2053 * fs tree. 2054 */ 2055 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2056 struct btrfs_root *root) 2057 { 2058 LIST_HEAD(inode_list); 2059 struct btrfs_key key; 2060 struct btrfs_key next_key; 2061 struct btrfs_trans_handle *trans; 2062 struct btrfs_root *reloc_root; 2063 struct btrfs_root_item *root_item; 2064 struct btrfs_path *path; 2065 struct extent_buffer *leaf; 2066 int level; 2067 int max_level; 2068 int replaced = 0; 2069 int ret; 2070 int err = 0; 2071 u32 min_reserved; 2072 2073 path = btrfs_alloc_path(); 2074 if (!path) 2075 return -ENOMEM; 2076 path->reada = 1; 2077 2078 reloc_root = root->reloc_root; 2079 root_item = &reloc_root->root_item; 2080 2081 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2082 level = btrfs_root_level(root_item); 2083 extent_buffer_get(reloc_root->node); 2084 path->nodes[level] = reloc_root->node; 2085 path->slots[level] = 0; 2086 } else { 2087 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2088 2089 level = root_item->drop_level; 2090 BUG_ON(level == 0); 2091 path->lowest_level = level; 2092 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2093 path->lowest_level = 0; 2094 if (ret < 0) { 2095 btrfs_free_path(path); 2096 return ret; 2097 } 2098 2099 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2100 path->slots[level]); 2101 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2102 2103 btrfs_unlock_up_safe(path, 0); 2104 } 2105 2106 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2107 memset(&next_key, 0, sizeof(next_key)); 2108 2109 while (1) { 2110 trans = btrfs_start_transaction(root, 0); 2111 BUG_ON(IS_ERR(trans)); 2112 trans->block_rsv = rc->block_rsv; 2113 2114 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2115 BTRFS_RESERVE_FLUSH_ALL); 2116 if (ret) { 2117 BUG_ON(ret != -EAGAIN); 2118 ret = btrfs_commit_transaction(trans, root); 2119 BUG_ON(ret); 2120 continue; 2121 } 2122 2123 replaced = 0; 2124 max_level = level; 2125 2126 ret = walk_down_reloc_tree(reloc_root, path, &level); 2127 if (ret < 0) { 2128 err = ret; 2129 goto out; 2130 } 2131 if (ret > 0) 2132 break; 2133 2134 if (!find_next_key(path, level, &key) && 2135 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2136 ret = 0; 2137 } else { 2138 ret = replace_path(trans, root, reloc_root, path, 2139 &next_key, level, max_level); 2140 } 2141 if (ret < 0) { 2142 err = ret; 2143 goto out; 2144 } 2145 2146 if (ret > 0) { 2147 level = ret; 2148 btrfs_node_key_to_cpu(path->nodes[level], &key, 2149 path->slots[level]); 2150 replaced = 1; 2151 } 2152 2153 ret = walk_up_reloc_tree(reloc_root, path, &level); 2154 if (ret > 0) 2155 break; 2156 2157 BUG_ON(level == 0); 2158 /* 2159 * save the merging progress in the drop_progress. 2160 * this is OK since root refs == 1 in this case. 2161 */ 2162 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2163 path->slots[level]); 2164 root_item->drop_level = level; 2165 2166 btrfs_end_transaction_throttle(trans, root); 2167 2168 btrfs_btree_balance_dirty(root); 2169 2170 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2171 invalidate_extent_cache(root, &key, &next_key); 2172 } 2173 2174 /* 2175 * handle the case only one block in the fs tree need to be 2176 * relocated and the block is tree root. 2177 */ 2178 leaf = btrfs_lock_root_node(root); 2179 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2180 btrfs_tree_unlock(leaf); 2181 free_extent_buffer(leaf); 2182 if (ret < 0) 2183 err = ret; 2184 out: 2185 btrfs_free_path(path); 2186 2187 if (err == 0) { 2188 memset(&root_item->drop_progress, 0, 2189 sizeof(root_item->drop_progress)); 2190 root_item->drop_level = 0; 2191 btrfs_set_root_refs(root_item, 0); 2192 btrfs_update_reloc_root(trans, root); 2193 } 2194 2195 btrfs_end_transaction_throttle(trans, root); 2196 2197 btrfs_btree_balance_dirty(root); 2198 2199 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2200 invalidate_extent_cache(root, &key, &next_key); 2201 2202 return err; 2203 } 2204 2205 static noinline_for_stack 2206 int prepare_to_merge(struct reloc_control *rc, int err) 2207 { 2208 struct btrfs_root *root = rc->extent_root; 2209 struct btrfs_root *reloc_root; 2210 struct btrfs_trans_handle *trans; 2211 LIST_HEAD(reloc_roots); 2212 u64 num_bytes = 0; 2213 int ret; 2214 2215 mutex_lock(&root->fs_info->reloc_mutex); 2216 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2217 rc->merging_rsv_size += rc->nodes_relocated * 2; 2218 mutex_unlock(&root->fs_info->reloc_mutex); 2219 2220 again: 2221 if (!err) { 2222 num_bytes = rc->merging_rsv_size; 2223 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2224 BTRFS_RESERVE_FLUSH_ALL); 2225 if (ret) 2226 err = ret; 2227 } 2228 2229 trans = btrfs_join_transaction(rc->extent_root); 2230 if (IS_ERR(trans)) { 2231 if (!err) 2232 btrfs_block_rsv_release(rc->extent_root, 2233 rc->block_rsv, num_bytes); 2234 return PTR_ERR(trans); 2235 } 2236 2237 if (!err) { 2238 if (num_bytes != rc->merging_rsv_size) { 2239 btrfs_end_transaction(trans, rc->extent_root); 2240 btrfs_block_rsv_release(rc->extent_root, 2241 rc->block_rsv, num_bytes); 2242 goto again; 2243 } 2244 } 2245 2246 rc->merge_reloc_tree = 1; 2247 2248 while (!list_empty(&rc->reloc_roots)) { 2249 reloc_root = list_entry(rc->reloc_roots.next, 2250 struct btrfs_root, root_list); 2251 list_del_init(&reloc_root->root_list); 2252 2253 root = read_fs_root(reloc_root->fs_info, 2254 reloc_root->root_key.offset); 2255 BUG_ON(IS_ERR(root)); 2256 BUG_ON(root->reloc_root != reloc_root); 2257 2258 /* 2259 * set reference count to 1, so btrfs_recover_relocation 2260 * knows it should resumes merging 2261 */ 2262 if (!err) 2263 btrfs_set_root_refs(&reloc_root->root_item, 1); 2264 btrfs_update_reloc_root(trans, root); 2265 2266 list_add(&reloc_root->root_list, &reloc_roots); 2267 } 2268 2269 list_splice(&reloc_roots, &rc->reloc_roots); 2270 2271 if (!err) 2272 btrfs_commit_transaction(trans, rc->extent_root); 2273 else 2274 btrfs_end_transaction(trans, rc->extent_root); 2275 return err; 2276 } 2277 2278 static noinline_for_stack 2279 void free_reloc_roots(struct list_head *list) 2280 { 2281 struct btrfs_root *reloc_root; 2282 2283 while (!list_empty(list)) { 2284 reloc_root = list_entry(list->next, struct btrfs_root, 2285 root_list); 2286 __update_reloc_root(reloc_root, 1); 2287 free_extent_buffer(reloc_root->node); 2288 free_extent_buffer(reloc_root->commit_root); 2289 kfree(reloc_root); 2290 } 2291 } 2292 2293 static noinline_for_stack 2294 int merge_reloc_roots(struct reloc_control *rc) 2295 { 2296 struct btrfs_trans_handle *trans; 2297 struct btrfs_root *root; 2298 struct btrfs_root *reloc_root; 2299 u64 last_snap; 2300 u64 otransid; 2301 u64 objectid; 2302 LIST_HEAD(reloc_roots); 2303 int found = 0; 2304 int ret = 0; 2305 again: 2306 root = rc->extent_root; 2307 2308 /* 2309 * this serializes us with btrfs_record_root_in_transaction, 2310 * we have to make sure nobody is in the middle of 2311 * adding their roots to the list while we are 2312 * doing this splice 2313 */ 2314 mutex_lock(&root->fs_info->reloc_mutex); 2315 list_splice_init(&rc->reloc_roots, &reloc_roots); 2316 mutex_unlock(&root->fs_info->reloc_mutex); 2317 2318 while (!list_empty(&reloc_roots)) { 2319 found = 1; 2320 reloc_root = list_entry(reloc_roots.next, 2321 struct btrfs_root, root_list); 2322 2323 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2324 root = read_fs_root(reloc_root->fs_info, 2325 reloc_root->root_key.offset); 2326 BUG_ON(IS_ERR(root)); 2327 BUG_ON(root->reloc_root != reloc_root); 2328 2329 ret = merge_reloc_root(rc, root); 2330 if (ret) { 2331 __update_reloc_root(reloc_root, 1); 2332 free_extent_buffer(reloc_root->node); 2333 free_extent_buffer(reloc_root->commit_root); 2334 kfree(reloc_root); 2335 goto out; 2336 } 2337 } else { 2338 list_del_init(&reloc_root->root_list); 2339 } 2340 2341 /* 2342 * we keep the old last snapshod transid in rtranid when we 2343 * created the relocation tree. 2344 */ 2345 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2346 otransid = btrfs_root_otransid(&reloc_root->root_item); 2347 objectid = reloc_root->root_key.offset; 2348 2349 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2350 if (ret < 0) { 2351 if (list_empty(&reloc_root->root_list)) 2352 list_add_tail(&reloc_root->root_list, 2353 &reloc_roots); 2354 goto out; 2355 } else if (!ret) { 2356 /* 2357 * recover the last snapshot tranid to avoid 2358 * the space balance break NOCOW. 2359 */ 2360 root = read_fs_root(rc->extent_root->fs_info, 2361 objectid); 2362 if (IS_ERR(root)) 2363 continue; 2364 2365 trans = btrfs_join_transaction(root); 2366 BUG_ON(IS_ERR(trans)); 2367 2368 /* Check if the fs/file tree was snapshoted or not. */ 2369 if (btrfs_root_last_snapshot(&root->root_item) == 2370 otransid - 1) 2371 btrfs_set_root_last_snapshot(&root->root_item, 2372 last_snap); 2373 2374 btrfs_end_transaction(trans, root); 2375 } 2376 } 2377 2378 if (found) { 2379 found = 0; 2380 goto again; 2381 } 2382 out: 2383 if (ret) { 2384 btrfs_std_error(root->fs_info, ret); 2385 if (!list_empty(&reloc_roots)) 2386 free_reloc_roots(&reloc_roots); 2387 } 2388 2389 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2390 return ret; 2391 } 2392 2393 static void free_block_list(struct rb_root *blocks) 2394 { 2395 struct tree_block *block; 2396 struct rb_node *rb_node; 2397 while ((rb_node = rb_first(blocks))) { 2398 block = rb_entry(rb_node, struct tree_block, rb_node); 2399 rb_erase(rb_node, blocks); 2400 kfree(block); 2401 } 2402 } 2403 2404 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2405 struct btrfs_root *reloc_root) 2406 { 2407 struct btrfs_root *root; 2408 2409 if (reloc_root->last_trans == trans->transid) 2410 return 0; 2411 2412 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2413 BUG_ON(IS_ERR(root)); 2414 BUG_ON(root->reloc_root != reloc_root); 2415 2416 return btrfs_record_root_in_trans(trans, root); 2417 } 2418 2419 static noinline_for_stack 2420 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2421 struct reloc_control *rc, 2422 struct backref_node *node, 2423 struct backref_edge *edges[], int *nr) 2424 { 2425 struct backref_node *next; 2426 struct btrfs_root *root; 2427 int index = 0; 2428 2429 next = node; 2430 while (1) { 2431 cond_resched(); 2432 next = walk_up_backref(next, edges, &index); 2433 root = next->root; 2434 BUG_ON(!root); 2435 BUG_ON(!root->ref_cows); 2436 2437 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2438 record_reloc_root_in_trans(trans, root); 2439 break; 2440 } 2441 2442 btrfs_record_root_in_trans(trans, root); 2443 root = root->reloc_root; 2444 2445 if (next->new_bytenr != root->node->start) { 2446 BUG_ON(next->new_bytenr); 2447 BUG_ON(!list_empty(&next->list)); 2448 next->new_bytenr = root->node->start; 2449 next->root = root; 2450 list_add_tail(&next->list, 2451 &rc->backref_cache.changed); 2452 __mark_block_processed(rc, next); 2453 break; 2454 } 2455 2456 WARN_ON(1); 2457 root = NULL; 2458 next = walk_down_backref(edges, &index); 2459 if (!next || next->level <= node->level) 2460 break; 2461 } 2462 if (!root) 2463 return NULL; 2464 2465 *nr = index; 2466 next = node; 2467 /* setup backref node path for btrfs_reloc_cow_block */ 2468 while (1) { 2469 rc->backref_cache.path[next->level] = next; 2470 if (--index < 0) 2471 break; 2472 next = edges[index]->node[UPPER]; 2473 } 2474 return root; 2475 } 2476 2477 /* 2478 * select a tree root for relocation. return NULL if the block 2479 * is reference counted. we should use do_relocation() in this 2480 * case. return a tree root pointer if the block isn't reference 2481 * counted. return -ENOENT if the block is root of reloc tree. 2482 */ 2483 static noinline_for_stack 2484 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2485 struct backref_node *node) 2486 { 2487 struct backref_node *next; 2488 struct btrfs_root *root; 2489 struct btrfs_root *fs_root = NULL; 2490 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2491 int index = 0; 2492 2493 next = node; 2494 while (1) { 2495 cond_resched(); 2496 next = walk_up_backref(next, edges, &index); 2497 root = next->root; 2498 BUG_ON(!root); 2499 2500 /* no other choice for non-references counted tree */ 2501 if (!root->ref_cows) 2502 return root; 2503 2504 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2505 fs_root = root; 2506 2507 if (next != node) 2508 return NULL; 2509 2510 next = walk_down_backref(edges, &index); 2511 if (!next || next->level <= node->level) 2512 break; 2513 } 2514 2515 if (!fs_root) 2516 return ERR_PTR(-ENOENT); 2517 return fs_root; 2518 } 2519 2520 static noinline_for_stack 2521 u64 calcu_metadata_size(struct reloc_control *rc, 2522 struct backref_node *node, int reserve) 2523 { 2524 struct backref_node *next = node; 2525 struct backref_edge *edge; 2526 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2527 u64 num_bytes = 0; 2528 int index = 0; 2529 2530 BUG_ON(reserve && node->processed); 2531 2532 while (next) { 2533 cond_resched(); 2534 while (1) { 2535 if (next->processed && (reserve || next != node)) 2536 break; 2537 2538 num_bytes += btrfs_level_size(rc->extent_root, 2539 next->level); 2540 2541 if (list_empty(&next->upper)) 2542 break; 2543 2544 edge = list_entry(next->upper.next, 2545 struct backref_edge, list[LOWER]); 2546 edges[index++] = edge; 2547 next = edge->node[UPPER]; 2548 } 2549 next = walk_down_backref(edges, &index); 2550 } 2551 return num_bytes; 2552 } 2553 2554 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2555 struct reloc_control *rc, 2556 struct backref_node *node) 2557 { 2558 struct btrfs_root *root = rc->extent_root; 2559 u64 num_bytes; 2560 int ret; 2561 2562 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2563 2564 trans->block_rsv = rc->block_rsv; 2565 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2566 BTRFS_RESERVE_FLUSH_ALL); 2567 if (ret) { 2568 if (ret == -EAGAIN) 2569 rc->commit_transaction = 1; 2570 return ret; 2571 } 2572 2573 return 0; 2574 } 2575 2576 static void release_metadata_space(struct reloc_control *rc, 2577 struct backref_node *node) 2578 { 2579 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2580 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2581 } 2582 2583 /* 2584 * relocate a block tree, and then update pointers in upper level 2585 * blocks that reference the block to point to the new location. 2586 * 2587 * if called by link_to_upper, the block has already been relocated. 2588 * in that case this function just updates pointers. 2589 */ 2590 static int do_relocation(struct btrfs_trans_handle *trans, 2591 struct reloc_control *rc, 2592 struct backref_node *node, 2593 struct btrfs_key *key, 2594 struct btrfs_path *path, int lowest) 2595 { 2596 struct backref_node *upper; 2597 struct backref_edge *edge; 2598 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2599 struct btrfs_root *root; 2600 struct extent_buffer *eb; 2601 u32 blocksize; 2602 u64 bytenr; 2603 u64 generation; 2604 int nr; 2605 int slot; 2606 int ret; 2607 int err = 0; 2608 2609 BUG_ON(lowest && node->eb); 2610 2611 path->lowest_level = node->level + 1; 2612 rc->backref_cache.path[node->level] = node; 2613 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2614 cond_resched(); 2615 2616 upper = edge->node[UPPER]; 2617 root = select_reloc_root(trans, rc, upper, edges, &nr); 2618 BUG_ON(!root); 2619 2620 if (upper->eb && !upper->locked) { 2621 if (!lowest) { 2622 ret = btrfs_bin_search(upper->eb, key, 2623 upper->level, &slot); 2624 BUG_ON(ret); 2625 bytenr = btrfs_node_blockptr(upper->eb, slot); 2626 if (node->eb->start == bytenr) 2627 goto next; 2628 } 2629 drop_node_buffer(upper); 2630 } 2631 2632 if (!upper->eb) { 2633 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2634 if (ret < 0) { 2635 err = ret; 2636 break; 2637 } 2638 BUG_ON(ret > 0); 2639 2640 if (!upper->eb) { 2641 upper->eb = path->nodes[upper->level]; 2642 path->nodes[upper->level] = NULL; 2643 } else { 2644 BUG_ON(upper->eb != path->nodes[upper->level]); 2645 } 2646 2647 upper->locked = 1; 2648 path->locks[upper->level] = 0; 2649 2650 slot = path->slots[upper->level]; 2651 btrfs_release_path(path); 2652 } else { 2653 ret = btrfs_bin_search(upper->eb, key, upper->level, 2654 &slot); 2655 BUG_ON(ret); 2656 } 2657 2658 bytenr = btrfs_node_blockptr(upper->eb, slot); 2659 if (lowest) { 2660 BUG_ON(bytenr != node->bytenr); 2661 } else { 2662 if (node->eb->start == bytenr) 2663 goto next; 2664 } 2665 2666 blocksize = btrfs_level_size(root, node->level); 2667 generation = btrfs_node_ptr_generation(upper->eb, slot); 2668 eb = read_tree_block(root, bytenr, blocksize, generation); 2669 if (!eb || !extent_buffer_uptodate(eb)) { 2670 free_extent_buffer(eb); 2671 err = -EIO; 2672 goto next; 2673 } 2674 btrfs_tree_lock(eb); 2675 btrfs_set_lock_blocking(eb); 2676 2677 if (!node->eb) { 2678 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2679 slot, &eb); 2680 btrfs_tree_unlock(eb); 2681 free_extent_buffer(eb); 2682 if (ret < 0) { 2683 err = ret; 2684 goto next; 2685 } 2686 BUG_ON(node->eb != eb); 2687 } else { 2688 btrfs_set_node_blockptr(upper->eb, slot, 2689 node->eb->start); 2690 btrfs_set_node_ptr_generation(upper->eb, slot, 2691 trans->transid); 2692 btrfs_mark_buffer_dirty(upper->eb); 2693 2694 ret = btrfs_inc_extent_ref(trans, root, 2695 node->eb->start, blocksize, 2696 upper->eb->start, 2697 btrfs_header_owner(upper->eb), 2698 node->level, 0, 1); 2699 BUG_ON(ret); 2700 2701 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2702 BUG_ON(ret); 2703 } 2704 next: 2705 if (!upper->pending) 2706 drop_node_buffer(upper); 2707 else 2708 unlock_node_buffer(upper); 2709 if (err) 2710 break; 2711 } 2712 2713 if (!err && node->pending) { 2714 drop_node_buffer(node); 2715 list_move_tail(&node->list, &rc->backref_cache.changed); 2716 node->pending = 0; 2717 } 2718 2719 path->lowest_level = 0; 2720 BUG_ON(err == -ENOSPC); 2721 return err; 2722 } 2723 2724 static int link_to_upper(struct btrfs_trans_handle *trans, 2725 struct reloc_control *rc, 2726 struct backref_node *node, 2727 struct btrfs_path *path) 2728 { 2729 struct btrfs_key key; 2730 2731 btrfs_node_key_to_cpu(node->eb, &key, 0); 2732 return do_relocation(trans, rc, node, &key, path, 0); 2733 } 2734 2735 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2736 struct reloc_control *rc, 2737 struct btrfs_path *path, int err) 2738 { 2739 LIST_HEAD(list); 2740 struct backref_cache *cache = &rc->backref_cache; 2741 struct backref_node *node; 2742 int level; 2743 int ret; 2744 2745 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2746 while (!list_empty(&cache->pending[level])) { 2747 node = list_entry(cache->pending[level].next, 2748 struct backref_node, list); 2749 list_move_tail(&node->list, &list); 2750 BUG_ON(!node->pending); 2751 2752 if (!err) { 2753 ret = link_to_upper(trans, rc, node, path); 2754 if (ret < 0) 2755 err = ret; 2756 } 2757 } 2758 list_splice_init(&list, &cache->pending[level]); 2759 } 2760 return err; 2761 } 2762 2763 static void mark_block_processed(struct reloc_control *rc, 2764 u64 bytenr, u32 blocksize) 2765 { 2766 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2767 EXTENT_DIRTY, GFP_NOFS); 2768 } 2769 2770 static void __mark_block_processed(struct reloc_control *rc, 2771 struct backref_node *node) 2772 { 2773 u32 blocksize; 2774 if (node->level == 0 || 2775 in_block_group(node->bytenr, rc->block_group)) { 2776 blocksize = btrfs_level_size(rc->extent_root, node->level); 2777 mark_block_processed(rc, node->bytenr, blocksize); 2778 } 2779 node->processed = 1; 2780 } 2781 2782 /* 2783 * mark a block and all blocks directly/indirectly reference the block 2784 * as processed. 2785 */ 2786 static void update_processed_blocks(struct reloc_control *rc, 2787 struct backref_node *node) 2788 { 2789 struct backref_node *next = node; 2790 struct backref_edge *edge; 2791 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2792 int index = 0; 2793 2794 while (next) { 2795 cond_resched(); 2796 while (1) { 2797 if (next->processed) 2798 break; 2799 2800 __mark_block_processed(rc, next); 2801 2802 if (list_empty(&next->upper)) 2803 break; 2804 2805 edge = list_entry(next->upper.next, 2806 struct backref_edge, list[LOWER]); 2807 edges[index++] = edge; 2808 next = edge->node[UPPER]; 2809 } 2810 next = walk_down_backref(edges, &index); 2811 } 2812 } 2813 2814 static int tree_block_processed(u64 bytenr, u32 blocksize, 2815 struct reloc_control *rc) 2816 { 2817 if (test_range_bit(&rc->processed_blocks, bytenr, 2818 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2819 return 1; 2820 return 0; 2821 } 2822 2823 static int get_tree_block_key(struct reloc_control *rc, 2824 struct tree_block *block) 2825 { 2826 struct extent_buffer *eb; 2827 2828 BUG_ON(block->key_ready); 2829 eb = read_tree_block(rc->extent_root, block->bytenr, 2830 block->key.objectid, block->key.offset); 2831 if (!eb || !extent_buffer_uptodate(eb)) { 2832 free_extent_buffer(eb); 2833 return -EIO; 2834 } 2835 WARN_ON(btrfs_header_level(eb) != block->level); 2836 if (block->level == 0) 2837 btrfs_item_key_to_cpu(eb, &block->key, 0); 2838 else 2839 btrfs_node_key_to_cpu(eb, &block->key, 0); 2840 free_extent_buffer(eb); 2841 block->key_ready = 1; 2842 return 0; 2843 } 2844 2845 static int reada_tree_block(struct reloc_control *rc, 2846 struct tree_block *block) 2847 { 2848 BUG_ON(block->key_ready); 2849 if (block->key.type == BTRFS_METADATA_ITEM_KEY) 2850 readahead_tree_block(rc->extent_root, block->bytenr, 2851 block->key.objectid, 2852 rc->extent_root->leafsize); 2853 else 2854 readahead_tree_block(rc->extent_root, block->bytenr, 2855 block->key.objectid, block->key.offset); 2856 return 0; 2857 } 2858 2859 /* 2860 * helper function to relocate a tree block 2861 */ 2862 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2863 struct reloc_control *rc, 2864 struct backref_node *node, 2865 struct btrfs_key *key, 2866 struct btrfs_path *path) 2867 { 2868 struct btrfs_root *root; 2869 int release = 0; 2870 int ret = 0; 2871 2872 if (!node) 2873 return 0; 2874 2875 BUG_ON(node->processed); 2876 root = select_one_root(trans, node); 2877 if (root == ERR_PTR(-ENOENT)) { 2878 update_processed_blocks(rc, node); 2879 goto out; 2880 } 2881 2882 if (!root || root->ref_cows) { 2883 ret = reserve_metadata_space(trans, rc, node); 2884 if (ret) 2885 goto out; 2886 release = 1; 2887 } 2888 2889 if (root) { 2890 if (root->ref_cows) { 2891 BUG_ON(node->new_bytenr); 2892 BUG_ON(!list_empty(&node->list)); 2893 btrfs_record_root_in_trans(trans, root); 2894 root = root->reloc_root; 2895 node->new_bytenr = root->node->start; 2896 node->root = root; 2897 list_add_tail(&node->list, &rc->backref_cache.changed); 2898 } else { 2899 path->lowest_level = node->level; 2900 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2901 btrfs_release_path(path); 2902 if (ret > 0) 2903 ret = 0; 2904 } 2905 if (!ret) 2906 update_processed_blocks(rc, node); 2907 } else { 2908 ret = do_relocation(trans, rc, node, key, path, 1); 2909 } 2910 out: 2911 if (ret || node->level == 0 || node->cowonly) { 2912 if (release) 2913 release_metadata_space(rc, node); 2914 remove_backref_node(&rc->backref_cache, node); 2915 } 2916 return ret; 2917 } 2918 2919 /* 2920 * relocate a list of blocks 2921 */ 2922 static noinline_for_stack 2923 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2924 struct reloc_control *rc, struct rb_root *blocks) 2925 { 2926 struct backref_node *node; 2927 struct btrfs_path *path; 2928 struct tree_block *block; 2929 struct rb_node *rb_node; 2930 int ret; 2931 int err = 0; 2932 2933 path = btrfs_alloc_path(); 2934 if (!path) { 2935 err = -ENOMEM; 2936 goto out_free_blocks; 2937 } 2938 2939 rb_node = rb_first(blocks); 2940 while (rb_node) { 2941 block = rb_entry(rb_node, struct tree_block, rb_node); 2942 if (!block->key_ready) 2943 reada_tree_block(rc, block); 2944 rb_node = rb_next(rb_node); 2945 } 2946 2947 rb_node = rb_first(blocks); 2948 while (rb_node) { 2949 block = rb_entry(rb_node, struct tree_block, rb_node); 2950 if (!block->key_ready) { 2951 err = get_tree_block_key(rc, block); 2952 if (err) 2953 goto out_free_path; 2954 } 2955 rb_node = rb_next(rb_node); 2956 } 2957 2958 rb_node = rb_first(blocks); 2959 while (rb_node) { 2960 block = rb_entry(rb_node, struct tree_block, rb_node); 2961 2962 node = build_backref_tree(rc, &block->key, 2963 block->level, block->bytenr); 2964 if (IS_ERR(node)) { 2965 err = PTR_ERR(node); 2966 goto out; 2967 } 2968 2969 ret = relocate_tree_block(trans, rc, node, &block->key, 2970 path); 2971 if (ret < 0) { 2972 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2973 err = ret; 2974 goto out; 2975 } 2976 rb_node = rb_next(rb_node); 2977 } 2978 out: 2979 err = finish_pending_nodes(trans, rc, path, err); 2980 2981 out_free_path: 2982 btrfs_free_path(path); 2983 out_free_blocks: 2984 free_block_list(blocks); 2985 return err; 2986 } 2987 2988 static noinline_for_stack 2989 int prealloc_file_extent_cluster(struct inode *inode, 2990 struct file_extent_cluster *cluster) 2991 { 2992 u64 alloc_hint = 0; 2993 u64 start; 2994 u64 end; 2995 u64 offset = BTRFS_I(inode)->index_cnt; 2996 u64 num_bytes; 2997 int nr = 0; 2998 int ret = 0; 2999 3000 BUG_ON(cluster->start != cluster->boundary[0]); 3001 mutex_lock(&inode->i_mutex); 3002 3003 ret = btrfs_check_data_free_space(inode, cluster->end + 3004 1 - cluster->start); 3005 if (ret) 3006 goto out; 3007 3008 while (nr < cluster->nr) { 3009 start = cluster->boundary[nr] - offset; 3010 if (nr + 1 < cluster->nr) 3011 end = cluster->boundary[nr + 1] - 1 - offset; 3012 else 3013 end = cluster->end - offset; 3014 3015 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3016 num_bytes = end + 1 - start; 3017 ret = btrfs_prealloc_file_range(inode, 0, start, 3018 num_bytes, num_bytes, 3019 end + 1, &alloc_hint); 3020 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3021 if (ret) 3022 break; 3023 nr++; 3024 } 3025 btrfs_free_reserved_data_space(inode, cluster->end + 3026 1 - cluster->start); 3027 out: 3028 mutex_unlock(&inode->i_mutex); 3029 return ret; 3030 } 3031 3032 static noinline_for_stack 3033 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3034 u64 block_start) 3035 { 3036 struct btrfs_root *root = BTRFS_I(inode)->root; 3037 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3038 struct extent_map *em; 3039 int ret = 0; 3040 3041 em = alloc_extent_map(); 3042 if (!em) 3043 return -ENOMEM; 3044 3045 em->start = start; 3046 em->len = end + 1 - start; 3047 em->block_len = em->len; 3048 em->block_start = block_start; 3049 em->bdev = root->fs_info->fs_devices->latest_bdev; 3050 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3051 3052 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3053 while (1) { 3054 write_lock(&em_tree->lock); 3055 ret = add_extent_mapping(em_tree, em, 0); 3056 write_unlock(&em_tree->lock); 3057 if (ret != -EEXIST) { 3058 free_extent_map(em); 3059 break; 3060 } 3061 btrfs_drop_extent_cache(inode, start, end, 0); 3062 } 3063 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3064 return ret; 3065 } 3066 3067 static int relocate_file_extent_cluster(struct inode *inode, 3068 struct file_extent_cluster *cluster) 3069 { 3070 u64 page_start; 3071 u64 page_end; 3072 u64 offset = BTRFS_I(inode)->index_cnt; 3073 unsigned long index; 3074 unsigned long last_index; 3075 struct page *page; 3076 struct file_ra_state *ra; 3077 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3078 int nr = 0; 3079 int ret = 0; 3080 3081 if (!cluster->nr) 3082 return 0; 3083 3084 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3085 if (!ra) 3086 return -ENOMEM; 3087 3088 ret = prealloc_file_extent_cluster(inode, cluster); 3089 if (ret) 3090 goto out; 3091 3092 file_ra_state_init(ra, inode->i_mapping); 3093 3094 ret = setup_extent_mapping(inode, cluster->start - offset, 3095 cluster->end - offset, cluster->start); 3096 if (ret) 3097 goto out; 3098 3099 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3100 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3101 while (index <= last_index) { 3102 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3103 if (ret) 3104 goto out; 3105 3106 page = find_lock_page(inode->i_mapping, index); 3107 if (!page) { 3108 page_cache_sync_readahead(inode->i_mapping, 3109 ra, NULL, index, 3110 last_index + 1 - index); 3111 page = find_or_create_page(inode->i_mapping, index, 3112 mask); 3113 if (!page) { 3114 btrfs_delalloc_release_metadata(inode, 3115 PAGE_CACHE_SIZE); 3116 ret = -ENOMEM; 3117 goto out; 3118 } 3119 } 3120 3121 if (PageReadahead(page)) { 3122 page_cache_async_readahead(inode->i_mapping, 3123 ra, NULL, page, index, 3124 last_index + 1 - index); 3125 } 3126 3127 if (!PageUptodate(page)) { 3128 btrfs_readpage(NULL, page); 3129 lock_page(page); 3130 if (!PageUptodate(page)) { 3131 unlock_page(page); 3132 page_cache_release(page); 3133 btrfs_delalloc_release_metadata(inode, 3134 PAGE_CACHE_SIZE); 3135 ret = -EIO; 3136 goto out; 3137 } 3138 } 3139 3140 page_start = page_offset(page); 3141 page_end = page_start + PAGE_CACHE_SIZE - 1; 3142 3143 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3144 3145 set_page_extent_mapped(page); 3146 3147 if (nr < cluster->nr && 3148 page_start + offset == cluster->boundary[nr]) { 3149 set_extent_bits(&BTRFS_I(inode)->io_tree, 3150 page_start, page_end, 3151 EXTENT_BOUNDARY, GFP_NOFS); 3152 nr++; 3153 } 3154 3155 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3156 set_page_dirty(page); 3157 3158 unlock_extent(&BTRFS_I(inode)->io_tree, 3159 page_start, page_end); 3160 unlock_page(page); 3161 page_cache_release(page); 3162 3163 index++; 3164 balance_dirty_pages_ratelimited(inode->i_mapping); 3165 btrfs_throttle(BTRFS_I(inode)->root); 3166 } 3167 WARN_ON(nr != cluster->nr); 3168 out: 3169 kfree(ra); 3170 return ret; 3171 } 3172 3173 static noinline_for_stack 3174 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3175 struct file_extent_cluster *cluster) 3176 { 3177 int ret; 3178 3179 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3180 ret = relocate_file_extent_cluster(inode, cluster); 3181 if (ret) 3182 return ret; 3183 cluster->nr = 0; 3184 } 3185 3186 if (!cluster->nr) 3187 cluster->start = extent_key->objectid; 3188 else 3189 BUG_ON(cluster->nr >= MAX_EXTENTS); 3190 cluster->end = extent_key->objectid + extent_key->offset - 1; 3191 cluster->boundary[cluster->nr] = extent_key->objectid; 3192 cluster->nr++; 3193 3194 if (cluster->nr >= MAX_EXTENTS) { 3195 ret = relocate_file_extent_cluster(inode, cluster); 3196 if (ret) 3197 return ret; 3198 cluster->nr = 0; 3199 } 3200 return 0; 3201 } 3202 3203 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3204 static int get_ref_objectid_v0(struct reloc_control *rc, 3205 struct btrfs_path *path, 3206 struct btrfs_key *extent_key, 3207 u64 *ref_objectid, int *path_change) 3208 { 3209 struct btrfs_key key; 3210 struct extent_buffer *leaf; 3211 struct btrfs_extent_ref_v0 *ref0; 3212 int ret; 3213 int slot; 3214 3215 leaf = path->nodes[0]; 3216 slot = path->slots[0]; 3217 while (1) { 3218 if (slot >= btrfs_header_nritems(leaf)) { 3219 ret = btrfs_next_leaf(rc->extent_root, path); 3220 if (ret < 0) 3221 return ret; 3222 BUG_ON(ret > 0); 3223 leaf = path->nodes[0]; 3224 slot = path->slots[0]; 3225 if (path_change) 3226 *path_change = 1; 3227 } 3228 btrfs_item_key_to_cpu(leaf, &key, slot); 3229 if (key.objectid != extent_key->objectid) 3230 return -ENOENT; 3231 3232 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3233 slot++; 3234 continue; 3235 } 3236 ref0 = btrfs_item_ptr(leaf, slot, 3237 struct btrfs_extent_ref_v0); 3238 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3239 break; 3240 } 3241 return 0; 3242 } 3243 #endif 3244 3245 /* 3246 * helper to add a tree block to the list. 3247 * the major work is getting the generation and level of the block 3248 */ 3249 static int add_tree_block(struct reloc_control *rc, 3250 struct btrfs_key *extent_key, 3251 struct btrfs_path *path, 3252 struct rb_root *blocks) 3253 { 3254 struct extent_buffer *eb; 3255 struct btrfs_extent_item *ei; 3256 struct btrfs_tree_block_info *bi; 3257 struct tree_block *block; 3258 struct rb_node *rb_node; 3259 u32 item_size; 3260 int level = -1; 3261 int generation; 3262 3263 eb = path->nodes[0]; 3264 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3265 3266 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3267 item_size >= sizeof(*ei) + sizeof(*bi)) { 3268 ei = btrfs_item_ptr(eb, path->slots[0], 3269 struct btrfs_extent_item); 3270 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3271 bi = (struct btrfs_tree_block_info *)(ei + 1); 3272 level = btrfs_tree_block_level(eb, bi); 3273 } else { 3274 level = (int)extent_key->offset; 3275 } 3276 generation = btrfs_extent_generation(eb, ei); 3277 } else { 3278 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3279 u64 ref_owner; 3280 int ret; 3281 3282 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3283 ret = get_ref_objectid_v0(rc, path, extent_key, 3284 &ref_owner, NULL); 3285 if (ret < 0) 3286 return ret; 3287 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3288 level = (int)ref_owner; 3289 /* FIXME: get real generation */ 3290 generation = 0; 3291 #else 3292 BUG(); 3293 #endif 3294 } 3295 3296 btrfs_release_path(path); 3297 3298 BUG_ON(level == -1); 3299 3300 block = kmalloc(sizeof(*block), GFP_NOFS); 3301 if (!block) 3302 return -ENOMEM; 3303 3304 block->bytenr = extent_key->objectid; 3305 block->key.objectid = rc->extent_root->leafsize; 3306 block->key.offset = generation; 3307 block->level = level; 3308 block->key_ready = 0; 3309 3310 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3311 if (rb_node) 3312 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3313 3314 return 0; 3315 } 3316 3317 /* 3318 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3319 */ 3320 static int __add_tree_block(struct reloc_control *rc, 3321 u64 bytenr, u32 blocksize, 3322 struct rb_root *blocks) 3323 { 3324 struct btrfs_path *path; 3325 struct btrfs_key key; 3326 int ret; 3327 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3328 SKINNY_METADATA); 3329 3330 if (tree_block_processed(bytenr, blocksize, rc)) 3331 return 0; 3332 3333 if (tree_search(blocks, bytenr)) 3334 return 0; 3335 3336 path = btrfs_alloc_path(); 3337 if (!path) 3338 return -ENOMEM; 3339 again: 3340 key.objectid = bytenr; 3341 if (skinny) { 3342 key.type = BTRFS_METADATA_ITEM_KEY; 3343 key.offset = (u64)-1; 3344 } else { 3345 key.type = BTRFS_EXTENT_ITEM_KEY; 3346 key.offset = blocksize; 3347 } 3348 3349 path->search_commit_root = 1; 3350 path->skip_locking = 1; 3351 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3352 if (ret < 0) 3353 goto out; 3354 3355 if (ret > 0 && skinny) { 3356 if (path->slots[0]) { 3357 path->slots[0]--; 3358 btrfs_item_key_to_cpu(path->nodes[0], &key, 3359 path->slots[0]); 3360 if (key.objectid == bytenr && 3361 (key.type == BTRFS_METADATA_ITEM_KEY || 3362 (key.type == BTRFS_EXTENT_ITEM_KEY && 3363 key.offset == blocksize))) 3364 ret = 0; 3365 } 3366 3367 if (ret) { 3368 skinny = false; 3369 btrfs_release_path(path); 3370 goto again; 3371 } 3372 } 3373 BUG_ON(ret); 3374 3375 ret = add_tree_block(rc, &key, path, blocks); 3376 out: 3377 btrfs_free_path(path); 3378 return ret; 3379 } 3380 3381 /* 3382 * helper to check if the block use full backrefs for pointers in it 3383 */ 3384 static int block_use_full_backref(struct reloc_control *rc, 3385 struct extent_buffer *eb) 3386 { 3387 u64 flags; 3388 int ret; 3389 3390 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3391 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3392 return 1; 3393 3394 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3395 eb->start, btrfs_header_level(eb), 1, 3396 NULL, &flags); 3397 BUG_ON(ret); 3398 3399 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3400 ret = 1; 3401 else 3402 ret = 0; 3403 return ret; 3404 } 3405 3406 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3407 struct inode *inode, u64 ino) 3408 { 3409 struct btrfs_key key; 3410 struct btrfs_path *path; 3411 struct btrfs_root *root = fs_info->tree_root; 3412 struct btrfs_trans_handle *trans; 3413 int ret = 0; 3414 3415 if (inode) 3416 goto truncate; 3417 3418 key.objectid = ino; 3419 key.type = BTRFS_INODE_ITEM_KEY; 3420 key.offset = 0; 3421 3422 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3423 if (IS_ERR(inode) || is_bad_inode(inode)) { 3424 if (!IS_ERR(inode)) 3425 iput(inode); 3426 return -ENOENT; 3427 } 3428 3429 truncate: 3430 ret = btrfs_check_trunc_cache_free_space(root, 3431 &fs_info->global_block_rsv); 3432 if (ret) 3433 goto out; 3434 3435 path = btrfs_alloc_path(); 3436 if (!path) { 3437 ret = -ENOMEM; 3438 goto out; 3439 } 3440 3441 trans = btrfs_join_transaction(root); 3442 if (IS_ERR(trans)) { 3443 btrfs_free_path(path); 3444 ret = PTR_ERR(trans); 3445 goto out; 3446 } 3447 3448 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3449 3450 btrfs_free_path(path); 3451 btrfs_end_transaction(trans, root); 3452 btrfs_btree_balance_dirty(root); 3453 out: 3454 iput(inode); 3455 return ret; 3456 } 3457 3458 /* 3459 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3460 * this function scans fs tree to find blocks reference the data extent 3461 */ 3462 static int find_data_references(struct reloc_control *rc, 3463 struct btrfs_key *extent_key, 3464 struct extent_buffer *leaf, 3465 struct btrfs_extent_data_ref *ref, 3466 struct rb_root *blocks) 3467 { 3468 struct btrfs_path *path; 3469 struct tree_block *block; 3470 struct btrfs_root *root; 3471 struct btrfs_file_extent_item *fi; 3472 struct rb_node *rb_node; 3473 struct btrfs_key key; 3474 u64 ref_root; 3475 u64 ref_objectid; 3476 u64 ref_offset; 3477 u32 ref_count; 3478 u32 nritems; 3479 int err = 0; 3480 int added = 0; 3481 int counted; 3482 int ret; 3483 3484 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3485 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3486 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3487 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3488 3489 /* 3490 * This is an extent belonging to the free space cache, lets just delete 3491 * it and redo the search. 3492 */ 3493 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3494 ret = delete_block_group_cache(rc->extent_root->fs_info, 3495 NULL, ref_objectid); 3496 if (ret != -ENOENT) 3497 return ret; 3498 ret = 0; 3499 } 3500 3501 path = btrfs_alloc_path(); 3502 if (!path) 3503 return -ENOMEM; 3504 path->reada = 1; 3505 3506 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3507 if (IS_ERR(root)) { 3508 err = PTR_ERR(root); 3509 goto out; 3510 } 3511 3512 key.objectid = ref_objectid; 3513 key.type = BTRFS_EXTENT_DATA_KEY; 3514 if (ref_offset > ((u64)-1 << 32)) 3515 key.offset = 0; 3516 else 3517 key.offset = ref_offset; 3518 3519 path->search_commit_root = 1; 3520 path->skip_locking = 1; 3521 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3522 if (ret < 0) { 3523 err = ret; 3524 goto out; 3525 } 3526 3527 leaf = path->nodes[0]; 3528 nritems = btrfs_header_nritems(leaf); 3529 /* 3530 * the references in tree blocks that use full backrefs 3531 * are not counted in 3532 */ 3533 if (block_use_full_backref(rc, leaf)) 3534 counted = 0; 3535 else 3536 counted = 1; 3537 rb_node = tree_search(blocks, leaf->start); 3538 if (rb_node) { 3539 if (counted) 3540 added = 1; 3541 else 3542 path->slots[0] = nritems; 3543 } 3544 3545 while (ref_count > 0) { 3546 while (path->slots[0] >= nritems) { 3547 ret = btrfs_next_leaf(root, path); 3548 if (ret < 0) { 3549 err = ret; 3550 goto out; 3551 } 3552 if (ret > 0) { 3553 WARN_ON(1); 3554 goto out; 3555 } 3556 3557 leaf = path->nodes[0]; 3558 nritems = btrfs_header_nritems(leaf); 3559 added = 0; 3560 3561 if (block_use_full_backref(rc, leaf)) 3562 counted = 0; 3563 else 3564 counted = 1; 3565 rb_node = tree_search(blocks, leaf->start); 3566 if (rb_node) { 3567 if (counted) 3568 added = 1; 3569 else 3570 path->slots[0] = nritems; 3571 } 3572 } 3573 3574 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3575 if (key.objectid != ref_objectid || 3576 key.type != BTRFS_EXTENT_DATA_KEY) { 3577 WARN_ON(1); 3578 break; 3579 } 3580 3581 fi = btrfs_item_ptr(leaf, path->slots[0], 3582 struct btrfs_file_extent_item); 3583 3584 if (btrfs_file_extent_type(leaf, fi) == 3585 BTRFS_FILE_EXTENT_INLINE) 3586 goto next; 3587 3588 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3589 extent_key->objectid) 3590 goto next; 3591 3592 key.offset -= btrfs_file_extent_offset(leaf, fi); 3593 if (key.offset != ref_offset) 3594 goto next; 3595 3596 if (counted) 3597 ref_count--; 3598 if (added) 3599 goto next; 3600 3601 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3602 block = kmalloc(sizeof(*block), GFP_NOFS); 3603 if (!block) { 3604 err = -ENOMEM; 3605 break; 3606 } 3607 block->bytenr = leaf->start; 3608 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3609 block->level = 0; 3610 block->key_ready = 1; 3611 rb_node = tree_insert(blocks, block->bytenr, 3612 &block->rb_node); 3613 if (rb_node) 3614 backref_tree_panic(rb_node, -EEXIST, 3615 block->bytenr); 3616 } 3617 if (counted) 3618 added = 1; 3619 else 3620 path->slots[0] = nritems; 3621 next: 3622 path->slots[0]++; 3623 3624 } 3625 out: 3626 btrfs_free_path(path); 3627 return err; 3628 } 3629 3630 /* 3631 * helper to find all tree blocks that reference a given data extent 3632 */ 3633 static noinline_for_stack 3634 int add_data_references(struct reloc_control *rc, 3635 struct btrfs_key *extent_key, 3636 struct btrfs_path *path, 3637 struct rb_root *blocks) 3638 { 3639 struct btrfs_key key; 3640 struct extent_buffer *eb; 3641 struct btrfs_extent_data_ref *dref; 3642 struct btrfs_extent_inline_ref *iref; 3643 unsigned long ptr; 3644 unsigned long end; 3645 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3646 int ret = 0; 3647 int err = 0; 3648 3649 eb = path->nodes[0]; 3650 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3651 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3652 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3653 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3654 ptr = end; 3655 else 3656 #endif 3657 ptr += sizeof(struct btrfs_extent_item); 3658 3659 while (ptr < end) { 3660 iref = (struct btrfs_extent_inline_ref *)ptr; 3661 key.type = btrfs_extent_inline_ref_type(eb, iref); 3662 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3663 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3664 ret = __add_tree_block(rc, key.offset, blocksize, 3665 blocks); 3666 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3667 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3668 ret = find_data_references(rc, extent_key, 3669 eb, dref, blocks); 3670 } else { 3671 BUG(); 3672 } 3673 if (ret) { 3674 err = ret; 3675 goto out; 3676 } 3677 ptr += btrfs_extent_inline_ref_size(key.type); 3678 } 3679 WARN_ON(ptr > end); 3680 3681 while (1) { 3682 cond_resched(); 3683 eb = path->nodes[0]; 3684 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3685 ret = btrfs_next_leaf(rc->extent_root, path); 3686 if (ret < 0) { 3687 err = ret; 3688 break; 3689 } 3690 if (ret > 0) 3691 break; 3692 eb = path->nodes[0]; 3693 } 3694 3695 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3696 if (key.objectid != extent_key->objectid) 3697 break; 3698 3699 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3700 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3701 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3702 #else 3703 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3704 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3705 #endif 3706 ret = __add_tree_block(rc, key.offset, blocksize, 3707 blocks); 3708 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3709 dref = btrfs_item_ptr(eb, path->slots[0], 3710 struct btrfs_extent_data_ref); 3711 ret = find_data_references(rc, extent_key, 3712 eb, dref, blocks); 3713 } else { 3714 ret = 0; 3715 } 3716 if (ret) { 3717 err = ret; 3718 break; 3719 } 3720 path->slots[0]++; 3721 } 3722 out: 3723 btrfs_release_path(path); 3724 if (err) 3725 free_block_list(blocks); 3726 return err; 3727 } 3728 3729 /* 3730 * helper to find next unprocessed extent 3731 */ 3732 static noinline_for_stack 3733 int find_next_extent(struct btrfs_trans_handle *trans, 3734 struct reloc_control *rc, struct btrfs_path *path, 3735 struct btrfs_key *extent_key) 3736 { 3737 struct btrfs_key key; 3738 struct extent_buffer *leaf; 3739 u64 start, end, last; 3740 int ret; 3741 3742 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3743 while (1) { 3744 cond_resched(); 3745 if (rc->search_start >= last) { 3746 ret = 1; 3747 break; 3748 } 3749 3750 key.objectid = rc->search_start; 3751 key.type = BTRFS_EXTENT_ITEM_KEY; 3752 key.offset = 0; 3753 3754 path->search_commit_root = 1; 3755 path->skip_locking = 1; 3756 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3757 0, 0); 3758 if (ret < 0) 3759 break; 3760 next: 3761 leaf = path->nodes[0]; 3762 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3763 ret = btrfs_next_leaf(rc->extent_root, path); 3764 if (ret != 0) 3765 break; 3766 leaf = path->nodes[0]; 3767 } 3768 3769 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3770 if (key.objectid >= last) { 3771 ret = 1; 3772 break; 3773 } 3774 3775 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3776 key.type != BTRFS_METADATA_ITEM_KEY) { 3777 path->slots[0]++; 3778 goto next; 3779 } 3780 3781 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3782 key.objectid + key.offset <= rc->search_start) { 3783 path->slots[0]++; 3784 goto next; 3785 } 3786 3787 if (key.type == BTRFS_METADATA_ITEM_KEY && 3788 key.objectid + rc->extent_root->leafsize <= 3789 rc->search_start) { 3790 path->slots[0]++; 3791 goto next; 3792 } 3793 3794 ret = find_first_extent_bit(&rc->processed_blocks, 3795 key.objectid, &start, &end, 3796 EXTENT_DIRTY, NULL); 3797 3798 if (ret == 0 && start <= key.objectid) { 3799 btrfs_release_path(path); 3800 rc->search_start = end + 1; 3801 } else { 3802 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3803 rc->search_start = key.objectid + key.offset; 3804 else 3805 rc->search_start = key.objectid + 3806 rc->extent_root->leafsize; 3807 memcpy(extent_key, &key, sizeof(key)); 3808 return 0; 3809 } 3810 } 3811 btrfs_release_path(path); 3812 return ret; 3813 } 3814 3815 static void set_reloc_control(struct reloc_control *rc) 3816 { 3817 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3818 3819 mutex_lock(&fs_info->reloc_mutex); 3820 fs_info->reloc_ctl = rc; 3821 mutex_unlock(&fs_info->reloc_mutex); 3822 } 3823 3824 static void unset_reloc_control(struct reloc_control *rc) 3825 { 3826 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3827 3828 mutex_lock(&fs_info->reloc_mutex); 3829 fs_info->reloc_ctl = NULL; 3830 mutex_unlock(&fs_info->reloc_mutex); 3831 } 3832 3833 static int check_extent_flags(u64 flags) 3834 { 3835 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3836 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3837 return 1; 3838 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3839 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3840 return 1; 3841 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3842 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3843 return 1; 3844 return 0; 3845 } 3846 3847 static noinline_for_stack 3848 int prepare_to_relocate(struct reloc_control *rc) 3849 { 3850 struct btrfs_trans_handle *trans; 3851 int ret; 3852 3853 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3854 BTRFS_BLOCK_RSV_TEMP); 3855 if (!rc->block_rsv) 3856 return -ENOMEM; 3857 3858 /* 3859 * reserve some space for creating reloc trees. 3860 * btrfs_init_reloc_root will use them when there 3861 * is no reservation in transaction handle. 3862 */ 3863 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3864 rc->extent_root->nodesize * 256, 3865 BTRFS_RESERVE_FLUSH_ALL); 3866 if (ret) 3867 return ret; 3868 3869 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3870 rc->search_start = rc->block_group->key.objectid; 3871 rc->extents_found = 0; 3872 rc->nodes_relocated = 0; 3873 rc->merging_rsv_size = 0; 3874 3875 rc->create_reloc_tree = 1; 3876 set_reloc_control(rc); 3877 3878 trans = btrfs_join_transaction(rc->extent_root); 3879 if (IS_ERR(trans)) { 3880 unset_reloc_control(rc); 3881 /* 3882 * extent tree is not a ref_cow tree and has no reloc_root to 3883 * cleanup. And callers are responsible to free the above 3884 * block rsv. 3885 */ 3886 return PTR_ERR(trans); 3887 } 3888 btrfs_commit_transaction(trans, rc->extent_root); 3889 return 0; 3890 } 3891 3892 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3893 { 3894 struct rb_root blocks = RB_ROOT; 3895 struct btrfs_key key; 3896 struct btrfs_trans_handle *trans = NULL; 3897 struct btrfs_path *path; 3898 struct btrfs_extent_item *ei; 3899 u64 flags; 3900 u32 item_size; 3901 int ret; 3902 int err = 0; 3903 int progress = 0; 3904 3905 path = btrfs_alloc_path(); 3906 if (!path) 3907 return -ENOMEM; 3908 path->reada = 1; 3909 3910 ret = prepare_to_relocate(rc); 3911 if (ret) { 3912 err = ret; 3913 goto out_free; 3914 } 3915 3916 while (1) { 3917 progress++; 3918 trans = btrfs_start_transaction(rc->extent_root, 0); 3919 if (IS_ERR(trans)) { 3920 err = PTR_ERR(trans); 3921 trans = NULL; 3922 break; 3923 } 3924 restart: 3925 if (update_backref_cache(trans, &rc->backref_cache)) { 3926 btrfs_end_transaction(trans, rc->extent_root); 3927 continue; 3928 } 3929 3930 ret = find_next_extent(trans, rc, path, &key); 3931 if (ret < 0) 3932 err = ret; 3933 if (ret != 0) 3934 break; 3935 3936 rc->extents_found++; 3937 3938 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3939 struct btrfs_extent_item); 3940 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3941 if (item_size >= sizeof(*ei)) { 3942 flags = btrfs_extent_flags(path->nodes[0], ei); 3943 ret = check_extent_flags(flags); 3944 BUG_ON(ret); 3945 3946 } else { 3947 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3948 u64 ref_owner; 3949 int path_change = 0; 3950 3951 BUG_ON(item_size != 3952 sizeof(struct btrfs_extent_item_v0)); 3953 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3954 &path_change); 3955 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3956 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3957 else 3958 flags = BTRFS_EXTENT_FLAG_DATA; 3959 3960 if (path_change) { 3961 btrfs_release_path(path); 3962 3963 path->search_commit_root = 1; 3964 path->skip_locking = 1; 3965 ret = btrfs_search_slot(NULL, rc->extent_root, 3966 &key, path, 0, 0); 3967 if (ret < 0) { 3968 err = ret; 3969 break; 3970 } 3971 BUG_ON(ret > 0); 3972 } 3973 #else 3974 BUG(); 3975 #endif 3976 } 3977 3978 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3979 ret = add_tree_block(rc, &key, path, &blocks); 3980 } else if (rc->stage == UPDATE_DATA_PTRS && 3981 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3982 ret = add_data_references(rc, &key, path, &blocks); 3983 } else { 3984 btrfs_release_path(path); 3985 ret = 0; 3986 } 3987 if (ret < 0) { 3988 err = ret; 3989 break; 3990 } 3991 3992 if (!RB_EMPTY_ROOT(&blocks)) { 3993 ret = relocate_tree_blocks(trans, rc, &blocks); 3994 if (ret < 0) { 3995 if (ret != -EAGAIN) { 3996 err = ret; 3997 break; 3998 } 3999 rc->extents_found--; 4000 rc->search_start = key.objectid; 4001 } 4002 } 4003 4004 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 4005 if (ret < 0) { 4006 if (ret != -ENOSPC) { 4007 err = ret; 4008 WARN_ON(1); 4009 break; 4010 } 4011 rc->commit_transaction = 1; 4012 } 4013 4014 if (rc->commit_transaction) { 4015 rc->commit_transaction = 0; 4016 ret = btrfs_commit_transaction(trans, rc->extent_root); 4017 BUG_ON(ret); 4018 } else { 4019 btrfs_end_transaction_throttle(trans, rc->extent_root); 4020 btrfs_btree_balance_dirty(rc->extent_root); 4021 } 4022 trans = NULL; 4023 4024 if (rc->stage == MOVE_DATA_EXTENTS && 4025 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4026 rc->found_file_extent = 1; 4027 ret = relocate_data_extent(rc->data_inode, 4028 &key, &rc->cluster); 4029 if (ret < 0) { 4030 err = ret; 4031 break; 4032 } 4033 } 4034 } 4035 if (trans && progress && err == -ENOSPC) { 4036 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4037 rc->block_group->flags); 4038 if (ret == 0) { 4039 err = 0; 4040 progress = 0; 4041 goto restart; 4042 } 4043 } 4044 4045 btrfs_release_path(path); 4046 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4047 GFP_NOFS); 4048 4049 if (trans) { 4050 btrfs_end_transaction_throttle(trans, rc->extent_root); 4051 btrfs_btree_balance_dirty(rc->extent_root); 4052 } 4053 4054 if (!err) { 4055 ret = relocate_file_extent_cluster(rc->data_inode, 4056 &rc->cluster); 4057 if (ret < 0) 4058 err = ret; 4059 } 4060 4061 rc->create_reloc_tree = 0; 4062 set_reloc_control(rc); 4063 4064 backref_cache_cleanup(&rc->backref_cache); 4065 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4066 4067 err = prepare_to_merge(rc, err); 4068 4069 merge_reloc_roots(rc); 4070 4071 rc->merge_reloc_tree = 0; 4072 unset_reloc_control(rc); 4073 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4074 4075 /* get rid of pinned extents */ 4076 trans = btrfs_join_transaction(rc->extent_root); 4077 if (IS_ERR(trans)) 4078 err = PTR_ERR(trans); 4079 else 4080 btrfs_commit_transaction(trans, rc->extent_root); 4081 out_free: 4082 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4083 btrfs_free_path(path); 4084 return err; 4085 } 4086 4087 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4088 struct btrfs_root *root, u64 objectid) 4089 { 4090 struct btrfs_path *path; 4091 struct btrfs_inode_item *item; 4092 struct extent_buffer *leaf; 4093 int ret; 4094 4095 path = btrfs_alloc_path(); 4096 if (!path) 4097 return -ENOMEM; 4098 4099 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4100 if (ret) 4101 goto out; 4102 4103 leaf = path->nodes[0]; 4104 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4105 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4106 btrfs_set_inode_generation(leaf, item, 1); 4107 btrfs_set_inode_size(leaf, item, 0); 4108 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4109 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4110 BTRFS_INODE_PREALLOC); 4111 btrfs_mark_buffer_dirty(leaf); 4112 btrfs_release_path(path); 4113 out: 4114 btrfs_free_path(path); 4115 return ret; 4116 } 4117 4118 /* 4119 * helper to create inode for data relocation. 4120 * the inode is in data relocation tree and its link count is 0 4121 */ 4122 static noinline_for_stack 4123 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4124 struct btrfs_block_group_cache *group) 4125 { 4126 struct inode *inode = NULL; 4127 struct btrfs_trans_handle *trans; 4128 struct btrfs_root *root; 4129 struct btrfs_key key; 4130 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4131 int err = 0; 4132 4133 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4134 if (IS_ERR(root)) 4135 return ERR_CAST(root); 4136 4137 trans = btrfs_start_transaction(root, 6); 4138 if (IS_ERR(trans)) 4139 return ERR_CAST(trans); 4140 4141 err = btrfs_find_free_objectid(root, &objectid); 4142 if (err) 4143 goto out; 4144 4145 err = __insert_orphan_inode(trans, root, objectid); 4146 BUG_ON(err); 4147 4148 key.objectid = objectid; 4149 key.type = BTRFS_INODE_ITEM_KEY; 4150 key.offset = 0; 4151 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4152 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4153 BTRFS_I(inode)->index_cnt = group->key.objectid; 4154 4155 err = btrfs_orphan_add(trans, inode); 4156 out: 4157 btrfs_end_transaction(trans, root); 4158 btrfs_btree_balance_dirty(root); 4159 if (err) { 4160 if (inode) 4161 iput(inode); 4162 inode = ERR_PTR(err); 4163 } 4164 return inode; 4165 } 4166 4167 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4168 { 4169 struct reloc_control *rc; 4170 4171 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4172 if (!rc) 4173 return NULL; 4174 4175 INIT_LIST_HEAD(&rc->reloc_roots); 4176 backref_cache_init(&rc->backref_cache); 4177 mapping_tree_init(&rc->reloc_root_tree); 4178 extent_io_tree_init(&rc->processed_blocks, 4179 fs_info->btree_inode->i_mapping); 4180 return rc; 4181 } 4182 4183 /* 4184 * function to relocate all extents in a block group. 4185 */ 4186 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4187 { 4188 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4189 struct reloc_control *rc; 4190 struct inode *inode; 4191 struct btrfs_path *path; 4192 int ret; 4193 int rw = 0; 4194 int err = 0; 4195 4196 rc = alloc_reloc_control(fs_info); 4197 if (!rc) 4198 return -ENOMEM; 4199 4200 rc->extent_root = extent_root; 4201 4202 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4203 BUG_ON(!rc->block_group); 4204 4205 if (!rc->block_group->ro) { 4206 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4207 if (ret) { 4208 err = ret; 4209 goto out; 4210 } 4211 rw = 1; 4212 } 4213 4214 path = btrfs_alloc_path(); 4215 if (!path) { 4216 err = -ENOMEM; 4217 goto out; 4218 } 4219 4220 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4221 path); 4222 btrfs_free_path(path); 4223 4224 if (!IS_ERR(inode)) 4225 ret = delete_block_group_cache(fs_info, inode, 0); 4226 else 4227 ret = PTR_ERR(inode); 4228 4229 if (ret && ret != -ENOENT) { 4230 err = ret; 4231 goto out; 4232 } 4233 4234 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4235 if (IS_ERR(rc->data_inode)) { 4236 err = PTR_ERR(rc->data_inode); 4237 rc->data_inode = NULL; 4238 goto out; 4239 } 4240 4241 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4242 rc->block_group->key.objectid, rc->block_group->flags); 4243 4244 ret = btrfs_start_all_delalloc_inodes(fs_info, 0); 4245 if (ret < 0) { 4246 err = ret; 4247 goto out; 4248 } 4249 btrfs_wait_all_ordered_extents(fs_info); 4250 4251 while (1) { 4252 mutex_lock(&fs_info->cleaner_mutex); 4253 ret = relocate_block_group(rc); 4254 mutex_unlock(&fs_info->cleaner_mutex); 4255 if (ret < 0) { 4256 err = ret; 4257 goto out; 4258 } 4259 4260 if (rc->extents_found == 0) 4261 break; 4262 4263 printk(KERN_INFO "btrfs: found %llu extents\n", 4264 rc->extents_found); 4265 4266 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4267 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4268 invalidate_mapping_pages(rc->data_inode->i_mapping, 4269 0, -1); 4270 rc->stage = UPDATE_DATA_PTRS; 4271 } 4272 } 4273 4274 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4275 rc->block_group->key.objectid, 4276 rc->block_group->key.objectid + 4277 rc->block_group->key.offset - 1); 4278 4279 WARN_ON(rc->block_group->pinned > 0); 4280 WARN_ON(rc->block_group->reserved > 0); 4281 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4282 out: 4283 if (err && rw) 4284 btrfs_set_block_group_rw(extent_root, rc->block_group); 4285 iput(rc->data_inode); 4286 btrfs_put_block_group(rc->block_group); 4287 kfree(rc); 4288 return err; 4289 } 4290 4291 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4292 { 4293 struct btrfs_trans_handle *trans; 4294 int ret, err; 4295 4296 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4297 if (IS_ERR(trans)) 4298 return PTR_ERR(trans); 4299 4300 memset(&root->root_item.drop_progress, 0, 4301 sizeof(root->root_item.drop_progress)); 4302 root->root_item.drop_level = 0; 4303 btrfs_set_root_refs(&root->root_item, 0); 4304 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4305 &root->root_key, &root->root_item); 4306 4307 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4308 if (err) 4309 return err; 4310 return ret; 4311 } 4312 4313 /* 4314 * recover relocation interrupted by system crash. 4315 * 4316 * this function resumes merging reloc trees with corresponding fs trees. 4317 * this is important for keeping the sharing of tree blocks 4318 */ 4319 int btrfs_recover_relocation(struct btrfs_root *root) 4320 { 4321 LIST_HEAD(reloc_roots); 4322 struct btrfs_key key; 4323 struct btrfs_root *fs_root; 4324 struct btrfs_root *reloc_root; 4325 struct btrfs_path *path; 4326 struct extent_buffer *leaf; 4327 struct reloc_control *rc = NULL; 4328 struct btrfs_trans_handle *trans; 4329 int ret; 4330 int err = 0; 4331 4332 path = btrfs_alloc_path(); 4333 if (!path) 4334 return -ENOMEM; 4335 path->reada = -1; 4336 4337 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4338 key.type = BTRFS_ROOT_ITEM_KEY; 4339 key.offset = (u64)-1; 4340 4341 while (1) { 4342 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4343 path, 0, 0); 4344 if (ret < 0) { 4345 err = ret; 4346 goto out; 4347 } 4348 if (ret > 0) { 4349 if (path->slots[0] == 0) 4350 break; 4351 path->slots[0]--; 4352 } 4353 leaf = path->nodes[0]; 4354 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4355 btrfs_release_path(path); 4356 4357 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4358 key.type != BTRFS_ROOT_ITEM_KEY) 4359 break; 4360 4361 reloc_root = btrfs_read_fs_root(root, &key); 4362 if (IS_ERR(reloc_root)) { 4363 err = PTR_ERR(reloc_root); 4364 goto out; 4365 } 4366 4367 list_add(&reloc_root->root_list, &reloc_roots); 4368 4369 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4370 fs_root = read_fs_root(root->fs_info, 4371 reloc_root->root_key.offset); 4372 if (IS_ERR(fs_root)) { 4373 ret = PTR_ERR(fs_root); 4374 if (ret != -ENOENT) { 4375 err = ret; 4376 goto out; 4377 } 4378 ret = mark_garbage_root(reloc_root); 4379 if (ret < 0) { 4380 err = ret; 4381 goto out; 4382 } 4383 } 4384 } 4385 4386 if (key.offset == 0) 4387 break; 4388 4389 key.offset--; 4390 } 4391 btrfs_release_path(path); 4392 4393 if (list_empty(&reloc_roots)) 4394 goto out; 4395 4396 rc = alloc_reloc_control(root->fs_info); 4397 if (!rc) { 4398 err = -ENOMEM; 4399 goto out; 4400 } 4401 4402 rc->extent_root = root->fs_info->extent_root; 4403 4404 set_reloc_control(rc); 4405 4406 trans = btrfs_join_transaction(rc->extent_root); 4407 if (IS_ERR(trans)) { 4408 unset_reloc_control(rc); 4409 err = PTR_ERR(trans); 4410 goto out_free; 4411 } 4412 4413 rc->merge_reloc_tree = 1; 4414 4415 while (!list_empty(&reloc_roots)) { 4416 reloc_root = list_entry(reloc_roots.next, 4417 struct btrfs_root, root_list); 4418 list_del(&reloc_root->root_list); 4419 4420 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4421 list_add_tail(&reloc_root->root_list, 4422 &rc->reloc_roots); 4423 continue; 4424 } 4425 4426 fs_root = read_fs_root(root->fs_info, 4427 reloc_root->root_key.offset); 4428 if (IS_ERR(fs_root)) { 4429 err = PTR_ERR(fs_root); 4430 goto out_free; 4431 } 4432 4433 err = __add_reloc_root(reloc_root); 4434 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4435 fs_root->reloc_root = reloc_root; 4436 } 4437 4438 err = btrfs_commit_transaction(trans, rc->extent_root); 4439 if (err) 4440 goto out_free; 4441 4442 merge_reloc_roots(rc); 4443 4444 unset_reloc_control(rc); 4445 4446 trans = btrfs_join_transaction(rc->extent_root); 4447 if (IS_ERR(trans)) 4448 err = PTR_ERR(trans); 4449 else 4450 err = btrfs_commit_transaction(trans, rc->extent_root); 4451 out_free: 4452 kfree(rc); 4453 out: 4454 if (!list_empty(&reloc_roots)) 4455 free_reloc_roots(&reloc_roots); 4456 4457 btrfs_free_path(path); 4458 4459 if (err == 0) { 4460 /* cleanup orphan inode in data relocation tree */ 4461 fs_root = read_fs_root(root->fs_info, 4462 BTRFS_DATA_RELOC_TREE_OBJECTID); 4463 if (IS_ERR(fs_root)) 4464 err = PTR_ERR(fs_root); 4465 else 4466 err = btrfs_orphan_cleanup(fs_root); 4467 } 4468 return err; 4469 } 4470 4471 /* 4472 * helper to add ordered checksum for data relocation. 4473 * 4474 * cloning checksum properly handles the nodatasum extents. 4475 * it also saves CPU time to re-calculate the checksum. 4476 */ 4477 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4478 { 4479 struct btrfs_ordered_sum *sums; 4480 struct btrfs_ordered_extent *ordered; 4481 struct btrfs_root *root = BTRFS_I(inode)->root; 4482 int ret; 4483 u64 disk_bytenr; 4484 LIST_HEAD(list); 4485 4486 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4487 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4488 4489 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4490 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4491 disk_bytenr + len - 1, &list, 0); 4492 if (ret) 4493 goto out; 4494 4495 disk_bytenr = ordered->start; 4496 while (!list_empty(&list)) { 4497 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4498 list_del_init(&sums->list); 4499 4500 sums->bytenr = disk_bytenr; 4501 disk_bytenr += sums->len; 4502 4503 btrfs_add_ordered_sum(inode, ordered, sums); 4504 } 4505 out: 4506 btrfs_put_ordered_extent(ordered); 4507 return ret; 4508 } 4509 4510 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4511 struct btrfs_root *root, struct extent_buffer *buf, 4512 struct extent_buffer *cow) 4513 { 4514 struct reloc_control *rc; 4515 struct backref_node *node; 4516 int first_cow = 0; 4517 int level; 4518 int ret = 0; 4519 4520 rc = root->fs_info->reloc_ctl; 4521 if (!rc) 4522 return 0; 4523 4524 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4525 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4526 4527 level = btrfs_header_level(buf); 4528 if (btrfs_header_generation(buf) <= 4529 btrfs_root_last_snapshot(&root->root_item)) 4530 first_cow = 1; 4531 4532 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4533 rc->create_reloc_tree) { 4534 WARN_ON(!first_cow && level == 0); 4535 4536 node = rc->backref_cache.path[level]; 4537 BUG_ON(node->bytenr != buf->start && 4538 node->new_bytenr != buf->start); 4539 4540 drop_node_buffer(node); 4541 extent_buffer_get(cow); 4542 node->eb = cow; 4543 node->new_bytenr = cow->start; 4544 4545 if (!node->pending) { 4546 list_move_tail(&node->list, 4547 &rc->backref_cache.pending[level]); 4548 node->pending = 1; 4549 } 4550 4551 if (first_cow) 4552 __mark_block_processed(rc, node); 4553 4554 if (first_cow && level > 0) 4555 rc->nodes_relocated += buf->len; 4556 } 4557 4558 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4559 ret = replace_file_extents(trans, rc, root, cow); 4560 return ret; 4561 } 4562 4563 /* 4564 * called before creating snapshot. it calculates metadata reservation 4565 * requried for relocating tree blocks in the snapshot 4566 */ 4567 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4568 struct btrfs_pending_snapshot *pending, 4569 u64 *bytes_to_reserve) 4570 { 4571 struct btrfs_root *root; 4572 struct reloc_control *rc; 4573 4574 root = pending->root; 4575 if (!root->reloc_root) 4576 return; 4577 4578 rc = root->fs_info->reloc_ctl; 4579 if (!rc->merge_reloc_tree) 4580 return; 4581 4582 root = root->reloc_root; 4583 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4584 /* 4585 * relocation is in the stage of merging trees. the space 4586 * used by merging a reloc tree is twice the size of 4587 * relocated tree nodes in the worst case. half for cowing 4588 * the reloc tree, half for cowing the fs tree. the space 4589 * used by cowing the reloc tree will be freed after the 4590 * tree is dropped. if we create snapshot, cowing the fs 4591 * tree may use more space than it frees. so we need 4592 * reserve extra space. 4593 */ 4594 *bytes_to_reserve += rc->nodes_relocated; 4595 } 4596 4597 /* 4598 * called after snapshot is created. migrate block reservation 4599 * and create reloc root for the newly created snapshot 4600 */ 4601 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4602 struct btrfs_pending_snapshot *pending) 4603 { 4604 struct btrfs_root *root = pending->root; 4605 struct btrfs_root *reloc_root; 4606 struct btrfs_root *new_root; 4607 struct reloc_control *rc; 4608 int ret; 4609 4610 if (!root->reloc_root) 4611 return 0; 4612 4613 rc = root->fs_info->reloc_ctl; 4614 rc->merging_rsv_size += rc->nodes_relocated; 4615 4616 if (rc->merge_reloc_tree) { 4617 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4618 rc->block_rsv, 4619 rc->nodes_relocated); 4620 if (ret) 4621 return ret; 4622 } 4623 4624 new_root = pending->snap; 4625 reloc_root = create_reloc_root(trans, root->reloc_root, 4626 new_root->root_key.objectid); 4627 if (IS_ERR(reloc_root)) 4628 return PTR_ERR(reloc_root); 4629 4630 ret = __add_reloc_root(reloc_root); 4631 BUG_ON(ret < 0); 4632 new_root->reloc_root = reloc_root; 4633 4634 if (rc->create_reloc_tree) 4635 ret = clone_backref_node(trans, rc, root, reloc_root); 4636 return ret; 4637 } 4638