1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2009 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/pagemap.h> 8 #include <linux/writeback.h> 9 #include <linux/blkdev.h> 10 #include <linux/rbtree.h> 11 #include <linux/slab.h> 12 #include <linux/error-injection.h> 13 #include "ctree.h" 14 #include "disk-io.h" 15 #include "transaction.h" 16 #include "volumes.h" 17 #include "locking.h" 18 #include "btrfs_inode.h" 19 #include "async-thread.h" 20 #include "free-space-cache.h" 21 #include "inode-map.h" 22 #include "qgroup.h" 23 #include "print-tree.h" 24 #include "delalloc-space.h" 25 #include "block-group.h" 26 #include "backref.h" 27 28 /* 29 * Relocation overview 30 * 31 * [What does relocation do] 32 * 33 * The objective of relocation is to relocate all extents of the target block 34 * group to other block groups. 35 * This is utilized by resize (shrink only), profile converting, compacting 36 * space, or balance routine to spread chunks over devices. 37 * 38 * Before | After 39 * ------------------------------------------------------------------ 40 * BG A: 10 data extents | BG A: deleted 41 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated) 42 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated) 43 * 44 * [How does relocation work] 45 * 46 * 1. Mark the target block group read-only 47 * New extents won't be allocated from the target block group. 48 * 49 * 2.1 Record each extent in the target block group 50 * To build a proper map of extents to be relocated. 51 * 52 * 2.2 Build data reloc tree and reloc trees 53 * Data reloc tree will contain an inode, recording all newly relocated 54 * data extents. 55 * There will be only one data reloc tree for one data block group. 56 * 57 * Reloc tree will be a special snapshot of its source tree, containing 58 * relocated tree blocks. 59 * Each tree referring to a tree block in target block group will get its 60 * reloc tree built. 61 * 62 * 2.3 Swap source tree with its corresponding reloc tree 63 * Each involved tree only refers to new extents after swap. 64 * 65 * 3. Cleanup reloc trees and data reloc tree. 66 * As old extents in the target block group are still referenced by reloc 67 * trees, we need to clean them up before really freeing the target block 68 * group. 69 * 70 * The main complexity is in steps 2.2 and 2.3. 71 * 72 * The entry point of relocation is relocate_block_group() function. 73 */ 74 75 /* 76 * backref_node, mapping_node and tree_block start with this 77 */ 78 struct tree_entry { 79 struct rb_node rb_node; 80 u64 bytenr; 81 }; 82 83 /* 84 * present a tree block in the backref cache 85 */ 86 struct backref_node { 87 struct rb_node rb_node; 88 u64 bytenr; 89 90 u64 new_bytenr; 91 /* objectid of tree block owner, can be not uptodate */ 92 u64 owner; 93 /* link to pending, changed or detached list */ 94 struct list_head list; 95 /* list of upper level blocks reference this block */ 96 struct list_head upper; 97 /* list of child blocks in the cache */ 98 struct list_head lower; 99 /* NULL if this node is not tree root */ 100 struct btrfs_root *root; 101 /* extent buffer got by COW the block */ 102 struct extent_buffer *eb; 103 /* level of tree block */ 104 unsigned int level:8; 105 /* is the block in non-reference counted tree */ 106 unsigned int cowonly:1; 107 /* 1 if no child node in the cache */ 108 unsigned int lowest:1; 109 /* is the extent buffer locked */ 110 unsigned int locked:1; 111 /* has the block been processed */ 112 unsigned int processed:1; 113 /* have backrefs of this block been checked */ 114 unsigned int checked:1; 115 /* 116 * 1 if corresponding block has been cowed but some upper 117 * level block pointers may not point to the new location 118 */ 119 unsigned int pending:1; 120 /* 121 * 1 if the backref node isn't connected to any other 122 * backref node. 123 */ 124 unsigned int detached:1; 125 }; 126 127 /* 128 * present a block pointer in the backref cache 129 */ 130 struct backref_edge { 131 struct list_head list[2]; 132 struct backref_node *node[2]; 133 }; 134 135 #define LOWER 0 136 #define UPPER 1 137 #define RELOCATION_RESERVED_NODES 256 138 139 struct backref_cache { 140 /* red black tree of all backref nodes in the cache */ 141 struct rb_root rb_root; 142 /* for passing backref nodes to btrfs_reloc_cow_block */ 143 struct backref_node *path[BTRFS_MAX_LEVEL]; 144 /* 145 * list of blocks that have been cowed but some block 146 * pointers in upper level blocks may not reflect the 147 * new location 148 */ 149 struct list_head pending[BTRFS_MAX_LEVEL]; 150 /* list of backref nodes with no child node */ 151 struct list_head leaves; 152 /* list of blocks that have been cowed in current transaction */ 153 struct list_head changed; 154 /* list of detached backref node. */ 155 struct list_head detached; 156 157 u64 last_trans; 158 159 int nr_nodes; 160 int nr_edges; 161 }; 162 163 /* 164 * map address of tree root to tree 165 */ 166 struct mapping_node { 167 struct rb_node rb_node; 168 u64 bytenr; 169 void *data; 170 }; 171 172 struct mapping_tree { 173 struct rb_root rb_root; 174 spinlock_t lock; 175 }; 176 177 /* 178 * present a tree block to process 179 */ 180 struct tree_block { 181 struct rb_node rb_node; 182 u64 bytenr; 183 struct btrfs_key key; 184 unsigned int level:8; 185 unsigned int key_ready:1; 186 }; 187 188 #define MAX_EXTENTS 128 189 190 struct file_extent_cluster { 191 u64 start; 192 u64 end; 193 u64 boundary[MAX_EXTENTS]; 194 unsigned int nr; 195 }; 196 197 struct reloc_control { 198 /* block group to relocate */ 199 struct btrfs_block_group *block_group; 200 /* extent tree */ 201 struct btrfs_root *extent_root; 202 /* inode for moving data */ 203 struct inode *data_inode; 204 205 struct btrfs_block_rsv *block_rsv; 206 207 struct backref_cache backref_cache; 208 209 struct file_extent_cluster cluster; 210 /* tree blocks have been processed */ 211 struct extent_io_tree processed_blocks; 212 /* map start of tree root to corresponding reloc tree */ 213 struct mapping_tree reloc_root_tree; 214 /* list of reloc trees */ 215 struct list_head reloc_roots; 216 /* list of subvolume trees that get relocated */ 217 struct list_head dirty_subvol_roots; 218 /* size of metadata reservation for merging reloc trees */ 219 u64 merging_rsv_size; 220 /* size of relocated tree nodes */ 221 u64 nodes_relocated; 222 /* reserved size for block group relocation*/ 223 u64 reserved_bytes; 224 225 u64 search_start; 226 u64 extents_found; 227 228 unsigned int stage:8; 229 unsigned int create_reloc_tree:1; 230 unsigned int merge_reloc_tree:1; 231 unsigned int found_file_extent:1; 232 }; 233 234 /* stages of data relocation */ 235 #define MOVE_DATA_EXTENTS 0 236 #define UPDATE_DATA_PTRS 1 237 238 static void remove_backref_node(struct backref_cache *cache, 239 struct backref_node *node); 240 static void __mark_block_processed(struct reloc_control *rc, 241 struct backref_node *node); 242 243 static void mapping_tree_init(struct mapping_tree *tree) 244 { 245 tree->rb_root = RB_ROOT; 246 spin_lock_init(&tree->lock); 247 } 248 249 static void backref_cache_init(struct backref_cache *cache) 250 { 251 int i; 252 cache->rb_root = RB_ROOT; 253 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 254 INIT_LIST_HEAD(&cache->pending[i]); 255 INIT_LIST_HEAD(&cache->changed); 256 INIT_LIST_HEAD(&cache->detached); 257 INIT_LIST_HEAD(&cache->leaves); 258 } 259 260 static void backref_cache_cleanup(struct backref_cache *cache) 261 { 262 struct backref_node *node; 263 int i; 264 265 while (!list_empty(&cache->detached)) { 266 node = list_entry(cache->detached.next, 267 struct backref_node, list); 268 remove_backref_node(cache, node); 269 } 270 271 while (!list_empty(&cache->leaves)) { 272 node = list_entry(cache->leaves.next, 273 struct backref_node, lower); 274 remove_backref_node(cache, node); 275 } 276 277 cache->last_trans = 0; 278 279 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 280 ASSERT(list_empty(&cache->pending[i])); 281 ASSERT(list_empty(&cache->changed)); 282 ASSERT(list_empty(&cache->detached)); 283 ASSERT(RB_EMPTY_ROOT(&cache->rb_root)); 284 ASSERT(!cache->nr_nodes); 285 ASSERT(!cache->nr_edges); 286 } 287 288 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 289 { 290 struct backref_node *node; 291 292 node = kzalloc(sizeof(*node), GFP_NOFS); 293 if (node) { 294 INIT_LIST_HEAD(&node->list); 295 INIT_LIST_HEAD(&node->upper); 296 INIT_LIST_HEAD(&node->lower); 297 RB_CLEAR_NODE(&node->rb_node); 298 cache->nr_nodes++; 299 } 300 return node; 301 } 302 303 static void free_backref_node(struct backref_cache *cache, 304 struct backref_node *node) 305 { 306 if (node) { 307 cache->nr_nodes--; 308 btrfs_put_root(node->root); 309 kfree(node); 310 } 311 } 312 313 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 314 { 315 struct backref_edge *edge; 316 317 edge = kzalloc(sizeof(*edge), GFP_NOFS); 318 if (edge) 319 cache->nr_edges++; 320 return edge; 321 } 322 323 static void free_backref_edge(struct backref_cache *cache, 324 struct backref_edge *edge) 325 { 326 if (edge) { 327 cache->nr_edges--; 328 kfree(edge); 329 } 330 } 331 332 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 333 struct rb_node *node) 334 { 335 struct rb_node **p = &root->rb_node; 336 struct rb_node *parent = NULL; 337 struct tree_entry *entry; 338 339 while (*p) { 340 parent = *p; 341 entry = rb_entry(parent, struct tree_entry, rb_node); 342 343 if (bytenr < entry->bytenr) 344 p = &(*p)->rb_left; 345 else if (bytenr > entry->bytenr) 346 p = &(*p)->rb_right; 347 else 348 return parent; 349 } 350 351 rb_link_node(node, parent, p); 352 rb_insert_color(node, root); 353 return NULL; 354 } 355 356 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 357 { 358 struct rb_node *n = root->rb_node; 359 struct tree_entry *entry; 360 361 while (n) { 362 entry = rb_entry(n, struct tree_entry, rb_node); 363 364 if (bytenr < entry->bytenr) 365 n = n->rb_left; 366 else if (bytenr > entry->bytenr) 367 n = n->rb_right; 368 else 369 return n; 370 } 371 return NULL; 372 } 373 374 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 375 { 376 377 struct btrfs_fs_info *fs_info = NULL; 378 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 379 rb_node); 380 if (bnode->root) 381 fs_info = bnode->root->fs_info; 382 btrfs_panic(fs_info, errno, 383 "Inconsistency in backref cache found at offset %llu", 384 bytenr); 385 } 386 387 /* 388 * walk up backref nodes until reach node presents tree root 389 */ 390 static struct backref_node *walk_up_backref(struct backref_node *node, 391 struct backref_edge *edges[], 392 int *index) 393 { 394 struct backref_edge *edge; 395 int idx = *index; 396 397 while (!list_empty(&node->upper)) { 398 edge = list_entry(node->upper.next, 399 struct backref_edge, list[LOWER]); 400 edges[idx++] = edge; 401 node = edge->node[UPPER]; 402 } 403 BUG_ON(node->detached); 404 *index = idx; 405 return node; 406 } 407 408 /* 409 * walk down backref nodes to find start of next reference path 410 */ 411 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 412 int *index) 413 { 414 struct backref_edge *edge; 415 struct backref_node *lower; 416 int idx = *index; 417 418 while (idx > 0) { 419 edge = edges[idx - 1]; 420 lower = edge->node[LOWER]; 421 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 422 idx--; 423 continue; 424 } 425 edge = list_entry(edge->list[LOWER].next, 426 struct backref_edge, list[LOWER]); 427 edges[idx - 1] = edge; 428 *index = idx; 429 return edge->node[UPPER]; 430 } 431 *index = 0; 432 return NULL; 433 } 434 435 static void unlock_node_buffer(struct backref_node *node) 436 { 437 if (node->locked) { 438 btrfs_tree_unlock(node->eb); 439 node->locked = 0; 440 } 441 } 442 443 static void drop_node_buffer(struct backref_node *node) 444 { 445 if (node->eb) { 446 unlock_node_buffer(node); 447 free_extent_buffer(node->eb); 448 node->eb = NULL; 449 } 450 } 451 452 static void drop_backref_node(struct backref_cache *tree, 453 struct backref_node *node) 454 { 455 BUG_ON(!list_empty(&node->upper)); 456 457 drop_node_buffer(node); 458 list_del(&node->list); 459 list_del(&node->lower); 460 if (!RB_EMPTY_NODE(&node->rb_node)) 461 rb_erase(&node->rb_node, &tree->rb_root); 462 free_backref_node(tree, node); 463 } 464 465 /* 466 * remove a backref node from the backref cache 467 */ 468 static void remove_backref_node(struct backref_cache *cache, 469 struct backref_node *node) 470 { 471 struct backref_node *upper; 472 struct backref_edge *edge; 473 474 if (!node) 475 return; 476 477 BUG_ON(!node->lowest && !node->detached); 478 while (!list_empty(&node->upper)) { 479 edge = list_entry(node->upper.next, struct backref_edge, 480 list[LOWER]); 481 upper = edge->node[UPPER]; 482 list_del(&edge->list[LOWER]); 483 list_del(&edge->list[UPPER]); 484 free_backref_edge(cache, edge); 485 486 if (RB_EMPTY_NODE(&upper->rb_node)) { 487 BUG_ON(!list_empty(&node->upper)); 488 drop_backref_node(cache, node); 489 node = upper; 490 node->lowest = 1; 491 continue; 492 } 493 /* 494 * add the node to leaf node list if no other 495 * child block cached. 496 */ 497 if (list_empty(&upper->lower)) { 498 list_add_tail(&upper->lower, &cache->leaves); 499 upper->lowest = 1; 500 } 501 } 502 503 drop_backref_node(cache, node); 504 } 505 506 static void update_backref_node(struct backref_cache *cache, 507 struct backref_node *node, u64 bytenr) 508 { 509 struct rb_node *rb_node; 510 rb_erase(&node->rb_node, &cache->rb_root); 511 node->bytenr = bytenr; 512 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 513 if (rb_node) 514 backref_tree_panic(rb_node, -EEXIST, bytenr); 515 } 516 517 /* 518 * update backref cache after a transaction commit 519 */ 520 static int update_backref_cache(struct btrfs_trans_handle *trans, 521 struct backref_cache *cache) 522 { 523 struct backref_node *node; 524 int level = 0; 525 526 if (cache->last_trans == 0) { 527 cache->last_trans = trans->transid; 528 return 0; 529 } 530 531 if (cache->last_trans == trans->transid) 532 return 0; 533 534 /* 535 * detached nodes are used to avoid unnecessary backref 536 * lookup. transaction commit changes the extent tree. 537 * so the detached nodes are no longer useful. 538 */ 539 while (!list_empty(&cache->detached)) { 540 node = list_entry(cache->detached.next, 541 struct backref_node, list); 542 remove_backref_node(cache, node); 543 } 544 545 while (!list_empty(&cache->changed)) { 546 node = list_entry(cache->changed.next, 547 struct backref_node, list); 548 list_del_init(&node->list); 549 BUG_ON(node->pending); 550 update_backref_node(cache, node, node->new_bytenr); 551 } 552 553 /* 554 * some nodes can be left in the pending list if there were 555 * errors during processing the pending nodes. 556 */ 557 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 558 list_for_each_entry(node, &cache->pending[level], list) { 559 BUG_ON(!node->pending); 560 if (node->bytenr == node->new_bytenr) 561 continue; 562 update_backref_node(cache, node, node->new_bytenr); 563 } 564 } 565 566 cache->last_trans = 0; 567 return 1; 568 } 569 570 static bool reloc_root_is_dead(struct btrfs_root *root) 571 { 572 /* 573 * Pair with set_bit/clear_bit in clean_dirty_subvols and 574 * btrfs_update_reloc_root. We need to see the updated bit before 575 * trying to access reloc_root 576 */ 577 smp_rmb(); 578 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state)) 579 return true; 580 return false; 581 } 582 583 /* 584 * Check if this subvolume tree has valid reloc tree. 585 * 586 * Reloc tree after swap is considered dead, thus not considered as valid. 587 * This is enough for most callers, as they don't distinguish dead reloc root 588 * from no reloc root. But should_ignore_root() below is a special case. 589 */ 590 static bool have_reloc_root(struct btrfs_root *root) 591 { 592 if (reloc_root_is_dead(root)) 593 return false; 594 if (!root->reloc_root) 595 return false; 596 return true; 597 } 598 599 static int should_ignore_root(struct btrfs_root *root) 600 { 601 struct btrfs_root *reloc_root; 602 603 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 604 return 0; 605 606 /* This root has been merged with its reloc tree, we can ignore it */ 607 if (reloc_root_is_dead(root)) 608 return 1; 609 610 reloc_root = root->reloc_root; 611 if (!reloc_root) 612 return 0; 613 614 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 615 root->fs_info->running_transaction->transid - 1) 616 return 0; 617 /* 618 * if there is reloc tree and it was created in previous 619 * transaction backref lookup can find the reloc tree, 620 * so backref node for the fs tree root is useless for 621 * relocation. 622 */ 623 return 1; 624 } 625 /* 626 * find reloc tree by address of tree root 627 */ 628 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 629 u64 bytenr) 630 { 631 struct rb_node *rb_node; 632 struct mapping_node *node; 633 struct btrfs_root *root = NULL; 634 635 spin_lock(&rc->reloc_root_tree.lock); 636 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 637 if (rb_node) { 638 node = rb_entry(rb_node, struct mapping_node, rb_node); 639 root = (struct btrfs_root *)node->data; 640 } 641 spin_unlock(&rc->reloc_root_tree.lock); 642 return btrfs_grab_root(root); 643 } 644 645 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 646 u64 root_objectid) 647 { 648 struct btrfs_key key; 649 650 key.objectid = root_objectid; 651 key.type = BTRFS_ROOT_ITEM_KEY; 652 key.offset = (u64)-1; 653 654 return btrfs_get_fs_root(fs_info, &key, false); 655 } 656 657 static noinline_for_stack 658 int find_inline_backref(struct extent_buffer *leaf, int slot, 659 unsigned long *ptr, unsigned long *end) 660 { 661 struct btrfs_key key; 662 struct btrfs_extent_item *ei; 663 struct btrfs_tree_block_info *bi; 664 u32 item_size; 665 666 btrfs_item_key_to_cpu(leaf, &key, slot); 667 668 item_size = btrfs_item_size_nr(leaf, slot); 669 if (item_size < sizeof(*ei)) { 670 btrfs_print_v0_err(leaf->fs_info); 671 btrfs_handle_fs_error(leaf->fs_info, -EINVAL, NULL); 672 return 1; 673 } 674 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 675 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 676 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 677 678 if (key.type == BTRFS_EXTENT_ITEM_KEY && 679 item_size <= sizeof(*ei) + sizeof(*bi)) { 680 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 681 return 1; 682 } 683 if (key.type == BTRFS_METADATA_ITEM_KEY && 684 item_size <= sizeof(*ei)) { 685 WARN_ON(item_size < sizeof(*ei)); 686 return 1; 687 } 688 689 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 690 bi = (struct btrfs_tree_block_info *)(ei + 1); 691 *ptr = (unsigned long)(bi + 1); 692 } else { 693 *ptr = (unsigned long)(ei + 1); 694 } 695 *end = (unsigned long)ei + item_size; 696 return 0; 697 } 698 699 /* 700 * build backref tree for a given tree block. root of the backref tree 701 * corresponds the tree block, leaves of the backref tree correspond 702 * roots of b-trees that reference the tree block. 703 * 704 * the basic idea of this function is check backrefs of a given block 705 * to find upper level blocks that reference the block, and then check 706 * backrefs of these upper level blocks recursively. the recursion stop 707 * when tree root is reached or backrefs for the block is cached. 708 * 709 * NOTE: if we find backrefs for a block are cached, we know backrefs 710 * for all upper level blocks that directly/indirectly reference the 711 * block are also cached. 712 */ 713 static noinline_for_stack 714 struct backref_node *build_backref_tree(struct reloc_control *rc, 715 struct btrfs_key *node_key, 716 int level, u64 bytenr) 717 { 718 struct backref_cache *cache = &rc->backref_cache; 719 struct btrfs_path *path1; /* For searching extent root */ 720 struct btrfs_path *path2; /* For searching parent of TREE_BLOCK_REF */ 721 struct extent_buffer *eb; 722 struct btrfs_root *root; 723 struct backref_node *cur; 724 struct backref_node *upper; 725 struct backref_node *lower; 726 struct backref_node *node = NULL; 727 struct backref_node *exist = NULL; 728 struct backref_edge *edge; 729 struct rb_node *rb_node; 730 struct btrfs_key key; 731 unsigned long end; 732 unsigned long ptr; 733 LIST_HEAD(list); /* Pending edge list, upper node needs to be checked */ 734 LIST_HEAD(useless); 735 int cowonly; 736 int ret; 737 int err = 0; 738 bool need_check = true; 739 740 path1 = btrfs_alloc_path(); 741 path2 = btrfs_alloc_path(); 742 if (!path1 || !path2) { 743 err = -ENOMEM; 744 goto out; 745 } 746 747 node = alloc_backref_node(cache); 748 if (!node) { 749 err = -ENOMEM; 750 goto out; 751 } 752 753 node->bytenr = bytenr; 754 node->level = level; 755 node->lowest = 1; 756 cur = node; 757 again: 758 end = 0; 759 ptr = 0; 760 key.objectid = cur->bytenr; 761 key.type = BTRFS_METADATA_ITEM_KEY; 762 key.offset = (u64)-1; 763 764 path1->search_commit_root = 1; 765 path1->skip_locking = 1; 766 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 767 0, 0); 768 if (ret < 0) { 769 err = ret; 770 goto out; 771 } 772 ASSERT(ret); 773 ASSERT(path1->slots[0]); 774 775 path1->slots[0]--; 776 777 WARN_ON(cur->checked); 778 if (!list_empty(&cur->upper)) { 779 /* 780 * the backref was added previously when processing 781 * backref of type BTRFS_TREE_BLOCK_REF_KEY 782 */ 783 ASSERT(list_is_singular(&cur->upper)); 784 edge = list_entry(cur->upper.next, struct backref_edge, 785 list[LOWER]); 786 ASSERT(list_empty(&edge->list[UPPER])); 787 exist = edge->node[UPPER]; 788 /* 789 * add the upper level block to pending list if we need 790 * check its backrefs 791 */ 792 if (!exist->checked) 793 list_add_tail(&edge->list[UPPER], &list); 794 } else { 795 exist = NULL; 796 } 797 798 while (1) { 799 cond_resched(); 800 eb = path1->nodes[0]; 801 802 if (ptr >= end) { 803 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 804 ret = btrfs_next_leaf(rc->extent_root, path1); 805 if (ret < 0) { 806 err = ret; 807 goto out; 808 } 809 if (ret > 0) 810 break; 811 eb = path1->nodes[0]; 812 } 813 814 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 815 if (key.objectid != cur->bytenr) { 816 WARN_ON(exist); 817 break; 818 } 819 820 if (key.type == BTRFS_EXTENT_ITEM_KEY || 821 key.type == BTRFS_METADATA_ITEM_KEY) { 822 ret = find_inline_backref(eb, path1->slots[0], 823 &ptr, &end); 824 if (ret) 825 goto next; 826 } 827 } 828 829 if (ptr < end) { 830 /* update key for inline back ref */ 831 struct btrfs_extent_inline_ref *iref; 832 int type; 833 iref = (struct btrfs_extent_inline_ref *)ptr; 834 type = btrfs_get_extent_inline_ref_type(eb, iref, 835 BTRFS_REF_TYPE_BLOCK); 836 if (type == BTRFS_REF_TYPE_INVALID) { 837 err = -EUCLEAN; 838 goto out; 839 } 840 key.type = type; 841 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 842 843 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 844 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 845 } 846 847 /* 848 * Parent node found and matches current inline ref, no need to 849 * rebuild this node for this inline ref. 850 */ 851 if (exist && 852 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 853 exist->owner == key.offset) || 854 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 855 exist->bytenr == key.offset))) { 856 exist = NULL; 857 goto next; 858 } 859 860 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */ 861 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 862 if (key.objectid == key.offset) { 863 /* 864 * Only root blocks of reloc trees use backref 865 * pointing to itself. 866 */ 867 root = find_reloc_root(rc, cur->bytenr); 868 ASSERT(root); 869 cur->root = root; 870 break; 871 } 872 873 edge = alloc_backref_edge(cache); 874 if (!edge) { 875 err = -ENOMEM; 876 goto out; 877 } 878 rb_node = tree_search(&cache->rb_root, key.offset); 879 if (!rb_node) { 880 upper = alloc_backref_node(cache); 881 if (!upper) { 882 free_backref_edge(cache, edge); 883 err = -ENOMEM; 884 goto out; 885 } 886 upper->bytenr = key.offset; 887 upper->level = cur->level + 1; 888 /* 889 * backrefs for the upper level block isn't 890 * cached, add the block to pending list 891 */ 892 list_add_tail(&edge->list[UPPER], &list); 893 } else { 894 upper = rb_entry(rb_node, struct backref_node, 895 rb_node); 896 ASSERT(upper->checked); 897 INIT_LIST_HEAD(&edge->list[UPPER]); 898 } 899 list_add_tail(&edge->list[LOWER], &cur->upper); 900 edge->node[LOWER] = cur; 901 edge->node[UPPER] = upper; 902 903 goto next; 904 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) { 905 err = -EINVAL; 906 btrfs_print_v0_err(rc->extent_root->fs_info); 907 btrfs_handle_fs_error(rc->extent_root->fs_info, err, 908 NULL); 909 goto out; 910 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 911 goto next; 912 } 913 914 /* 915 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset 916 * means the root objectid. We need to search the tree to get 917 * its parent bytenr. 918 */ 919 root = read_fs_root(rc->extent_root->fs_info, key.offset); 920 if (IS_ERR(root)) { 921 err = PTR_ERR(root); 922 goto out; 923 } 924 925 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 926 cur->cowonly = 1; 927 928 if (btrfs_root_level(&root->root_item) == cur->level) { 929 /* tree root */ 930 ASSERT(btrfs_root_bytenr(&root->root_item) == 931 cur->bytenr); 932 if (should_ignore_root(root)) { 933 btrfs_put_root(root); 934 list_add(&cur->list, &useless); 935 } else { 936 cur->root = root; 937 } 938 break; 939 } 940 941 level = cur->level + 1; 942 943 /* Search the tree to find parent blocks referring the block. */ 944 path2->search_commit_root = 1; 945 path2->skip_locking = 1; 946 path2->lowest_level = level; 947 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 948 path2->lowest_level = 0; 949 if (ret < 0) { 950 btrfs_put_root(root); 951 err = ret; 952 goto out; 953 } 954 if (ret > 0 && path2->slots[level] > 0) 955 path2->slots[level]--; 956 957 eb = path2->nodes[level]; 958 if (btrfs_node_blockptr(eb, path2->slots[level]) != 959 cur->bytenr) { 960 btrfs_err(root->fs_info, 961 "couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)", 962 cur->bytenr, level - 1, 963 root->root_key.objectid, 964 node_key->objectid, node_key->type, 965 node_key->offset); 966 btrfs_put_root(root); 967 err = -ENOENT; 968 goto out; 969 } 970 lower = cur; 971 need_check = true; 972 973 /* Add all nodes and edges in the path */ 974 for (; level < BTRFS_MAX_LEVEL; level++) { 975 if (!path2->nodes[level]) { 976 ASSERT(btrfs_root_bytenr(&root->root_item) == 977 lower->bytenr); 978 if (should_ignore_root(root)) { 979 btrfs_put_root(root); 980 list_add(&lower->list, &useless); 981 } else { 982 lower->root = root; 983 } 984 break; 985 } 986 987 edge = alloc_backref_edge(cache); 988 if (!edge) { 989 btrfs_put_root(root); 990 err = -ENOMEM; 991 goto out; 992 } 993 994 eb = path2->nodes[level]; 995 rb_node = tree_search(&cache->rb_root, eb->start); 996 if (!rb_node) { 997 upper = alloc_backref_node(cache); 998 if (!upper) { 999 btrfs_put_root(root); 1000 free_backref_edge(cache, edge); 1001 err = -ENOMEM; 1002 goto out; 1003 } 1004 upper->bytenr = eb->start; 1005 upper->owner = btrfs_header_owner(eb); 1006 upper->level = lower->level + 1; 1007 if (!test_bit(BTRFS_ROOT_REF_COWS, 1008 &root->state)) 1009 upper->cowonly = 1; 1010 1011 /* 1012 * if we know the block isn't shared 1013 * we can void checking its backrefs. 1014 */ 1015 if (btrfs_block_can_be_shared(root, eb)) 1016 upper->checked = 0; 1017 else 1018 upper->checked = 1; 1019 1020 /* 1021 * add the block to pending list if we 1022 * need check its backrefs, we only do this once 1023 * while walking up a tree as we will catch 1024 * anything else later on. 1025 */ 1026 if (!upper->checked && need_check) { 1027 need_check = false; 1028 list_add_tail(&edge->list[UPPER], 1029 &list); 1030 } else { 1031 if (upper->checked) 1032 need_check = true; 1033 INIT_LIST_HEAD(&edge->list[UPPER]); 1034 } 1035 } else { 1036 upper = rb_entry(rb_node, struct backref_node, 1037 rb_node); 1038 ASSERT(upper->checked); 1039 INIT_LIST_HEAD(&edge->list[UPPER]); 1040 if (!upper->owner) 1041 upper->owner = btrfs_header_owner(eb); 1042 } 1043 list_add_tail(&edge->list[LOWER], &lower->upper); 1044 edge->node[LOWER] = lower; 1045 edge->node[UPPER] = upper; 1046 1047 if (rb_node) { 1048 btrfs_put_root(root); 1049 break; 1050 } 1051 lower = upper; 1052 upper = NULL; 1053 } 1054 btrfs_release_path(path2); 1055 next: 1056 if (ptr < end) { 1057 ptr += btrfs_extent_inline_ref_size(key.type); 1058 if (ptr >= end) { 1059 WARN_ON(ptr > end); 1060 ptr = 0; 1061 end = 0; 1062 } 1063 } 1064 if (ptr >= end) 1065 path1->slots[0]++; 1066 } 1067 btrfs_release_path(path1); 1068 1069 cur->checked = 1; 1070 WARN_ON(exist); 1071 1072 /* the pending list isn't empty, take the first block to process */ 1073 if (!list_empty(&list)) { 1074 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1075 list_del_init(&edge->list[UPPER]); 1076 cur = edge->node[UPPER]; 1077 goto again; 1078 } 1079 1080 /* 1081 * everything goes well, connect backref nodes and insert backref nodes 1082 * into the cache. 1083 */ 1084 ASSERT(node->checked); 1085 cowonly = node->cowonly; 1086 if (!cowonly) { 1087 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1088 &node->rb_node); 1089 if (rb_node) 1090 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1091 list_add_tail(&node->lower, &cache->leaves); 1092 } 1093 1094 list_for_each_entry(edge, &node->upper, list[LOWER]) 1095 list_add_tail(&edge->list[UPPER], &list); 1096 1097 while (!list_empty(&list)) { 1098 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1099 list_del_init(&edge->list[UPPER]); 1100 upper = edge->node[UPPER]; 1101 if (upper->detached) { 1102 list_del(&edge->list[LOWER]); 1103 lower = edge->node[LOWER]; 1104 free_backref_edge(cache, edge); 1105 if (list_empty(&lower->upper)) 1106 list_add(&lower->list, &useless); 1107 continue; 1108 } 1109 1110 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1111 if (upper->lowest) { 1112 list_del_init(&upper->lower); 1113 upper->lowest = 0; 1114 } 1115 1116 list_add_tail(&edge->list[UPPER], &upper->lower); 1117 continue; 1118 } 1119 1120 if (!upper->checked) { 1121 /* 1122 * Still want to blow up for developers since this is a 1123 * logic bug. 1124 */ 1125 ASSERT(0); 1126 err = -EINVAL; 1127 goto out; 1128 } 1129 if (cowonly != upper->cowonly) { 1130 ASSERT(0); 1131 err = -EINVAL; 1132 goto out; 1133 } 1134 1135 if (!cowonly) { 1136 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1137 &upper->rb_node); 1138 if (rb_node) 1139 backref_tree_panic(rb_node, -EEXIST, 1140 upper->bytenr); 1141 } 1142 1143 list_add_tail(&edge->list[UPPER], &upper->lower); 1144 1145 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1146 list_add_tail(&edge->list[UPPER], &list); 1147 } 1148 /* 1149 * process useless backref nodes. backref nodes for tree leaves 1150 * are deleted from the cache. backref nodes for upper level 1151 * tree blocks are left in the cache to avoid unnecessary backref 1152 * lookup. 1153 */ 1154 while (!list_empty(&useless)) { 1155 upper = list_entry(useless.next, struct backref_node, list); 1156 list_del_init(&upper->list); 1157 ASSERT(list_empty(&upper->upper)); 1158 if (upper == node) 1159 node = NULL; 1160 if (upper->lowest) { 1161 list_del_init(&upper->lower); 1162 upper->lowest = 0; 1163 } 1164 while (!list_empty(&upper->lower)) { 1165 edge = list_entry(upper->lower.next, 1166 struct backref_edge, list[UPPER]); 1167 list_del(&edge->list[UPPER]); 1168 list_del(&edge->list[LOWER]); 1169 lower = edge->node[LOWER]; 1170 free_backref_edge(cache, edge); 1171 1172 if (list_empty(&lower->upper)) 1173 list_add(&lower->list, &useless); 1174 } 1175 __mark_block_processed(rc, upper); 1176 if (upper->level > 0) { 1177 list_add(&upper->list, &cache->detached); 1178 upper->detached = 1; 1179 } else { 1180 rb_erase(&upper->rb_node, &cache->rb_root); 1181 free_backref_node(cache, upper); 1182 } 1183 } 1184 out: 1185 btrfs_free_path(path1); 1186 btrfs_free_path(path2); 1187 if (err) { 1188 while (!list_empty(&useless)) { 1189 lower = list_entry(useless.next, 1190 struct backref_node, list); 1191 list_del_init(&lower->list); 1192 } 1193 while (!list_empty(&list)) { 1194 edge = list_first_entry(&list, struct backref_edge, 1195 list[UPPER]); 1196 list_del(&edge->list[UPPER]); 1197 list_del(&edge->list[LOWER]); 1198 lower = edge->node[LOWER]; 1199 upper = edge->node[UPPER]; 1200 free_backref_edge(cache, edge); 1201 1202 /* 1203 * Lower is no longer linked to any upper backref nodes 1204 * and isn't in the cache, we can free it ourselves. 1205 */ 1206 if (list_empty(&lower->upper) && 1207 RB_EMPTY_NODE(&lower->rb_node)) 1208 list_add(&lower->list, &useless); 1209 1210 if (!RB_EMPTY_NODE(&upper->rb_node)) 1211 continue; 1212 1213 /* Add this guy's upper edges to the list to process */ 1214 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1215 list_add_tail(&edge->list[UPPER], &list); 1216 if (list_empty(&upper->upper)) 1217 list_add(&upper->list, &useless); 1218 } 1219 1220 while (!list_empty(&useless)) { 1221 lower = list_entry(useless.next, 1222 struct backref_node, list); 1223 list_del_init(&lower->list); 1224 if (lower == node) 1225 node = NULL; 1226 free_backref_node(cache, lower); 1227 } 1228 1229 remove_backref_node(cache, node); 1230 return ERR_PTR(err); 1231 } 1232 ASSERT(!node || !node->detached); 1233 return node; 1234 } 1235 1236 /* 1237 * helper to add backref node for the newly created snapshot. 1238 * the backref node is created by cloning backref node that 1239 * corresponds to root of source tree 1240 */ 1241 static int clone_backref_node(struct btrfs_trans_handle *trans, 1242 struct reloc_control *rc, 1243 struct btrfs_root *src, 1244 struct btrfs_root *dest) 1245 { 1246 struct btrfs_root *reloc_root = src->reloc_root; 1247 struct backref_cache *cache = &rc->backref_cache; 1248 struct backref_node *node = NULL; 1249 struct backref_node *new_node; 1250 struct backref_edge *edge; 1251 struct backref_edge *new_edge; 1252 struct rb_node *rb_node; 1253 1254 if (cache->last_trans > 0) 1255 update_backref_cache(trans, cache); 1256 1257 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1258 if (rb_node) { 1259 node = rb_entry(rb_node, struct backref_node, rb_node); 1260 if (node->detached) 1261 node = NULL; 1262 else 1263 BUG_ON(node->new_bytenr != reloc_root->node->start); 1264 } 1265 1266 if (!node) { 1267 rb_node = tree_search(&cache->rb_root, 1268 reloc_root->commit_root->start); 1269 if (rb_node) { 1270 node = rb_entry(rb_node, struct backref_node, 1271 rb_node); 1272 BUG_ON(node->detached); 1273 } 1274 } 1275 1276 if (!node) 1277 return 0; 1278 1279 new_node = alloc_backref_node(cache); 1280 if (!new_node) 1281 return -ENOMEM; 1282 1283 new_node->bytenr = dest->node->start; 1284 new_node->level = node->level; 1285 new_node->lowest = node->lowest; 1286 new_node->checked = 1; 1287 new_node->root = btrfs_grab_root(dest); 1288 ASSERT(new_node->root); 1289 1290 if (!node->lowest) { 1291 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1292 new_edge = alloc_backref_edge(cache); 1293 if (!new_edge) 1294 goto fail; 1295 1296 new_edge->node[UPPER] = new_node; 1297 new_edge->node[LOWER] = edge->node[LOWER]; 1298 list_add_tail(&new_edge->list[UPPER], 1299 &new_node->lower); 1300 } 1301 } else { 1302 list_add_tail(&new_node->lower, &cache->leaves); 1303 } 1304 1305 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1306 &new_node->rb_node); 1307 if (rb_node) 1308 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1309 1310 if (!new_node->lowest) { 1311 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1312 list_add_tail(&new_edge->list[LOWER], 1313 &new_edge->node[LOWER]->upper); 1314 } 1315 } 1316 return 0; 1317 fail: 1318 while (!list_empty(&new_node->lower)) { 1319 new_edge = list_entry(new_node->lower.next, 1320 struct backref_edge, list[UPPER]); 1321 list_del(&new_edge->list[UPPER]); 1322 free_backref_edge(cache, new_edge); 1323 } 1324 free_backref_node(cache, new_node); 1325 return -ENOMEM; 1326 } 1327 1328 /* 1329 * helper to add 'address of tree root -> reloc tree' mapping 1330 */ 1331 static int __must_check __add_reloc_root(struct btrfs_root *root) 1332 { 1333 struct btrfs_fs_info *fs_info = root->fs_info; 1334 struct rb_node *rb_node; 1335 struct mapping_node *node; 1336 struct reloc_control *rc = fs_info->reloc_ctl; 1337 1338 node = kmalloc(sizeof(*node), GFP_NOFS); 1339 if (!node) 1340 return -ENOMEM; 1341 1342 node->bytenr = root->commit_root->start; 1343 node->data = root; 1344 1345 spin_lock(&rc->reloc_root_tree.lock); 1346 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1347 node->bytenr, &node->rb_node); 1348 spin_unlock(&rc->reloc_root_tree.lock); 1349 if (rb_node) { 1350 btrfs_panic(fs_info, -EEXIST, 1351 "Duplicate root found for start=%llu while inserting into relocation tree", 1352 node->bytenr); 1353 } 1354 1355 list_add_tail(&root->root_list, &rc->reloc_roots); 1356 return 0; 1357 } 1358 1359 /* 1360 * helper to delete the 'address of tree root -> reloc tree' 1361 * mapping 1362 */ 1363 static void __del_reloc_root(struct btrfs_root *root) 1364 { 1365 struct btrfs_fs_info *fs_info = root->fs_info; 1366 struct rb_node *rb_node; 1367 struct mapping_node *node = NULL; 1368 struct reloc_control *rc = fs_info->reloc_ctl; 1369 bool put_ref = false; 1370 1371 if (rc && root->node) { 1372 spin_lock(&rc->reloc_root_tree.lock); 1373 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1374 root->commit_root->start); 1375 if (rb_node) { 1376 node = rb_entry(rb_node, struct mapping_node, rb_node); 1377 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1378 RB_CLEAR_NODE(&node->rb_node); 1379 } 1380 spin_unlock(&rc->reloc_root_tree.lock); 1381 if (!node) 1382 return; 1383 BUG_ON((struct btrfs_root *)node->data != root); 1384 } 1385 1386 /* 1387 * We only put the reloc root here if it's on the list. There's a lot 1388 * of places where the pattern is to splice the rc->reloc_roots, process 1389 * the reloc roots, and then add the reloc root back onto 1390 * rc->reloc_roots. If we call __del_reloc_root while it's off of the 1391 * list we don't want the reference being dropped, because the guy 1392 * messing with the list is in charge of the reference. 1393 */ 1394 spin_lock(&fs_info->trans_lock); 1395 if (!list_empty(&root->root_list)) { 1396 put_ref = true; 1397 list_del_init(&root->root_list); 1398 } 1399 spin_unlock(&fs_info->trans_lock); 1400 if (put_ref) 1401 btrfs_put_root(root); 1402 kfree(node); 1403 } 1404 1405 /* 1406 * helper to update the 'address of tree root -> reloc tree' 1407 * mapping 1408 */ 1409 static int __update_reloc_root(struct btrfs_root *root) 1410 { 1411 struct btrfs_fs_info *fs_info = root->fs_info; 1412 struct rb_node *rb_node; 1413 struct mapping_node *node = NULL; 1414 struct reloc_control *rc = fs_info->reloc_ctl; 1415 1416 spin_lock(&rc->reloc_root_tree.lock); 1417 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1418 root->commit_root->start); 1419 if (rb_node) { 1420 node = rb_entry(rb_node, struct mapping_node, rb_node); 1421 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1422 } 1423 spin_unlock(&rc->reloc_root_tree.lock); 1424 1425 if (!node) 1426 return 0; 1427 BUG_ON((struct btrfs_root *)node->data != root); 1428 1429 spin_lock(&rc->reloc_root_tree.lock); 1430 node->bytenr = root->node->start; 1431 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1432 node->bytenr, &node->rb_node); 1433 spin_unlock(&rc->reloc_root_tree.lock); 1434 if (rb_node) 1435 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1436 return 0; 1437 } 1438 1439 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1440 struct btrfs_root *root, u64 objectid) 1441 { 1442 struct btrfs_fs_info *fs_info = root->fs_info; 1443 struct btrfs_root *reloc_root; 1444 struct extent_buffer *eb; 1445 struct btrfs_root_item *root_item; 1446 struct btrfs_key root_key; 1447 int ret; 1448 1449 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1450 BUG_ON(!root_item); 1451 1452 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1453 root_key.type = BTRFS_ROOT_ITEM_KEY; 1454 root_key.offset = objectid; 1455 1456 if (root->root_key.objectid == objectid) { 1457 u64 commit_root_gen; 1458 1459 /* called by btrfs_init_reloc_root */ 1460 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1461 BTRFS_TREE_RELOC_OBJECTID); 1462 BUG_ON(ret); 1463 /* 1464 * Set the last_snapshot field to the generation of the commit 1465 * root - like this ctree.c:btrfs_block_can_be_shared() behaves 1466 * correctly (returns true) when the relocation root is created 1467 * either inside the critical section of a transaction commit 1468 * (through transaction.c:qgroup_account_snapshot()) and when 1469 * it's created before the transaction commit is started. 1470 */ 1471 commit_root_gen = btrfs_header_generation(root->commit_root); 1472 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen); 1473 } else { 1474 /* 1475 * called by btrfs_reloc_post_snapshot_hook. 1476 * the source tree is a reloc tree, all tree blocks 1477 * modified after it was created have RELOC flag 1478 * set in their headers. so it's OK to not update 1479 * the 'last_snapshot'. 1480 */ 1481 ret = btrfs_copy_root(trans, root, root->node, &eb, 1482 BTRFS_TREE_RELOC_OBJECTID); 1483 BUG_ON(ret); 1484 } 1485 1486 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1487 btrfs_set_root_bytenr(root_item, eb->start); 1488 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1489 btrfs_set_root_generation(root_item, trans->transid); 1490 1491 if (root->root_key.objectid == objectid) { 1492 btrfs_set_root_refs(root_item, 0); 1493 memset(&root_item->drop_progress, 0, 1494 sizeof(struct btrfs_disk_key)); 1495 root_item->drop_level = 0; 1496 } 1497 1498 btrfs_tree_unlock(eb); 1499 free_extent_buffer(eb); 1500 1501 ret = btrfs_insert_root(trans, fs_info->tree_root, 1502 &root_key, root_item); 1503 BUG_ON(ret); 1504 kfree(root_item); 1505 1506 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key); 1507 BUG_ON(IS_ERR(reloc_root)); 1508 set_bit(BTRFS_ROOT_REF_COWS, &reloc_root->state); 1509 reloc_root->last_trans = trans->transid; 1510 return reloc_root; 1511 } 1512 1513 /* 1514 * create reloc tree for a given fs tree. reloc tree is just a 1515 * snapshot of the fs tree with special root objectid. 1516 * 1517 * The reloc_root comes out of here with two references, one for 1518 * root->reloc_root, and another for being on the rc->reloc_roots list. 1519 */ 1520 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1521 struct btrfs_root *root) 1522 { 1523 struct btrfs_fs_info *fs_info = root->fs_info; 1524 struct btrfs_root *reloc_root; 1525 struct reloc_control *rc = fs_info->reloc_ctl; 1526 struct btrfs_block_rsv *rsv; 1527 int clear_rsv = 0; 1528 int ret; 1529 1530 if (!rc || !rc->create_reloc_tree || 1531 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1532 return 0; 1533 1534 /* 1535 * The subvolume has reloc tree but the swap is finished, no need to 1536 * create/update the dead reloc tree 1537 */ 1538 if (reloc_root_is_dead(root)) 1539 return 0; 1540 1541 if (root->reloc_root) { 1542 reloc_root = root->reloc_root; 1543 reloc_root->last_trans = trans->transid; 1544 return 0; 1545 } 1546 1547 if (!trans->reloc_reserved) { 1548 rsv = trans->block_rsv; 1549 trans->block_rsv = rc->block_rsv; 1550 clear_rsv = 1; 1551 } 1552 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1553 if (clear_rsv) 1554 trans->block_rsv = rsv; 1555 1556 ret = __add_reloc_root(reloc_root); 1557 BUG_ON(ret < 0); 1558 root->reloc_root = btrfs_grab_root(reloc_root); 1559 return 0; 1560 } 1561 1562 /* 1563 * update root item of reloc tree 1564 */ 1565 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1566 struct btrfs_root *root) 1567 { 1568 struct btrfs_fs_info *fs_info = root->fs_info; 1569 struct btrfs_root *reloc_root; 1570 struct btrfs_root_item *root_item; 1571 int ret; 1572 1573 if (!have_reloc_root(root)) 1574 goto out; 1575 1576 reloc_root = root->reloc_root; 1577 root_item = &reloc_root->root_item; 1578 1579 /* 1580 * We are probably ok here, but __del_reloc_root() will drop its ref of 1581 * the root. We have the ref for root->reloc_root, but just in case 1582 * hold it while we update the reloc root. 1583 */ 1584 btrfs_grab_root(reloc_root); 1585 1586 /* root->reloc_root will stay until current relocation finished */ 1587 if (fs_info->reloc_ctl->merge_reloc_tree && 1588 btrfs_root_refs(root_item) == 0) { 1589 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 1590 /* 1591 * Mark the tree as dead before we change reloc_root so 1592 * have_reloc_root will not touch it from now on. 1593 */ 1594 smp_wmb(); 1595 __del_reloc_root(reloc_root); 1596 } 1597 1598 if (reloc_root->commit_root != reloc_root->node) { 1599 __update_reloc_root(reloc_root); 1600 btrfs_set_root_node(root_item, reloc_root->node); 1601 free_extent_buffer(reloc_root->commit_root); 1602 reloc_root->commit_root = btrfs_root_node(reloc_root); 1603 } 1604 1605 ret = btrfs_update_root(trans, fs_info->tree_root, 1606 &reloc_root->root_key, root_item); 1607 BUG_ON(ret); 1608 btrfs_put_root(reloc_root); 1609 out: 1610 return 0; 1611 } 1612 1613 /* 1614 * helper to find first cached inode with inode number >= objectid 1615 * in a subvolume 1616 */ 1617 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1618 { 1619 struct rb_node *node; 1620 struct rb_node *prev; 1621 struct btrfs_inode *entry; 1622 struct inode *inode; 1623 1624 spin_lock(&root->inode_lock); 1625 again: 1626 node = root->inode_tree.rb_node; 1627 prev = NULL; 1628 while (node) { 1629 prev = node; 1630 entry = rb_entry(node, struct btrfs_inode, rb_node); 1631 1632 if (objectid < btrfs_ino(entry)) 1633 node = node->rb_left; 1634 else if (objectid > btrfs_ino(entry)) 1635 node = node->rb_right; 1636 else 1637 break; 1638 } 1639 if (!node) { 1640 while (prev) { 1641 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1642 if (objectid <= btrfs_ino(entry)) { 1643 node = prev; 1644 break; 1645 } 1646 prev = rb_next(prev); 1647 } 1648 } 1649 while (node) { 1650 entry = rb_entry(node, struct btrfs_inode, rb_node); 1651 inode = igrab(&entry->vfs_inode); 1652 if (inode) { 1653 spin_unlock(&root->inode_lock); 1654 return inode; 1655 } 1656 1657 objectid = btrfs_ino(entry) + 1; 1658 if (cond_resched_lock(&root->inode_lock)) 1659 goto again; 1660 1661 node = rb_next(node); 1662 } 1663 spin_unlock(&root->inode_lock); 1664 return NULL; 1665 } 1666 1667 static int in_block_group(u64 bytenr, struct btrfs_block_group *block_group) 1668 { 1669 if (bytenr >= block_group->start && 1670 bytenr < block_group->start + block_group->length) 1671 return 1; 1672 return 0; 1673 } 1674 1675 /* 1676 * get new location of data 1677 */ 1678 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1679 u64 bytenr, u64 num_bytes) 1680 { 1681 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1682 struct btrfs_path *path; 1683 struct btrfs_file_extent_item *fi; 1684 struct extent_buffer *leaf; 1685 int ret; 1686 1687 path = btrfs_alloc_path(); 1688 if (!path) 1689 return -ENOMEM; 1690 1691 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1692 ret = btrfs_lookup_file_extent(NULL, root, path, 1693 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0); 1694 if (ret < 0) 1695 goto out; 1696 if (ret > 0) { 1697 ret = -ENOENT; 1698 goto out; 1699 } 1700 1701 leaf = path->nodes[0]; 1702 fi = btrfs_item_ptr(leaf, path->slots[0], 1703 struct btrfs_file_extent_item); 1704 1705 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1706 btrfs_file_extent_compression(leaf, fi) || 1707 btrfs_file_extent_encryption(leaf, fi) || 1708 btrfs_file_extent_other_encoding(leaf, fi)); 1709 1710 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1711 ret = -EINVAL; 1712 goto out; 1713 } 1714 1715 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1716 ret = 0; 1717 out: 1718 btrfs_free_path(path); 1719 return ret; 1720 } 1721 1722 /* 1723 * update file extent items in the tree leaf to point to 1724 * the new locations. 1725 */ 1726 static noinline_for_stack 1727 int replace_file_extents(struct btrfs_trans_handle *trans, 1728 struct reloc_control *rc, 1729 struct btrfs_root *root, 1730 struct extent_buffer *leaf) 1731 { 1732 struct btrfs_fs_info *fs_info = root->fs_info; 1733 struct btrfs_key key; 1734 struct btrfs_file_extent_item *fi; 1735 struct inode *inode = NULL; 1736 u64 parent; 1737 u64 bytenr; 1738 u64 new_bytenr = 0; 1739 u64 num_bytes; 1740 u64 end; 1741 u32 nritems; 1742 u32 i; 1743 int ret = 0; 1744 int first = 1; 1745 int dirty = 0; 1746 1747 if (rc->stage != UPDATE_DATA_PTRS) 1748 return 0; 1749 1750 /* reloc trees always use full backref */ 1751 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1752 parent = leaf->start; 1753 else 1754 parent = 0; 1755 1756 nritems = btrfs_header_nritems(leaf); 1757 for (i = 0; i < nritems; i++) { 1758 struct btrfs_ref ref = { 0 }; 1759 1760 cond_resched(); 1761 btrfs_item_key_to_cpu(leaf, &key, i); 1762 if (key.type != BTRFS_EXTENT_DATA_KEY) 1763 continue; 1764 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1765 if (btrfs_file_extent_type(leaf, fi) == 1766 BTRFS_FILE_EXTENT_INLINE) 1767 continue; 1768 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1769 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1770 if (bytenr == 0) 1771 continue; 1772 if (!in_block_group(bytenr, rc->block_group)) 1773 continue; 1774 1775 /* 1776 * if we are modifying block in fs tree, wait for readpage 1777 * to complete and drop the extent cache 1778 */ 1779 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1780 if (first) { 1781 inode = find_next_inode(root, key.objectid); 1782 first = 0; 1783 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) { 1784 btrfs_add_delayed_iput(inode); 1785 inode = find_next_inode(root, key.objectid); 1786 } 1787 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) { 1788 end = key.offset + 1789 btrfs_file_extent_num_bytes(leaf, fi); 1790 WARN_ON(!IS_ALIGNED(key.offset, 1791 fs_info->sectorsize)); 1792 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 1793 end--; 1794 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1795 key.offset, end); 1796 if (!ret) 1797 continue; 1798 1799 btrfs_drop_extent_cache(BTRFS_I(inode), 1800 key.offset, end, 1); 1801 unlock_extent(&BTRFS_I(inode)->io_tree, 1802 key.offset, end); 1803 } 1804 } 1805 1806 ret = get_new_location(rc->data_inode, &new_bytenr, 1807 bytenr, num_bytes); 1808 if (ret) { 1809 /* 1810 * Don't have to abort since we've not changed anything 1811 * in the file extent yet. 1812 */ 1813 break; 1814 } 1815 1816 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1817 dirty = 1; 1818 1819 key.offset -= btrfs_file_extent_offset(leaf, fi); 1820 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 1821 num_bytes, parent); 1822 ref.real_root = root->root_key.objectid; 1823 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1824 key.objectid, key.offset); 1825 ret = btrfs_inc_extent_ref(trans, &ref); 1826 if (ret) { 1827 btrfs_abort_transaction(trans, ret); 1828 break; 1829 } 1830 1831 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr, 1832 num_bytes, parent); 1833 ref.real_root = root->root_key.objectid; 1834 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf), 1835 key.objectid, key.offset); 1836 ret = btrfs_free_extent(trans, &ref); 1837 if (ret) { 1838 btrfs_abort_transaction(trans, ret); 1839 break; 1840 } 1841 } 1842 if (dirty) 1843 btrfs_mark_buffer_dirty(leaf); 1844 if (inode) 1845 btrfs_add_delayed_iput(inode); 1846 return ret; 1847 } 1848 1849 static noinline_for_stack 1850 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1851 struct btrfs_path *path, int level) 1852 { 1853 struct btrfs_disk_key key1; 1854 struct btrfs_disk_key key2; 1855 btrfs_node_key(eb, &key1, slot); 1856 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1857 return memcmp(&key1, &key2, sizeof(key1)); 1858 } 1859 1860 /* 1861 * try to replace tree blocks in fs tree with the new blocks 1862 * in reloc tree. tree blocks haven't been modified since the 1863 * reloc tree was create can be replaced. 1864 * 1865 * if a block was replaced, level of the block + 1 is returned. 1866 * if no block got replaced, 0 is returned. if there are other 1867 * errors, a negative error number is returned. 1868 */ 1869 static noinline_for_stack 1870 int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc, 1871 struct btrfs_root *dest, struct btrfs_root *src, 1872 struct btrfs_path *path, struct btrfs_key *next_key, 1873 int lowest_level, int max_level) 1874 { 1875 struct btrfs_fs_info *fs_info = dest->fs_info; 1876 struct extent_buffer *eb; 1877 struct extent_buffer *parent; 1878 struct btrfs_ref ref = { 0 }; 1879 struct btrfs_key key; 1880 u64 old_bytenr; 1881 u64 new_bytenr; 1882 u64 old_ptr_gen; 1883 u64 new_ptr_gen; 1884 u64 last_snapshot; 1885 u32 blocksize; 1886 int cow = 0; 1887 int level; 1888 int ret; 1889 int slot; 1890 1891 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1892 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1893 1894 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1895 again: 1896 slot = path->slots[lowest_level]; 1897 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1898 1899 eb = btrfs_lock_root_node(dest); 1900 btrfs_set_lock_blocking_write(eb); 1901 level = btrfs_header_level(eb); 1902 1903 if (level < lowest_level) { 1904 btrfs_tree_unlock(eb); 1905 free_extent_buffer(eb); 1906 return 0; 1907 } 1908 1909 if (cow) { 1910 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1911 BUG_ON(ret); 1912 } 1913 btrfs_set_lock_blocking_write(eb); 1914 1915 if (next_key) { 1916 next_key->objectid = (u64)-1; 1917 next_key->type = (u8)-1; 1918 next_key->offset = (u64)-1; 1919 } 1920 1921 parent = eb; 1922 while (1) { 1923 struct btrfs_key first_key; 1924 1925 level = btrfs_header_level(parent); 1926 BUG_ON(level < lowest_level); 1927 1928 ret = btrfs_bin_search(parent, &key, level, &slot); 1929 if (ret < 0) 1930 break; 1931 if (ret && slot > 0) 1932 slot--; 1933 1934 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1935 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1936 1937 old_bytenr = btrfs_node_blockptr(parent, slot); 1938 blocksize = fs_info->nodesize; 1939 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1940 btrfs_node_key_to_cpu(parent, &first_key, slot); 1941 1942 if (level <= max_level) { 1943 eb = path->nodes[level]; 1944 new_bytenr = btrfs_node_blockptr(eb, 1945 path->slots[level]); 1946 new_ptr_gen = btrfs_node_ptr_generation(eb, 1947 path->slots[level]); 1948 } else { 1949 new_bytenr = 0; 1950 new_ptr_gen = 0; 1951 } 1952 1953 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) { 1954 ret = level; 1955 break; 1956 } 1957 1958 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1959 memcmp_node_keys(parent, slot, path, level)) { 1960 if (level <= lowest_level) { 1961 ret = 0; 1962 break; 1963 } 1964 1965 eb = read_tree_block(fs_info, old_bytenr, old_ptr_gen, 1966 level - 1, &first_key); 1967 if (IS_ERR(eb)) { 1968 ret = PTR_ERR(eb); 1969 break; 1970 } else if (!extent_buffer_uptodate(eb)) { 1971 ret = -EIO; 1972 free_extent_buffer(eb); 1973 break; 1974 } 1975 btrfs_tree_lock(eb); 1976 if (cow) { 1977 ret = btrfs_cow_block(trans, dest, eb, parent, 1978 slot, &eb); 1979 BUG_ON(ret); 1980 } 1981 btrfs_set_lock_blocking_write(eb); 1982 1983 btrfs_tree_unlock(parent); 1984 free_extent_buffer(parent); 1985 1986 parent = eb; 1987 continue; 1988 } 1989 1990 if (!cow) { 1991 btrfs_tree_unlock(parent); 1992 free_extent_buffer(parent); 1993 cow = 1; 1994 goto again; 1995 } 1996 1997 btrfs_node_key_to_cpu(path->nodes[level], &key, 1998 path->slots[level]); 1999 btrfs_release_path(path); 2000 2001 path->lowest_level = level; 2002 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 2003 path->lowest_level = 0; 2004 BUG_ON(ret); 2005 2006 /* 2007 * Info qgroup to trace both subtrees. 2008 * 2009 * We must trace both trees. 2010 * 1) Tree reloc subtree 2011 * If not traced, we will leak data numbers 2012 * 2) Fs subtree 2013 * If not traced, we will double count old data 2014 * 2015 * We don't scan the subtree right now, but only record 2016 * the swapped tree blocks. 2017 * The real subtree rescan is delayed until we have new 2018 * CoW on the subtree root node before transaction commit. 2019 */ 2020 ret = btrfs_qgroup_add_swapped_blocks(trans, dest, 2021 rc->block_group, parent, slot, 2022 path->nodes[level], path->slots[level], 2023 last_snapshot); 2024 if (ret < 0) 2025 break; 2026 /* 2027 * swap blocks in fs tree and reloc tree. 2028 */ 2029 btrfs_set_node_blockptr(parent, slot, new_bytenr); 2030 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 2031 btrfs_mark_buffer_dirty(parent); 2032 2033 btrfs_set_node_blockptr(path->nodes[level], 2034 path->slots[level], old_bytenr); 2035 btrfs_set_node_ptr_generation(path->nodes[level], 2036 path->slots[level], old_ptr_gen); 2037 btrfs_mark_buffer_dirty(path->nodes[level]); 2038 2039 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr, 2040 blocksize, path->nodes[level]->start); 2041 ref.skip_qgroup = true; 2042 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 2043 ret = btrfs_inc_extent_ref(trans, &ref); 2044 BUG_ON(ret); 2045 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr, 2046 blocksize, 0); 2047 ref.skip_qgroup = true; 2048 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 2049 ret = btrfs_inc_extent_ref(trans, &ref); 2050 BUG_ON(ret); 2051 2052 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr, 2053 blocksize, path->nodes[level]->start); 2054 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid); 2055 ref.skip_qgroup = true; 2056 ret = btrfs_free_extent(trans, &ref); 2057 BUG_ON(ret); 2058 2059 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr, 2060 blocksize, 0); 2061 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid); 2062 ref.skip_qgroup = true; 2063 ret = btrfs_free_extent(trans, &ref); 2064 BUG_ON(ret); 2065 2066 btrfs_unlock_up_safe(path, 0); 2067 2068 ret = level; 2069 break; 2070 } 2071 btrfs_tree_unlock(parent); 2072 free_extent_buffer(parent); 2073 return ret; 2074 } 2075 2076 /* 2077 * helper to find next relocated block in reloc tree 2078 */ 2079 static noinline_for_stack 2080 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2081 int *level) 2082 { 2083 struct extent_buffer *eb; 2084 int i; 2085 u64 last_snapshot; 2086 u32 nritems; 2087 2088 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2089 2090 for (i = 0; i < *level; i++) { 2091 free_extent_buffer(path->nodes[i]); 2092 path->nodes[i] = NULL; 2093 } 2094 2095 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 2096 eb = path->nodes[i]; 2097 nritems = btrfs_header_nritems(eb); 2098 while (path->slots[i] + 1 < nritems) { 2099 path->slots[i]++; 2100 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 2101 last_snapshot) 2102 continue; 2103 2104 *level = i; 2105 return 0; 2106 } 2107 free_extent_buffer(path->nodes[i]); 2108 path->nodes[i] = NULL; 2109 } 2110 return 1; 2111 } 2112 2113 /* 2114 * walk down reloc tree to find relocated block of lowest level 2115 */ 2116 static noinline_for_stack 2117 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 2118 int *level) 2119 { 2120 struct btrfs_fs_info *fs_info = root->fs_info; 2121 struct extent_buffer *eb = NULL; 2122 int i; 2123 u64 bytenr; 2124 u64 ptr_gen = 0; 2125 u64 last_snapshot; 2126 u32 nritems; 2127 2128 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 2129 2130 for (i = *level; i > 0; i--) { 2131 struct btrfs_key first_key; 2132 2133 eb = path->nodes[i]; 2134 nritems = btrfs_header_nritems(eb); 2135 while (path->slots[i] < nritems) { 2136 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 2137 if (ptr_gen > last_snapshot) 2138 break; 2139 path->slots[i]++; 2140 } 2141 if (path->slots[i] >= nritems) { 2142 if (i == *level) 2143 break; 2144 *level = i + 1; 2145 return 0; 2146 } 2147 if (i == 1) { 2148 *level = i; 2149 return 0; 2150 } 2151 2152 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 2153 btrfs_node_key_to_cpu(eb, &first_key, path->slots[i]); 2154 eb = read_tree_block(fs_info, bytenr, ptr_gen, i - 1, 2155 &first_key); 2156 if (IS_ERR(eb)) { 2157 return PTR_ERR(eb); 2158 } else if (!extent_buffer_uptodate(eb)) { 2159 free_extent_buffer(eb); 2160 return -EIO; 2161 } 2162 BUG_ON(btrfs_header_level(eb) != i - 1); 2163 path->nodes[i - 1] = eb; 2164 path->slots[i - 1] = 0; 2165 } 2166 return 1; 2167 } 2168 2169 /* 2170 * invalidate extent cache for file extents whose key in range of 2171 * [min_key, max_key) 2172 */ 2173 static int invalidate_extent_cache(struct btrfs_root *root, 2174 struct btrfs_key *min_key, 2175 struct btrfs_key *max_key) 2176 { 2177 struct btrfs_fs_info *fs_info = root->fs_info; 2178 struct inode *inode = NULL; 2179 u64 objectid; 2180 u64 start, end; 2181 u64 ino; 2182 2183 objectid = min_key->objectid; 2184 while (1) { 2185 cond_resched(); 2186 iput(inode); 2187 2188 if (objectid > max_key->objectid) 2189 break; 2190 2191 inode = find_next_inode(root, objectid); 2192 if (!inode) 2193 break; 2194 ino = btrfs_ino(BTRFS_I(inode)); 2195 2196 if (ino > max_key->objectid) { 2197 iput(inode); 2198 break; 2199 } 2200 2201 objectid = ino + 1; 2202 if (!S_ISREG(inode->i_mode)) 2203 continue; 2204 2205 if (unlikely(min_key->objectid == ino)) { 2206 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 2207 continue; 2208 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 2209 start = 0; 2210 else { 2211 start = min_key->offset; 2212 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize)); 2213 } 2214 } else { 2215 start = 0; 2216 } 2217 2218 if (unlikely(max_key->objectid == ino)) { 2219 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2220 continue; 2221 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2222 end = (u64)-1; 2223 } else { 2224 if (max_key->offset == 0) 2225 continue; 2226 end = max_key->offset; 2227 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize)); 2228 end--; 2229 } 2230 } else { 2231 end = (u64)-1; 2232 } 2233 2234 /* the lock_extent waits for readpage to complete */ 2235 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2236 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 1); 2237 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2238 } 2239 return 0; 2240 } 2241 2242 static int find_next_key(struct btrfs_path *path, int level, 2243 struct btrfs_key *key) 2244 2245 { 2246 while (level < BTRFS_MAX_LEVEL) { 2247 if (!path->nodes[level]) 2248 break; 2249 if (path->slots[level] + 1 < 2250 btrfs_header_nritems(path->nodes[level])) { 2251 btrfs_node_key_to_cpu(path->nodes[level], key, 2252 path->slots[level] + 1); 2253 return 0; 2254 } 2255 level++; 2256 } 2257 return 1; 2258 } 2259 2260 /* 2261 * Insert current subvolume into reloc_control::dirty_subvol_roots 2262 */ 2263 static void insert_dirty_subvol(struct btrfs_trans_handle *trans, 2264 struct reloc_control *rc, 2265 struct btrfs_root *root) 2266 { 2267 struct btrfs_root *reloc_root = root->reloc_root; 2268 struct btrfs_root_item *reloc_root_item; 2269 2270 /* @root must be a subvolume tree root with a valid reloc tree */ 2271 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 2272 ASSERT(reloc_root); 2273 2274 reloc_root_item = &reloc_root->root_item; 2275 memset(&reloc_root_item->drop_progress, 0, 2276 sizeof(reloc_root_item->drop_progress)); 2277 reloc_root_item->drop_level = 0; 2278 btrfs_set_root_refs(reloc_root_item, 0); 2279 btrfs_update_reloc_root(trans, root); 2280 2281 if (list_empty(&root->reloc_dirty_list)) { 2282 btrfs_grab_root(root); 2283 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots); 2284 } 2285 } 2286 2287 static int clean_dirty_subvols(struct reloc_control *rc) 2288 { 2289 struct btrfs_root *root; 2290 struct btrfs_root *next; 2291 int ret = 0; 2292 int ret2; 2293 2294 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots, 2295 reloc_dirty_list) { 2296 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 2297 /* Merged subvolume, cleanup its reloc root */ 2298 struct btrfs_root *reloc_root = root->reloc_root; 2299 2300 list_del_init(&root->reloc_dirty_list); 2301 root->reloc_root = NULL; 2302 /* 2303 * Need barrier to ensure clear_bit() only happens after 2304 * root->reloc_root = NULL. Pairs with have_reloc_root. 2305 */ 2306 smp_wmb(); 2307 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state); 2308 if (reloc_root) { 2309 /* 2310 * btrfs_drop_snapshot drops our ref we hold for 2311 * ->reloc_root. If it fails however we must 2312 * drop the ref ourselves. 2313 */ 2314 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1); 2315 if (ret2 < 0) { 2316 btrfs_put_root(reloc_root); 2317 if (!ret) 2318 ret = ret2; 2319 } 2320 } 2321 btrfs_put_root(root); 2322 } else { 2323 /* Orphan reloc tree, just clean it up */ 2324 ret2 = btrfs_drop_snapshot(root, 0, 1); 2325 if (ret2 < 0) { 2326 btrfs_put_root(root); 2327 if (!ret) 2328 ret = ret2; 2329 } 2330 } 2331 } 2332 return ret; 2333 } 2334 2335 /* 2336 * merge the relocated tree blocks in reloc tree with corresponding 2337 * fs tree. 2338 */ 2339 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2340 struct btrfs_root *root) 2341 { 2342 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2343 struct btrfs_key key; 2344 struct btrfs_key next_key; 2345 struct btrfs_trans_handle *trans = NULL; 2346 struct btrfs_root *reloc_root; 2347 struct btrfs_root_item *root_item; 2348 struct btrfs_path *path; 2349 struct extent_buffer *leaf; 2350 int level; 2351 int max_level; 2352 int replaced = 0; 2353 int ret; 2354 int err = 0; 2355 u32 min_reserved; 2356 2357 path = btrfs_alloc_path(); 2358 if (!path) 2359 return -ENOMEM; 2360 path->reada = READA_FORWARD; 2361 2362 reloc_root = root->reloc_root; 2363 root_item = &reloc_root->root_item; 2364 2365 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2366 level = btrfs_root_level(root_item); 2367 atomic_inc(&reloc_root->node->refs); 2368 path->nodes[level] = reloc_root->node; 2369 path->slots[level] = 0; 2370 } else { 2371 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2372 2373 level = root_item->drop_level; 2374 BUG_ON(level == 0); 2375 path->lowest_level = level; 2376 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2377 path->lowest_level = 0; 2378 if (ret < 0) { 2379 btrfs_free_path(path); 2380 return ret; 2381 } 2382 2383 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2384 path->slots[level]); 2385 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2386 2387 btrfs_unlock_up_safe(path, 0); 2388 } 2389 2390 min_reserved = fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2391 memset(&next_key, 0, sizeof(next_key)); 2392 2393 while (1) { 2394 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2395 BTRFS_RESERVE_FLUSH_ALL); 2396 if (ret) { 2397 err = ret; 2398 goto out; 2399 } 2400 trans = btrfs_start_transaction(root, 0); 2401 if (IS_ERR(trans)) { 2402 err = PTR_ERR(trans); 2403 trans = NULL; 2404 goto out; 2405 } 2406 2407 /* 2408 * At this point we no longer have a reloc_control, so we can't 2409 * depend on btrfs_init_reloc_root to update our last_trans. 2410 * 2411 * But that's ok, we started the trans handle on our 2412 * corresponding fs_root, which means it's been added to the 2413 * dirty list. At commit time we'll still call 2414 * btrfs_update_reloc_root() and update our root item 2415 * appropriately. 2416 */ 2417 reloc_root->last_trans = trans->transid; 2418 trans->block_rsv = rc->block_rsv; 2419 2420 replaced = 0; 2421 max_level = level; 2422 2423 ret = walk_down_reloc_tree(reloc_root, path, &level); 2424 if (ret < 0) { 2425 err = ret; 2426 goto out; 2427 } 2428 if (ret > 0) 2429 break; 2430 2431 if (!find_next_key(path, level, &key) && 2432 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2433 ret = 0; 2434 } else { 2435 ret = replace_path(trans, rc, root, reloc_root, path, 2436 &next_key, level, max_level); 2437 } 2438 if (ret < 0) { 2439 err = ret; 2440 goto out; 2441 } 2442 2443 if (ret > 0) { 2444 level = ret; 2445 btrfs_node_key_to_cpu(path->nodes[level], &key, 2446 path->slots[level]); 2447 replaced = 1; 2448 } 2449 2450 ret = walk_up_reloc_tree(reloc_root, path, &level); 2451 if (ret > 0) 2452 break; 2453 2454 BUG_ON(level == 0); 2455 /* 2456 * save the merging progress in the drop_progress. 2457 * this is OK since root refs == 1 in this case. 2458 */ 2459 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2460 path->slots[level]); 2461 root_item->drop_level = level; 2462 2463 btrfs_end_transaction_throttle(trans); 2464 trans = NULL; 2465 2466 btrfs_btree_balance_dirty(fs_info); 2467 2468 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2469 invalidate_extent_cache(root, &key, &next_key); 2470 } 2471 2472 /* 2473 * handle the case only one block in the fs tree need to be 2474 * relocated and the block is tree root. 2475 */ 2476 leaf = btrfs_lock_root_node(root); 2477 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2478 btrfs_tree_unlock(leaf); 2479 free_extent_buffer(leaf); 2480 if (ret < 0) 2481 err = ret; 2482 out: 2483 btrfs_free_path(path); 2484 2485 if (err == 0) 2486 insert_dirty_subvol(trans, rc, root); 2487 2488 if (trans) 2489 btrfs_end_transaction_throttle(trans); 2490 2491 btrfs_btree_balance_dirty(fs_info); 2492 2493 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2494 invalidate_extent_cache(root, &key, &next_key); 2495 2496 return err; 2497 } 2498 2499 static noinline_for_stack 2500 int prepare_to_merge(struct reloc_control *rc, int err) 2501 { 2502 struct btrfs_root *root = rc->extent_root; 2503 struct btrfs_fs_info *fs_info = root->fs_info; 2504 struct btrfs_root *reloc_root; 2505 struct btrfs_trans_handle *trans; 2506 LIST_HEAD(reloc_roots); 2507 u64 num_bytes = 0; 2508 int ret; 2509 2510 mutex_lock(&fs_info->reloc_mutex); 2511 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2512 rc->merging_rsv_size += rc->nodes_relocated * 2; 2513 mutex_unlock(&fs_info->reloc_mutex); 2514 2515 again: 2516 if (!err) { 2517 num_bytes = rc->merging_rsv_size; 2518 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2519 BTRFS_RESERVE_FLUSH_ALL); 2520 if (ret) 2521 err = ret; 2522 } 2523 2524 trans = btrfs_join_transaction(rc->extent_root); 2525 if (IS_ERR(trans)) { 2526 if (!err) 2527 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2528 num_bytes, NULL); 2529 return PTR_ERR(trans); 2530 } 2531 2532 if (!err) { 2533 if (num_bytes != rc->merging_rsv_size) { 2534 btrfs_end_transaction(trans); 2535 btrfs_block_rsv_release(fs_info, rc->block_rsv, 2536 num_bytes, NULL); 2537 goto again; 2538 } 2539 } 2540 2541 rc->merge_reloc_tree = 1; 2542 2543 while (!list_empty(&rc->reloc_roots)) { 2544 reloc_root = list_entry(rc->reloc_roots.next, 2545 struct btrfs_root, root_list); 2546 list_del_init(&reloc_root->root_list); 2547 2548 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2549 BUG_ON(IS_ERR(root)); 2550 BUG_ON(root->reloc_root != reloc_root); 2551 2552 /* 2553 * set reference count to 1, so btrfs_recover_relocation 2554 * knows it should resumes merging 2555 */ 2556 if (!err) 2557 btrfs_set_root_refs(&reloc_root->root_item, 1); 2558 btrfs_update_reloc_root(trans, root); 2559 2560 list_add(&reloc_root->root_list, &reloc_roots); 2561 btrfs_put_root(root); 2562 } 2563 2564 list_splice(&reloc_roots, &rc->reloc_roots); 2565 2566 if (!err) 2567 btrfs_commit_transaction(trans); 2568 else 2569 btrfs_end_transaction(trans); 2570 return err; 2571 } 2572 2573 static noinline_for_stack 2574 void free_reloc_roots(struct list_head *list) 2575 { 2576 struct btrfs_root *reloc_root; 2577 2578 while (!list_empty(list)) { 2579 reloc_root = list_entry(list->next, struct btrfs_root, 2580 root_list); 2581 __del_reloc_root(reloc_root); 2582 } 2583 } 2584 2585 static noinline_for_stack 2586 void merge_reloc_roots(struct reloc_control *rc) 2587 { 2588 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2589 struct btrfs_root *root; 2590 struct btrfs_root *reloc_root; 2591 LIST_HEAD(reloc_roots); 2592 int found = 0; 2593 int ret = 0; 2594 again: 2595 root = rc->extent_root; 2596 2597 /* 2598 * this serializes us with btrfs_record_root_in_transaction, 2599 * we have to make sure nobody is in the middle of 2600 * adding their roots to the list while we are 2601 * doing this splice 2602 */ 2603 mutex_lock(&fs_info->reloc_mutex); 2604 list_splice_init(&rc->reloc_roots, &reloc_roots); 2605 mutex_unlock(&fs_info->reloc_mutex); 2606 2607 while (!list_empty(&reloc_roots)) { 2608 found = 1; 2609 reloc_root = list_entry(reloc_roots.next, 2610 struct btrfs_root, root_list); 2611 2612 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2613 root = read_fs_root(fs_info, 2614 reloc_root->root_key.offset); 2615 BUG_ON(IS_ERR(root)); 2616 BUG_ON(root->reloc_root != reloc_root); 2617 2618 ret = merge_reloc_root(rc, root); 2619 btrfs_put_root(root); 2620 if (ret) { 2621 if (list_empty(&reloc_root->root_list)) 2622 list_add_tail(&reloc_root->root_list, 2623 &reloc_roots); 2624 goto out; 2625 } 2626 } else { 2627 list_del_init(&reloc_root->root_list); 2628 /* Don't forget to queue this reloc root for cleanup */ 2629 list_add_tail(&reloc_root->reloc_dirty_list, 2630 &rc->dirty_subvol_roots); 2631 } 2632 } 2633 2634 if (found) { 2635 found = 0; 2636 goto again; 2637 } 2638 out: 2639 if (ret) { 2640 btrfs_handle_fs_error(fs_info, ret, NULL); 2641 if (!list_empty(&reloc_roots)) 2642 free_reloc_roots(&reloc_roots); 2643 2644 /* new reloc root may be added */ 2645 mutex_lock(&fs_info->reloc_mutex); 2646 list_splice_init(&rc->reloc_roots, &reloc_roots); 2647 mutex_unlock(&fs_info->reloc_mutex); 2648 if (!list_empty(&reloc_roots)) 2649 free_reloc_roots(&reloc_roots); 2650 } 2651 2652 /* 2653 * We used to have 2654 * 2655 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2656 * 2657 * here, but it's wrong. If we fail to start the transaction in 2658 * prepare_to_merge() we will have only 0 ref reloc roots, none of which 2659 * have actually been removed from the reloc_root_tree rb tree. This is 2660 * fine because we're bailing here, and we hold a reference on the root 2661 * for the list that holds it, so these roots will be cleaned up when we 2662 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root 2663 * will be cleaned up on unmount. 2664 * 2665 * The remaining nodes will be cleaned up by free_reloc_control. 2666 */ 2667 } 2668 2669 static void free_block_list(struct rb_root *blocks) 2670 { 2671 struct tree_block *block; 2672 struct rb_node *rb_node; 2673 while ((rb_node = rb_first(blocks))) { 2674 block = rb_entry(rb_node, struct tree_block, rb_node); 2675 rb_erase(rb_node, blocks); 2676 kfree(block); 2677 } 2678 } 2679 2680 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2681 struct btrfs_root *reloc_root) 2682 { 2683 struct btrfs_fs_info *fs_info = reloc_root->fs_info; 2684 struct btrfs_root *root; 2685 int ret; 2686 2687 if (reloc_root->last_trans == trans->transid) 2688 return 0; 2689 2690 root = read_fs_root(fs_info, reloc_root->root_key.offset); 2691 BUG_ON(IS_ERR(root)); 2692 BUG_ON(root->reloc_root != reloc_root); 2693 ret = btrfs_record_root_in_trans(trans, root); 2694 btrfs_put_root(root); 2695 2696 return ret; 2697 } 2698 2699 static noinline_for_stack 2700 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2701 struct reloc_control *rc, 2702 struct backref_node *node, 2703 struct backref_edge *edges[]) 2704 { 2705 struct backref_node *next; 2706 struct btrfs_root *root; 2707 int index = 0; 2708 2709 next = node; 2710 while (1) { 2711 cond_resched(); 2712 next = walk_up_backref(next, edges, &index); 2713 root = next->root; 2714 BUG_ON(!root); 2715 BUG_ON(!test_bit(BTRFS_ROOT_REF_COWS, &root->state)); 2716 2717 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2718 record_reloc_root_in_trans(trans, root); 2719 break; 2720 } 2721 2722 btrfs_record_root_in_trans(trans, root); 2723 root = root->reloc_root; 2724 2725 if (next->new_bytenr != root->node->start) { 2726 BUG_ON(next->new_bytenr); 2727 BUG_ON(!list_empty(&next->list)); 2728 next->new_bytenr = root->node->start; 2729 btrfs_put_root(next->root); 2730 next->root = btrfs_grab_root(root); 2731 ASSERT(next->root); 2732 list_add_tail(&next->list, 2733 &rc->backref_cache.changed); 2734 __mark_block_processed(rc, next); 2735 break; 2736 } 2737 2738 WARN_ON(1); 2739 root = NULL; 2740 next = walk_down_backref(edges, &index); 2741 if (!next || next->level <= node->level) 2742 break; 2743 } 2744 if (!root) 2745 return NULL; 2746 2747 next = node; 2748 /* setup backref node path for btrfs_reloc_cow_block */ 2749 while (1) { 2750 rc->backref_cache.path[next->level] = next; 2751 if (--index < 0) 2752 break; 2753 next = edges[index]->node[UPPER]; 2754 } 2755 return root; 2756 } 2757 2758 /* 2759 * select a tree root for relocation. return NULL if the block 2760 * is reference counted. we should use do_relocation() in this 2761 * case. return a tree root pointer if the block isn't reference 2762 * counted. return -ENOENT if the block is root of reloc tree. 2763 */ 2764 static noinline_for_stack 2765 struct btrfs_root *select_one_root(struct backref_node *node) 2766 { 2767 struct backref_node *next; 2768 struct btrfs_root *root; 2769 struct btrfs_root *fs_root = NULL; 2770 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2771 int index = 0; 2772 2773 next = node; 2774 while (1) { 2775 cond_resched(); 2776 next = walk_up_backref(next, edges, &index); 2777 root = next->root; 2778 BUG_ON(!root); 2779 2780 /* no other choice for non-references counted tree */ 2781 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 2782 return root; 2783 2784 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2785 fs_root = root; 2786 2787 if (next != node) 2788 return NULL; 2789 2790 next = walk_down_backref(edges, &index); 2791 if (!next || next->level <= node->level) 2792 break; 2793 } 2794 2795 if (!fs_root) 2796 return ERR_PTR(-ENOENT); 2797 return fs_root; 2798 } 2799 2800 static noinline_for_stack 2801 u64 calcu_metadata_size(struct reloc_control *rc, 2802 struct backref_node *node, int reserve) 2803 { 2804 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2805 struct backref_node *next = node; 2806 struct backref_edge *edge; 2807 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2808 u64 num_bytes = 0; 2809 int index = 0; 2810 2811 BUG_ON(reserve && node->processed); 2812 2813 while (next) { 2814 cond_resched(); 2815 while (1) { 2816 if (next->processed && (reserve || next != node)) 2817 break; 2818 2819 num_bytes += fs_info->nodesize; 2820 2821 if (list_empty(&next->upper)) 2822 break; 2823 2824 edge = list_entry(next->upper.next, 2825 struct backref_edge, list[LOWER]); 2826 edges[index++] = edge; 2827 next = edge->node[UPPER]; 2828 } 2829 next = walk_down_backref(edges, &index); 2830 } 2831 return num_bytes; 2832 } 2833 2834 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2835 struct reloc_control *rc, 2836 struct backref_node *node) 2837 { 2838 struct btrfs_root *root = rc->extent_root; 2839 struct btrfs_fs_info *fs_info = root->fs_info; 2840 u64 num_bytes; 2841 int ret; 2842 u64 tmp; 2843 2844 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2845 2846 trans->block_rsv = rc->block_rsv; 2847 rc->reserved_bytes += num_bytes; 2848 2849 /* 2850 * We are under a transaction here so we can only do limited flushing. 2851 * If we get an enospc just kick back -EAGAIN so we know to drop the 2852 * transaction and try to refill when we can flush all the things. 2853 */ 2854 ret = btrfs_block_rsv_refill(root, rc->block_rsv, num_bytes, 2855 BTRFS_RESERVE_FLUSH_LIMIT); 2856 if (ret) { 2857 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES; 2858 while (tmp <= rc->reserved_bytes) 2859 tmp <<= 1; 2860 /* 2861 * only one thread can access block_rsv at this point, 2862 * so we don't need hold lock to protect block_rsv. 2863 * we expand more reservation size here to allow enough 2864 * space for relocation and we will return earlier in 2865 * enospc case. 2866 */ 2867 rc->block_rsv->size = tmp + fs_info->nodesize * 2868 RELOCATION_RESERVED_NODES; 2869 return -EAGAIN; 2870 } 2871 2872 return 0; 2873 } 2874 2875 /* 2876 * relocate a block tree, and then update pointers in upper level 2877 * blocks that reference the block to point to the new location. 2878 * 2879 * if called by link_to_upper, the block has already been relocated. 2880 * in that case this function just updates pointers. 2881 */ 2882 static int do_relocation(struct btrfs_trans_handle *trans, 2883 struct reloc_control *rc, 2884 struct backref_node *node, 2885 struct btrfs_key *key, 2886 struct btrfs_path *path, int lowest) 2887 { 2888 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 2889 struct backref_node *upper; 2890 struct backref_edge *edge; 2891 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2892 struct btrfs_root *root; 2893 struct extent_buffer *eb; 2894 u32 blocksize; 2895 u64 bytenr; 2896 u64 generation; 2897 int slot; 2898 int ret; 2899 int err = 0; 2900 2901 BUG_ON(lowest && node->eb); 2902 2903 path->lowest_level = node->level + 1; 2904 rc->backref_cache.path[node->level] = node; 2905 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2906 struct btrfs_key first_key; 2907 struct btrfs_ref ref = { 0 }; 2908 2909 cond_resched(); 2910 2911 upper = edge->node[UPPER]; 2912 root = select_reloc_root(trans, rc, upper, edges); 2913 BUG_ON(!root); 2914 2915 if (upper->eb && !upper->locked) { 2916 if (!lowest) { 2917 ret = btrfs_bin_search(upper->eb, key, 2918 upper->level, &slot); 2919 if (ret < 0) { 2920 err = ret; 2921 goto next; 2922 } 2923 BUG_ON(ret); 2924 bytenr = btrfs_node_blockptr(upper->eb, slot); 2925 if (node->eb->start == bytenr) 2926 goto next; 2927 } 2928 drop_node_buffer(upper); 2929 } 2930 2931 if (!upper->eb) { 2932 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2933 if (ret) { 2934 if (ret < 0) 2935 err = ret; 2936 else 2937 err = -ENOENT; 2938 2939 btrfs_release_path(path); 2940 break; 2941 } 2942 2943 if (!upper->eb) { 2944 upper->eb = path->nodes[upper->level]; 2945 path->nodes[upper->level] = NULL; 2946 } else { 2947 BUG_ON(upper->eb != path->nodes[upper->level]); 2948 } 2949 2950 upper->locked = 1; 2951 path->locks[upper->level] = 0; 2952 2953 slot = path->slots[upper->level]; 2954 btrfs_release_path(path); 2955 } else { 2956 ret = btrfs_bin_search(upper->eb, key, upper->level, 2957 &slot); 2958 if (ret < 0) { 2959 err = ret; 2960 goto next; 2961 } 2962 BUG_ON(ret); 2963 } 2964 2965 bytenr = btrfs_node_blockptr(upper->eb, slot); 2966 if (lowest) { 2967 if (bytenr != node->bytenr) { 2968 btrfs_err(root->fs_info, 2969 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu", 2970 bytenr, node->bytenr, slot, 2971 upper->eb->start); 2972 err = -EIO; 2973 goto next; 2974 } 2975 } else { 2976 if (node->eb->start == bytenr) 2977 goto next; 2978 } 2979 2980 blocksize = root->fs_info->nodesize; 2981 generation = btrfs_node_ptr_generation(upper->eb, slot); 2982 btrfs_node_key_to_cpu(upper->eb, &first_key, slot); 2983 eb = read_tree_block(fs_info, bytenr, generation, 2984 upper->level - 1, &first_key); 2985 if (IS_ERR(eb)) { 2986 err = PTR_ERR(eb); 2987 goto next; 2988 } else if (!extent_buffer_uptodate(eb)) { 2989 free_extent_buffer(eb); 2990 err = -EIO; 2991 goto next; 2992 } 2993 btrfs_tree_lock(eb); 2994 btrfs_set_lock_blocking_write(eb); 2995 2996 if (!node->eb) { 2997 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2998 slot, &eb); 2999 btrfs_tree_unlock(eb); 3000 free_extent_buffer(eb); 3001 if (ret < 0) { 3002 err = ret; 3003 goto next; 3004 } 3005 BUG_ON(node->eb != eb); 3006 } else { 3007 btrfs_set_node_blockptr(upper->eb, slot, 3008 node->eb->start); 3009 btrfs_set_node_ptr_generation(upper->eb, slot, 3010 trans->transid); 3011 btrfs_mark_buffer_dirty(upper->eb); 3012 3013 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, 3014 node->eb->start, blocksize, 3015 upper->eb->start); 3016 ref.real_root = root->root_key.objectid; 3017 btrfs_init_tree_ref(&ref, node->level, 3018 btrfs_header_owner(upper->eb)); 3019 ret = btrfs_inc_extent_ref(trans, &ref); 3020 BUG_ON(ret); 3021 3022 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 3023 BUG_ON(ret); 3024 } 3025 next: 3026 if (!upper->pending) 3027 drop_node_buffer(upper); 3028 else 3029 unlock_node_buffer(upper); 3030 if (err) 3031 break; 3032 } 3033 3034 if (!err && node->pending) { 3035 drop_node_buffer(node); 3036 list_move_tail(&node->list, &rc->backref_cache.changed); 3037 node->pending = 0; 3038 } 3039 3040 path->lowest_level = 0; 3041 BUG_ON(err == -ENOSPC); 3042 return err; 3043 } 3044 3045 static int link_to_upper(struct btrfs_trans_handle *trans, 3046 struct reloc_control *rc, 3047 struct backref_node *node, 3048 struct btrfs_path *path) 3049 { 3050 struct btrfs_key key; 3051 3052 btrfs_node_key_to_cpu(node->eb, &key, 0); 3053 return do_relocation(trans, rc, node, &key, path, 0); 3054 } 3055 3056 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 3057 struct reloc_control *rc, 3058 struct btrfs_path *path, int err) 3059 { 3060 LIST_HEAD(list); 3061 struct backref_cache *cache = &rc->backref_cache; 3062 struct backref_node *node; 3063 int level; 3064 int ret; 3065 3066 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 3067 while (!list_empty(&cache->pending[level])) { 3068 node = list_entry(cache->pending[level].next, 3069 struct backref_node, list); 3070 list_move_tail(&node->list, &list); 3071 BUG_ON(!node->pending); 3072 3073 if (!err) { 3074 ret = link_to_upper(trans, rc, node, path); 3075 if (ret < 0) 3076 err = ret; 3077 } 3078 } 3079 list_splice_init(&list, &cache->pending[level]); 3080 } 3081 return err; 3082 } 3083 3084 static void mark_block_processed(struct reloc_control *rc, 3085 u64 bytenr, u32 blocksize) 3086 { 3087 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 3088 EXTENT_DIRTY); 3089 } 3090 3091 static void __mark_block_processed(struct reloc_control *rc, 3092 struct backref_node *node) 3093 { 3094 u32 blocksize; 3095 if (node->level == 0 || 3096 in_block_group(node->bytenr, rc->block_group)) { 3097 blocksize = rc->extent_root->fs_info->nodesize; 3098 mark_block_processed(rc, node->bytenr, blocksize); 3099 } 3100 node->processed = 1; 3101 } 3102 3103 /* 3104 * mark a block and all blocks directly/indirectly reference the block 3105 * as processed. 3106 */ 3107 static void update_processed_blocks(struct reloc_control *rc, 3108 struct backref_node *node) 3109 { 3110 struct backref_node *next = node; 3111 struct backref_edge *edge; 3112 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 3113 int index = 0; 3114 3115 while (next) { 3116 cond_resched(); 3117 while (1) { 3118 if (next->processed) 3119 break; 3120 3121 __mark_block_processed(rc, next); 3122 3123 if (list_empty(&next->upper)) 3124 break; 3125 3126 edge = list_entry(next->upper.next, 3127 struct backref_edge, list[LOWER]); 3128 edges[index++] = edge; 3129 next = edge->node[UPPER]; 3130 } 3131 next = walk_down_backref(edges, &index); 3132 } 3133 } 3134 3135 static int tree_block_processed(u64 bytenr, struct reloc_control *rc) 3136 { 3137 u32 blocksize = rc->extent_root->fs_info->nodesize; 3138 3139 if (test_range_bit(&rc->processed_blocks, bytenr, 3140 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 3141 return 1; 3142 return 0; 3143 } 3144 3145 static int get_tree_block_key(struct btrfs_fs_info *fs_info, 3146 struct tree_block *block) 3147 { 3148 struct extent_buffer *eb; 3149 3150 eb = read_tree_block(fs_info, block->bytenr, block->key.offset, 3151 block->level, NULL); 3152 if (IS_ERR(eb)) { 3153 return PTR_ERR(eb); 3154 } else if (!extent_buffer_uptodate(eb)) { 3155 free_extent_buffer(eb); 3156 return -EIO; 3157 } 3158 if (block->level == 0) 3159 btrfs_item_key_to_cpu(eb, &block->key, 0); 3160 else 3161 btrfs_node_key_to_cpu(eb, &block->key, 0); 3162 free_extent_buffer(eb); 3163 block->key_ready = 1; 3164 return 0; 3165 } 3166 3167 /* 3168 * helper function to relocate a tree block 3169 */ 3170 static int relocate_tree_block(struct btrfs_trans_handle *trans, 3171 struct reloc_control *rc, 3172 struct backref_node *node, 3173 struct btrfs_key *key, 3174 struct btrfs_path *path) 3175 { 3176 struct btrfs_root *root; 3177 int ret = 0; 3178 3179 if (!node) 3180 return 0; 3181 3182 /* 3183 * If we fail here we want to drop our backref_node because we are going 3184 * to start over and regenerate the tree for it. 3185 */ 3186 ret = reserve_metadata_space(trans, rc, node); 3187 if (ret) 3188 goto out; 3189 3190 BUG_ON(node->processed); 3191 root = select_one_root(node); 3192 if (root == ERR_PTR(-ENOENT)) { 3193 update_processed_blocks(rc, node); 3194 goto out; 3195 } 3196 3197 if (root) { 3198 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 3199 BUG_ON(node->new_bytenr); 3200 BUG_ON(!list_empty(&node->list)); 3201 btrfs_record_root_in_trans(trans, root); 3202 root = root->reloc_root; 3203 node->new_bytenr = root->node->start; 3204 btrfs_put_root(node->root); 3205 node->root = btrfs_grab_root(root); 3206 ASSERT(node->root); 3207 list_add_tail(&node->list, &rc->backref_cache.changed); 3208 } else { 3209 path->lowest_level = node->level; 3210 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 3211 btrfs_release_path(path); 3212 if (ret > 0) 3213 ret = 0; 3214 } 3215 if (!ret) 3216 update_processed_blocks(rc, node); 3217 } else { 3218 ret = do_relocation(trans, rc, node, key, path, 1); 3219 } 3220 out: 3221 if (ret || node->level == 0 || node->cowonly) 3222 remove_backref_node(&rc->backref_cache, node); 3223 return ret; 3224 } 3225 3226 /* 3227 * relocate a list of blocks 3228 */ 3229 static noinline_for_stack 3230 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 3231 struct reloc_control *rc, struct rb_root *blocks) 3232 { 3233 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3234 struct backref_node *node; 3235 struct btrfs_path *path; 3236 struct tree_block *block; 3237 struct tree_block *next; 3238 int ret; 3239 int err = 0; 3240 3241 path = btrfs_alloc_path(); 3242 if (!path) { 3243 err = -ENOMEM; 3244 goto out_free_blocks; 3245 } 3246 3247 /* Kick in readahead for tree blocks with missing keys */ 3248 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3249 if (!block->key_ready) 3250 readahead_tree_block(fs_info, block->bytenr); 3251 } 3252 3253 /* Get first keys */ 3254 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3255 if (!block->key_ready) { 3256 err = get_tree_block_key(fs_info, block); 3257 if (err) 3258 goto out_free_path; 3259 } 3260 } 3261 3262 /* Do tree relocation */ 3263 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) { 3264 node = build_backref_tree(rc, &block->key, 3265 block->level, block->bytenr); 3266 if (IS_ERR(node)) { 3267 err = PTR_ERR(node); 3268 goto out; 3269 } 3270 3271 ret = relocate_tree_block(trans, rc, node, &block->key, 3272 path); 3273 if (ret < 0) { 3274 err = ret; 3275 break; 3276 } 3277 } 3278 out: 3279 err = finish_pending_nodes(trans, rc, path, err); 3280 3281 out_free_path: 3282 btrfs_free_path(path); 3283 out_free_blocks: 3284 free_block_list(blocks); 3285 return err; 3286 } 3287 3288 static noinline_for_stack 3289 int prealloc_file_extent_cluster(struct inode *inode, 3290 struct file_extent_cluster *cluster) 3291 { 3292 u64 alloc_hint = 0; 3293 u64 start; 3294 u64 end; 3295 u64 offset = BTRFS_I(inode)->index_cnt; 3296 u64 num_bytes; 3297 int nr = 0; 3298 int ret = 0; 3299 u64 prealloc_start = cluster->start - offset; 3300 u64 prealloc_end = cluster->end - offset; 3301 u64 cur_offset; 3302 struct extent_changeset *data_reserved = NULL; 3303 3304 BUG_ON(cluster->start != cluster->boundary[0]); 3305 inode_lock(inode); 3306 3307 ret = btrfs_check_data_free_space(inode, &data_reserved, prealloc_start, 3308 prealloc_end + 1 - prealloc_start); 3309 if (ret) 3310 goto out; 3311 3312 cur_offset = prealloc_start; 3313 while (nr < cluster->nr) { 3314 start = cluster->boundary[nr] - offset; 3315 if (nr + 1 < cluster->nr) 3316 end = cluster->boundary[nr + 1] - 1 - offset; 3317 else 3318 end = cluster->end - offset; 3319 3320 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3321 num_bytes = end + 1 - start; 3322 if (cur_offset < start) 3323 btrfs_free_reserved_data_space(inode, data_reserved, 3324 cur_offset, start - cur_offset); 3325 ret = btrfs_prealloc_file_range(inode, 0, start, 3326 num_bytes, num_bytes, 3327 end + 1, &alloc_hint); 3328 cur_offset = end + 1; 3329 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3330 if (ret) 3331 break; 3332 nr++; 3333 } 3334 if (cur_offset < prealloc_end) 3335 btrfs_free_reserved_data_space(inode, data_reserved, 3336 cur_offset, prealloc_end + 1 - cur_offset); 3337 out: 3338 inode_unlock(inode); 3339 extent_changeset_free(data_reserved); 3340 return ret; 3341 } 3342 3343 static noinline_for_stack 3344 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3345 u64 block_start) 3346 { 3347 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3348 struct extent_map *em; 3349 int ret = 0; 3350 3351 em = alloc_extent_map(); 3352 if (!em) 3353 return -ENOMEM; 3354 3355 em->start = start; 3356 em->len = end + 1 - start; 3357 em->block_len = em->len; 3358 em->block_start = block_start; 3359 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3360 3361 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3362 while (1) { 3363 write_lock(&em_tree->lock); 3364 ret = add_extent_mapping(em_tree, em, 0); 3365 write_unlock(&em_tree->lock); 3366 if (ret != -EEXIST) { 3367 free_extent_map(em); 3368 break; 3369 } 3370 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0); 3371 } 3372 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3373 return ret; 3374 } 3375 3376 /* 3377 * Allow error injection to test balance cancellation 3378 */ 3379 int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info) 3380 { 3381 return atomic_read(&fs_info->balance_cancel_req); 3382 } 3383 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE); 3384 3385 static int relocate_file_extent_cluster(struct inode *inode, 3386 struct file_extent_cluster *cluster) 3387 { 3388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3389 u64 page_start; 3390 u64 page_end; 3391 u64 offset = BTRFS_I(inode)->index_cnt; 3392 unsigned long index; 3393 unsigned long last_index; 3394 struct page *page; 3395 struct file_ra_state *ra; 3396 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3397 int nr = 0; 3398 int ret = 0; 3399 3400 if (!cluster->nr) 3401 return 0; 3402 3403 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3404 if (!ra) 3405 return -ENOMEM; 3406 3407 ret = prealloc_file_extent_cluster(inode, cluster); 3408 if (ret) 3409 goto out; 3410 3411 file_ra_state_init(ra, inode->i_mapping); 3412 3413 ret = setup_extent_mapping(inode, cluster->start - offset, 3414 cluster->end - offset, cluster->start); 3415 if (ret) 3416 goto out; 3417 3418 index = (cluster->start - offset) >> PAGE_SHIFT; 3419 last_index = (cluster->end - offset) >> PAGE_SHIFT; 3420 while (index <= last_index) { 3421 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), 3422 PAGE_SIZE); 3423 if (ret) 3424 goto out; 3425 3426 page = find_lock_page(inode->i_mapping, index); 3427 if (!page) { 3428 page_cache_sync_readahead(inode->i_mapping, 3429 ra, NULL, index, 3430 last_index + 1 - index); 3431 page = find_or_create_page(inode->i_mapping, index, 3432 mask); 3433 if (!page) { 3434 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3435 PAGE_SIZE, true); 3436 btrfs_delalloc_release_extents(BTRFS_I(inode), 3437 PAGE_SIZE); 3438 ret = -ENOMEM; 3439 goto out; 3440 } 3441 } 3442 3443 if (PageReadahead(page)) { 3444 page_cache_async_readahead(inode->i_mapping, 3445 ra, NULL, page, index, 3446 last_index + 1 - index); 3447 } 3448 3449 if (!PageUptodate(page)) { 3450 btrfs_readpage(NULL, page); 3451 lock_page(page); 3452 if (!PageUptodate(page)) { 3453 unlock_page(page); 3454 put_page(page); 3455 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3456 PAGE_SIZE, true); 3457 btrfs_delalloc_release_extents(BTRFS_I(inode), 3458 PAGE_SIZE); 3459 ret = -EIO; 3460 goto out; 3461 } 3462 } 3463 3464 page_start = page_offset(page); 3465 page_end = page_start + PAGE_SIZE - 1; 3466 3467 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3468 3469 set_page_extent_mapped(page); 3470 3471 if (nr < cluster->nr && 3472 page_start + offset == cluster->boundary[nr]) { 3473 set_extent_bits(&BTRFS_I(inode)->io_tree, 3474 page_start, page_end, 3475 EXTENT_BOUNDARY); 3476 nr++; 3477 } 3478 3479 ret = btrfs_set_extent_delalloc(inode, page_start, page_end, 0, 3480 NULL); 3481 if (ret) { 3482 unlock_page(page); 3483 put_page(page); 3484 btrfs_delalloc_release_metadata(BTRFS_I(inode), 3485 PAGE_SIZE, true); 3486 btrfs_delalloc_release_extents(BTRFS_I(inode), 3487 PAGE_SIZE); 3488 3489 clear_extent_bits(&BTRFS_I(inode)->io_tree, 3490 page_start, page_end, 3491 EXTENT_LOCKED | EXTENT_BOUNDARY); 3492 goto out; 3493 3494 } 3495 set_page_dirty(page); 3496 3497 unlock_extent(&BTRFS_I(inode)->io_tree, 3498 page_start, page_end); 3499 unlock_page(page); 3500 put_page(page); 3501 3502 index++; 3503 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE); 3504 balance_dirty_pages_ratelimited(inode->i_mapping); 3505 btrfs_throttle(fs_info); 3506 if (btrfs_should_cancel_balance(fs_info)) { 3507 ret = -ECANCELED; 3508 goto out; 3509 } 3510 } 3511 WARN_ON(nr != cluster->nr); 3512 out: 3513 kfree(ra); 3514 return ret; 3515 } 3516 3517 static noinline_for_stack 3518 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3519 struct file_extent_cluster *cluster) 3520 { 3521 int ret; 3522 3523 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3524 ret = relocate_file_extent_cluster(inode, cluster); 3525 if (ret) 3526 return ret; 3527 cluster->nr = 0; 3528 } 3529 3530 if (!cluster->nr) 3531 cluster->start = extent_key->objectid; 3532 else 3533 BUG_ON(cluster->nr >= MAX_EXTENTS); 3534 cluster->end = extent_key->objectid + extent_key->offset - 1; 3535 cluster->boundary[cluster->nr] = extent_key->objectid; 3536 cluster->nr++; 3537 3538 if (cluster->nr >= MAX_EXTENTS) { 3539 ret = relocate_file_extent_cluster(inode, cluster); 3540 if (ret) 3541 return ret; 3542 cluster->nr = 0; 3543 } 3544 return 0; 3545 } 3546 3547 /* 3548 * helper to add a tree block to the list. 3549 * the major work is getting the generation and level of the block 3550 */ 3551 static int add_tree_block(struct reloc_control *rc, 3552 struct btrfs_key *extent_key, 3553 struct btrfs_path *path, 3554 struct rb_root *blocks) 3555 { 3556 struct extent_buffer *eb; 3557 struct btrfs_extent_item *ei; 3558 struct btrfs_tree_block_info *bi; 3559 struct tree_block *block; 3560 struct rb_node *rb_node; 3561 u32 item_size; 3562 int level = -1; 3563 u64 generation; 3564 3565 eb = path->nodes[0]; 3566 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3567 3568 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3569 item_size >= sizeof(*ei) + sizeof(*bi)) { 3570 ei = btrfs_item_ptr(eb, path->slots[0], 3571 struct btrfs_extent_item); 3572 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3573 bi = (struct btrfs_tree_block_info *)(ei + 1); 3574 level = btrfs_tree_block_level(eb, bi); 3575 } else { 3576 level = (int)extent_key->offset; 3577 } 3578 generation = btrfs_extent_generation(eb, ei); 3579 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 3580 btrfs_print_v0_err(eb->fs_info); 3581 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL); 3582 return -EINVAL; 3583 } else { 3584 BUG(); 3585 } 3586 3587 btrfs_release_path(path); 3588 3589 BUG_ON(level == -1); 3590 3591 block = kmalloc(sizeof(*block), GFP_NOFS); 3592 if (!block) 3593 return -ENOMEM; 3594 3595 block->bytenr = extent_key->objectid; 3596 block->key.objectid = rc->extent_root->fs_info->nodesize; 3597 block->key.offset = generation; 3598 block->level = level; 3599 block->key_ready = 0; 3600 3601 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3602 if (rb_node) 3603 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3604 3605 return 0; 3606 } 3607 3608 /* 3609 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3610 */ 3611 static int __add_tree_block(struct reloc_control *rc, 3612 u64 bytenr, u32 blocksize, 3613 struct rb_root *blocks) 3614 { 3615 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3616 struct btrfs_path *path; 3617 struct btrfs_key key; 3618 int ret; 3619 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA); 3620 3621 if (tree_block_processed(bytenr, rc)) 3622 return 0; 3623 3624 if (tree_search(blocks, bytenr)) 3625 return 0; 3626 3627 path = btrfs_alloc_path(); 3628 if (!path) 3629 return -ENOMEM; 3630 again: 3631 key.objectid = bytenr; 3632 if (skinny) { 3633 key.type = BTRFS_METADATA_ITEM_KEY; 3634 key.offset = (u64)-1; 3635 } else { 3636 key.type = BTRFS_EXTENT_ITEM_KEY; 3637 key.offset = blocksize; 3638 } 3639 3640 path->search_commit_root = 1; 3641 path->skip_locking = 1; 3642 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3643 if (ret < 0) 3644 goto out; 3645 3646 if (ret > 0 && skinny) { 3647 if (path->slots[0]) { 3648 path->slots[0]--; 3649 btrfs_item_key_to_cpu(path->nodes[0], &key, 3650 path->slots[0]); 3651 if (key.objectid == bytenr && 3652 (key.type == BTRFS_METADATA_ITEM_KEY || 3653 (key.type == BTRFS_EXTENT_ITEM_KEY && 3654 key.offset == blocksize))) 3655 ret = 0; 3656 } 3657 3658 if (ret) { 3659 skinny = false; 3660 btrfs_release_path(path); 3661 goto again; 3662 } 3663 } 3664 if (ret) { 3665 ASSERT(ret == 1); 3666 btrfs_print_leaf(path->nodes[0]); 3667 btrfs_err(fs_info, 3668 "tree block extent item (%llu) is not found in extent tree", 3669 bytenr); 3670 WARN_ON(1); 3671 ret = -EINVAL; 3672 goto out; 3673 } 3674 3675 ret = add_tree_block(rc, &key, path, blocks); 3676 out: 3677 btrfs_free_path(path); 3678 return ret; 3679 } 3680 3681 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3682 struct btrfs_block_group *block_group, 3683 struct inode *inode, 3684 u64 ino) 3685 { 3686 struct btrfs_key key; 3687 struct btrfs_root *root = fs_info->tree_root; 3688 struct btrfs_trans_handle *trans; 3689 int ret = 0; 3690 3691 if (inode) 3692 goto truncate; 3693 3694 key.objectid = ino; 3695 key.type = BTRFS_INODE_ITEM_KEY; 3696 key.offset = 0; 3697 3698 inode = btrfs_iget(fs_info->sb, &key, root); 3699 if (IS_ERR(inode)) 3700 return -ENOENT; 3701 3702 truncate: 3703 ret = btrfs_check_trunc_cache_free_space(fs_info, 3704 &fs_info->global_block_rsv); 3705 if (ret) 3706 goto out; 3707 3708 trans = btrfs_join_transaction(root); 3709 if (IS_ERR(trans)) { 3710 ret = PTR_ERR(trans); 3711 goto out; 3712 } 3713 3714 ret = btrfs_truncate_free_space_cache(trans, block_group, inode); 3715 3716 btrfs_end_transaction(trans); 3717 btrfs_btree_balance_dirty(fs_info); 3718 out: 3719 iput(inode); 3720 return ret; 3721 } 3722 3723 /* 3724 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the 3725 * cache inode, to avoid free space cache data extent blocking data relocation. 3726 */ 3727 static int delete_v1_space_cache(struct extent_buffer *leaf, 3728 struct btrfs_block_group *block_group, 3729 u64 data_bytenr) 3730 { 3731 u64 space_cache_ino; 3732 struct btrfs_file_extent_item *ei; 3733 struct btrfs_key key; 3734 bool found = false; 3735 int i; 3736 int ret; 3737 3738 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID) 3739 return 0; 3740 3741 for (i = 0; i < btrfs_header_nritems(leaf); i++) { 3742 btrfs_item_key_to_cpu(leaf, &key, i); 3743 if (key.type != BTRFS_EXTENT_DATA_KEY) 3744 continue; 3745 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 3746 if (btrfs_file_extent_type(leaf, ei) == BTRFS_FILE_EXTENT_REG && 3747 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) { 3748 found = true; 3749 space_cache_ino = key.objectid; 3750 break; 3751 } 3752 } 3753 if (!found) 3754 return -ENOENT; 3755 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL, 3756 space_cache_ino); 3757 return ret; 3758 } 3759 3760 /* 3761 * helper to find all tree blocks that reference a given data extent 3762 */ 3763 static noinline_for_stack 3764 int add_data_references(struct reloc_control *rc, 3765 struct btrfs_key *extent_key, 3766 struct btrfs_path *path, 3767 struct rb_root *blocks) 3768 { 3769 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3770 struct ulist *leaves = NULL; 3771 struct ulist_iterator leaf_uiter; 3772 struct ulist_node *ref_node = NULL; 3773 const u32 blocksize = fs_info->nodesize; 3774 int ret = 0; 3775 3776 btrfs_release_path(path); 3777 ret = btrfs_find_all_leafs(NULL, fs_info, extent_key->objectid, 3778 0, &leaves, NULL, true); 3779 if (ret < 0) 3780 return ret; 3781 3782 ULIST_ITER_INIT(&leaf_uiter); 3783 while ((ref_node = ulist_next(leaves, &leaf_uiter))) { 3784 struct extent_buffer *eb; 3785 3786 eb = read_tree_block(fs_info, ref_node->val, 0, 0, NULL); 3787 if (IS_ERR(eb)) { 3788 ret = PTR_ERR(eb); 3789 break; 3790 } 3791 ret = delete_v1_space_cache(eb, rc->block_group, 3792 extent_key->objectid); 3793 free_extent_buffer(eb); 3794 if (ret < 0) 3795 break; 3796 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks); 3797 if (ret < 0) 3798 break; 3799 } 3800 if (ret < 0) 3801 free_block_list(blocks); 3802 ulist_free(leaves); 3803 return ret; 3804 } 3805 3806 /* 3807 * helper to find next unprocessed extent 3808 */ 3809 static noinline_for_stack 3810 int find_next_extent(struct reloc_control *rc, struct btrfs_path *path, 3811 struct btrfs_key *extent_key) 3812 { 3813 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3814 struct btrfs_key key; 3815 struct extent_buffer *leaf; 3816 u64 start, end, last; 3817 int ret; 3818 3819 last = rc->block_group->start + rc->block_group->length; 3820 while (1) { 3821 cond_resched(); 3822 if (rc->search_start >= last) { 3823 ret = 1; 3824 break; 3825 } 3826 3827 key.objectid = rc->search_start; 3828 key.type = BTRFS_EXTENT_ITEM_KEY; 3829 key.offset = 0; 3830 3831 path->search_commit_root = 1; 3832 path->skip_locking = 1; 3833 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3834 0, 0); 3835 if (ret < 0) 3836 break; 3837 next: 3838 leaf = path->nodes[0]; 3839 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3840 ret = btrfs_next_leaf(rc->extent_root, path); 3841 if (ret != 0) 3842 break; 3843 leaf = path->nodes[0]; 3844 } 3845 3846 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3847 if (key.objectid >= last) { 3848 ret = 1; 3849 break; 3850 } 3851 3852 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3853 key.type != BTRFS_METADATA_ITEM_KEY) { 3854 path->slots[0]++; 3855 goto next; 3856 } 3857 3858 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3859 key.objectid + key.offset <= rc->search_start) { 3860 path->slots[0]++; 3861 goto next; 3862 } 3863 3864 if (key.type == BTRFS_METADATA_ITEM_KEY && 3865 key.objectid + fs_info->nodesize <= 3866 rc->search_start) { 3867 path->slots[0]++; 3868 goto next; 3869 } 3870 3871 ret = find_first_extent_bit(&rc->processed_blocks, 3872 key.objectid, &start, &end, 3873 EXTENT_DIRTY, NULL); 3874 3875 if (ret == 0 && start <= key.objectid) { 3876 btrfs_release_path(path); 3877 rc->search_start = end + 1; 3878 } else { 3879 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3880 rc->search_start = key.objectid + key.offset; 3881 else 3882 rc->search_start = key.objectid + 3883 fs_info->nodesize; 3884 memcpy(extent_key, &key, sizeof(key)); 3885 return 0; 3886 } 3887 } 3888 btrfs_release_path(path); 3889 return ret; 3890 } 3891 3892 static void set_reloc_control(struct reloc_control *rc) 3893 { 3894 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3895 3896 mutex_lock(&fs_info->reloc_mutex); 3897 fs_info->reloc_ctl = rc; 3898 mutex_unlock(&fs_info->reloc_mutex); 3899 } 3900 3901 static void unset_reloc_control(struct reloc_control *rc) 3902 { 3903 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3904 3905 mutex_lock(&fs_info->reloc_mutex); 3906 fs_info->reloc_ctl = NULL; 3907 mutex_unlock(&fs_info->reloc_mutex); 3908 } 3909 3910 static int check_extent_flags(u64 flags) 3911 { 3912 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3913 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3914 return 1; 3915 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3916 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3917 return 1; 3918 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3919 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3920 return 1; 3921 return 0; 3922 } 3923 3924 static noinline_for_stack 3925 int prepare_to_relocate(struct reloc_control *rc) 3926 { 3927 struct btrfs_trans_handle *trans; 3928 int ret; 3929 3930 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info, 3931 BTRFS_BLOCK_RSV_TEMP); 3932 if (!rc->block_rsv) 3933 return -ENOMEM; 3934 3935 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3936 rc->search_start = rc->block_group->start; 3937 rc->extents_found = 0; 3938 rc->nodes_relocated = 0; 3939 rc->merging_rsv_size = 0; 3940 rc->reserved_bytes = 0; 3941 rc->block_rsv->size = rc->extent_root->fs_info->nodesize * 3942 RELOCATION_RESERVED_NODES; 3943 ret = btrfs_block_rsv_refill(rc->extent_root, 3944 rc->block_rsv, rc->block_rsv->size, 3945 BTRFS_RESERVE_FLUSH_ALL); 3946 if (ret) 3947 return ret; 3948 3949 rc->create_reloc_tree = 1; 3950 set_reloc_control(rc); 3951 3952 trans = btrfs_join_transaction(rc->extent_root); 3953 if (IS_ERR(trans)) { 3954 unset_reloc_control(rc); 3955 /* 3956 * extent tree is not a ref_cow tree and has no reloc_root to 3957 * cleanup. And callers are responsible to free the above 3958 * block rsv. 3959 */ 3960 return PTR_ERR(trans); 3961 } 3962 btrfs_commit_transaction(trans); 3963 return 0; 3964 } 3965 3966 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3967 { 3968 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3969 struct rb_root blocks = RB_ROOT; 3970 struct btrfs_key key; 3971 struct btrfs_trans_handle *trans = NULL; 3972 struct btrfs_path *path; 3973 struct btrfs_extent_item *ei; 3974 u64 flags; 3975 u32 item_size; 3976 int ret; 3977 int err = 0; 3978 int progress = 0; 3979 3980 path = btrfs_alloc_path(); 3981 if (!path) 3982 return -ENOMEM; 3983 path->reada = READA_FORWARD; 3984 3985 ret = prepare_to_relocate(rc); 3986 if (ret) { 3987 err = ret; 3988 goto out_free; 3989 } 3990 3991 while (1) { 3992 rc->reserved_bytes = 0; 3993 ret = btrfs_block_rsv_refill(rc->extent_root, 3994 rc->block_rsv, rc->block_rsv->size, 3995 BTRFS_RESERVE_FLUSH_ALL); 3996 if (ret) { 3997 err = ret; 3998 break; 3999 } 4000 progress++; 4001 trans = btrfs_start_transaction(rc->extent_root, 0); 4002 if (IS_ERR(trans)) { 4003 err = PTR_ERR(trans); 4004 trans = NULL; 4005 break; 4006 } 4007 restart: 4008 if (update_backref_cache(trans, &rc->backref_cache)) { 4009 btrfs_end_transaction(trans); 4010 trans = NULL; 4011 continue; 4012 } 4013 4014 ret = find_next_extent(rc, path, &key); 4015 if (ret < 0) 4016 err = ret; 4017 if (ret != 0) 4018 break; 4019 4020 rc->extents_found++; 4021 4022 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 4023 struct btrfs_extent_item); 4024 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 4025 if (item_size >= sizeof(*ei)) { 4026 flags = btrfs_extent_flags(path->nodes[0], ei); 4027 ret = check_extent_flags(flags); 4028 BUG_ON(ret); 4029 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) { 4030 err = -EINVAL; 4031 btrfs_print_v0_err(trans->fs_info); 4032 btrfs_abort_transaction(trans, err); 4033 break; 4034 } else { 4035 BUG(); 4036 } 4037 4038 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 4039 ret = add_tree_block(rc, &key, path, &blocks); 4040 } else if (rc->stage == UPDATE_DATA_PTRS && 4041 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4042 ret = add_data_references(rc, &key, path, &blocks); 4043 } else { 4044 btrfs_release_path(path); 4045 ret = 0; 4046 } 4047 if (ret < 0) { 4048 err = ret; 4049 break; 4050 } 4051 4052 if (!RB_EMPTY_ROOT(&blocks)) { 4053 ret = relocate_tree_blocks(trans, rc, &blocks); 4054 if (ret < 0) { 4055 if (ret != -EAGAIN) { 4056 err = ret; 4057 break; 4058 } 4059 rc->extents_found--; 4060 rc->search_start = key.objectid; 4061 } 4062 } 4063 4064 btrfs_end_transaction_throttle(trans); 4065 btrfs_btree_balance_dirty(fs_info); 4066 trans = NULL; 4067 4068 if (rc->stage == MOVE_DATA_EXTENTS && 4069 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4070 rc->found_file_extent = 1; 4071 ret = relocate_data_extent(rc->data_inode, 4072 &key, &rc->cluster); 4073 if (ret < 0) { 4074 err = ret; 4075 break; 4076 } 4077 } 4078 if (btrfs_should_cancel_balance(fs_info)) { 4079 err = -ECANCELED; 4080 break; 4081 } 4082 } 4083 if (trans && progress && err == -ENOSPC) { 4084 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags); 4085 if (ret == 1) { 4086 err = 0; 4087 progress = 0; 4088 goto restart; 4089 } 4090 } 4091 4092 btrfs_release_path(path); 4093 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY); 4094 4095 if (trans) { 4096 btrfs_end_transaction_throttle(trans); 4097 btrfs_btree_balance_dirty(fs_info); 4098 } 4099 4100 if (!err) { 4101 ret = relocate_file_extent_cluster(rc->data_inode, 4102 &rc->cluster); 4103 if (ret < 0) 4104 err = ret; 4105 } 4106 4107 rc->create_reloc_tree = 0; 4108 set_reloc_control(rc); 4109 4110 backref_cache_cleanup(&rc->backref_cache); 4111 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 4112 4113 /* 4114 * Even in the case when the relocation is cancelled, we should all go 4115 * through prepare_to_merge() and merge_reloc_roots(). 4116 * 4117 * For error (including cancelled balance), prepare_to_merge() will 4118 * mark all reloc trees orphan, then queue them for cleanup in 4119 * merge_reloc_roots() 4120 */ 4121 err = prepare_to_merge(rc, err); 4122 4123 merge_reloc_roots(rc); 4124 4125 rc->merge_reloc_tree = 0; 4126 unset_reloc_control(rc); 4127 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL); 4128 4129 /* get rid of pinned extents */ 4130 trans = btrfs_join_transaction(rc->extent_root); 4131 if (IS_ERR(trans)) { 4132 err = PTR_ERR(trans); 4133 goto out_free; 4134 } 4135 btrfs_commit_transaction(trans); 4136 out_free: 4137 ret = clean_dirty_subvols(rc); 4138 if (ret < 0 && !err) 4139 err = ret; 4140 btrfs_free_block_rsv(fs_info, rc->block_rsv); 4141 btrfs_free_path(path); 4142 return err; 4143 } 4144 4145 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4146 struct btrfs_root *root, u64 objectid) 4147 { 4148 struct btrfs_path *path; 4149 struct btrfs_inode_item *item; 4150 struct extent_buffer *leaf; 4151 int ret; 4152 4153 path = btrfs_alloc_path(); 4154 if (!path) 4155 return -ENOMEM; 4156 4157 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4158 if (ret) 4159 goto out; 4160 4161 leaf = path->nodes[0]; 4162 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4163 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 4164 btrfs_set_inode_generation(leaf, item, 1); 4165 btrfs_set_inode_size(leaf, item, 0); 4166 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4167 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4168 BTRFS_INODE_PREALLOC); 4169 btrfs_mark_buffer_dirty(leaf); 4170 out: 4171 btrfs_free_path(path); 4172 return ret; 4173 } 4174 4175 /* 4176 * helper to create inode for data relocation. 4177 * the inode is in data relocation tree and its link count is 0 4178 */ 4179 static noinline_for_stack 4180 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4181 struct btrfs_block_group *group) 4182 { 4183 struct inode *inode = NULL; 4184 struct btrfs_trans_handle *trans; 4185 struct btrfs_root *root; 4186 struct btrfs_key key; 4187 u64 objectid; 4188 int err = 0; 4189 4190 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4191 if (IS_ERR(root)) 4192 return ERR_CAST(root); 4193 4194 trans = btrfs_start_transaction(root, 6); 4195 if (IS_ERR(trans)) { 4196 btrfs_put_root(root); 4197 return ERR_CAST(trans); 4198 } 4199 4200 err = btrfs_find_free_objectid(root, &objectid); 4201 if (err) 4202 goto out; 4203 4204 err = __insert_orphan_inode(trans, root, objectid); 4205 BUG_ON(err); 4206 4207 key.objectid = objectid; 4208 key.type = BTRFS_INODE_ITEM_KEY; 4209 key.offset = 0; 4210 inode = btrfs_iget(fs_info->sb, &key, root); 4211 BUG_ON(IS_ERR(inode)); 4212 BTRFS_I(inode)->index_cnt = group->start; 4213 4214 err = btrfs_orphan_add(trans, BTRFS_I(inode)); 4215 out: 4216 btrfs_put_root(root); 4217 btrfs_end_transaction(trans); 4218 btrfs_btree_balance_dirty(fs_info); 4219 if (err) { 4220 if (inode) 4221 iput(inode); 4222 inode = ERR_PTR(err); 4223 } 4224 return inode; 4225 } 4226 4227 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4228 { 4229 struct reloc_control *rc; 4230 4231 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4232 if (!rc) 4233 return NULL; 4234 4235 INIT_LIST_HEAD(&rc->reloc_roots); 4236 INIT_LIST_HEAD(&rc->dirty_subvol_roots); 4237 backref_cache_init(&rc->backref_cache); 4238 mapping_tree_init(&rc->reloc_root_tree); 4239 extent_io_tree_init(fs_info, &rc->processed_blocks, 4240 IO_TREE_RELOC_BLOCKS, NULL); 4241 return rc; 4242 } 4243 4244 static void free_reloc_control(struct reloc_control *rc) 4245 { 4246 struct mapping_node *node, *tmp; 4247 4248 free_reloc_roots(&rc->reloc_roots); 4249 rbtree_postorder_for_each_entry_safe(node, tmp, 4250 &rc->reloc_root_tree.rb_root, rb_node) 4251 kfree(node); 4252 4253 kfree(rc); 4254 } 4255 4256 /* 4257 * Print the block group being relocated 4258 */ 4259 static void describe_relocation(struct btrfs_fs_info *fs_info, 4260 struct btrfs_block_group *block_group) 4261 { 4262 char buf[128] = {'\0'}; 4263 4264 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf)); 4265 4266 btrfs_info(fs_info, 4267 "relocating block group %llu flags %s", 4268 block_group->start, buf); 4269 } 4270 4271 static const char *stage_to_string(int stage) 4272 { 4273 if (stage == MOVE_DATA_EXTENTS) 4274 return "move data extents"; 4275 if (stage == UPDATE_DATA_PTRS) 4276 return "update data pointers"; 4277 return "unknown"; 4278 } 4279 4280 /* 4281 * function to relocate all extents in a block group. 4282 */ 4283 int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start) 4284 { 4285 struct btrfs_block_group *bg; 4286 struct btrfs_root *extent_root = fs_info->extent_root; 4287 struct reloc_control *rc; 4288 struct inode *inode; 4289 struct btrfs_path *path; 4290 int ret; 4291 int rw = 0; 4292 int err = 0; 4293 4294 bg = btrfs_lookup_block_group(fs_info, group_start); 4295 if (!bg) 4296 return -ENOENT; 4297 4298 if (btrfs_pinned_by_swapfile(fs_info, bg)) { 4299 btrfs_put_block_group(bg); 4300 return -ETXTBSY; 4301 } 4302 4303 rc = alloc_reloc_control(fs_info); 4304 if (!rc) { 4305 btrfs_put_block_group(bg); 4306 return -ENOMEM; 4307 } 4308 4309 rc->extent_root = extent_root; 4310 rc->block_group = bg; 4311 4312 ret = btrfs_inc_block_group_ro(rc->block_group, true); 4313 if (ret) { 4314 err = ret; 4315 goto out; 4316 } 4317 rw = 1; 4318 4319 path = btrfs_alloc_path(); 4320 if (!path) { 4321 err = -ENOMEM; 4322 goto out; 4323 } 4324 4325 inode = lookup_free_space_inode(rc->block_group, path); 4326 btrfs_free_path(path); 4327 4328 if (!IS_ERR(inode)) 4329 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0); 4330 else 4331 ret = PTR_ERR(inode); 4332 4333 if (ret && ret != -ENOENT) { 4334 err = ret; 4335 goto out; 4336 } 4337 4338 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4339 if (IS_ERR(rc->data_inode)) { 4340 err = PTR_ERR(rc->data_inode); 4341 rc->data_inode = NULL; 4342 goto out; 4343 } 4344 4345 describe_relocation(fs_info, rc->block_group); 4346 4347 btrfs_wait_block_group_reservations(rc->block_group); 4348 btrfs_wait_nocow_writers(rc->block_group); 4349 btrfs_wait_ordered_roots(fs_info, U64_MAX, 4350 rc->block_group->start, 4351 rc->block_group->length); 4352 4353 while (1) { 4354 int finishes_stage; 4355 4356 mutex_lock(&fs_info->cleaner_mutex); 4357 ret = relocate_block_group(rc); 4358 mutex_unlock(&fs_info->cleaner_mutex); 4359 if (ret < 0) 4360 err = ret; 4361 4362 finishes_stage = rc->stage; 4363 /* 4364 * We may have gotten ENOSPC after we already dirtied some 4365 * extents. If writeout happens while we're relocating a 4366 * different block group we could end up hitting the 4367 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in 4368 * btrfs_reloc_cow_block. Make sure we write everything out 4369 * properly so we don't trip over this problem, and then break 4370 * out of the loop if we hit an error. 4371 */ 4372 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4373 ret = btrfs_wait_ordered_range(rc->data_inode, 0, 4374 (u64)-1); 4375 if (ret) 4376 err = ret; 4377 invalidate_mapping_pages(rc->data_inode->i_mapping, 4378 0, -1); 4379 rc->stage = UPDATE_DATA_PTRS; 4380 } 4381 4382 if (err < 0) 4383 goto out; 4384 4385 if (rc->extents_found == 0) 4386 break; 4387 4388 btrfs_info(fs_info, "found %llu extents, stage: %s", 4389 rc->extents_found, stage_to_string(finishes_stage)); 4390 } 4391 4392 WARN_ON(rc->block_group->pinned > 0); 4393 WARN_ON(rc->block_group->reserved > 0); 4394 WARN_ON(rc->block_group->used > 0); 4395 out: 4396 if (err && rw) 4397 btrfs_dec_block_group_ro(rc->block_group); 4398 iput(rc->data_inode); 4399 btrfs_put_block_group(rc->block_group); 4400 free_reloc_control(rc); 4401 return err; 4402 } 4403 4404 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4405 { 4406 struct btrfs_fs_info *fs_info = root->fs_info; 4407 struct btrfs_trans_handle *trans; 4408 int ret, err; 4409 4410 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4411 if (IS_ERR(trans)) 4412 return PTR_ERR(trans); 4413 4414 memset(&root->root_item.drop_progress, 0, 4415 sizeof(root->root_item.drop_progress)); 4416 root->root_item.drop_level = 0; 4417 btrfs_set_root_refs(&root->root_item, 0); 4418 ret = btrfs_update_root(trans, fs_info->tree_root, 4419 &root->root_key, &root->root_item); 4420 4421 err = btrfs_end_transaction(trans); 4422 if (err) 4423 return err; 4424 return ret; 4425 } 4426 4427 /* 4428 * recover relocation interrupted by system crash. 4429 * 4430 * this function resumes merging reloc trees with corresponding fs trees. 4431 * this is important for keeping the sharing of tree blocks 4432 */ 4433 int btrfs_recover_relocation(struct btrfs_root *root) 4434 { 4435 struct btrfs_fs_info *fs_info = root->fs_info; 4436 LIST_HEAD(reloc_roots); 4437 struct btrfs_key key; 4438 struct btrfs_root *fs_root; 4439 struct btrfs_root *reloc_root; 4440 struct btrfs_path *path; 4441 struct extent_buffer *leaf; 4442 struct reloc_control *rc = NULL; 4443 struct btrfs_trans_handle *trans; 4444 int ret; 4445 int err = 0; 4446 4447 path = btrfs_alloc_path(); 4448 if (!path) 4449 return -ENOMEM; 4450 path->reada = READA_BACK; 4451 4452 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4453 key.type = BTRFS_ROOT_ITEM_KEY; 4454 key.offset = (u64)-1; 4455 4456 while (1) { 4457 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, 4458 path, 0, 0); 4459 if (ret < 0) { 4460 err = ret; 4461 goto out; 4462 } 4463 if (ret > 0) { 4464 if (path->slots[0] == 0) 4465 break; 4466 path->slots[0]--; 4467 } 4468 leaf = path->nodes[0]; 4469 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4470 btrfs_release_path(path); 4471 4472 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4473 key.type != BTRFS_ROOT_ITEM_KEY) 4474 break; 4475 4476 reloc_root = btrfs_read_tree_root(root, &key); 4477 if (IS_ERR(reloc_root)) { 4478 err = PTR_ERR(reloc_root); 4479 goto out; 4480 } 4481 4482 set_bit(BTRFS_ROOT_REF_COWS, &reloc_root->state); 4483 list_add(&reloc_root->root_list, &reloc_roots); 4484 4485 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4486 fs_root = read_fs_root(fs_info, 4487 reloc_root->root_key.offset); 4488 if (IS_ERR(fs_root)) { 4489 ret = PTR_ERR(fs_root); 4490 if (ret != -ENOENT) { 4491 err = ret; 4492 goto out; 4493 } 4494 ret = mark_garbage_root(reloc_root); 4495 if (ret < 0) { 4496 err = ret; 4497 goto out; 4498 } 4499 } else { 4500 btrfs_put_root(fs_root); 4501 } 4502 } 4503 4504 if (key.offset == 0) 4505 break; 4506 4507 key.offset--; 4508 } 4509 btrfs_release_path(path); 4510 4511 if (list_empty(&reloc_roots)) 4512 goto out; 4513 4514 rc = alloc_reloc_control(fs_info); 4515 if (!rc) { 4516 err = -ENOMEM; 4517 goto out; 4518 } 4519 4520 rc->extent_root = fs_info->extent_root; 4521 4522 set_reloc_control(rc); 4523 4524 trans = btrfs_join_transaction(rc->extent_root); 4525 if (IS_ERR(trans)) { 4526 err = PTR_ERR(trans); 4527 goto out_unset; 4528 } 4529 4530 rc->merge_reloc_tree = 1; 4531 4532 while (!list_empty(&reloc_roots)) { 4533 reloc_root = list_entry(reloc_roots.next, 4534 struct btrfs_root, root_list); 4535 list_del(&reloc_root->root_list); 4536 4537 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4538 list_add_tail(&reloc_root->root_list, 4539 &rc->reloc_roots); 4540 continue; 4541 } 4542 4543 fs_root = read_fs_root(fs_info, reloc_root->root_key.offset); 4544 if (IS_ERR(fs_root)) { 4545 err = PTR_ERR(fs_root); 4546 list_add_tail(&reloc_root->root_list, &reloc_roots); 4547 goto out_unset; 4548 } 4549 4550 err = __add_reloc_root(reloc_root); 4551 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4552 fs_root->reloc_root = btrfs_grab_root(reloc_root); 4553 btrfs_put_root(fs_root); 4554 } 4555 4556 err = btrfs_commit_transaction(trans); 4557 if (err) 4558 goto out_unset; 4559 4560 merge_reloc_roots(rc); 4561 4562 unset_reloc_control(rc); 4563 4564 trans = btrfs_join_transaction(rc->extent_root); 4565 if (IS_ERR(trans)) { 4566 err = PTR_ERR(trans); 4567 goto out_clean; 4568 } 4569 err = btrfs_commit_transaction(trans); 4570 out_clean: 4571 ret = clean_dirty_subvols(rc); 4572 if (ret < 0 && !err) 4573 err = ret; 4574 out_unset: 4575 unset_reloc_control(rc); 4576 free_reloc_control(rc); 4577 out: 4578 if (!list_empty(&reloc_roots)) 4579 free_reloc_roots(&reloc_roots); 4580 4581 btrfs_free_path(path); 4582 4583 if (err == 0) { 4584 /* cleanup orphan inode in data relocation tree */ 4585 fs_root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4586 if (IS_ERR(fs_root)) { 4587 err = PTR_ERR(fs_root); 4588 } else { 4589 err = btrfs_orphan_cleanup(fs_root); 4590 btrfs_put_root(fs_root); 4591 } 4592 } 4593 return err; 4594 } 4595 4596 /* 4597 * helper to add ordered checksum for data relocation. 4598 * 4599 * cloning checksum properly handles the nodatasum extents. 4600 * it also saves CPU time to re-calculate the checksum. 4601 */ 4602 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4603 { 4604 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4605 struct btrfs_ordered_sum *sums; 4606 struct btrfs_ordered_extent *ordered; 4607 int ret; 4608 u64 disk_bytenr; 4609 u64 new_bytenr; 4610 LIST_HEAD(list); 4611 4612 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4613 BUG_ON(ordered->file_offset != file_pos || ordered->num_bytes != len); 4614 4615 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4616 ret = btrfs_lookup_csums_range(fs_info->csum_root, disk_bytenr, 4617 disk_bytenr + len - 1, &list, 0); 4618 if (ret) 4619 goto out; 4620 4621 while (!list_empty(&list)) { 4622 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4623 list_del_init(&sums->list); 4624 4625 /* 4626 * We need to offset the new_bytenr based on where the csum is. 4627 * We need to do this because we will read in entire prealloc 4628 * extents but we may have written to say the middle of the 4629 * prealloc extent, so we need to make sure the csum goes with 4630 * the right disk offset. 4631 * 4632 * We can do this because the data reloc inode refers strictly 4633 * to the on disk bytes, so we don't have to worry about 4634 * disk_len vs real len like with real inodes since it's all 4635 * disk length. 4636 */ 4637 new_bytenr = ordered->disk_bytenr + sums->bytenr - disk_bytenr; 4638 sums->bytenr = new_bytenr; 4639 4640 btrfs_add_ordered_sum(ordered, sums); 4641 } 4642 out: 4643 btrfs_put_ordered_extent(ordered); 4644 return ret; 4645 } 4646 4647 int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4648 struct btrfs_root *root, struct extent_buffer *buf, 4649 struct extent_buffer *cow) 4650 { 4651 struct btrfs_fs_info *fs_info = root->fs_info; 4652 struct reloc_control *rc; 4653 struct backref_node *node; 4654 int first_cow = 0; 4655 int level; 4656 int ret = 0; 4657 4658 rc = fs_info->reloc_ctl; 4659 if (!rc) 4660 return 0; 4661 4662 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4663 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4664 4665 level = btrfs_header_level(buf); 4666 if (btrfs_header_generation(buf) <= 4667 btrfs_root_last_snapshot(&root->root_item)) 4668 first_cow = 1; 4669 4670 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4671 rc->create_reloc_tree) { 4672 WARN_ON(!first_cow && level == 0); 4673 4674 node = rc->backref_cache.path[level]; 4675 BUG_ON(node->bytenr != buf->start && 4676 node->new_bytenr != buf->start); 4677 4678 drop_node_buffer(node); 4679 atomic_inc(&cow->refs); 4680 node->eb = cow; 4681 node->new_bytenr = cow->start; 4682 4683 if (!node->pending) { 4684 list_move_tail(&node->list, 4685 &rc->backref_cache.pending[level]); 4686 node->pending = 1; 4687 } 4688 4689 if (first_cow) 4690 __mark_block_processed(rc, node); 4691 4692 if (first_cow && level > 0) 4693 rc->nodes_relocated += buf->len; 4694 } 4695 4696 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) 4697 ret = replace_file_extents(trans, rc, root, cow); 4698 return ret; 4699 } 4700 4701 /* 4702 * called before creating snapshot. it calculates metadata reservation 4703 * required for relocating tree blocks in the snapshot 4704 */ 4705 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending, 4706 u64 *bytes_to_reserve) 4707 { 4708 struct btrfs_root *root = pending->root; 4709 struct reloc_control *rc = root->fs_info->reloc_ctl; 4710 4711 if (!rc || !have_reloc_root(root)) 4712 return; 4713 4714 if (!rc->merge_reloc_tree) 4715 return; 4716 4717 root = root->reloc_root; 4718 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4719 /* 4720 * relocation is in the stage of merging trees. the space 4721 * used by merging a reloc tree is twice the size of 4722 * relocated tree nodes in the worst case. half for cowing 4723 * the reloc tree, half for cowing the fs tree. the space 4724 * used by cowing the reloc tree will be freed after the 4725 * tree is dropped. if we create snapshot, cowing the fs 4726 * tree may use more space than it frees. so we need 4727 * reserve extra space. 4728 */ 4729 *bytes_to_reserve += rc->nodes_relocated; 4730 } 4731 4732 /* 4733 * called after snapshot is created. migrate block reservation 4734 * and create reloc root for the newly created snapshot 4735 * 4736 * This is similar to btrfs_init_reloc_root(), we come out of here with two 4737 * references held on the reloc_root, one for root->reloc_root and one for 4738 * rc->reloc_roots. 4739 */ 4740 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4741 struct btrfs_pending_snapshot *pending) 4742 { 4743 struct btrfs_root *root = pending->root; 4744 struct btrfs_root *reloc_root; 4745 struct btrfs_root *new_root; 4746 struct reloc_control *rc = root->fs_info->reloc_ctl; 4747 int ret; 4748 4749 if (!rc || !have_reloc_root(root)) 4750 return 0; 4751 4752 rc = root->fs_info->reloc_ctl; 4753 rc->merging_rsv_size += rc->nodes_relocated; 4754 4755 if (rc->merge_reloc_tree) { 4756 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4757 rc->block_rsv, 4758 rc->nodes_relocated, true); 4759 if (ret) 4760 return ret; 4761 } 4762 4763 new_root = pending->snap; 4764 reloc_root = create_reloc_root(trans, root->reloc_root, 4765 new_root->root_key.objectid); 4766 if (IS_ERR(reloc_root)) 4767 return PTR_ERR(reloc_root); 4768 4769 ret = __add_reloc_root(reloc_root); 4770 BUG_ON(ret < 0); 4771 new_root->reloc_root = btrfs_grab_root(reloc_root); 4772 4773 if (rc->create_reloc_tree) 4774 ret = clone_backref_node(trans, rc, root, reloc_root); 4775 return ret; 4776 } 4777